
I, "

D[Ji)mos~

ANSI C
Language and Libraries
Reference Manual

INMOS Limited

~ SGS-1HOMSON
~.,I® ~D©rnJ@~[b~©'ITOO@~D©~
INMOS is a member of the SGS-THOMSON Microelectronics Group

72 TDS 347 01 October 1992

© INMOS Limited 1992. This document may not be copied. in whole or in part. without
prior written consent of INMOS.

• ®. ~l1ilmos® J IMS and occam are trademarks of INMOS Limited.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

~I~ is a registered trademark of the SGS-THOMSON Microelectronics Group.

The Ccompiler irrlplementation was developed from the Perihelion Software "C" Compiler
and the Codemist Norcroft "c" Compiler.

INMOS Document Number: 72 TDS 347 01

Contents overview
Contents

Preface

Runtime Library

1 Introduction and run- An introduction to the Runtime Library with
time library summary summaries of the header 'files.

2 Alphabetical list of Detailed descriptions of each library 'function,
functions listed in alphabetical order.

3 Modifying the runtime Describes how the runtime startup code can be
starlup system tailored.

Language Reference

4 New features in ANSI Describes the new features in the ANSI stan-
G dard.

5 Language extensions Describes the ANSI C toolset language exten-
sions.

6 Implementation Contains data for implen1entation-defined
details characteristics.

Appendices

A Syntax of language Defines the language extensions.
extensions

B ANSI G compliance Lists implementation data required by the ANSI
data standard.

C GRG resume Provides additional information about the CRC
functions supplied with the toolset and docu-
mented in chapter 2.

Index

72 TDS 347 01 October 1992

ii

72 TDS 347 01

Contents overview

October 1992

I Contents
Contents overview .

Contents iii

Preface.. ix

Host versions ix
About this manual ix
About the toolset documentation set ix
Other documents ... xi

occam and FORTRAN toolsets . xi
Documentation conventions. xi

Runtime Library . 1

1 Introduction and runtime library summary 3

1.1 Introduction . 3
1.1.1 Accessing library functions 4
1.1.2 Linking libraries with programs 4
1.1.3 iserver protocols 4
1.1.4 Functions which store data in static. 4

1.2 Header tiles. 5
1.3 ANSI functions .. 6

1.3.1 Diagnostics <assert.h> 7
1.3.2 Character handling <ctype.h> 7
1.3.3 Error handling <errno.h> . 7
1.3.4 Floating point constants <float.h> 8
1.3.5 Implementation limits <Iimits.h> 9
1.3.6 Localization <Iocale.h> 9
1.3.7 Mathematics library <math.h> 11
1.3.8 Non-local jumps <seljmp.h> 12
1.3.9 Signal handling <signal.h> 12
1.3.10 Variable arguments <stdarg.h> 13
1.3.11 Standard definitions <stddef.h> 13
1.3.12 Standard I/O <stdio.h> . 14

Characteristics of tile handling. 16
1.3.13 Reduced library I/O functions <stdiored.h> 17
1.3.14 General utilities <stdlib.h> . 17
1.3.15 String handling <string.h> . 20
1.3.16 Date and time <time.h> 21

iv Contents

1.4 Concurrency functions 22
1.4.1 Process control <process.h> 23
1.4.2 Channel communication <channel.h> 24
1.4.3 Semaphore handling <semaphor.h> . 25

1.5 Other 'functions. 25
1.5.1 110 primitives <iocntrl.h> 26
1.5.2 'noat maths <mathf.h> 26
1.5.3 Host utilities <host.h> . 28
1.5.4 Host channel access utilities <hostlink.h> 28
1.5.5 Boot link channel functions <bootlink.h> 29
1.5.6 MS-DOS system functions <dos.h> 29
1.5.7 Dynamic code loading functions <fnload.h> 29
1.5.8 Miscellaneous functions <misc.h> 30

1.6 Fatal runtime errors. 32
1.6.1 Runtime error messages . 32

2 Alphabetical list of functions .. 35
2.1 Format . 35

2.1.1 Reduced library. 35
2.1.2 Macros. 35

2.2 List of functions 36

3 Modifying the runtime startup system 357
3.1 Introduction .. 357
3.2 Overview of system .. 358
3.3 The gsb and use of the IMS_nolink pragma '. 359
3.4 Interface to runtime startup code 360
3.5 Details of stage 1 of the runtime startup code 361

3.5.1 Initialize static 361
3.5.2 Call stage 2 startup code and set up gsb 362

3.6 Details of stage 2 of the runtime startup code 363
3.6.1 Set up bounds of stack 363
3.6.2 Initialize heap 363
3.6.3 Initialize pointer to configuration process structure. 364
3.6.4 Initialize 110 system 364
3.6.5 Get command line arguments 365
3.6.6 Save exit return point .. 365
3.6.7 Initialize clock 365
3.6.8 Call main 365
3.6.9 Terminate server if required 366

3.7 Interface to main 366
3.8 Static initialization 367
3.9 Source files supplied and rebuilding. .. 368

Contents v

UNIX based toolsets: 369
MS-DOS based toolsets: 369
VMS based toolsets: 369

3.10 Notes. .. 370
3.11 Example. .. 371

3.11.1 Building the modified runtime system 375
For example: 375
UNIX based toolsets: 375
MS-DOSNMS based toolsets: 375

Language Reference 377

4 New features in ANSI C 379

4.1 Summary of new features in the ANSI standard 379
4.2 Details of new features .. 381

4.2.1 Function declarations .. 381
4.2.2 Function prototypes 381
4.2.3 Functions without prototypes 381
4.2.4 Declarations. .. 382
4.2.5 Types, type qualifiers and type speci'fiers 382
4.2.6 Constants .. 384
4.2.7 Preprocessor extensions .. 384

Compiler directives .. 384
Predefined macros: 385

4.2.8 Structures and unions 385
4.2.9 Trigraphs. .. 386

Trigraph escape codes 386

5 Language extensions 387

5.1 Concurrency support .. 387
5.2 Pragmas. .. 387

5.3 Predefined macros 388
5.4 Assembly language support 389

5.4.1 Directives and operations 389
5.4.2 size option on _asm statement 391
5.4.3 Labels .. 391
5.4.4 Notes on transputer code programming 391
5.4.5 Useful built-in variables 391
5.4.6 Transputer code examples 392

Setting the transputer error flag 392
Loading constants using literal operands 392
Labels and jumps 393
Jump tables 393

vi Contents

Loading floating point registers 394
Using align/word to return an element of a table. .. 394
Inserting raw machine code 394

6 Implementation details 395
6.1 Data type representation 395

6.1.1 Scalar types .. 395
6.1.2 Arrays .. 396
6.1.3 Structures .. 397

Example 1 (structuring on a 32-bit processor): 398
Example 2 (structuring on a 32-bit processor): 398

6.1.4 Unions. .. 399
6.2 Type conversions .. 399

6.2.1 Integers. .. 399
6.2.2 Floating point. .. 400

6.3 Compiler diagnostics. .. 400
6.4 Environment '. .. 400

6.4.1 Arguments to main .. 400
Configured case: .. 401
Unconfigured case 401

6.4.2 Interactive devices 402
6.5 Identifiers. .. 402
6.6 Source and execution character sets. 402

Shift states for encoding multibyte characters 402
Integer character constants 402
Locale used to convert multibyte characters 402
Plain chars .. 403

6.7 Integer operations. .. 403
Bitwise operations on signed integers. 403
Sign of the remainder on integer division 403
Right shifts on negative-valued signed integral
types 403

6.8 Registers .. 403
6.9 Enumeration types. .. 403

6.1 0 Bit fields -. 403
6.11 volatile qualifier 404
6.12 Declarators. .. 404
6.13 Switch statement. 404

6.14 Preprocessing directives 404

Constants controlling conditional inclusion. 404
Date and time defaults .. 405

6.15 Static data layout .. 405

6.15.1 Local static data layout 405

Contents vii

6.15.2 Constant static objects. .. 406
6.16 Calling conventions. .. 407

6.16.1 Parameter Passing 407
6.16.2 Calling Sequence 407
6.16.3 Rules for aliasing between formal parameters 409

6.17 Runtime library .. 409

Appendices 411

A Syntax of language extensions 413

A.1 Notation .. 413
A.2 #pragma directive 413
A.3 _asm statement. .. 414

B ANSI standard compliance data 415

8.1 Translation 415
8.2 Environment 415
8.3 Identifiers. .. 416
8.4 Characters. .. 416
8.5 Integers . .. 417
B.6 Floating point. .. 418
8.7 Arrays and pointers .. 418
B.8 Registers. .. 419
B.9 Structures, unions, enumerations, and bit-fields. 419
8.10 Qualifiers. .. 420
8.11 Declarators. .. 421
8.12 Statements. .. 421
8.13 Preprocessing directives 421
8.14 Library functions. .. 422
8.15 Locale-specific behavior 427

C eRC Resume 429

C.1 Summary of functions .. 429
C.2 Cyclic redundancy polynomials .. 429

C.2.1 Format of result. .. 430
C.3 Notes on the use of the CRC functions. 431
C.4 Example of use 431

viii Contents

Preface
Host versions

The documentation set which accompanies the ANSI C toolset is designed to
cover all host versions of the toolset:

• IMS 07314 -IBM PC compatible running MS-DOS

• IMS 04314 - Sun 4 systems running SunOS.

• IMS 06314 - VAX systems running VMS.

About this manual

This manual is the Language and Libraries Reference Manual to the ANSI C tool­
set and provides a language reference for the toolset and implementation data.

The manual is divided into two parts: 'Runtime Library' and 'Language Reference',
plus appendices.

The 'first section Runtime Library:

• introduces the runtime library and summarizes the header files;

• provides a detailed description of each library function, in alphabetical
order;

• describes howto modify the runtime startup system by removing segments
not required by the user's application. Only very experienced users should
attempt this.

The 'Language Reference' section describes:

• new features in the ANSI standard;

• ANSI C toolset language extensions;

• ANSI C toolset implementation details.

The three appendices cover:

• syntax of language extensions;

• ANSI compliance data;

• further explanation of the cyclic redundancy function provided.

About the toolset documentation set

The documentation set comprises the following volumes:

72 TDS 347 01 October 1992

x About the toolset documentation set

• 72 TOS 345 01 ANSI C Toolset User Guide

Describes the use of the toolset in developing programs for running on the
transputer. The manual is divided into two sections; (Basics' which
describes each of the main stages of the development process and
includes a 'Getting started' tutorial. The 'Advanced Techniques' section is
aimed at more experienced users. The appendices contain a glossary of
terms and a bibliography. Several of the chapters are generic to other
INMOS toolsets.

• 72 TOS 346 01 ANSI C Toolset Reference Manual

Provides reference material for each tool in the toolset including command
line options, syntax and error messages. Many of the tools in the toolset
are generic to other INMOS toolset products Le. the occam and FOR­
TRAN toolsets and the documentation reflects this. Examples are given in
C. The appendices provide details of toolset conventions, transputer
types, the assembler, server protocol, ITERM files and bootstrap loaders.

• 72 TDS 34701 ANSI C Language and Libraries Reference Manual­
(this manual)

• 72 TOS 348 01 ANSI C Optimizing Compiler User Guide

Provides reference and user information specific to the ANSI C optimizing
compiler. Examples of the type of optimizations available are provided in
the appendices. This manual should be read in conjunction with the refer­
ence, chapter for the standard ANSI C compiler, provided in the Tools Ref­
erence Manual.

• 72 TOS 354 00 Performance Improvement with the DX314 ANSI C Toolset

This document provides advice about how to maximize the performance
of the toolset. It brings together information provided in other toolset docu­
ments particularly from the Language and Libraries Reference Manual.
Note: details of how to manipulate the software virtual through-routing
mechanism are given in the User Guide.

• 72 TDS 355 00 ANSI C Toolset Handbook

A separately bound reference manual which lists the command line
options for each tool and the library functions. It is provided for quick refer­
ence and summarizes information provided in more detail in the Tools Ref­
erence Manual and the Language and Libraries Reference Manual.

• 72 TOS 360 00 ANSI C Toolset Master Index

A separately bound master index which covers the User Guide, Toolset
Reference Manual, Language and Libraries Reference Manual, Optimiz­
ing Compiler User Guide and the Performance Improvement document.

72 TDS 34701 October 1992

Preface

Other documents

Other documents provided with the toolset product include:

• Delivery manual giving installation data, this document is host specific.

• Release notes, common to all host versions of the toolset.

occam and FORTRAN toolsets

xi

At the time ofwriting the occam and FORTRAN toolset products referred to in this
document set are still under development and specific details relating to them are
subject to change. Users should consult the docun1entation provided with the cor­
responding toolset product for specific information on that product.

Documentation conventions

The following typographical conventions are used in this manual:

Bold type

Teletype

Italic type

Braces {}

Brackets []

Ellipsis ...

72 TDS 34701

Used to emphasize new or special terminology.

Used to distinguish command line examples, code fragments,
and pro.gram listings from normal text.

In command syntax definitions, used to stand for an argument
of a particular type. Used within text for emphasis and for book
titles.

Used to denote optional items in command syntax.

Used in command syntax to ~enote optional items on the com­
mand line.

In general terms, used to denote the continuation of a series. For
example, in syntax definitions denotes a list of one or more
items.

In command syntax, separates two mutually exclusive alterna­
tives.

october 1992

xii

72 TDS 347 01

Documentation conventions

October 1992

Runtime Library

72TDS 34701 October 1992

2

72 lDS 34701

Runtime Library

October 1992

1 Introduction and
runtime library
summary

This chapter introduces the ANSI C runtime library. It describes the library header
files that contain the function declarations, explains how to use them, and lists the
contents of each file. The chapter ends with a list of runtime errors which may
occur.

1.1 Introduction

The ANSI C runtime library is a library of functions which perform common pro­
gramming operations such as file input/output (1/0) and mathematical transforma­
tions. The library supplied with the toolset is a full ANSI standard library with addi­
tional support for parallel processing, channel communication, and semaphore
handling. Some additional non-ANSI functions are also provided, including float
versions of the standard mathematical functions, low level file handling functions,
and a variety of miscellaneous operations.

A number of header files are provided. These contain prototypes for every function
in the library, along with useful macros and constants.

Two versions of the ANSI C runtime library are supplied: the full libraries and the
reduced libraries.

The full libraries provide access to the host environment via the iserver. Thus
a file system is available along with other host resources. Communication with the
iserver is achieved via a pair of host link channels, one coming from the server
and one going to the server. Access to these channels is protected by semaphore
thus ensuring that communication is not corrupted by concurrent accesses. Such
protection cannot be guaranteed if the channels are written to directly.

The reduced library can be thought of as a subset of the full library. It is modi'fled
so that routines which require access to the iserver in order to carry out their
prime function, e.g. file handling routines, are omitted. Other routines which access
the iserver for secondary reasons, e.g. exit when closing files on program ter­
mination, are modified so that iserver accesses are omitted. The host link chan­
nels are not defined for the reduced library. Thus when direct communication with
the iserver is not required or possible then the reduced library should be used,
if the full library is used instead then the behavior of the program is undefined as
an iserver access may be attempted when no iserver is present.

72 TDS 34701 October 1992

4 1.1 Introduction

Note: Programs linked with the reduced library must be collected from aconfigura­
tion binary file, that is, the programs must be configured.

1.1.1 Accessing library functions

Library functions must be declared like any other C function, and is simply per­
formed by including the appropriate header file; the correct file to include can be
determined from the function synopsis (see chapter 2).

1.1.2 Linking libraries with programs

Function code is incorporated with the program by linking in the appropriate library
file.

Severallinker indirect files are supplied to aid linking with the C runtime library.
Their primary use is to specify the set of C library files required when linking a C
program (or a mixed language program which uses C). These linker indirect files
and their application are described in detail in section 3.11 of the ANSI C Too/set
User Guide.

1.1.3 iserver protocols

All functions in the library use the communication protocols of the the host file
server to perform program I/O. These protocols are invisible to the C applications
programmer. iserver protocol and its underlying functions are described in
appendix 0 'iserver protocol' of the ANSI C Toolset Reference Manual.

The library function server transaction provides access to low level
iserver functions.

1.1.4 Functions which store data in static

Certain functions in the Runtime Library store data in the static area. If these func­
tions are called simultaneously by two concurrent processes there may be conten­
tion for the same data and return values may be unpredictable.

For example:

getenv stores the string associated with an environment variable in the static
area. If process '~ calls getenv for environment variable 'ENV~, then the string
associated with 'ENV~ is stored in static. Consider now that process 'l(is desche­
duled and a second process, 'B' starts, which then calls getenv for 'ENVB'. Now
the string for 'ENVB' is stored in static, overwriting the string for 'ENV~. If process
'~ now restarts and attempts to use the pointer returned by getenv to access
'ENV~, it will find that it actually reads 'ENVB'.

Functions which should be used with great care in concurrently executing pro­
cesses are as follows:

72 TDS 347 01 October 1992

1 Introduction and runtime library summary 5

asctime getenv
signal stdlib

localtime rand
strerror strtok

set abort action- -tmpnam

More information about the the use of these functions can be found under the
detailed function descriptions in chapter 2.

The global variable errno should also be used with great care in a concurrent
environment since there is no protection on its assignment.

1.2 Header files

Header files contain functions declarations, macros, and other definitions grouped
together for convenient reference in a program. Header'files generally contain dec­
larations of related functions along with definitions of supporting constants and
macros. Header files may consist only of macros and constants, for example,
limits.h.

Header files supplied with the ANSI C toolset are listed in Table 1.1.

72TDS 347 01 October 1992

6 1.3 ANSI functions

Header file Description

assert.h* Diagnostics.

bootlink.h Boot link channel information.

channel.h Channel handling.
ctype.h* Character handling and manipulation.

dos.h DOS specific operations.

errno.h* Error handling.

float.h* Characteristics of floating types.

fnload.h Dynamic code loading functions.

host.h, Host system information.
hostlink.h Host channel information.

iocntrl.h Low level file handling.

limits.h* Language implementation limits.

locale.h* Locale specific data.

math.h* Maths and trig functions.

mathf.h float versions of maths and trig functions.

misc.h Miscellaneous functions.

process.h Process startup, handling, and controi.

semaphor.h Semaphore handling.

setjmp.h* Non-local jumps.
signal.h* Signal handling.
stdarg.h* Variable argument handling.
stddef.h* Standard definitions.

stdio.h* Standard I/O and file handling.

stdiored.h Reduced library string formatting functions.

stdlib.h* General programming utilities.

string.h* String handling and manipulation.

time.h· System clock date and time.
* ANSI standard files

Table 1.1 ANSI C toolset header files

The rest of this chapter describes the contents of the header files and is divided
into three sections covering the three main groups of files: ANSI standard func­
tions; Concurrency functions; and Other functions.

1.3 ANSI functions

ANSI functions are contained in a series of header files defined in the ANSI stan­
dard. They encompass standard function sets such as file I/O, maths and trig func-

72 TDS 347 01 October 1992

1 Introduction and runtime library summary 7

tions, character and string handling, error handling, and· many other functions in
common usage within existing non-ANSI environments.

1.3.1 Diagnostics <assert.h>

The header file assert. h contains a single macro definition:

Macro

assert
Description

Inserts diagnostics into the program.

The definition of assert depends upon the value of the macro NDEBUG, which is
not itself defined in assert. h.

1.3.2 Character handling <ctype .h>

The header file ctype .h declares aset offunctions for character identification and
manipulation.

Function Description

isalnum Determines whether a character is alphanumeric.
isalpha Determines whether a character is alphabetic.
iscntrl Determines whether a character is a control character.
isdiqit Determines whether a character is a decimal digit.
isgraph Determines whether a character is a printable non-space char-

acter.

islower Determines whether a character is a lower-ease letter.
isprint Determines whether acharacter is a printable character (includ-

ing space).

ispunct Determines whether a character is a punctuation character.
isspace Determines whether a character is one which affects spacing.
isupper Determines whether a character is an upper-ease letter.

isxdigit Determines whether a character is a hexadecimal digit.

tolower Converts an upper-ease letter to its lower-ease equivalent.
toupper Converts an lower-ease letter to its upper-ease equivalent.

1.3.3 Error handling <errno . h>

The header file errno . h declares the error variable errno and defines codes for
the values to which it may be set. The file also contains a number of other error
codes, not listed here, which are included for compatibility with earlier INMOS com­
piler toolsets.

Variable Description

errno A variable of type volatile into Set to a positive error codes
by several library routines.

72TDS 347 01 October 1992

8 1.3 ANSI functions

Macro Description

EDOM The argument to a maths fundion is out of range.

ERANGE Overflow or underflow in a maths fundion.

ESIGNUM Illegal signal number supplied to signal.

EIO Error in low level I/O function used to communicate with the
server.

EFILPOS Error in file positioning fundions ftell, fgetpos, or
fsetpos.

1.3.4 Floating point constants <float.h>

Macro Description

FLT RADIX Radix of exponent representation.

FLT ROUNDS Rounding mode for floating point addition.

FLT MANT DIG Number of digits in a float mantissa.- -
DBL MANT DIG double form of FLT MANT DIG.- - - -
LDBL MANT DIG long double form of FLT_MANT_DIG.- -
FLT EPSILON Minimum number of type float such that 1.0 + x 1= 1.0

DBL_EPSILON double form of FLT EPSILON

LDBL_EPSILON long double form of FLT_EPSILON

FLT DIG Number ofdecimal digits of precision for float parame-
ters.

DBL DIG double form of FLT DIG.

LDBL DIG long double form of FLT_DIG.

FLT MIN EXP Minimum float exponent.

DBL MIN EXP double form of FLT_MIN_EXP

LDBL_MIN_EXT long double form of FLT_MIN_EXP

FLT_MIN Minimum normalized positive number of type float.

DBL_MIN double form of FLT_MIN

LDBL MIN long double form of FLT_MIN

FLT MIN 10 EXP Minimum negative integer such that 10 raised to that- -- power is a normalized float n~mber.

DBL MIN 10 EXP double form of FLT MIN 10 EXP- -- - --
LDBL_MIN_10_EXP long double form of FLT_MIN_10_EXP

FLT_MAX_EXP Maximum integer such that FLT_RADIX raised to that
power minus 1 is a valid float number.

DBL MAX EXP double form of FLT MAX EXP

LDBL MAX EXP long double form of FLT_MAX_EXP

72 TDS 347 01 October 1992

1 Introduction and runtime library summary 9

Macro Description

FLT MAX Maximum representable number of type float

DBL MAX double form of FLT MAX

LDBL-MAX long double form of FLT_MAX

FLT MAX 10 EXP Maximum integer such that 10 raised to that power is a- -- valid float number.

DBL_MAX_10_EXP double form of FLT MAX 10 EXP- --
LDBL_MAX_10_EXP long double form of FLT_MAX_10_EXP

1.3.5 Implementation limits <limits . h>

limits .h defines a number of implementation constants in ANSI C.

Macro Description

CHAR BIT The number of bits in a byte.

SCHAR MIN Minimum value for an object of type signed char

SCHAR MAX Maximum value for an object of type signed char

UCHAR MAX Maximum value for an object of type unsigned char

CHAR MIN Minimum value for an object of type char.

CHAR MAX Maximum value for an object of type char.

SHRT MIN Minimum value for an object of type short into

SHRT MAX Maximum value for an object of type short into

USHRT MA)(Maximum value for an object of type unsigned short into

INT MIN Minimum value for an object of type into

INT MAX Maximum value for an object of type int

UINT MAX Maximum value for an object of type unsigned into

LONG MIN Minimum value for an object of type long into

LONG MAX Maximum value for an object of type long into

CLONG MA)(Maximum value for an object of type unsigned long into

NB LEN MAX Maximum number of bytes in a multibyte character.

1.3.6 Localization <locale.h>

The header file locale. h de'fines two functions, some macros for use by
setlocale, and a single structure.

Function Description

localeconv Assigns appropriate values to components in objects of type
s truct lconv for the formatting of numeric quantities, accord-
ing to the rules of the current locale.

setlocale Sets or interrogates part of the program's locale.

72TDS 34701 October 1992

10 1.3 ANSI functions

Macro Description

LC ALL Names the entire locale (that is, all of the following macros).

LC COLLATE Used in the string locale functions strcoll and strxfrm.

LC CTYPE Used in the character handling functions

LC NUMERIC Selects the decimal point.

LC TIME Used in the locale dependent time functions.

LC MONETARY Affects monetary formatting information returned by the
localeconv function.

Structure

lconv

Description

A structure which describes a complete locale.

INMOS ANSI C supports only the standard "C" locale, which has the following fea­
tures:

• The execution character set comprises all 256 values 0 to 255. Values 0
to 127 represent the ASCII character set. Note: when the compiler com­
mand line option 'FC' is used the execution character set con1prises 128
values in the range 0 to 127.

• The collation sequence of the execution character set is the same as for
plain ASCII.

• Printing is from left to right.

• The decimal point character is '. J.

No other locales are permitted.

72 TDS 34701 October 1992

1 Introduction and runtime library summary 11

1.3.7 Mathematics library <math. h>

math . h declares general maths functions and their associated constants.

Note: the following is true for all functions declared in math. h:

On domain errors: errno is set to EDOM;
0.0 is returned.

On range errors: errno is set to ERANGE;
HUGE VAL is returned for overflow errors;
-HUGE VAL is returned for underflow errors.

Function Description

acos Calculates the arc cosine of the argument.
asin Calculates the arc sine of the argument

atan Calculates the arc tangent of the argument.
atan2 Calculates the arc tangent of argument 1 divided by argument 2.

ceil Calculates the smallest integerwhich is not less than the argument.

cos Calculates the cosine of the argument.
cosh Calculates the hyperbolic cosine of the argument.

exp Calculates the exponential of the argument.

fabs Calculates the absolute value of a floating point number.

floor Calculates the largest integer which is not greater than the argu-
ment.

fmod Calculates the floating point remainder of argument 1 divided by
argument 2.

frexp Separates a Hoating point number into a mantissa and an integral
power of 2.

1dexp Multiplies a floating point number by an integer power of 2.
log Calculates the natural logarithm of the argument.

10g10 Calculates the base 10 logarithm of the argument.

modf Splits the argument into fractional and integral parts

pow Calculates x to the power y.
sin Calculates the sine of the argument.

sinh Calculates the hyperbolic sine of the argument

sqrt Calculates the square root of the argument.

tan Calculates the tangent of the argument.

tanh Calculates the hyperbolic tangent of the argument.

Macro Value I
HUGE VAL A constant value returned if overflow or underflow occurs. I

72 TDS 347 01 October 1992

12 1.3 ANSI functions

1.3.8 Non-local jumps <setjmp . h>

The header file seijmp.h declares two functions used to perform non-local gotos,
and a single type used by them.

Function Description
longjmp Performs a non-local jump to a given environment.
setjmp Sets up a non-local jump.

The two functions are used in conjunction to first set a position (setjmp), then
jump to this position (longjmp). When longjmp executes, it appears to the user
as if the program had just returned from the call to the associated setjmp.

Meaning
An array type used to save a calling environment.

1.3.9 Signal handling <signal.h>

The header file signal. h defines two functions for signal handling, one type, and
several constants.

Function Description
raise Forces a pseudo-exception via the signal handler.
signal Defines the way in which errors and exceptions are handled.

Type Description
sig_atomic_t Defines an atomic variable. This is a variable whose state is

always known, and which cannot be confused by asynchro-
nous interrupts.

Macro Description
SIG DFL Uses the default system error/exception handling for the pre-

defined value.
SIG IGN Ignores the error/exception.
SIG ERR Returned when the signal handler is invoked in error.
SIGABRT Abort error.
SIGFPE Arithmetic exception.
SIGILL Illegal instruction.
SIGINT Attention request from user.
SIGSERV Bad memory access.
SIGSTERM Termination request.
SIGIO Input/output possible.
SIGURG Urgent condition on I/O channel.
SIGPIPE Write on pipe with no corresponding read.

72TD5 347 01 October 1992

1 Introduction and runtime library summary 13

Macro Description
SIGSYS Bad argument to system call.
SIGALRM Alarm clock.
SIGWINCH Window changed.
SIGLOST Resource lost.
SIGUSRl User defined signal.
SIGUSR2 User defined signal.
SIGUSR3 User defined signal.

1.3.10 Variable arguments <stdarg . h>

The header file stdarg. h contains a three macros and a type definition.

Macro Description
va_arg Accesses a member of a variable argument list.
va end Clears up after accessing variable arguments.
va start Initializes a pointer to a variable number of function argu-

ments in a function definition.

Type Description
va list Atype used to hold information required by the variable argu-

ment functions.

1.3.11 Standard definitions <stddef . h>

The header file stddef. h defines a number of commonly used data types and
macros.

Type Description
prtdiff_t The signed integral type ofthe result ofsubtracting two point-

ers.
size t The unsigned integral type of the result ofthe sizeof opera-

tor.
wchar t An integral type whose range ofvalues can represent distinct- codes for all members of the largest extended character set

amongst the supported locales.

72 TDS 34701 October 1992

14 1.3 ANSI functions

Macro Description
NULL A null pointerconstantwhich is returned by many

library routines.
offsetof(type, id) Expands to an integral constant expression that

has type size t. The value is the offset in bytes
from the beginning of a structure, designated by
type, of id.

For example:

struct item
{
long int x;
long int y;

} ;

offsetof(struct item, y) =4

1.3.12 Standard 110 <stdio. h>

The header file stdio. h defines the main I/O and file handling functions, three
types, and several macros.

Function Description
clearerr Clears the error and end-of-file indicators for a file stream.
fclose Closes a file stream.
feof Tests the state of the end-of-file indicator.
ferror Tests the state of the file error indicator.
fflush Flushes an output stream.
fgetc Reads a character from a file stream.
fgetpos Gets the position of the read/write file pointer.
fgets Reads a line from a file stream.
fopen Opens a file.
fprintf Writes a formatted string to a file.
fputc Writes a character to a file stream.
fputs Writes a string to a file stream.
fread Reads records from a file.
freopen Closes an open file, and re-opens it in a given mode.
fscanf Reads formatted input from a file stream.
fseek Sets the read/write file pointer to a specified offset in a file

stream.
fsetpos Sets the read/write file pointer to a position obtained from

fgetpos.
ftell Gives the position of the read/write pointer in the file stream.
fwrite Writes records from an array into a file.

72 TDS 34701 October 1992

1 Introduction and runtime library summary 15

Function Description
getc Gets a character from a file.
getchar Reads a character from standard input.
gets Gets a line from standard input.
perror Writes an error message to the standard error output.
printf Writes a formatted string to standard output.
putc Writes a character to a file stream.
putchar Writes a character to standard output.
puts Writes a line to standard output.
remove Removes access to a file.
rename Renames a file.
rewind Sets the file stream's read/write position pointer to the start

of the file.
scanf Reads formatted data from standard input.
setbuf Controls file buffering.
setvbuf Defines the way that a file stream is bUffered.
sprintf Writes a formatted string to a string.
sscanf Reads formatted data from a string.
tmpfile Creates a temporary file.
tmpnam Creates a unique filename.
ungetc Pushes a character back onto a file stream.
vfprintf Writes a formatted string to a file (alternative form of

fprintf).
vprintf Writes a formatted string to standard output (alternative form

of printf).
vsprintf Writes a formatted string to a string (alternative form of

sprintf).

Type Description
FILE Defines a type used for recording all the information that the

system needs to control a file stream.

fpos_t Defines a structure able to hold a unique specification of
every position within a file.

size t The unsigned integral type of the result of the sizeof opera-
tor.

Macro
NULL

Description
A null pointer constant that is returned by many routines.

The first group of three macros in the following list define integral constants which
may be used to control the action of setvbuf; the next three macros define inte­
gral constants which may be used to control the action of fseek, and the remain­
der in the list are used throughout the I/O library:

72TDS 34701 October 1992

16 1.3 ANSI functions

Macro Description

- IOFBF Full 1/0 buffering required.

- IOLBF Line buffering required.

- IONBF No 1/0 buffering required.
SEEK SET start seek at start of file stream.
SEEK_CUR Start seek at current position in file stream.
SEEK END Start seek at end of file stream.
BUFSIZ The buffer size used by setbuf.
EOF End of file character.
L_tmpnam The size ofan array used to hold temporary file names gener-

ated by tmpnam.
TMP MAX The maximum number of unique file names generated by

tmpnam.
FOPEN MAX The minimum number of files that can be open simulta-

neously.
FlLENAME MA)(Maximum length of filename.

Characteristics of file handling

File handling by works on streams and has the following features:

• File naming follows the conventions of the host system.

• Zero length files can exist if they are permitted by the host system.

• The same file can be opened multiple times. However, because there is no
support for shared access within stdio. h the results may be unpredict­
able.

• In append mode the file position indicator is initially positioned at the end
of the file.

• Spaces written out to a file before the newline character are also read in.

• The last line ofatext stream does not require aterminating newline charac­
ter.

• A write on a text stream does not cause the associated file to be truncated
beyond that point.

• No NULL characters are appended to data written to a binary stream.

• The features of file buffering are as follows:

- In unbuffered streams characters appear from the source or des­
tination as soon as possible. Transmission of characters also
occurs if input is specifically requested.

72 TDS 34701 October 1992

1 Introduction and runtime library summary 17

- In line- buffered streams a block of characters is built up and then
sent to the host system when a newline character occurs. Trans­
mission also occurs if input is specifically requested.

- In fully buffered streams a block of characters is sent to the host
system when the buffer becomes full.

In all buffering modes characters are also transmitted if the buffer becomes full, or
if the stream is explicitly flushed.

1.3.13 Reduced library I/O functions <stdiored.h>

The file stdiored. h contains declarations ofthree print formatting functions from
stdio. h. They are for use in programs linked with the reduced runtime library.

Function Description
sprintf Writes a formatted string to a string.
sscanf Reads formatted data from a string.
vsprintf Write~ a formatted string to a string (alternative form of

sprintf.

1.3.14 General utilities <stdlib.h>

The header file s tdlib . h contains general programming utilities and associated
data types, constants, and macros. Many of the functions are implemented as
macros.

Note: the functions mblen, mbtowc, mbstowcs, wctomb and wcstombs provide
a minimal implementation of the ANSI standard.

This is considered sufficient because the current toolset supports only the standard
C locale, and therefore any implementation is of limited practical value.

The functions support an implementation of wide characters in which:

wchar t = int
NB MAX LEN = 1

72TDS 34701 october 1992

18 1.3 ANSI functions

Function Description

abort Causes the program to abort. The abort is equivalent to an
abnormal termination of the program.

abs Calculates the absolute value of an integer.

atexit Specifies a function to be called when the program ends.
atof Converts a string of characters to a double.
atoi Converts a string to an into
atol Converts a string to a long into
bseareh Searches a sorted array for a given object.
ealloe Allocates memory space for an array of items and initializes

the space to zeros.
div Calculates the quotient and remainder of a division.
exit Causes normal program termination.
free Frees an area of memory.

getenv Obtains the value of an environment variable from the host.
labs Calculates the absolute value of a long into
ldiv Calculates the quotient and remainder of a long division.

malloe Allocates a specified area of memory.
mblen Determines the number of bytes in a multibyte character.
mbtowe Converts a multibyte char to a code of type wehar_ t.
mbstowes Converts a sequence of multibyte characters to a sequence

of codes of type wehar_ t
qsort Sorts an array of objects.

rand Generates a pseudo-random number.
realloe Changes the size of an object in memory.
srand Sets the seed for pseudo-random numbers generated by

rand.
strtod Converts the initial part of a string to a double and saves a

pointer to the rest of the string.

strtol Converts the initial part of a string to a long int and saves
a pointer to the rest of the string.

strtoul Converts the initial part of a string to an unsigned long int
and saves a pointer to the rest of the string.

system Passes a string to the host environment for execution as a
host command.

wetomb Converts a code of type wehar_ t to a multibyte character.
westombs Opposite of mbstowes. Converts a sequence of codes of

type wehar t to a sequence of multibyte characters.

72 TDS 347 01 October 1992

1 Introduction and runtime library summary 19

Type Description
size_t The unsigned integral type of the result ofthe sizeof opera-

tor.
wchar t An integral type whose range ofvalues can represent distinct

codes for all members of the largest extended character set
amongst the supported locales.

div t The type returned by div.
Idiv t The type returned by ldiv.

Macro Description
NULL A null pointer constant which is returned by many library rou-

tines. I

EXIT FAILURE An integral expression which may be used as an argument
to the exit function to return unsuccessful termination sta-
tus to the Host environment.

EXIT SUCCESS As EXIT FAILURE but for successful termination
RAND MA}[Maximum value returned by rand function.
NB CUR MA}(Maximum number of bytes in a multibyte character.

72 TDS 347 01 October 1992

20 1.3 ANSI functions

1.3.15 String handling <string.h>

The header file string .hdeclaresa numberofstring handling functions, and one
type.

Function Description
memchr Finds the first occurrence of a character in the first n charac-

ters of an area of memory.
memcmp Compares the first n characters of two areas of memory.
memcpy Copies characters from one area of memory to another (no

memory overlap allowed).
memmove Copies characters from one area of memory to another (the

areas can overlap).
memset Fills a given area of memory with the same character.
strcat Appends one string onto another.
strchr Finds the first occurrence of a character in a string.
strcmp Compares two strings.
strcoll Compares two strings (transformed according to the pro-

gram's locale).
strcpy Copies one string to another.
strcspn Counts the number of characters at the start of one string

which do not match any of the characters in another string.
strerror Converts an error number into an error message string.
strlen Calculates the length of a string.
strncat Appends one string onto another (up to a maximum number

of characters).
strncmp Compares the first n characters of two strings.
strncpy Copies one string to another (up to a maximum number of

characters).
strpbrk Finds the first character in one string that is present in

another string.
strrchr Finds the last occurrence of a given character in a string.
strspn Counts the numberof characters at the start ofa string which

are also in another string.
strstr Finds the first occurrence of one string in another.
strtok Converts a string consisting of delimited tokens into a series

of strings with the delimiters removed.
strxfrm Transforms a string according to the locale and copies it into

an array (up to a maximum number of characters).

72 TOS 34701 October 1992

1 Introduction and runtime library summary 21

Type Description

size t The unsigned integral type of the result of the sizeof opera-
tor.

Macro Description

NULL A null pointer constant which is returned by many library rou-
tines.

1.3.16 Date and time <time. h>

The header'file time. h declares a number of functions for manipulating time, four
types, and some time and date constants.

In all the following functions the local time zone is defined by the host system. Day­
light Saving Time is not available.

Function Description

asctime Converts the values in a broken-down time structure to an
ASCII string. (See below).

clock Calculates the amount of processor time used.
ctime Converts a calendar time to a string.
difftime Calculates the difference between two calendar times.

gmtime Converts a calendar time to a broken-down time, expressed
as coordinated universal time (UTC time). Always returns
NULL, because UTC time is not available in this implementa-
tion.

localtime Converts a calendar time into a broken-down time structure
format.

mktime Converts a broken-down structure into a time t value.
strftime Does a formatted conversion of a broken-down time struc-

ture to a string.
time Reads the current time.

Type Description

size t The unsigned integral type of the result of the sizeof opera-
tor.

clock t Used to store times in the form of processor clock ticks per
second.

time t Used to store times in a fixed format.
struct tm A structure representing a broken-down time.

Macro Description

NULL A null pointer constant which is returned by many library
routines.

CLOCKS PER SEC The number of processor clock ticks per second (priority
sensitive).

72 TDS 34701 October 1992

22 1.4 Concurrency functions

Some functions declared in time. h act on broken-down times. A broken-down
time is represented as a structure as follows:

struct tm {

int tm_sec; /* Secs after min [0,61] */

int tm_min; /* ~ns after hour [0,59] */

int tm_hour; /* Hours since midnight [0,23] */

int tm_mday; /* Day of month [1,31] */

int tm_mon; /* Months since Jan [0,11] */

int tm-rear; /* Years since 1900 */

int tm_wday; /* Days since Sunday [0,6] */

int tm-yday; /* Days since Jan 1 [0,365] */

int tm_isdst; /* Daylight saving flag */

1.4 Concurrency functions

Concurrency support in the runtime library is separated into three header files:
process. h which contains functions to set up. run. and control concurrent pro­
cesses with associated constants; channel". h which contains functions for com­
mu'nicating along channels with associated channel constants such as link
addresses; and semaphor. h which contains the semaphore support functions.

72TDS 347 01 October 1992

1 Introduction and runtime library summary

1.4.1 Process control <process .h>

23

Function Description
ProcAfter Delays execution of a process until after a specified

time.
ProcAlloc Allocates stack space and initializes a process.
ProcAllocClean Cleans up after a process created using ProcAlloc.
ProcAlt Causes a process to wait for a ready input from a series

of channels. Channels are referenced by pointers.
ProcAltList As ProcAlt but references an array of channel point-

ers.
ProcGetPriority Returns the priority of the current process.
Proclnit Initializes a process.
ProclnitClean Cleans up after a process created using Proclnit.
ProcJoin Waits for a list ofasynchronous processes to terminate.
ProcJoinList Waits for a list (passed as an array) of asynchronous

processes to terminate.
ProcPar Starts a number of synchronized processes in parallel.
ProcParam Alters process parameters.
ProcParList As ProcPar but takes a list passed as an array of pro-

cesses.
ProcPriPar Starts two processes in parallel, the first being

executed at high priority and the second at low priority.
ProcReschedule Reschedules a process, that is, places it on the end of

the process queue.
ProcRun Starts a process at the same priority as the calling pro-

cess (the current priority).
ProcRunHigh Starts a high priority process.
ProcRunLow Starts a low priority process.
ProcSkipAlt Similar to ProcAlt but does not wait if there are no

channels are ready.
ProcSkipAltList As ProcSkipAlt but takes an array of pointers to

channels.
ProcStop Stops a process.
ProcTime Reads the transputer clock.
ProcTimeAfter Determines the sequence of two transputer clock

times.
ProcTimeMinus Gives the difference between two transputer clock

times.
ProcTimePlus Gives the result of adding two transputer clock times.
ProcTimerAlt As ProcAlt but uses a timeout.

ProcTimerAltList As ProcAltList but uses a timeout.
ProcWait Delays execution of a process for a specified time.

72TDS 347 01 October 1992

24 1.4 Concurrency functions

Type Description
Process A structure that holds all the information about a concurrent

process.

Constant Description
PROC HIGH The value returned by ProcGetPriority for a

high priority process.
PROC LOW The value returned by ProcGetPriority for a

low priority process.
CLOCKS PER SEC HIGH Number of processor clock ticks per second for a- - - high priority process.
CLOCKS PER SEC LOW Number of processor clock ticks per second for a- - - low priority process.

1.4.2 Channel communication <channel. h>

Function Description
ChanAlloc Allocates and initializes a channel.
ChanIn Inputs a message on a channel.
ChanInChanFai1 As ChanIn but incorporates the ability to reset a

channel on receipt of a message sent on another
channel (such as a link failure condition).

ChanInChar Inputs a byte on a channel.
ChanInit Initializes a channel.
Chanlnlnt Inputs an integer on a channel.
ChanlnTimeFail As Chanln but incorporates a timeout after which

the channel is reset if no communication occurs.
ChanOut Outputs a message on a channel.
ChanOutChanFail As ChanlnChanFail but for output channels.
ChanOutChar Outputs a byte on a channel.
ChanOutlnt Outputs an integer on a channel.
ChanOutTimeFail As ChanlnTimeFail but for output channels.
ChanReset Resets a channel.
DirectChanln t Input a message on a channel.
DirectChanlnChar t Input a byte on a channel.
DirectChanlnInt t Input an integer on a channel.
DirectChanOut t Output a message on a channel.
DirectChanOutChart Output a byte on a channel.
DirectChanOutlntt Output an integer on a channel.
t Direct ... functions may not be used in all situations that their counterpart
Chan ... functions can. See chapter 2 for detailed descriptions.

72TDS 34701 October 1992

1 Introduction and runtime library summary 25

Type

Channel
Description

The channel type.

Constant Description

NotProeessy A special value used in process communication and
scheduling. Returned by ChanReset.

LINKOOUT Link zero output address.
LINK10UT Link one output address.
LINK2OUT Link two output address.
LINK30UT Link three output address.
LINKOIN Link zero input address.

LINK1IN Link one input address.
LINK2IN Link two input address.
LINK3IN Link three input address.
EVENT Event line address.

1.4.3 Semaphore handling <semaphor. h>

Function Description

Semlnit Initializes a semaphore.
SemAlloe Allocates and initializes a semaphore.
SemSignal Releases a semaphore.
SemWait Acquires a semaphore.

Type

Semaphore
Description

Defines a semaphore type.

Macro Description

SEMAPHOREINIT Initializes a semaphore (same action as Semlnit but
implemented as a macro).

1.5 Other functions

The header files ioentrl. h, mathf .h, host. h, hostlink. h, bootlink. h,
dos. h, fnload. h and mise. h contain some further extensions to the ANSI run­
time library. These include UNIX-like I/O primitives; short maths functions; host
system utilities, host channel access utilities; DOS specific functions; dynamic
code loading functions and miscellaneous functions including debugging support
for idebug.

72TDS 347 01 October 1992

26 1.5 Other functions

1.5.1 1/0 primitives <iocntrl. h>

Function Description
close Low level file close.
creat Low level file create.
filesize Returns the size of a given file.
getkey Gets the next character from the keyboard. Waits

indefinitely for the next key press. Does not echo the
character to the screen.

isatty Checks for terminal files.
lseek Low level file seek.
open Low level file open.
pollkey Gets the next character from the keyboard. Returns

immediately if no key press is available. Does not
echo the character to the screen.

read Low level read-from-file.
server transaction Allows access to iserver functions in a controlled

way.
unlink Low level file remove (corresponds to ANSI standard

function remove).
write Low level write-to-file.

The following macros are defined to control lseek:

Macro Description

L SET Seek from start of file.
L INCR Seek from current position.
L XTND Seek from end of file.

The following macros which define the mode in which a file is opened, are used
by creat and open:

Macro Description

o RDONLY Open file in read only mode.
o WRONLY Open file in write only mode.
o RDWR Open file for reading and writing.
o APPEND Open file in append mode.
o TRUNC File is truncated before writing.
o BINARY Open file in binary mode.
o TEXT Open file in text mode.

1.5.2 floatmaths<mathf.h>

The header file mathf . h contains declarations of the short maths functions. Short
maths functions are identical to ANSI standard functions except that all arguments

72 lDS 347 01 October 1992

1 Introduction and runtime library summary 27

and results are of type float rather than double. Errors which generate the error
code HUGE VAL (out of range) in the ANSI functions return HUGE VAL F in the
short mathsfunctions. - -

Note: the following is true for all functions declared in mathf . h:

On domain errors:

On range errors:

errno is set to EDOM;
0.0 is returned.

errno is set to ERANGE;
HUGE VAL F is returned for overflow errors;

. -HUGE VAL F is returned for underflow errors.

Function Description
acosf Calculates the arc cosine of the float argument.
asinf Calculates the arc sine of the float argument.
atanf Calculates the arc tangent of the float argument.
atan2f Calculates the arc tangent of (argument 1 divided by argument 2)

where the numerator and denominator arguments are both
floats.

ceilf Calculates the smallest integer which is not less than the float
argument.

cosf Calculates the cosine of the float argument.

coshf Calculates the hyperbolic cosine of the float argument.
expf Calculates the exponential function of the float argument.
fabsf Calculates the absolute value of the float argument.
floorf Calculates the largest integer which is not greater than the float

argument.

fmodf Calculates the floating point remainder of (argument 1 divided by
argument 2) where the numerator and denominator arguments are
both floats.

frexpf Separates a floating point number into a mantissa and integral
power of two.

ldexpf Multiplies a 'noating point number by an integral power of two.

10gf Calculates the natural logarithm of the float argument.
10g10f Calculates the base-10 logarithm of the float argument.
modff Splits the float argument into fractional and integral parts.

powf Calculates x to the power of y where both x and y are floats.

sinf Calculates the sine of the float argument.
sinhf Calculates the hyperbolic sine of the float argument.

sqrtf Calculates the square root of the float argument.

tanf Calculates the tangent of the float argument.
tanhf Calculates the hyperbolic tangent of the float argument.

72 lDS 34701 October 1992

28 1.5 Other functions

1.5.3 Host utilities <host. h>

The header file host. h contains one function that returns host system information
and a number of host system constants.

Function
host info

Description
Returns information about the host system and transputer board.

Constant Description
_INS_HOST_PC Standard PC host.

- I NS_HOST_NEC NEC PC-9801 series host.

- INS HOST VAX VAX host.- -
INS HOST SUN3 Sun 3 host.- - -

-INS HOST SUN4 Sun 4 host.- -
-INS HOST SUN386i Sun 386i host..- -
-INS HOST APOLLO APOLLO host.- -
- INS HOST IBM370 IBM 370 host.- -
- INS OS DOS DOS operating system.

-INS OS HELlOS HELlOS operating system.

-INS OS VMS VMS operating system.
INS OS SUNOS SunOS operating system.- --

-INS OS CMS CMS operating system.

- INS_BOARD_BOO4 IMS 8004 PC transputer board.
_INS_BOARD_BOOS IMS 8008 transputer module (TRAM) Mother-

board.
INS BOARD BOlO IMS 8010 4-TRAM NEC PC Motherboard.- - -
INS BOARD BOll IMS 8011 2-TRAM VME board.- - -

- INS BOARD BOl4 IMS 8014 8-TRAM VMEbus slave card.- -
INS BOARD DRXll INMOS VAX link interface board.- - -

_INS_BOARD_QTO Caplin QTO VAXNMS link interface board.

- INS BOARD BOl5 IMS 8015 NEC 9800 PC TRAM motherboard.- -
_INS_BOARD_CAT IBM CAT transputer board.

- INS BOARD BOl6 IMS 8016 VMEbus master/slave motherboard.- -
INS BOARD UDP LINK IMS UDP Link support product.

1.5.4 Host channel access utilities <hostlink.h>

The header file hostlink. h contains two functions that return apointer to the link
channel going to and coming from the host system.

Function Description
from host link Retrieves the channel coming from the host.- -
to host link Retrieves the channel going to the host.

72TDS 34701 October 1992

1 Introduction and runtime library summary 29

1.5.5 Boot link channel functions <bootlink . h>

This header file contains one function to obtain the channels associated with the
boot link.

Function Description

get_bootlink_channels Obtains the channels associated with the boot
link.

1.5.6 MS-DOS system 'functions <dos. h>

The header file dos. h contains a number offunctions for performing MS-DOS sys­
tem operations, plus one type. The file also contains definitions ofassociated struc­
tures, not documented here.

All the MS-DOS specific functions return an error if they are used on operating sys­
tems other than MS-DOS.

Function Description

alloc86 Allocates a block of host memory for use with the to86 and
from86 functions.

bdos Performs a MS-DOS function call interrupt
free86 Frees a block of host memory previously allocated with alloc86.
from86 Copies a block of host memory to transputer memory.
int86 Raises a software interrupt. Segment registers are untouched.
int86x As int86 but also sets the processor segment registers.
intdos As int86 but specific for a MS-DOS function call.
intdosx As intdos but also sets the segment registers.
segread Reads the segment registers.
to86 Copies a block of transputer memory to host memory.

Type

pcpointer

Description

A type that can be used to hold a standard PC pointer.

1.5.7 Dynamic code loading functions <fnload. h>

The header file fnload. h contains functions to support dynamic code loading
using . rsc files. The functions interact with three 'flavors' of . rsc files:

• . rsc file

• . rsc file stored in ROM or RAM

• . rsc file received over a channel

Two functions are provided for each case; one to retrieve information from the file
or file image and one to load the code from the file into internal memory.

72TDS 34701 October 1992

30 1.5 Other functions

/* as qiven in the .rse file */
/* in bytes */
/* in bytes */

/* in bytes */
/* in bytes */

/* in bytes */

Function Description
get_code_details_from_file Retrieves details from a . rsc file.
get_code_details_from~emory Retrieves details from the image of a

. rsc file, held in internal memory.
get_code_details_from_channel Retrieves details from a . rsc file that

is received over a channel.
load code from file Loads the code of a . rsc file into- - - internal memory.
load_code_from_memory Transfers the code of a . rsc file

image from one section of internal
memory to another.

load code from channel Loads the code of a .rsc file,- - - received over a channel, into internal
memory.

fnload. h defines the type fn_info which has the following structure definition:

st.ruct. fn data
{ -

int. tarqet.-processor_t.ype;
size t. st.ack size;
size-t vect.orspace size;
size-t. st.at.ic size;
size=t. ent.ry-Point_off&et.;
size t code size;

}; - -
typedef struct fn_data fn_info;

targetyrocessor_type gives the processor type for which the code in the
. rsc file is compiled. The processor type is encoded as an integer; a list of pos­
sible values is given in section 3.5 of the ANSI C Toolset Reference Manual.

1.5.8 Miscellaneous functions <misc .h>

The header file misc. h declares some additional non-ANSI functions, including
three debugging support functions, plus three constants that control the operation
of set_abort_action. It also contains functions to perform bit manipulation,
block moves and CRC calculations.

72 TDS 347 01 October 1992

1 Introduction and runtime library summary 31

Function Description
BlockMove Copies a block of memory.
BitCnt Count the number of bits set.
BitCntSum Count the number of bits set and sum with an integer.
BitRevNBits Reverse the order of the least significant bits of an in~e-

ger.
BitRevWord Reverse the order of the bits in an integer.
call_without_gsb Calls the function (pointed to) without passing in the

global static base (gsb).
CrcByte Calculates CRC of most-significant byte of an integer.
CrcFromLsb Calculates the CRC of a byte sequence starting at the

least significant bit.
CrcFromMsb Calculates the CRC of a byte sequence starting at the

most significant bit.
CrcWord Calculates CRC of an integer.
debug_assert Stops a process on a speci'fied condition.
debug_message Inserts a debugging message.
debug_stop Stops a process.
exit noterminate Exits the program without terminating the server. Used

for configured programs, otherwise like exit.
exit_repeat Program termination with restart. As exi t but allows

the program to be restarted on the processor.

exit terminate Terminates the server. Used for configured programs,
otherwise like exit.

get""param Reads interface parameters for a configured pro-
cess.

halt""processor Halts the processor on which it is executed.
max_stack_usage Estimates runtime stack usage in a program.
set abort action Sets or queries the action to be taken by abort. The- - possible actions are:exit without clearing files; or halt

the transputer.

Function Description
get_detai1s_of_free_memory Reports the details of memory con-

sidered by the configurer to be
unused.

get_details_of_free_stack_space Reports the limits of free space on
the current stack.

Note: These two functions have been separated out from the main list of func-
tions purely because of the length of their names.

72TDS 347 01 october 1992

32 1.6 Fatal runtime errors

Macro Description
ABORT EXIT Directs set_abort_action to cause a normal program

exit on abort.
ABORT HALT Directs set_abort_action to halt the transputer on

abort.
ABORT_QUERY Directs set abort action to return the current abort

action without resetting it.

1.6 Fatal runtime errors

Errors are generated at severity level Fatal by the C runtime system when the pro­
gram cannot be run. Such errors may occurat startup orduring program execution.

The main causes of runtime errors in a program are summarized below.

• Insufficient memory at startup.

• Stack overflow during execution.

• Illegal conditions detected by the library 'functions free, and realloc and
the concurrency library functions. These errors are described in detail
under the function descriptions in chapter 2.

When runtime errors occur the program terminates immediatelywith an error n1es­
sage. All runtime error messages are prefixed with 'Fatal-C_Library'.

1.6.1 Runtime error messages

Fatal-C_Library-Bad workspace pointer

This error message is issued when the stack checking code or dynamic
code loading functions detect that the current process is running in an ille­
gal stack area. Legal stack areas are the main stack area defined at pro­
gram startup or parallel process stacks. Note: that this error may also
mean that global data stored in the static area has been corrupted.

Fatal-C_Library-Out of memory in system startup [number]

This error is generated when insufficient static or heap space is available
to run the program. number can take the following values:

1 - Insufficient memory to accommodate static area.

2 - Insufficient memory to accommodate static area.

3 -Insufficient heap space for the input and output channel arrays.

4 -Insufficient heap space for command line parameters to the pro
gram.

5 -Insufficient heap space to set up low level 110 system.

72 TDS 347 01 October 1992

1 Introduction and runtime library summary 33

6 -Insufficient heap space to set up ANSI stdio level 1/0 system.

If this error occurs then either the available memory can be increased or
the program re-coded in a less memory-intensive way.

Fatal-C_Library-Stack overflow

This message is only generated when stack checking is enabled in the
compiler. It indicates stack overflow in the program and may be remedied
by increasing the specified stack size. If no stack size has been specified
and the default has been assumed by the program then the stack size can­
not be increased and the program should be re-coded.

Fatal-C_Library-Error in free (), bad pointer or heap corrupted

This error indicates an invalid pointer passed to free or corruption of the
heap. No speci'fic recovery is possible and the program should be
debugged.

Fatal-C_Library-Error in realloc (), bad pointer or heap corrupted

This error indicates an invalid pointer passed to realloc or corruption of
the heap. No specific recovery is possible and the program should be
debugged.

Fatal-C_Library-lncorrect allocation of process workspace

This error is generated by Proclni t ifan attempt is made to define a work­
space which is nested within the workspace of an existing process or is
taken from the main program stack. An example ofthis would be an attempt
to use an automatic array as a process workspace.

Fatal-C_Library-Nested Pri Pars are illegal

This error is generated by ProcPriPar when it is called from a high priority
process. Calling ProcPriPar from a high priority process is prohibited in
this toolset.

Fatal-C_Library-Bad pointer to process clean function

An invalid process structure pointer has been pointed to ProclnitClean
orProcAllocClean.

Fatal-C_Library-Attempt to start a process which is already running.

An attempt has been made to start a process (using ProcRun,
ProcRunLow. ProcRunHigh, ProcPar, ProcParList or ProcPri­
Par) which has already been started and is still executing.

72 TDS 347 01 october 1992

34

72 TDS 34701

1.6 Fatal run'time errors

October 1992

2 Alphabetical list of
functions

This chapter contains detailed reference information for the runtime library func­
tions and their operation.

2.1 Format

Function descriptions are laid out in a standard format. First, the function name is
given, highlighted in large type, followed on the same line by a brief summary of
its action.

The funclion name is followed by detailed information about the function under the
following headings:

Heading Information given

Synopsis: The file to be included and the function declaration.

Arguments: A list of the function's arguments and their meanings.

Results: The result(s) returned.

Errors: The action(s) taken on error.

Description: A detailed description of the function and hints on usage.

Example: An example of the function's use, where appropriate.

See also: A list of related functions, where appropriate.

2.1.1 Reduced library

Where functions are not available in the reduced library, this is indicated in the func­
tion description.

2.1.2 Macros

Where functions are implemented as macros, or as both macros and regular C
functions, this is also indicated in the detailed description.

For these functions the version used by the compiler depends on the syntax of the
calling statement. If the call uses parentheses around the function name (as in
(putchar) (ch»), the regular function is used; if parentheses are omitted (as in
putchar (ch»), the macro form is used instead.

72 TDS 347 01 October 1992

36 2 Alphabetical list of functions

2.2 List of functions

abort
Synopsis:

#include <stdlib.h>
void abort(void);

Arguments:

None.

Results:

abort does not return.

Errors:

None.

Aborts the program.

Description:

abort causes immediate termination of the program. It does not ·nush output
streams, close open streams, or remove temporary files. abort passes SIGABRT
to the signal handler, to show that the program has terminated abnormally.

The default action is to abort the program without halting the processor. The func­
tion can be set to halt the processor by first calling set abort action with the
appropriate argument. - -

If set to halt, abort forces the processor to halt even if the program is not in HALT
mode, by explicitly setting the Halt-On-Error and Error flags.

See also:

exit exit terminate exit noterminate halt-processor
set_abort=action signal -

72TDS 34701 October 1992

2 Alphabetical list of functions 37

abs Calculates the absolute value of an integer.

Synopsis:

'include <stdlib.h>
int abs(int j);

Arguments:

int j

Results:

An integer.

Returns the absolute value of j.

Errors:

If the result cannot be represented the behavior of abs is undefined.

Description:

abs calculates the absolute value of the integer j.

abs is side effect free.

See also:

labs

72TDS 347 01 October 1992

38

acos

Synopsis:

#include <math.h>
double acos(double x);

Arguments:

2 Alphabetical list of functions

Calculates the arc cosine of the argument.

double x

Results:

A number in the range [-1 ..+1].

Returns the arc cosine of x in the range [0..pi] radians and 0.0 on domain errors.

Errors:

A domain error occurs if x is not in the range [-1 ..+1]. In this case errno is set to
EDOM.

Description:

acos calculates the arc cosine of a number.

See also:

acosf

72 TDS 34701 October 1992

2 Alphabetical list of functions 39

acosf Calculates the arc cosine of a float number.

Synopsis:

#include <mathf.h>
float acosf(float x);

Arguments:

float x

Results:

A number in the range [-1 ..+1].

Returns the arc cosine of x in the range [O..pi] radians and O~OF on domain errors.

Errors:

A domain error occurs if x is not in the range [-1 ..+1]. In this case errno is set to
EDOM.

Description:

float form of acos.

See also:

acos

72TDS 34701 October 1992

40

alloc86
Synopsis:

2 Alphabetical list of functions

Allocates a block of host memory. MS-DOS only.

#include <dos.h>
pcpointer alloc86(int n);

Arguments:

int n

Results:

The number of bytes of host memory to be allocated.

Returns a pointer to the allocated block of host memory.

Errors:

Returns a NULL PC pointer if the allocation fails and sets errno to the value EDOS.
Any attempt to use from86 on systems other than MS-DOS also sets errno to
EDOS. Failure of the function may also generate the server error message:

[Encountered unknown primary tag (50)]

Description:

alloc86 allocates a block of memory on the MS-DOS host and returns a pointer
to it. If the memory cannot be allocated. a NULL PC pointer is returned. The allo­
cated memory cannot be accessed directly by the transputer program but only by
means of the functions to86 and from86.

Note: Intel B0x86 architecture limits the amount of memory which can be con­
tained in a single segment to 65536 bytes; alloc86 cannot allocate more than this
architectural limit.

See also:

from86 to86

72 TDS 34701 October 1992

2 Alphabetical list of functions 41

asctime Converts a broken-dawn-time structure to an ASCII string.

(See section 1.3.16 for a definition of broken-dawn-time).

Synopsis:

'include <time.h>
char* asctime(const struct tm *timeptr);

Arguments:

const struct tm *timeptr A pointer to the broken-dawn-time
structure to be converted.

Results:

Returns a pointer to the ASCII time string.

Errors:

None.

Description:

asctime returns the values in the timeptr structure as an ASCII string in the
form: Thu Nov 05 18:19:01 1987

The string pointed to may be overwritten by subsequent calls to asctime.

Example:

/* Displays the current time */

'include <time.h>
'include <stdio.h>

int mainO
(

struct tm *now;
time_t clck;

time(&clck); /* Get current time in secs */

now = localtime(&clck);
/* Convert time to

a structure (bIl) */
printf("The time is: %s\n", asctime(now»;

}

Note: Care should be taken when calling asctime in a concurrent environment.
Calls to the function by independently executing, unsynchronized processes may
corrupt the returned time value.

See also:

ctime localtime strftime clock difftime mktime time

72TDS 34701 October 1992

42

asin

Synopsis:

#include <math.h>
double asin(double x);

Arguments:

2 Alphabetical list of functions

Calculates the arc sine of the argument.

double x

Results:

A number in the range [-1 ..+1].

Returns the arc sine of x in the range [-pi/2 ..+pi/2] radians and 0.0 on domain
errors.

Errors:

A domain error occurs if x is not in the range [-1 ..+1]. In this case errno is set to
EDOM.

Description:

asin calculates the arc sine of a number.

See also:

asinf

72 TDS 34701 October 1992

2 Alphabetical list of functions 43

asinf Calculates the arc sine of a float number.

'include <mathf.h>
float asinf(float x);

Arguments:

float x

Results:

A number in the range [-1 ..+1].

Returns the arc sine of x in the range [-pi/2..+pi/2] radians and O.OF on domain
errors.

Errors:

A domain error occurs if x is not in the range [-1 ..+1]. In this case errno is set to
EDOM.

Description:

float form of asin.

See also:

asin

72 TDS 34701 october 1992

44

assert
Synopsis:

'include <assert.h>
void assert(int expression);

Arguments:

2 Alphabetical list of functions

Inserts diagnostic messages.

int expression

Results:

Returns no value.

Errors:

None.

The condition to be asserted.

Description:

assert is a debugging macro. If it is called with expression equal to zero,
assert terminates the program by calling abort. The action of abort when
called by assert depends on the most recent call to set_abort_action.

If expression is non-zero, no action is taken.

If the function is linked with the full runtime library and the expression evaluates
to zero, the following message is written to stderr:

*** assertion failed: condition, file fiJename, line linenumber

If the function is linked with the reduced runtime library then no message is dis­
played if the assertion fails.

The definition of the assert macro depends upon the definition of the NDEBUG
macro. If NDEBUG is defined before the de'finition of assert then assert is
de'fined as:

'define assert(ignore) «void)O)

If assert is defined first the definition is honored and NDEBUG is ignored.

72 TDS 347 01 October 1992

2 Alphabetical list of functions

Example:

'include <stdio.h>
'include <assert.h>

float divide (float a, float b)
(

assert(b != O.OF);
return a/b;

int main(void
{

float res;

45

}

1*
*

res = divide(1.OF,2.0F);
printf("l.O divided by 2.0 is: %f\n",res);
res = divide(l.OF,O.OF);
printf("l.O divided by 0.0 is: %f\n",res);

Output:
** *** assertion failed: b != 0.0,
* file assert.c, line 6
*
*1

See also:

abort debug_assert

72TDS 34701 October 1992

46

atan
Synopsis:

'include <math.h>
double atan(double x);

Arguments:

2 Alphabetical list of functions

Calculates the arc tangent of the argument.

double x

Results:

A number.

Returns the arctan of x in the range [-pi/2..+pi/2] radians.

Errors:

None.

Description:

a tan calculates the arc tangent of a number.

See also:

atanf

72 TDS 34701 October 1992

2 Alphabetical list of functions

atan2
Synopsis:

'include <math.h>
double atan2(double y, double x);

47

Calculates the arc tangent of y/x.

Arguments:

double y
double x

Results:

The numerator.
The denominator.

Returns the arc tangent of y/x in the range [-pi..+pi] radians and O.OF on domain
errors.

Errors:

A domain error occurs if x and y are zero. In this case errno is set to EDOM.

Description:

a tan2 calculates the arc tangent of y/x.

See also:

atan2f

72 TOS 34701 October 1992

48

atan2f

2 Alphabetical list of functions

Calculates arc tangent of y/x where both are floats.

Synopsis:

'include <mathf.h>
float atan2f(float y, float x);

Arguments:

float y
float x

Results:

The numerator.
The denominator.

Returns the arc tangent of y/x in the range [-pi..+pi] radians and 0.0 on domain
errors

Errors:

A domain error occurs if x and y are zero. In this case errno is set to EDOM.

Description:

float form of atan2.

See also:

atan2

72 TDS 34701 October 1992

2 Alphabetical list of functions 49

atanf

Synopsis:

#include <mathf.h>
float atanf(float x);

Arguments:

Calculates the arc tangent of a float number.

float x

Results:

A number.

Returns the arc tangent of x in the range [-pi/2..+pi/2] radians.

Errors:

None.

Description:

float form of atan.

See also:

atan

72 TDS 347 01 October 1992

50

atexit
Synopsis:

2 Alphabetical list of functions

Specifies a function to be called when the program ends.

#include <stdlib.h>
int atexit(void (*func) (void»;

Arguments:

void (*func) (void)

Results:

A pointer to the function to be called.

Returns zero if a texit is successful and non-zero if it is not.

Errors:

None.

Description:

a texi t records that the function pointed to by func is to be called (without argu­
ments) at normal termination of the program.

A maximum of 32 functions can be recorded for execution on exit. They will be
called in reverse order of their being recorded (that is, last in, 'first out).

Note: In the parallel environment atexi t works on program termination rather
than process termination. A maximum of 32 functions can be registered as exit
functions per program.

Example:

'include <stdlib.h>
'include <stdio.h>

void first exit(void)
{ -

printf("First_exit called on exit\n");

void second exit(void)
{ -

printf("Second_exit called on exit\n");

72 TDS 34701 October 1992

2 Alphabetical list of functions

int main (void)
(

atexit(second exit);
atexit(first exit);
printf("About to exit from program\n");
return 0;

51

/*
*
*
*
*
*
*
*/

See also:

exit

Output:

About to exit from program
First exit called on exit
Second_exit called on exit

72 TDS 347 01 october 1992

52

atof
Synopsis:

2 Alphabetical list of functions

Converts a string of characters to a double.

'include <stdlib.h>
double atof(const char *nptr);

Arguments:

const char *nptr A pointer to the string to be converted.

Results:

Returns the converted value or zero(0) on error.

Errors:

If the string cannot be converted, atof returns 0 (zero). If the conversion would
cause overflow or underflow in the double value, the behavior is undefined.

Description:

a tof converts the string pointed to by nptr to a double precision floating point
number. atof expects the string to consist of:

1 Leading white space (optional).

2 A plus or minus sign (optional).

3 A sequence of decimal digits, which may contain a decimal point.

4 An exponent (optional) consisting of an 'E' or 'e' followed by an optional
sign and a string of decimal digits.

5 One or more unrecognized characters (including the string terminating
character).

a tof ignores the leading white space, and converts all the recognized characters.
If there is no decimal point or exponent part in the string, a decimal point is
assumed after the last digit in the string.

The string is invalid if the first non-space character in the string is not one of the
following characters: + - 0 1 2 3 4 5 6 7 8 9

72 TDS 34701 October 1992

2 Alphabetical list of functions

Example:

'include <stdio.h>
'include <stdlib.h>

int main()
{
char *array;
double x;

array =" -4235.120E-3";
x = atof(array);
printf("Float = %f\n", x);

array =" -735492.45";
x = atof(array);
printf("Float = %e\n", x);

}
/*
Prints Float = -4.235120

Float = -7.354924e+05
*/

See also:

atoi atol strtod

72 TDS 34701

53

October 1992

54

atoi

Synopsis:

'include <stdlib.h>
int atoi(const char *nptr);

Arguments:

2 Alphabetical list of functions

Converts a string of characters to an into

const char *nptr A pointer to the string to be converted.

Results:

Returns the converted value or zero (0) on error.

Errors:

If the string cannot be converted, atoi returns O.lfthe conversion would overflow
or underflow, the behavior is undefined.

Description:

a toi converts the string pointed to by nptr to an integer. a toi expects the string
to consist of:

1 Leading white space (optional).

2 A plus or minus sign (optional).

3 A sequence of decimal digits.

4 One or more unrecognized characters (including the string terminating
character).

atoi ignores the leading white space, and converts all the recognized characters.

The string is invalid if the first non-space character in the string is not one of the
following characters: + - 0 1 2 3 4 5 6 7 8 9

72 TOS 34701 October 1992

2 Alphabetical list of functions

Example:

'include <stdlib.h>
'include <stdio.h>

int main(void)
{

char *array;
int X;

array =" -4235";
X = atoi(array);
printf("Integer is: %d\n" , x);

array = "-735492 and same rubbish text";
x = atoi(array);
printf("Integer is: %d\n" , x);

55

/*
*
*
*
*
*
*/

See also:

Output:

Integer is: -4235
Integer is: -735492

atof atol strtol

72 TDS 34701 October 1992

56

atol

2 Alphabetical list of functions

Converts a string of characters to a long integer.

Synopsis:

#include <stdlib.h>
long int atol(const char *nptr);

Arguments:

const char *nptr A pointer to the string to be converted.

Results:

Returns the converted value or zero (0) on error.

Errors:

If the string cannot be converted, atol returns O.lfthe conversion would overflow
or underflow, the behavior is undefined.

Description:

a tol converts the string pointed to by nptr to a long integer. a tol expects the
string to consist of:

1 Leading white space (optional).

2 A plus or minus sign (optional).

3 A sequence of decimal digits.

4 One or more unrecognized characters (including the string terminating
character).

atol ignores the leading white space, and converts all the recognized characters.

The string is invalid if the first non-space character in the string is not one of the
following characters: + - 0 1 2 3 4 5 6 7 8 9

72T08 34701 October 1992

2 Alphabetical list of functions

Example:

'include <stdio.h>
'include <stdlib.h>

int mainO
{
char *array;
long 1;

array =" -735492 and trailing text";
1 = atol(array);
printf("Long = %ld\n", 1);

}

/*
Prints "Long = -735492"
*/

See also:

atof atoi strtod strtol

72TDS 347 01

57

October 1992

58

bdos

Synopsis:

2 Alphabetical list of functions

Performs a simple MS-DOS function. MS-DOS only.

'include <dos.h>
int bdos(int dosfn, int dosdx, int dosal);

Arguments:

int dosfn
int dosdx
int dosal

Results:

Value to assign to the ah register.
Value to assign to the dx register.
Value to assign to the al register.

Returns the value of the ax register or zero (0) on error.

Errors:

Returns zero (0) on error and sets errno to the value EDOS. Any attempt to use
bdos on operating systems other than MS-DOS also sets errno to EDOS. Failure
of the function may also generate the server error message:

[Encountered unknown primary tag (50)]

Description:

bdos performs an MS-DOS function call interrupt on the host with the ah register
(specifying the MS-DOS function call nurnber) set to dosfn, and with the dx and
al registers set to dosdx and dosal respectively. It is a shorthand form of int86
for the very simplest MS-DOS function calls only.

bdos is not included in the reduced library.

See also:

intdos int86

72 TDS 347 01 October 1992

2 Alphabetical list of functions

BitCnt
Synopsis:

'include <misc.h>
int BitCnt(int word);

Arguments:

59

Count the number of bits set.

int word

Results:

The integer whose set bits are to be counted.

Returns the number of bits set in word

Errors:

None.

Description:

The number of bits set in the integer argument word are counted. The count is
returned.

Example:

int data;
int num_bits_set;

When compiling for transputers which have the bitcnt instruction, calls to BitCnt
are implemented inline, provided that the header file <mise. h> has been included
in the source.

BitCnt is side effect free.

See also:

BitCntSum

72 TDS 347 01 October 1992

60

BitCntSum

Synopsis:

2 Alphabetical list of functions

Count the number of bits set and sum with an integer.

#include <misc.h>
int BitCntSum(int word, int count_in);

Arguments:

int word
int count in

Results:

The integer whose set bits are to be counted.
The value to be summed with the number of bits set in
word.

Returns the sum of count in and the number of bits set in word.

Errors:

None.

Description:

The numberofbits set in the integerargumentword are counted and summed with
count in. The sum is returned. The sum is performed using modulo arithmetic,
so no overflow can occur.

Example:

int data(10);
int count;
int i;

'* Sum the number of bits set in 'data' *'
count = 0;
for (i = 0; i < 10; i++)

count = BitCntSum(data[i), count);

When compiling fortransputers which have the bitcnt instruction, calls to BitCnt­
Sum are implemented inline, provided that the header file <misc. h> has been
included in the source.

BitCntSum is side effect free.

See also:

BitCnt

72 TDS 34701 October 1992

2 Alphabetical list of functions 61

SitRevNBits Reverse the order of the least significant bits of an inte­

ger.

Synopsis:

'include <misc.h>
int BitRevNBits(int numbits, int data);

Arguments:

int numbits
int data

The number of bits to reverse.
The integer whose least significant bits are to be
reversed.

Results:

Returns data with its numbits least significant bits reversed and its other bits
zeroed.

Errors:

If numbits is negative or numbits is greater than the number of bits in a word,
then the effect of calling BitRevNBi ts is undefined.

Description:

The order of the numbits least significant bits of data is reversed. All other bits
of data are zeroed. This result is returned. For example, on a 32-bit processor:

Data:

Result:

BitRevNBits is side effect free.

Example:

int data;
int nmnbits;
int rev_data;

rev_data = BitRevNBits(numbits, data);

72 TDS 347 01 october 1992

62 2 Alphabetical list of functions

When compiling for transputers which have the bitrevnbits instruction, calls to
BitRevNBits are implemented inline, provided that the header file <mise. h>
has been included in the source.

See also:

BitRevWord

72 lDS 347 01 October 1992

2 Alphabetical list of 'functions

BitRevWord
Synopsis:

'include <misc.h>
int BitRevWord(int data);

Arguments:

63

Reverse the order of the bits in an integer.

int data The integer whose bits are to be reversed.

Results:

Returns data with all bits in reversed order.

Errors:

None.

Description:

The bit pattern in data is reversed end-for-end. The result is returned. For exam­
pie, on a 32-bit processor:

Data:

31 0

~....._-----------~
Result:

31 0

[;GG]'---- ---'[;J;[;J
BitRevWord is side effect free.

Example:

int data;
int rev_data;

rev_data =BitRevWord(data);

When compiling for transputers which have the bitrevword instruction, calls to
BitRevWord are implemented inline, provided that the header file <misc. h> has
been included in the source.

See also:

BitRevNBits

72TDS 347 01 October 1992

64

BlockMove

Synopsis:

2 Alphabetical list of functions

Copy a block of memory

#include <misc.h>
void BlockMove(void *dest, const void *source, size_t n);

Arguments:

void *dest A pointer to the destination of the copy.
const void *source A pointer to the source of the copy.
size t n The number of bytes to be copied.

Results:

Returns no result.

Errors:

The behavior of BlockMove is undefined if the source and destination overlap.

Description:

BlockMove copies n bytes from the area of memory pointed to by source to the
area of memory pointed to by dest. The behavior of BlockMove is undefined if
the source and destination area overlap.

Example:

int source[27];
int dest[SOO];

BlockMOve(dest, source, 27 • sizeof(int»;

Calls to BlockMove are implemented inline, provided that the header file
<mise. h> has been included in the source.

72 TDS 34701 October 1992

2 Alphabetical list of functions 65

bsearch Searches a sorted array for a given object.

Synopsis:

#include <stdlib.h>
void *bsearch(const void *key,

const void *base,
size_t nmemb, size_t size,
int (*compar) (const void *,

const void *»;

Arguments:

const void *key
const void *base
size t nmemb
size-t size
int (*compar) (const void *,

const void *)

Results:

A pointer to the object to be matched.
A pointer to the start of the array.
The number of objects in the array.
The size of the array objects.

A pointer to the comparison 'function.

Returns a pointerto the object iffound; otherwise bsearch returns aNULL pointer.
If more than one object in the array matches the key, it is not de'fined which one the
return value points to.

Errors:

None.

Description:

bsearch searches the array pointed to by base for an object which matches the
object pointed to by key. The array contains nmemb objects of size bytes.

The objects are compared using the comparison function pointed to by compar.
The function must return an integer less than, equal to, or greater than zero,
depending on whether the first argument to the function is considered to be less
than, equal to, or greater than the second argument.

The base array must already be sorted in ascending order (according to the com­
parison performed by the function pointed to by compar).

72TDS 34701 October 1992

66 2 Alphabetical list of functions

Example:

/*
* Receives a list of arguments fram the
* te~nal, and searches them for the
* string "findme".
*/

'include
'include
'include

<stdio.h>
<stdlib.h>
<string.h>

int campare(const vpid *argl, const void *arg2)
{

return(strncmp(*(char **)argl, *(char **)arg2,
strlen(*(char **)argl»);

int main(int argc, char *arqv[])
{

char **result;
char *key = "findme";

/* sort the command line arguments according
to the string compare function 'compare' */

qsort(arqv, argc, sizeof(char *), compare);

/* Find the argument which starts with
the string in 'key' */

result = (char **)bsearch(&key, arqv, (size t)argc,
sizeof(char *), compare);

if (result != NULL)
printf("\n'%s' found\n", *result);

else
printf("\n'%s' not found\n", key);

See also:

qsort

72 TDS 347 01 October 1992

2 Alphabetical list of functions 67

call_without_9sb Calls the pointed to function without passing

the gsb.

Synopsis:

'include <misc.h>
void call_vithout_gsb(void (*fn-ptr) (void),

int number_of_vords_for-parameters,
. ..)

Arguments:

void (*fn-ptr) (void) A pointer to the function to be
called without a gsb.

int number_of_vords_for-parameters The number of words that the
parameters in the ellipsis occupy.
The parameters of the function to
be called in the correct order for
that function.

Results:

None.

Errors:

None.

Description:

call vi thout gsb calls the specified 'function without passing agsb as the first
(hidden) parameter. call vithout gsb requires that the called function uses
the same calling convention as the INMOS ANSI C toolset.

The function called must return void.

Note: no type checking is done on the parameters to the function to be called - it
is up to the user to ensure correctness.

In the header file where it is declared this function has the IMS nolink pragma
applied to it, so it cannot be called by a pointer to it, other than bY use of itself. This
function will not work unless the IMS_nolink pragma is applied to it.

72 TDS 34701 October 1992

68

calloc

2 Alphabetical list of functions

Allocates memory space for an array of items and initializes
the space to zeros.

Synopsis:

#include <stdlib.h>
void *calloc(size_t nmemb, size t size);

Arguments:

size t nmemb
size-t size

Results:

The number of items in the array to be allocated.
The size of the array items.

Returns a pointer to the allocated space if the allocation is successful; otherwise
calloc returns a NULL pointer. If either argument is zero calloc returns a NULL
pointer.

Errors:

calloc returns a NULL pointer if there is not enough free space in memory or if
either argument is zero.

Description:

calloc allocates space in memory for an array containing nmemb items, where
each item is size bytes long. The allocated memory is initialized to zeros.

Programming note: On the T2 family of transputers pointers should always be
initialized explicitly, because the NULL pointer on these machines is represented
by a non-zero bit pattern.

See also:

free malloc realloc

72 TDS 347 01 October 1992

2 Alphabetical list of functions 69

ceil
Synopsis:

Calculates the smallest integer not less than the argument.

#include <math.h>
double ceil(double x);

Arguments:

double x

Results:

A number.

Returns the smallest integer (expressed as a double) which is not less than x.

Errors:

None.

Description:

cei1 calculates the smallest integer which is not less than x.

ceil is side effect free.

See also:

floor ceilf

72TDS 347 01 October 1992

70 2 Alphabetical list of functions

ceilf Calculates the smallest integer not less than the float argument.

Synopsis:

'include <mathf.h>
float ceilf(float X)i

Arguments:

float x A number.

Results:

Returns the smallest integer (expressed as type float) which is not less than x.

Errors:

None.

Description:

float form of ceil.

ceilf is side effect free.

See also:

ceil floorf

72 TDS 347 01 October 1992

2 Alphabetical list of functions

ChanAlloc
Synopsis:

'include <channel.h>
Channel *ChanAlloc(void);

Arguments:

None.

Results:

71

Allocates and initializes a channel.

Returns a pointer to an initialized channel, or NULL if the space could not be allo­
cated.

Errors:

Returns NULL if space could not be allocated.

Description:

Allocates and initializes a channel. The space is allocated using malloc.

Note: All channels must have space reserved for them before they are used. The
space can be allocated using ChanAlloc; explicitly using malloc or by using a
static or automaticvariable. IfChanAlloc is not used the channel should be initial­
ized using Chanlnit.

The space allocated for a channel by ChanAlloc can be freed by passing the
channel pointer directly to free.

See also:

ChanReset

72TDS 347 01 October 1992

72

Chanln
Synopsis:

2 Alphabetical list of functions

Inputs data on a channel.

'include <channel.h>
void Chanln(Channel *c, void *cp, int count);

Arguments:

Channel *c
void *cp
int count

Results:

Returns no result.

Errors:

None.

A pointer to the input channel.
A pointer to the array where the data will be stored.
The number of bytes of data.

Description:

Inputs count bytes of data on the specified channel and stores them in the array
pointed to by cp. The effect of this routine is undefined if count ~ o.

See also:

ChanOut Chanlnlnt ChanlnChar ChanlnChanfail ChanlnTimeFail

72 TDS 34701 October 1992

2 Alphabetical list of 'functions

ChanlnChanFail

Synopsis:

73

Inputs data on a link channel or aborts.

'include <channel.h>
int ChanlnChanFail(Channel *chan, void *cp,

int count, Channel *failchan);

Arguments:

Channel *c
void *cp
int count
Channel *failchan

Results:

A pointer to the input channel.
A pointer to an array where the data will be stored.
The number of bytes of data.
A pointer to the channel on which the failure message
is received.

Returns zero (0) if communication completes, one (1) if communication is aborted
by a message on the failure channel.

Errors:

None.

Description:

ChanlnChanFail is used to perform reliable channel communication on a link.
The function inputs count bytes of data on the specified channel into the array
pointed to by cp. It can be aborted by an integer, and only an integer, passed on
failchan. Typically failchan will be achannel from aprocess which is monitor­
ing the integrity of the link.

Note: this function may not be used on a virtual channel supplied from either the
con-figurer or from the debugger idebug in interactive mode. This is described fur­
ther in section 6.3.2 of the ANS/ C Too/set User Guide.

See also:

Chanln ChanlnTimeFail

72TDS 34701 October 1992

74

ChanlnChar
Synopsis:

2 Alphabetical list of functions

Inputs one byte on a channel.

#include <channel.h>
unsigned char ChanInChar(Channel *c);

Arguments:

Channel *c

Results:

Returns the input byte.

Errors:

None.

A pointer to the input channel.

Description:

Inputs a single byte on a channel.

Note: The prototype ofChanInChar has changed from previous releases ofthe
tool5et Le. the 07214,06214,05214 and D4214 products, where ChanInChar
was of type Char.

See also:

ChanOutChar ChanIn

72TOS 34701 October 1992

2 Alphabetical list of functions

Chanlnlnt
Synopsis:

linclude <channel.h>
int Chanlnlnt(Channel *c);

Arguments:

75

Inputs an integer on a channel.

Channel *c

Results:

A pointer to the input channel.

Returns the input integer.

Errors:

None.

Description:

Inputs a single integer on a channel.

See also:

ChanOutlnt Chanln

72 TDS 347 01 October 1992

76

Chanlnit
Synopsis:

'include <channel.h>
void Chanlnit(Channel *chan);

Arguments:

2 Alphabetical list of functions

Initializes a channel pointer.

Channel *chan

Results:

Returns no result.

Errors:

None.

A pointer to a channel.

Description:

Initializes the channel pointed to by chan to the value NotProcessJ>.

NotProcessJ> is defined in channel. h.

Example:

'include <channel.h>
'include <stdlib.h>

Channel cl, *c2;

Chanlnit(&cl);
c2 = (Channel *)malloc(sizeof(Channel»;
Chanlnit(c2);

See also:

ChanReset

72TDS 347 01 October 1992

2 Alphabetical list of functions

ChanlnTimeFail
Synopsis:

77

Inputs data on a channel or times out.

#include <channel.h>
int ChanlnTimeFail(Channel *chan, void *cp,

int count, int time);

Arguments:

Channel *c
void *cp
int count
int time

Results:

A pointer to the input channel.
A pointer to an array where the data will be stored.
The number of bytes of data.
The absolute time after which the communication is
abortedifnoinputoccu~.

Returns zero (0) if the communication is successful, one (1) if timeout occurs
before the communication completes.

Errors:

None.

Description:

ChanlnTimeFail is used to timeout channel communication on a link. It inputs
count bytes of data on the specified channel and stores them in the array pointed
to by cp, or aborts if the transputer clock reaches the specified absolute time. Typi­
cally it is used to notify delay on a link so that the communication can be routed
elsewhere.

Note: this function may not be used on a virtual channel supplied from either the
configurer or from the debugger idebug in interactive mode. This is described fur­
ther in section 6.3.2 of the ANSI C Toolset User Guide.

See also:

Chanln ChanlnChanFail ChanOutTimeFail

72TDS 34701 October 1992

78

ChanOut
Synopsis:

2 Alphabetical list of functions

Outputs data on a channel.

'include <channel.h>
void ChanOut (Channel *c, void *cp, int count);

Arguments:

Channel *c
void *cp
int count

Results:

Returns no result.

Errors:

None.

A pointer to the output channel.
A pointer to an array containing the output data.
The number of bytes of data.

Description:

Outputs count bytes of data on the channel c. The data is taken from the array
pointed to by cp. The effect of this routine is undefined if count ~ O.

See also:

Chanln ChanOutlnt ChanOutChar

72TDS 34701 October 1992

2 Alphabetical list of functions

ChanOutChanFail

Synopsis:

79

Outputs data or aborts on failure.

'include <channel.h>
int ChanOutChanFail (Channel *chan, void *cp,

int count, Channel *failchan);

Arguments:

Channel *c
void *cp
int count
Channel *failchan

Results:

A pointer to the output channel.
A pointer to an array containing the output data.
The number of bytes of data.
A pointer to the channel on which the failure message
is received.

Returns zero (0) if communication completes normally, one (1) if communication
is aborted by a message on the failure channel.

Errors:

None.

Description:

ChanOutChanFail is used to perform reliable channel communication on a link.
It outputs count bytes of data on the specified channel from the array pointed to
by cp. The function can be aborted by an integer, and only an integer, passed on
the channel failchan. Typically failchan will be a channel from a process
which is monitoring the integrity of the link.

Note: this function may not be used on a virtual channel supplied from either the
configurer or from the debugger idebug in interactive mode. This is described fur­
ther in section 6.3.2 of the ANS/ C Too/set User Guide.

See also:

ChanOUt ChanOutTimeFail

72TDS 347 01 October 1992

80

ChanOutChar
Synopsis:

2 Alphabetical list of functions

Outputs one byte on a channel.

#include <channel.h>
void ChanOutChar (Channel *c, unsigned char ch);

Arguments:

Channel *c A pointer to the output channel.
unsigned char ch The byte to be output.

Results:

Returns no result.

Errors:

None.

Description:

Outputs a single byte on a channel.

Note: The prototype of ChanOutChar has changed from previous releases of
the toolset i.e. the 07214. 06214. 05214 and 04214 products. where
ChanOutChar was of type Char.

See also:

ChanlnChar ChanOut

72TOS 34701 October 1992

2 Alphabetical list of functions

ChanOutlnt

Synopsis:

81

Outputs an integer on a channel.

#include <channel.h>
void ChanOutlnt(Channel *c, int n);

Arguments:

Channel *c
int n

Results:

Returns no result.

Errors:

None.

A pointer to the output channel.
The integer to be output.

Description:

Outputs a single integer on a channel.

See also:

ChanOutlnt Chanln

72TDS 34701 October 1992

82

ChanOutTimeFail
Synopsis:

2 Alphabetical list of functions

Outputs data on a channel or times out.

'include <channel.h>
int ChanOutTimeFail(Channel *chan, void *cp,

int count, int time);

Arguments:

Channel *c
void *cp
int count
int time

Results:

A pointer to the output channel.
A pointer to an array containing the output data.
The number of bytes of data.
The absolute time after which the communication is
aborted if no output occurs.

Returns zero if the communication is successful, one (1) iftimeout occurs before
the communication completes.

Errors:

None.

Description:

ChanOutTimeFail is used to timeout channel communication on a link. It outputs
count bytes of data on the specified channel from the array pointed to by cp. The
functions aborts if the transputer clock reaches the specified absolute time before
the communication takes place. Typically it is used to notify delay on a link so that
the communication can be routed elsewhere.

Note: this function may not be used on a virtual channel supplied from either the
configurer or from the debugger idebug in interactive mode. This is described 'fur­
ther in section 6.3.2 of the ANS/ C Too/set User Guide.

See also:

ChanOut ChanOutChanFail

72 TDS 34701 October 1992

2 Alphabetical list of functions

ChanReset
Synopsis:

'include <channel.h>
int ChanReset(Channel *c);

Arguments:

83

Resets a channel.

Channel *c

Results:

A pointer to the channel to be reset.

Returns either NotProcessJ>, or the transputer process descriptor Wdesc.

Errors:

None.

Description:

Resets a channel to the value NotProcess-p and returns the transputer process
descriptor of the process waiting to communicate on the channel, or
NotProcessJ>. If the value returned is NotProcessJ>, no process was waiting
on the channel, and any communication on that channel had completed success­
fully.

This 'function should not be used to reset a soft channel (a channel that connects
processes on the same processor), which has not been previously initialized using
Chanlnit or ChanAlloc. There is in fact little point using this function on a soft
channel, because communication in that case can be assumed to be secure.

NotProcessJ> is defined in channel. h.

Note: this function may not be used on a virtual channel supplied from either the
configurer or from the debugger idebug in interactive mode. This is described fur­
ther in section 6.3.2 of the ANS/ C Too/set User Guide.

See also:

Chanlnit

72 TDS 34701 october 1~~ " t!.

84

clearerr
Synopsis:

2 Alphabetical list of functions

Clears error and end of file indicators for a file stream.

'include <stdio.h>
void clearerr(FILE *stream);

Arguments:

FILE *stream

Results:

Returns no value.

Errors:

None.

A pointer to a file stream.

Description:

clearerr clears the error and end of file indicators for a file stream.

See also:

rewind

72TDS 347 01 October 1992

2 Alphabetical list of functions 85

clock
Synopsis:

'include <time.h>
clock_t clock(void);

Arguments:

None.

Determines the amount of processor time used.

Results:

Returns the time used by the program since it started, or (clock_t)-1 on error.

clock returns a value at the priority of the calling process.

Errors:

The value (clock_t)-1, indicating an error, is returned if any of the following
occur:

• the processor time is not available;

• the value cannot be represented;

• the priority of the process calling clock is different to that of the main pro­
cess.

Description:

clock returns the processor time used by the program since it started. The era
for the clock function extends from directly before the user's main function is
called until program termination.

To obtain the time in seconds the return value should be divided by
CLOCKS PER SEC.

Note: CLOCKS PER SEC takes the constant value CLOCKS PER SEC HIGH or
CLOCKS PER SEC LOW depending on the priority of the process-calling clock
Le. highor lowrespectively.

• CLOCKS_PER_SEC_HIGH has the value 1000000

• CLOCKS_PER_SEC_LOW has the value 15625

When the priority of the call to clock is known CLOCKS PER SEC HIGH or
CLOCKS_PER_SEC_LOW can be used directly. - - -

CLOCKS PER SEC is defined in the header file time. h, the two constants
CLOCKS- PER- SEC HIGH and CLOCKS PER SEC LOW are defined in the
header fife process. h. - - -

72 TDS 347 01 October 1992

86 2 Alphabetical list of functions

Warning: the type definition of clock t is unsigned int. however. on a 16-bit
transputer the value of high priority CLOCKS PER SEC is to big to be held in type
clock t. - -

Thus in the case ofa high priority process on a 16-bit transputer. compiling the fol­
lowing expression (which calculates elapsed time in seconds) will result in a type
long instead of into

clock() / CLOCKS_PER_SEC

In addition. because the high priority timer on a 16-bit transputer wraps around
after the very short interval of 65 ms. the result of the above expression will always
be 'Q' in this case.

clock is side effect free.

Note: clock should not be used in any C code which is to be imported by occam
using callc . lib.

See also:

asctime ctime localtime strftime difftime mktime time

72TDS 347 01 October 1992

2 Alphabetical list of functions

close
Synopsis:

'include <iocntrl.h>
int close(int fd);

Arguments:

87

Closes a file. File handling primitive.

int fd

Results:

File descriptor of the file to be closed.

Returns 0 if successful or -1 on error.

Errors:

If an error occurs close sets errno to the value EIO and returns -1.

Description:

close is the lower level function used by fclose. It takes a file descriptor as a
argument instead of a FILE pointer. The file descriptor will usually have been
returned by the open or creat functions.

close is not included in the reduced library.

72 TDS 347 01 october 1992

88

cos
Synopsis:

#include <math.h>
double cos(double x);

Arguments:

2 Alphabetical list of functions

Calculates the cosine of the argument.

double x

Results:

A number in radians.

Returns the cosine of x in radians.

Errors:

None.

Description:

cos calculates the cosine of a number.

See also:

cosf

72 lOS 347 01 October 1992

2 Alphabetical list of functions

cosf
Synopsis:

#include <mathf.h>
float cosf(float x);

Arguments:

89

Calculates the cosine of a float number.

float x

Results:

A number in radians.

Returns the cosine of x in radians.

Errors:

None.

Description:

float form of cos.

See also:

cos

72TDS 347 01 october 1992

90

cosh

Synopsis:

#include <math.h>
double cosh(double x);

Arguments:

2 Alphabetical list ot tunc'lions

Calculates the hyperbolic cosine of the argument.

double x

Results:

A number.

Returns the hyperbolic cosine of x or if a range error occurs returns HUGE VAL
(with the same sign as the correct value of the function). -

Errors:

A range error will occur if x is so large that cosh would result in an overflow. In this
case cosh returns the value HUGE VAL (with the same sign as the correct value
of the function) and errno is set toERANGE.

Description:

cosh calculates the hyperbolic cosine of a number.

See also:

coshf

72 TDS 34701 October 1992

2 Alphabetical list of functions 91

coshf Calculates the hyperbolic cosine of a float number.

Synopsis:

'include <mathf.b>
float coshf(float x);

Arguments:

float x

Results:

A number.

Returns the hyperbolic cosine of x or if a range error occurs returns HUGE VAL F
(with the same sign as the correct value of the function). - -

Errors:

A range error will occur if x is so large that coshf would result in an overflow. In
this case coshf returns the value HUGE VAL F (with the same sign as the correct
value of the function) and errno is setto ERANGE.

Description:

float form of cosh.

See also:

cosh

72 TDS 347 01 October 1992

92

CrcByte

Synopsis:

2 Alphabetical list of functions

Calculate CRC of most significant byte of an integer.

#inelude <mise.h>
int CreByte(int data, int ere_~n, int generator);

Arguments:

int data

int ere in

int generator

Results:

The most significant byte of this integer forms the data
for the CRC calculation.
Initial value of CRC, or CRC value obtained from
previous call.
The CRC generating polynomial.

Returns the CRC of the most significant byte of data combined with ere_in.

Errors:

None.

Description:

A full description of all the CRC functions supplied is given in appendix C.

CreByte performs a cyclic redundancy check over the most significant byte of
data using ere in as the initial CRC value. generator is the CRe generating-
polynomial. -

CreByte is side effect free.

Example:

int data;
int crc in;
int crc;
int generator;

erc =CrcByte(data, erc_in, generator);

When compiling for transputers which have the crcbyte instruction, calls to
CreByte are implemented inline, provided that the header file <mise. h> has
been included in the source.

See also:

CreWord CreFromLsb CreFromMSb

72 TDS 347 01 October 1992

2 Alphabetical list of functions

CrcFromLsb Calculates the CRC of a byte sequence starting at the

least significant bit.

Synopsis:

'include <misc.h>
int CrcFromLsb (const char *string, size_t length,

intgenerator, intold_crc);

Arguments:

93

size_t length

int generator
int old crc

const char *string Pointer to the start of the byte sequence for which the
CRC is to be calculated.
Number of bytes in the sequence pointed to by
string.
The CRC generating polynomial.
Initial value of CRG.

Results:

GRG of the given byte sequence, starting at the least significant bit.

Errors:

None.

Description:

A 'full description of all the CRC functions supplied is given in appendix C.

The CrcFromLsb function is provided to accommodate byte sequences in big­
endian format. The most significant bit of string is taken to be bit 0 of
string [0] . The generated CRC is given in big-endian format. generator and
old crc are taken to be in little-endian format.

See also:

CrcFromMsb CrcWord CrcByte

72 TDS 34701 October 1992

94 2 Alphabetical list of functions

int generator
int old ere

CrcFromMsb Calculates the CRC of a byte sequence starting at the

most significant bit.

Synopsis:

'include <misc.h>
int CrcFromMSb(eonst ehar *string, size_t length,

int generator, int old_ere);

Arguments:

eonst ehar *string Pointer to the start of the byte sequence for which the
CRC is to be calculated.
Number of bytes in the byte sequence pointed to by
string.
The CRC generating polynomial.
Initial value of CRC.

Results:

CRC of the given byte sequence, starting at the most significant bit.

Errors:

None.

Description:

A full description of all the CRC functions supplied is given in appendix C.

The CreFromMSb function is intended for byte sequences in normal transputer for­
mat (little-endian). The most significant bit of the given byte sequence is taken to
be bit-16 or bit-32, depending, on the word size of the processor, of
string[length - 1].

generator, old ere and the result ofCreFromMsb are all also in normal trans­
puter format (Iittle:-endian).

See also:

CreFromLsb CreWord CreByte

72 TDS 34701 October 1992

2 Alphabetical list of functions

CrcWord
Synopsis:

95

Calculate CRC of an integer.

'include <mise.h>
int CreWord(int data, int ere_in, int generator);

Arguments:

int data
int ere in

int generator

Results:

The data for the CRC calculation.
Initial value of CRC, or CRC value obtained from
previous call.
The CRC generating polynomial.

Returns the CRC of data combined with ere in.

Errors:

None.

Description:

A full description of all the CRC functions supplied is given in appendix C.

CreWord performs a cyclic redundancy check over the single int data using
ere in which is the CRC value obtained from the previous call (or the initial CRC
value). generator is the CRC generating polynomial. Can be used iteratively on
a sequence of ints to obtain a CRC value for the sequence.

CreWord is side effect free.

Example:

int data[10];
int i;
int ere;
int generator;

ere = 0;
for (i = 0; i < 10; i++)

ere = CreWord(data [i], ere, generator);

When compiling for transputers which have the crcword instruction, calls to
CreWord are implemented inline, provided that the header file <mise. h> has
been included in the source.

See also:

CrcByte CreFromLsb CreFromMSb

72TDS 34701 october 1992

96

creat
Synopsis:

2 Alphabetical list of functions

Creates a file for writing. File handling primitive.

#include <iocntrl.h>
int creat(char *name, int flag);

Arguments:

char *name
int flag

Results:

The name of the file to be created.
A number which specifies the mode in which the 'file is
opened.

Returns a file descriptor for the file, or -1 on error.

Errors:

If an error occurs creat sets errno to the value EIO and returns -1.

Description:

creat creates a file with filename name and opens it in 'write' and 'truncate'
modes. If the 'file already exists, and if the host system permits, the 'file is overwrit­
ten.

The value of flag determines how the file is opened. It can take two values, as
follows:

o BINARY
o TEXT

Open file in binary mode.
Open file as a text file.

The default is to open the file as a text file.

creat has the same effect as a call to open with the following arguments:

open (name, O_WRONLY I O_TRUNC I flag);

creat is not included in the reduced library.

See also:

open

72 TDS 34701 October 1992

2 Alphabetical list of functions

ctime
Synopsis:

97

Converts a calendar time value to a string.

'include <time.h>
char *ctime(const time t *timer);

Arguments:

const time t *timer A pointer to the calendar time.

Results:

Returns a pointer to a string representation of the time.

Errors:

None.

Description:

ctime converts the value pointed to by timer to a broken-down time structure,
and then writes the contents of the structure into a string in the following form:

Thu Nov 05 18:19:01 1987

(See section 1.3.16 for a definition of broken-down time).

ctime is equivalent to the following call to asctime:

asctime (localtime(timer»;

Example:

/* Displays the current time */
'include <time.h>
'include <stdio.h>

int main(void
{

time_t now;

time(&now);
printf("The time is: %s\n",ctime(&now»;

Note: Care should be taken when calling ctime in a concurrent environment.
Calls to the function by independently executing unsynchronized processes may
corrupt the returned time value.

See also:

asctime localtime strftime clock difftime mktime time
gmtime

72TOS 347 01 October 1992

98

debug_assert

Synopsis:

2 Alphabetical list of functions

Stops process/alerts debugger if condition fails.

#include <misc.h>
void debug_assert(const int exp);

Arguments:

const int exp

Results:

Returns no result.

Errors:

None.

An integer expression for the condition to be asserted.

Description:

debug assert replaces assert for programs that will be debugged in break­
point mode. Ifexpression evaluates FALSE debug assert stops the process
and sends process data to the debugger. If expression evaluates TRUE no
action is taken.

If the program is not being run within the breakpoint debugger and the assertion
fails. then the function behaves like debug_stop.

See also:

assert debug_message debug_stop

72 TDS 34701 October 1992

2 Alphabetical list of functions

debug_message
Synopsis:

99

Inserts a debugging message.

'include <misc.h>
void debug_message(const char *message);

Arguments:

const char *message The text of the message.

Results:

Returns no result.

Errors:

None.

Description:

debug message sends a message to the debuggerwhich is displayed along with
normalprogram output. Only the first 80 characters of the message are displayed.

If the program is not being run within the breakpoint debugger the function has no
effect.

See also:

72 TDS 34701 October 1992

100

debug_stop

Synopsis:

#include <misc.h>
void debug_stop(void);

Arguments:

None.

Results:

Returns no result.

Errors:

None.

2 Alphabetical list of functions

Stops a process and notifies the debugger.

Description:

debug_stop stops the process and sends process data to the debugger.

If the program is not being run within the breakpoint debugger then the function
stops the process or processor, depending on the error mode in which the proces­
sor is executing.

See also:

debug_assert debug_message halt-processor

72 TDS 347 01 October 1992

2 Alphabetical list of functions 101

difftime
Synopsis:

Calculates the difference between two calendar times.

'include <time.h>
double difftime(time_t timel, time t timeO);

Arguments:

time t timel
time-t timeO

Results:

The first time.
The second time.

Returns the difference, in seconds, between timel and timeO.

Errors:

None.

Description:

difftime calculates the difference in time between timel and timeO
(timel - timeO).

difftime is side effect free.

See also:

asctime ctime localtime strftime clock mktime time gmtime

72 TDS 347 01 October 1992

102

DirectChanln

2 Alphabetical list of functions

Inputs data on a channel.

Synopsis:

'include <channel.h>
void DirectChanln(Channel *c, void *cp, int count);

Arguments:

Channel *c
void *cp
int count

Results:

Returns no result.

Errors:

None.

A pointer to the input channel.
A pointer to the array where the data will be stored.
The number of bytes of data.

Description:

Inputs count bytes of data on the specified channel and stores them in the array
pointed to by cp. The effect of this routine is undefined if count ~ o.

This routine is a fast, inline, version of Chanln: input is performed directly, using
the transputer's input instruction; therefore this routine can only be used on the fol­
lowing sorts of channel:

• a softchannel; Le. any channel which communicates with a process on the
same processor

• a direct channel provided idebug is not being used in interactive mode.
A direct channel is a configuration level channel which occurs when no
more than two channels (one in each direction) are placed on a single link,
between adjacent processors.

The suggested use is with either soft channels or edge channels which
communicate outside the network with a device other than the host. Note:
it can be dangerous to make assumptions about the implementation of
direct channels. See section 6.3.1 in the ANS/ C Too/set User Guide for fur­
ther guidance.

Calls to DirectChanln are implemented inline, provided that the header file
<channel. h> has been included in the source.

See also:

Chanln ChanlnChar Chanlnlnt Chanlnit
DirectChanlnChar DirectChanlnlnt

72TDS 34701 October 1992

2 Alphabetical list of functions

DirectChanInChar
Synopsis:

103

Input one byte on a channel.

'include <channel.h>
unsigned char DirectChanlnChar(Channel *c);

Arguments:

Channel *c

Results:

Returns the input byte.

Errors:

None.

Description:

A pointer to the input channel.

Inputs a single byte on a channel.

This routine is a fast, inline, version of ChanlnChar: input is performed directly,
using the transputer's input instruction; therefore this routine can only be used on
the following sorts of channel:

• asoft channel; i.e. any channel which communicates with a process on the
same processor

• a direct channel provided idebug is not being used in interactive mode.
A direct channel is a configuration level channel which occurs when no
more than two channels (one in each direction) are placed on a single link,
between adjacent processors.

The suggested use is with either soft channels or edge channels which
communicate outside the network with a device other than the host. Note:
it can be dangerous to make assumptions about the implementation of
direct channels. See section 6.3.1 in the ANS/ CToo/set User Guide for fur­
ther guidance.

Calls to DirectChanlnChar are implemented inline, provided that the headerfile
<channel. h> has been included in the source.

See also:

ChanlnChar ChanOutChar
DirectChanln DirectChanOutChar

72TDS 34701 October 1992

104

DirectChanlnlnt

Synopsis:

#include <channel.h>
int DirectChanlnlnt(Channel ·c);

Arguments:

2 Alphabetical list of functions

Inputs an integer on a channel.

Channel ·c

Results:

A pointer to the input channel.

Returns the input integer.

Errors:

None.

Description:

Inputs a single integer on a channel.

This routine is a fast. inline. version of Chanlnlnt: input is performed directly.
using the transputer's input instruction; therefore this routine can only be used on
the following sorts of channel:

• a soft channel; Le. any channel which communicates with a process on the
same processor

• a direct channel provided idebug is not being used in interactive mode.
. A direct channel is a configuration level channel which occurs when no

more than two channels (one in each direction) are placed on a single link.
between adjacent processors.

The suggested use is with either soft channels or edge channels which
communicate outside the network with a device other than the host. Note:
it can be dangerous to make assumptions about the implementation of
direct channels. See section 6.3.1 in theANS/ C Too/set User Guide for fur­
ther guidance.

Calls to DirectChanlnlnt are implemented inline. provided that the header file
<channel. h> has been included in the source. .

See also:

Chanlnlnt ChanOutlnt
DirectChanln DirectChanOutlnt

72 TDS 34701 October 1992

2 Alphabetical list of functions

DirectChanOut
Synopsis:

105

Outputs data on a channel.

#include <channel.h>
void DirectChanOut(Channel *c, void *cp, int count);

Arguments:

Channel *c
void *cp
int count

Results:

Returns no result.

Errors:

None.

A pointer to the output channel.
A pointer to an array containing the output data.
The number of bytes of data.

Description:

Outputs count bytes of data on the channel c. The data is taken from the array
pointed to by cp. The effect of this routine is undefined if count ~ o.

This routine is afast, inline, version ofChanOut: output is performed directly, using
the transputer's output instruction; therefore this routine can only be used on the
following sorts of channel:

• a soft channel; Le. any channel which communicates with a process on the
same processor

• a direct channel provided idebug is not being used in interactive mode.
A direct channel is a configuration level channel which occurs when no
more than two channels (one in each direction) are placed on a single link,
between adjacent processors.

The suggested use is with either soft channels or edge channels which
communicate outside the network with a device other than the host. Note:
it can be dangerous to make assumptions about the implementation of
direct channels. See section 6.3.1 in the ANS/ C Too/set User Guide for fur­
ther guidance.

Calls to DirectChanOUt are implemented inline, provided that the header file
<channel. h> has been included in the source.

See also:

ChanOut ChanOutlnt ChanOutChar
DirectChanln DirectChanOutlnt DirectChanOutChar

72TDS 347 01 October 1992

106

DirectChanOutChar

Synopsis:

2 Alphabetical list of functions

Outputs one byte on a channel.

#include <channel.h>
void DirectChanOutChar (Channel *c, unsigned char ch);

Arguments:

Channel *c A pointer to the output channel.
unsigned char ch The byte to be output.

Results:

Returns no result.

Errors:

None.

Description:

Outputs a single byte on a channel.

This routine is a fast, inline, version ofChanOutChar: output is performed directly,
using the transputer's output instruction; ther-efore this routine can only be used on
the following sorts of channel:

• a soffchannel; Le. any channel which communicates with a process on the
same processor

• a direct channel provided idebug is not being used in interactive mode.
A direct channel is a configuration level channel which occurs when no
more than two channels (one in each direction) are placed on a single link,
between adjacent processors.

The suggested use is with either soft channels or edge channels which
communicate outside the network with a device other than the host. Note:
it can be dangerous to make assumptions about the implementation of
direct channels. See section 6.3.1 in the ANSI C Toolset User Guide for fur­
ther guidance.

Calls to DirectChanOutChar are implemented inline, provided that the header
file <channel. h> has been included in the source.

See also:

ChanlnChar ChanOutChar
DirectChanlnChar DirectChanOut

72 TDS 34701 October 1992

2 Alphabetical list of functions

DirectChanOutInt
Synopsis:

107

Outputs an integer on a channel.

'include <channel.h>
void DirectChanOutInt(Channel *c, int n);

Arguments:

Channel *c
int n

Results:

Returns no result.

Errors:

None.

Description:

A pointer to the output channel.
The integer to be output.

Outputs a single integer on a channel.

This routine is a fast, inline, version of ChanOutInt: output is performed directly,
using the transputer's output instruction; therefore this routine can only be used on
the following sorts of channel:

• a soft channel; Le. any channel which communicates with a process on the
same processor

• a direct channel provided idebug is not being used in interactive mode.
A direct channel is a configuration level channel which occurs when no
more than two channels (one in each direction) are placed on a single link,
between adjacent processors.

The suggested use is with either soft channels or edge channels which
communicate outside the network with a device other than the host. Note:
it can be dangerous to make assumptions about the implementation of
direct channels. See section 6.3.1 in the ANSI C Toolset User Guide for fur­
ther guidance.

Calls to DirectChanOutInt are implemented inline, provided that the headerfile
<channel. h> has been included in the source.

See also:

ChanInInt ChanOutInt
DirectChanInInt DirectChanOut

72 TDS 347 01 October 1992

108

div

2 Alphabetical list of 'functions

Calculates the quotient and remainder of a division.

Synopsis:

'include <stdlib.h>
div_t div(int numer, int denom);

Arguments:

int numer
int denom

Results:

The numerator.
The denominator.

Returns a structure of type div t which consists of the quotient and remainder.
The structure contains: -

int quot The quotient.
int rem The remainder.

Errors:

If the result cannot be represented the behavior of div is undefined.

Description:

div calculates the quotient and remainder formed by dividing the numerator
numer by the denominator denom.

div is side effect free.

See also:

ldiv

72 TDS 34701 October 1992

2 Alphabetical list of functions

exit
Synopsis:

#include <stdlib.h>
void exit(int status);

Arguments:

109

Terminates a program.

int status

Results:

exit does not return.

Errors:

None.

A value denoting the program termination status.

Description:

exit causes normal program termination and passes a termination code back to
the calling environment.

exit performs the following actions before the returning control to the calling envi­
ronment:

The functions recorded by a texit are called in reverse order of their reg­
istration.

2 All open output streams are ·nushed.

3 All open files are closed.

4 All files created by tmpfile are removed.

The value of status denotes success or failure of the program and determines
the value of the termination code passed back to the calling environment. If sta­
tus is zero or equal to EXIT SUCCESS then the program is deemed to have been
successful and the value of the termination code passed to the calling environment
is EXIT SUCCESS. If status is EXIT FAILURE then the program is deemed to
have been unsuccessful in some way and the value ofthe termination code passed
back to the calling environment is EXIT FAILURE. If status has any other value
then the termination code passed back to the calling environment is equal to sta­
tus.

Further actions on program termination are determined by the host environ-ment
of the program. There are three cases:

A program linked with the full library which has not been dynamically
loaded:

72 TDS 347 01 October 1992

110 2 Alphabetical list of functions

The environment of a program linked with the full library is its connection
to the server. exit causes all such programs, except those using the
PROC . ENTRY entry point, to terminate the server. The server returns the
same termination code as is set up by exit except that EXIT SUCCESS
and EXIT FAILURE are translated to the equivalent host specific success
and failurecode.

2 A program linked with the reduced ~brary which has not been dynamically
loaded:

Such a program can be considered to have no environment as such. There
is no server and so nowhere to pass the termination code to. In this case
the termination code is lost.

3 A program which has been dynamically loaded:

The environment of a dynamically loaded program is the program which
loaded and invoked it, its parent. It is not the job ofa child program to termi­
nate the server, this is a task for the parent, if the parent is of type 1 above.
The termination code set up by exit is stored in an implementation
defined manner (see section 3.6.9).

Asummary of the action of exit, when not used in a dynamically loaded program
is as follows:

C entry point Terminate server
C . ENTRYD (linked with cstartup . Ink) Yes
C. ENTRYD . RC (linked with cstartrd . Ink) No
C . ENTRY (linked with cnonconf. Ink) Yes
MAIN . ENTRY (Type 1 interface) t Yes
PROC.ENTRY (Type 2 interface) t No
PROC . ENTRY. RC (Type 3 interface) t No

t Entry points used byoccam interface code - amethod ofmixed lan-
guage programming described in chapter 10 of the ANS/ C Too/set
User Guide.

For configured programs which are not dynamically loaded and which use the
C. ENTRYD entry point (Le. are linked with cstartup . Ink), but which do not
require to terminate the server, the equivalent function exit noterminate
should be used. -

Caution: exi t should not be called from a function which is invoked as a C paral­
lel process. The effect on the program may be unpredictable. This restriction does
not apply to a call to exit which is meant to terminate the execution of a dynami­
cally loaded program which has been invoked as a parallel process.

Note: that exit should not be used by any C code which is to be imported by
occam, using callc . lib.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 111

Note: The behavior of exit has changed from previous releases of the toolset
Le. the 07214. 06214. 05214 and 04214 products. where exit did not termi­
nate the server. Using the depreciated startup linker file startup .lnk. gives
the original behavior.

Example:

'include <stdlib.h>
'include <stdio.h>

int' main (void)
{

printf("About to do an exit\n");
exit(EXIT SUCCESS);
printf("Not printed\n");

)

See also:

atexitexit_repeatexit_terminate exit noterminate

72TOS 34701 October 1992

112

exit note~inate

Synopsis:

2 Alphabetical list of functions

Version of exit for configured processes.

'include <misc.h>
void exit_noterminate(int status);

Arguments:

int status

Results:

Returns no result.

Errors:

None.

A value to be passed back to the calling environment.

Description:

exit noterminate is equivalent to exit, but designed for use in a configured
process when it is not desirable for the default action of terminating the server to
occur.

exit noterminate will only override the termination of the server in configured
programs linked with the full runtime library. In all other cases it acts like exit and
status is passed back to the calling environment.

The effect of exit noterminate on server termination is summarized as fol-
lows: -

C entry point Terminate server
C. ENTRYD (linked with cstartup .lnk) No
C. ENTRYD . RC (linked with cstartrd .lnk) No
C . ENTRY (linked with cnonconf. lnk) Yes
MAIN . ENTRY (Type 1 interface) t Yes
PROC.ENTRY (Type 2 interface) t No
PROC.ENTRY.RC (Type 3 interface) t No

t Entry points used byoccam interface code - amethod ofmixed lan-
guage programming described in chapter 10 of the ANSI C Toolset
User Guide.

Note: if use is made of the predefined constants EXIT FAILURE or EXIT SUC-
CESS then the header file stdlib. h must be included -

Caution: exit noterminate should not be called from a C function that is run­
ning in parallelwith any other function. The effect on the program may be unpre-

72T05 34701 October 1992

2 Alphabetical list of functions 113

dictable. This restriction does not apply to a call to exit noterminate which is
meant to terminate the execution ofadynamically loadedprogram which has been
invoked as a parallel process. Calling exit noterminate from a dynanlically
loaded code is equivalent to calling exit. -

Note: that exit _noterminate should not be used by any C code which is to be
imported by occam, using callc. lib.

See also:

exit exit_repeat exit_terminate

72TDS 347 01 October 1992

114 2 Alphabetical list of functions

Terminates a program so that it can be restarted.

Caution: use of this function should be avoided since it will not be supported in
future releases of the toolset.

Synopsis:

'include <misc.h>
void exit_repeat(int status);

Arguments:

int status

Results:

Returns no result.

Errors:

None.

Description:

A value to be passed back to the calling environment.

exit repeat terminates the C program and returns its argument to the calling
environment. Unlike exit, exit repeat retains the program and allows it to be
rerun without re-booting the tran5Puter.

Only programs which consist ofa single C program running on a single transputer,
and which have been made bootable using the collector 'T' option, can be repeat
invoked. In all other cases exit_repeat acts like exit.

Caution: exit repeat should not be called from a C function that is running in
parallel with anyother function. The effect on the program may be unpredictable.

The first element of the argv array is lost in the process of calling exit repeat.
Therefore programs that read the program name from the first element ofthe array
will need to be re-booted.

Note: If use is made of the predefined constants EXIT FAILURE or EXIT SUC-
CESS then the header file stdlib. h must be included -

Note: that exit_repeat should not be used by any C code which is to be
imported by occam, using callc . lib.

See also:

exit

72 TDS 34701 October 1992

2 Alphabetical list of func'lions

exit terminate
Synopsis:

115

Version of exit for configured processes.

'include <misc.h>
void exit_terminate(int status);

Arguments:

int status

Results:

Returns no result.

Errors:

None.

A value to be passed back to the calling environment.

Description:

exit terminate has exactly the same action as exit. It is included for compati­
bility with earlier issues of the toolset e.g. the 07214, 06214, 05214 and 04214
products and may not be supported in future versions of the toolset.

Caution: exit terminate should not be called from a C'function that is running
in paralle/with any other function. The effect on the program may be unpredictable.

Note: that exit_terminate should not be used by any C code which is to be
imported by occam, using callc. lib.

See also:

exit exit_repeat exit_noterminate

72 TOS 347 01 October 1992

Calculates the exponential function of the argument.

116

exp
Synopsis:

#include <math.h>
double exp(double x);

Arguments:

2 Alphabetical list of functions

double x

Results:

A number.

Returns the exponential function of x or returns HUGE VAL (with the same sign as
the correct value of the 'function) if a range error occurs.

Errors:

A range error occurs if the result of raising e to the power of x would cause over­
flow. In this case exp returns the value HUGE VAL (with the same sign as the cor­
rect value of the function) and errno is set to ERANGE.

Description:

exp calculates the value of the constant e (2.71828...) raised to the power of a
number.

See also:

expf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 117

expf Calculates the exponential function of a float number.

Synopsis:

'include <mathf.h>
float expf(float x);

Arguments:

float x

Results:

A number.

Returns the exponential function ofx returns HUGE VAL F (with the same sign as
the correct value of the function) if a range error occurs~

Errors:

A range error occurs if the result of raising e to the power of x would cause over­
flow. In this case expf returns the value HUGE VAL F (with the same sign as the
correct value of the function) and errno is sefto ER'ANGE.

Description:

float form of expo

See also:

exp

72 TDS 34701 October 1992

118

fabs

2 Alphabetical list of functions

Calculates the absolute value of a floating point number.

Synopsis:

#include <math.h>
double fabs(double x);

Arguments:

double x A number.

Results:

Returns the absolute value of the argument.

Errors:

None.

Description:

fabs calculates the absolute value of a number.

fabs is side effect free.

See also:

fabsf

72TDS 34701 October 1992

2 Alphabetical list of functions 119

fabsf

Synopsis:

'include <mathf.h>
float fabsf(float x);

Arguments:

Calculates the absolute value of a float number.

float x

Results:

A number.

Returns the absolute value of the argument.

Errors:

None.

Description:

float form of fabs.

fabsf is side effect free.

See also:

fabs

72TDS 34701 October 1992

120

fclose

Synopsis:

'include <stdio.h>
int fclose(FILE *stream);

Arguments:

2 Alphabetical list of functions

Closes a file stream.

FILE *stream

Results:

A pointer to the file stream.

Returns zero if the close was successful and EOF if it was not.

Errors:

If an error is detected fclose returns EOF.

Description:

fclose closes the file stream pointed to by stream; any associated buffers are
flushed. Any buffer which was allocated by the 1/0 system is de-allocated.

Buffer data which is waiting to be written is sent to the host environment for writing
to the file. Buffer data which is waiting to be read is ignored.

fclose is called automatically when exit is called. fclose is not included in the
reduced library.

See also:

fopen

72 TDS 34701 October 1992

2 Alphabetical list of functions

feof
Synopsis:

#include <stdio.h>
int feof(FILE *stream);

Arguments:

121

Tests for end of file.

FILE *stream

Results:

A pointer to a file stream.

Returns zero if the end of file indicator for stream is clear, non-zero if it is set.

Errors:

None.

Description:

feof tests the state of the end of tile indicator for the file stream stream. It returns
zero if the indicator is clear, and non-zero if it is set.

feof is not included in the reduced library.

See also:

ferror

72TDS 34701 October 1992

122

ferror
Synopsis:

'include <stdio.h>
int ferror(FlLE *stream);

Arguments:

2 Alphabetical list of functions

Tests for a file error.

FILE *stream

Results:

A pointer to a file stream.

Returns zero if the error indicator for stream is clear, and non-zero if it is set.

Errors:

None.

Description:

ferror tests the state of the error indicator for the file stream stream. It returns
zero if the error indicator is clear, and non-zero if it is set.

ferror is not included in the reduced library.

See also:

feof

72 TDS 34701 October 1992

2 Alphabetical list of functions

fflush
Synopsis:

'include <stdio.h>
int fflush(FILE *stream);

Arguments:

123

Flushes an output stream.

FILE *stream

Results:

A pointer to the stream to be flushed.

Returns EOF if a write error occurred, otherwise O.

Errors:

If a write error occurs, fflush returns EOF.

Description:

If stream points to an output stream, fflush causes any outstanding data for the
stream to be written to the file. The behavior is undefined for a stream which is nei­
ther open for output nor update.

If stream is NULL, fflush flushes all streams that are open for output.

fflush is not included in the reduced library.

See also:

ungetc

.2 TDS 347 01 october 1992

124

fgetc
Synopsis:

'include <stdio.h>
int fgetc(FILE *stream);

Arguments:

2 Alphabetical list of functions

Reads a character from a file stream.

FILE *stream

Results:

A pointer to a file stream.

Returns the next character from the file stream.

Errors:

If the stream is at the end of the 'file, the end of file indicator for the stream is set
and fgetc returns EOF. If a read error occurs, the error indicator for the stream is
set and fgetc returns EOF.

Description:

fgetc returns the next character from the opened file identified by the file stream
pointer stream, and advances the readlwrite position indicator for the file stream.

fgetc is not included in the reduced library.

See also:

fqets fputc qetc unqetc

72 TDS 347 01 October 1992

2 Alphabetical list of functions 125

fgetpos Obtains the value of the file position indicator.

Synopsis:

'include <stdio.h>
int fgetpos(FILE *stream, fpos_t ·pos);

Arguments:

FILE *stream
fpos_t *pos

Results:

A pointer to a file stream.
A pointer to an object where the current value of the file
position indicator can be stored.

Returns zero if the operation was successful. If the operation fails fgetpos sets
errno to EFILPOS and returns non-zero.

Errors:

If the operation was unsuccessful, fgetpos returns a non-zero value and stores
EFILPOS in errno.

Description:

fgetpos stores the value of the file position indicator of the file stream stream
in the object pointed to bypos. This information is in a form usable by the fsetpos
function.

fgetpos is not included in the reduced library.

See also:

fsetpos

72 TDS 347 01 October 1992

126

fgets
Synopsis:

2 Alphabetical list of functions

Reads a line from a file stream.

'include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Arguments:

char *s
int n
FILE *stream

Results:

A pointer to a buffer to receive the string.
The size of the array.
A pointer to a file stream.

Returns s if successful or a NULL pointer on error.

Errors:

fgets returns a NULL pointer if a read error occurs and the contents of the array
are undefined. Ifend of'file is encountered before acharacter is read fgets returns
NULL and the contents of the array remain unchanged.

Description:

fgets reads astring ofa maximum (n-1) characters from the file stream identified
by stream. fgets stops reading when it encounters anewline character or an end
offile character. A string terminating character is written into the array after the last
character read. The newline character forms part of the string.

fgets is not included in the reduced library.

See also:

fgetc fputs gets

72TDS 34701 October 1992

2 Alphabetical list of functions 127

filesize

Synopsis:

De~ermines the size of a 'file. File handling primitive.

'include <iocntrl.h>
long int filesize(int fd);

Arguments:

int fd

Results:

A file descriptor.

Returns the size of the file in bytes or -1 on error.

Errors:

If an error occurs filesize sets errno to the value EIO.

Description:

filesize takes a file descriptor and returns the size of the file in bytes. If the 'file
is open for writing, filesize returns the current size of the file.

filesize is not included in the reduced library.

72TDS 34701 October 1992

128

floor
Synopsis:

2 Alphabetical list of functions

Calculates the largest integer not greater than the argument.

'include <math.h>
double floor(double x);

Arguments:

double x

Results:

A number.

Returns the largest integer (expressed as a double) which is not greater than x.

Errors:

None.

Description:

floor calculates the largest integer which is not greater than x.

floor is side effect free.

See also:

ceil floorf

72TDS 34701 October 1992

2 Alphabetical list of functions

floorf

Synopsis:

#include <mathf.h>
float floorf(float x);

Arguments:

129

float form of floor.

float x

Results:

A number.

Returns the largest integer (expressed as a float) which is not greater than x.

Errors:

None.

Description:

float form of floor.

floorf is side effect 'free.

See also:

ceilf floor

72 TDS 34701 October 1992

130

fmod
Synopsis:

2 Alphabetical list of functions

Calculates the floating point remainder of xly.

#include <math.h>
double fmod(double x, double y);

Arguments:

double x
double y

Results:

The dividend.
The divisor.

Returns (with the same sign as x) the floating point remainder of x/y. If y is zero
errno obtains the value EDOM and fmod returns zero.

Errors:

A domain error occurs ify is zero, and the function then returns zero. A range error
occurs if the result is not representable.

Description:

fmod calculates the floating point remainder of x/y.

See also:

fmodf

72 TDS 34701 October 1992

2 Alphabetical list of functions 131

fmodf
Synopsis:

Calculates the -noating point remainder of x/y .

'include <mathf.h>
float fmodf(float X, float y);

Arguments:

float X

float y

Results:

The dividend.
The divisor.

Returns (with the same sign as x) the floating point remainder of x/y. If y is zero
errno obtains the value EDOM and fmodf returns zero.

Errors:

A domain error occurs if y is zero and a range error occurs if the result is not repre­
sentable.

Description:

float form of fmod.

See also:

fmod

72 T')S-47 01 October 1992

132

fopen
Synopsis:

#include <stdio.h>
FILE *fopen(const char *filename,

const char *mode);

2 Alphabetical list of functions

Opens a file.

Arguments:

const char *filename The name of the file to be opened.
const char *mode A string which specifies the mode in which the file

is to be opened.

Results:

Returns a file pointer to the stream associated with the newly opened file. fopen
returns a NULL pointer if it cannot open the 'file.

Errors:

If a file opened for reading does not exist or the open operation fails for any other
reason, fopen returns a NULL pointer.

Description:

fopen opens the file named by the string pointed to by filename, in the mode
specified by the mode string.

fopen is not included in the reduced library.

The following are valid mode strings:

72 TDS 347 01 October 1992

2 Alphabetical list of functions 133

"r"
"w"

"a"

"rb"
"wb"

"ab"

"r+"
"w+"

"a+"

"r+b" or
"rb+"
"w+b" or
"wb+"
"a+b" or
"ab+"

Opens a text file for reading.

Opens atext file forwriting. Ifthe file already exists it is truncated
to zero length. If the file does not exist, it is created.
Opens a text file for appending. If the file does not exist, it is
created.

Opens a binary file for reading.

Opens a binary file for writing. If the file already exists it is trun­
cated to zero length. If the file does not exist, it is created.

Opens a binary file for appending. If the file does not exist, it is
created.
Opens a text file for reading and writing.

Creates a text file for reading and writing. If the file exists, it is
truncated to zero length.

Opens a text file for reading, and writing at the end of the file. If
the file does not exist, it will be created.

Opens a binary file for reading and writing.

Creates a binary file for reading and writing. If the file exists, it
is truncated to zero length.

Opens a binary file for reading and writing at the end of the file.
If the file does not exist, it will be created.

File output must not be followed by file input without an intervening call to fflush
or one of the file positioning functions fseek, fsetpos and rewind. Similarly,
input must not be followed by output without an intervening call to one of these
functions unless EOF is encountered. Ifa file is opened with a "+" in the mode string
(opened for update), the file can be read from and written to without closing and
reopening the file. However, you must call fflush, fseek, fsetpos or rewind
between read and write operations.

Example:

'include <stdio.h>

int main (void)
(

FILE *stream;

stream = fopen("data.dat","r");

if (stream = NULL)
printf("Can't open data.dat file for

read\n");
else

printf("data.dat opened for read\n");
}

See also:

fclose fflush freopen fseek fsetpos rewind

72 TDS 347 01 October 1992

134

fprintf
Synopsis:

2 Alphabetical list of functions

Writes a formatted string to a file.

#include <stdio.h>
int fprintf(FlLE *stream, const char *format , ...);

Arguments:

FILE *stream A pointer to an output file stream.
const char *format A string of characters specifying the format.

Subsequent arguments to the format string.

Results:

Returns the number of characters written, or a negative value if an output error
occurs.

Errors:

Returns a negative value if an output error occurs.

Description:

fprintf writes the string pointed to by format to the file stream stream. When
fprintf encounters a percent sign % in the string, it expands the corresponding
argument into the format defined by the format tokens after the sign.

fprintf is not included in the reduced library.

The format tokens consist of the following items:

72 TDS 347 01 October 1992

2 Alphabetical list of functions

1. Flags (optional):

135

causes the output to be left-justified in its field.

+ causes the output to start with a '+' or '-'.
, , (blank causes the output to start with a space if positive, and a '-' if nega­
space) live. If the space and + flags appear together, the space flag is

ignored.

causes:
- an octal number to begin with O.
- a hex number to begin with Ox, or OX for the x or X

conversion specifiers.
- a floating point number to contain a decimal point

in (e, E, f, G, g,).

o For d,i,o,u,x,X,e,E,f,g,G, conversions (see below), leading zeros
are used to pad the field width. If both 0 and - flags both appear,
the 0 is ignored. For d,i,o,u,x,X conversions, if a precision is speci­
fied the 0 flag is ignored.

2. Minimum width (optional): The width is an integer constant which defines the
minimum number of characters displayed. If the integer constant is replaced by an
asterisk ('*'), an int argument following the format string in the corresponding
position supplies the width.

3. Precision (optional):

The precision is specified by a decimal point followed by an integer constant which
defines:

• The maximum number of characters to be written in an's' conversion

• The numberofdigits to appear after the decimal point in an 'e', 'E' or 'f' con­
version

• The maximum number of significant digits for a 'g' or 'G' conversion

• The minimum numberofdigits to appear in a 'd', '0', 'u', 'x' or 'X' conversion.

If the integer constant is replaced by an asterisk ('*'), an int argument following
the format string in the corresponding position supplies the precision. If the integer
constant is omitted the value is taken to be zero.

72 TDS 34701 october 1992

136

4. Type speci'fier (optional):

2 Alphabetical list of functions

h Speci'fies that a following 'd', 'i', '0', 'u', 'x' or 'X' conversion
applies to a short int or unsigned short int, or a follow­
ing 'n' conversion applies to a pointer to a short into

1 Speci'fles that a following 'd', 'i', '0', 'u', 'x' or 'X' conversion
applies to a long int or unsigned long int, or a following 'n' con­
version applies to a pointer to a ~ong into

L Specifies that a following 'e', 'E', 'f', 'g' or 'G' conversion applies
to a long double.

5. A single conversion character:

d, i The int argument is converted to signed decimal format.
o The int argument is converted to unsigned octal format.
u The int argument is converted to unsigned decimal format.
x The int argument is converted to unsigned hexadecimal for­

mat, using the letters 'a' to 'f'.

x The int argument is converted to unsigned hexadecimal for­
mat, using the letters 'A: to 'F'.

f The double argument is converted to the decimal format [-]
xxx.xxxx. The number of characters after the decimal point is
equal to the precision. The default precision is six.

e ,E The double argument is converted to the decimal format
x.xxxxe±XX. The exponent is introduced with the conversion
character (e or E). The number of characters after the decimal
_point is equal to the precision. The default precision is six.

g ,G The double argument is converted to an 'f' format if the expo­
nent is less than --4 or greater than the precision. Otherwise 'g'
is equivalent to 'e', and 'G' is equivalent to 'E'. Trailing zeros are
removed from the result.

c The int argument is converted to unsigned char and written
as a single character.

s Characters are written from the string pointed to by the argu­
ment, up to the string terminating character.

p The argument must be a pointer to void and is converted to
hex. format for printing.

n The number of characters written so far will be put into the inte­
ger pointed to by the argument.

% The % character is written.

72TDS 34701 October 1992

2 Alphabetical list of functions

Example:

'include <stdio.h>

int main (void
{

int i = 99;
int count 0;
double fp 1.SeS;
char *s = "a sequence of characters";
char nl = '\n';
FILE *stream;

if ((stream = fopen("data.dat", "w"» = NULL)
printf("Error opening data.dat for write\n");

else
{

count += fprintf(stream,
"This is %s%c", s, nl);

count += fprintf(stream,
"%d\n%f\n", i, fp);

printf("Number of characters written to file
was: %d\n", count);

See also:

fscanf printf

72TDS 347 01

137

October 1992

138

fputc

Synopsis:

#include <stdio.h>
int fputc(int c, FILE *stream);

Arguments:

2 Alphabetical list of functions

Writes a character to a file stream.

int c
FILE *stream

Results:

The character to be written.
A pointer to a file stream.

Returns the character written if successful. If a write error occurs, fputc returns
EOF and sets the error indicator for the stream.

Errors:

fputc returns EOF if a write error occurs.

Description:

fputc converts c to an unsigned char, writes it to the output stream pointed to by
stream, and moves the read/write position for the file stream as appropriate.

fputc is not included in the reduced library.

See also:

fgetcputc

72 TDS 347 01 October 1992

2 Alphabetical list of functions

fputs
Synopsis:

139

Writes a string to a file stream.

'include <stdio.h>
int fputs(const char *s, FILE *stream);

Arguments:

const char *s
FILE *stream

Results:

A pointer to the string to be written.
A pointer to a file stream.

Returns non-negative if successful, and EOF if unsuccessful.

Errors:

fputs returns EOF if unsuccessful.

Description:

fputs writes the string pointed to by s to the file stream stream. The write does
not include the string terminating character.

fputs is not included in the reduced library.

See also:

fputc

72 TDS 347 01 October 1992

140

fread

Synopsis:

2 Alphabetical list of functions

Reads records from a file.

'include <stdio.h>
size t fread(void *ptr, size t size, size t nmemb

- FILE *stream);

Arguments:

void *ptr
size t size
size- t nmemb
FILE *stream

Results:

A pointer to a buffer that the records are read into.
The size of an individual record.
The maximum number of records to be read.
A pointer to a file stream.

Returns the number of records read. This may be less than nmemb if an error or
end of file occurs. fread returns zero if size or nmemb is zero.

Errors:

Returns the current number of records read if error occurs.

Description:

fread reads nmemb records of length size from the file stream stream into the
array pointed to by ptr.

fread is not included in the reduced library.

72 TDS 347 01 October 1992

2 Alphabetical list of functions

Example:

'include <stdio.h>
'include <stdlib.h>

'define NUMEL 10

int mainO
{

int i;
int numout, numin, buffin[NUMEL], buffout[NUMEL];
FILE *stream;

/* write 10 integers to the file data.dat */

stream = fopen ("data.dat", "wb");

if (stream = NULL)
(

printf("Error opening data.dat for writing\n");
abort();

for (i = 0; i < NUMEL; i++)
buffout[i] = i * i;

numout = fwrite(buffout, sizeof(int), NUMEL, stream);

fclose(stream);

printf("Number of integers written = %d\n", numout);

/* Now read the integers back again */

stream = fopen ("data.dat", "rb");

if (stream = NULL)
(

printf("Error opening data.dat for reading\n");
abort();

numin = fread(buffin, sizeof(int), NUMEL, stream);

fclose(stream);

printf("Number of integers read = %d\n", numin);

for (i = 0; i < NUMEL; i++)
printf("buffin[%d] = %d\n", i, buffin[i]);

See also:

feof ferror fwri te

141

72TDS 347 01 October 1992

142

free
Synopsis:

'include <stdlib.h>
void free(void *ptr);

Arguments:

2 Alrh:lbG~icallist of fur I' tions

Frees :In area of memory.

void *ptr

Results:

Returns no result.

Errors:

i ;:\)inter to the ar~,," of m,2:mory to be freed.

Ifptrdoes not match any of the poir:- Jrs P~~':jiOl~ V~ }~~Jm~1 t/ ,(':..llloc, malloc,
or realloc, or if the space has ?Irt~;,dy be dn fre'_c.; oy a tA:.~: (t· tree or realloc,
a fatal runtime error occurs and the following message is dispIQ:'~d:

Fatal-C_Library-Ec. .)r in free(), bad pointer or heap corrupted

Description:

free free.;, Lne area ofmemo.)' ;'It:'' :'t', ,~d te b:'ptr ifit has ~ e'~' I', \, ;viouslyallocated
t', calloc, malloc, or realloc. IF ptr ~-; a NULL pOr(.'(3r " action occurs.

See also:

calloc malloc realloc

72 TDS 347 01 October 1992

2 Alphabetical list of functions 143

freeS 6 Frees host memory space allocated by allocS6. MS-DOS only.

Synopsis:

'include <dos.h>
void freeS6(pcpointer p);

Arguments:

pcpointer p

Results:

Returns no result.

Errors:

A pointer to the host memory block to be freed.

If an error occurs freeS 6 sets errno to the value EDOS. Any attempt to use
freeS 6 on operating systems other than MS-DOS also sets errno to EDOS. Fail­
ure of the 'function may also generate the server error message:

[Encountered unknown primary tag (50)]

Description:

freeS6 returns the block of host memory identi'fied by p to MS-DOS for re-use.
p must be a pcpointer previously returned byallocS6.

freeS 6 is not included in the reduced library.

See also:

allocS6

72TDS 34701 October 1992

144

freopen

Synopsis:

2 Alphabetical list of functions

Opens a file that may already be open.

'include <stdio.h>
FILE *freopen(const char *filename, const char *mode,

FILE *stream);

Arguments:

const char *filename The name of the file to be opened.
const char *mode A string which specifies the mode in which the file is

to be opened.
FILE *stream A pointer to a file stream.

Results:

Returns stream, or a NULL pointer if the file cannot be opened.

Errors:

If the open fails freopen returns a NULL pointer.

Description:

freopen attempts to close the 'file associated with the file stream stream. Failure
to close the file is ignored, errorand end offile indicators for the stream are cleared,
and freopen then opens the file referenced by filename and associates the file
with the file stream stream.

The file is opened in the mode speci'fied by the string mode. Valid modes are the
same as for fopen.

freopen is not included in the reduced library.

freopen is normally used for redirecting the stdin, stdout and stderr
streams.

72 TDS 34701 October 1992

2 Alphabetical list of functions

Example:

'include <stdio.h>

int main()
{

FILE *stream;

/* assign stdout to a named file */
printf("This text goes to stdout\n");

stream = freopen("data.dat", "w", stdout);
if (stream = NULL)

printf("Couldn't freopen stdout to
data.dat\n");

else
{

printf("This text goes to data.dat\n");
fclose(stream);

See also:

fopen

72 TDS 347 01

145

October 1992

146

frexp
powerof2.

Synopsis:

2 Alphabetical list of functions

Separates a -noating point number into a fraction and an integral

'include <math.h>
double frexp(double value, int *exp);

Arguments:

double value
int *exp

Results:

The floating point number.
A pointer to an integer where the exponent is stored.

Returns the normalized fractional part ofvalue. The fraction is returned in the range
[0.5 ... 1) or zero. The exponent is stored in the int pointed to by expo

Errors:

A domain error occurs if value is NaN or infinity. In this case the input value is
returned unchanged and *exp is set to O.

Description:

frexp separates the floating point numbervalue into a normalized fraction and an
integral power of 2. The exponent is stored in the int pointed to by expo The frac­
tion is returned by the function.

If x is the value returned by frexp and y is the exponent stored in *exp then:

value = x * 2**y

If value is zero then both x and y will be zero.

72 TDS 347 01 October 1992

2 Alphabetical list of functions

Example:

'include <math.h>
'include <stdio.h>

int main()
{

double x;
double mantissa;
int exponent;

147

}

'**
*
*
*
*

x = 3.141;
mantissa = frexp(x,'exponent);
printf("x = %f, mantissa = %f, exponent = %d\n",

x, mantissa , exponent);

Output:

x = 3.141000, mantissa = 0.785250,
exponent = 2

*'See also:

Idexp frexpf

72 TDS 34701 October 1992

148 2 Alphabetical list of functions

frexpf Separates a floating point number of type float into a fraction and

an integral power of 2.

Synopsis:

'include <mathf.h>
float frexpf(float value, int *exp);

Arguments:

float value
int *exp

Results:

The floating point number.
A pointer to the int into which the exponent is put.

Returns the fractional partofvalue. The normalized fraction is returned in the range
[0.5...1) or zero. The exponent is stored in the int pointed to byexp.

Errors:

A domain error occurs if value is NaN or infinity. In this case the input value is
returned unchanged and *exp is set to O.

Description:

float form of frexp.

See also:

ldexpf frexp

72 TDS 347 01 October 1992

2 Alphabetical list of functions 149

from host link Retrieve the channel coming from the host.

Synopsis:

#include <hostlink.h>
Channel* from_host_link (void)

Arguments:

None.

Results:

Returns a pointer to the channel coming from the host.

Errors:

None.

Description:

from_host_link retrieves the channel coming from the host.

Note: that the link overwhich communication with the host occurs need not neces­
sarily be the same link as the one from which the transputer was booted.

This function is intended for use with dynamic code loading; care should be laken
if it is used elsewhere.

from_host_link is not in the reduced library.

See also:

get_bootlink_channels to host link

72T08 347 01 October 1992

150

from86

Synopsis:

2 Alphabetical list of functions

Transfers host memory to the transputer. MS-DOS only.

'include <dos.h>
int fromB6(int len, pcpointer there, char *here);

Arguments:

int len
pcpointer there
char *here

Results:

The number of bytes of host memory to be transferred.
A pointer to the host memory block.
A pointer to the receiving block in transputer memory.

Returns the actual number of bytes transferred.

Errors:

Returns the number of bytes transferred until the error occurred and sets errno
to the value EDOS. Any attempt to use from86 on systems other than MS-DOS
also sets errno to EDOS. Failure ofthe function may also generate the servererror
message:

[Encountered unknown primary tag (50)]

Description:

fromB 6 transfers len bytes of host memory starting at there to a corresponding
block starting at here in transputer memory. The function returns the number of
bytes actually transferred. The host memory block used will normally have been
previously allocated by a call to alloc86.

fromS 6 is not included in the reduced library.

See also:

toB6 allocB6

72TDS 347 01 October 1992

2 Alphabetical list of functions

fscanf

Synopsis:

151

Reads formatted input from a file stream.

#include <stdio.h>
int fscanf(FILE *stream, const char *format , ...);

Arguments:

FILE *stream An input file stream.
const char *format A format string.

Subsequent arguments to the format string.

Results:

Returns the number of inputs which have been successfully converted. If an end
of file character occurred before any conversions took place, fscanf returns EOF.

Errors:

If an end of file character occurred before any conversions took place, fscanf
returns EOF. Other failures cause termination of the procedure.

Description:

fscanf matches the data read from the input stream stream to the specifications
set out by the format string. The format string can include white space, ordinary
characters. or conversion tokens:

1. White space causes the next series of white space characters read to be
ignored.

2. Ordinary characters in the format string cause the characters read to be
compared to the corresponding character in the format string. If the characters do
not match. conversion is terminated.

3. A conversion token in the format string causes the data sequence read in to be
checked to see if it is in the specified format. If it is, it is converted and placed in
the appropriate argument following the format string. Ifthe data is not in the correct
format. conversion is terminated.

The conversion tokens consist of the following items:

1. Token signifier:

%(percent character)

72TDS 347 01 October 1992

152 2 Alphabetical list of functions

L

h

1

2. Assignment suppressor (optional):

* (asterisk). This causes the data sequence to be read in but not assigned
to an argument. Tokens that use the assignment suppressor should not
have a corresponding argument in the argument list.

3. Maximum width (optional):

The width is a decimal integer constant defining the maximum nurrlber of
characters to be read.

4. Type specifier (optional):

Specifies that a following 'd', 'i', 'n', '0', 'u', or 'x' conversion
applies to a short int or unsigned short into

Specifies that a following 'd', 'i', 'n', '0', 'u' or 'x' conversion
applies to a lonq int or unsigned lonq int, and a fol-
lowing 'e', 'f or 'g' conversion applies to a double.

Specifies that a following 'e', 'f' or 'g' conversion applies to a
lonq double.

5. A single conversion character:

d Expects an (optionally signed) decimal integer. Requires a
pointer to an integer as the corresponding argument.

i Expects an (optionally signed) integer constant. The integer
constant may be a hexadecimal or octal value, provided the
correct prefix is supplied. Requires a pointer to an integer as
the corresponding argument.

o Expects an (optionally signed) octal integer.

u Expects an (optionally signed) decimal integer. Requires a
pointer to an unsigned integer as the corresponding argu­
ment.

x Expects an (optionally signed) hex integer (optionally pre­
ceded by an Ox or OX). Requires a pointer to an integer as the
corresponding argument.

e, f, q Expects an (optionally signed) floating point character con­
sisting of the following sequence of characters:

i A plus or minus sign (op'Uonal).

ii A sequence of decimal digits, which may contain a decimal
point.

iii An exponent (optional) consisting ofan 'E' or 'e' followed by
an optional sign and a string of decimal digits. Requires a
pointer to a double as the corresponding argument.

s Expects a string. Requires a pointer to an array large enough
to hold (size of the string plus a terminating null char) charac­
ters as the corresponding argument.

72 TDS 34701 October 1992

2 Alphabetical list of functions

Denotes the start of a scan set.

153

Expects a non--empty string of characters. Acceptable char­
acters are denoted by the scan set. The corresponding argu­
ment should be a pointer to an array large enough to accept
the string plus a terminating null character.

The characters between the left bracket '[' and the right
bracket ']' make up the scan list.

The scan set is equal to the scan list unless the first character
in the scan list is a (A) in which case the scan set is made up
of all those characters which do not occur in the scan list.

The right bracket (]) can be included in the scan list if it is the
first character in the scan list, Le. [] is in the format string, or
if it is the second character in the scan list after the (A), Le. [A]
is in the format string. In these cases the scan list is terminated
by the next occurrence of a left bracket (D.

The string is read up until the first character which is n-ot in the
scan set e.g.:

format string meaning

p

n

%

"% [abc]" match astring made up ofa, band c only.
"% [AabC] " match astring made up ofany characters

except a, band c.
"% [] abc] " match a string made up of a, b, c and]

only.
"% [A] abc] " match astring made up ofany characters

except a, b, c and].

Expects a hexadecimal string. Requires a pointer to a void
pointer as the corresponding argument.

The number of characters received so far will be put into the
integer pointed to by the argument. This does not increment
the assignment count returned or read from the stream.

Matches the % character.

Any mismatch between the token format and the data received causes an early
termination of fscanf.

fscanf is not included in the reduced library.

72TDS 34701 October 1992

154

Example:

'include <stdio.h>
'include <stdlib.h>

int main()
{

int i, numout, numin;
FILE *stream;
float fp;

2 Alphabetical list of functions

/* create a file of items to read back */

stream = fopen("data.dat", "w");

if (stream = NULL)
(

printf("Error opening data.dat for writing\n");
abort();

numout = fprintf(stream, "%f %d", 3.141,1024);

fclose(stream);

printf("Number of characters written

/* Now read the items back again */

stream = fopen("data.dat", Urn);

if (stream = NULL)
(

%d\n", numout);

printf("Error opening data.dat for reading\n") ;
abort();

numin = 0;
numin += fscanf(stream, "%f %d", &fp, &i);

fclose(stream);

printf("Number of fields read = %d\n", numin);
printf("items read were: %f %d\n", fp, i);

See also:

fprintf

72TDS 34701 October 1992

2 Alphabetical list of functions 155

fseek

Synopsis:

Sets the file position indicator to a specified offset.

'include <stdio.h>
int fseek(FILE *stream, long int offset,

int whence);

Arguments:

FILE *stream
long int offset
int whence

Results:

A pointer to a file stream.
The distance the file position indicator is moved.
The start position for the seek.

Returns non-zero on error, otherwise f seek returns zero.

Errors:

f seek returns non-zero on error.

Description:

fseek is used to move the file position indicator of a file to a specified offset within
the file stream stream. The offset is measured from a position defined by whence
and can take 1he following values:

SEEK SET is the start of the file stream.
SEEK-CUR is the current position in the 'file stream.
SEEK-END is the end of the file stream.

If the file stream is a text stream the offset should either be zero or whence should
be set to SEEK_SET, and offset should be a value returned by a ftell.

fseek clears the end of file indicator for stream and undoes the effects of
ungetc. The file stream may be both read from and written to after fseek has
been called, provided the stream has been opened in an appropriate mode.

72 TDS 347 01 October 1992

156

Example:

'include <stdio.h>
'include <stdlib.h>

int mainO
(

FILE *stream;
int result;

stream = fopen("data.dat", "wb+");

if (stream = NULL)
(

2 Alphabetical list of functions

printf("Error openinq data.dat for update\n");
abort();

}
/* write somethinq to the file so we can fseek around it */

fprintf(stream, "1232456789");

/* reset to the beqinninq of the file */
result = fseek(stream, OL, SEEK_SET);

if (result)
(

printf("fseek failed\n");
abort();

}
printf("first char in file is %c\n", qetc(stream»;

/* reset to the beqinninq of the file */
result = fseek(stream, OL, SEEK_SET);

/* move to third char in file */
result = fseek(stream, 2L, SEEK_CUR);

if (result)
(

printf("fseek failed\n");
abort();

}
printf("third char in file is %c\n", qetc(stream»;

/* move to last char in file */
result = fseek(stream, -1L, SEEK_END);

if (result)
(

printf("fseek failed\n");
abort();

}
printf("last char in file is %c\n", qetc(stream»;
fclose(stream);

See also:

fsetpos,ftell,ungetc

72 TDS 347 01 October 1992

2 Alphabetical list of functions 157

f setpoS Sets the file position indicator to an fpos_ t value obtained from

fgetpos.

Synopsis:

'include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Arguments:

FILE *stream A pointer to a file stream.
const fpos_ t *pos A pointer to an object containing the new value of the

file position indicator.

Results:

Returns zero if the operation was successful, and non-zero on failure.

Errors:

If the operation was unsuccessful, fsetpos sets errno to EFILPOS and returns
a non-zero value.

Description:

fsetpos sets the file position indicator of the file stream stream to the value in
pos. pos shall contain a value previously returned by fgetpos.

A successful call to fsetpos clears the end of file indicator for the stream and will
undo the effects of an ungetc operation on the same stream. The file stream may
be both read from and written to after fsetpos has been called, provided it has
been opened in an appropriate mode.

f setpos is not included in the reduced library.

72TOS 347 01 October 1992

158

Example:

'include <stdio.h>

int main()
{

FILE *stream;
fpos t filepos;
int ch;

2 Alphabetical list of functions

stream = fopen("data.dat","w+");
if (stream = NULL)

printf("Couldn't open data.dat for read\n");
else
{

fprintf(stream, "123456789");
rewind(stream);
ch = getc(stream);
printf("First char in file is '%c'\n",ch);

/*
* Remember: getc() advances file pointer,
* so it now points
* to the second character in the file.
*/

if (fgetpos(stream,&filepos) != 0)
printf("Error with fgetpos\n");

ch = getc(stream);
printf("Second char in file is '%c'\n",ch);
ch =getc(stream);
printf("Third character in file is '%c'\n",ch);

if (fsetpos(stream,&filepos) !=O)
printf("Error with fsetpos\n");

ch = getc(stream);
printf("Reset file ptr and read 2nd char which is '%c'\n", ch);
fclose(stream);

See also:

fgetpos fseek ungetc

72 TDS 347 01 October 1992

2 Alphabetical list of functions 159

ftell
Synopsis:

Returns the position of the file position indicator for a file stream.

'include <stdio.h>
long int ftell(FILE *stream);

Arguments:

FILE *stream

Results:

A pointer to a file stream.

Returns the current value of the file position indicator for the file stream stream,
or -1 on error.

Errors:

ftell returns -1 on error and sets errno to EFILPOS.

Description:

ftell returns the current value of the file position indicator for the file stream
stream. For a binary stream the value is the number of characters from the begin­
ning of the file. For atext stream the value is unspecified but can be used by fseek
to reposition the file position indicator to its original position at the time of the call
to ftell.

ftell is not included in the reduced library.

See also:

fseek

72TDS 347 01 October 1992

160

fwrite
Synopsis:

2 Alphabetical list of functions

Writes records from an array into a file.

#include <stdio.h>
size t fwrite(const void *ptr, size t size,

- size_t nmemb, FILE *stream);

Arguments:

void *ptr
size t size
size tnmemb
FILE-*stream

Results:

A pointer to a buffer that the records are read from.
The size of an individual record.
The maximum number of records to be written.
.A pointer to a file stream.

Returns the number of records written. This may be less than nmemb if awrite error
occurs.

Errors:

fwri te returns zero if size or nmemb is zero. If an error occurs the number of
records read up to the error is returned.

Description:

fwri te writes nmemb records of length size from the array pointed to by ptr to
the file stream stream. If an error occurs. the value of the file position indicator is
indeterminate.

fwri te is not included in the reduced library.

See fread for an example.

See also:

fread

72 TDS 347 01 October 1992

2 Alphabetical list of functions

get_bootlink_channels
with the boot li'nk.

Synopsis:

161

Obtains the channels associated

#include <bootlink.h>
int get_bootlink_channels(Channel** in-ptr,

Channel** out-ptr

Arguments:

Channel** in-ptr The address of a variable which will be assigned a
pointer to the input channel associated with the boot
link.

Channel** out-ptr The address of a variable which will be assigned a
pointer to the output channel associated with the boot
link.

Results:

Returns zero if the operation was successful and non-zero on failure.

Errors:

If the operation fails, *in-ptr and *out-ptr are undefined.

Description:

get bootlink channels retrieves the channels that are associated with the
link that the transputerwas booted from.

Note: that the link overwhich communication with the host occurs need not neces­
sarily be the same link as the one from which the transputer was booted.

If used in a boot from ROM case, the obtained addresses will be undefined.

See also:

from host link to host link- -

72 TDS 34701 October 1992

162 2 Alphabetical list of functions

get_code_details_from_channel Retrieves details

'from a dynamically loadable file that is transmitted over a channel.

Synopsis:

#include <fnload.h>
int get code details from channel (Channel* in channel,

- - - - fn_info* fn_d;tails)

Arguments:

Channel* in channel A pointer to the channel over which the dynamically
loadable (•rsc) file is received.

fn_info* fn details The address of a variable which will be assigned the
details from the transmitted file.

Results:

Returns zero if the operation was successful and non-zero on failure.

Errors:

If the operation was unsuccessful, *fn_details is undefined.

Description:

get code details from channel retrieves details from a dynamically load­
ablelile thatis transmitted over a channel. It is assumed, on entry to this function,
that the next transmission over the specified channel will be the header of the
dynamically loadable (. rsc) file. The headerdata is received as aseries ofindivid­
ual byte transmissions.

See also:

load code from channel- -

72 TDS 34701 October 1992

2 Alphabetical list of functions 163

get_code_details_from_file Retrieves details from a

dynamically loadable file which is stored on disc.

Synopsis:

'include <fnload.h>
int get_code_details_from_file(const char* filename,

fn info* fn details,
size_t* file_hdr_size)

Arguments:

const char* filename A string which is the name of the dynamically
loadable file.

fn_ info* fn_details The address of a variable which will be assigned
the details from the . rsc file.

size t* file hdr size The address of a variable which will be assigned
the number of bytes at the start of the file before
the code block.

Results:

Returns zero if the operation was successful and non-zero on failure.

Errors:

If the operation was unsuccessful, *fn details and *file hdr size are
undefined. The operation may fail for various reasons. For exampTe, thegiven file­
name may refer to a file that does not exist or cannot be read.

Description:

get code details from file retrieves details from a dynamically loadable
codefile. Such files have the-default extension . rsc.

Ifget code details from file is used in a program linked with the reduced
librarylt always returnsnon-zero.

See also:

load code from file- -

72 TDS 347 01 October 1992

164 2 Alphabetical list of functions

get_code_details_from_memory Retrieves details from

the image of a dynamically loadable file which is stored in internal memory .

Synopsis:

'include <fnload.h>
int get code details from memory(const void* addr of file image,

- - - - fn info* fn details, - - -
size t* file hdr size,
loaded_fn-ptr* function-pointer)

Arguments:

const void· addr of file image The start address of the image of
- - - the dynamically loadable (. rsc)

file in internal memory.
fn info* fn details The address ofavariable which will be

assigned the details from the file
image.

size t* file hdr size The address ofavariable which will be
assigned the number of bytes at the
start of the file image before the code
block.

loaded_ fn....ptr* function""pointer The address ofa variable which will
be assigned a pointer to the function
entry point in the file image.

Results:

Returns zero if the operation was successful and non-zero on failure.

Errors:

If the operation was unsuccessful, *fn details, *file hdr size and
*function""pointer are undefined.

Description:

get coc;ie details from memory retrieves details from the image of a
dynamicallyloadable r rsc)1ile which is held in internal memory.

The file contents are assumed to be laid out in increasing memory from the value
of addr_of_file_image.

If the file image is in ROM and it is known that it does not write to itself then *func­
tion""pointer can be cast, if necessary, and used immediately to call the code
in the file image. If the file image is in ROM and does write to itself then the code
in it must first be loaded into RAM before that code can be called.

See also:

72 TDS 347 01 October 1992

2 Alphabetical list of functions

get_details_of_free_memory
memory considered by the configurer to be unused.

Synopsis:

165

Reports the details of

linclude <misc.h>
int get_details_of_free_memory(void** base_of_free_memory,

size_t* size_of_free_memory

Arguments:

void** base_of_free_memory The address of a variable which will be
assigned the word aligned address of
the start of unused memory.

size t* size_of_free_memory The address of a variable which will be
assigned the amount of unused
memory, in words.

Results:

Returns zero if the operation was successful and non-zero on failure.

Errors:

If the operation fails, *base of free memory and *size of free memory
are undefined. - - - - - -

Description:

When configuring one uses a configuration description. The configuration descrip­
tion gives, amongst other things, the amount of memory attached to each proces­
sor. The actual memory used on the processor is usually not the full amount as
given in the configuration description, and so there is unused memory at the top
of memory. It is the base and amount of this unused memory that is reported by
this function.

There is no free memory in the non--configured case.

72TDS 34701 october 1992

166 2 Alphabetical list of functions

get_details_of_free_stack_space
Reports the limits of free space on current stack.

Synopsis:

'include <misc.h>
void qet_details_of_free_stack_space(void** stack_limit-ptr,

size_t* remaininq_stack_space-ptr)

Arguments:

void·· stack_limit..,ptr The address of a variable which
will be assigned the limit of the
current stack.

size t* remaining_stack_space-ptr The address of a variable which
will be assigned the approximate
number of bytes still unused of
the present stack.

Results:

Returns no result.

Errors:

None.

Description:

get_details_of_free_stack_space reports the limits of unused space on
the current stack.

The value given by *stack_limit"'ptr is the address of the last word on the
stack, not to the first word after the top of the stack.

Just how approximate the value given by ·remaining_stack_spaceytr is,
depends on when one uses the value; it is most accurate immediately after the call
to this function when it is slightly smaller than the exact value. This function does
not take into account the150 words that max stack usage () includes in its
return value. - -

Note: get_details_of_free_stack_space should not be used by any C
code which is to be imported by occam, using callc . lib.

See also:

72 TDS 34701 October 1992

2 Alphabetical list of functions 167

get""param Reads parameters from the configuration level. Applies only

to configured processes.

Synopsis:

#include <misc.h>
void *get-param(int n);

Arguments:

int n

Results:

The index of the required parameter in the interface list.

Returns a pointer to the specified configuration level parameter. If the parameter
is a scalar then a pointer to the parameter is returned. If the parameter is a channel
or array then the channel or array pointer itself is returned.

Errors:

The function returns NULL on error. Possible causes of errors are:

Using the function when it is not valid, i.e. from a program not configured
using icconf.

Using a value of n less than 1.

Using a value of n which is greater than the number of available parame­
ters.

Description:

get-param reads parameters from the list specified in the interface attribute
for a configured process. It can only be used from a program which has been confi­
gured using icconf. It must not be used in a program which uses the special case
entry points MAIN. ENTRY, PROC. ENTRY or PROC •ENTRY. RC described in chap­
ter 10 of the accompanying ANSI C Too/set User Guide.

get...,param is used to access the parameters given to a process in the interface
list at configuration level. It enables access to the nth parameter in the parameter
list (n is a non-zero positive integer). If the parameter is a scalar then a pointer to
the parameter is returned. If the parameter is a channel or array then the channel
or array pointer itself is returned.

get""param is side effect free.

The following example shows how a C program can use get-param to obtain the
value of a variable defined in the interface parameter list of a process defined at
configuration level.

72TDS 347 01 october 1992

168

C program:

'include <stdio.h>
'include <stdlib.h>
'include <misc.h>

int main ()
{

int ·value;

2 Alphabetical list of 'functions

value = (int ·)getyaram(3);
printf("value = %d\n", ·value);
exit_terminate(EXIT_SUCCESS);

}

Configuration description:

,. Hardware description .,
T414 (memory = 2M) B403;

connect B403.link[0], host;

,. Software description .,
process(stacksize = 20k, heapsize = 20k,

interface(input in,
output out,
int value» test;

test(value = 427);

input from host;
output to_host;

connect test. in, from host;
connect test. out, to_host;

,. Network mapping .,
use "testl.lku" for test;
place test on B403;

place to host on host;
place from_host on host;

place test.in on B403.link[0];
place test.out on B403.link[0];

The C program obtains the value 427 by reading the third interface parameter to
the configured process test and then displays it.

72TDS 347 01 October 1992

2 Alphabetical list of functions

gete
Synopsis:

#include <stdio.h>
int getc(FILE *stream);

Arguments:

169

Gets a character from a file.

FILE *stream

Results:

A pointer to a file stream.

Returns the next character from the file stream or EOF on error.

Errors:

If the next character is the end offile character, or a read erroroccurs, getc returns
EOF.

Description:

getc returns the next character from the opened file identified by the file stream
pointer.

getc is not included in the reduced library.

See also:

fgetc getchar putc

72 TDS 34701 October 1992

170

getchar
Synopsis:

'include <stdio.h>
int getchar(void);

Arguments:

None.

Results:

2 Alphabetical list of functions

gets a character from s tdin

Returns the next character from s tdin or EOF on error.

Errors:

If the next character is the end of file character, or a read error occurs, getchar
returns EOF.

Description:

getchar is equivalent to getc with the argument stdin.

getchar is not included in the reduced library.

See also:

getc fgetc putc putchar

72TD8 347 01 October 1992

2 Alphabetical list of functions 171

getenv Returns a pointer to the string associated with a host environment

variable.

Synopsis:

'include <stdlib.h>
char *qetenv(const char *name);

Arguments:

const char *name .A pointer to the host environment variable name to be
matched.

Results:

Returns a pointer to the string associated with the given environment variable. A
NULL pointer is returned if the environment variable is not defined on the host, or
the program is linked with the reduced library.

Errors:

Returns NULL if the environment variable is not defined on the host.

Description:

qetenv returns a pointer to the string associated with the host environment vari­
able name. The string must not be modified by the program but can be overwritten
by a subsequent call to getenv.

If getenv is used in a program linked with the reduced library a NULL pointer is
always returned.

Note: Care should be taken when calling getenv in a concurrent environment.
Calls to the function by independently executing, unsynchronized processes may
corrupt the string pointed to by the returned char pointer.

Example:

'include <stdlib.h>
'include <stdio.h>

int main (void)
{

char *envvar;
envvar = getenv("IBOARDSIZE");
if (envvar = NULL)

printf("IBOARDSIZE variable not set\n");
else

printf("IBOARDSIZE is : %s\n",envvar);

72 TDS 347 01 October 1992

172

getkey

Synopsis:

iinclude <iocntrl.h>
int getkey(void);

Arguments:

None.

2 Alphabetical list of functions

Reads a character from the keyboard.

Results:

Returns the ASCII value of the character. or -1 on error.

Errors:

Returns -1 if an error occurs.

Description:

getkey returns the ASCII value of the next character typed at the keyboard. The
routine waits indefinitely for the next keystroke and only returns when akey is avail­
able. The effect on any buffered data in the standard input stream is host-de'fined.
The character read is not echoed at the terminal.

getkey is not included in the reduced library.

See also:

pollkey

72 TDS 347 01 October 1992

2 Alphabetical list of functions

gets

Synopsis:

'include <stdio.h>
char *gets(char *s);

Arguments:

173

Reads a line from from stdin

char *s

Results:

A pointer to an array where the read characters are
stored.

Returns s if successful or a NULL pointer on error.

Errors:

gets returns a NULL pointer if a read error occurs and the contents of the array
are undefined. If end of file is encountered before a character is read gets returns
NULL and the contents of the array remain unchanged.

Description:

gets reads characters from stdin into the array pointed to by s. The read termi­
nates at end offile orwhen a new-line character is read. The new-line character
is discarded and a null character is written after the last character written into the
array.

gets is not included in the reduced library.

See also:

fgets puts fputs

72 TDS 34701 october 1992

174 2 Alphabetical list of functions

gmtime Converts a calendar time to a broken-down time, expressed as a

UTCtime.

Synopsis:

'include <time.h>
struct tm *gmtime(const time t *timer);

Arguments:

const time t *timer Calendar time to be converted.

Results:

Returns a pointer to a broken-down time expressed as UTC time, or NULL if UTC
time is unavailable.

Errors:

Returns NULL if UTC time is not available.

Description:

gmtime converts a calendar time into a broken-down time (see section 1.3.16),
expressed as Universal Time (UTC).

Note: UTC is unavailable in this implementation and gmtime always returns NULL.

See also:

asctime ctime difftime localtime strftime clock mktime time

72TDS 347 01 October 1992

2 Alphabetical list of functions

halt-processor

Synopsis:

#include <misc.h>
void halt-processor(void);

Arguments:

None.

Results:

This macro does not return.

Errors:

None.

175

Halts the processor

Description:

halt -processor is implemented as a macro. halt -processor halts the pro­
cessor on which it is executed. This is achieved by setting the HaltOnError flag
and then explicitly setting the ErrorFlag.

See also:

abort debug_stop

72TDS 34701 October 1992

176

host info

Synopsis:

2 Alphabetical list of functions

Gets data about the host system.

'include <host.h>
void host_info(int *host, int *os, int *board);

Arguments:

int *host
int *os

int *board

Results:

Returns no result.

Errors:

A pointer to an intwhere the host type code will be stored.
A pointer to an int where the operating system type code
will be stored.
A pointer to an int where the board type code will be
stored.

If any host attribute is unavailable it is given the value O.

Description:

host info returns information about the hostenvironment. It stores codes for the
host tYpe, host operating system and transputer board in the locations pointed to
by host, os, and board respectively.

host_info is not included in the reduced library.

The values that host can take are defined in the headerhost.h and are as fol­
lows:

INS HOST PC- - -
INS HOST NEe- - -

_INS_HOST_VAX

INS HOST SUN3- - -
_INS_HOST_IBM370

_INS_HOST_SUN4

INS HOST SUN386i- - -
INS HOST APOLLO- - -

The values that os can take are as follows:

72TDS 34701 October 1992

2 Alphabetical list of functions

INS OS DOS

INS OS HELlOS- --
INS OS VMS

INS OS SUNOS- --
INS OS eMS- --

The values that board can take are as follows:

INS BOARD B004- - -
INS BOARD BOOS- - -
INS BOARD BOIO- - -
INS BOARD BOIl- - -
INS BOARD BOl4- - -
INS BOARD DRXII- - -

_INS_BOARD_QTO

INS BOARD BOl5- - -
INS BOARD CAT- - -
INS BOARD BOl6- - -
INS BOARD UDP LINK- - --

72TDS 34701

177

October 1992

178

int86
Synopsis:

2 Alphabetical list of functions

Performs a MS-DOS software interrupt. MS-DOS only.

#include <dos.h>
int int86(int intno, union REGS *inregs,

union REGS *outregs);

Arguments:

int intno The host software interrupt ID.
union REGS *inregs Values to be placed in processor registers.
union REGS *outregs Register values after the interrupt.

Results:

Returns the value of the ax register after the interrupt.

Errors:

Returns zero (0) on error and sets errno to the value EDOS. Any attempt to use
int86 on operating systems other than MS-DOS also sets errno to EDOS. Failure
of the function may also generate the server error message:

[Encountered unknown primary tag (50)]

Description:

int86 calls the host software interrupt identified by intno with the registers set
to inregs. Register values after the interrupt are returned in outregs and the
contents of the ax register are returned as the function result.

Segment registers cs, ds, ex, and ss are not set.

int86 is not included in the reduced library.

See also:

int86x intdos

72TDS 347 01 October 1992

2 Alphabetical list of functions 179

int86x

Synopsis:

Software interrupt with segment register setting. MS-DOS only.

'include <dos.h>
int int86x(int intno, union REGS *inregs,

union REGS *outregs,
struct SREGS *segregs);

Arguments:

int intno The MS-DOS software interrupt ID.
union REGS *inregs Values to be placed in processor registers.
union REGS *outregs Register values after the interrupt.
struct SREGS *segregs Values to be placed in segment registers.

Results:

Returns the value of the ax register after the interrupt.

Errors:

Returns zero (0) on error and sets errno to the value EDOS. Any attempt to use
int86x on operating systems other than MS-DOS also sets errno to EDOS. Fail­
ure of the function may also generate the server error message:

[Encountered unknown primary tag (50)]

Description:

int86x calls the host software interrupt idenUfied by intno with the registers set
to inregs and the segment registers set to segregs. Register values after the
interrupt are returned in outregs and the contents of the ax register are returned
as the function result.

int86x is useful for MS-DOS calls which take pointers to objects, normally speci­
fied by combining a 16-bit register with a segment register. If only some ofthe seg­
ment registers are modified, segread should be used to read values from the oth­
ers. Failure to do so can produce unpredictable results.

See also:

int86 intdosx

72 TDS 34701 October 1992

180

intdos

Synopsis:

2 Alphabetical list of functions

Performs an MS-DOS interrupt. MS-DOS only.

'include <dos.h>
int intdos(union REGS *inregs,

union REGS *outregs);

Arguments:

union REGS *inregs Values to be placed in processor registers.
union REGS *outregs Register values after the interrupt.

Results:

Returns the value of the ax register after the interrupt.

Errors:

Returns zero (0) on error and sets errno to the value EDOS. Any attempt to use
intdos on operating systems other than MS-DOS also sets errno to EDOS. Fail­
ure of the function may also generate the server error message:

[Encountered unknown primary tag (50)]

Description:

As int86 but calls the specific host software interrupt identified by hexadecimal
21 (MS-DOS 'function call). .

See also:

int86 intdosx

72 TDS 347 01 October 1992

2 Alphabetical list of functions 181

intdosx MS-DOS interrupt with segment register setting. MS-DOS only.

Synopsis:

'include <dos.h>
int intdosx(union REGS *inregs,

union REGS *outregs,
struct SREGS *segregs);

Arguments:

union REGS *inregs Values to be placed in processor registers.
union REGS *outregs Register values after the interrupt.
struct SREGS *segregs Values to be placed in segment registers.

Results:

Returns the value of the ax register after the interrupt.

Errors:

Returns zero (0) on error and sets errno to the value EDOS. Any attempt to use
intdosx on operating systems other than MS-DOS also sets errno to EDOS.
Failure of the function may also generate the server error message:

[Encountered unknown primary tag (50)]

Description:

As intdos but also sets segment registers.

See also:

intdos int86x

72 TDS 347 0'1 October 1992

182

isalnum

Synopsis:

'include <ctype.h>
int isalnum(int c);

Arguments:

2 Alphabetical list of functions

Tests whether a character is alphanumeric.

int c

Results:

The character to be tested.

Returns non-zero (true) if the character is alphanumeric and zero (false) if it is not.

Errors:

None.

Description:

isalnum tests whether the character c is in one of the following sets ofalphabetic
and numeric characters:

'a'to 'z' 'N to 'l' '0' to '9'

isalnum is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF. otherwise the behavior of the function is undefined.

See also:

isalpha isdigit

72TDS 34701 October 1992

2 Alphabetical list of functions

isalpha
Synopsis:

'include <ctype.h>
int isalpha(int c);

Arguments:

183

Tests whether a character is alphabetic.

int c

Results:

The character to be tested.

Returns non-zero (true) if the character is alphabetic and zero (false) if it is not.

Errors:

None.

Description:

isalpha tests whether c is in one of the following sets of alphabetic characters:

'a' to 'z' 'A' to 'Z'

isalpha is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

See also:

isalnum isdigit

72TDS 347 01 October 1992

184

isatty
Synopsis:

#include <iocntrl.h>
int isatty(int fd);

Arguments:

2 Alphabetical list of functions

Tests for a terminal stream.

int fd

Results:

A file descriptor.

Returns 1 (true) if the file descriptor refers to a terminal stream, otherwise returns
o(false).

Errors:

None.

Description:

isatty determines whether a given file descriptor refers to one of the default ter­
minal files stdin, stdout, and stderr.

isatty is not included in the reduced library.

72TDS 347 01 October 1992

2 Alphabetical list of functions 185

iscntrl
Synopsis:

'include <ctype.h>
int iscntrl(int c);

Arguments:

Tests whether a character is a control character.

int c

Results:

The character to be tested.

Returns non-zero (true) if the character is a control character and zero (false) if it
is not.

Errors:

None.

Description:

iscntrl determines whether c is a control character (ASCII codes 0-31 and
127).

iscntrl is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF. otherwise the behavior of the function is undefined.

72 TDS 34701 October 1992

186

isdigit
Synopsis:

#include <ctype.h>
int isdigit(int c);

Arguments:

2 Alphabetical list of functions

Tests whether a character is a decimal digit.

int c

Results:

The character to be tested.

Returns non-zero (true) if the character is a digit and zero (false) if it is not.

Errors:

None.

Description:

isdigit tests whether c is one of the following decimal digit characters:

'0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

isdigit is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

See also:

isalnum isalpha

72 TDS 347 01 October 1992

2 Alphabetical list of functions 187

isgraph

Synopsis:

'include <ctype.h>
int isgraph(int c);

Arguments:

Tests whether a character is printable (non-space).

int c

Results:

The character to be tested.

Returns non-zero (true) if the character is a printable character (other than space)
and zero (false) if it is not.

Errors:

None.

Description:

isgraph tests whether c belongs to the set of printable characters exclUding the
space character (' '). The space character is considered in this test to be non-print­
able.

isgraph is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

See also:

iscntrl isprint isspace

72 TDS 347 01 October 1992

188

islower
Synopsis:

'include <ctype.h>
int islower(int c);

Arguments:

2 Alphabetical list of 'functions

Tests whether a character is a lower-case letter.

int c

Results:

The character to be tested.

Returns non-zero (true) if the character is a lower-case letter and zero (false) if it
is not.

Errors:

None.

Description:

islower tests whether c is a character in the set oflower case characters:

'a'to 'z'

islower is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF. otherwise the behavior of the 'function is undefined.

See also:

isupper

72TDS 347 01 October 1992

Tests whether a character is printable (includes space).

2 Alphabetical list of functions

isprint

Synopsis:

'include <ctype.h>
int isprint(int c);

Arguments:

189

int c The character to be tested.

Results:

Returns non-zero (true) if the character is printable and zero (false) if it is not.

Errors:

None.

Description:

isprint tests whether c is a printable character (ASCII character codes 32-126).

Note: Unlike isgraph, isprint considers the space character (' ') to be print­
able.

isprint is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

See also:

isgraph

72 TDS 347 01 october 1992

190

ispunct

Synopsis:

#include <ctype.h>
int ispunct(int c);

Arguments:

2 Alphabetical list of functions

Tests to see if a character is a punctuation character.

int c

Results:

The character to be examined.

Returns non-zero (true) if the character is a punctuation character and zero (false)
if it is not.

Errors:

None.

Description:

ispuncttests whether c is a punctuation character. For the purposes of this test
a punctuation is any printable character other than an alphanumeric or space (' ')
character.

ispunct is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

See also:

iscntrl isqraph isprint

72TDS 347 01 October 1992

2 Alphabetical list of functions 191

isspace

Synopsis:

Tests to see if a character is one which affects spacing.

'include <ctype.h>
int isspace(int c);

Arguments:

int c

Results:

The character to be tested.

Returns non-zero (true) if the character is a space character and zero (false) ifit
is not.

Errors:

None.

Description:

isspace tests whether c belongs to the set of characters which produce white
space. Characters which generate white space are as follows:

FORM FEED ('\f')
LINE FEED/NEWLINE ('\n')
RETURN ('\r')
SPACE C ')
TAB C\t')
Vertical TAB C\v')

isspace is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is unde'fined.

72TDS 347 01 October 1992

192

isupper

Synopsis:

#include <ctype.h>
int isupper(int c);

Arguments:

2 Alphabetical list of functions

Tests whether a character is an upper-ease letter.

int c

Results:

The character to be tested.

Returns non-zero (true) if the character is an upper-ease letter and zero (false)
if it is not.

Errors:

None.

Description:

isupper tests whether c is a character in the set of upper-case letters:

'f:\ to 'l'

isupper is implemented as both a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

See also:

islower

72 TDS 34701 October 1992

2 Alphabetical list of functions 193

isxdigit

Synopsis:

'include <ctype.h>
int isxdigit(int c);

Arguments:

Tests to see if a character is a hexadecimal digit.

int c

Results:

The character to be tested.

Returns non-zero (true) if the character is a hexadecimal digit and zero (false) if
it is not.

Errors:

None.

Description:

isxdigit tests whether c belongs to the set of hexadecimal digits. These are as
follows:

'a' 'b' 'c' 'd' 'e' 'f' '1\ 'B' 'C' '0' 'E' 'F' '0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

isxdigit is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

72 TDS 347 01 October 1992

194

labs

2 Alphabetical list of functions

Calculates the absolute value of a long integer.

Synopsis:

'include <stdlib.h>
long int labs (long int j);

Arguments:

long int j

Results:

A long integer.

Returns the absolute value of j as a long into

Errors:

If the result cannot be represented the behavior of labs is undefined.

Description:

labs calculates the absolute value of the long int j.

labs is side effect free.

See also:

abs

72 TDS 347 01 October 1992

2 Alphabetical list of functions 195

ldexp
Synopsis:

Multiplies a floating point number by an integer power of two.

'include <math.h>
double ldexp (double x, int exp) ;

Arguments:

double x
int exp

Results:

Returns the value of:

The floating point number.
The exponent.

If a range error occurs returns HUGE VAL (with the same sign as the correct value
of the function). -

Errors:

A range error will occur if the result of ldexp would cause overflow or underflow.
In this case ldexp returns the value HUGE VAL (with the same sign as the correct
value of the function) and errno is set toERANGE.

Description:

ldexp calculates the value of :

See also:

frexp

72 TDS 347 01 October 1992

196

ldexpf

2 Alphabetical list of functions

Multiplies a float number by an integral power of two.

Synopsis:

'include <mathf.h>
float Idexpf(float x, int exp);

Arguments:

float x
int exp

Results:

Returns the value of:

The floating point number.
The exponent.

If a range error occurs returns HUGE VAL F (with the same sign as the correct
value of the function). - -

Errors:

A range error will occur if the result of ldexpf would cause overflow or underflow.
In this case ldexpf returns the value HUGE VAL F (with the same sign as the cor­
rect value of the function) and errno is selto EWGE.

Description:

float form of Idexp.

See also:

Idexp frexp

72 TDS 347 01 October 1992

2 Alphabetical list of functions 197

Idiv Calculates the quotient and remainder of a long division.

Synopsis:

'include <stdlib.h>
ldiv_t ldiv(long int numer, long int denom);

Arguments:

long int numer
long int denom

Results:

The numerator.
The denominator.

Returns a structure of type ldiv t which consists of the quotient and remainder.
The structure contains: -

long int quot
long int rem

Errors:

The quotient.
The remainder.

If the result cannot be represented the behavior of ldiv is undefined.

Description:

ldiv calculates the quotient and remainder formed by dividing the numerator
numer by the denominator denom. All values are of type long into

ldiv is side effect free.

See also:

div

72 TDS 34701 october 1992

198 2 Alphabetical list of functions

load code from channel Receives the code block of a

dynamically loadable file from a channel and copies it into internal memory.

Synopsis:

'include <fnload.h>
loaded_fn....ptr load_code_from_channel(Channel* in_channel

const fn info* fn details,
void* dest) -

Arguments:

Channel* in channel A pointer to the channel over which the code
block is received.

const fn info· fn details A pointer to the structure containing details of
- the code in the code block.

void* dest A pointer to the point in internal memory
where the code is to be placed.

Results:

Returns a function pointer to the code that has been loaded.

Errors:

None.

Description:

load code from channel receives the code block of a dynamically loadable
file. transmitted over a channel. and copies it into a designated area of internal
memory. It is assumed that there is enough memory available from destJ at
increasing addresses, for the code to be placed into it. It is also assumed. on entry
to the function. that the next transmission over the channel will be the code block
of the dynamically loadable (. rsc) file. The code block is received as a series of
individual byte transmissions.

See also:

72TDS 34701 October 1992

2 Alphabetical list of functions

load code from file
loadable file to internal memory.

Synopsis:

199

Transfers code from a dynamically

'include <fnload.h>
loaded_fn-ptr load_code_from_file(const char* filename,

const fn_info* fn_details,
size t file hdr size,
void. dest)- -

Arguments:

const char· filename A string which is the name of the dynamically
loadable (. rsc) file.

const fn info· fn detailsA pointer to the structure containing details of
- - the code in the code block.

size_ t file_heir_size The number of bytes at the start of the file
before the code block.

void* dest A pointer to the point in internal memory
where the code is to be placed.

Results:

Returns a function pointer to the code that has been loaded, if the operation was
successful and NULL on failure.

Errors:

If the operation is unsuccessful NULL is returned.

Description:

load code from file transfers the code part of a dynamically loadable
(. rsC) file to a deSIgnated area of internal memory. It is assumed that there is
enough memory available from dest, at increasing addresses, for the code to be
placed into it.

If load code from file is used in a program linked with the reduced library it
alwaysreturnsNULL:-

See also:

72TDS 347 01 october 1992

200 2 Alphabetical list of functions

load_code_from_memory Transfers code from a dynamically

loadable file from one area of internal memory to another.

Synopsis:

#include <fnload.h>
loaded_fn-ptr load_code_from_memory(const void* src,

const fn info* fn details,
size t fIle hdr sIze,
void. dest)- -

Arguments:

const void* src The start address of the image of the
dynamically loadable file, in internal
memory.

const fn info* fn details A pointer to the structure containing details of
- the code in the code block.

size_t file_hdr_size The number of bytes at the start of the 'file
before the code block.

void* dest A pointer to the point in internal memory
where the code is to be placed.

Results:

Returns a function pointer to the code that has been loaded.

Errors:

None.

Description:

load code from memory transfers the code block of a dynamically loadable
(.rs~ file image stored in one part of internal memory, to another part of internal
memory. It is assumed that the file image is stored in increasing memory locations
from src and that there is enough memory available from dest, at increasing
addresses, for the code to be placed into it.

See also:

72T05 347 01 October 1992

2 Alphabetical list of functions 201

localeconv

Synopsis:

Gets numeric formatting data for the current locale.

#include <locale.h>
struct lconv *localeconv(void);

Arguments:

None.

Results:

Returns a pointer to a structure of type lconv which defines components of the
current locale.

Errors:

None.

Description:

The components of a lconv structure (defined in locale. h) are set according
to the current locale and a pointer to this structure is returned.

localeconv always returns a pointer to the same lconv structure. It should not
be overwritten by the program but may be altered by subsequent calls to
setlocale or localeconv.

INMOS ANSI C supports only the standard "C" locale.

localeconv is side effect 'free.

See also:

setlocale

72TOS 34701 October 1992

202

localtime
expressed as local time.

Synopsis:

2 Alphabetical list of functions

Converts a calendar time into a broken-down time,

'include <time.h>
struct tm *localtime(const time t *timer);

Arguments:

const time t *timer

Results:

A pointer to the calendar time.

Returns a pointer to a broken-down structure, containing the value of the time
expressed as a local time.

Errors:

None.

Description:

localtime is used to convert a calendar time to a broken-down time expressed
as local time.

Note: Care should be taken when calling local time in a concurrent environ­
ment. localtime always returns a pointer to the same broken-down time struc­
ture and so calls to the function by independently executing, unsynchronized pro­
cesses may corrupt the returned time value.

72 TDS 34701 October 1992

2 Alphabetical list of functions

Example:

'* prints the current date and time as a local time *'

'include <time.h>
'include <stdio.h>

int main()
{

time t current;
struct tm *bdt;

'* get the current time as a calendar time *'
time (¤t) ;

'* convert this to a broken down time expressed as local time *'
bdt = localt~e(¤t);

203

'* Now convert the broken down time to a string and print it out *'
printf("Date and t~e = %s\n", asctime(bdt»;

See also:

asctime ctime strftime clock difftime mktime time

72 TDS 34701 October 1992

204

log

2 Alphabetical list of functions

Calculates the natural logarithm of the double argument.

Synopsis:

'include <math.h>
double log(double X)i

Arguments:

double x A number.

Results:

Returns the natural log of x. If a range error occurs, it returns HUGE VAL (with the
same sign as the correct value of the function). If a domain error occurs, it returns
zero.

Errors:

A domain error occurs if x is negative. In this case errno is set to EDOM.

A range error occurs ifx is zero. In this case log returns the value HUGE VAL (with
the same sign as the correct value of the function) and errno is set toERANGE.

Description:

log calculates the natural (base e) logarithm of a number.

See also:

10g10 log£

72TDS 34701 October 1992

2 Alphabetical list of functions 205

10g£
Synopsis:

'include <mathf.h>
float logf(float x);

Arguments:

Calculates the natural logarithm of a float number.

float x

Results:

A number.

Returns the natural log of x. If a range error occurs, it returns HUGE VAL F (with
the same sign as the correct value of the function). If a domain error occurs, it
returns zero.

Errors:

A domain error occurs if x is negative. In this case errno is set to EDOM.

A range error occurs if x is zero. In this case logf returns the value HUGE VAL F
(with the same sign as the correct value of the function) and errno is setlo
ERANGE.

Description:

float form of log.

See also:

log 10g10f

72 TDS 347 01 October 1992

206

10g10
Synopsis:

2 Alphabetical list of functions

Calculates the base-10 logarithm of the double argument.

'include <math.h>
double log10(double x);

Arguments:

double x

Results:

A number.

Returns the base ten log of x. If a range error occurs returns HUGE VAL (with the
same sign as the correct value of the function). If a domain error occurs returns
zero.

Errors:

A domain error occurs if x is negative. In this case errno is set to EDOM. A range
error occurs if x is zero. In this case 10g10 returns the value HUGE VAL (with the
same sign as the correct value of the function) and errno is set toERANGE.

Description:

10g10 calculates the base 10 logarithm of a number.

See also:

log 10g10£

72 TDS 34701 October 1992

2 Alphabetical list of functions 207

10g10£
Synopsis:

Calculates the base-10 logarithm of a float number.

'include <mathf.h>
float 10g10f(float x);

Arguments:

float x

Results:

A number.

Returns the base ten log of x. If a range error occurs returns HUGE VAL F (with
the same sign as the correct value of the function). If a domain error occurS-returns
zero.

Errors:

A domain error occurs if x is negative. In this case errno is set to EDOM. A range
error occurs if x is zero. In this case 10g10f returns the value HUGE VAL F (with
the same sign as the correct value of the function) and errno is set to ERANGE.

Description:

float form of 10g10.

See also:

10g10 logf

72TDS 34701 October 1992

208

longjmp

Synopsis:

2 Alphabe'licallist of functions

Performs a non-local jump to the given environment.

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Arguments:

jmp buf env
int-va1

Results:

An array holding the environment to be restored.
The value to be returned by lonqjmp.

longjmp itselfdoes not return; the effect is as if the corresponding call to setjmp
which stored the environment in env had returned the value ofval. Ifval is zero,
setjmp returns 1 (this is because setjmp is only allowed to return zero the first
time it is called).

Errors:

None.

Description:

longjmp performs a non-local jump to the environment saved in env, by a pre­
vious call to setjmp. It returns in such a way that, to the program, it appears that
the corresponding setjmp function has returned the value val.

72 TDS 34701 october 1992

2 Alphabetical list of functions

Example:

'include <setjmp.h>
linclude <stdio.h>
linclude <stdlib.h>

int sub function()
{ -

/*
..... */

longjmp(envl, 3);

int mainO
{
int a;

switch(a=setjmp(envl»
{
case 0: printf("lst time in top level\n");

break;
default: printf("longjmp to top level - code %d\n", a);

exit(EXIT_SUCCESS);
}
sub function 0 ;

} -

See also:

setjmp

209

72 TDS 34701 october 1992

210

lseek

Synopsis:

2 Alphabetical list of functions

Repositions the current file position. File handling primitive.

#include <iocntrl.h>
int Iseek(int fd, long int offset, int origin);

Arguments:

int fd
long int offset
int origin

Results:

A file descriptor.
The offset by which the file position will move.
The start position for the seek.

Returns the new file position, or -1 on error.

Errors:

If an error occurs lseek sets errno to the value EIO.

Description:

lseek moves the current position within the file with file descriptor fd. The offset,
given by offset, is measured from a position specified by origin:

L SET The start of the file.
L- INCR The current position in the file.
L- XTND The end of the file.

lseek is not included in the reduced library.

72TDS 34701 October 1992

2 Alphabetical list of functions

malloe
Synopsis:

'include <stdlib.h>
void *malloc(size_t size);

Arguments:

211

Allocates an area of memory.

size t size

Results:

The size of the space to be allocated in bytes.

Returns a pointer to the allocated space ifthe allocation was successful. Otherwise
a NULL pointer is returned. If size is zero malloc returns a NULL pointer.

Errors:

If there is not enough free space a NULL pointer is returned.

Description:

malloc allocates an area of memory of size bytes and returns a pointer to it. The
contents of the allocated space are undefined.

Example:

/* Allocate 500 bytes pointed to by arrayl */

char *arrayl;

arrayl = (char *)malloc(500);

See also:

calloc free realloc

72 TOS 347 01 October 1992

212

max_stack_usage

Synopsis:

'include <misc.h>
long max_stack_usage(void);

Arguments:

None.

Results:

2 Alphabetical list of functions

Report runtime stack usage.

Returns the number of bytes of stack space used by the program or zero if stack
checking is disabled.

Errors:

If stack checking is not enabled in the compiler the function returns zero.

Description:

max stack usage returns an approximation of the amount of stack used by the
C main program up to the point at which max stack usage was called. A leeway
of 150 words is included in the returned valueto account for library usage, in which
there is no stack checking.

Stack usage is measured on the main stack only, i.e. the stack in which the C main
program is executing at program startup. The value does not include any stack
used by a parallel process. max stack usage cannot be used from within a par­
allel process to obtain the stackusage of that process alone, it will always return
the stack usage of the main stack.

Note: This function can only be used when stack checking is enabled. If stack
checking is disabled the function returns 0 (zero).

max_s~ack_usage is side effect free.

See also:

72 TDS 34701 October 1992

2 Alphabetical list of functions 213

mblen Determines the number of bytes in a multibyte character.

Synopsis:

#include <stdlib.h>
int mblen(const char *s, size_t n);

Arguments:

const char *s
size t n

Results:

Pointer to the multibyte character.
The maximum number of bytes to be read.

If s is not a NULL pointer mblen returns the number of bytes that are contained in
the multibyte character pointed to by s, as long as the next n or fewer bytes form
a valid multibyte character.

If s points to a null charactermblen returns zero, or-1 if s does not point to a valid
multibyte character.

mblen is side effect free.

Errors:

If the specified sequence does not correspond to a valid multibyte charactermblen
returns -1.

Description:

mblen evaluates the number of bytes in a multibyte character. The nurrlber of
bytes read is limited by n. In the current implementation the maximum length of a
character is 1 byte.

72TDS 347 01 October 1992

214

mbstowcs

Synopsis:

2 Alphabetical list of functions

Converts multibyte sequence to wchar_t sequence.

'include <stdlib.h>
size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

Arguments:

wchar_ t *pwc

const char *s

size t n

Results:

Pointer to the start of the array that receives the
converted codes.
Pointer to start of the array of mUltibyte characters to be
converted.
The maximum number of codes stored in pwcs.

mbstowcs returns the numberofarray elements modified, not including any termi­
nating zero codes or returns (size t) -1 if an invalid multibyte character is
encountered. -

Errors:

If an invalid multibyte character is encountered mbstowcs returns (size_t) -1.

Description:

mbstowcs converts a sequence of multibyte characters into a sequence of codes.
It acts like the mbtowc function but takes as input an array of characters and
returns an array of codes.

Not more than n codes are written into pwcs. If the initial and receiving objects
overlap, the behavior is undefined.

No multibyte characters that follow a null character are examined or converted.

See also:

mbtowc wcstombs

72 TDS 34701 October 1992

2 Alphabetical list of functions 215

rnbtowc Converts multibyte character to type wchar_ t.

Synopsis:

#include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *s, size_t n);

Arguments:

wchar_t *pwc

const char *s
size t n

Results:

Pointer to the storage location for the converted
character.
Pointer to the multibyte character to be converted.
The maximum number of bytes to be read.

If s is not a NULL pointer, mbtowc either returns zero (if s points to a null character)
or returns the number of bytes that are contained in the converted multibyte char­
acter, as long as the next n or fewer bytes form a valid multibyte character.

If s is a NULL pointer, mbtowc returns zero. mbtowc returns -1 on error.

The value returned cannot be greater than n or the value of MB_ CUR_MAX.

Errors:

mbtowc returns -1 if the next n or fewer bytes do not form avalid multibyte charac­
ter.

Description:

mbtowc converts a multibyte character to a wide character code and stores the
result in the object pointed to by pwc. In the current implementation the maximum
length of a character is 1 byte.

See also:

mbstowcs

72TDS 34701 October 1992

216

memchr
Synopsis:

2 Alphabetical list of functions

Finds first occurrence of a character in an area of memory.

#include <string.h>
void *memchr(const void *s, int c, size t n)i

Arguments:

const void *s
int c
size t n

Results:

A pointer to the area of memory to be searched.
The character to be searched for.
The size in bytes of the area of memory to be searched.

If the character is found, memchr returns a pointer to the matched character. It
returns a NULL pointer if the character c is not in the first n characters of the area
of memory.

Errors:

None.

Description:

memchr finds the first occurrence ofc in the first n characters ofthe area ofmemory
pointed to by s. c is converted to an unsigned char before the search begins.

memchr is side effect free.

Example:

char buffer[lOO];
char *pointer_to~;

/*
Find the first occurrence of 'p'
in the buffer

*/

pointer_to-p = (char *)memchr(buffer, 'p', 100);

See also:

strchr

72 TDS 34701 October 1992

2 Alphabetical list of functions 217

memcmp Compares characters in two areas of memory.

Synopsis:

'include <string.h>
int memcmp(const void *sl, const void *s2,

size_t n);

Arguments:

const void *sl
const void *s2
size t n

Results:

A pointer to one of the areas of memory to be compared.
A pointer to the other area of memory to be compared.
The number of characters to be compared.

Returns the following:

A negative integer if the first byte in sl which differs from the corresponding
byte in s2 is numerically less than the corresponding byte in s2.

A zero value if the two areas of memory are numerically the same.

A positive integer if the first byte in sl which differs from the corresponding
byte in s2 is numerically greater than the corresponding byte in s2.

Errors:

None.

Description:

memcmp compares the first n characters of the areas of memory pointed to by sl
and s2.

The comparison is of the numerical values of the ASCII characters.

memcmp is side effect free.

See also:

strcmp

72 TDS 34701 October 1992

218 2 Alphabetical list of functions

memcpy Copies characters from one area of memory to another (no

memory overlap allowed).

Synopsis:

#include <string.h>
void *memcpy(void *sl, const void *s2, size_t n);

Arguments:

void *sl
const void *s2
size t n

Results:

A pointer to the destination of the copy.
A pointer to the source of the copy.
The number of characters to be copied.

Returns the unchanged value of sl.

Errors:

The behavior of memcpy is undefined if the source and destination overlap.

Description:

memcpy copies n characters from the area ofmemory pointed to by s2 (the source)
to the area of memory pointed to by sl (the destination). The behavior ofmemcpy
is unde'fined if the source and target areas overlap.

Calls to memcpy are implemented inline provided that:

The header file <string. h> has been included in the source.

2 Either the return result is not required or the argument corresponding to the
formal argument sl is a simple expression.

char source[200);
char destination[200);

memcpy(destination, source, 200);

See also:

memmove

72 lOS 34701 October 1992

2 Alphabetical list of functions' 219

memmove
Synopsis:

Copies characters from one area of memory to another.

'include <string.h>
void *memmove(void *sl, const void *s2, size_t n);

Arguments:

void *sl
const void *s2
size t n

Results:

A pointer to the destination of the copy.
A pointer to the source of the copy.
The number of characters to be copied.

Returns the unchanged value of 81.

Errors:

None.

Description:

memmove copies n characters from the area of memory pointed to by s2 (the
source) to the area of memory pointed to by s 1 (the destination). n characters from
52 are first copied to a temporary area from where they are copied to 51. Thus the
copy is defined if the areas of memory overlap.

See also:

memcpy

72 TDS 34701 October 1992

220

memset

Synopsis:

2 Alphabetical list of functions

Fills a given area of memory with the same character.

#include <string.h>
void *memset(void *s, int c, size_t n);

Arguments:

void *s
int c
size t n

Results:

A pointer to the area of memory to be filled.
The character to be used for filling.
The numberofcharacters in the area ofmemory be filled.

Returns the unchanged value of s.

Errors:

None.

Description:

memset fills the first n characters of the area of memory pointed to by s with the
value of the character c. c is converted to an unsigned char before it is written
into s.

Example:

/*
Zero the first hundred bytes of a buffer

*/

char buffer[200];

memset(buffer,'\O', 100);

72 TDS 34701 October 1992

2 Alphabetical list of functions 221

mktime
Synopsis:

Converts a broken-down time into a calendar time.

'include <time.h>
time_t mktime(struct tm *timeptr);

Arguments:

struct tm *timeptr A pointer to a structure containing a broken-down
time.

Results:

Returns the calendar time equivalent of the broken-down time passed in.

Errors:

If the broken-down time pointed to by timeptr cannot be represented as a calen­
dar time, mktime returns -1, cast to time_to

Description:

mktime converts the broken-down time given in the broken-down-time structure
pointed to by timeptr into a calendar time of type time t. The values of the
structure components tm_wday and tm...,Yday are ignored. Othercomponents are
not restricted to the ranges speci'fied in section 1.3.16. On completion all elements
of the broken-down time structure are set to correct values within the ranges speci­
fied. The calendar time value time t represented by the broken-down time struc-
ture is returned. -

72 TDS 34701 October 1992

222

Example:

'include <time.h>
'include <stdio.h>

int main ()
{

2 Alphabetical list of functions

/* define a broken-down-time structure. Note that day of month is
out of range */

0,
0,
11,
34,
0,
93,
0,
0,
o

);

/* seconds */
/* minutes */
/* hours */
/* day of month */
/* month of year */
/* year */
/ * day of week (IGNORED) */
/* day of year (IGNORED) */
/* daylight saving flag */

cal time = mktime(&broken down time);
printf("Time is %s\n", asctime(&broken down time»;
printf("Weekday is %d\n", broken_doWD_time.tm_wday);

See also:

asctime ctime localtime clock difftime time

72TDS 34701 October 1992

2 Alphabetical list of functions 223

modf
Synopsis:

Splits a double number into fractional and integral parts.

'include <math.h>
double modf(double value, double *intptr);

Arguments:

double value
double *intptr

Results:

The number to be split.
A pointer to the recipient of the integral part.

Returns the fractional part of value (the integral part is stored as a double in
*intptr).

Errors:

If the input value cannot be represented modf returns it unchanged and sets
*intptr to zero.

Description:

modf splits value into a fractional and integral part. Each part has the same sign
as value. The integral part is stored as a double in *intptr and the fractional
part is returned by modf.

See also:

modff

72TDS 34701 October 1992

224

modff

2 Alphabetical list of functions

Splits the float argument into fractional and integral parts.

Synopsis:

#include <mathf.h>
float modff(float value, float *intptr);

Arguments:

float value
float *intptr

Results:

The number to be split.
A pointer to the recipient of the integral part.

Returns the fractional part of value (the integral part is stored as a float in
*intptr).

Errors:

If the input value cannot be represented modff returns it unchanged and sets
*intptr to zero.

Description:

float form ofmodf.

See also:

modf

72 TDS 34701 October 1992

2 Alphabetical list of functions

Move2D

225

Two-dimensional block move.

Source address for the block move.
Destination address for the block move.
The width in bytes of each row to be copied.
The number of rows to be copied.
The stride of the source array in bytes.
The stride of the destination array in bytes.

Synopsis:

#include <misc.h>
void Move2D(const void *src, void *dst, int width,

int nrows, int srcwidth, int dstwidth) ;

Arguments:

const void *src
void *dst
int width
int nrows
int srcwidth
int dstwidth

Results:

None.

Errors:

The effect of the block move is undefined if either width or nrows is negative.

The effect of the block move is undefined if the source and destination blocks over­
lap.

The block move only makes sense if srcwidth and dstwidth are greater or
equal to width.

Description:

Move2D copies the whole of the block of nrows rows each of width bytes from
src to dst. Each row of src is of width srcwidth bytes; and each row of dst
is ofwidth dstwidth bytes. If either width or nrows are zero, the 2 dimensional
move has no effect.

src ~'--IInrows

...... width-+

.......--- srcwidth ----.

dst~ """""';T---"""Inrows

...... width--..

....--- dstwidth ---+

72 TDS 34701

Figure 2.1 Two dimensional block move

october 1992

226 2 Alphabetical list of functions

When compiling fortransputers which have the move2dinit and move2dall instruc­
tions, calls to Move2D are implemented inline, provided that the header file
<mise. h> has been included in the source.

Example:

'define SRCWIDTH 30
'define DSTWIDTH 50
char *src[20] [SRCWIDTH];
char *dst[40] [DSTWIDTH];
int width, nrows;

MOve2D(src, dst, width, nrows, SRCWIDTH, DSTWIDTH);

See also:

Move2DNonZero Move2DZero

72 TDS 347 01 October 1992

2 Alphabetical list of functions 227

Move2DNonZero
Synopsis:

Two-dimensional block move of non-zero bytes.

'include <misc.h>
void Move2DNonZero(const void *src, void *dst, int width,

int nrows, int srcwidth, int dstwidth);

Arguments:

const void *src
void *dst
int width
int nrows
int srcwidth
int dstwidth

Results:

None.

Errors:

Source address for the block move.
Destination address for the block move.
The width in bytes of each row to be copied.
The number of rows to be copied.
The stride of the source array in bytes.
The stride of the destination array in bytes.

The effect of the block move is undefined if either width or nrows is negative.

The effect of the block move is undefined if the source and destination blocks over­
lap.

The block move only makes sense if srcwidth and dstwidth are greater or
equal to width.

Description:

Move2DNonZero copies all non-zero bytes of the block of nrows rows each of
width bytes from sre to dst, leaving the bytes in the destination corresponding
to the zero bytes in the source, unchanged. This can be used to overlay a non-rect­
angular picture onto another picture. Each row of sre is ofwidth srewidth bytes;
and each row of dst is of width dstwidth bytes.

If either width or nrows are zero, the 2 dimensional move has no effect.

Figure 2.1 (see Move2D) illustrates how a two dimensional block move is per­
formed.

When compiling for transputers which have the move2dinif and move2dnonzero
instructions, calls to Move2DNonZero are implemented inline, provided that the
header file <mise. h> has been included in the source.

72 TDS 34701 October 1992

228

Example:

'define SRCWIDTH 30
'define DSTWIDTH 50
char *src[20] [SRCWIDTH];
char *dst[40] [DSTWIDTH];
int width, nrows;

2 Alphabetical list of functions

MOve2DNonZero(src, dst, width, nrows, SRCWIDTH, DSTWIDTH);

See also:

Move2D Move2DZero

72 TDS 34701 October 1992

2 Alphabetical list of functions 229

Move2DZero Two-dimensional block move of zero bytes.

Synopsis:

'include <misc.h>
void Move2DZero(const void *src, void *dst, int width,

int nrows, int srcwidth, int dstwidth);

Arguments:

const void *src
void *dst
int width
int nrows
int srcwidth
int dstwidth

Results:

None.

Errors:

Source address for the block move.
Destination address for the block move.
The width in bytes of each row to be copied.
The number of rows to be copied.
The stride of the source array in bytes.
The stride of the destination array in bytes.

The effect of the block move is undefined if either width or nrows is negative.

The effect ofthe block move is undefined if the source and destination blocks over­
lap.

The block move only makes sense if srcwidth and dstwidth are greater or
equal to width.

Description:

Move2DZero copies all zero bytes ofthe blockofnrows rows each ofwidth bytes
from src to dst, leaving the bytes in the destination corresponding to the non­
zero bytes in the source, unchanged. This can be used to mask out a non-rectan­
gular shape from a picture. Each row ofsrc is ofwidth srcwidth bytes; and each
row of dst is of width dstwidth bytes.

If either width or nrows are zero, the 2 dimensional move has no effect.

Figure 2.1 (see Move2D) illustrates how a two dimensional block move is per­
formed.

When compiling for transputers which have the move2dinit and move2dzero
instructions, calls to Move2DZero are implemented inline, provided that the
header file <misc. h> has been included in the source.

72 TDS 347 01 October 1992

230

Example:

'define SRCWIDTH 30
'define DSTWIDTH 50
char *src[20] [SRCWIDTH];
char *dst[40] [DSTWIDTH];
int width, nrows;

2 Alphabetical list of functions

MOve2DZero(src, dst, width, nrows, SRCWIDTH, DSTWIDTH);

See also:

Move2DNonZero Move2D

72T08 34701 October 1992

2 Alphabetical list of functions 231

open Opens a file stream. File handling primitive.

Synopsis:

'include <iocntrl.h>
int open(char *name , int flags);

Arguments:

char *name
int flags

The name of the file to be opened.
Bit values which specify the mode in which the file is to
be opened.

Results:

Returns a file descriptor for the file opened or -1 on error.

Errors:

If an error occurs errno is set to EIO.

Description:

open opens the low level file name in a mode specified by flags. open is the low
level file function used by fopen.

open is not included in the reduced library.

The flags argument is a combination of bit values joined using the 'bitwise or' (I)
operator. The bit values that can be specified are as follows:

Readlwrite Modes:

Flag Meaning

o RDONLY Read only mode (priority 3).

o WRONLY Write only mode (priority 2).

a RDWR Read/write mode (priority 1).

File creation modes:

Flag Meaning

a APPEND Characters appended to file (priority 1).

a TRUNC File truncated before writing (priority 2).-
File Types:

Flag Meaning

o BINARY File opened in binary mode (priority 2).

a TEXT File opened as a text file. (priority 1).

72TDS 347 01 October 1992

232 2 Alphabetical list of functions

The flags argument should combine values from each of the three sections
above. For example. to open a binary file for writing in append mode the call would
be as follows:

open (filename, OyINARY I O_WRONLY I O_APPEND);

To avoid conflicts between the various combinations of modes, the 'nag values are
assigned priority levels and are decoded accordingly. Priority increases with
increasing number. For example, if both 0 WRONLY (priority 2) and 0 RDONLY
(priority 3) are specified in the same call O_WONLY is ignored. -

Priority levels also imply a default setting for open, namely: Read onlylText mode
(0 RDONLY I 0 TEXT). (File create modes have no significance on a read only
file). -

If a file which already exists is opened using 0 TRUNC (open for writing in truncate
mode), and if the host system permits it. the me will be overwritten.

See also:

creat

72TDS 347 01 October 1992

2 Alphabetical list of functions 233

perror Writes an error message to standard error.

Synopsis:

#include <stdio.h>
void perror(const char *s);

Arguments:

const char *s

Results:

No value is returned.

Errors:

None.

A pointer to an error message string.

Description:

If s is not NULL and does not point to a null character, perror writes the string
s to the standard error output, followed by a colon, space, and the error message
represented by the value in errno. Otherwise only the error message for errno
is written. The entire message is followed by a newline.

Message strings are the san1e as those returned by strerror given the argument
errno.

perror is not included in the reduced library.

See also:

strerror

72T08 347 01 October 1992

234

pollkey

Synopsis:

'include <iocntrl.h>
int pollkey(void);

Arguments:

None.

Results:

2 Alphabetical list of functions

Gets a character from the keyboard.

pollkey returns the ASCII value ofa key pressed on the keyboard. It immediately
returns with -1 if no keystroke is available.

Errors:

None.

Description:

pollkey gets a single character from the keyboard. If no keystroke is available
the routine returns immediately with -1. The effect on any buffered data in the stan­
dard input stream is host-defined. The character read from the keyboard is not
echoed at the terminal.

pollkey is not included in the reduced library.

See also:

qetkey

72 TDS 34701 October 1992

2 Alphabetical list of functions

pow
Synopsis:

'include <math.h>
double pow(double x, double y);

Arguments:

235

Calculates x to the power y.

double x
double y

Results:

A number.
The exponent.

Returns the value of x raised to the power y. If a range error occurs returns
HUGE VAL (with the same sign as the correct value of the function). If a domain
error occurs it returns zero (0.0).

Errors:

A domain error will occur in the following situations:

1.
2.

x == 0
x<O

AND
AND

y<= 0
Yis not an integer

In these cases errno is set to EDOM.

A range error will occur if the result of pow is too large to fit in a double. In this case
pow returns the value HUGE VAL (with the same sign as the correct value of the
function) and errno is set to ERANGE.

Description:

pow calculates the value of x raised to the power y.

See also:

powf

72 TDS 347 01 October 1992

236

powf

2 Alphabetical list of functions

Calculates x to the power of y where both x and y are floats.

Synopsis:

'include <mathf.h>
float powf(float x, float y);

Arguments:

float x
float y

Results:

A number.
The exponent.

Returns the value of x raised to the power y. If a range error occurs returns
HUGE VAL F (with the same sign as the correct value of the function). If a domain
error occurs it returns zero (O.OF).

Errors:

A domain error will occur in the following situations:

1.
2.

x==O
x<O

AND
AND

y<=O
y is not an integer

In these cases errno is set to EDOM.

Arange errorwill occur if the result ofpowf is too large to fit in a double. In this case
powf returns the value HUGE VAL F (with the same sign as the correct value of
the function) and errno is set to EmGE.

Description:

float form of pow.

See also:

pow

72TDS 347 01 October 1992

2 Alphabetical list of functions 237

printf Writes a formatted string to standard output.

Synopsis:

'include <stdio.h>
int printf(const char *format , ...);

Arguments:

const char *format A format string.
Subsequent arguments to the format string.

Results:

Returns the number of characters written, or a negative value if an output error
occurred.

Errors:

printf returns a negative value if an output error occurred.

Description:

printf writes the string pointed to by format to standard output. When printf
encounters a percent sign % in the format string, it expands the equivalent argu­
ment into the format defined by the format tokens after the %. The meaning of the
format string is as described for fprintf.

printf is not included in the reduced library.

See also:

fprintf

72TDS 34701 october 1992

238

ProcAfter
Synopsis:

2 Alphabetical list of functions

Blocks a process until a specified transputer clock time.

'include <process.h>
void ProcAfter(int time);

Arguments:

int time

Results:

Returns no result.

Errors:

None.

The transputer clock time at which the process will
restart.

Description:

Delays execution of the current process until a specified transputerclocktime. The
process will begin executing some time after the clock corresponding to the current
process priority reaches the value given by the input argument.

See also:

ProcWait

72TD5 347 01 October 1992

2 Alphabetical list of functions 239

ProcAlloc

Synopsis:

Allocates the space for and sets up a parallel process.

'include <process.h>
Process *ProcAlloc(void (*func) (),

int wsize, int param_words, ...);

Arguments:

void (*func) () A pointer to the function which will be executed as a
parallel process.

int wsize The size in bytes of the stack space required by the
process.

int param_words The number of words taken up by the arguments to
func (less the initial process pointer).
A list of arguments which are to be passed to func.

Results:

Returns a pointer to a process structure which is subsequently used to refer to the
-process, or a NULL pointer if ProcAlloc was unable to set up the process cor­
rectly.

Errors:

Returns a NULL pointer if an error occurs.

Description:

ProcAlloc sets up a function as a parallel process and returns a pointer which
is subsequently used to refer to the process.

func is a pointer to a function which is to be executed as a parallel process. The
function pointed to by func must be defined in the correct manner for a C parallel
process, Le. it must accept one fixed argument and zero or more non-fixed argu­
ments. The fixed argument is the first argument and is a process pointer. See sec­
tion 5.5 of the ANS/ C Too/sel User Guide.

wsize is the size of the stack space required by the program and is specified as
a number of bytes. If wsize is given the value 0 the default stack sizes of 4K on
32 bit machines and 1K on 16 bit machines are used. It is important that enough
space is allocated for the stack for the process. If insufficient space is provided, the
results are undefined. The runtime library needs 150 words (600 bytes for 32 bit,
300 bytes for 16 bit machines), this must be allowed for, as well as the stack
requirement of the user functions (e.g. max_stack_usage).

param words is the number ofwords taken up by the non-fixed arguments to the
function pointed to by func. ProcAlloc expects the single fixed argument and
so this need not be included in the param_words value. If all the non-fixed argu-

72 TOS 34701 october 1992

240 2 Alphabetical list of functions

ments are word sized then param words can be considered to be the number of
non-fixed arguments. If some arguments are not word sized then care should be
taken to ensure that param words equals the number of words occupied by the
non-fixed arguments. In particular be sure to round up aggregate types to the
nearest word and be careful when using argument types which will be subject to
the C default argument promotions (see section 4.2.3). Because ProcAlloe
accepts the non-'fixed arguments via avariable argument list (denoted by the' ... •
in the argument list) the Cdefault argument promotions are used on any arguments
passed as part of the variable argument list. e.g. all float arguments are automati­
cally promoted to double when passed to ProcAlloe. To overcome these difficul­
ties it may be easier to pass pointers to arguments which are larger than a word
or are subject to default argument promotions. Pointers are always word sized.

When the process is started it begins executing as if fune were called with argu­
ments equivalent to the non-fixed arguments set up in the call to ProcAlloe.

ProcAlloe uses malloe to allocate memory space for use by the process. All
calls to ProcA.lloe should be followed by a check for successful allocation. The
behavior of running an unilialized process is not defined.

Example:

/* to set up fred as a concurrent process with default workspace */

'include <process.h>
'include <stdlib.h>

void fred(Process *p, int a, int b, int c)
{

/* P is the fixed parameter */
/* a, b and c are the non-fixed parameters */

/* code for fred */

/* code fragment */

Process *p;

p =ProcAlloc(fred,
0,
3,

1,
2,
3);

if (p = NULL)
abort();

See also:

/* function to be used as a parallel process */
/* use the default stack space size */
/* number of words taken up by non-fixed

parameters to fred. a, b and c are all 1
word long */

/* value of a when fred starts executing */
/* value of b when fred starts executing */
/* value of c when fred starts executing */

Proelnit ProcAlloeClean

72TDS 34701 October 1992

2 Alphabetical list of functions

ProcAllocClean
ProcAlloc.

Synopsis:

241

Cleans up after a process setup using

#include <process.h>
void ProcAllocClean(Process *p);

Arguments:

Process *p

Results:

None.

Errors:

A pointer to a process structure.

Ifan invalid pointer is passed to ProcAllocClean afatal runtime erroroccurs and
the following message is displayed:

Fatal-C_Library-Bad pointer to process clean function

and the processor is halted. If the reduced library is used no message is displayed.

Description:

ProcAllocClean is used to clean up after a process when it is known to have
terminated. The process is denoted by the process pointer passed in as the argu­
ment, which must have been initially set up using ProcAlloc. It will notwork cor­
rectly for processes set up using Proclnit and if used in such a case may pro­
duce undefined behavior.

ProcAllocClean removes the process structure pointed to by its argument 'from
the list of initialized processes and frees any heap space used for the process
structure and workspace.

Caution: ProcAllocClean should only be used in the following situations:

with synchronous processes, i.e. those started using ProcPar or
ProcParList, and it can be safely used only after the call to ProcPar or
ProcParList has returned;

2 with asynchronous processes which are synchronized using ProcJoin or
ProcJoinList, and it can only be safely used after the call to ProcJoin
or ProcJoinList returns.

Any other use of this function may give rise to undefined behavior.

See also:

ProcAlloc ProclnitClean

72TDS 34701 October 1992

242

ProcAlt
Synopsis:

2 Alphabetical list of functions

Waits for input on one of a number of channels.

#include <process.h>
int ProcAlt(Channel *c1, ...);

Arguments:

Channel *c1 The first in a NULL terminated list of pointers to channels.
The remainder of the list.

Results:

Returns an index into the argument list for the ready channel.

Errors:

None.

Description:

ProcAlt blocks the calling process until one of the channel arguments is ready
to input. The index returned for the ready channel is an integer which indicates the
position of the channel in the argument list. The index numbers begin at zero for
the first argument. ProcAlt only returns when a channel is ready to input. It does
not perform the input operation, which must be done by the code following the call
to ProcAlt.

Example:

/* select from channels cl, c2, c3 */

'include <process.h>

Channel *c1, *c2, *c3;
int i;

/* allocate all channels */

i = ProcAlt(c1, c2, c3, NULL);
switch (i)
{

case 0: /* cl selected */
/* consume input from cl */
break;

case 1: /* c2 selected */
/* consume input from c2 */
break;

case 2: /* c3 selected */
/* consume input from c3 */
break;

}

See also:

ProcAltList

72 TDS 347 01 October 1992

2 Alphabetical list of functions 243

ProcAltLis t Waits for input on one of a list of channels.

Synopsis:

'include <process.h>
int ProcAltList(Channel **clist);

Arguments:

Channel **clist An array of pointers to channels terminated by NULL.

Results:

Returns an index into the clist array for the ready channel, or -1 if the first ele­
ment in the array is NULL (the array is empty).

Errors:

Returns -1 if clist is empty.

Description:

As ProcAlt but takes an array of pointers to channels. Returns -1 if the clist
array is empty.

See also:

ProcAlt

72 TDS 34701 October 1992

244

ProcGetPriority
Synopsis:

'include <process.h>
int ProcGetPriority(void);

Arguments:

None.

Results:

2 Alphabetical list of functions

Returns the priority of the calling process.

Returns zero (0) Le. PROC HIGH for a high priority process and one (1) Le.
PROC_LOW for a low priority-process.

Errors:

None.

Description:

Determines the priority level (high or low) of the process from which it is called. The
macros PROC_HIGH and PROC_LOW are defined for use with this function.

Calls to ProcGetPriority are implemented inline provided that the header file
<process. h> has been included in the source.

ProcGetPriority is side effect free.

See also:

ProcReschedule

72 TDS 34701 October 1992

2 Alphabetical list of functions

Proclnit
Synopsis:

245

Sets up a parallel process.

'include <process.h>
int Proclnit(Process *p, void (*func) (), int *ws,

int wsize, int param_words, ...);

Arguments:

Process *p

void (*func) ()

int *ws
int wsize

int param_words

Results:

A pointer to a process structure which can
subsequently be used to refer to the process.
A pointer to the function which will be executed as a
parallel process.
A pointer to an area ofmemory to be used as the stack.
The size in bytes of the memory area pointed to by
ws.
The number of words taken up by the arguments to
func, (less the initial process pointer).
A list of arguments which are to be passed to func.

Returns zero (O) if successful, non-zero otherwise.

Errors:

If insufficient stack space has been allocated to accommodate the arguments to
the function then Proclnit returns a non-zero value.

If the stack space pointed to by ws is nested within the stack space of an existing
process then a fatal runtime error occurs. The fatal runtime error causes the pro­
cessor to halt. If the full library is used then the following message is also output:

Fatal-C_Library-lncorrect allocation of process workspace

Description:

Proclnit sets up a function as a parallel process.

p is a pointer to a process structure which is initialized by Proclnit. When Pro­
clnit returns, p is subsequently used to refer to the process. func is a pointer
to a function which is to be executed as a parallel process. The function pointed
to by func must be defined in the correct manner for a C parallel process, Le. it
must accept one fixed argument and zero or more non-fixed arguments. The fixed
argument is the first argument and is aprocess pointer. See section 5.5 oftheANSI
C Too/set User Guide.

ws is a pointer to the memory region which is to be used as the stack space for the
parallel process. This memory region can reside anywhere within the address

72TDS 347 01 October 1992

246 2 Alphabetical list of functions

space of the transputer as long as it is not nested within the stackspace ofan exist­
ing process or main program. Thus an automatic array may not be used as stack
space for a process. Usually stack space will be allocated using malloc, calloc
or realloc or will have been declared as a static array. Failure to allocate this
memory region properly will cause Proclnit to fail with a fatal error.

wsize is the size of the memory region pointed by ws in bytes.

param words is the number ofwords taken up by the non-fixed arguments to the
functionpointed to by func. Proclnit expects the single fixed argument and so
this need not be included in the param words value. Ifall the non-fixed arguments
are word sized then param words can be considered to be the number of non­
fixed arguments. If some arguments are not word sized then care should be taken
to ensure that param words equals the number of words occupied by the non­
fixed arguments. In particular be sure to round up aggregate types to the nearest
word and be careful when using argument types which will be subject to the C
default argument promotions (see section 4.2.3). Because Proclnit accepts the
non-fixed arguments via avariable argument list (denoted by the I ••• ' in the argu­
ment list) the C default argument promotions are used on any arguments passed
as part of the variable argument list, e.g. all float arguments are automatically pro­
moted to double when passed to Proclnit. To overcome these difficulties it may
be easier to pass pointers to arguments which are larger than aword or are subject
to default argument promotions. Pointers are always word sized.

When the process is started it begins executing as if func were called with argu­
ments equivalent to the non-fixed arguments set up in the call to Proclnit.

Proclnit allows more control of the memory allocated for use by the parallel pro­
cess. Ifsuch control is not required then the user is recommended to use ProcAl­
loc instead.

Example:

'* t~ set up fred as a concurrent process with 4K of stack space *'

'include <process.h>
'include <stdlib.h>

'define SIZE 4096

void fred(Process *p, int a, int b, int c)
{

'* P is the fixed parameter *'
'* a, b and c are the non-fixed parameters *'

'* code for fred *'

'* code fragment *'

Process *p;
int *ws;
int result;

72 TDS 347 01 October 1992

2 Alphabetical list of functions

/* ~locate the process structure */

p = (Process *)malloc(sizeof(Process»;
if (p = NULL)

abort();

/* ~locate the stack space */

ws = (int *)malloc(SIZE);
if (ws = NULL)

abort();

247

result = ProcInit(p, /* pointer to a process structure which is
subsequently used as a handle to refer to
the process. */

fred, /* function to be used as a parallel process */
ws, /* pointer to stack space for the process */
SIZE, /* size in bytes of stack space allocated */
3, /* number of words taken up by non-fixed

parameters to fred. a, b and c are all 1
word long */

1, /* value of a when fred starts executing */
2, /* value of b when fred starts executing */
3) ; /* value of c when fred starts executing */

if (result != 0)
abort();

See also:

ProcAlloc ProclnitClean

72 TDS 34701 October 1992

248 2 Alphabetical list of functions

ProclnitClean Cleans up after a process set up using Proclnit.

Synopsis:

'include <process.h>
void ProclnitClean(Process *p);

Arguments:

Process *p

Results:

None.

Errors:

A pointer to a process structure.

If an invalid pointer is passed to ProclnitClean a fatal runtime error occurs and
the following message is displayed:

Fatal-C_Library-Bad pointer to process clean function

and the processor is halted. If the reduced library is used no message is displayed.

Description:

ProclnitClean is used to clean up after a process when it is known to have ter­
minated. The process is denoted by the process pointer passed in as the argu­
ment, which must have been initially set up using Proclnit. It will not work cor­
rectly for processes set up using ProcAlloc and if used in such a case may
produce unde'fined results.

ProclnitClean removes the process structure pointed to by its argument from
the list of initialized processes. After ProclnitClean has been called, any area
of heap allocated for the process structure and workspace may be safely freed, or
if another memory region was used for the workspace, it may be reused.

If the workspace is freed or reused before a call to ProclnitClean then the
behavior is undefined. Note: that ProclnitClean does not itself free workspace
taken from the heap; this must be performed by the programmer, using the function
free.

Caution: ProclnitClean should only be used in the following situations:

with synchronous processes, Le. those started using ProcPar or Proc­
ParList, and it can be safely used only afterthe call to ProcPar or Proc­
ParList has returned;

2 with asynchronous processes which are synchronized using ProcJoin or
ProcJoinList, and it can only be safely used after the call to ProcJoin
or ProcJoinList returns.

72TDS 34701 October 1992

2 Alphabetical list of functions

Any other use of this function may give rise to undefined behavior.

See also:

Proclni t ProcAllocClean

249

72TDS 34701 October 1992

250 2 Alphabetical list of functions

ProcJoin Waits for a number of asynchronous processes to terminate.

Synopsis:

#include <process.h>
int ProcJoin(Process *pl, ...);

Arguments:

Process *pl

Results:

The first in a list of pointers to process structures.
The remainder of the list, terminated by NULL.

Returns 0 for success and -1 for error.

Errors:

Returns the error result -1 if an empty argument list is received.

Description:

ProcJoin takes as its arguments a NULL terminated list of process pointers. The
'function will not return until all the processes, denoted by the process pointers
passed in as arguments, have completed (or if there was an error).

The pointers are either returned from ProcAlloc or initialized by a call to
Proclnit.

ProcJoin is onlY for use with asynchronous processes started using ProcRun,
ProcRunHigh and ProcRunLow. An attempt to use ProcJoin with synchronous
processes (those started using ProcPar, ProcParList or ProcPriPar) will
give undefined results.

A process which makes a call to ProcStop should not be used with ProcJoin.
ProcStop will stop the process thereby preventing it from terminating normally,
thus ProcJoin will be unable to detect the termination of the process.

See also:

ProcJoinList ProcStop

72TDS 347 01 October 1992

2 Alphabetical list of functions 251

ProcJoinList
terminate.

Synopsis:

Waits for a number of asynchronous processes to

#include <process.h>
int ProcJoinList(Process **p);

Arguments:

Process **p

Results:

An array of pointers to process structures terminated by
NULL.

Returns 0 for success and -1 for error.

Errors:

Returns the error result -1 if an empty array is passed in.

Description:

As ProcJoin but takes a NULL terminated array of process pointers as its argu­
ment.

The pointers are either returned from ProcAlloc or initialized by a call to ProcI­
nit.

ProcJoinList is only for use with asynchronous processes started using Pro­
cRun, ProcRunHigh and ProcRunLow. An attempt to use ProcJoinList with
synchronous processes (those started using ProcPar, ProcParList or Proc­
PriPar) will give undefined results.

A Process which makes a call to ProcStop should not be used with ProcJoin­
Lis t. ProcStop will stop the process thereby preventing it from terminating nor­
mally, thus ProcJoinList will be unable to detect the termination of the process.

See also:

ProcJoin ProcStop

72 TDS 34701 October 1992

252

ProcPar

Synopsis:

2 Alphabetical list of functions

Starts a group of processes in parallel.

'include <process.h>
void ProcPar(Process *pl, ...);

Arguments:

Process *pl

Results:

Returns no result.

Errors:

The first in a list of pointers to process structures.
The remainder of the list. Terminated by NULL.

If ProcPar detects that a process which it is about to start is already running then
the following fatal runtime error is issued:

Fatal-C_Library-Attempt to start a process which is already running

Thus it is illegal to attempt to run a process in parallel with itself.

Description:

ProcPar takes a NULL terminated list of pointers to processes and starts the cor­
responding processes in parallel with each other at the priority of the calling pro­
cess. ProcPar will not return until all of the processes associated. with pointers
passed as arguments to it. have terminated. The process pointers are either
returned from ProcAlloc or initialized by Proclnit.

A process started using ProcPar is called a 'synchronous process'.

Example:

/* start the four processes denoted by process
pointers pl, p2, p2, p4 in parallel. */

'include <process.h>

Process *pl, *p2, *p3, *p4;

/* Set up and allocate processes */

ProcPar(pl, p2, p3, p4, NULL);

See also:

ProcParList Procstop

72TDS 34701 October 1992

2 Alphabetical list of functions

ProcParam
Synopsis:

'include <process.h>
void ProcParam(Process *p, ...);

Arguments:

253

Changes process arguments.

Process *p

Results:

Returns no result.

Errors:

None.

A pointer to a process structure.
A list of arguments which are passed to the function
associated with p.

Description:

ProcParam can be used to change the non-fixed arguments (see ProcAlloc or
ProcInit for a definition of 'non-fixed arguments') of the function associated with
p. See also section 5.5 of the ANS/ C Too/set User Guide.

p is a pointer to a process structure which was previously returned from a call to
ProcAlloc or set up using a call to Proclnit.

The numberofwords ofarguments should be the same as that specified in the orig­
inal call to ProcAlloc or Proclnit which set up p. If too many words of argu­
ments are given, the extra words are ignored. If too few words of arguments are
given then the unspecified words are undefined.

ProcParam must be used before the process begins execution. If it used while the
process is running then the results are undefined.

See also:

ProcAlloc Proclnit ProcAllocClean

72TDS 347 01 October 1992

254

ProcParList

Synopsis:

2 Alphabetical list of functions

starts a group of parallel processes.

#include <process.h>
void ProcParList(Process **plist);

Arguments:

Process **plist A array of pointers to processes terminated by NULL.

Results:

Returns no result.

Errors:

If ProcParList detects that a process which it is about to start is already running
then the following fatal runtime error is issued:

Fatal-C_Library-Attempt to start a process which is already running

Thus it is illegal to attempt to run a process in parallel with itself.

Description:

As ProcPar but takes an array of pointers to processes. The pointers are either
returned directly from ProcAlloc or are pointers to processes initialized by Pro­
clnit.

A process started using ProcParList is called a 'synchronous process'.

See also:

ProcPar

72 TDS 34701 October 1992

2 Alphabetical list of functions 255

ProcPriPar

Synopsis:

Starts a pair of processes at high and low priority.

#include <process.h>
void ProcPriPar(Process *phigh, Process *plow)

Arguments:

Process *phigh
Process *plow

Results:

Returns no result.

Errors:

A pointer to the high priority process.
A pointer to the low priority process.

Any attempt to call ProcPriPar from a high priority process generates a runtime
fatal error and the following message is displayed:

Fatal-C_Library-Nested Pri Pars are illegal

If ProcPriPar detects that a process which it is about to start is already running
then the following fatal runtime error is issued:

Fatal-C_Library-Attempt to start a process which is already running

Thus it is illegal to attempt to run a process in parallel with itself.

Description:

Starts two processes in parallel, the first at high priority and the second at low prior­
ity. Process pointers will have been returned directly from ProcAlloc, or are
pointers to processes initialized by Proclnit.

ProcPriPar cannot be called from a high priority process.

A process started using ProcPriPar is called a 'synchronous process'.

See also:

ProcPar ProcStop

72TDS 347 01 October 1992

256

ProcReschedule
Synopsis:

#include <process.h>
void ProcReschedule(void);

Arguments:

None.

Results:

Re\Ums no result.

Errors:

None.

2 Alphabetical list of functions

Reschedules a process.

Description:

Causes the calling process to be rescheduled, that is, placed at the end of the
active process queue.

Calls to ProcReschedule are implemented inline provided that the header file
<process. h> has been included in the source.

See also:

ProcGetPriority

72 TDS 34701 October 1992

2 Alphabetical list of functions

ProcRun

Synopsis:

#include <process.h>
void ProcRun(Process *p);

Arguments:

257

Starts a process at the current priority.

Process *p

Results:

Returns no result.

Errors:

A pointer to a process.

If ProcRun detects that a process which it is about to start is already running then
the following fatal runtime error is issued:

Fatal-C_Library-Attempt to start a process which is already running

Thus it is illegal to attempt to run a process in parallel with itself.

Description:

Executes a process in parallel with the calling process and at the same priority. The
two processes run independently and any interaction between them must be spe­
cifically set up using channel communication routines. The process pointer is
returned directly from ProcAlloc or is apointer to aprocess initialized by ProcI­
nit.

ProcRun returns immediately after starting the process. Thus a process started
using ProcRun is called an 'asynchronous process'.

Care should be taken that asynchronous processes do not attempt to communi­
cate with the serverwhen it has been terminated by the main progran1. The Proc­
Join function can be used to guard against this. For more details see section 5.5.5
in the ANSI C Too/set User Guide.

See also:

ProcRunHigh ProcRunLow ProcPar ProcParList ProcPriPar Proc­
Stop ProcJoin ProcJoinList

72 TDS 34701 October 1992

258

ProcRunHigh

Synopsis:

#include <process.h>
void ProcRunHigh(Process *p);

Arguments:

2 Alphabetical list of functions

Starts a high priority process.

Process *p

Results:

Returns no result.

Errors:

A pointer to a process.

If ProcRunHigh detects that a process which it is about to start is already running
then the following fatal runtime error is issued:

Fatal-C_Library-Attempt to start a process which is already running

Thus it is illegal to attempt to run a process in parallel with itself.

Description:

As ProcRun but starts the process at high priority. The process pointer will have
been returned directly from ProcAlloc, or will be a pointer to a process initialized
by Proclnit.

As with ProcRun care should be taken that processes started with this function
terminate before the main program.

A process started using ProcRunHigh is called an 'asynchronous process'.

See also:

ProcRun ProcRunLow ProcPar ProcParList ProcPriPar ProcStop

72 TOS 347 01 October 1992

2 Alphabetical list of 'functions

ProcRunLow

Synopsis:

#include <process.h>
void ProcRunLow(Process ·P)i

Arguments:

259

Starts a low priority process.

Process .p

Results:

Returns no result.

Errors:

A pointer to a process.

If ProcRunLow detects that a process which it is about to start is already running
then the following fatal runtime error is issued:

Fatal-C_Library-Attempt to start a process which is already running

Thus it is illegal to attempt to run a process in parallel with itself.

Description:

As ProcRun but starts the process at low priority. The process pointer will have
been returned directly 'from ProcAlloc, orwill be a pointer to a process initialized
by Proclnit.

As with ProcRun care should be taken that processes started with this 'function
terminate before the main program.

A process started using ProcRunLow is called an 'asynchronous process'.

See also:

ProcRunHigh ProcRun ProcPar ProcParList ProcPriPar ProcStop

72 TDS 347 01 October 1992

260

ProcSkipAlt
Synopsis:

2 Alphabetical list of functions

Checks specified channels for ready input.

'include <process.h>
int ProcSkipAlt(Channel *c1, ...);

Arguments:

Channel *c1

Results:

The first in a list of pointers to channels.
The remainder of the list. Terminated by NULL.

Returns an index into the argument list for the channel ready to input, or -1 if no
channel is ready.

Errors:

None.

Description:

As ProcAlt but does not wait for a ready channel. If no channel is ready Proc­
SkipAlt returns immediately with the value -1.

Example:

/* select from channels cl, c2, c3 */

'include <process.h>

Channel *cl, *c2, *c3;
int i;

/* set up channels */

i = ProcSkipAlt(cl, c2, c3, NULL);
switch (i)
{

case -1: /* no channel ready */
break;

case 0: /* cl selected */
/* consume input from cl */
break;

case 1: /* c2 selected */
/* consume input fram c2 */
break;

case 2: /* c3 selected */
/* consume input fram c3 */
break;

}

See also:

ProcAlt ProcSkipAltList

72 TDS 34701 October 1992

2 Alphabetical list of functions

ProcSkipAltList
Synopsis:

261

Checks a list of channels for ready input.

#include <process.h>
int ProcSkipAltList(Channel **clist);

Arguments:

Channel **clist An array of pointers to channels terminated by NULL.

Results:

As ProcSkipAlt.

Errors:

None.

Description:

As ProcSkipAlt but takes a list of pointers to channels.

See also:

ProcSkipAlt

72 lOS 347 01 October 1992

262

ProcStop

Synopsis:

#include <process.h>
void ProcStop(void);

Arguments:

None.

Results:

Returns no result.

Errors:

None.

2 Alphabetical list of functions

De-schedules a process.

Description:

ProcStop causes the current process to be stopped. The process stops execut­
ing immediately and is removed from the transputer scheduling lists. Thus it cannot
be restarted again.

ProcStop should not be used in a synchronous process (started using ProcPar,
ProcParList or ProcPriPar) or in any asynchronous process (started using
ProcRun, ProcRunHigh or ProcRunLow) which is the subject of a call to Proc­
Join orProcJoinList. This is because Procstop prevents normal termination
of a process.

Thus if a process which is associated with a call to one of ProcPar, ProcParL­
ist, ProcPriPar, ProcJoin orProcJoinList makes a call to ProcStop then
these functions are unable to terminate because they rely on all their associated
processes terminating normally.

ProcStop may also be used to stop processes, declared at configuration level Le.
in the configuration description file. This is achieved by calling ProcStop from the
main thread of execution of a C program.

See also:

ProcJoin ProcJoinList ProcPar ProcParList ProcPriPar Pro­
cRun ProcRunHigh ProcRunLow

72TD8 34701 October 1992

2 Alphabetical list of functions

ProcTime
Synopsis:

#include <process.h>
int ProcTime(void);

Arguments:

None.

Results:

Returns the value of the transputer clock.

Errors:

None.

263

Determines the transputer clock time.

Description:

Determines the transputer clock time. The value of the high priority clock is
returned for high priority processes and ·the value of the low priority clock is
returned for low priority processes. Values returned by this 'function can be used
by ProcTimeAfter, ProcTimePlus, and ProcTimeMinus.

Calls to ProcTime are implemented inline provided that the header file
<process. h> has been included in the source.

ProcTime is side effect free.

See also:

ProcTimeAfter ProcTimePlus ProcTimeMinus

72TDS 34701 october 1992

264 2 Alphabetical list of functions

ProcTimeAfter Determines the relationship between clock values.

Synopsis:

#include <process.h>
int ProcTimeAfter(const int timel, const int time2);

Arguments:

const int timel A transputer clock value returned by ProcTime.
const int time2 A transputer clock value returned by ProcTime.

Results:

Returns 1 if timel is after time2 J otherwise O.

Errors:

None.

Description:

Determines the relationship between two transputer clock values. Remember that
the transputer clock is cyclic.

This is equivalent to:

(ProcTimeMinus(timel, time2) > 0)

ProcTimeAfter is side effect free.

See also:

ProcTime ProcTimePlus ProcTimeMinus

72T08 34701 October 1992

2 Alphabetical list of functions

ProcTimeMinus

Synopsis:

265

Subtracts two transputer clock values.

'include <process.h>
int ProcTimeMinus(const int timel, const int time2);

Arguments:

const int timel A transputer clock value returned by ProcTime.
const int time2 A transputer clock value returned by ProcTime.

Results:

Returns the result of subtracting time2 from timel.

Errors:

None.

Description:

Subtracts one clock value from another using modulo arithmetic. No overflow
checking takes place and the clock values are cyclic.

ProcTimeMinus is side effect 'free.

See also:

ProcTime ProcTimeAfter ProcTimeMinus

72 TDS 347 01 October 1992

266

ProcTimePlus

Synopsis:

2 Alphabetical list of functions

Adds two transputer clock values.

#include <process.h>
int ProcTimePlus(const int timel, const int time2);

Arguments:

const int timel A transputer clock value returned by ProcTime.
const int time2 A transputer clock value returned by ProcTime.

Results:

Returns the result of adding timel to time2.

Errors:

None.

Description:

Adds one clock value to another using modulo arithmetic. No overflow checking
takes place and the values are cyclic.

ProcTimePlus is side effect free.

See also:

ProcTime ProcTimeAfter ProcTimeMinus

72 TDS 347 01 October 1992

2 Alphabetical list of functions

ProcTimerAlt

267

Checks input channels with time out.

Synopsis:

#include <process.h>
int ProcTimerAlt(int time, Channel *cl, ...);

Arguments:

int time An absolute transputer clock time, afterwhich the function aborts
if no communication occurs.

Channel *cl The first in a list of pointers to channels.
The remainder of the list. The list must be terminated by NULL.

Results:

Returns an index to the argument list, or -1 if the routine times out.

Errors:

None.

Description:

As ProcAl t but controlled by a timeout. If the transputer clock value associated
with the current priority exceeds time before any communication occurs, the rou­
tine terminates and returns the value -1.

Example:

/* select fram channels cl, c2, c3 */

'include <process.h>

Channel *c1, *c2, *c3;
int i;

/* set up channels */

i = ProcT~erAlt(ProcT~ePlus(ProcT~e(), 50000), cl, c2, c3, NULL);
switch (i)
{

case -1: /* t~ed out */
break;

case 0: /* cl selected */
/* consume input from cl */;
break;

case 1: /* c2 selected */
/* consume input from c2 */
break;

case 2 : /* c3 selected */
/* consume input from c3 */
break;

}

See also:

ProcAl t ProcTimerAltList

72 TDS 347 01 October 1992

268 2 Alphabetical list of functions

ProcTimerAltList Checks a list of channels for input with time

out.

Synopsis:

#include <process.h>
int ProcTimerAltList(int time, Channel **clist)

Arguments:

int time The absolute transputer clock time after which the
function aborts if no communJcation occurs.

Channel **clist An array of pointers to channels terminated by NULL.

Results:

Returns an index into the clist array for the ready channel, or-1 ifeitherthe routine
times out or the first element in the array is NULL (an empty array).

Errors:

None.

Description:
J

As ProcTimerAlt, but takes an array of pointers to channels.

See also:

ProcTimerAlt

72 TDS 34701 October 1992

2 Alphabetical list of functions

ProcWait
Synopsis:

'include <process.h>
void ProcWait(int time);

Arguments:

269

Suspends a process for a specified time.

int time

Results:

Returns no result.

Errors:

None.

The time delay measured in transputer clock ticks.

Description:

Suspends execution of a process for a specified period of time. After the period
expires, the process is rescheduled. The delay is measured at the current clock
priority.

See also:

ProcAfter

72 TDS 34701 October 1992

270

putc

Synopsis:

#include <stdio.h>
int putc(int C, FILE *stream);

Arguments:

2 Alphabetical list of functions

Writes a character to a file stream.

\
\

int c
FILE *stream

Results:

The character to be written.
A pointer to a file stream.

Returns the characterwritten if the write is successful, orEOF ifawrite error occurs.

Errors:

putc returns EOF if a write error occurs.

Description:

putc converts c to an unsigned char, writes it to the output stream pointed to by
stream, and advances the read/write position indicator for the file stream.

putc is not included in the reduced library.

See also:

fputc

72 TDS 347 01 October 1992

2 Alphabetical list of functions

putchar

Synopsis:

#include <stdio.h>
int putchar(int c);

Arguments:

271

Writes a character to standard output.

int c

Results:

The character to be written.

Returns the characterwritten ifsuccessful. Ifawrite erroroccurs, putchar returns
EOF.

Errors:

putchar returns EOF if a write error occurs.

Description:

putchar converts c to an unsigned char, writes it to the standard output stream,
and advances the read/write position indicator for that file stream.

putchar is not included in the reduced library.

See also:

fputc getchar putc

72T08 34701 October 1992

272

puts
Synopsis:

#include <stdio.h>
int puts (const char *s);

Arguments:

2 Alphabetical list of functions

Writes a line to standard output.

const char *s

Results:

A pointer to the string to be written.

Returns non-negative if successful, EOF if unsuccessful.

Errors:

puts returns EOF if unsuccessful.

Description:

puts writes the string pointed to by s to the standard output file stream, followed
by a newline character. The write does not include the string terminating character.

puts is not included in the reduced library.

See also:

fputs getchar gets putchar

72TDS 34701 October 1992

Sorts an array of objects.

2 Alphabetical list of functions

qsort
Synopsis:

#include <stdlib.h>
void qsort(void *base, size t nmemb, size t size,

int (*compar) (const void *, const void *»;

273

Arguments:

void *base A pointer to the start of the array to be sorted.
size t nmemb The number of objects in the array.
size t size The size of the array objects.
int ('*compar) (const void * ,

const void *) A pointer to the comparison function.

Results:

Returns no value.

Errors:

None.

Description:

qsort sorts objects in the array pointed to by base into ascending order, accord­
ing to comparisons performed by the function pointed to by compar. The arraycon­
tains nmemb objects of size bytes. The comparison function "1ust return an inte­
ger less than, equal to, or greater than zero, depending on whether the first
argument to the function is considered to be less than, equal to, or greater than the
second argument. If two elements compare equal their order in the sorted array
is undefined.

Example:

'include <stdio.h>
'include <stdlib.h>
int sort compare(const void *argl,

- const void *arg2)

return (int) (* «int *) argl) - * «int *) arg2» ;

int main ()
{

int i[lO] = {l, 4, 6, 5, 2, 7, 9, 3, 8, O};
int j;

qsort(i, 10, sizeof(int), sort_compare);
for (j = 0; j < 10; ++j)

printf("%d\n", i[j]);
}

See also:

bsearch

72 TDS 347 01 October 1992

274

raise
Synopsis:

#include <signal.h>
int raise(int sig);

Arguments:

2 Alphabetical list of functions

Forces a pseudo-exception via a signal handler.

int sig

Results:

A signal number, as defined in signal. h.

Returns zero (0) if successful, non-zero if unsuccessful.

Errors:

If raise is called with an unrecognized signal number, it returns a non-zero value.

Description:

raise is used to send a signal to the running program. It causes the function
associated with signal number sigto be called. Functions are associated with sig­
nal numbers using the signal function.

Signals which can be raised are listed under the signal handling setup function
signal.

See also:

signal

72 TDS 34701 October 1992

2 Alphabetical list of functions

rand
Synopsis:

#include <stdlib.h>
int rand (void) ;

Arguments:

None.

Results:

275

Generates a pseudo-random number.

Returns a positive pseudo-random integer.

Errors:

None.

Description:

rand generates a pseudo-random integer in the range 0 to RAND_MAX.

See also:

srand

72 TDS 347 01 October 1992

276

read
Synopsis:

2 Alphabetical list of functions

Reads bytes from a file. File handling primitive.

'include <iocntrl.h>
int read(int fd, char *buf, int n);

Arguments:

int fd
char *buf
int n

Results:

A file descriptor.
A pointer to a buffer where the bytes will be stored.
The maximum number of bytes that read will attempt to
obtain.

Returns the number of bytes read or -1 on error.

Errors:

If an error occurs read sets errno to the value EIO.

Description:

read attempts to read n bytes from the file described by fd into the buffer pointed
to by buf. It returns the number of bytes actually read. read may return a value
less than n ifan end offile occurred or if the file is a terminal file, e.g. standard input,
if an end-of-line is encountered. n may be zero or negative but in these cases no
input will occur.

read is not included in the reduced library.

See also:

write

72 TDS 34701 October 1992

2 Alphabetical list of functions 277

realloc Changes the size of an object previously allocated using

malloc, calloc or realloc.

Synopsis:

'include <stdlib.h>
void *realloc(void *ptr, size t size);

Arguments:

void *ptr
size t size

Results:

A pointer to the area of memory.
The new size of the area of memory.

Returns a pointer to the allocated space. If it was not possible to allocate size
bytes, or if the size requested is zero and the pointer argument is NULL, realloc
returns a NULL pointer.

Errors:

If it is not possible to allocate size bytes, realloc returns a NULL pointer. Ifptr
does not point to an area of memory which was previously allocated by calloc,
malloc, or realloc and which has not been deallocated by a call to free or
realloc, a fatal runtime error occurs and the following message is generated:

Fatal-C_Library-Error in realloc(), bad pointer or heap corrupted

Description:

realloc allocates an area of memory of size size, and copies the previously
allocated area of memory pointed to by ptr into the newly allocated area. If the
previous area is larger than the new area, the overflow will be lost.

If ptr is NULL, realloc behaves like a call to malloc.

If size is zero and ptr is not a NULL pointer, the object pointed to by ptr is freed.
If ptr is invalid a runtime error from free may be generated.

See also:

calloc free malloc

72 TOS 347 01 October 1992

278

remove
Synopsis:

'include <stdio.h>
int remove(const char *filename);

Arguments:

2 Alphabetical list ot tunc'lions

Removes a file.

const char *filename A pointer to the filename string.

Results:

Returns zero (0) if successful and non-zero if unsuccessful.

Errors:

If the remove operation was unsuccessful, remove returns a non-zero value.

Description:

remove deletes the file identified by the string pointer fi lename. If the file is open
it will be deleted only if this is permitted by the host system.

remove is not included in the reduced library.

See also:

rename

72TDS 347 01 October 1992

2 Alphabetical list of functions

rename
Synopsis:

#include <stdio.h>
int rename(const char *old, const char *new);

Arguments:

const char *old A pointer to the old filename.
const char *new A pointer to the new filename.

Results:

279

Renames a file.

Returns zero if rename was successful and non-zero if it was not.

Errors:

If the rename was unsuccessful, rename returns a non-zero value.

Description:

rename changes the name of the file from old string to new string. If a file with the
new name already exists the existing file will only be overwritten if this is permitted
by the host operating system.

rename is not included in the reduced library.

See also:

remove

72TDS 347 01 October 1992

280

rewind

Synopsis:

2 Alphabetical list of functions

Sets the file position indicator to the start of a file stream.

#include <stdio.h>
void rewind(FILE *stream);

Arguments:

FILE *stream

Results:

No value is returned.

Errors:

None.

Description:

A pointer to a file stream.

rewind sets the file position indicator of the file stream stream to the start of the
fHe. _The error indicators for the stream are cleared.

rewind is not included in the reduced library.

Example:

'include <stdio.h>

int main()
{

FILE *stream;

stream = fopen("data.dat","w+");

if (stream = NULL)
printf("Couldn't open data.dat for write.\n");

else
{

fprintf(stream, "01234");
rewind(stream);
printf("First character in data.dat is: '%c'\n", getc(stream»;

/*
* Output:
* First character in data.dat is '0'
*/

See also:

fsetpos

72 TDS 34701 October 1992

2 Alphabetical list of functions

scanf

Synopsis:

281

Reads formatted data from standard input.

#include <stdio.h>
int scanf(const char *format , ...);

Arguments:

const char *format A format string.
Subsequent arguments to the format string.

Results:

Returns the number of inputs which have been successfully converted. If an end
of file character occurred before any conversions took place, scanf returns EOF.

Errors:

If an end of file character occurred before any conversions took place, scanf
returns EOF. Other failures cause termination of the procedure.

Description:

scanf matches the data read from the standard input to the specifications set out
by the format string, format. See fscanf for a description of the format string.

scanf is not included in the reduced library.

See also:

fscanf

72TDS 347 01 October 1992

282

segread

Synopsis:

2 Alphabetical list of functions

Reads host processor segment registers. MS-DOS only.

#include <dos.h>
void segread(struct SREGS *segregs);

Arguments:

struct SREGS *segregs The read-in values of the segment registers.

Results:

Returns no result.

Errors:

Any error sets errno to the value EDOS. Any attempt to use segread on operat­
ing systems other than MS-DOS also sets errno. Failure of the function may also
generate the server error message:

[Encountered unknown primary tag (50)]

Description:

segread reads the current values of the host 80x 86 processor's segment regis­
ters into segregs.

segread is not included in the reduced library.

See also:

intdos intdosx

72 TDS 34701 October 1992

2 Alphabetical' list of functions

SemAlloc

Synopsis:

283

Allocates and initializes a semaphore.

'include <semaphor.h>
Semaphore *Se~loc(int value);

Arguments:

int value

Results:

The initial value of the semaphore.

Returns a pointer to an initialized semaphore or NULL on error.

Errors:

If space cannot be allocated SemAlloc returns a NULL pointer.

Description:

Allocates space for a semaphore and returns a pointer to it. The semaphore is set
to the value argument.

The space reserved for the semaphore by SemAlloc may subsequently be freed
by passing the returned semaphore pointer to free.

See also:

Semlnit

72 TDS 347 01 October 1992

284

Semlnit
Synopsis:

2 Alphabetical list of functions

Initializes an existing semaphore.

#include <semaphor.h>
void Semlnit(Semaphore *sem, int value);

Arguments:

Semaphore *sem
int value

Results:

Returns no result.

Errors:

None.

A pointer to a semaphore.
The initial value of the semaphore.

Description:

Semlnit initializes the semaphore pointed to by sem and assigns to it the initial
value value.

See also:

SemAlloc

72TDS 347 01 October 1992

2 Alphabetical list of functions

SemSignal

Synopsis:

'include <semaphor.h>
void SemSignal(Semaphore *sem)i

Arguments:

285

Releases a semaphore.

Semaphore *sem

Results:

Returns no result.

Errors:

None.

A pointer to a semaphore.

Description:

Releases the semaphore pointed to by sem and runs the next process on the
semaphore's queue. If no processes are waiting on the queue the semaphore
value is incremented.

See also:

SemWait

72 TDS 34701 October 1992

286

SemWait

Synopsis:

'include <semaphor.h>
void SemWait(Semaphore *sem);

Arguments:

2 Alphabetical list of functions

Acquires a semaphore.

Semaphore *sem

Results:

Returns no result.

Errors:

None.

A pointer to a semaphore.

Description:

Blocks the current process if the semaphore is already set to zero (acquired),
otherwise acquires the semaphore, decrements its value, and continues the pro­
cess. Blocked processes are added to aqueue associated with the semaphore and
do not continue until the semaphore is released by a call to SemSignal by another
process.

See also:

SemSignal

72 TDS 34701 October 1992

2 Alphabetical list of functions

server transaction

Synopsis:

287

Calls any iserver function.

#include <iocntrl.h>
int server_transaction(char *message, int length,

char *reply);

Arguments:

char *message
int length
char *reply

Results:

The server packet to be sent.
The length of the server packet.
A pointer to an array where the reply packet is to be
stored.

Returns the length in bytes of the server reply packet, or -1 if an error occurs.

Errors:

possible causes of error are:

length being less than the minimum server packet length of 6 bytes.

length being greater than 510.

length being an odd number.

Description:

The runtime library provides functions which access a defined subset of ISERVER
functions. Some server functions are therefore not directly accessible by C func­
tion calls.

server transaction allows controlled access to any ISERVER function from
a C program. It allows the full functionality ofthe supplied ISERVERto be used from
C and supports the calling of user-defined functions and alternative servers. A list
of callable functions supplied with the standard toolset ISERVER can be found in
appendix D '/SERVER protocol' of the accompanying ANSI C Toolset Reference
Manual.

server transaction sends the packet pointed to by message, of length
length:!o the server. The server reply is stored in the array pointed to by reply.

For those familiar with occam, server transa~tionperforms the equivalent
of the following occam output and inputstatements:

ToServer ! length: :message
FramServer ? replylen::reply

where: ToServer and FromServer are the server channels.

72TDS 347 01 October 1992

288 2 Alphabetical list of functions

length and replylen are the packet lengths and message and reply
are the data packets themselves.

replylen is the value returned by the function if no error occurs.

server transaction provides low level access to the server in a secure man­
ner. Theuser constructed packet is forwarded to the server. and the reply sent. via
protected channels.

Note: There is no protection against the message and reply pointers being the
same. in which case the original message packet is overwritten.

The following example uses server transaction to obtain the transputer
board size by calling the Getenv server function.

The structure of the packet to request the boardsize environment variable is given
below. Numbers along the top row are Byte numbers.

o 1 2 3 4 5 6 7 8 9 10 11 12

32 10 00 IBa A R D S I Z E

Byte 0 is the tag of the Getenv function. Bytes 1 and 2 make up a 16 bit number
which represents the length ofthe string I BOARDSI ZE. The string follows from byte
3 onwards.

The reply packet is similar except that byte 0 is the result byte and the string con­
tains the value of the environment variable.

72 TDS 34701 October 1992

2 Alphabetical list of functions

Example:

'include <misc.h>
'include <stdio.h>

int main ()
{

/* 512 byte buffers */
char message[512], reply[512];
/* The env variable of interest */
char *name = "IBOARDSIZE";
int length, i;

/* set up packet to send */
message [0] = 32; /* getenv tag */
/ * length of env variable name */
message [1] = strlen(name);
message[2] = 0;
strcpy(&message[3], name);
/* calculate total length of packet */
length = 3 + strlen(name);
/* make sure length is an even number */
length = (length + 1) , ...1;
/* perfo~ the transaction */
length = server transaction(message, length, reply);
/* process reply */
if (length = -1)

printf("error in server transaction\n");
else
{

/* print out result byte */
printf("result = %d\n", reply[O]);
/* print out length of env variable value */
printf("length of result string = %d\n",reply[l]);
/* te~nate the result string */
reply[(int)reply[1] + 3] = '\0';
/* print out the result string */
printf("string = [%s]\n", &reply[3]);

289

72TDS 347 01 October 1992

290

set abort action

Synopsis:

'include <misc.h>
int set_abort_action(int mode);

Arguments:

2 Alphabetical list of functions

Sets/queries action taken by abort.

int mode

Results:

The mode to be set.

ABORT EXIT

ABORT HALT

Returns the previous termination mode (the mode in operation before
set_abort_action was called).

Errors:

None.

Description:

Sets, or queries, the mode of termination for abort. mode can have any of the
following values:

Causes a call to abort to exit the program without
halting the transputer.
Causes a subsequent call to abort to halt the
transputer.
Returns the current abort mode. Leaves the mode un
changed.

IfABORT HALT is used abort first enables HALT mode by setting the Halt-On­
Error fiag and then sets the processor Error flag. When the transputer halts, a
message similar to the following n1essage is displayed by the server:

Error: Transputer error flag has been set.

Note: Care should be taken when calling set abort action in a concurrent
environment. Calls to the 'function by independently executing, unsynchronized
processes may change the abort action. set abort action should normally be
called at the start of the program to set the action of abort for the entire program.

See also:

abort

72 TDS 34701 October 1992

2 Alphabetical list of functions

setbuf
Synopsis:

'include <stdio.h>
void setbuf(FILE *stream, char *buf);

Arguments:

291

Controls file buffering.

FILE *stream
char *buf

Results:

Returns no value.

Errors:

None.

A pointer to a file stream.
A pointer to an array of size BUFSIZ or NULL.

Description:

setbuf may be called after the file associated with stream has been opened, but
before it has been read from or written to. setbuf causes stream to be fully buff­
ered in the array buf. It is equivalent to a call to setvbuf with the values IOFBF
for mode and BUFSIZ for size. Ifbuf is a NULL pointer, the stream will nofbe buff­
ered.

setbuf is not included in the reduced library.

See also:

setvbuf

72 TDS 34701 October 1992

292

setjmp

Synopsis:

#include <setjmp.h>
int setjmp (jmp_buf env);

Arguments:

2 Alphabetical list of functions

Sets up a non-local jump.

An array into which a copy of the calling environment is
put.

Results:

When first called, setjmp stores the calling environment in env and returns zero.
After a subsequent call to longjmp it returns a value set by longjmp, which is
always non-zero.

Errors:

The setjmp function should only appear in one of the following contexts:

• The entire controlling expression of a selection or iteration statement.

• One operand of a relational or equality operator with the other operand
being an integral constant expression. The resultant expression controls
a selection or iteration statement.

• The operand of a unary I operator. The resultant expression controls a
selection or an iteration statement.

• The complete expression of an expression statement.

Description:

setjmp is used to set up a non-local goto by saving the calling environment in env.
This environment is used by the longjmp function.

When first called, setjmp stores the calling environment in env and returns zero.
A subsequent call to longjmp using env will cause execution to continue as if the
call to setjmp had just returned with the value given in the call to longjmp. This
value will always be non-zero, if longjmp is called with avalue of 0 then the corre­
sponding setjmp returns 1.

See also:

longjmp

72 TDS 347 01 October 1992

2 Alphabetical list of functions 293

setlocale
Synopsis:

Sets or interrogates part of the program's locale.

'include <locale.h>
char *setlocale(int category, const char *locale);

Arguments:

int 'category A specification of which part of the locale is to be set
or interrogated.

const char *locale A pointer to the string which selects the environment
of the locale.

Results:

Returns "C" if locale is NULL, if*locale is NULL, or if*locale is "C". Otherwise
returns NULL.

Errors:

Returns NULL if the arguments are invalid.

Description:

setlocale sets or interrogates part of the program's locale according to the val­
ues of category (the part to be set) and locale (a pointer to a string describing
the environment to which it is to be set).

category can take the following values:

1 LC-ALL All categories.
2 LC COLLATE Affects strcoll and strxfrm.
3 LC_CTYPE Affects characterhandling
4 LC NUMERIC Affects the format of the decimal point

(e.g., '.' ':, etc).
5 LC TIME Affects the strftime function.
6 LC MONETARY Affects monetary formatting information. If

locale is a null string, setlocale returns the current locale for the given cate­
gory. In the current implementation the only acceptable locale is "C".

See also:

localeconv

72TDS 34701 October 1992

294

setvbuf
Synopsis:

2 Alphabetical list of functions

Defines the way that a file stream is buffered.

#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int mode,

size_t size);

Arguments:

FILE *stream
char *buf
int mode
size t size

Results:

A pointer to a file stream.
A pointer to a file buffer.
The way the file stream is to be buffered.
The size of the file buffer.

setvbuf returns zero if successful, and non-zero if the operation fails.

Errors:

Ifmode or size is invalid, or stream cannot be buffered, setvbuf returns a non­
zero value.

Description:

setvbuf may be called after the file associated with stream has been opened,
but before it has been read from orwritten to. setvbuf causes stream to be buff­
ered in the format specified by mode. Valid formats are:

IOFBF
IOLBF
IONBF

Fully buffered 1/0
Line buffered output
Unbuffered I/O

The buffer used is of size bytes. If buf is not a NULL pointer, it is used as the
buffer, otherwise an internally allocated array is used.

setvbuf is not included in the reduced library.

See also:

setbuf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 295

signal
Synopsis:

Defines the way that errors and exceptions are handled.

#include <signal.h>
void (*signal(int sig, void (*func) (int») (int);

Arguments:

int sig A signal number (a predefined value, describing an
error/exception type).

void (*func) (int) A signal handler function which is invoked when signal
sig is raised.

Results:

If the signal number is recognized a pointer to the function previously associated
with the signal number sig is returned, otherwise SIG_ERR is returned.

Errors:

If the predefined error/exception value is not recognized by signal, signal
returns SIG ERR and sets errno to the value ESIGNUM.

Description:

signal specifies the functions to be called on reception of particular, predeter­
mined signal values.

func can be any user-defined function which takes a single int parameter and
returns void, or one of the following two predefined functions which are imple­
mented as macros in the signal. h header file:

SIG DFL Uses the default system error/exception handling for the
pre-defined value.

SIG IGN Ignores the error/exception.

The functions will then be called in response to a raise or other invocation of the
signal handler, using a signal number as a parameter.

When a signal is raised the default signal handling is reset by a call of the form
signal (sig, SIG DFL) and then the signal handler function is called. If sig
takes the value SIGILL then the default resetting still occurs.

The available signal numbers are as follows:

72TDS 34701 October 1992

296

1 SIGABRT
2 SIGFPE
3 SIGILL
4 SIGINT
5 SIGSEGV
6 SIGSTERM
8 SIGIO
9 SIGURG
10SIGPIPE
11SIGSYS
12sIGALRM
13sIGWINCH
14sIGLOST
15sIGUSRl
16sIGUSR2
17SIGUSR3

2 Alphabetical list of functions

Abort error
Arithmetic exception
Illegal instruction
Attention request from user
Bad memory access
Termination request
InpuUoutput possible
Urgent condition on 1/0 channel
Write on pipe with no corresponding read
Bad argument to system call
Alarm clock
Window changed
Resource lost
User defined signal
User defined signal
User de'fined signal

The default handling and handling at program startup for all signals except
SIGABRT and SIGTERM is no action. For SIGABRT the handling depends on
set abort action, and for SIGTERM the program is terminated via a call to
exit with the parameter EXIT_FAILURE.

Example:

'** To arrange that an interrupt by the user
* should not go through the default exception
* handling system, call
*
*
*

signal(SIGILL, SIG_IGN)

* If the signal is then raised in a
* later part of the program:
*
* raise(SIGILL)
*
* the signal will be ignored.

*'Note: Care should be taken when using signal in a concurrent environment.
Although simultaneous access to the function is controlled through a semaphore,
the registration ofa function with the same signal number, for example by indepen­
dent parallel processes overrides the previous value.

See also:

raise

72 TDS 34701 October 1992

2 Alphabetical list of functions

sin
Synopsis:

'include <math.h>
double sin(double x);

Arguments:

297

Calculates the sine of the argument.

double x

Results:

A number in radians.

Returns the sine of x in radians.

Errors:

None.

Description:

sin calculates the sine of a number (given in radians).

72 TDS 34701 october 1992

298

sinf
Synopsis:

#include <mathf.h>
float sinf(float x);

Arguments:

2 Alphabetical list of functions

Calculates the sine of a float number.

float x

Results:

A number in radians.

Returns the sine of x in radians.

Errors:

None.

Description:

float form of sin.

See also:

sin

72 TDS 347 01 October 1992

2 Alphabetical list of functions 299

sinh
Synopsis:

'include <math.h>
double sinh(double x);

Arguments:

Calculates the hyperbolic sine of the argument.

double x

Results:

A number.

Returns the hyperbolic sine of x or if a range error occurs returns HUGE VAL (with
the same sign as the correct value of the function). -

Errors:

A range error will occur if x is so large that sinh would result in an overflow. In this
case sinh returns the value HUGE VAL (with the same sign as the correct value
of the function) and errno is set toERANGE.

Description:

sinh calculates the hyperbolic sine of a number.

72 TDS 347 01 october 1992

300

sinhf
Synopsis:

'include <mathf.h>
float sinhf(float x);

Arguments:

2 Alphabetical list of functions

Calculates the hyperbolic sine of a float number.

float x

Results:

A number.

Returns the hyperbolic sine of x or if a range error occurs returns HUGE VAL F
(with the same sign as the correct value of the function). - -

Errors:

A range error will occur if x is so large that sinhf would result in an overflow. In
this case sinhf returns the value HUGE VAL F (with the same sign as the correct
value of the function) and errno is setlo ERANGE.

Description:

float form of sinh.

See also:

sinh

72 TDS 347 01 October 1992

2 Alphabetical list of functions 301

sprintf Writes a formatted string to another string.

Synopsis:

#include <stdio.h>
int sprintf(char *s, const char * format , ...);

Arguments:

char *s A string that the output is written to.
const char *format A format string.

Subsequent arguments to the format string.

Results:

Returns the number of characters written, excluding the string terminating charac­
ter.

Errors:

None.

Description:

sprintfwrites the string pointed to by format to s. When sprintf encounters
a percent sign (%) in the format string, it expands the equivalent argument into the
format defined by the tokens after the %.

For the interpretation of the format string see the description of fprintf.

Each token acts on the equivalent argument, that is, the third token relates to the
third argument after the format string. There must be a single argument for each
token. If the token or its equivalent argument is invalid, the behavior is undefined.

To use sprintf in the reduced library include the header file stdiored. h.

See also:

fprintf

72T05 34701 October 1992

302

sqrt
Synopsis:

#include <math.h>
double sqrt(double x);

Arguments:

2 Alphabetical list of functions

Calculates the square root of the argument.

double x

Results:

A number.

Returns the non-negative square root of x or zero (0.0) on domain error.

Errors:

A domain error will occur if x is negative. In this case errno is set to EDOM.

Description:

sqrt calculates the square root of a number.

72 TDS 34701 October 1992

2 Alphabetical list of functions 303

sqrtf
Synopsis:

'include <mathf.h>
float sqrtf(float x);

Arguments:

Calculates the square root of the float argument.

float x

Results:

A number.

Returns the non-negative square root of x or zero (O.OF) on domain error.

Errors:

A domain error will occur if x is negative. In this case errno is set to EDOM.

Description:

float form of sqrt.

See also:

sqrt

72TDS 347 01 October 1992

304

srand

Synopsis:

2 Alphabetical list of functions

Sets the seed for pseudo-random numbers generated by rand.

'include <stdlib.h>
void srand(unsigned int seed);

Arguments:

unsigned int seed

Results:

No value is returned.

Errors:

None.

The new seed to be used by rand.

Description:

srand causes rand to be seeded with the value seed. Subsequent calls to rand
will start a newsequence ofpseudo-random numbers. Ifsrand is called again with
the same value of seed the random number sequence will be repeated.

If rand is called before any calls to srand have been made the effect will be the
same as if srand had been called with a seed value of 1.

Care should be taken in parallel environments where concurrent calls to srandwill
reseed all calls to rand, not just those in the calling process.

See also:

rand

72TDS 34701 Oclober1992

2 Alphabetical list of functions

sscanf

Synopsis:

305

Reads formatted data from a string.

#include <stdio.h>
int sscanf(const char ·s, const char *format , ...);

Arguments:

const char *s The string the data is read from.
const char *format A format string.

Subsequent arguments to the format string.

Results:

Returns the number of inputs which have been successfully converted. If a string
terminating character occurred before any conversions took place, sscanf
returns EOF.

Errors:

If a string terminating character occurred before any conversions took place,
sscanf returns EOF. Other failures cause termination of the procedure.

Description:

sscanf matches the data read from the string s to the specifications set out by the
format string. See fscanf for a description of the format string.

Each token acts on the equivalent argument, that is, the third token relates to the
third argument after the format string. There must be asingle conversion sequence
received for each token. If the token is invalid, the behavior is undefined. Any mis­
match between the token format and the data received causes an early termination
of sscanf.

To use sscanf in the reduced library include the header file stdiored. h.

See also:

fscanf

72TDS 347 01 October 1992

306

strcat
Synopsis:

2 Alphabetical list of functions

Appends one string to another.

#include <string.h>
char *strcat(char *sl, const char *s2);

Arguments:

char *sl
const char *s2

Results:

A pointer to the string to be extended.
A pointer to the string to be appended.

Returns the unchanged value of sl.

Errors:

None.

Description:

strcat appends the string pointed to by s2 (including the null terminating charac­
ter) onto the end of the string pointed to by sl. The first character of s2 overwrites
the null terminating character of sl.

The string pointed to be sl must be large enough to accept the extra characters
from s2.

See also:

strncat

72TDS 34701 October 1992

2 Alphabetical list of functions 307

strchr

Synopsis:

Finds the first occurrence of a character in a string.

#include <string.h>
char *strchr(const char *s, int c);

Arguments:

const char *s
int c

Results:

A pointer to the string to be searched.
The character to be searched for.

If the character is found, strchr returns a pointer to the matched character. It
returns a NULL pointer if the character c is not in the string.

Errors:

None.

Description:

strchr finds the first occurrence of c in the string pointed to by s. The search
includes the null terminating character. c is converted to a char before the search
begins.

strchr is side effect free.

Example:

char string[12] = "fdakjrejnij";
char *nyointer;

n-pointer = strchr(string, 'n');

See also:

memchr strpbrk strrchr

72 TDS 347 01 October 1992

308

strcmp

Synopsis:

2 Alphabetical list of functions

Compares two strings.

'include <string.h>
int strcmp(const char *sl, const char *s2);

Arguments:

const char *sl
const char *s2

Results:

A pointer to one of the strings to be compared.
A pointer to the other string to be compared.

Returns the following:

A negative integer if the sl string is numerically less than the s2 string.

A zero value if the two strings are numerically the same.

A positive integer if the s 1 string is numerically greater than the s2 string.

Errors:

None.

Description:

strcmp compares the two strings pointed to by sl and s2. The comparison is of
the numerical values of the ASCII characters.

strcmp is side effect free.

See also:

memcmp strcoll strncmp

72 TDS 34701 October 1992

2 Alphabetical list of functions 309

strcoll Compares two strings (transformed according to the program's

locale).

Synopsis:

'include <string.h>
int strcoll(const char *sl, const char *s2);

Arguments:

const char *sl
const char *s2

Results:

A pointer to one of the strings to be compared.
A pointer to the other string to be compared.

Returns the following :

A negative integer if the sl string is numerically less than the s2 string.

A zero value if the two strings are numerically the same.

A positive integer if the sl string is numerically greater than the s2 string.

Errors:

None.

Description:

strcoll compares the two strings pointed to by sl and s2. Before comparison
takes place the two strings are transformed according to the LC COLLATE cate­
gory of the program's locale. Since the only permissible locale in the current imple­
mentation is "C", strcoll is equivalent to strcmp.

The string comparison is of the characters' numerical ASCII codes.

strcoll is side effect free.

See also:

memcmp strcmp strncmp

72TDS 347 01 October 1992

310

strcpy
Synopsis:

2 Alphabetical list of functions

Copies a string into an array.

#include <string.h>
char *strcpy(char *sl, const char *s2);

Arguments:

char *sl
const char *s2

Results:

A pointer to the array used as the copy destination.
A pointer to the string used as the copy source.

Returns the unchanged value of sl.

Errors:

The behavior of strcpy is undefined if the source and destination overlap.

Description:

strcpy copies the source string (pointed to by s2) into the destination string
(pointed to by sl). The copy includes the null terminating character. The behavior
of strcpy is undefined if the source and destination overlap.

A call to strcpy will be transformed into a call to memcpy provided that:

The header file <string. h> has been included in the source.

2 The actual argument corresponding to the formal argument s2 is a string
literal.

This call to memcpy may subsequently be compiled inline.

See also:

memcpy strncpy

72T08 347 01 October 1992

2 Alphabetical list of functions 311

s trcspn Counts the number of characters at the start of a string which do

not match any of the characters in another string.

Synopsis:

#include <string.h>
size_t strcspn(const char *sl, const char *s2);

Arguments:

const char *sl
const char *s2

Results:

A pointer to the string to be measured.
A pointer to the string containing the characters to be
checked. .

Returns the length of the unmatched segment.

Errors:

None.

Description:

strcspn counts the number of characters at the start of the string pointed to by
sl which are not in the string pointed to by s2. As soon as strcspn finds a charac­
ter present in both strings it stops and returns the number of characters counted.

The null terminating character is not considered to be part of the s2 string.

strcspn is side effect free.

Example:

'include <stdio.h>
'include <string.h>

'* Print string up to any numeric characters. *'

int main()
{

char *dec string = "1234567890";
char *given string = "Hello there 123hello";
size_t no_chars;

no chars = strcspn(given string, dec_string);
given string[no chars] =-'\0';
puts (given string);
'* prints "Hello there" *'

}

See also:

strspn strtok

72TDS 34701 October 1992

312

strerror

Synopsis:

2 Alphabetical list of functions

Maps an error number to an error message string.

#include <string.h>
char *strerror(int errnum);

Arguments:

int errnum

Results:

The error number to be converted.

Returns a pointer to the error message string.

Errors:

None.

Description:

strerror generates one of the following error messages according to the value
of errnum:

Value of errnum Message

EDOM EDOM • function argument out of range

ERANGE ERANGE • function result not representable

ESIGNUM ESIGNUM • illegal signal number to signal()

EIO EIO • error in low level server I/O

EFILPOS EFILPOS • error in file positioning functions

0 No error (errno =0)

If errnum is not one of the above values the following error is generated:

Error code <errno> <errnum> has no associated message

where: <errnum> is the value passed to strerror.

Note: Care should be taken when calling strerror in a concurrent environment.
Calls to the function by independently executing, unsynchronized processes may
corrupt the returned error string.

See also:

perror

72 TDS 34701 October 1992

2 Alphabetical list of functions 313

strftime
string.

Synopsis:

Does a formatted conversion of a broken-down time to a

'include <time.h>
size t strftime(char *s, size t maxsize,

- const char *f~rmat,
const struct tm *timeptr);

Arguments:

char *s A pointer to the string where the formatted
string is written.

size t maxsize The maximum number of characters to be
written into the string.

const char *format A pointer to the fomlat string.
const struct tm *timeptr A pointer to a broken-down time.

Results:

If the number of characters written is less than maxsize, strftime returns the
number of characters written (not including the null terminating character). other­
wise strftime returns zero (0).

Errors:

If the number of characters to be written exceeds maxsize, strftime returns
zero, and the contents of the string pointed to by s are undefined.

Description:

s trftime is used to convert the values in a broken-down time structure accord­
ing to the demands of a format string, and to write the resulting string to a string.
The format string consists of ordinary characters and tokens. Normal characters
are written directly to s, and tokens are expanded. Tokens are single characters,
preceded by the percent character '%'.

72 TDS 347 01 October 1992

314 2 Alphabetical list of functions

Token Meaning

%a Abbreviated day

%A Full day
%b Abbreviated month

%8 Full month

%c Date and time

%d Day of the month as a decimal number.

%H Hours using twenty-four hour clock.

% Hours using twelve hour clock.

%j Day of the year.

%m Month as a decimal number.

%M Minutes.

%p AM orPM.

%S Seconds.

%U Week number, counting Sunday as first day
of week one.

%w Day of week, counting from Sunday.

%W Week number, counting Monday as first day

%x Date in default format.

%X Time in default format.

%y Year without century.

%Y Year with century.

%Z Time zone if one exists.

%% '%'.

72 lDS 34701

Range

(Mon - Sun).
(Monday - Sunday).

(Jan - Dec).

(January - December).

(e.g. Sun Jul 23
11 :27:32 1989).
01- 31

00-23

01-12

001 - 366

01-12

00 -59

00 -61

00 - 53.

0-6

00 - 53.
(e.g. Sun Jul23 1989).

(e.g. 11 :27:32).

00-99
e.g. 1989

October 1992

2 Alphabetical list of functions

Example:

'include <stdio.h>
'include <time.h>

/* Display the day in different ways */

int main (void)
(

char day line[300];
struct tin *bdt;
time_t current;

time ('current);
bdt = localtime('current);
strftime (day line, 300,

"Different days are %a, %A, %j, %d, %w",
bdt);

printf(day_line);

See also:

asctime ctime localtime clock difftime mktime time

315

72 TDS 34701 October 1992

316

strlen
Synopsis:

'include <string.h>
size_t strlen(const char *s);

Arguments:

2 Alphabetical list of functions

Calculates the length of a string.

const char *s

Results:

A pointer to the string to be measured.

Returns the length of the string (excluding the null terminating character).

Errors:

None.

Description:

strlen counts the number of characters in the string up to, but not including, the
null terminating character.

s trlen is side effect free.

Example:

char *string = "String to be measured";
size_t result;

result = strlen(string);

/*
Gives a result of 21

*/

72TDS 347 01 October 1992

2 Alphabetical list of functions 317

s trncat Appends one string onto another (up to a maximum number of

characters).

Synopsis:

#include <string.h>
char *strncat(char *sl, const char *s2, size_t n)i

Arguments:

char *sl
const char *s2
size t n

Results:

A pointer to the string to be extended.
A pointer to the string to be appended.
The maximum number of characters to be appended.

Returns the unchanged value of sl.

Errors:

None.

Description:

strncat copies a maximum of n characters from the string pointed to by s2 onto
the end of the string pointed to by sl. The first character of s2 overwrites the null
terminating character of sl. A null terminating character is appended to the end
of the result.

The string pointed to be sl must be large enough to accept the extra characters
from s2.

See also:

strcat

72 TDS 347 01 October 1992

318

strncmp

Synopsis:

2 Alphabetical list of functions

Compares the first n characters of two strings.

#include <string.h>
int strncmp(const char *sl, const char *s2, size t n);

Arguments:

const char *sl
const char *s2
size t n

Results:

A pointer to one of the strings to be compared.
A pointer to the other string to be compared.
The maximum number of characters to be compared.

Returns the following:

A negative integer if the sl string is numerically less than the s2 string.

A zero value if the two strings are numerically the same.

A positive integer if the sl string is numerically greater than the s2 string.

Errors:

None.

Description:

strncmp compares up to the first n characters of the strings pointed to by s 1 and
s2. The comparison is of the numerical values of the ASCII characters.

strncmp is side effect free.

Example:

/*
Compares two strings

*/

char stringl[50] , string2[50];
int result;

strcpy(stringl, "Text");
strcpy(string2, "Textual difference");
result = strncmp(stringl, string2, 4);

/*
strncmp returns 0
*/

See also:

memcmp strcmp strcoll strncmp

72 TDS 34701 October 1992

2 Alphabetical list of functions 319

strncpy
characters).

Synopsis:

Copies a string into an array (to a maximum number of

#include <string.h>
char *strncpy(char *sl, const char *s2, size_t n);

Arguments:

char *sl
const char *s2
size t n

Results:

A pointer to the array used as the copy destination.
A pointer to the string used as the copy source.
The maximum number of characters to be copied.

Returns the unchanged value of sl.

Errors:

The behavior of strncpy is undefined if the source and destination overlap.

Description:

strncpy copies up to n characters from the source string (pointed to by s2) into
the destination array (pointed to by sl). The behavior of strncpy is undefined if
the source and destination overlap.

If the source string is less than n characters long, the extra spaces in the destina­
tion array will be filled with null characters.

See also:

strcpy

72TDS 347 01 october 1992

320 2 Alphabetical list of functions

strpbrk Finds the first character in one string present in another string.

Synopsis:

#include <string.h>
char *strpbrk(const char *sl, const char *s2);

Arguments:

const char *sl
const char *s2

Results:

A pointer to the string to be searched.
A pointer to the string containing the characters to be
searched for.

Returns a pointer to the first character found in both strings. If none of the charac­
ters in the s2 string occur in the sl string, strpbrk returns a NULL pointer.

Errors:

None.

Description:

strpbrk finds the first character in the string pointed to by sl which is also con­
tained within the string pointed to by s2.

strpbrk i~ side effect free.

Example:

/* Return a pointer to the first occurrence of
'r', 'c', or 'm', */

'include <stdio.h>
'include <string.h>

int mainO
{

char *string = "The Inmos C Compiler";
char *result;

result = strpbrk(string, "rem");
printf("%s\n", result);

/* result = "mos C Compiler" */

See also:

strchr strrchr

72TDS 34701 October 1992

2 Alphabetical list of functions 321

strrchr
Synopsis:

Finds the last occurrence of a given character in a string.

#include <string.h>
char *strrchr(const char *s, int c);

Arguments:

const char *s
int c

Results:

A pointer to the string to be searched.
The character to be searched for.

Returns a pointer to the last occurrence of the character.

Errors:

Returns NULL if c does not occur in the string.

Description:

strchr finds the last occurrence of c in the string pointed to by s. The search
includes the null terminating character. c is converted to a char before the search
begins.

strrchr is side effect free.

Example:

/* Finds the last time that '9' occurs in a string */

'include <stdio.h>
'include <string.h>

int main ()
(

char *string = "9 times 9 = 81";
char *result;

result = strrchr(string, '9');
printf("%s\n", result);
/* result = "9 = 81" */

}

See also:

strpbrk strchr

72 TDS 347 01 october 1992

322 2 Alphabetical list of functions

s trspn Counts the nurrlber of characters at the start of a string which

are also in another string.

Synopsis:

#include <string.h>
size_t strspn(const char *sl, const char *s2);

Arguments:

const char *sl
const char *s2

Results:

A pointer to the string to be measured.
A pointer to the string containing the characters to be
searched for.

Returns the length of the matched segment.

Errors:

None.

Description:

strspn counts the characters at the start of the string pointed to by sl which are
also present in the string pointed to by s2. As soon as strspn finds a character
in the first string which is not present in the second string, it stops and returns the
number of characters counted.

strspn is side effect free.

Example:

'include <string.h>
'include <stdio.h>

int main (void)
{

char *string = "cracking";
size_t result;

result = strspn(string, "arc");
printf("%d\n", result);
/* 4 in this case */

}

See also:

strcspn strtok

72 lDS 347 01 October 1992

2 Alphabetical list of functions 323

strstr
Synopsis:

Finds the first occurrence of one string in another.

'include <string.h>
char *strstr(const char *sl, const char *s2);

Arguments:

const char *sl
const char *s2

Results:

A pointer to the string to be searched.
A pointer to the string to be searched for.

Returns a pointer to the string in sl, iffound. If s2 points to a string of zero length,
the function returns sl. If the s2 string does not occur within the sl string the func­
tion returns NULL.

Errors:

None.

Description:

strstr finds the first occurrence of the s2 string (excluding the null terminating
character) in the sl string.

strstr is side effect free.

Example:

'include <string.h>
'include <stdio.h>

int main ()

char *stringl = "string to be searched";
char *string2 = "sea";

printf("%s\n", strstr(stringl, string2»;

/* Displays "searched" */

See also:

strpbrk strspn

72 TDS 34701 October 1992

324 2 Alphabetical list of functions

s trtod Converts the initial part of a string to a double and saves a pointer

to the rest of the string.

Synopsis:

#include <stdlib.h>
double strtod(const char *nptr, char **endptr);

Arguments:

cons t char *nptr A pointer to the string to be converted.
char **endptr A pointer to the object which is to receive a pointer to

the rest of the string.

Results:

Returns the converted value ifthe conversion is successful.lfno conversion is pos­
sible or underflow occurs, strtod returns zero. HUGE_VAL is returned if overflow
occurs.

Errors:

If the result would cause overflow, errno is set to ERANGE and the value
HUGE VAL is returned. If the result would cause underflow, errno is set to ERANGE
and zero is returned.

Description:

strtod converts the initial part of the string pointed to by nptr to a number repre­
sented as a double. strtod expects the string to consist of the following
sequence:

1. Leading white space (optional).
2. A plus or minus sign (optional).
3. A sequence of decimal digits, which may contain a decimal point.
4. An exponent (optional) consisting of an 'E' or 'e' followed by an optional

sign and a string of decimal digits.
5. One or nlore unrecognized characters (including the null string

ternlinating character).

strtod ignores the leading white space, and converts all the recognized charac­
ters. If there is no decimal point or exponent part in the string, a decimal point is
assumed after the last digit in the string.

The string is invalid if the 'first non-space character in the string is not one of the
following characters:

+-.0123456789

If endptr is not NULL, and the conversion took place, a pointer to the unrecog­
nized part of the string is stored in the object pointed to by endptr. If conversion
did not take place, the location is set to the value of nptr.

72 TDS 347 01 October 1992

2 Alphabetical list of functions

Example:

'include <stdio.h>
'include <stdlib.h>

int main ()
{
char *array = "97824.3E+4Goodbye";
char *number end;
double x; -

x = strtod(array, &number end);
printf("strtod gives %f\n", x);
printf("Number ended at %s\n", number end);

} -

/*
Prints:

strtod gives 978243000.000000
Number ended at Goodbye

*/

See also:

atof atoi atol strtol

72 TDS 347 01

325

October 1992

326

strtok
Synopsis:

2 Alphabetical list of functions

Converts a delimited string into a series of string tokens.

'include <strinq.h>
char *strtok(char *sl, const char *s2);

A~guments:

char *sl
const char *s2

Results:

A pointer to the string to be broken up or a NULL pointer.
A pointer to the delimiter string.

Returns a pointer to the first character of a token. A NULL pointer is returned if no
token is found.

Errors:

None.

Description:

strtok is used to break up the string pointed to by sI into separate strings. The
input string is assumed to consist ofa series of tokens separated from one another
by one of the characters in the delimiter string pointed to by s2.

When strtok is first called, each character in the string pointed to by sI is
checked to see if it is also present in the delimiting string pointed to by s2. strtok
recognizes the first character which is not in the delimiter string as the start of the
first token. If no such character is found it is assumed that there are no tokens in
sI, and strtok returns a NULL pointer.

Having found the start of a token, the strtok function searches for the end of the
token, represented by a character present in the delimiting string. Ifsuch a charac­
ter is found, it is overwritten with the null terminating character and strtok saves
a pointer to the following character for use in asubsequent call. If no such character
is found the token extends to the end of the string. strtok returns a pointer to the
first character of the token.

The next token from the string is extracted by calling strtok with a NULL pointer
as the first argument. This causes strtok to use the pointer saved during the pre­
vious execution.

Note: Care should be taken when calling s trtok in a concurrent environment.
Calls to the function by independently executing, unsynchronized processes
change the pointer saved internally by strtok in an unpredictable way and may
produce unexpected results.

72 TOS 34701 October 1992

2 Alphabetical list of functions

Example:

'include <stdio.h>
'include <string.h>

int main ()
(

char *string = "StringAof things,to"beAsplit";
char *token;

token = strtok(string, "A ,");
while (token != NULL)
(

printf("Token found = %s\n", token);
token = strtok(NULL, "A ,");

/*
* Gives the output:
* Token found = String
* Token found = of
* Token found = things
* Token found = to
* Token found = be
* Token found = split
*/

72TDS 347 01

327

October 1992

328 2 Alphabetical list of functions

s trtol Converts the initial part of a string to a long int and saves a

pointer to the rest of the string.

Synopsis:

#include <stdlib.h>
long int strtol(const char *nptr,

char **endptr, int base);

Arguments:

const char *nptr A pointer to the string to be converted.
char **endptr A pointer to the object which is to receive a pointer to

the rest of the string.
int base The radix representation 0f the integer string to be

converted .r

Results:

Returns the converted value ifthe conversion is successful.lfno conversion is pos­
sible, strtol returns zero. If the result would cause overflow the value LONG MAX
or LONG_MIN is returned (depending on the sign of the result). -

Errors:

If the result would cause overflow the value LONG MAX or LONG MIN is returned
(depending on the sign of the result), and errno 15 set to ERANGE.

Description:

strtol converts the initial part of the string pointed to by nptr to a long integer.
strtol expects the string to consist of the following:

1. Leading white space (optional).
2. A plus or minus sign (optional).
3. An octal '0' or hexadecimal 'Ox' or 'OX' prefix (optional).
4. A sequence ofdigits within the range ofthe appropriate base. The letters

'a'to 'z', and '1\ to 'l' may be used to represent the values 10 to 35. For
example, if base is set to 18, the characters for the values 0 to 17 CO' to
'9' and 'a' to 'h' or '1\ to 'H') are permitted.

5. One or more unrecognized characters (including the null string
terminating character).

strtol ignores leading blanks, and converts all recognized characters. The string
is invalid if the first non-space character in the string is not a sign, an octal or hexa­
decimal prefix, or one of the permitted characters.

If endptr is not NULL, and the conversion took place, a pointer to the rest of the
string is stored in the location pointed to byendptr. If no conversion was possible.
and endptr is not NULL, the value of nptr is stored in that location.

72 TOS 34701 October 1992

2 Alphabetical list of functions

Example:

'include <stdio.h>
'include <stdlib.h>

int main ()
(

char *array = "12345abcGoodbye";
char *number end;
int base; -
long 1;

for (base = 2; base < 12; base += 3)
(

1 = strtol(array, 'number end, base);
printf("base = %d, strtol-gives %ld\n",

base, 1);
printf("Number ended at %s\n\n", number_end);

/* Prints base = 2, strtol gives 1
* Number ended at 2345abcGoodbye
*
*
* base = 5, strtol gives 194
* Number ended at 5abcGoodbye
*
*
* base = 8, strtol gives 5349
* Number ended at abcGoodbye
*
*
* base = 11, strtol gives 194875
* Number ended at bcGoodbye
*/

See also:

atoi atol strtod strtoul

72TDS 347 01

329

October 1992

330 2 Alphabetical list of functions

strtoul Converts the initial part of a string to an unsigned long int

and saves a pointer to the rest of the string.

Synopsis:

#include <stdlib.h>
unsigned long int strtoul(const char *nptr,

char **endptr, int base);

Arguments:

const char *nptr A pointer to the string to be converted.
char **endptr A pointer to the location which is to receive a pointer to

the rest of the string.
int base The radix representation of the integer string to be

converted.

Results:

Returns the converted value ifthe conversion is successful. Ifno conversion is pos­
sible, strtoul returns zero. If the result would cause overflow the value
ULONG MA}{ is returned.

Errors:

If the result would cause overflow the value ULONG MAX is returned and errno is
set to ERANGE. -

Description:

strtoul converts the initial part of the string pointed to by nptr to an unsigned
long into strtoul expects the string to consist of the following:

1. Leading white space (optional).
2. An octal '0' or hexadecimal 'Ox' or 'OX' prefix (optional).
3. A sequence ofdigits within the range ofthe appropriate base. The letters

'a'to 'z', and'N to 'l' may be used to represent the values 10 to 35. For
exanlple, if base is set to 18, the characters for the values 0 to 17 ('O' to
'9' and 'a' to 'h' or 'N to 'H') are permitted.

4. One or more unrecognized characters (including the null string
terminating character).

strtoul ignores the leading white space, and converts all the recognized charac­
ters. The string is invalid if the first non-space character in the string is not an octal
or hexadecimal prefix, or one of the permitted characters (signs are not permitted).
If endptr is not NULL, and the conversion took place, a pointer to the rest of the
string is stored in the location pointed to byendptr. If no conversion was possible,
and endptr is not NULL, the value of nptr is stored in that location.

See also:

atoi atol strtod strtol

72 TDS 34701 October 1992

2 Alphabetical list of functions 331

s trxfrm Transforms a string according to the locale and copies it into an

array (up to a maximum number of characters).

Synopsis:

'include <string.h>
size_t strxfrm(char *sl, const char ·s2, size_t n) ;

Arguments:

char *sl
const char ·s2
size t n

Results:

A pointer to the array used as the copy destination.
A pointer to the string used as the copy source.
The maximum number of characters to be copied.

strxfrm returns the length of the transformed string.

Errors:

None.

Description:

strxfrm copies up to n characters from the source string (pointed to by s2) into
the destination array (pointed to by sl), after transforming the source string
according to the program's locale. Since the only permissible locale is "e",
strxfrm is equivalent to strncpy. The behavior of strxfrm is undefined if the
source and destination overlap.

Ifn is zero then sl may be aNULL pointer, in which case strxfrm returns the num­
ber of characters in the transformed string.

If the source string is less than n characters long, the extra spaces in the destina­
tion array will be filled with null characters.

Because "e" is the only locale supported by this implementation, the behavior of
strxfrm resembles that of a less efficient strncpy.

See also:

strncpy

72 TDS 34701 October 1992

332

system

Synopsis:

2 Alphabetical list of functions

Passes a command to host operating system for execution.

#include <stdlib.h>
int system(const char *string);

Arguments:

const char *string A pointer to the string to be passed to the host.

Results:

If string is a NULL pointer, system returns a non-zero value if a command pro­
cessor exists or zero otherwise. If string is not a NULL pointer system returns
the return value of the command which is host-defined.

Errors:

None.

Description:

system passes the string pointed to by string to the host environment to be
executed by a command processor. string can be any command defined on the
host system, but should not be a command which causes the transputer to be re­
booted as this would overwrite the program executing the call.

If string is a NULL pointer the call to system is an enquiry as to whether there
is a command processor.

The mode of execution of the command is defined by the host system.

Use of system in the reduced library always returns 0as there is no command pro­
cessor available in this case.

Note: Issuing a command that boots a program onto the transputer running the
current program causes the program to fail by overwriting the memory.

72 TDS 34701 October 1992

2 Alphabetical list of functions

tan
Synopsis:

#include <math.h>
double tan (double x);

Arguments:

333

Calculates the tangent of the argument.

double x

Results:

A number in radians.

Returns the tangent of x in radians.

Errors:

None.

Description:

tan calculates the tangent of a number (given in radians).

See also:

tanf

72TDS 34701 October 1992

334

tanf
Synopsis:

'include <mathf.h>
float tanf(float x);

Arguments:

2 Alphabetical list of functions

Calculates the tangent of a float number.

float x

Results:

Returns the tangent ofx.

Errors:

None.

Description:

float form of tan.

See also:

tan

72 TDS 34701

A number in radians.

October 1992

2 Alphabetical list of functions 335

tanh
Synopsis:

Calculates the hyperbolic tangent of the argument.

'include <math.h>
double tanh(double x);

Arguments:

double x

Results:

A number.

Returns the hyperbolic tangent of x.

Errors:

None.

Description:

tanh calculates the hyperbolic tangent of a number.

See also:

tanhf

72TDS 34701 October 1992

336

tanhf

2 Alphabetical list of func'lions

Calculates the hyperbolic tangent of a float number.

Synopsis:

#include <mathf.h>
float tanhf(float x);

Arguments:

float x

Results:

A number.

Returns the hyperbolic tangent of x.

Errors:

None.

Description:

float form of tanh.

See also:

tanh.

72TDS 347 01 october 1992

2 Alphabetical list of functions

time

Synopsis:

'include <time.h>
time_t time(time_t *timer);

Arguments:

337

Reads the current time.

time t *timer

Results:

A pointer to an object where the current time can be
stored.

Returns the value of the current time. If the current time is not available, time
returns -1, cast to time_ t.

Errors:

time returns (time_t)-1, if the current time is not available.

Description:

time returns the closest possible approximation to the current time, and loads it
into the location pointed to by timer, unless timer is NULL.

time always returns -1 in the reduced library since there is no access to the cur­
rent time in this case.

See also:

asctime ctime localtime strftime clock difftime mktime

72 lDS 347 01 October 1992

338

tmpfile
Synopsis:

'include <stdio.h>
FILE *tmpfile(void);

Arguments:

None.

Results:

2 Alphabetical list of functions

Creates a temporary binary file.

Returns a pointer to the newly created file stream, or a NULL pointer if the file could
not be created.

Errors:

Returns a NULL pointer if the 'file cannot be created.

Description:

tmpfile attempts to create a temporary binary file in the current directory. If the
file is successfully created it is opened for update, that is, in mode Jlwb+JI

• The file
will automatically be removed when the program terminates or the temporary file
is expl icitly closed.

tmpfile is not included in the reduced library.

See also:

tmpnam

72TDS 347 01 October 1992

2 Alphabetical list of 'functions

tmpnam
Synopsis:

'include <stdio.h>
char *tmpnam(char *s);

Arguments:

339

Creates a unique filename.

char *s

Results:

A pointer to the destination string for the filename.

If s is a NULL pointer, tmpnam returns a pointer to an internal object containing the
new filename. Otherwise the new filename is put in the string pointed to by s, and
tmpnam returns the unchanged value s. In this case s must point to an array of at
least L_ tmpnam characters.

Errors:

The effect of calling tmpnam more than TMP_MAX times is undefined.

Description:

tmpnam creates a unique filename (that is, one which does not match any existing
filename) in the current directory. A different string is created each time tmpnam
is called. tmpnam may be called up to TMP_MAX times.

Note: Care should be taken when calling tmpnam in a concurrent environment.
Calls to the function by independently executing, unsynchronized processes may
corrupt the returned file pointer.

tmpnam is not included in the reduced library.

See also:

tmpfile

72 TDS 34701 October 1992

340

to host link
Synopsis:

'include <hostlink.h>
Channel* to_host_link(void)

Arguments:

None.

Results:

2 Alphabetical list of functions

Retrieve the channel going to the host.

Returns a pointer to the channel going to the host.

Errors:

None.

Description:

to_host_link retrieves the channel going to the host.

Note: that the link overwhich communication with the host occurs need not neces­
sarily be the same link as the one from which the transputer was booted.

This function is intended for use with dynamic code loading; care should be taken
if it is used elsewhere.

to_host_link is not in the reduced library.

See also:

72 TDS 347 01 October 1992

2 Alphabetical list of functions 341

to86 Transfers transputer memory to the host. MS-DOS only.

Synopsis:r

#include <dos.h>
int to86(int len, char *here, pcpointer there);

Arguments:

int len

char *here
pcpointer there

Results:

The number of bytes of transputer memory to be
transferred.
A pointer to the transputer memory block.
A pointer to the host memory block.

Returns the actual number of bytes transferred.

Errors:

Returns the nUITlber of bytes transferred until the error occurred and sets errno
to the value EDOS. Any attempt to use to86 on operating systems other than MS­
DOS also sets errno to EDOS. Failure ofthe function may also generate the follow­
ing server error message:

[Encountered unknown primary tag (50)]

Description:

to86 transfers len bytes of transputer memory starling at here to a correspond­
ing block starting at there in host memory. The 'function returns the number of
bytes actually transferred. The host memory block used will normally have been
previously allocated by a call to alloc86.

to86 is not included in the reduced library.

See also:

from86 alloc86

72 TDS 34701 October 1992

342

tolower
Synopsis:

2 Alphabetical list of functions

Converts upper-case letter to its lower-case equivalent.

'include <ctype.h>
int tolower(int c);

Arguments:

int c

Results:

The character to be converted.

Returns the lower-case equivalent of the given character. If the given character is
not an upper-case letter it is returned unchanged.

Errors:

None.

Description:

tolower converts the character c to its lower-case equivalent. Ifc is not an upper­
case letter it is not converted. Valid upper-case letters are ASCII characters in the
range '1\ to 'Z'.

tolower is side effect free.

See also:

toupper

72TDS 34701 October 1992

2 Alphabetical list of functions 343

toupper
Synopsis:

Converts lower-case letter to its upper-case equivalent.

#include <ctype.h>
int toupper(int c);

Arguments:

int c

Results:

The character to be converted.

Returns the upper-case equivalent of the given character. If the given character is
not a lower-case letter it is returned unchanged.

Errors:

None.

Description:

toupper converts the character c to its upper-case equivalent. If c is not a lower­
case letter, it is not converted. Valid lower-case letters are ASCII characters in the
range 'a' to 'z'.

toupper is side effect free.

See also:

tolower

72TDS 34701 October 1992

Pushes a character back onto a file stream.

344

ungetc
Synopsis:

#include <stdio.h>
int ungetc(int c, FILE *stream);

Arguments:

2 Alphabetical list of functions

int c
FILE *stream

The character to be pushed back.
A pointer to a file stream.

Results:

Returns the pushed back character if successful, or EOF if unsuccessful.

Errors:

Returns EOF if unsuccessful.

Description:

ungetc converts c to an unsigned char and pushes it back onto the input stream
pointed to by stream. The next use ofany ofthe getc family offunctions will return
c unless a repositioning function has been called in between (fflush, fseek,
rewind or fsetpos). "

If ungetc is called nlore than once on the same stream without the file stream
being read in the meantime, the operation will fail.

ungetc is not included in the reduced library.

Example:

'include <stdio.h>
'include <ctype.h>

'** Function to read an integer.
* Leaves the next character to be read
* as the one immediately after the number.

*'
int get number ()
(-

int dec = 0;
int ch;

while(isdigit(ch = getc(stdin»)
dec = dec * 10 + ch - '0';

ungetc(ch,stdin);
return(dec);

}

See also:

fflushgetc

72TDS 34701 October 1992

2 Alphabetical list of functions

unlink

Synopsis:

#include <iocntrl.h>
int unlink(char *name);

Arguments:

345

Deletes a file.

char *name

Results:

The name of the file to be deleted.

Returns 0 if successful or -1 on error.

Errors:

If an error occurs unlink sets errno to the value EIO.

Description:

unlink deletes the file by removing the filename from the host 'file system. It is
equivalent to the ANSI library function remove.

unlink is not included in the reduced library.

See also:

remove

72 TDS 347 01 October 1992

346 2 Alphabetical list of functions

va_ arq Accesses a variable number of arguments in a function definition.

Synopsis:

#include <stdarg.h>
type va_arg(va_list ap, type);

Arguments:

va list ap
type

Results:

A pointer to a variable argument list.
Any C type.

va arg returns the value of the next argument in the variable argument list which
is assumed to have type type.

Errors:

If the type specified in va arg disagrees with the type of the next argument in the
argument list the effects are undefined.

If there is no next argument in the list, orthe next argument is a register variable,
an array type, or a function, the behavior is undefined. If the next argument is of
a type incompatible with the variable type after default promotions (see section
4.2.3), the following compile time error is generated:

Serious-icc-<filename>(linenumber) - illegal type used with va_arg

Description:

Each invocation ofva arg extracts a single argument value from a variable length
argument list. va argmust have been initialized by a previous call to va start.
The final use of~ arg should be followed by a call to va end to ensurea clean
termination. - -

va_arg can only be used when there is at least one fixed argument in the variable
length argument list.

va_arg is implemented as a macro.

72 TDS 34701 October 1992

2 Alphabetical list of functions

Example~

'include <stdio.h>
'include <stdarg.h>

/*
* Sends the number of strings defined in

number of strings,
* and given-in the parameter list,

to standard output.
*/

void var_string-print(int number_of_strings, ...)
(

va start(ap, number of strings);
while (number of strings-- > 0)

puts(va arg(ap, char *»;
va_end(ap);

int main ()
(

var_string-print(2, "Hello", "World");

/*
* Displays:
* Hello
* World
*/

See also:

va_end va_start vfprintf vprintf vsprintf

72 TDS 347 01

347

October 1992

348

va end

Synopsis:

'include <stdarg.h>
void va_end(va_list ap);

Arguments:

2 Alphabetical list of functions

Cleans up after accessing variable arguments.

A pointer to a variable argument list.

Results:

No value is returned.

Errors:

None.

Description:

va endtidies up afterthe use ofva start and va arg. Ifit is notused, abnormal
funCtion return may occur. - -

va end can only be used when there is at least one fixed argument in the variable
length argument list.

va_end is implemented as a macro.

See also:

72 TDS 347 01 October 1992

2 Alphabetical list of functions 349

va_s tart Initializes a pointer to a variable number of function arguments

in a function de'finition.

Synopsis:

'include <stdarg.h>
void va_start(va_list ap, parmN);

Arguments:

A pointer to a variable argument list.
The name of the last fixed argument in the function
definition.

Results:

No value is returned.

Errors:

IfparmN is declared as storage class register, as afunction orarray, or as atype
that is incompatible with the type of the variable after argument promotion, the
behavior is unde'fined.

Description:

va start is used in conjunction with va arg and va end. It initializes ap for fur­
theruse by va arg. va start can onlybe used when there is at least one fixed
argument in the variablelength argument list.

va_start is implemented as a macro.

See also:

72TDS 34701 October 1992

350 2 Alphabetical list of functions

vfprintf An alternative form of fprintf. Which accepts a variable

argument list in va_list form.

Synopsis:

#include <stdio.h>
int vfprintf(FILE *stream, const char *format ,

va_list arg);

Arguments:

FILE *stream An output file stream.
const char *format A format string.
va_list arg A pointer to a variable argument list, initialized by

va start.

Results:

Returns the number of characters written, or a negative value if an output error
occurs.

Errors:

Returns a negative value if an output error occurs.

Description:

vfprintf is a form of fprintf in which the variable arguments are replaced by
a pointer to a variable argument list. vfprintf should be preceded by a call to
va_start, and followed by a call to va_end.

vfprintf is not included in the reduced library.

See fprintf for a description of the format string.

72 TDS 34701 October 1992

2 Alphabetical list of functions

Example:

'include <stdio.h>
'include <stdarg.h>

void write file(FILE *stream, char *format , ...)
{ -

va_list apo;

va start(apo,format);
fputs ("WRITE FILE TEXT ", stream);
vfprintf(stream, format, apo);
va_end(apo);

int main()
{
FILE *stream;
int a = 10;
char *b = "string";

stream = fopen("newfile","w");
if (stream = NULL)

printf("Error opening file\n");
else
{

write file(stream, "%d, %s", a, b);
fclose(stream);

}
}

'* writes the string "WRITE FILE TEXT 10, string"
to the file newfile *' -

See also:

fprintf va_arg va_end va_start vprintf vsprintf

72TDS 347 01

351

October 1992

352 2 Alphabetical list of functions

vprintf An alternative form ofprintf. Which accepts a variable

argument list in the form of a va_list.

Synopsis:

#include <stdio.h>
int vprintf(const char *format, va_list arg);

Arguments:

const char *format A format string
va_list arg A pointer to a variable argument list, initialized by

va start.

Results:

Returns the number of characters written, or a negative value if an output error
occurred.

Errors:

vprintf returns a negative value if an output error occurs.

Description:

vprintf is a form ofprintf in which the variable arguments are replaced by a
pointer to a variable argument list. vprintf should be preceded by a call to
va_start, and followed by a call to va_end.

vprintf is not included in the reduced library.

See fprintf for a description of the format string.

See also:

printf va_arg va_start va_end vfprintf vsprintf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 353

vsprintf An alternative form of sprintf. Which accepts a variable

argument list in the form of a va_list.

Synopsis:

'include <stdio.h>
int vsprintf(char *s, const char *format ,

va_list arg) ;

Arguments:

const char *s
const char *format
va_list arq
va start.

Results:

The string to which the formatted string is written.
A format string.
A pointer to a variable argument list, initialized by

Returns the number of characters written.

Errors:

None.

Description:

vsprintf is a form of sprintf in which the variable arguments are replaced by
a pointer to a variable argument list. vsprintf should be preceded by a call to
va_start, and followed by a call to va_end.

To use vsprintf in the reduced library include the header file stdiored. h.

See fprintf for a description of the format string.

See also:

72TDS 34701 october 1992

354

wcstombs

2 Alphabetical list of 'functions

Converts wchar_t sequence to multibyte sequence.

Synopsis:

#include <stdlib.h>
size_t wcstombs(char *s, const wchar t *pwcs, size_t n);

Arguments:

char *s Pointer to the start of the array where the results will
be stored.

const wchar t *pwcs Pointer to the start of the wide character
sequence to be converted.

size t n The maximum number of bytes to be stored.

Results:

wcstombs returns the number of bytes modified, not including any terminating
zero codes or-1 on error.

Errors:

If an invalid code is encountered wcstombs returns (size_t) -1.

Description:

wcstombs converts a sequence ofwide-character codes into a sequence of multi­
byte characters. It acts like the wctomb function but takes as input an array of
codes and returns an array of characters.

Not more than n bytes are written into s. If the initial and receiving objects overlap,
the behavior is undefined.

Storage of a null character terminates the function.

72T08 34701 October 1992

2 Alphabetical list of functions 355

wctomb Converts type wchar_t to multibyte character.

Synopsis:

#include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

Arguments:

char *s

wchar t wchar

Results:

Pointer to the array object that will receive the
multibyte character.
Code of wide character to be converted.

If s is not a NULL pointer, wctomb returns the number of bytes in the multibyte char­
acter corresponding to wchar.

If s is a NULL pointer, wctomb returns zero. wctomb returns -1 on error.

The value returned cannot be greater than n or the value of MB_ CUR_ MAX.

Errors:

If wchar does not correspond to a valid multibyte character wctomb returns -1.

Description:

wctomb converts a wide-character code to a multibyte character to and stores the
result in the array pointed to by s. At most MB_COR_MAX characters are stored.

72 TDS 34701 october 1992

356

write
Synopsis:

2 Alphabetical list of functions

Writes bytes to a file. File handling primitive.

#include <iocntrl.h>
int write(int fd, char *buf, int n);

Arguments:

int fd
char *buf
int n

Results:

A file descriptor.
A pointer to a buffer from which the bytes are obtained.
The maximum number of bytes that write will attempt
to output.

Returns the number of bytes written or -1 on error.

Errors:

If an error occurs write sets errno to the value EIO.

Description:

write writes n bytes from the buffer pointed to by buf to the file specified by fd.
If n is zero or negative no output occurs.

wri te is not included in the reduced library.

See also:

read

72 TDS 347 01 October 1992

3 Modifying the runtime
startup system

This chapter describes a version of the C runtime startup code, supplied in source
form, which may be modified by users. It enables the runtime startup code to be
tailored for a particular application, removing procedures which are not required
and thereby reducing the runtime overhead. The supplied source code is 'fully
commented and should be read in conjunction with this document. Note: the sup­
plied source is only applicable to this release of the toolset (Dx314) and cannot be
guaranteed to work with future releases.

Only users who are knowledgeable about the implementation of ANSI C and are
familiar with the construction of C runtime systems in general, should attempt to
modify this code. It is intended as a means of tuning system performance and is
aimed at experienced users.

This chapter covers the following topics:

• A description of the runtime startup code and how it is built.

• Recompiling and linking modified runtime source code.

• An example of a modified runtime system together with the procedure to
build it.

The degree to which the supplied startup code is modified is at the user's discretion
and it is their responsibility to ensure that any procedures removed are truly redun­
dant to the application. A single library entry or whole sections of the startup code
may be removed e.g. the code to set up heap or stack checking or to initialize the
input/output (1/0) system.

3.1 Introduction

The runtime system supplied as source code and which is described here, is
designed for use in configured systems only. (A separate startup system is pro­
vided without source code for non-eonfigured programs). The configuration sys­
tem considers the C system entered via the runtime startup as a process. Thus,
within this chapter the current invocation of a C main program is referred to as the
'current process'.

The source which is shipped is the same as that used to create the runtime startup
system for configured systems, which is supplied as part of the standard library.
The code produces the c. ENTRYD and c. ENTRYD . RC entry points used via
cstartup . Ink or cstartrd.lnk for linking modules prior to configuration.

72TDS 347 01 October 1992

358 3.2 Overview of system

3.2 Overview of system

The code as supplied can be compiled in two ways: one for the full library; and one
for the reduced library. The reduced version is a subset of the full system, having
no host server I/O support.

The runtime startup code consists of two stages using the routines in the files:
centrydl. c and centryd2. c. The first routine is called by the configuration
system. This in turn calls the second routine which then calls main () . See figure
3.1.

Full runtime library:

configuration system

Reduced runtime library:

configuration system

1 1
C.ENTRYD C.ENTRYD.RC

1'--1--1

CENTRYD_staqe2

1
main

Figure 3.1 Runtime startup system calling sequence

C. ENTRYD and C. ENTRYD. RC are the entry points to stage 1 of the startup code
for the full and reduced systems respectively. CENTRYD staqe2 is the common
entry point to stage 2 of the startup system and is usedtor both versions.

Both centrydl. c and centryd2. c use pre-processor conditional compilation
directives which enable full and reduced versions of the runtime startup code to
be generated from a common source. The symbol 'REDUCED' may be defined at
compile time, in order to build the reduced version of the library, see section 3.9.

If the full library is used and communication with the server is required then the first
two configuration parameters to the process must be channels. The first being the
channel from the server; the second being the channel to the server.

The actions performed by the supplied runtime startup code are shown in figure
3.2.

72 TDS 347 01 October 1992

3 Modifying the runtime startup system

Full runtime library: Reduced runtime library:

359

Figure 3.2 Actions performed by runtime startup code

3.3 The gsb and use of the IMS_nolink pragma

All C functions find the static area by means of a hidden first parameter, the global
static base (qsb), which is the address ofthe base ofthe static area. This parame­
ter is passed implicitly to all C functions at the front of the parameter list. User
parameters follow the qsb direcUy.

72TDS 347 01 October 1992

360 3.4 Interface to runtime startup code

When a function calls another function it passes the qsb that it received (as its hid­
den first parameter) as the first parameter to the called 'function. So, the C compiler
automatically adds the qsb to the front ofa parameter listwhen making acall. Simi­
larly the called function has code added by the compiler which picks up the qsb.
This parameter is therefore, completely invisible to the user.

The passing of the qsb can be disabled by declaring the function to be called as
a nolink function using the INS nolink pragma. A function can also be
instructed not to expect a qsb by declaring the function as nolink in the file in
which it is defined.

3.4 Interface to runtime startup code

The runtime system is selected by the user via the linker indirect file specified at
link time i.e. cstartup .lnk or cstartrd .lnk. Configuration data is then
passed to the runtime startup code during configuration.

The full runtime system has the following interface:

void CENTRYD(struct Conf_Process *pdata);

This is the prototype for the full system. The reduced system has the same format
but a different name Le. CENTRYD RC. Note: the name is translated to an occam
style name including a dot e.g. -

CENTRYD becomes C.ENTRYD
CENTRYD RC becomes C.ENTRYD.RC

In addition the configurer expects an occam style descriptor; the C compiler
pragma INS_descriptor is used for this purpose.

The descriptor defines the workspace and vector space requirements of the run­
time startup code. The vector space requirement is zero as C does not use vector
space. A workspace requirement of 5 words is defined. This is in keeping with
occam which automatically speci'fies the workspace for each routine it compiles.
Five words is asomewhat arbitrary amount to specify but is derived from the follow­
ing:

• 3 words to cover the transputers belowworkspace requirement. 3 is a con­
servative estimate as only 2 words are required for the current range of
transputers.

• 1word to cover the amount by which C•ENTRYD and C•ENTRYD •RC adjust
the workspace.

• 1 word of leeway.

This amount of workspace is generally not required as the startup code could just
as easily reside in the user specified stack space. However, if the workspace

72 TDS 34701 October 1992

3 Modifying the runtime startup system 361

requirement of C . ENTRYD is specified as zero and the user makes a mistake and
specifies a stack space that is extremely small, e.g. 1 or 2 words, then there would
not be enough room to accommodate even the belowworkspace requirements of
the call to C •ENTRYD. The allocation of the 5 words of workspace ensures that the
transputer can at least set up its process chains correctly.

Since the function is called as ifitwere occam, a gsb is not passed, so the function
is declared as nolink before it is defined. Thus it will not expect a hidden gsb
parameter.

The single parameter passed in to the function is a pointer to the configuration pro­
cess structure for the current process. This structure contains the following
information used by the runtime startup code:

• Address of the start of the static area.

• Size of the static area in bytes.

• Address of the start of the heap area.

• Size of the heap area in bytes.

• Address of the origin of the stack area.

• Size of the stack area in bytes.

• The configuration parameter data. Used in the startup code for the full run­
time system to obtain the channels from and to the server. It is also used
if the user makes a call to get""param () .

The above details are set up by the configurer according to the information sup­
plied by the user in a configuration description (. cfs) file.

The internal details of the structure are not important to this description and cannot
be guaranteed to stay the same in future. Accesses to the relevant parts of the
structure can be found in the source code.

3.5 Details of stage 1 of t~le runtime startup code

Stage 1of the runtime startup code is responsible for initializing the static area and
calling the second stage of the runtime startup in such a way that the hidden static
base parameter, the gsb, is set up.

Stage 1 of the runtime startup code can be found in the source file centrydl. c.

3.5.1 Initialize static

The first job of stage 1 is to initialize the static area by calling the routine
initialise static. Before this is done no accesses to static data or external
variables may-be made.

72 TDS 347 01 October 1992

362 3.5 Details of stage 1 of the runtime startup code

Stage 1 of the runtime startup is declared as nolink (see section 3.4) and there­
fore a valid gsb is not obtained. Furthermore initialise static cannot be
called as if it were a normal C 'function (because it would expect a gsb). In order
for initialise_static to work correctly it must be passed a gsb explicitly.

To achieve this initialise static is declared as nolink to the stage 1 run­
time startup and the address Of the base of static is passed as an extra parameter
at the start of the parameter list. The definition of initialise static in
istatic. c, (see section 3.9) is not declared as nolink and so it picks up the
passed first parameter as if it were the hidden gsb.

Apart from the gsb, initialise static takes a pointer to the base of the static
area plus two size values. The first is the static size required, the second is the
amount of space available. In the supplied source these two sizes are the same.

In some cases it is possible that initialise static could be called to initialize
an area of memory which is larger or smallerthan the required size, e.g. setting
up a static area using the init. static routine from the occam library
callc.lib.

If the area is too small then the routine returns the value 1. This error does not occur
in the source (as supplied), and is therefore not checked for. If any modifications
are made which would mean that the required static size is different to the size of
static area provided then the return value of initialise static should be
checked. If an error is detected the only safe course of actionIS to halt the proces­
sor e.g.

if (initialise static(... »
halt-processor();

This is because no static has been set up and so no error messages can be printed,
neither can any library function like abort be called as they depend on static data.
More details about static initialization can be found in section 3.8.

3.5.2 Call stage 2 startup code and set up gsb

Having set up the static area, the second stage of the runtime startup is called. It
is important to ensure that the correct value of gsb is propagated through the pro­
gram. This is achieved by declaring the call to stage 2 as nolink while declaring
its definition as normal (the same as for initialise static) and passing the
address of the static area explicitly as the first parameter.

Stage 2 picks this up as if it were the hidden gsb and subsequently passes it as
a hidden first parameter to any functions it calls, including main. These functions
in turn pass the gsb on in any calls they make and so on. In this way the correct
value of gsb is propagated through the program.

If no static data is required by the process then main can be called directly from
stage 1 thereby omitting stage 2. Details are given at the end of the source file
centrydl. c.

72 TDS 347 01 October 1992

3 Modifying the runtime startup system 363

3.6 Details of stage 2 of the runtime startup code

Stage 2 of the runtime startup code is responsible for setting up global data
required by the runtime system. The sequence of operations performed by this
code is described in the following sections. Stage 2 of the runtime startup code can
be found in the source file centryd2 . c.

3.6.1 Set up bounds of stack

The first task of stage 2 is to define the boundaries of the stack for the main thread
of execution, i.e. the stack that the program is running within, when the main func­
tion begins executing. The bounds of the stack are defined by setting up two global
variables as follows:

-INS stack base A pointer to the origin of the stack.- -
IMS stack limit A pointer to the bottom of the memory area set aside- - - for use as the stack. This represents the maximum

extent to which the stack can grow.

The implementation of the following facilities uses the two global variables to deter­
mine whether a pointer points into the main thread stack:

• Stack checking.

• Parallel process initialization routines.

• The get_details_of_free_stack_space function.

• The max_stack_usage funC'~on.

The two global variables must be set up if any of the above facilities are used.

3.6.2 Initialize heap

The next task of stage 2 is to initialize the heap. This is achieved by setting up four
global variables. True heap initialization will not take place until the first use of a
heap allocation function. The variables are as follows:

_INS_heap_init_implicit A boolean flag used to determine whether
heap initialization occurs implicitly on the first
use of a memory allocation function orwhether
an explicit initialization call is required. In this
runtime system implicit heap initialization is
used so this variable must always be set to
TRUE.

_IMS_heap_start A pointer to the base of the memory area to be
used as the heap.

_IMS_heap_size The size of the memory area to be used as the
heap. This size is given in bytes.

_IMS_sbrk_alloc_request The size of the block of memory that sbrk
adds to the space available for use by the heap
allocation routines. This size is given in bytes.

72 TDS 34701 october 1992

364 3.6 Details of stage 2 of the runtime startup code

sbrk is a low level routine which returns a block of memory for use by the heap
allocation routines: ealloe, malloe and realloe. These blocks of memory are
contiguously allocated from the heap area, defined by the variables

INS heap start and INS heap size. The size of these blocks of memory
IS given by INS sbrk alloe- request. The default sizes for the blocks are 4K
on a 32 bit processor-and 1Kon a 16 bit processor. The minimum size for

INS sbrk alloe request is 16 bytes on a 32 bit processor and 8 bytes on
a16 bit processor. Avalue smaller than this does not allow enough space for the
memory allocation functions to maintain information on the state of the heap.

If no heap is required then all these initializations can be omitted.

Note: that the runtime system depends on the presence of a heap for its imple­
mentation of I/O. Thus removing the heap precludes the use of the full library. The
heap may only be removed if the reduced library is to be used.

3.6.3 Initialize pointer to configuration process structure

The next item to be initialized is a global variable which points to the configuration
process structure which was passed to C.ENTRYD (or C .ENTRYD . RC).

IMS PData A pointer to the configuration process structure for this pro­
cess.

This global variable is used by the following functions:

• getyaram

These functions obtain information via the configuration process structure. In par­
ticular get""param needs _INS_PData so that it can find the data block contain­
ing the parameters set up at the configuration level.

Note: that INS PData must be set up if the I/O system is to be used because
the I/O system obtains the server channel via get....Param.

3.6.4 Initialize I/O system

Now the I/O system can be set up. This is not done in the reduced case.

The first job in selting up the I/O system is to establish a link to a server. In a confi­
gured system using the full library the first two configuration parameters must be
the server channels. getyaram is used to obtain these channels and then the
function set host link is called which stores the channels for use by the run-
time system.- -

72TDS 34701 October 1992

3 Modifying the runtime startup system 365

The function io and hostinfo init is now called. This allocates the space
required by the ITo system and initializes file system data. It also obtains informa­
tion from the server about which host system is being used. Setting up the 1/0 sys­
tem requires a heap to have been initialized.

3.6.5 Get command line arguments

The next job is to obtain the command line arguments argc and argv. This is not
done in the reduced case. The arguments are obtained by calling the function
GetArgsMyself. Server communication must have been established before this
call.

3.6.6 Save exit return point

A call to setjmp is the next action. This records the position to longjmp to when
exit is called. The return position is stored in the following global variable:

I_IMS_startenv

3.6.7 Initialize clock

IThe position to longjmp to when exit is called.

The final action before calling main is to store the current process time and current
process priority. These values are used by the clock function when calculating
elapsed processor time and are stored in the following variables:

- IMS StartTime The value of the processor clock just before the
call to main.

_IMS_clock-priority The priority at which the startup code is running.

The priority is required because clock is defined to work only at the priority at
which the C program was started. Ifclock is not required, these initializations may
be omitted.

3.6.8 Call main

The runtime system is now set up and main is called. The call is different in the
full and reduced cases. The reduced case does not have true values of argc and
argv and so these are set up in a way that satisfies the ANSI standard.

main is called as an argument to exit. Thus returning from main with a value
behaves the same as calling exit with that value.

The call to exit can be omitted if required. Note: that if the call to exit is used,
then the call to setjmp must also remain, otherwise exit will not know where to
longjmp to.

72 TDS 347 01 october 1992

366 3.7 Interface to main

3.6.9 Terminate server if required

The final action of the startup code is to determine whether to terminate the server.
This depends on how the program (once main has returned) was exited. The
default action is to terminate the server. This can be overridden by calling
exit noterminate.

The global variable IMS entry term mode is used to determine how the pro~

gram exited. It is seTup by the exit functIOns. Bit 2 of IMS entry term mode
is set if the server is to be terminated. - - - -

If the server is to be terminated the value returned by main or passed as the argu­
ment to an exit function must be returned to the calling environment. This value
is stored in the global variable IMS retval. To terminate the server the function
terminate_server is calledwiththe return value as its argument.

Special action is taken in the case of the two values EXIT SUCCESS and
EXIT FAILURE. These are word length values; the server expects 32 bit values
for these special status values and so these are converted before the call to ter­
minate server.

_IMS_entry_term_mode Used to determine whether the server should
be terminated. If bit 2 is set then the server is
terminated

- IMS retval The value to be passed to the server when it
terminates. Either returned from main or the
argun1ent to an exit function.

3.7 Interface to main

The INMOS interface to main is as follows:

'include <channel.h>

int main(int argc, char *argv[], char *envp,
Channel *in[], int inlen,
Channel *out[], int outlen);

In this version of the runtime startup only argc and argv are of interest. The rest
of the arguments are included for compatibility with previous systems. They are
set up as follows:

Argument Value

envp NULL
in NULL
inlen 0

out NULL
outlen 0

72 TDS 347 01 October 1992

3 Modifying the runtime startup system

3.8 Static initialization

367

The function initialise static performs static initialization in two stages.
The first stage is to clear theentire static area to all zeros. Thus all static data with­
out explicit initializers is set to zero. The next stage initializes all non-zero static
data.

Each object file which defines static or external d~ta has included within it a static
initialization routine. This routine initializes the parts of the static area associated
with the object file. During linking the linker creates achain ofall the static initializa­
tion routines called the "static initialization chain". The second stage ofstatic initial­
ization walks this chain calling each routine in turn.

Each entry on the chain consists of a header and a routine. The header is used
to link the chain together, it contains the byte offset to the next entry in the chain
or zero if the entry is the last on the chain. The start of the chain is found using a
word patched by the linker. This word contains the byte offset to the first entry in
the chain. The function get init chain start, (defined in getinit. s, see
section 3.9) returns a pointerto thisword. Figure 3.3 illustrates the layout ofa static
initialization chain in memory.

header 1

routine 1

start

header 2

routine 2

header n

routine n

Figure 3.3 Static initialization chain

In figure 3.3 start contains the offset to header 1, which contains the offset to
header 2, and so on to header n which contains the value 0 to denote the end
of chain.

72TDS 34701 October 1992

368 3.9 Source files supplied and rebuilding

Having obtained the address of the header, incrementing it by one word yields the
address of the routine. The routine has the prototype:

void routine(void);

and can be called via a 'function pointer.

3.9 Source files supplied and rebuilding

This section provides a summary of the source 'files supplied and describes how
to rebuild the runtime code once it has been modi'fied.

The following source files are supplied:

centrydl.c The stage 1 runtime startup code. This is the entry point
called by the configuration system.

centryd2.c The stage 2 runtime startup. This is called by stage 1 and is
responsible for initializing global data for the runtime system.

uglobal.h A header file declaring all the global variables which are ini-
tialized by the stage 2 runtime startup code.

startup.h A header file defining all the support functions called by the
runtime startup code.

config.h A headerfile defining the structure passed to the runtime sys-
tem by the configuration system.

istatic.c The initialise_static function. This is responsible for
initializing the static area and is called from the stage 1 run-
time startup code.

getinit.s The get_init_chain_start function. This returns a
pointer to the head of the static initialization chain. It is called
by initialise_static.

In order to generate a runtime system which is suitable for use with all possible
processor types it is usual to compile the above for the T2, TA and T8 processor
classes.

Note: the compilation should be performed using the standard icc compiler. The
optimizing ice compiler does not include some of the support required, i.e. it does
not support 16-bit transputers or debug information.

The following example shows how to compile the above source files for the T8
transputer class:

72 TOS 34701 October 1992

3 Modifying the runtime startup system

UNIX based toolsets:

ice centrydl.c -tS
ice centryd2.c -t8
ice istatic.c -tS

ice getinit.s -pp -t8 > getinit.pps
ice getinit.pps -tS -as

MS-DOS based toolsets:

ice centrydl.c ItS
ice centryd2.c Its
ice istatic.c ItS

ice getinit.s Ipp ItS> getinit.pps
ice getinit.pps ItS las

VMS based toolsets:

ice centrydl.c ItS
ice centryd2.c ItS
ice istatic.c ItS

369

DEFINE SYS$OUTPUT temp.pps
ice getinit.s Ipp ItS
DEASSIGN SYS$OUTPUT
ice temp.pps ItS las 10 getinit.tco

Note: that stack checking must NOT be enabled for any of these files. The stack
checking code is not set up properly until after the startup code has executed and
would fail if used before. Pragmas in the source files ensure that stack checking
is not enabled.

Note: how getinit. s is built in two stages. The first stage uses the C preproces­
sor, the second uses the assembler. (The ice 'pp' option sends output to stdout
by default; this is redirected to a named file, ready for input to the assembler).

If the reduced versions are required use the command line option 'd' to add the
symbol 'REDUCED' to the command line of all invocations of ice, except those
which use the 'as' option.

This procedure may be repeated for classes T2 and TA as appropriate.

The object files produced from the above should be added to the linker command
line along with all other object files. They should NOT be made into a library. (If
they are in a library then the linkercannot be guaranteed to link in the modi'fied ver­
sion of the startup code in preference to that which exists in the standard library).

An example of how to recompile and link the runtime source is given in section
3.11.

72TDS 34701 October 1992

370

3.10 Notes

This section lists some final considerations:

3.10 Notes

• The final size of the bootable obtained depends on the bootstrap scheme
used. See the documentation for the configurer icconf and the collector
icollect for details of this. (Chapters 2 and 3 of the ANSI C Toolset Ref­
erence Manual, respectively).

• The runtime startup code includes a 16 byte information%module. This
is a special TCOFF module, used by other tools e.g. the debugger, to find
the address of the main routine. The information%module also con­
tains TCOFF comments giving the version number of the library. If
required, the information%module can be omitted by removing the fol­
lowing line from either cstartup . Ink or cstartrd. Ink, before linking:

#reference information%module

72 TDS 34701 October 1992

3 Modifying the runtime startup system 371

3.11 Example

In the following example a copy of centryd2 . c is modified to omit the code to
obtain the command line arguments and initialize the clock function. The modified
entry point is to be built for the full runtime library.

/* @(')centryd2.c 1.18 10/1/92 */
/* Copyright (C) INNOS Ltd, 1992 */

*

*
*
*
*
*
*

C.ENTRYD : linked usinq cstartup.lnk
C.ENTRYD.RC : linked usinq cstartrd.lnk

*
*
*
* The reduced version is obtained by defininq the REDUCED preprocessor
* symbol.

/***
* *
* This file contains the second stage of the C runtime startup code for
* use iD confiqured systems. This source is used to build the entry
* points:

* By modifying this code it is possible to greatly reduce the size of
* runtime overhead which is added by the standard C entry points.
*
* Note that this code relies on the presence of a static area. If no
* static area is required then main () can be called directly from the
* first stage and this stage may be omitted. See the file centrydl.c for
* more information.

*
*
*
*

* FULL STAGE 2 :

*
*
*

a) Set up bounds of stack.
b) Set up heap.
c) Set up pointer to configuration process structure.
d) Set up I/O system and host system type.
e) Get command line args.
f) Save return point for exit.
g) Set up clock.
h) Call main.
i) Terminate server if required

*
*
*

* REDUCED STAGE 2

*

a) Set up bounds of stack.
b) Set up heap.
c) Set up pointer to configuration process structure.
d) Save return point for exit.
e) Set up clock.
f) Call main.

*

*
*
*

*
* Note that the order in which the above tasks are done is siqnificant. *
* Changing the order may cause the system to fail. *
* *
***/

/***
* *

** Make sure stack checking is disabled when this file is compiled. Stack
* checking must not be enabled in the start up code because global data
* required by the stack checking code is not set up yet.
* *
***/

/***
* *
* Include files.
*

*
*

72 TDS 34701 October 1992

372 3.11 Example

***/

11include <setjmp.h> /* for setjmp */
11include <channel. h> /* for Channel */
11include <stddef.h> /* for NULL */
11include <stdli.b.h> /* for exit */
11include <process.h> /* for ProcTi.JDe and ProcGetpriority */
'include "uqlobal.h" /* for qlobala */
11include "startup.h" /* for startup internal functions */
lIinclude <mi.sc.h> /* for qet....,param */
Itinclude "confiq.h" /* for Conf_Procesa */

/***
* *
* Declare main using the INMOS standard argument list. *
* *
***/

extern int main(int arqc, char **argv, char **envp,
Channel *in[], int inlen,
Channel *out[], int outlen);

/***
* *
* Define the second stage routine. The name is translated to avoid invadinq *
* the user's name space. *
* *
***/

IIpragma IMS_translate(CENTRYD_stage2, "CENTRYD_staqe2%c")

void CENTRYD staqe2(struct Conf Process *pdata)
{- -

/* *
* This is vhere the argc and argv variables that are passed to main vere *
* defined. They are removed because ve are not providinq this facility *
* in the modified code. *
* */

/**
* *

*
*
*

*

*
*

* Set up the bounds of the stack for the main thread of execution. These *
* globals are used by the followinq: *
* 1. Stack checking.
* 2. The get details of free stack space function.
* 3. Parallel processes-(use-of ProcAlloc and ProcInit) .
* 4. The max stack usage function.
* If any of these features are used then the following initialisations
* may not be omitted.
*
*

*
The maximum extent to which the stack can *
grov. Note that the stack is a falling *
stack. *

* _IMS_stack_base Pointer to base of stack. *
* *
**/

_IMS_stack_limit = (int *) «unsigned int)pdata->StackAddr ­
pdata->StackSize);

_IMS_stack_base (int *) (pdata->StackAddr) ;

72 TDS 34701 October 1992

3 Modifying the runtime startup system 373

*

*

/**
* *
* Set up the heap. If no heap is required then these initialisations can *
* be omitted.
* Bote that a heap must be set up if the full library is being used.
* _IIIS_heap_start A pointer to the base of the heap.
* IllS heap init implicit: A boolean which is set to TRUE if the heap *
* - - - - is initialised implicitly on the first call*
* of • memory allocation function. This must *
* always be set to TRUB otherwise the heap *
* allocation functions will fail. *
* _IIIS_heap_size The size of the heap memory region in *
* bytes.
* _IMS_Sbrk_alloc_request The size of block which sbrk adds to the *
* memory space available to malloc. *
**/

_IIIS_heap_start = (int *) (pdata->BeapAddr) ;
IllS heap size =pdata->BeapSize;

-IllS-heap-init implicit = TRUE;
:IIIS:Sbrk:alloc_request = SBRIC_REQUEST i

/**
* Set up the global variable which is used by some functions to obtain *
* a pointer to the configuration process structure set up by the *
* confiqurer. *
* The following functions make use of this global:
* 1. get-param
* 2. get_bootlink_channels

3. get_details_of_free-lDemory
* If none of these functions are used then this initialisation may be *
* omitted. *
* Bote that get-param is used below, so that if the initialisation of *
* IllS PData is omitted then make sure that the call to get-param below *
* Is not required, and hence omitted. *
**/

'ifndef REDUCED

/**
* Set up the host link info~tion. The run~e system assumes that the *
* first two configuration parameters are channels fromserver and *
* toserver respectively. This is not required in a reduced system. *
**/

Channel *in, *outi

in = (Channel *)get-param(l) ;
out • (Channel *)get-param(2);
set_host_link (in, out);

/**
* Set up the I/O system and obtain the host type. The I/O system *
* consists of three layers and all three are set up by this call. *
* The host information is required so that the I/O system can determine *
* the type of the host file system. Bote that this means that the *
* host_info function is only available as long as the following is *
* called. The host link info~tion must have been set up before the I/O *
* system is initialised. This is not required in a reduced system. *
* A heap must have been set up in order for this call to succeed. *
**/

72TDS 347 01 October 1992

374 3.11 Example

/*=================================
* This is where the call to obtain the command line arguments was made. *
* */

'endif /* REDUCED */

/**
* Call setjmp to mark the return position for a call to exit. The setjmp *
* is only required as lonq as a call to exit() is subsequently used. *
**/

if (setjmp(IllS startenv) = 0)
{ - -
/*==============================

* This is where the code to initialise the clock function used to be.
* In this example we do not require the clock function and so we have
* deleted the lines which did the initialisation.
*==============================

*
*
*/

/**
* Call main. We call main as an argument to exit. Thus returning from *
* main is like a call to exit. The call to exit ensures that ANSI
* behaviour on closing open files etc. is followed. Note that the *
* reduced case also sets up arqc and arqv as required by ANSI. *
* If ANSI behaviour is not important then a minimal call to main which *
* still returns the result of main to the environment is as follows:
* IllS retval = main(O, NULL, NULL, NULL, 0, NULL, 0); *
* Since only those systems which terminate the server can return a *
* value to the calling environment then we only need to store to *
* IllS retval if we subsequently call terminate server. *
**/

/*============================
* We force the use of the call to main from the reduced version of *
* this file since this sets up some dummy values for arqv and argc. *
* */

char *arqv[2] = { "", NULL };

exit (main (1, arqv, NULL, NULL, 0, NULL, 0»;

)
'ifndef REDUCED

/**
* main has returned, we must now decide whether to terminate the server. *
* Not required for the reduced case. *
* We terminate the server only if exit terminate was called. *
* The qlobal variable IMS entry term mode can be used to decide whether *
* exit, exit repeat, exit terminate or exit noterminate was called to *
* exit the proqram. exit repeat and exit te~nate act like exit in *
* the confiqured case so-we only worry ~out whether exit noterminate is *
* called. If exit_noterminate is called the bit 2 of _IMS=entry_term_mode*
* is clear. If this level of control is not required the test or the call*
* to exit terminate or both can be omitted. *
* The return value of the program is stored in IllS retval by exit. We
* must convert the special values for EXIT succEss and EXIT FAILURE to *
* their iserver counterparts sps. success and sps. failure. Note that we *
* need a lonq value to contain the server status which is a 32 bit value *
* on all processors. *
**/

72 TDS 34701 October 1992

3 Modifying the runtime startup system

if « INS entry term mode' TERM BIT) != 0)
{ - - - - -

long int status = (long int) INS retval;
if (status = EXIT SUCCESS) - ­

status = SPS SUCCESS;
else if (status = EXIT FAILURE)

status = SPS FAILURE;­
termdnate_server(status);

'endif /* REDUCED */
}

375

3.11.1 Building the modified runtime system

The new version of eentryd2 . e must be compiled so that it can be used as part
of the startup code. For this example a version is required which works with the
full library, on 32 bit transputers which do not have floating point units. The compila­
tion command is as follows:

UNIX based toolsets:

iee eentryd2.e -ta

MS-DOSNMS based toolsets:

iee eentryd2.e Ita

This produces the object file eentryd2 . teo. This object file is linked along with
the rest of the object files and libraries which are required to build the program.

For example:

To link in the new version of eentryd2 . teo for a program comprising one file:
main. teo, targeted at a T425 transputer, use the following command:

UNIX based toolsets:

ilink main.teo eentryd2.teo -f estartup.lnk -tS

MS-DOSNMS based toolsets:

ilink main.teo eentryd2.teo If estartup.lnk ItS

This creates main. lku which consists of a C main called via startup code which
includes the new version of eentryd2 . teo.

main. lku can now be used as part of a configured system.

72 TDS 347 01 October 1992

376

72 TDS 34701

3.11 Example

October 1992

Language Reference

72 TDS 347 01 October 1992

378

72 TDS 347 01

Language Reference

October 1992

4 New features in
ANSI C

This chapter describes the new features added by the ANSI standard to the C lan­
guage.

This chapter is not intended to be a reference to ANSI standard C but rather a sum­
mary ofdifferences from the previous widely-known definition of the language. For
a formal description of the language the reader is referred to the ANSI reference
documents and to 'C: A Reference Manual' by Harbison and Steel.

Kemighan and Ritchie's original description of the language as defined in their
book 'The C programming language' (First edition 1978), is referred to in this
chapter as 'K &RC'. Details of these publications can be found in the bibliography
to the rear of this manual.

This chapter is divided into two sections:

4.1 A summary of the new features added by ANSI to the original definition of
the language.

4.2 Detailed descriptions of the new features.

4.1 Summary of new features in the ANSI standard

The following tables list the new features in the ANSI standard. The tables list the
main areas of change and briefly describe how they differ from the original imple­
mentation of the language.

Area of change ANSI standard

Function declarations Parameter lists in function declarations can include type
specifiers with or without identifiers. The newvoid type
can be used and the list may end with an ellipsis '.. .' to
indicate a variable number of parameters.

Type specifiers 1. New types:
enum
void

2. New type qualifiers:
const
volatile

3. New type specifiers:
signed

72 TDS 34701 October 1992

380 4.2 Details of new features

Area of change ANSI standard

Where specified alone, signed, const, and vola-
tile imply the appropriately qualified int type.

3. New types:
unsigned char
unsigned long
signed char

Identifiers The first 31 characters of internal names are significant.

Keywords 1. Keyword entry is no longer valid.

2. New keywords:
const
enum
signed
void
volatile

Constants Integer constants can use the suffix u to denote an
unsigned integer constant.

Floating point constants can use the suffixes F (for
float) and L (for long double).

Operators New unary operator '+' added to complement '-'.

Character types Character constants are of type int and are sign
extended in type conversions.

New character escape codes: \" \? \x \a \ v

Signedness of char types is implementation defined.

Hardware characteris- The type short is at least 16 bits long and the type
tics long at least 32 bits long.

Compiler control lines New preprocessor directives:
#elif
'error
#pragma

Some preprocessor macros are also defined.

Structures and unions Structures and unions can be:

Assigned to other structures and unions.
Passed by value to functions.
Returned by functions.

Initialization Unions can be initialized.

Trigraphs Character trigraphs are introduced to support the ISO
646 invariant character set.

Table 4.1 New features in ANSI C

72 TDS 347 01 October 1992

4 New fea'lures in ANSI C

4.2 Details of new features

4.2.1 Function declarations

381

A new form of function declaration is available which allows types to be specified
for parameters in the function's parameter list. Declarations can omit parameter
identifiers and give only the type specifiers.

It is also possible to specify a variable number of parameters by tern1inating the
parameter list with an ellipsis' ... '. For example:

void add numbers (int *sum, int a, int b);
7* Declaration with identifiers */

void add numbers(int *, int, int);
T* Declaration without identifiers */

void add many numbers (int *sum, int n, ...);
T* Declaration with variable parameters */

A function with no parameters can be specified by specifying the keyword void
as the only parameter in the parameter list. For example:

int hello(void);

A function declarator using a parameter type list defines a prototype for that func­
tion.

4.2.2 Function prototypes

Function prototypes are a new way of declaring functions. They make programs
easier to read and function call errors easier to find.

When using function prototypes:

Functions must be explicitly declared before any call is made.

2 Multiple declarations of the same function must agree exactly.

3 Function declarations must use the parameter type list form.

4 When calling a 'function, the number and types of the parameters must
agree with the speci'fication in the declaration.

5 Arguments to functions are converted to the types specified in the declara­
tion.

4.2.3 Functions without prototypes

Non-prototyped functions as described in K &R C are still permitted in ANSI C.

72 TDS 347 01 october 1992

382 4.2 Details of new features

Arguments to non-prototyped functions have the following default argument
promotions:

• an argument of type char, short int, int bit-field, or enumeration type
are converted to type int (signed int, if this will correctly represent the
argument, unsigned int otherwise).

• an argument of type float is converted to type double.

4.2.4 Declarations

Type qualifiers can be used in pointer declarations. This is particularly useful for
creating constant pointers, pointers to constants and pointers to volatiles. For
example:

const int *ptr to constant;
/* Declares a pointer to a constant int */

int *const constant-ptr;
/* Declares a constant pointer to an int */

volatile int *ptr to volatile;
/* Declares a-pointer to a volatile int */

4.2.5 Types, type qualifiers and type specifiers

This section describes the ANSI standard syntax for types, type qualifiers and type
specifiers.

The following have been added:

Type qualifiers - const and volatile.

Type specifiers - enum, signed and void.

const defines a constant object which cannot be changed in the program. const
can be used alone or with other type specifiers struct, union, enum or with the
type qualifier volatile. Used alone it implies const into For example:

const int month = 10;

month = 11; /* Not allowed */
month++; /* Not allowed */

const can be used within pointer declarations to declare variable pointers to
constant values, or constant pointers to variable values.

enum is used to create enumerated types. An enumerated type defines a
sequence of integer values for groups of logical names. The sequence of values

72 TDS 347 01 October 1992

4 New features in ANSI C 383

begins at 0 and increments by one unless specific values are assigned. For exam­
ple:

/* Define an enumerated type for the days of the week */
enum days {monday, tuesday, wednesday, thursday,

friday, saturday, sunday};
enum days today; /* Declare today as a variableof type days */
today = friday;
if (today = sunday)

The default value of a constant can be overridden by assigning a specific integer
value. If a member of the list is not assigned a value explicitly, it takes on the value
of (previous constant + 1). For example:

enum poets {corso, burroughs, ginsberg = 9, cummings};
/* corso = 0, burroughs = 1, cummings = 10 */

signed complements the existing type specifierunsigned. It may be used alone,
where it implies signed int, or to qualify the following types: int, short int,
long int, char.

void is mainly used to declare functions which do not return a value. For example:

void add numbers();
main() -
(
int *answer;
add numbers(answer,23,42);
} -

void add numbers (sum, b, c)
int *Swrl;
int b,c;
(

sum = b + c;

Another use for void is in a cast expression where a returned value is discarded.
For example:

/* Ignore the return value of fputc */
(void) fputc(ch,stream);

volatile identifies an object as modifiable outside the control of the implementa­
tion. For example, the object may refer to a memory mapped port which is used
by a modem. volatile can be used to protect objects from unpredictable com­
piler optimizations.

volatile can be used alone or with other type specifiers and qualifiers. Used
alone volatile implies volatile into

72 TDS 34701 October 1992

384 4.2 Details of new features

An object can be both volatile and const in which case it can not be modi'fied
by the program but could be modified by an external process (for example, a real
time clock). For example:

volatile int port one;
const volatile int clock;

4.2.6 Constants

This section summarizes the changes to the syntax for integer, floating point, string
and character constants.

The suffixucan follow integerconstants to indicate type unsigned. Ucan be used
in conjunction with the existing L suffix and the order is not significant. For exam­
ple:

42u 1096U 100lu 2048UL

The suffix F can followfloating point constants to indicate type float and the suffix
L to indicate type long double. For example:

3.1F 4.2L

The type long float is no longer allowed.

Adjacent string constants are concatenated into asingle string terminated by a null
character ('\0').

The following new character escape codes are defined:

Code Description
\? Gives the question mark character. This should be used where a ques-

tion mark could be mistaken for part of a trigraph.
\If Gives the double quote character.
\a Rings the bell (equivalent to CTRL-G).
\v Gives a vertical tab.

\xn Gives the character represented by n, where n is the ASCII code of the
character represented in hexadecimal. For example, \x2B gives the
character +.

4.2.7 Preprocessor extensions

This section describes the predefined preprocessor directives and macros.

Compiler directives

Description

Abbreviation of 'else 'if.

72TDS 34701 October 1992

4 New features in ANSI C 385

'error Generates a compiler error message containing optional text.

'pragma Causes an implementation-de'fined effect. In ANSI C this directive
is used to select a particular combination of compiler options or to
override options given on the command line.

Predefined macro~=

Macro Descripti9n
DATE The currentdate, in the form: Mmm dd yyyy- -
FILE The name of the current source 'file, expressed as a string literal.- -
LINE The line nun,ber of the current line in the source file, expressed as- a decimal constant.
STDC A non-zero value if the implementation conforms to ANSI C.- -
TIME The current time, in the form: hh :mm: ss.- -

4.2.8 Structures and unions

In ANSI C structures and unions can be assigned to other structures or unions,
passed by value to functions, and returned by functions. Unions can be initialized.

When a structure is given as an argument to a function a copy of the structure is
created for use within the function. For example:

struct record
{

char firstname[30];
int age;

} ;

void print_name(struct record person);

struct record test(struct record first,
struct record second);

main()
{

struct record ph;
struct record rl;

ph.firstname = "Phil";
ph.age = 27;

/* Assigning a structure to a structure */
current-person =ph;

/* Passing a structure as an argument to a
function */

print_name(current-person);

/* Returning a structure fram a
function */

winner = test(ph, rl);

72TDS 34701 October 1992

386 4.2 Details of new features

Unions can be initialized. The initialization is performed according to the type of
its first component and the expression used to perform the initialization must evalu­
ate to the correct type.

For example:

union alltypes {
double bigfloat;
int digit;
char letter;
initalltypes = 3.1;

union complex {
struct lint a; char h;} s;
double bigfloat;

} initcomplex = {42, 'x' };

4.2.9 Trigraphs

Trigraphs are added to enable C programs to be written using only the ISO 646
invariant code set. ISO 646 is a subset of 7-bit ASCII which contains only those
characters present on all keyboards.

Trigraphs and the characters that they represent are listed in the following table.

Trigraph Character
represented

??= #
??([

??)]

??/ \
??' A

??< {

??> }

??! I
??- IV

All other trigraph-like sequences are treated as literal strings. For example, the
sequence??+ is not a trigraph and is treated as the literal sequence that it repre­
sents.

Trigraphs are converted to the equivalent character before lexical analysis takes
place.

Trigraph escape codes

The character escape code \? has been added to allow the printing of trigraph
strings. The trigraph string should be preceded by the escape character. For
example:

static char texta[] = "This is a backslash: ??/";
static char textb[] = "This is not a trigraph \??/";

72 TDS 347 01 October 1992

5 Language
extensions

This chapter summarizes the INMOS extensions to the C language. It describes
the concurrency features, compiler pragmas, and lists the predefinitions, all of
which are described in detail elsewhere in this book, It also describes the asm
statement that supports the insertion of tr~nsputercode into C programs.

The INMOS implementation ofANSI C provides the following language extensions
beyond the ANSI standard:

• Concurrency support.

• Pragmas.

• Additional predefined macros.

• Assembly language support.

5.1 Concurrency support

Concurrency support is provided by a set of library functions with associated pre­
defined data types and data structures. The library functions are declared in three
standard C header files along with all related constants and macros.

Functions are provided for creating and manipulating processes (process. h), for
synchronizing processes and exchanging data down channels (channel. h), and
for creating and manipulating semaphores (semaphor .h).

Full details of how to create parallel programs using the ANSI C concurrency
extensions can be found in chapter 5 'Parallel processing' of the accompanying
Toolset User Guide.

5.2 Pragmas

A series of special compiler operations are implemented as options to the
#pragma directive. The options available are listed below. Details of the pragmas,
their syntax and options can be found in section 1.4.11 in the accompanying Tool­
set Reference Manual.

72 TDS 347 01 October 1992

388 5.3 Predefined macros

Pragma Description

IMS_eodepatehsize Specifies the size of a reserved code patch.

IMS_deseriptor Creates a TCOFF descriptor for C functions.

IMS_linkage Adds tags for segment ordering.

INS_nolink Enables functions to be compiled without a static link
parameter. Used when calling occam code from C,
and C functions from occam.

INS nosideeffeets Marks a function as side effect free. This pragma is
implemented for the optimizing C compiler but is
ignored by the standard C compiler.

IMS_modpatchsize Specifies the number of bytes reserved for a module
number patch.

INS on Enables specific compiler checks. Checks to be
enabled are specified as arguments to the pragma.

INS off Disables specific compiler checks. Takes the same set-
of check arguments as INS_on.

IMS translate Translates all references to one name into another
name. Used to create aliases for external routines
which contain prohibited characters.

5.3 Predefined macros

The following predefined macros are provided in the ANSI C toolset in addition to
the standard definitions required by the ANSI standard.

Constant Meaning/value

cc NORCROFT Indicates a compiler derived from the Norcrofl: C compiler.
Set to the decimal constant one (1).

- ICC Indicates the ANSI C compiler icc. Set to the decimal
constant one (1).

.....PTYPE Indicates the target processor type. Takes the following
values:
'2' - T212 '3' - T225
'4' - T414 's' - T425rr426rr400
'8' - T800 '9' - T801fT805
'A' - Class TA 'B' - Class TB

ERRORMODE A decimal constant indicating the execution error mode.
Takes the following values:
1- HALT 2 -STOP 3 - UNIVERSAL
Note: all compiled object code generated by ice is in UNI-
VERSAL mode.

SIGNED CHAR A decimal constant indicating the signedness of the plain- -- char type. It is only defined if the ice 'FC' command line
option is used. When de'fined it takes the value '1'.

72 TDS 34701 October 1992

5 Language extensions

5.4 Assembly language support

389

The insertion of transputer code into C programs is performed using the asm
statement. Sequences of transputer instructions specified in this way are
assembled in line by the compiler.

The rest of this section assumes some familiarity with the transputer instruction
set. For a list oftransputer instructions see appendix A 'Transputer instruction set'
in the accompanying Too/set User Guide.

A more detailed description of the instruction set including information about archi­
tecture and design can be found in 'Transputer instruction set: a compiler writer's
guide '.

The full syntax of the _ asm statement is given in section A.3.

5.4.1 Directives and operations

asm statements can contain any number of primary or secondary transputer
operations, optionally preceded by a size qualifier, or transputer pseudo-oper~­
tions. Any transputer instruction can be prefixed with a label.

In the transputer instruction set primary operations are direct functions, prefixing
functions, or the special indirect function opr. Primary operations are always fol­
lowed by an operand which can be any constant or constant expression. If addi­
tional pfix and nfix instructions are required to encode large values the assem­
bler automatically generates the required bytes.

Secondary operations are any transputer operation, that is. any instruction
selected using the oprfunction.

Pseudo-operations are instructions to the assembler, built up from sequences of
instructions. Like macros. they expand into one or more transputer instructions,
depending on their context and parameters.

Pseudo-operations that are supported by _ asm are listed in table 5.1.

72TOS 347 01 October 1992

390 5.4 Assembly language support

Pseudo-operation Description
Id expression Loads a value into the Areg.
st Ivalue Stores the value from the Areg.
ldab expression, expression Loads values into the Areg and

Breg. The left hand expression
is placed in Areg.

stab Ivalue, Ivalue Stores values from the Areg
and Breg. The leftmost element
receives Areg.

ldabc expression, expression, expression Loads values into Areg, Breg
and Creg. The leftmost expres-
sion is placed in Areg.

s tabc Ivalue, Ivalue , Ivalue Stores values from the Areg,
Breg, and Creg. The leftmost
element receives Areg.

[size constant] j label Jump

[size constant] cj label Conditional jump
[size constant] call label Call
[size constant] ldlabeldiff label-label Loads the difference between

the addresses of two labels into
Areg.

byte constant t constant} This instruction takes as an
argument a list of constant val-
ues. Only the lower 8 bits of the
constant values are generated
i.e. if the constant is too large to
fit in a byte, only the least signifi-
cant bits will be generated. The
assembler copies the literal
bytes into the instruction
stream.

word constant t constant} Generates constants of the tar-
get-machine word length. This
instruction takes as an argu-
ment a list of constant values. If
the constant is too large to fit in
a target-machine word, only the
lower bits will be generated.

align This instruction takes no oper-
ands. It generates padding
bytes (pre'F!x 0) until the current
code address is on a word
boundary.

Table 5.1 Pseudo-operations

72 TDS 34701 October 1992

5 Language extensions 391

Ivalues can be any valid modifyable C Ivalue, and labels can be any valid C label.

The Idlabeldiff operation loads the difference between the addresses of two
labels into Areg.

5.4.2 size option on _asm statement

The size option on asm statements that incorporate transputer operations,
direct, prefixing and certain pseudo-instructions, forces the instruction to occupy
a set number of bytes. If the instruction is shorter than this, it is padded out with
trailing prefix 0 instructions. If the instruction cannot fit in the specified number of
bytes, a compiler error is reported. The size option allows instructions to be built
with the same size and is intended to assist the creation of jump tables.

5.4.3 Labels

Labels can be placed on asm statements or on any line of transputer code.
Labels placed inside and outside the asm statement are handled identically. C
statements are permitted to goto a label set inside an _ asm statement and vice
versa.

5.4.4 Notes on transputer code programming

Floating-point (fp) registers cannot be loaded directly; they must be loaded
or stored by first loading a pointer to the register into an integer register and
then using the appropriate floating-point load or store instruction.

2 The operands to the load pseudo-ops must be small enough to fit in a regis­
ter and the operands to the store pseudo-ops must be word-sized modifi­
able Ivalues.

5.4.5 Useful built-in variables

Special recognition of the following variables is built into the compiler.

extern volatile const void *_lsb Pointer to the base of a file's static
area.

extern volatile const void *yarams Pointer to the base of the current
function's parameter block.

Given access to a function's parameter block and using the calling conventions
described in section 6.16, it is possible to determine the function's return address,
the global static pointer, and the calling function's workspace as in the following
example:

72 TDS 347 01 October 1992

392 5.4 Assembly language support

void p(int a, int b)
{

typedef struct paramblock
{ void *return address;

void *gsb; -
int regparam1, regparam2;
paramblock;

extern volatile const void *-params;

paramblock *pp =-params;
/* return address is: pp->return address

global static base is: pp->gsb -
caller's wptr is: (void *) (pp + 1); */

5.4.6 Transputer code examples

This section contains listings of programs fragments that illustrate common uses
of embedded instruction code.

Setting the transputer error flag

void set error flag(void)
{ - -

asm { seterr; }

/* decimal */
/* hex */
/* octal */
/* defined by macro */
/* constant expression */
/* ditto */

17;
Oxff;
0377;

Loading constants using literal operands

'define answer 42
constint c

asm {
- ldc

ldc
ldc
ldc answer;
ldc sizeof(c);
ldc 10+7;

72 TDS 34701 October 1992

5 Language extensions

Labels and jumps

void p(void)
{

int a, b, c;
/* The followinq code perfo~s

if (b > c) a = b; else a = c; */
asm{

- ld b;
Id c;
qt;
cj labell;
Id b;
st a;
j done;

label1:
Id c;
st a;

done:
}

Jump tables

#include <stdio.h>
#define JUMP SIZE 3
void p (int iT
{

asm{ Id i;
- /* load the index */

adc -1;
/* subtract base subscript */

ldc JUMP SIZE;
/* scale by size of table entry */

prod;
ldlabeldiff table - here;

/* load pointer to start of table */
ldpi;

here:
bsub;

/* add the offset */
qcall;

/* jump to ith. entry */

table:
size JUMP SIZE j lab1;
size JUMP-SIZE j lab2;
size JUMP-SIZE j lab3;
size JUMP:=SIZE j lab4;

}
lab1: printf("i 1") ; return;
lab2 printf("i 2") ; return;
lab3 printf("i 3") ; return;
lab4 printf("i 4") ; return;

72 TDS 34701

393

october 1992

394

Loading floating point registers

void P (void)
{

5.4 Assembly language support

float a, b, c;
/* The following code performs

a = b - c; */
asm{

-- Id &b;
fpldnlsn;
Id &c;
fpldnlsn;
fpsub;
Id &a;
fpstnlsn;

Using align/word to return an element of a table

int p (int i)
{

/* The following code returns the ith
element of the table defined below */

int res;
asm{

- Id i;
ldlabeldiff table - here;
ldpi;

here:
wsub;
ldnl 0;
st res;
j done;
/* Make sure table is word aligned

for ldnl to work correctly */
align;

table:
word 1, 1, 2, 3, 5, 8, 13, 21, 34;

done:
return res;

Inserting raw machine code

The following code inserts the actual machine code (in hex) for the ret instruction.

void ret_hex(void)

asm { byte Ox22, OXFO; }

72 TDS 34701 October 1992

6 Implementation
details

This appendix describes the implementation of the language in areas where the
ANSI standard is flexible or allows alternative solutions.

Note: the document 'Performance improvement with the INMOS Dx314 ANSI C
Too/sef which accompanies the toolset, considers performance aspects and sug­
gests ways in which C programs may be improved.

6.1 Data type representation

6.1.1 Scalar types

C scalar type representations on 32 and 16 bit transputers are described in the fol­
lowing table.

unsigned char

signed char

char

unsigned short

signed short

72 TDS 347 01

32 Represented in a word in which the lower eight
and bits are significant, the upper bits are zero.
16

32 Represented in a word in which the lower eight
and bits are significant, bit 7 is the sign-bit, the upper
16 bits are zero.

32 The representation of char differs depending on
and whether the compiler FC option is used to make
16 plain chars signed. When FC is used char has

the same representation as signed char; with­
out FC the representation is the same as
unsigned char.

32 Represented in a word in which the lower 16 bits
are significant, the upper bits are zero.

16 Represented in a word in which all 16 bits are sig­
nificant.

32 Represented in a word in which the lower 16 bits
are significant, bit 15 is the sign bit, the upper bits
are zero.

16 Represented in a word in which all 16 bits are sig­
nificant, bit 15 is the sign bit.

october 1992

396 6.1 Data type representation

unsigned int 32 Represented in a word in which all 32 bits are sig-
nificant.

16 Represented in aword in which all 16 bits are sig-
nificant.

signed int 32 Represented in a word in which all 32 bits are sig-
nificant, bit 31 is the sign bit.

16 Represented in aword in which all 16 bits are sig-
nificant. bit 15 is the sign bit.

unsigned long 32 Represented in aword in which all 32 bits are sig-
nificant

16 Represented in two words in which all 32 bits are
significant.the loweraddressed word contains the
least significant bits.

signed long 32 Represented in aword in which all 32 bits are sig-
nificant. bit 31 is the sign bit

16 Represented in two words in which all 32 bits are
significant. bit 15 of the upper word is the sign bit.
The lower addressed word contains the least sig-
nificant bit.

float 32 Represented in a word. in IEEE single-precision
format.

16 Represented in two words, in IEEE single-preci-
sion format.

double 32 Represented in two words, in IEEE double-preci-
sion format.

16 Represented in four words. in IEEE double-preci-
sion format.

enumeration 32 Represented in aword in which all 32 bits are sig-
nificant.

16 Represented in aword in which all 16 bits are sig-
nificant.

All signed integer types are represented in twos-complement form and all
unsigned integer types in binary form.

All floating point types are represented in a form defined by the ANSI/IEEE stan­
dard 754-1985.

6.1.2 Arrays

Each element of an array of char occupies 8 bits and each element of an array
of short occupies 16 bits.

Elements of arrays of any other type are represented as the element would be rep­
resented if it was not in an array. An array is padded at the high-end address to
the next word boundary: the padding has no defined value.

72 TDS 347 01 October 1992

6 Implementation details

6.1.3 Structures

397

Structure fields are allocated starting from the lowest address. Fields of type char
are allocated on a byte boundary, and are represented in 8 bits.

On 32-bit machines only, fields of type short are allocated on an even-address
boundary, and are represented in 16 bits. Thus, adjacent char or short fields
may be packed into the same word.

Adjacent bit-fields are packed into the same word if possible: the first bit-field is
placed in the least significant bits of the word. If there is not enough room left after
a previous bit-field, a bit-field will be placed in the least significant bits of the next
word. Fields of any other type are represented as they would be if the field was not
in a structure. A structure is padded at the high-end address to the next word
boundary: the padding has no de'fined value.

The compiler uses the following rules when laying out the fields within a structure:

• C requires that structure fields are laid out in memory in the same order that
they are in the source code.

• charS may have any alignment.

• shorts are aligned on an even boundary.

• word-sized or larger o~jects are aligned on a word boundary.

• structures, unions and arrays are aligned on a word boundary.

char and short fields will be packed into the same word where possible, without
breaking any of the above rules.

72 TDS 347 01 October 1992

398

Example 1 (structuring on a 32-bit processor):

6.1 Data type representation

struct d {
char hid[8];

unsigned short inuse;

char flagsl;

char flags2;

unsigned long tkey;
unsigned short tfil;

long npos;

unsigned short kmod;

unsigned short kbhz;

unsigned short rmod;

} structure;

The first byte of hid is on a word boundary (as
the first byte of structure is on a word boundary),
it occupies 8 bytes (2 whole words).

This occupies the lower two bytes of the follow­
ing word.

This is packed into byte 2 of the same word as
inuse.

This is packed into the upper byte of the same
word as inuse and flagsl.
This occupies the following word.

This occupies the lower two bytes of the follow­
ing word.

This has to be allocated on the next word bound­
ary, so two bytes are left unused.

This occupies the lower two bytes of the follow­
ing word.

This is packed into the upper two bytes of the
same word as kmod - 16-bit objects are placed
at even addresses (rule 2), not word-addresses.

This occupies the lower two bytes of the follow­
ing word.

Two bytes are left unused.

This can be represented graphically as follows:

Byte 0 1 2 3

Word
0 hid[O] hid[l] hid[2] hid[3]
1 hid[4] hid[S] hid[6] hid[7]
2 4---- inuse ~ flagsl flags2
3 • tkey
4 4---- tfil -----.-- unused ~
5 • npos
6-- kmod -----.-- kbhz
7-- rmod ~-- unused ~

Example 2 (structuring on a 32-bit processor):

If the structure fields are reordered, by moving tfil so that it is no longer word
aligned, then a more efficient packing could be obtained:

72 TDS 34701 October 1992

6 Implementation details

struct d {
char hid[B];
unsigned short inuse;
char flagsl;
char flags2;
unsigned long tkey;
long npos;
unsigned short kmod;
unsigned short kbhz;
unsigned short rmod;
unsigned short tfil;

} structure;

this would give the following:

399

Byte 0 1 2 3

Word
0 hid[O] hid[l] hid[2] hid[3]
1 hid[4] hid[S] hid[6] hid[7]
2 4-- inuse ------. flagsl flags2
3 • tkey
4 • npos
5 4-- kmod ------. 4-- kbhz ------.
6-- rmod ------. 4-- tfil ------.

Note: the INMOS C compiler will generate more efficient code to load a short if
it is word-aligned, so this new packing means that more code will be needed to
access tfil, as it is no longer word-aligned. (Again, this is very dependant upon
the way the INMOS ANSI C compiler currently handles structures.)

A general rule for obtaining the smallest structure size possible, is to order the
fields in increasing order of size.

6.1.4 Unions

Each field of a union is represented as it would be if it was not in a union. A union
is padded at the high-end address to the next word boundary: the padding has no
defined value.

6.2 Type conversions

6.2.1 Integers

The result of converting an unsigned integer, u, to a signed integer, s, of equal
length, if the value cannot be represented, is calculated as follows:

72TDS 347 01 October 1992

400 6.3 Compiler diagnostics

If maLS is the largest number that can be represented in the signed type then:

result = u - 2(max.s +1)

An integer is converted to a shorter signed integer, by first converting it to an
unsigned integer of the same length as the shorter signed integer (by taking the
nonnegative remainder on division by the number one greater than the largest
unsigned number that can be represented in the type with smaller size), and then
converting to the corresponding signed integer, as described above.

6.2.2 Floating point

When converting an integral number to a floating-point number that cannot exactly
represent the original value, the IEEE 754 'Round to Nearest' rounding mode is
used.

When converting a floating-point number to a narrower floating-point number, the
IEEE 754 'Round to Nearest' rounding mode is used.

When converting a floating-point number to an integral number, the IEEE 754
'Round to Zero' rounding mode is used; this is mandated by the ANSI standard.

6.3 Compiler diagnostics

Diagnostics are generated at severity levels: Information; Warning; Error, Serious;
and Fatal. All compiler messages are generated in standard toolset format (see
section A.7 of the ANSI C Too/set Reference Manua~.

6.4 Environment

6.4.1 Arguments to main

The interface to main is as follows:

'include <channel.h>

int main(int argc, char *argv[], char *envp[],
Channel *in[], int inlen,
Channel *out[], int outlen);

where: int argc is the number of arguments passed to the program from the
environment, including the program name.

char *argv [] is an array of pointers to the passed arguments.

char *envp [] is an array of pointers for the getenv function. In this
implementation it is set to NULL.

72TDS 347 01 October 1992

6 Implementation details 401

Channel *in [] is an array of input channels.

int inlen is the number of elements in the input channel array.

Channel *out [] is an array of output channels.

int outlen is the number of elements in the output channel array.

If there is no server interface, then the number of arguments, argc, is set to one,
and argv points to an array of two elements; argv [0] is a pointer to the null string
(''''); and argv[l] is NULL.

The value of envp is always NULL in order to retain compatibility with previous
releases of the toolset e.g. the 0711, 0611 and 0511 products.

The in and out arrays are set up differently depending on which linker startup 'file
is used:

Configured case:

When the program is configured, either the linker startup 'file cstartup . Ink is
used to harness the full runtime system, or cstartrd . Ink is used to harness the
reduced runtime system. In either case the passing of the in and out arrays to
main () is not supported. The values of these parameters are as follows:

in is set to NULL

inIen is set to 0

out is set to NULL

outlen is set to 0

Unconfigured case

In this case it is assumed that the program has been collected by icollect and
linked with the full runtime system, by using the linker startup file cnonconf . Ink.
The unconfigured case supports the passing of input and output channels from the
configuration level to the in and out arrays in the main () parameter list. This is
compatible with the previous release of the toolset Le. the 07214,06214,05214
and 04214 products. The values of these parameters are as follows:

in [0] is set to NULL

in [1] FromServer channel

out [0] is set to NULL

out [1] ToServer channel

Note: this case may be unsupported in future releases.

72 TOS 34701 october 1992

402

6.4.2 Interactive devices

6.5 Identifiers

stdin, stdout and stderr are treated as if they are connected to an interactive
device.

6.5 Identifiers

The first 250 characters in an identifier are significant.

Case distinctions are significant in an identifier with external linkage.

6.6 Source and execution character sets

The source character set comprises those characters explicitly specified in the
Standard, together with all other printable ASCII characters. The execution char­
acter set comprises all 256 values 0 to 255. Values 0 to 127 represent the ASCII
character set. Note: when the compiler command line option 'Fe' is used the
execution character set comprises 128 values in the range 0 to 127.

There are eight bits in a character in the execution character set.

Each merrlber of the source character set is a member of the ASCII character set
and maps to the same member of the ASCII character set in the execution charac­
ter set.

All characters and wide characters are represented in the basic execution charac­
ters set. The escape sequences not represented in the basic execution character
set are the octal integer and hexadecimal integer escape sequences, whose val­
ues are defined by the Standard.

Shift states for encoding multibyte characters

There is only one shift state, which is the initial shift state as specified in the Stan­
dard. Multibyte characters do not alter the shift state.

Integer character constants

The value of an integer character constant that contains more than one character
is given by:

L(value of ith character « (8 * i»
i

Wide character constants which contain more than one multibyte character are
disallowed.

Locale used to convert multibyte characters

The only locale supported to convert multibyte characters into corresponding wide
characters (codes) for a wide character constant is the 'C' locale.

72 TDS 347 01 October 1992

6 Implementation details

Plain chars

403

By default a "plain" char has the same range of values as unsigned char. How­
ever, if the compiler command line option Fe is used, a Mplain" char has the same
range of values as a signed char.

6.7 Integer operations

Bitwise operations on signed integers

Signed integers are represented in twos complement form. The bitwise operations
operate on this twos complement representation.

Sign of 'the remainder on integer division

The remainder on integer division takes the same sign as the divisor.

Right shifts on negative-valued signed integral types

Signed integers are represented in twos complement form. The default behavior
of the compiler is as follows:

The right-shift operates on this twos complement form; zero bits are shifted
in at the left-hand side; thus a negative-valued signed integer, if right­
shifted more than zero places, will become positive.

It is possible, using the 'FS' command line option, to change this behavior to the
following:

The right-shift operates on this twos complement form; the sign-bit is dupli­
cated at the left-hand side; thus a negative-valued signed integer, will
remain negative.

6.8 Registers

The compiler attempts to place register variables at shorter offsets from the work­
space pointer.

6.9 Enumeration types

The values of enumeration types are represented as integers.

6.10 Bit fields

A IIplain" int bit-field is treated as an unsigned int bit-field.

Bit-fields are allocated low-order to high-order within an integer (Le. the first field
textually is placed in lower bits in the integer).

72 TDS 34701 october 1992

404

A bit-field cannot straddle a word boundary.

6.11 volatile qualifier

6.11 volatile, qualifier

An access to an object that has volatile-qualified type is a 'read' from the memory
location containing the object (if the object's value is required), or a 'write' to the
memory location containing the object (if the object is assigned to).

If the volatile object is an array, then the access will be only to the appropriate ele­
ment of the array.

If the volatile object is a structure and only a field of the structure is required, then
the access will be only to the appropriate field. If the object is not an array element
or structure field, then the object occupies a whole number of words, and all the
words will be accessed. Otherwise, if the array element or structure field is shorter
than a word, then only the appropriate bytes will be accessed.

If the object is a bit-field, then in the case of read access, the entire word containing
the bit-field will be read; and in the case ofwrite access, the entire word containing
the bit-field will be first read, and then written.

Note: If the object is an array element or structure field of type short on a 32-bit
transputer, or if the object is larger than two words, then the transputer block move
instruction is used for the access. On some transputers, ifa block move instruction
is interrupted, when it resumes it may reread the same word of memory which was
read immediately before the interrupt. This may cause problems with some periph­
eral devices.

6.12 Declarators

There is no restriction upon the number of declarators that may modify an arithme­
tic, structure, or union type.

6.13 Switch statement

There is no restriction upon the number of case values in a switch statement.

6.14 Preprocessing directives

Constants controlling conditional inclusion

The value of a single-character character constant in a constant expression that
controls conditional inclusion matches the value of the same character constant
in the execution character set. Such a character constant may NOT have a nega­
tive value.

72 TDS 347 01 October 1992

6 Implementation details

Date and time defaults

When date of translation is not available, _DATE_expands to

"Jan 1 1900"

When time of translation is not available, _TlME_ expands to

1100: 00: 00"

6.15 Static data layout

405

The static data area comprises a local static area for each object file (or nlore spe­
cifically, each object file which uses static data) together with a module table. Fig­
ure 6.1 illustrates this.

local static for file 4
file 4 Isb ---..1-------------11 _

local static for file 3
file 3 Isb ---..1----------------.

local static for file 2
file 21sb ---..1---------.........

local static for file 1
file 1 Isb ---..1--------------1....

module table
gsb ---..L....- ----'

Figure 6.1 Static data layout

The module table contains an entry for every file with a local static area, which con­
sists of a word containing a pointer to that file's local static area.

The base of the module table is called the global static base, or gsb.-

6.15.1 Local static data layout

Usually, static data objects defined in a file are allocated space in that file's local
static area. However, under certain conditions, a static data object may be placed
in the text section (i.e. the section which contains the code) for that file, see section
6.15.2.

Local static data is allocated in the local static area in the same order as it appears
in the source code.

72TDS 34701 October 1992

406 6.15 Static data layout

The global static base (gsb), is passed as a hidden first parameter to every routine.

To access a piece of static data, the compiler loads the gsb, then does an indirect
load to pick up the entry in the module table for the current file. This gives a pointer
to the local static area (the local static base. or Isb). If the static datum required is
in the local static area. it may be accessed using the Isb; but if it is in another file's
static area, then another level of indirection is required.

If a function makes frequent access to the local static area, then the Isb is cached
into a temporary in local workspace before the first of its uses (usually, this is on
entry to the function).

6.15.2 Constant static objects

If a static data object can be guaranteed to be non-modi'fiable. then the C compiler
is sometimes able to allocate it in the text section (Le. the section which contains
the code) for the file in which it is defined. The object must be non-modi'fiable, as
the text section must be ROMable.

This can be useful as it can reduce the amount of memory required for that object:
if the object is placed in the static data are then it must be initialized at program
start-up and the value of the initializer is held in the text section. By allocating the
object directly in the text section, no initializer is necessary. Note: that this will not
reduce the size of the text section (and hence the size of the bootable file), but it
will reduce the size of the static data area.

The exact conditions which must be satisfied for the object to be placed in the text
section are:

• The static data object must be declared as const.

• The static data object must not be declared as volatile.

• The static data object must have an initializer.

• The initializer must contain no pointers except NULL pointers (absolute
pointer values cannot be put into the text section as they are only known
at run-time).

• The static data object must not be externally visible (references to external
objects have to know whether the object they are referencing is in the text
section or the data section).

This can be useful if a program contains a very large table of constants or constant
data; for example:

static const char data[] = { 1, 27, 34, 52,

... , 5, 4, 0 }

will be allocated in the text section.

72 TDS 34701 October 1992

6 Implementation details 407

Note: that the conditions above require that the constant static data object must
not be visible in any other files. This can be worked around by defining a pointer
to the constant static object and making the pointer externally visible. For the
above, we can define:

extern const char *datap = &data[O];

and then other files may access ciata indirectly through ciatap.

If it is required to ensure that a data object is not allocated in the text section, for
instance if ROM space is limited, then it should not be declared as a const.

6.16 Calling conventions

6.16.1 Parameter Passing

There are two methods of parameter passing, depending upon whether or not the
function involved has a type which includes a prototype.

For a function call, if the function has a type that includes a prototype, then each
actual parameter is converted to the type of the corresponding formal parameter,
otherwise the default argument promotions are performed on each actual parame­
ter.

• an argument of type char, short int, int bit-field, or enumeration type
is converted to type into (Signed int if this will correctly represent the
argument, unsigned int otherwise.)

• an argument of type float is converted to type double.

• arguments of all other types are unmodified.

For a function definition, if the function type does not include a prototype, then cal­
lee narrowing is performed upon each formal parameter: this converts it from its
promoted type (as obtained by the default argument promotions) to its declared
type. If the 'function type does include a prototype, then no type conversion is per­
formed.

The default argument promotions are performed upon arguments forming part of
a variable parameter list.

6.16.2 Calling Sequence

A pointer to the static area is normally passed as an extra parameter to every func­
tion. This parameter is called the global static base (gsb) and contains the address
of the module table, which is at the base of the whole static area for the program.

The compiler pragma INS nolink (f) directs the compiler to compile the function
fwithout a gsb parameter:-Any direct calls to fwithin the scope of this pragma will

72TDS 34701 October 1992

408 6.16 Calling conventions

not have a gsb included in the argument list. If the function is defined within the
scope of the pragma, then it will be compiled without a gsb formal parameter (the
compiler will flag a serious error if the function definition requires a gsb, for exam­
ple, if it accesses static data). This pragma is provided to ease the calling of
occam from C and vice versa.

The declared parameters are found in order immediately after the gsb. The type
of each parameter is determined using the rules described in section 8.1 above.
Each parameter occupies an integral number of words. Parameters are repre­
sented in memory exactly the same as if they had been declared as automatic, see
section 6.1.

The first three words of parameters are loaded onto the integer register stack
(Areg will contain the gsb), and are written into memory by the call instruction.

Parameters may be modi'fied by the called routine. Thus after the call, they cannot
be guaranteed to contain the same value as was passed in.

On entry to a function the contents of both the cpu evaluation stack and the fpu
evaluation stack (if it exists)-are undefined and the workspace pointer addresses
the workspace containing the return address and parameters:

Iret

static link

parm 1 starts

word
offset

n+l

4

3

2

1

o

-1

(high addresses)

(last parameter passed in)

(first parm stored by caller)

(Creg as saved by call instruction)

(Breg as saved by call instruction)

(Areg as saved by call instruction)

(return address if call used)
1---------1--Wptr

free I

f--------I (top of stack)

The return value from a function is sent back in the Areg where possible. If the
result is a scalar occupying less than a word, the value returned in Areg will be the
value of the scalar widened to the number of bits per word.

72 TDS 34701 October 1992

6 Implementation details 409

If the return value will not fit in a register, then the caller will supply another paranle­
ter as the second actual parameter (when the user's paranleters will begin in posi­
tion three). This will be a pointer to an area large enough to receive the return
value. This will be the case for functions returning structures which are larger than
a word and for functions returning double values when not executing on a floating
point transputer (e.g. T800), or returning float or long values on a 16 bit trans­
puter (e.g. T225).

For transputers with an on-chip floating-point unit, floating values will be returned
in FAreg, whether they are float or double. However, for the 32 bit, non-floating
point, processors (e.g. T400), float values will be returned as unconverted bit pat­
terns in the Areg; and double values returned in an area pointed to by the result
pointer parameter. For 16-bit transputers, floating values are always returned via
an extra parameter pointing to the return area. Structures and unions that occupy
a word (and contain no fields shorter than a word) are returned in Areg. All other
structures and unions are returned in an area pointed to by a result pointer param­
eter.

6.16.3 Rules for aliasing between formal parameters

The following rules cover assumptions made by the INMOS Ccompilerwith regard
to aliasing between function parameters.

The compiler may not assume that there are no aliases between formal
parameters.

2 Where a function result is returned by assignment through a result pointer
in the function body, the compiler may not assume that there are no aliases
of the object referred to by the result pointer parameter.

Hence the compiler must ensure that all accesses to variables which could be
potentially aliased by the result pointer have already occurred before the assign­
ment through the result pointer.

6.17 Runtime library

The null pointer constant to which the macro NULL expands to is (void *) 0 .

72 TDS 34701 October 1992

410

72 TDS 347 01

6.17 Runtime library

October 1992

Appendices

72 TDS 34701 October 1992

412

72 TDS 347 01

Appendices

October 1992

A Syntax of language
extensions

This appendix defines the language extensions in the ANSI C toolset.

A.1 Notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF). Briefly:

Terminal strings of the language - those not built up by rules of the lan­
guage - are printed in teletype font e.g. void.

2 Each phrase definition is built up using a double colon and an equals sign
to separate the two sides.

3 Alternatives are separated by vertical bars ('1').

4 Optional sequences are enclosed in square brackets (T and ']').

5 Items which may be repeated zero or more times appear in braces er and
'}').

A.2 #pragma directive

control-line

pragma

parameter

72TDS 347 01

'pragma pragma

IMS on (parameter { , parameter})
INS='off (parameter { , parameter})
INS linkage (["name"])
INS=nolink (functionname)
INS_modpatchsize (n)
INS_codepatchsize (n)
INS translate (name, "newname If)
INS- nosideeffects (functionname)
INS- descriptor (functionname, language, \

- workspace, vectorspace, \
nstringn)

channel""pointers Icp
inline_ops lil
inline_string_ops lis
printf_checking Ipc

October 1992

414 A.3 _asm statement

scanf_checking Isc
stack_checking I sc
warn_bad_target I wt
warn deprecated I wd
warn=implicit Iwi

A.3 asm statement

statement

asm-statement

asm-directive

primary-op

secondary-op

pseudo-op

Ivalue

constant

label

expression

constant-expression ::=

identifier

asm-statement

_ asm {{ asm-directive }}

[size constant] primary-op constant;
[size constant] secondary-op ;
pseudo-op ;
identifier: asm-directive

any primary instruction (in lower case)

any secondary instruction (in lower case)

Id expression
st Ivalue
ldab expression , expression
stab Ivalue , Ivalue
ldabc expression, expression, expression
s tabc Ivalue , Ivalue , Ivalue
[size constant] j label
[size constant] cj label
[size constant] call label
[size constant] Idlabeldiff label- label
byte constant { , constant}
word constant { , constant}
align

expression

constant-expression

identifier

as de'fined in X3.159-1989 ANSI standard for C

as de'fined in X3.159-1989 ANSI standard for C

as defined in X3.159-1989 ANSI standard for C

primary instructions and secondary instructions are listed in appendix A of the
ANSI C Toolset User Guide.

72 TDS 34701 October 1992

B ANSI standard
compliance data

This appendix lists details of the INMOS implementation of C in areas of the lan­
guage where formal documentation is required by the ANSI standard. The
information is provided for compliance with the standard and to provide a conve­
nient reference point for programmers wishing to port the toolset to other hosts.

The formal ANSI requirement in each area is given followed by a reference to the
appropriate section in the standards document. This is followed by a description
of the INMOS implementation in that area.

Where the information required is provided in other areas of this book orthe ANSI
C Toolset documentation a reference is given to the appropriate section.

B.1 Translation

• How a diagnostic is identified (§ 2.1.1.3)

Diagnostics are displayed to stderr (UNIX and VMS) or stdout (MS­
DOS) in a standard format. The display format is described in section A.7
of the ANSI C Toolset Reference Manual.

B.2 Environment

• The semantics of the arguments to main (§ 2.1.2.2.1)

The prototype of C main is as follows:

'include <channel.h>

int main (int argc, char *argv[], char *envp[],
Channel *in[], int inlen,
Channel *out[], int outlen);

where: argc is the number of arguments passed to the program from the
environment, including the program name.

*argv [] is an array of pointers to the passed arguments.

*envp [] is an array of pointers for the getenv library function - imple­
mented in ANSI C as NULL.

Channel *in [] is an array of input channels.

72TDS 34701 October 1992

416 B.3 Identifiers

int inlen is the number of elements in the array.

Channel *out [] is an array of output channels.

int outlen is the number of elements in the array.

An extension for configured programs allows extra parameters to be
passed by defining them as interface parameters within the configura­
tion description. These configuration level parameters can be accessed by
the C program using the run.time library function get....Param.

• What constitutes an interactive device (§ 2.1.2.3)

stdin, stdout and stderr are treated as if they are connected to an
interactive device.

B.3 Identifiers

• The number of significant initial characters (beyond 31) in an identi­
fier without extemallinkage (§ 3.1.2).

The first 250 characters in the identifier are significant.

• The number of significant initial characters (beyond 6) in an identifier
with external linkage (§ 3.1.2).

The 'first 250 characters in the identifier are significant.

• Whether case distinctions are significant in an identifier with exter­
nallinkage (§ 3.1.2).

Case distinctions are significant in an identifier with external linkage.

B.4 Characters

• The members of the source and execution character sets, except as
explicitly specified in the Standard (§ 2.2.1).

The source character set comprises those characters explicitly specified
in the Standard, together with all other printable ASCII characters. The
execution character set comprises all 256 values 0 - 255. Values 0 -127
represent the ASCII character set.

• The shift states used for the encoding of multibyte characters
(§ 2.2.1.2).

There is only one shift state, which is the initial shift state as specified in
the Standard. Multibyte characters do not alter the shift state.

72TDS 347 01 October 1992

B ANSI standard compliance data 417

• The number of bits in a character in the execution character set
(§ 2.2.4.2.1).

There are eight bits in a character in the execution character set.

• The mapping of members of the source character set (in character
constants and string literals) to members of the execution character
set (§ 3.1.3.4).

Each memberofthe source character set is a memberofthe ASCII charac­
ter set. It maps to the same member of the ASCII character set in the
execution character set.

• The value of an integer character constant that contains a character
or escape sequence not represented in the basic execution character
set or the extended character set for a wide character constant
(§ 3.1.3.4).

All characters and wide characters are represented in the basic execution
character set. The escape sequences not represented in the basic execu­
tion character set are the octal integer and hexadecimal integer escape
sequences, whose values are defined by the Standard.

• The value of an integer character constant that contains more than
one character or a wide character constant that contains more than
one multibyte character (§ 3.1.3.4).

See section 6.6.

• The current locale used to convert multibyte characters into corre­
sponding wide characters (codes) for a wide character constant
(§ 3.1.3.4).

The only locale supported is the rc' locale.

• Whether a "plain" char has the same range of values as signed char
or unsigned char (§ 3.2.1.1).

By default, a "plain" char has the same range of values as unsigned char.
However, if the compiler command line option 'Fe' is used, a "plain" char
has the same range of values as a signed char.

8.5 Integers

• The representations and sets of values of the various types of inte­
gers (§ 3.1.2.5).

For all data-type representations see section 6.1.1 in this manual.

72 TDS 34701 October 1992

418 8.6 Floating point

• The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented (§ 3.2.1.2).

See section 6.2.1.

• The results of bitwise operations on signed integers (§ 3.3).

Signed integers are represented in twos complement form. The bitwise
operations operate on this twos complement representation.

• The sign of the remainder on integer division (§ 3.3.5).

The remainder on integer division takes the same sign as the divisor.

• The result of a right shift of a negative-valued signed integral type
(§ 3.3.7).

Signed integers are represented in twos complement form. The right-shift
operates on this twos complement form.

By default, zero bits are shifted in at the left-hand side; thus a negative-val­
ued signed integer, if right-shifted more than zero places, will become posi­
tive.

However, if the compiler command line option 'FS' is used, the sign bit is
duplicated at the left-hand side; thus a negative signed integer, if right­
shifted more than zero places, will remain negative.

B.6 Floating point

• The representations and sets of values of the various types of 'float­
ing-point numbers (§ 3.1.2.5).

For all data-type representations see section 6.1.1 in this manual.

• The direction of truncation when an integral number is converted to
a floating-point number that cannot exactly represent the original
value (§ 3.2.1.3).

When converting an integral number to a floating-point number, the IEEE
754 'Round to Nearest' rounding mode is used.

• The direction of truncation or rounding when a floating-point number
is converted to a narrower floating-point number (§ 3.2.1.4).

When converting a floating-point number to a narrower floating-point num­
ber, the IEEE 754 'Round to Nearest' rounding mode is used.

B.7 Arrays and pointers

• The type of integer required to hold the maximum size ofan array, that
is, the type of the sizeof operator, size_t (§ 3.3.3.4, § 4.1.1). .

72 TDS 347 01 October 1992

B ANSI standard compliance data 419

The type of the sizeof operator, size_ t, is unsigned int.

• The result of casting a pointer to an integer or vice versa (§ 3.3.4).

When a pointer is cast to an integer or vice versa, and the number of bits
in the integer is the same as the number of bits in the pointer, the bit repre­
sentation remains unchanged.

When an integer is cast to a pointer, and the number of bits in the integer
is different from the number of bits in the pointer, the integer is first cast to
type int, and the result of this cast is then cast to the pointer type.

Note: A NULL pointer on a 32-bit transputer has the representation all bits
zero, so that casting an integer variable of value zero to a pointer will result
in a NULL pointer. However, a NULL pointer on a 16-bit transputer DOES
NOT have the representation all bits zero, so that it is incorrect to assume
that an integer variable of value zero, when cast to a pointer will result in
a NULL pointer. (the ANSI standard guarantees that an integer constant
of value zero, when cast to a pointer, will result in a NULL pointer.)

On a 32-bit transputer, the value of the NULL pointer constant is 0; on a
16-bit transputer, the value of the NULL pointer constant is Ox8000.

• The type of integer required to hold the difference between two point­
ers to elements of the same array, ptrdiff_t (§ 3.3.6, § 4.1.1).

• into Note: that this means that it is not possible to declare an array of
char-sized objects which is larger than half of the integer range, and take
the difference of a pointerto the end and a pointer to the start. This is partic­
ularly important on a 16-bit processor, Le. ptrdiff t will not correctly
represent the difference between the two ends of an array of char-sized
objects larger than 32767 bytes.

• There is no problem with arrays of elements which are larger than char.

B.8 Registers

• The extent to which objects can actually be placed in registers by use
of the register storage-class specifier (§ 3.5.1).

The register storage class specifier is used to allocate objects at a lower
offset in workspace. Objects cannot be placed in registers.

B.9 Structures, unions, enumerations, and bit-fields

• Amember of a union object is accessed using a member ofa different
type (§ 3.3.2.3).

For the implementation of unions see section 6.1.4 in this manual.

72 TDS 34701 October 1992

420 B.10 Quali'fiers

• The padding and alignment of members of structures (§ 3.5.2.1). This
should present no problem unless binary data written by one imple­
mentation are read by another.

For the implementation of structures see section 6.1.3 in this manual.

• Whether a "plain" int bit-field is treated as a signed int bit-field or as
an unsigned int bit-field (§ 3.5.2.1).

A "plain" int bit-field is treated as an unsigned int bit-field.

• The order of allocation of bit-fields within an int (§ 3.5.2.1).

Bit-fields are allocated low-order to high-order within an int (Le. the first
field textually is placed in lower bits in the int).

• Whether a bit-field can straddle a storage-unit boundary (§ 3.5.2.1).

A bit-field cannot straddle a word boundary.

• The integer type chosen to represent the values of an enumeration
type (§ 3.5.2.2).

The values of enumeration types are represented as ints.

B.10 Qua,Ii'fiers

• What constitutes an access to an object that has volatile-qualified
type (§ 3.5.3).

An access to an object that has volatile-qualified type is a 'read' from the
memory location containing the object (if the object's value is required), or
a 'write' to the memory location containing the object (if the object is
assigned to). If the volatile object is an array, then the access will be only
to the appropriate element of the array. If the volatile object is a structure
and only a field of the structure is required, then the access will be only to
the appropriate field. If the object is not an array element or structure field,
then the object occupies a whole number of words, and all the words will
be accessed. Otherwise, if the array element or structure 'field is shorter
than a word, then only the appropriate bytes will be accessed.

If the object is a bit-field, then in the case of read access, the entire word
containing the bit-field will be read; and in the case of write access, the
entire word containing the bit-'field will be first read, and then written.

Note that if the object is an array element or structure field of type short
on a 32-bit transputer, or if the object is larger than two words, then the
transputer block move instruction is used for the access. On some trans­
puters, if a block move instruction is interrupted, when it resumes it may

72 TDS 347 01 October 1992

B ANSI standard compliance data 421

reread the same word of memory which was read immediately before the
interrupt. This may cause problems with some peripheral devices.

8.11 Declarators

• The maximum number of declarators that may modify an arithmetic,
structure, or union type (§ 3.5.4).

There is no restriction upon the number of declarators that may modify an
arithmetic, structure, or union type.

8.12 Statements

• The maximum number of case values in a switch statement
(§ 3.6.4.2).

There is no restriction upon the number of case values in a switch state­
ment.

8.13 Preprocessing directives

• Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion matches the
value of the same character constant in the execution character set.
Whether such a character constant may have a negative value
(§ 3.8.1).

The value of a single-character character constant in a constant expres­
sion that controls conditional inclusion matches the value of the same char­
acter constant in the execution character set. Such a character constant
may NOT have a negative value.

• The method for locating includable source files (§ 3.8.2).

See section 1.4.9 in the ANSI C Toolset Reference Manual.

• The support of quoted names for includable source files (§ 3.8.2).

See section 1.4.9 in the ANSI C Toolset Reference Manual.

• The mapping of source file character sequences (§ 3.8.2).

See section 1.4.9 in the ANSI C Toolset Reference Manual.

• The nesting limit for #include directives (§ 3.8.2).

There is no nesting limit for 'include directives.

72 TDS 347 01 October 1992

422 8.14 Library functions

• The behavior on each recognized 'pragma directive (§ 3.8.6).

See section 1.4.11 in the ANSI C Toolset Reference Manual.

• The definitions for DATE and TIME when respectively, the
date and time of translatiorlire not available (§ 3.8.8).

When date of translation is not available, _DATE_ expands to:

"Jan 1 1900"

When time of translation is not available, _TIME_ expands to:

"00:00:00"

8.14 Library functions

• The null pointer constant to which the macro NULL expands (§ 4.1.5)
(void *)0

• The diagnostic printed by and the termination behaviorofthe assert
function (§ 4.2)

*** assertion failed: condition, file file, line line

assert terminates by calling abort. The action of abort depends upon
the use of the set abort action function. See the specification of
abort in chapter 2.- -

• The sets of characters tested for by the isalnum, isalpha, iscntrl,
islower, isprint and isupper functions (§ 4.3.1)

isalnum : '0'_'9' 'A'-'l' 'a'-'z'
isalpha : 'A'-'l' 'a'-'z'
iscntrl : character codes 0-31 and 127
islower : 'a'-'z'
isprint: character codes 32-126
isupper : 'I\-'l'

• The values returned by the mathematics functions on domain errors
(§-4.5.1)

All n1athematics functions return the value 0 . 0 on domain errors.

• Whether the mathematics functions set the integer expression
errno to the value of the macro ERANGE on underflow errors. (§ 4.5.1)

The maths functions do set errno to ERANGE on undernow errors.

• Whether a domain error occurs or zero is returned when the fmod
function has a second argument of zero. (§ 4.5.6.4)

72 TDS 347 01 October 1992

B ANSI standard compliance data 423

If the second argument to fmod is zero then a domain error occurs and the
function returns zero. -- -

• The set of signals for the signal function (§ 4.7.1.1) SIGABRT,
SIGFPE,SIGILL, SIGIN~SIGSEGV,SIGTERM,SIGIO,SIGURG,SIG­
PIPE, SIGSYS, SIGALRM, SIGWINCH, SIGLOS~ SIGUSR1, SIGUSR2,
SIGUSR3.

• The semantics for each signal recognized by the signal function
(§ 4.7.1.1)

SIGABRT

SIGFPE

SIGILL

SIGINT
SIGSEGV
SIGTERM
SIGIO
SIGURG
SIGPIPE
SIGSYS
SIGALRM
SIGWINCH
SIGLOST
SIGUSRl
SIGUSR2
SIGUSR3

Abnormal termination, such as initiated by the abort func­
tion.
Erroneous arithmetic operation, such as zero divide or an
operation resulting in overflow.
Detection of an invalid function image, such as an illegal
instruction.

Receipt of an interactive attention signal.
Invalid access to storage.
Termination request sent to the program.
InpuUoutput possible.
Urgent condition on 10 channel.
Write on pipe with no-one to read.
Bad argument to system call.
Alarm clock.
Window changed.
Resource lost.
User-defined signal 1.

User-defined signal 2.

User-defined signal 3.

• The default handling and the handling at program startup for each
signal recognized by the signal function. (§ 4.7.1.1)

The handling at program startup is identical to the default handling, which
is as follows:

SIGABRT

SIGFPE

SIGILL
SIGINT

72 TDS 347 01

The action of SIGABRT depends upon the
set abort action function. See the specification of
abort in chapter 2.

No action.

No action.
No action.

October 1992

424

SIGSEGV
SIGTERM

SIGIO

SIGURG
SIGPIPE
SIGSYS
SIGALRM
SIGWINCH
SIGLOST
SIGUSRl
SIGUSR2

SIGUSR3

8.14 Library functions

No action.

Terminate the program via a call of exit with the parame­
ter EXIT FAILURE.

.No action.

No action.

No action.

No action.

No action.

No action.

No action.

No action.

No action.

No action.

• If the equivalent of signal (sig, SIG DFL) ; is not executed prior
to the call of a signal handler, the blocking of the signal that is per­
formed (§ 4.7.1.1)

The equivalent of signal (sig, SIG DFL) ; is executed prior to the call
of a signal handler. -

• Whether the default handling is reset if the SIGILL signal is received
by a handler specified to the signal function (§ 4.7.1.1)

The default handling is re~et if the SIGILL signal is received.

• Whether the last line of a text stream requires a terminating newline
character. (§ 4.9.2)

The last line of a text stream does not require a terminating newline charac­
ter.

• Whether space characters that are written out to a text stream
immediately before a newline character appear when read in. (§ 4.9.2)

Space characters written out to a text stream immediately before a newline
character do appear when read in.

• The number of null characters that may be appended to data written
to a binary stream. (§ 4.9.2)

No null characters are appended to data written to a binary stream.

• Whether the file position indicator of an append mode stream is ini­
tially positioned at the beginning or end of the file. (§ 4.9.3)

The file position indicator of an append mode stream is initially positioned
at the end of the file.

72 TDS 34701 October 1992

B ANSI standard compliance data 425

• Whether a write on a text stream causes the associated file to be trun­
cated beyond that point. (§ 4.9.3)

A write on a text streanl will not cause the associated file to be truncated
beyond that point.

• The characteristics of 'file buffering. (§ 4.9.3)

When a stream is unbuffered characters appear from the source or des­
tination as soon as possible.

When a stream is line buffered characters are transmitted to and from the
host environment as a block when a newline character is encountered.

When a stream is fully buffered characters are transmitted to and from the
host environment as a block when a buffer is filled.

In all buffering modes characters are transmitted when the buffer is 'full and
when input is requested on an unbuffered or line buffered stream, or when
the stream is explicitly flushed.

See also section 1.3.12.

• Whether a zero length 'file actually exists (§ 4.9.3)

The library can support a zero length file if it is permitted on the host envi­
ronment.

• The rules for composing valid file names. (§ 4.9~3)

The rules for composing valid file names are the same as those found on
the host system.

• Whether the same file can be opened multiple times. (§ 4.9.3)

Although the system will allow a file to be opened multiple times the ice
s tdio library has no support for shared access to a single file and so unex­
pected results may occur if this is attempted.

• The effect of the remove function on an open file. (§ 4.9.4.1)

The remove function will delete an open file only if this is permitted on the
host system.

• The effect if a file with the new name exists prior to the call to the
rename function. (§ 4.9.4.2)

The rename will cause an existing file with the new name to be overwritten
only if this is permitted on the host system.

72 TDS 347 01 October 1992

426 8.14 Library functions

• The output for %p conversion in the fprintf function. (§ 4.9.6.1)

The output for the %p function is a hexadecimal number.

• The input for the %p conversion in the fseanf function. (§ 4.9.6.2)

The input for the %p conversion is a hexadecimal number.

• The interpretation of a - character that is neither the first nor the last
character in the scanlist for %[conversion in the fseanf function.
(§ 4.9.6.2)

A - character is treated in the same manner as all other characters no mat­
ter where it appears in the scan set.

• The value to which the macro errnois set by the fqetpos or ftell
function on failure. (§ 4.9.9.1, § 4.9.9.4)

errno is set to the value EFILPOS by the ftell or fqetpos function on
failure.

• The messages generated by the perror function. (§ 4.9.10.4)

Value of Message
errno

o (zero) No error (errno =0)

EDOM EDOM • function argument out of range

ERANGE ERANGE • function result not representable

ESIGNUM ESIGNUM • Illegal signal number to signalO

EIO EIO • error In low level server I/O

EFILPOS EFILPOS • error in file positioning functions

default Error code (errno) errno has no associated message

• The behavior of the ealloe, malloe, or realloe function if the size
requested is zero. (§ 4.10.3)

If the size requested is zero in ealloe or malloe then no action is taken
and and the functions return NULL.

If the size requested is zero in realloe and the pointer parameter is NULL
then no action is taken and the function returns NULL. The case where size
is zero and the pointer is not a NULL pointer is defined by the ANSI stan­
dard.

• The behavior of the abort function with regard to open and tempo­
rary files. (§ 4.10.4.1)

The abort function will cause termination without closing open files or
removing temporary files. Note that the behavior of abort may be altered

72 TDS 347 01 October 1992

B ANSI standard compliance data 427

by set_abort_action (see specification of the function in chapter 2) but
whichever behavior is selected, open files will not be closed, and tempo­
rary files will not be removed.

• The status re'lurned by the exit 'function if the value of the argument
is other than zero, EXIT_SUCCESS, or EXIT_FAILURE. (§ 4.10.4.3)

The status returned by the exit function in this case is the numerical value
of the argument.

• The set of environment names and the method for altering the envi­
ronment list used by the getenv function.(§ 4.10.4.4)

The set of environment names is defined by the host system.

The method of altering the environment list on a given system is particular
to the server executing on that system. (Or, more accurately, particular to
the compiler with which the server was compiled).

• The contents and mode of execution of the string by the system
function. (§ 4.10.4.5)

The string shall contain any of the commands which can be supported by
the host operating system. Care should be taken so that no commands are
issued which would cause the transputer to be booted, thereby overwriting
the program which executed the system call. The mode of execution is
de'fined by the host system.

• The contents of the error message strings returned by the strerror
function. (§ 4.11.6.2)

These are identical to the messages printed by the perror function. See
above.

• The local time zone and Daylight Saving Time. (§ 4.12.1)

The local time zone is defined by the host system. Daylight Saving Time
information is unavailable.

• The era for the clock function. (§ 4.12.2.1)

The era for the clock function extends from directly before the users main
function is called until program termination.

8.15 Locale-specific behavior

• The content of the execution character set, in addition to the required
members. (§ 2.2.1)

The execution character set comprises all 256 values 0 - 255. Values 0 ­
127 represent the ASCII character set.

72 TDS 347 01 October 1992

428 8.15 Locale-speci'fic behavior

• The direction of printing. (§ 2.2.2)

Printing is from left to right.

• The decimal-point character. (§ 4.1.1)

The decimal point is «• '.

• The implementation defined aspects of character testing and case
mapping functions (§ 4.3)

The only locale supported is "C· and so there are no implementation
defined aspects of character testing or case mapping functions.

• The collation sequence of the execution character set. (§ 4.11.4.4)

Only the C locale is supported and so the collation sequence of the execu­
tion character set is the same as for plain ASCII.

• The formats for time and date (§ 4.12.3.5)

All the day and month names are in English.

date and time format: Thu Nov 9 15: 42: 39 1989

date format: Thu Nov 9, 1989

time format: 15: 42: 39

72 lOS 347 01 October 1992

C CRG Resume

This appendix provides a resume of the CRC functions supplied with the toolset.
Brief descriptions of each function are also given in chapter 2.

C.1 Summary of functions

The following CRC functions are provided:

int CreWord (int data,
int ere in,
int gene'rator) ; - Calculates the CRC of an integer.

int CreByte (int data,
int ere in,
int ge~rator) ; - Calculates the CRC of the most

signi'ficant byte of an integer.

int CreFromLsb (eonst char *string,
size_t length,
int generator,
int old ere) ; - Calculates the CRC of a byte

- sequence starting at the least
significant bit.

int CreFromMsb (eonst char *string,
size_t length,
int generator,
int old ere); - Calculates the CRC of a byte

- sequence starting at the most
significant bit.

C.2 Cyclic redundancy polynomials

A cyclic redundancy check value is the remainder from modulo 2 polynomial divi­
sion. Consider bit sequences as representing the coefficients of polynomials; for
example, the bit sequence 10100100 (where the leading bit is the most significant
bit (msb)) corresponds to P(x) =x7 + x5 + x2.

CreWord and CreByte calculate the remainder of the modulo 2 polynomial divi­
sion:

(xn H(x) + F(x))/G(x)

where: F(x) corresponds to data (the whole word for CreWord; only the most sig­
nificant byte for CreByte)

72 TDS 347 01 October 1992

430 C.2 Cyclic redundancy polynomials

G(x) corresponds to generator

H(x) corresponds to ere_in

n is the word size in bits of the processor used (Le. n is 16 or 32).

(ere in can be viewed as the value that would be pre-Ioaded into the
cyclicshift register that is part of hardware implementations ofCRC gener­
ators.)

CreFromMsb and CreFromLsb calculate cyclic redundancy check values from
byte strings. Such values can be of use in, for example, the generation of the frame
check sequence (FCS) in data communications.

CreFromMsb and CreFromLsb calculate the remainder of the modulo 2 polyno­
mial division:

(x k+n H(x) + xn F(x))/G(x)

where: F(x) corresponds to string []

G(x) corresponds to generator

H(x) corresponds to old_ere

k is the number of bits in string []

n is the word size in bits of the processor used (Le. n is 16 or 32).

(old ere can be viewed as the value that would be pre-Ioaded into the
cyclicshift register that is part of hardware implementations of CRC gener­
ators.).

C.2.1 Format of result

When representing G(x) in the word generator, note that there is an implied bit
set to 1 before the msb of generator. For example, on a 16-bit processor, with
G(x) =x 16 + x 12 + x5 + 1, which is #11021, then generator must be assigned
#1021, because the bit corresponding to x16 is implicit. Thus, a value of #9603 for
generator, corresponds to G(x) =x 16 + x 15 + x 12 +x10 + x9 + X + 1, for a 16-bit
processor.

A similar situation holds on a 32-bit processor, so that:

G(x) =x32 + x 26 + x 23 +x22 + x 16 + x 12 + x 11 + x 10 + x B+ x7 + x5 +x4 + x2 + X + 1

is encoded in generator as #04C11DB7.

It is possible to calculate a 16-bit CRC on a 32-bit processor. For example if G(x)
=x16 + x12 + x5 + 1, then generator is #10210000, because the most significant
16 bits of the 32-bit integer form a 16-bit generator and for:

72 TDS 347 01 October 1992

C CRC Resume 431

CreWord, the least signi'ficant 16 bits ofere in form the initial CRC value;
the most signi'ficant 16 bits ofdata form thedata; and the calculated CRC
is the most significant 16 bits of the result.

CreByte, the most significant 16 bits ofere in form the initial CRC value;
the next 8 bits of ere_in (the third most si9"i'ficant byte) form the byte of
data; and the calculated CRC is the n10st signi'ficant 16 bits of the result.

CreFromMsb, the least significant 16 bits of old ere form the initial CRC
value; the calculated CRC is the most significanf16 bits of the result from
CreFromMsb.

CreFromLsb, the least significant 16 bits of old ere form the initial CRC
value; the calculated CRC is the least significanf16 bits of the result from
CreFromLsb.

C.3 Notes on the use of the CRC functions

The predefines CreByte and CreWord can be chained together to help
calcUlate a CRC from a string considered as one long polynomial. A simple
chaining would calculate:

(x k H(x) + F(x))/G(x)

where F(x) corresponds to the string and k is the number of bits in the
string. This is not the same CRCthat is calculated by CreFromMsb and
CreFromLsb which shift the numerator by xn.

2 The CreFromMsb function is intended for byte sequences in normal trans­
puter format (Iittle-endian). The most significant bit of the given string is
taken to be bit-16 or bit-32, depending, that is, on the word size of the pro­
cessor, of string [length - 1]. generator, old ere and the result
of CreFromMsb are all also in normal transputer format (Iittle-endian).

3 The CreFromLsb function is provided to accommodate byte sequences
in big-endian format. The most significant bit of string is taken to be bit
oof string [0]. The generated CRC is given in big-endian format. gen­
erator and old ere are taken to be in little-endian format.

C.4 Example of use

Suppose it is required to transmit information between two 32-bit transputers, and
the message that is to be transmitted is the byte sequence from (string +4)
to (string+ (4+message length» J where there are message length
bytes in the message. Both the transmitterand receiver use the same 32-bit gener­
ating polynomial and old ere value. There are two methods for the receiver to
check messages: -

72 TDS 347 01 October 1992

432 C.4 Example of use

First CrcFromMsb is given the message as an input string, the result is placed into
the first four bytes of string and the message is sent. The receiver can either:

give the received string (which is (message length +4) bytes long)
to CrcFromMsb and expect a result of zero, -

or

give the received (string + 4) to CrcFromMsb and check that the
result is equal to the int contained in the first four bytes of the received
string.

These methods of checking are equivalent. If the check fails then the transmitted
data was corrupted and re-transmission can be requested; if the check passes
then it is most probable that the data was transmitted without corruption - just how
probable depends on many factors, associated with the transmission media.

72 TDS 34701 October 1992

Index

Symbols

...• ellipsis. See Ellipsis

#elif.380.384

terror. 380. 385

#pragma,380. 385. 387
IMS codepatchsize,388
IMS-descriptor,388
IMS-linkaqe,388
-IMS-modpatchsize,388
IMS-nolink,359,388,407
IMS-nosideeffects,388
IMS-off,388
IMS-on,388
IMS-translate,388
syntax, 413

asm,389
syntax. 414

_CC_NORCROFT,388

_SIGNED_CHAR_,388

_ERRORMODE,388

_ICC,388

_IMS_BOARD_B004,28

_IMS_BOARD_B008,28

_IMS_BOARD_BOIO,28

_IMS_BOARD_BOll,28

_IMS_BOARD_B014,28

_IMS_BOARD_B015,28

_IMS_BOARD_B016,28

_IMS_BOARD_CAT,28

_IMS_BOARD_DRXll,28

_IMS_BOARD_QTO,28

_IMS_BOARD_UDP_LINK, 28

72 TDS 347 01

_IMS_clock.J>riority,365

_IMS_entry_term_mode,366

IMS heap init implicit,
-363- - -

_IMS_heap_size,363

_IMS_heap_start,363

_IMS_HOST_APOLLO,28

_IMS_HOST_IBM370, 28

_IMS_HOST_NEC,28

_IMS_HOST_Pc,28

_IMS_HOST_SUN3,28

_IMS_HOST_SUN386i,28

_IMS_HOST_SUN4,28

_IMS_HOST_VAX,28

_IMS_OS_CMS,28

_IMS_OS_DOS,28

_IMS_OS_HELIOS,28

_IMS_OS_SUNOS,28

_IMS_OS_VMS,28

_IMS_PData,364

_IMS_retval,366

IMS sbrk alloc request,
-363- - -

_IMS_stack_hase,363

_IMS_stack_limit,363

_IMS_startenv,365

_IMS_StartTime,365

_IOFBF,16

_IOLBF,16

_IONBF,16

_PTYPE,388

october 1992

434

A

abort, 18,36,422,426
setting action, 290

ABORT_EXIT, 32

ABORT_HALT, 32

ABORT_QUERY, 32

abs,18,37

Absolute value
float type, 119
floating point number, 118
integer number, 37

acos, 11,38

acosf,27,39

Aliasing,409

alloc86, 29, 40

Allocate
channel, 71
DOS menl0ry, 40
memory, 68,211
process, 239
semaphore, 283

Alphabetic character, test for, 7,
183

Alphanunleric character, test for, 7,
182

ANSIC
argument promotions, 382, 407
implementation data, 395
language extensions, 387
new features, 381
runtime library, 3
standard, compliance data, 415
standard functions, 6
trigraphs, escape, 386

Append string, 306, 317

Arc cosine function, 38

Arc sine function, 42

Arc tangent function, 46

argc,365

72 TDS 347 01

Index

Arguments
ANSI C, default promotions, 382,

407
to main, 400,415
variable, 346

argv,365

Arrays
implementation, 396, 418
searching, 65

asctime,21,41

asin,11,42

asinf,27

Assembly code, 389
literal bytes, 390
operands, 389

Assert
condition, 44
debug condition, 98

assert, 7,44, 422

assert.h,7

atan,11,46

atan2,11,47

atan2f,27,48

atanf, 27, 49

atexit,18,50

atof,18,52

atoi,18,54

atol, 18,56

B
Backus-NaurFonn,Clanguage

extensions, 413

bdos,29,58

Bit fields, implementation, 403

BitCnt, 31,59

BitCntSum, 31, 60

BitRevNBits,31,61

BitRevWord,31,63

Bits in a byte, number of, 9

October 1992

Index

BlockMove,31,64

BNF,413

bootlink.h,29

Broke~own time
converted to string, 41
structure, 21,22

bsearch,18,65

BUFSIZ,16

c
C main program, 357

C.ENTRYD,357

C.ENTRYD.RC,357

call_without_gsb,31,67

Calling conventions, 407

calloc,18,68

Case
convert to lower case, 342, 343
test for lower case, 188
test for upper case, 192

ceil,11,69

ceilf,27, 70

centrydl.c, 358, 368

centryd2.c,358,368

ChanAlloc, 24, 71

Chanln,24,72

ChanlnChanFail,24,73

ChanlnChar,24,74

ChanInInt,24,75

ChanInit, 24, 76

ChanInTimeFail,24,77

Channel, data type, 25

Channel
allocate function, 71
character input, 74
character output, 80
initialization, 76

72 TDS 347 01

435

input
function, 72
recovery from failure, 73, 77

integer input, 75
integer output, 81
output

function, 78
recovery fron, failure, 79

reset, 83
secure input, 73, 77
secure output, 79, 82

channel.h,22,24

ChanOut,24,78

ChanOutChanFail,24,79

ChanOutChar,24,80

ChanOutlnt,24,81

ChanOutTimeFail,24,82

ChanReset, 24, 83

char
See also Character
default promotion, 382
implementation, 395
plain, 403, 417

CHAR_BIT, 9

CHAR_MAX,9

CHAR_MIN,9

Character
constants, integer, 402
escape codes, 380, 384, 386
handling functions, 7
input on channel, 74
multibyte, 402, 416

locale, 402
output on channel, 80
sequences, ANSI trigraphs, 386
sets, 402, 416

execution, 402
source, 402

wide, 417
See also wchar t

Clear file stream, 84

clearerr,14,84

Clock
addition of values, 266

October 1992

436

comparison of values, 264
subtraction of value, 265

clock, 21, 85,427
clock_t,21
CLOCKS_PER_SEC,21
CLOCKS_PER_SEC_HIGH,24

CLOCKS_PER_SEC_LOW,24
close, 26, 87
Close 'file stream, 120
Communication. See Channel

Compare
characters in memory, 217
strings, 308
times, 264

Compiler
control lines, 380
preprocessor directives, 384

implementation data, 421
Concurrency

functions, 22
support, 387

config.h,368
const, 379, 382,406
Constants

floating point, 380
integer, 380, 402
signal handling, 12
syntax, 384

Control character, test for, 7, 185
Conversion

char to double, 52
error number to string, 312
floating point, 400
integers, 399
lower to upper case, 343
string to double, 324
string to int, 54
string to long int, 56
time to string, 97
to calendar time, 221
to local time, 202
upper to lower case, 342

72 TDS 347 01

Index

Copy, characters in memory, 218
cos, 11,88
cosf,27,89
cosh, 11,90
coshf,27,91
Cosine function, 88
CRC functions, resume, 429
CrcByte,31,92,429
CrcFromLsb,31,93,429
CrcFromMsb,31,94,429
CrcWord,31,95,429
creat,26,96
Create file, 96

See also fopen; open
cstartrd.lnk,357
cstartup.lnk,357
ctime,21,97
ctype.h,7
Cyclic redundancy functions,

resume, 429

D
Data

output on channel, 78
representation, 395

Data types, implementation, 395
Date and time

broken-down
convert to string, 41
structure, 22

daylight saving, 427
defaults, 405
functions, 21
local time zone, 427

DBL_DIG,8
DBL_EPSILON,8
DBL_MANT_DIG,8
DBL_MAX,9
DBL_MAX_10_EXP,9

October 1992

Index

DBL_MAX_EXP, 8

DBL_MIN,8

DBL_MIN_10_EXP,8

DBL_MIN_EXP,8

Debug, messages, 99
debug_assert, 31, 98

debug_message, 31, 99

debug_stop, 31, 100

Decimal digit, test for, 7, 186

Declarators, 382
implementation, 404, 421

Default
argument promotions, 382, 407
date, 405
time, 405

Delete, file, 345

difftime,21,101

DirectChanIn,24,102

DirectChanInChar,24,103

DirectChanInInt,24,104

DirectChanOut,24,105

DirectChanOutChar,24,106

DirectChanOutInt,24,107

Directives, preprocessor, 380
diY, 18, 108

div_t, 19

Division, 108

dos.h,29

double, 382, 396

Dynamic code loading, functions,
29

E
EDOM,8,312,426

EFILPOs,8,426

EFIPOs,312

72 TDS 347 01

437

EIO, 8, 312,426

Ellipsis, 381
End of file

character, 16
test, 121

entry, 380
enum, 379, 382
enumeration, 396

Enumeration types, 382
implementation, 403

EOF,16
ERANGE, 8, 312,422,426
errno,5,7,426

on underflow, 422
errno.h,7

Error
handling, 7, 295
in file stream, 122

Error flag, setting, 392
See also abort;

haltyrocessor;
set_abort_action

Error messages, fatal runtime, 32

Escape codes, 380
ESIGNUM, 8, 312,426
EVENT, 25
Examples

CRC functions, 431
transputer code, 392

Execution character set, 402
exit, 18, 109, 120

status returned, 427
Exit program, 109

EXIT_FAILURE, 19
exit_noterminate,31,112

exit_repeat, 31, 114
EXIT_SUCCESS, 19
exit_terminate, 31, 115

exp, 11,116

October 1992

438

expf,27, 117

Exponential, floating point, 236
Exponential function, 116, 235
Extensions, language, 387,413

F
F, 'noating point suffix, 380, 384
fabs, 11, 118

fabsf, 27, 119
Fatal runtime errors, 32
fclose,14,120

feof, 14, 121
ferror,14,122

fflush, 14, 123
fgetc, 14, 124
fgetpos,14,125,426
fgets, 14, 126
FILE, 15

File
buffering, 16, 291
close, 87
create temporary, 338
delete, 345
open, 132
pointer

repositioning, 210
reset, 157
set to start, 280

read, 276
remove, 278
renaming, 279
size, 127
stream

buffering, 294
clearing error, 84
close, 120
error, 122
position, 155
position indicator, 125
push character back, 344

72 TDS 347 01

Index

read, 140
read character, 124
write, 160

write, 356
FILENAME_MAX,16
filesize,26,127
Fill memory, 220
Find string, 307

in string, 320
float, 396

default promotion, 382
float.h,8
Floating point

constants, 380, 384
conversion, 400
exponential, 236
implementation data, 396, 418
log, 205
multiply, 195
remainder, 130
separation, 146,223
truncation, 400

floor, 11, 128
floorf,27,129
FLT_DIG,8
FLT_EPSILON,8
FLT_MANT_DIG,8

FLT_MAX,9

FLT_MAX_IO_EXP,9

FLT_MAX_EXP,8

FLT_MIN,8

FLT_MIN_IO_EXP,8
FLT_RADIX,8

FLT_ROUNDS,8

Flush file stream, 123
fmod, 11, 130,423
fmodf,27, 131
fn_info,30
fnload.h,29

October 1992

Index

fopen, 14, 132
mode strings, 133

FOPEN_MAX, 16
fpos_t, 15

fprintf, 14, 134

fputc, 14, 138

fputs, 14, 139
fread, 14, 140

free, 18, 142

Free memory, 142, 143

free86,29,143
freopen, 14, 144
frexp, -11, 146

frexpf,27,148

from_host_link,28,149
from86,29, 150

fscanf, 14,151,426

fseek, 14, 155

fsetpos, 14, 157
ftell, 14, 159,426
FTL_MIN_EXP, 8

Full library. See Library

Function
declarations, 379, 381
parameter lists, 379

variable, 381
prototypes, 381

fwrite, 14, 160

G

General utility functions, 17

Get character
from file. 169
from stdin, 170

get bootlink channels, 29,
16T.364 -

72TDS 34701

439

get code details from channel,
3~ 162- --

get code details from file,
30~163 - --

get code details from memory,
30-:-164 - --

get details of free memor~

31~165. 364 - - -

get details of free stack space,
3~ 166, 363 - - -

get_init_chain_start, 367
get-param,31,167,364,416
GetArgsMyself,365
gete. 15, 169
getchar, 15, 170
getenv, 18, 171

environment used, 427
getinit.s.368
getkey,26.172
gets. 15.173
Global static base, 405, 407

modifying runtime startup, 359
gmtime,21,174

H
halt-processor,31.175
Hardware characteristics, 380
Header files. 5

Heap area. for runtime startup, 363
Hexadecimal digit, test for, 7, 193
High priority process, 258
Host

data. 176
environment variables, 171
functions, 28
link, access. 28
sending command, 332
versions. ix

host.h.28

October 1992

440

host_info,28,176

hostlink.h,28

HUGE_VAL, 11

Hyperbolic
cosine, 90
sine, 299
tangent, 335

1/0,237
buffering, 16
functions, 14
line buffering, 16

Identifiers, 380, 416
implementation, 402

Implementation
arrays,396
details, 395
structures, 397
types, 395
unions, 399

information%module,370

initialise_static, 361, 367

Initialization
channel, 76
process, 245
semaphores, 284
unions, 386
variable arguments, 349

Input/output functions, 14

int,380,396
default promotion, 382
output on channel, 81

INT_MAX,9

I NT_MIN,9

int86,29,178

int86x,29,179

intdos,29,180

intdosx,29,181

72 lDS 34701

Index

Integer
bitwise operations, 403
constants, 380

syntax, 384
conversion, 399
division, 108
implementation data, 417
input on channel, 75
remainder on division, 403
result of right shift, 403

Interrupt, MS-DOS, 178, 179

io_and_hostinfo_init,365
iocntrl.h,26
isalnum,7,182,422

isalpha, 7,183,422

isatty, 26, 184
iscntrl, 7,185,422
isdigit,7,186

iserver, access to functions, 287

isgraph,7,187

islower, 7,188,422

ISO 646, character set, 386
isprint, 7,189,422

ispunct,7,190
isspace, 7, 191

istatic.c,368
isupper,7,192,422

isxdigit,7,193

J
jmp_buf,12

Jump tables, 393

Jumps, 393

K
Kemighan &Ritchie, 379

Keyboard, read, 172

Keywords, 380

October 1992

Index

L
L

floating point suffix, 380, 384
integer suffix, 384

L_INCR,26

L_SET,26

L_ tmpnam, 16

L_XTND,26

Labels, and asm, 391

labs, 18, 194

Language extensions, syntax, 413

LC_ALL,10

LC_COLLATE,10

LC_CTYPE,10

LC_MONETARY,10

LC_NUMERIC,10

LC_TIME, 10

1conv, 10

LDBL_DIG,8

LDBL_EPSILON,8

LDBL_MANT_DIG,8

LDBL_MAX,9

LDBL_MAX_10_EXP,9

LDBL_MAX_EXP, 8

LDBL_MIN,8

LDBL_MIN_10_EXP,8

LDBL_MIN_EXP, 8

1dexp. 11. 195

1dexpf.27.196

1div. 18. 197

ldiv_t.19

Library
ANSI functions, 6
character handling functions. 7
communication protocols. 4
date and time functions. 21

72TDS 34701

441

diagnostic functions, 7
general utility functions. 17
header files, 5
host functions. 28
implementation data, 422
linking with program, 4
mathematics. 11
miscellaneous functions, 25
parallel processing. 22
reduced. 3
runtime.3
signal handling functions, 12
standard definitions. 13
string handling functions. 20

Limits. 9

1imits.h,9

LINKOIN,25

LINKOOUT. 25

LINK1IN,25

LINK10UT,25

LINK2IN,25

LINK20UT, 25

LINK30UT, 25

Linking, libraries, 4

load code from channel,30,
198- - -

10ad_code_from_file.30.199

load code from memory, 30.
200- - -

Locale. 402. 427
See also Set program locale
data. 201
setting, 293

10cale.h,9

localeconv, 9. 201

Localisation functions, 9

10caltime.21.202

log, 11.204

10g10.11.206

10g10f,27.207

10gf,27,205

October 1992

442

long, 380

Long division, 197

Long integers, 194

LONG_MAX,9

LONG_MIN,9

longjmp,12,208

Low priority process, 259

Lower case
convert to, 7
converttouppe~343

test for, 7, 188

Iseek,26,210

M
Macros

error handling, 8
floating point, 8, 9
implementation limits, 9
locale, 10
predefined, 388
signal handling, 12
standard, 14
time and date, 21

main function, 357
meaning of arguments, 400

malloc, 18,211

math.h,11

mathf.h,26

Maths functions, 11

max_stack_usage, 31, 212, 363

MB_CUR_MAX,19

MB_LEN_MAX,9

mblen,18,213

mbstowcs,18,214

mbtowc,18,215

memchr,20,216

memcmp,20,217

memcpy,20,218

72 TDS 34701

Index

memmove, 20, 219

Memory
allocate, 211
allocate DOS men10ry, 40
allocate function, 68
DOS transfer, 150
freeing, 142
insufficient, 32
reallocate, 277

memset,20,220

Minimum fp exponent, 8

misc.h,30

Miscellaneous functions, 25

mktime, 21, 221

modf, 11,223

modff, 27, 224

Move2D,225

Move2DNonZero,227

Move2DZero,229

MS-DOS
function call, 58
read registers, 282
software interrupt, 178, 179, 180,

181
system functions, 29

Multibyte characters, shift states,
402

Multiple processes, 242

N
Natural logarithm, 204

NDEBUG, 7

Non-ANSI functions, 25

Non-local jump, 12,208
setting up, 292

Non-space printable character, test
for, 7

NotProcessy,25

NULL, 21

October 1992

Index

NULL, implementation, 422
NULL pointer constant, 14, 15, 19,

21
implementation, 409

o
O_APPEND,26

O_BINARY,26
O_RDONLy,26

O_RDWR,26

O_TEXT,26

O_TRUNC,26
O_WRONLy,26

offsetof, 14
open, 26, 231

Open 'file, 132

Open file stream, 231

Operators, unary, 380

p

Parameters, passing, 407
pcpointer,29

perror,15,233,426

Plain chars, 403

Pointers, implementation data, 418

Poll keyboard, 234

pollkey,26,234

pow, 11,235

powf,27,236

Pragmas, 387

Preprocessor, directives, 380, 384
implementation data, 421

Printable character, test for, 7, 187
189 '

printf, 15, 237

72 TDS 347 01

443

Priority, process, 244
PROC_HIGH,24
PROC_LOW,24
ProcAfter,23,238
ProcAlloc,23,239
ProcAllocClean, 23, 241
ProcAlt,23,242
ProcAltList,23,243
Process, structure type, 24
Process

allocate, 239
get paran1eters, 253
get priority, 244
initialization, 245
prioritizing, 255
rescheduling, 256
starting, 257
starting multiples, 252
stopping, 262
suspending, 269
timing, 263
timing out, 267

process.h,22,23
ProcGetPriority,23,244
ProcInit,23,245
ProcInitClean,23,248
ProcJoin, 23, 250
ProcJoinList,23,251
ProcPar,23,252
ProcParam,23,253
ProcParList,23,254
ProcPriPar,23,255
ProcReschedule, 23, 256
ProcRun,23,257
ProcRunHigh,23,258
ProcRunLow, 23, 259
ProcSkipAlt, 23, 260
ProcSkipAltList,261
ProcStop,23,262

October 1992

444

ProcTime,23,263

ProcTimeAfter,23,264

ProcTimeMinus,23,265
ProcTimePlus, 23, 266

ProcTimerAlt,23,267

ProcTimerAltList, 23, 268

ProcWait,23,269

Program, execution time, 85

Program termination, 109
for configured programs, 112, 115
function call, 50
with restart, 114
without terminating the server, 112

Protocol, used by library, 4

Prototypes, 381

prtdiff_t,13

Pseudo-operations, 389

Pseudo-random numbers, 275

Punctuation character
definition of, 190
test for, 7, 190

putc,15,270

putchar,15,271

puts, 15,272

Q
qsort,18,273

Qualifiers, implementation data,
420

Quotient, of division, 197

R
raise, 12,274

rand, 18,275

RAND_MAX,19

72 TDS 34701

Index

Random numbers, 275
seeding, 304

Read
character 'from file, 124
current time, 337
formatted input, 151, 281
formatted string, 305
fronl file, 276
from file stream, 140
from keyboard, 172
line

from stdin, 173
from stream, 126

MS-DOS registers, 282
read, 26,276
Read/write pointer, position, 159
realloc,18,277
Reduced library, 3

i/o related functions, 17
register, 403, 419
Registers, 419
Remainder, of division, 197
remove, 15,278
rename, 15,279
Reopen file, 144

Reset
channel, 83
file pointer, 157

Restarting programs, 114
ret instruction, 394
rewind, 15,280
Runtime

errors, fatal, 32
library, 3
startup system, modifying, 357

5
Scalar types, implementation, 395
scanf,15,281
SCHAR_MAX,9

October 1992

Index

SCHAR_MIN,9

Search, array, 65

SEEK_CUR, 16

SEEK_END, 16

SEEK_SET, 16

segread,29,282

SemAlloc,25,283

semaphor.h,22,25

Semaphore, structure type, 25

Semaphore
acquiring, 286
allocating, 283
initializing, 284
releasing, 285

SEMAPHOREINIT,25

Semlnit,25,284

SemSignal,25,285

SemWait,25,286

server_transaction, 4, 26, 287

Set file pointer, 155

Set program locale, 9
See also Locale

set_abort action 31 36 290
427 - ""

set_host_link,364

setbuf, 15,291

setjmp,12,292

setjmp.h,12

setlocale,9,293

setvbuf, 15,294

short, 380

short int, default promotion, 382

SHRT_MAX,9

SHRT_MIN,9

sig_atomic_t,12

SIG_DFL, 12

72 TDS 347 01

445

SIG_ERR,12
SIG_IGN,12
SIGABRT, 12,296,423
SIGALRM,13,296,423,424
SIGEGV,296
SIGFPE,12,296,423
SIGILL,12,296,423
SIGINT, 12,423
SIGIO,12,296,423,424
SIGLOST,13,296,423,424
Signal

handler, 36
handling, 295

constants, 12
functions, 12
macros, 12
types, 12

raise, 274
signal, 12,295,423
signal.h,12
signed, 379, 383
signed char, 380, 395
signed int,396
signed long, 396
signed short, 395
SIGPIPE,12,296,423,424
SIGSEGV, 423, 424

SIGSERV,12
SIGSTERM, 12
SIGsYs,13,296,423,424
SIGTERM,296,423,424
SIGURG,12,296,423,424
SIGUSRl,13,296,423,424
SIGUSR2,13,296,423,424
SIGUSR3,13,296,423,424
SIGWINCH,13,296,423,424
sin, 11,297

sinf,27,298

October 1992

446

sinh, 11, 299
sinhf,27,300
size, 391
size_t, 13,15,19,21
sizeof. See size t
Skipping channels, 260
Sort, 273
Source character set, 402
Space character

printable, 189
test for, 7, 191

sprintf,15,17,301
sqrt, 11, 302
sqrtf,27,303
Square root, 302
srand, 18,304
sscanf,15,17,305
Stack

for runtime startup, 363
overflow, 32
usage, 212

Standard definitions, 13
Standard error, writing error mes­

sage, 233
Standard input, 281
Standard output, 237, 271, 352

writing to, 272
startup.h,368
Statements, implementation data,

421

Static area, runtime startup initial­
ization, 367

Static data layout, 405
constant, 406
local, 405

stdarg.h,13

stddef.h,13
stderr, 402,416

72 TDS 347 01

Index

stdin,402,416
get character, 170
read line, 173

stdio.h,14
stdiored.h,17
stdlib.h,17
stdout,402,416
strcat,20,306
strchr, 20, 307
strcmp,20,308
strcoll,20,309
strcpy, 20, 310
strcspn, 20, 311
strerror, 20, 312

return values, 427
strftime,21,313
String

appending, 306, 317
compare, 308, 311
compare and count, 322
compare characters, 318
convert to double, 324
convert to long int, 330
convert to tokens, 326
copy to array, 310,319
handling functions, 20
length, 316
transform by locale, 331

String constants, syntax, 384
string.h,20
strlen,20,316
strncat, 20, 317
strncmp,20,318
strncpy,20,319
strpbrk,20,320
strrchr,20,321
strspn, 20, 322
strstr, 20, 323
strtod, 18,324

October 1992

Index

strtok,20,326

strtol,18,328

strtoul,18,330

Structures, 380
implementation, 397
syntax, 385

strxfrm,20,331

Switch statement, implementation,
404

Syntax, notation, 413

system, 18,332

T
tan, 11,333

tanf,27,334

tanh,11,335

tanhf,27,336

Temporary 'file, 338
names, 16

Terminal 110, test forJ 184

Terminate, 109
configured programs, 112,115
program, 36

See also abort; exit

terminate_server, 366

Termination, invoking function at,
50

Time, 337
See also Date and time
conversion, formatted, 313
difference, 101
UTC,174

time, 21, 337

time.h,21

time_t,21

Timer. See Clock

TMP_MAXJ 16

tmpfile,15J 338

72 TDS 347 01

447

tmpnam,15,339

to_host_link, 28, 340

t086, 29, 341

tolower, 7, 342

Toolset, documentation, ix
conventions, xi

toupper,7,343

TransputerJ instructions, 389
size option, 391

Trigraphs, 380, 386

Type, 382
conversion, 399
implementation, 395
qualifiers, 382
signal handling, 12
specifiers, 379

u
UJ integer suffix, 380 J 384

UCHAR_MAX,9

uglobal.h,368

UINT_MAX,9
ULONG_MAX,9

Unary operators, 380

ungetc,15,344

Unions, 380
implementation, 399
initialization, 380J 386
syntax, 385

unlink, 26, 345

unsigned, 384

unsigned char, 380, 395

unsigned int,396

unsigned 10ng,380,396

unsigned short, 395

Upper case
convert to, 7
convert to 10werJ 342
test for, 7, 192

October 1992

448

USHRT_MAX, 9
UTC time, 174

v
va_arq, 13,346
va_end, 13,348
va_list,13
va_start, 13,349,350
Variable argument lists, 13, 346,

381
cleaning up, 348

Variables, built-in, 391
vfprintf, 15,350
void, 379, 383
volatile, 379, 383,406

implentation, 404
vprintf, 15,352
vsprintf,15,17,353

w
Wait. See ProcAfter; ProcWai t
wchar_t,13,19
wcstombs,18,354
wctomb,18,355
Wide characters. See Character

Write
character, to 'file, 138, 270
error message, to stderr, 233
line, to stdout, 272
string, to stream, 139
to file, 356
to stream, 160

write, 26, 356
Write formatted string

to file, 134, 350
to standard output, 237
to stdout, 352
to string, 301 J 353

72 TDS 34701

Index

October 1992

	Contents overview
	Contents
	Preface
	Host versions
	About this manual
	About the toolset documentation set
	Other documents
	occam and FORTRAN toolsets
	Documentation conventions

	Runtime Library
	1 Introduction and runtime library summary
	1.1 Introduction
	1.1.1 Accessing library functions
	1.1.2 Linking libraries with programs
	1.1.3 iserver protocols
	1.1.4 Functions which store data in static

	1.2 Header files
	1.3 ANSI functions
	1.3.1 Diagnostics <assert.h>
	1.3.2 Character handling <ctype.h>
	1.3.3 Error handling <errno.h>
	1.3.4 Floating point constants <float.h>
	1.3.5 Implementation limits <limits.h>
	1.3.6 Localization <locale.h>
	1.3.7 Mathematics library <math.h>
	1.3.8 Non-local jumps <setjmp.h>
	1.3.9 Signal handling <signal.h>
	1.3.10 Variable arguments <stdarg.h>
	1.3.11 Standard definitions <stddef.h>
	1.3.12 Standard I/O <stdio.h>
	Characteristics of file handling

	1.3.13 Reduced library I/O functions <stdiored.h>
	1.3.14 General utilities <stdlib.h>
	1.3.15 String handling <string.h>
	1.3.16 Date and time <time.h>

	1.4 Concurrency functions
	1.4.1 Process control <process.h>
	1.4.2 Channel communication <channel.h>
	1.4.3 Semaphore handling <semaphor.h>

	1.5 Other functions
	1.5.1 I/O primitives <iocntrl.h>
	1.5.2 float maths <mathf.h>
	1.5.3 Host utilities <host.h>
	1.5.4 Host channel access utilities <hostlink.h>
	1.5.5 Boot link channel functions <bootlink.h>
	1.5.6 MS-DOS system functions <dos.h>
	1.5.7 Dynamic code loading functions <fnload.h>
	1.5.8 Miscellaneous functions <misc.h>

	1.6 Fatal runtime errors
	1.6.1 Runtime error messages

	2 Alphabetical list of functions
	2.1 Format
	2.1.1 Reduced library
	2.1.2 Macros

	2.2 List of functions
	abort
	abs
	acos
	acosf
	alloc86
	asctime
	asin
	asinf
	assert
	atan
	atan2
	atan2f
	atanf
	atexit
	atof
	atoi
	atol
	bdos
	BitCnt
	BitCntSum
	SitRevNBits
	BitRevWord
	BlockMove
	bsearch
	call_without_gsb
	calloc
	ceil
	ceilf
	ChanAlloc
	ChanIn
	ChanInChanFail
	ChanlnChar
	Chanlnlnt
	Chanlnit
	ChanlnTimeFail
	ChanOut
	ChanOutChanFail
	ChanOutChar
	ChanOutlnt
	ChanOutTimeFail
	ChanReset
	clearerr
	clock
	close
	cos
	cosf
	cosh
	coshf
	CrcByte
	CrcFromLsb
	CrcFromMsb
	CrcWord
	creat
	ctime
	debug_assert
	debug_message
	debug_stop
	difftime
	DirectChanln
	DirectChanInChar
	DirectChanlnlnt
	DirectChanOut
	DirectChanOutChar
	DirectChanOutInt
	div
	exit
	exit_noterminate
	exit_repeat
	exit_terminate
	exp
	expf
	fabs
	fabsf
	fclose
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	filesize
	floor
	floorf
	fmod
	fmodf
	fopen
	fprintf
	fputc
	fputs
	fread
	free
	free86
	freopen
	frexp
	frexpf
	from_host_link
	from86
	fscanf
	fseek
	fsetpos
	ftell
	fwrite
	get_bootlink_channels
	get_code_details_from_channel
	get_code_details_from_file
	get_code_details_from_memory
	get_details_of_free_memory
	get_details_of_free_stack_space
	get_param
	getc
	getchar
	getenv
	getkey
	gets
	gmtime
	halt_processor
	host_info
	int86
	int86x
	intdos
	intdosx
	isalnum
	isalpha
	isatty
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	labs
	ldexp
	ldexpf
	Idiv
	load_code_from_channel
	load_code_from_file
	load_code_from_memory
	localeconv
	localtime
	log
	logf
	log10
	log10f
	longjmp
	lseek
	malloc
	max_stack_usage
	mblen
	mbstowcs
	rnbtowc
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	modf
	modff
	Move2D
	Move2DNonZero
	Move2DZero
	open
	perror
	pollkey
	pow
	powf
	printf
	ProcAfter
	ProcAlloc
	ProcAllocClean
	ProcAlt
	ProcAltList
	ProcGetPriority
	Proclnit
	ProclnitClean
	ProcJoin
	ProcJoinList
	ProcPar
	ProcParam
	ProcParList
	ProcPriPar
	ProcReschedule
	ProcRun
	ProcRunHigh
	ProcRunLow
	ProcSkipAlt
	ProcSkipAltList
	ProcStop
	ProcTime
	ProcTimeAfter
	ProcTimeMinus
	ProcTimePlus
	ProcTimerAlt
	ProcTimerAltList
	ProcWait
	putc
	putchar
	puts
	qsort
	raise
	rand
	read
	realloc
	remove
	rename
	rewind
	scanf
	segread
	SemAlloc
	Semlnit
	SemSignal
	SemWait
	server_transaction
	set_abort_action
	setbuf
	setjmp
	setlocale
	setvbuf
	signal
	sin
	sinf
	sinh
	sinhf
	sprintf
	sqrt
	sqrtf
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strftime
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	strtoul
	strxfrm
	system
	tan
	tanf
	tanh
	tanhf
	time
	tmpfile
	tmpnam
	to_host_link
	to86
	tolower
	toupper
	ungetc
	unlink
	va_arg
	va_end
	va_start
	vfprintf
	vprintf
	vsprintf
	wcstombs
	wctomb
	write

	3 Modifying the runtime startup system
	3.1 Introduction
	3.2 Overview of system
	3.3 The gsb and use of the IMS_nolink pragma
	3.4 Interface to runtime startup code
	3.5 Details of stage 1 of the runtime startup code
	3.5.1 Initialize static
	3.5.2 Call stage 2 startup code and set up gsb

	3.6 Details of stage 2 of the runtime startup code
	3.6.1 Set up bounds of stack
	3.6.2 Initialize heap
	3.6.3 Initialize pointer to configuration process structure
	3.6.4 Initialize I/O system
	3.6.5 Get command line arguments
	3.6.6 Save exit return point
	3.6.7 Initialize clock
	3.6.8 Call main
	3.6.9 Terminate server if required

	3.7 Interface to main
	3.8 Static initialization
	3.9 Source files supplied and rebuilding
	UNIX based toolsets
	MS-DOS based toolsets
	VMS based toolsets

	3.10 Notes
	3.11 Example
	3.11.1 Building the modified runtime system
	For example
	UNIX based toolsets
	MS-DOS/VMS based toolsets

	Language Reference
	4 New features in ANSI C
	4.1 Summary of new features in the ANSI standard
	4.2 Details of new features
	4.2.1 Function declarations
	4.2.2 Function prototypes
	4.2.3 Functions without prototypes
	4.2.4 Declarations
	4.2.5 Types, type qualifiers and type specifiers
	4.2.6 Constants
	4.2.7 Preprocessor extensions
	Compiler directives
	Predefined macros

	4.2.8 Structures and unions
	4.2.9 Trigraphs
	Trigraph escape codes

	5 Language extensions
	5.1 Concurrency support
	5.2 Pragmas
	5.3 Predefined macros
	5.4 Assembly language support
	5.4.1 Directives and operations
	5.4.2 size option on __asm statement
	5.4.3 Labels
	5.4.4 Notes on transputer code programming
	5.4.5 Useful built-in variables
	5.4.6 Transputer code examples
	Setting the transputer error flag
	Loading constants using literal operands
	Labels and jumps
	Jump tables
	Loading floating point registers
	Using align/word to return an element of a table
	Inserting raw machine code

	6 Implementation details
	6.1 Data type representation
	6.1.1 Scalar types
	6.1.2 Arrays
	6.1.3 Structures
	Example 1 (structuring on a 32-bit processor)
	Example 2 (structuring on a 32-bit processor)

	6.1.4 Unions

	6.2 Type conversions
	6.2.1 Integers
	6.2.2 Floating point

	6.3 Compiler diagnostics
	6.4 Environment
	6.4.1 Arguments to main
	Configured case
	Unconfigured case

	6.4.2 Interactive devices

	6.5 Identifiers
	6.6 Source and execution character sets
	Shift states for encoding multibyte characters
	Integer character constants
	Locale used to convert multibyte characters
	Plain chars

	6.7 Integer operations
	Bitwise operations on signed integers
	Sign of the remainder on integer division
	Right shifts on negative-valued signed integral types

	6.8 Registers
	6.9 Enumeration types
	6.10 Bit fields
	6.11 volatile qualifier
	6.12 Declarators
	6.13 Switch statement
	6.14 Preprocessing directives
	Constants controlling conditional inclusion
	Date and time defaults

	6.15 Static data layout
	6.15.1 Local static data layout
	6.15.2 Constant static objects

	6.16 Calling conventions
	6.16.1 Parameter Passing
	6.16.2 Calling Sequence
	6.16.3 Rules for aliasing between formal parameters

	6.17 Runtime library

	Appendices
	A Syntax of language extensions
	A.1 Notation
	A.2 #pragma directive
	A.3 __asm statement

	B ANSI standard compliance data
	B.1 Translation
	B.2 Environment
	B.3 Identifiers
	B.4 Characters
	B.5 Integers
	B.6 Floating point
	B.7 Arrays and pointers
	B.8 Registers
	B.9 Structures, unions, enumerations, and bit-fields
	B.10 QuaIifiers
	B.11 Declarators
	B.12 Statements
	B.13 Preprocessing directives
	B.14 Library functions
	B.15 Locale-specific behavior

	C CRC Resume
	C.1 Summary of functions
	C.2 Cyclic redundancy polynomials
	C.2.1 Format of result

	C.3 Notes on the use of the CRC functions
	C.4 Example of use

	Index

