ANSI C
Language and Libraries
Reference Manual

INMOS Limited

Lyy SGS-THOMSON
Y/ . MICROELEGTRONIGS
INMOS is a member of the SGS-THOMSON Microelectronics Group

72 TDS 347 01 October 1992

© INMOS Limited 1992. This document may not be copied, in whole or in part, without
prior written consent of INMOS.

®
s fln—’nmos®, IMS and occam are trademarks of INMOS Limited.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

&y7, 53NN is a registered trademark of the SGS-THOMSON Microelectronics Group.

The C compiler implementation was developed from the Perihelion Software "C” Compiler
and the Codemist Norcroft "C" Compiler.

INMOS Document Number: 72 TDS 347 01

Contents overview

Contents

Preface

Runtime Library

Introduction and run-
time library summary

An introduction to the Runtime Library with
summaries of the header files.

startup system

2 Alphabetical list of |Detailed descriptions of each library function,
functions listed in alphabetical order.
3 Modifying the runtime |Describes how the runtime startup code can be

tailored.

Language Reference

4 New features in ANSI |Describes the new features in the ANSI stan-
(o dard.
5 Language extensions |Describes the ANSI C toolset language exten-
sions.
6 Implementation Contains data for implementation—defined
details characteristics.
Appendices
A Syntax of language |Defines the language extensions.
extensions
B ANSI C compliance |Lists implementation data required by the ANSI
data standard.
(] CRC résumé Provides additional information about the CRC
functions supplied with the toolset and docu-
mented in chapter 2.
Index
72 TDS 347 01 October 1992

ii Contents overview

72 TDS 347 01 October 1992

Contents

Contentsoverviewt e i
Comtents ... iii
Preface ... ix
Hostversionsccoiiiiiiiiiiii i ix
Aboutthismanual ix
About the toolset documentationset ix
Otherdocumentsot xi
occam and FORTRANtoolsets Xi
Documentation conventionsl Xi
RuntimelLibrary ... e 1
1 Introduction and runtime library summary 3
1.1 Introduction 3

1.1.1 Accessing library functions 4

1.1.2 Linking libraries with programs 4

113 iserverprotocolsot 4

1.14 Functions which store datain static.............. 4

1.2 Headerfiles..........c.coiiiiiii it 5

1.3 ANSIfunctions ...t 6

1.3.1 Diagnostics <asserth> 7

1.3.2 Character handling <ctype.h> e 7

1.33 Error handling <ermo.h> 7

1.34 Floating point constants <float.h> 8

1.35 Implementation limits <limits.h> 9

1.3.6 Localization <locale.h> 9

137 Mathematics library <math.h> 11

1.3.8 Non-ocal jumps <setimp.h> 12

1.3.9 Signal handling <signal.h> 12

1.3.10 Variable arguments <stdarg.h> 13

1.3.11 Standard definitions <stddef.h> 13

1.3.12 Standard /O <stdio.h>......................... 14
Characteristics of file handling 16

1.3.13 Reduced library I/O functions <stdiored.h> 17

1.3.14 General utilities <stdlib.h>...................... 17

1.3.15 String handling <string.h> 20

1.3.16 Dateandtime<time.h> 21

iv Contents
14 Concurrency functions, 22
14.1 Process control <process.h> 23

14.2 Channel communication <channel.h>............ 24

143 Semaphore handling <semaphor.h> 25

15 Otherfunctions, 25
1.5.1 I/O primitives <iocntd.h> 26

152 float maths<mathfh> 26

153 Host utilities <hosth> 28

154 Host channel access utilities <hostlink.h> 28

155 Boot link channel functions <bootlinkh> 29

1.5.6 MS-DOS system functions <dos.h> 29

1.5.7 Dynamic code loading functions <fnload.h> 29

1.5.8 Miscellaneous functions <misc.h> 30

1.6 Fatalruntimeerrors 32
1.6.1 Runtime errormessages 32

2 Alphabetical list of functions 35
21 Format ... e e 35
211 Reducedlibrary 35

2.1.2 Macrosc.cooiiiiiii i 35

22 Listoffunctions, 36
3 Modifying the runtime startup system 357
3.1 Introduction 357
3.2 Overviewofsystem ..o, 358
33 The gsb and use of the IMS_nolink pragma 359
34 Interface to runtime startupcode 360
35 Details of stage 1 of the runtime startupcode 361
3.5.1 Initialize static il 361

352 Call stage 2 startup code and setupgsb 362

3.6 Details of stage 2 of the runtime startupcode 363
36.1 Setupboundsofstack 363

36.2 Initializeheapl 363

3.6.3 Initialize pointer to configuration process structure . 364

3.6.4 Initialize /O systeml 364

36.5 Get command line arguments 365

36.6 Save exitreturnpoint, 365

36.7 Initializeclock il 365

36.8 Callmain ...ttt 365

369 Terminate serverifrequired 366

37 Interfacetomain i, 366
3.8 Static initializationl 367
3.9 Source files supplied and rebuilding 368

Contents \'
UNIX basedtoolsets: 369

MS-DOS based toolsets: 369

VMS based toolsets: 369

310 Notes ... e 370

311 Example s 371
3.11.1 Building the modified runtime system 375
Forexample:cooieiiiiiiiiiinn... 375

UNIX basedtoolsets: 375

MS-DOS/VMS based toolsets: 375

Language Reference, 377
4 NewfeaturesinANSIC 379
41 Summary of new features in the ANSI standard 379

42 Details of newfeatures 381
4.21 Function declarations 381

422 Function prototypes 381

423 Functions without prototypes 381

424 Declarations 382

425 Types, type qualifiers and type specifiers 382

426 Constantsci i, 384

427 Preprocessor extensions 384

Compiler directivesccoviin.. 384

Predefinedmacros: 385

428 Structures andunions 385

4.29 Trigraphs ... 386

Trigraph escapecodes 386

5 Languageextensions............cc.ciiiiiiiniininn, 387
5.1 Concurrency SUPPOrt . ..ottt it 387

52 Pragmas e 387

53 Predefinedmacroscccoiiiiiiiiiiiiinnnnnn.. 388

54 Assembly language support, 389
5.4.1 Directives and operations 389

54.2 size optionon __asmstatement 391

543 Labels ..o 391

544 Notes on transputer code programming 391

5.4.5 Useful built-in variables 391

5.4.6 Transputer code examples 392

Setting the transputererrorflag 392

Loading constants using literal operands 392

Labelsandjumps 393

Jumptables o, 393

1 vi Contents
\
Loading floating point registers 39
| Using align/word to return an element of a table ... 394
| Inserting raw machinecode 394
6 Implementationdetailscooviuiiinnnnn. 395
61 Datatype representationiiiiiiii... 395
\ 6.1.1 Scalartypes 395
| 6.1.2 AITAYS . e 396
6.1.3 Structures 397
\ Example 1 (structuring on a 32-bit processor): 398
‘ Example 2 (structuring on a 32—bit processor): 398
6.1.4 Unions ... e 399
\ 6.2 TYPE CONVETSIONS . ..ottt it eee e ieanans 399
6.2.1 Integers 399
6.2.2 Floatingpoint 400
6.3 Compiler diagnostics i 400
6.4 Environment A 400
6.4.1 Argumentstomain, 400
Configuredcase: 401
Unconfiguredcasecoonut. 401
\ 6.4.2 Interactive devices 402
6.5 Identifiers 402
‘ 6.6 Source and execution charactersets 402
Shift states for encoding multibyte characters 402
| Integer character constants 402
| Locale used to convert multibyte characters 402
| Plainchars i 403
6.7 Integeroperations 403
\ Bitwise operations on signed integers 403
‘ Sign of the remainder on integer division 403
Right shifts on negative-valued signed integral
| BYPES o 403
‘ 6.8 Registers ... e 403
6.9 Enumerationtypes ... 403
B0 BIAEIS .. I 403
| 6.1 volatile qUAlfier 404
| 642 Declaratorsc.coiiiiii e 404
‘ 6.13 Switchstatementl 404
| 6.14 Preprocessing directives 404
Constants controlling conditional inclusion 404
| Date and time defaults 405
‘ 6.15 Staticdatalayout il 405
6.15.1 Local staticdatalayout 405

(I

Contents vii
6.15.2 Constant staticobjects 406

6.16 Callingconventions 407
6.16.1 ParameterPassing 407

6.16.2 CallingSequence 407

6.16.3 Rules for aliasing between formal parameters 409

6.17 Runtimelibrary 409
Appendicest e 41
A Syntax of language extensions 413
A1l Notation 413

A2 #ipragmadirective i, 413

A3 _asmstatement 414

B ANSI standard compliancedata 415
B.1 Translation 415

B.2 Environment 415

B.3 Identifiers 416

B4 Charactersc. i 416

B5 Integers 417

B.6 Floatingpoint 418

B.7 Arraysand pointers i 418

B.8 Registers i 419

B.9 Structures, unions, enumerations, and bit-fields 419

BA0 Qualifiers ... e 420

BA1 Declarators 421

B12 Statements 421

B.13 Preprocessing directives iiiiin.... 421

B.14 Libraryfunctions..........., 422

B.15 Locale-specific behavior 427

C CRCRESUMEcciiiiiiiinirnnnnannnnnnnnnnrsns 429
CA Summary offunctionsl 429

C.2 Cyclic redundancy polynomials 429
Cc.2.1 Formatofresult........... 430

C3 Notes on the use of the CRC functions 431

c4 Exampleofuse 431

Contents

Preface

Host versions

The documentation set which accompanies the ANSI C toolset is designed to
cover all host versions of the toolset:

* |IMS D7314 - IBM PC compatible running MS-DOS
¢ |MS D4314 — Sun 4 systems running SunOS.
¢ |MS D6314 — VAX systems running VMS.

About this manual

This manual is the Language and Libraries Reference Manual to the ANSI C tool-
set and provides a language reference for the toolset and implementation data.

The manual is divided into two parts: ‘Runtime Library’ and ‘Language Reference’,
plus appendices.

The first section Runtime Library:
« introduces the runtime library and summarizes the header files;

» provides a detailed description of each library function, in alphabetical
order;

« describes how to modify the runtime startup system by removing segments
not required by the user’s application. Only very experienced users should
attempt this.

The ‘Language Reference’ section describes:
+ new features in the ANSI standard;
» ANSI C toolset language extensions;
+ ANSI C toolset implementation details.
The three appendices cover:
» syntax of language extensions;
¢ ANSI compliance data;
« further explanation of the cyclic redundancy function provided.

About the toolset documentation set
The documentation set comprises the following volumes;

72 TDS 347 01 October 1992

X About the toolset documentation set

o 72 TDS 345 01 ANSI C Toolset User Guide

Describes the use of the toolset in developing programs for running on the
transputer. The manual is divided into two sections; ‘Basics’ which
describes each of the main stages of the development process and
includes a ‘Getting started” tutorial. The ‘Advanced Techniques’ section is
aimed at more experienced users. The appendices contain a glossary of
terms and a bibliography. Several of the chapters are generic to other
INMOS toolsets.

s 72 TDS 346 01 ANSI C Toolset Reference Manual

Provides reference material for each tool in the toolset including command
line options, syntax and error messages. Many of the tools in the toolset
are generic to other INMOS toolset products i.e. the occam and FOR-
TRAN toolsets and the documentation reflects this. Examples are given in
C. The appendices provide details of toolset conventions, transputer
types, the assembler, server protocol, ITERM files and bootstrap loaders.

e 72 TDS 347 01 ANSI C Language and Libraries Reference Manual —
(this manual)

e 72 TDS 348 01 ANSI C Optimizing Compiler User Guide

Provides reference and user information specific to the ANSI C optimizing
compiler. Examples of the type of optimizations available are provided in
the appendices. This manual should be read in conjunction with the refer-
ence chapter for the standard ANSI C compiler, provided in the Tools Ref-
erence Manual.

e 72 TDS 354 00 Performance Improvement with the DX314 ANSI C Toolset

This document provides advice about how to maximize the performance
of the toolset. It brings together information provided in other toolset docu-
ments particularly from the Language and Libraries Reference Manual.
Note: details of how to manipulate the software virtual through-routing
mechanism are given in the User Guide.

e 72 TDS 355 00 ANSI C Toolset Handbook

A separately bound reference manual which lists the command line
options for each tool and the library functions. It is provided for quick refer-
ence and summarizes information provided in more detail in the Tools Ref-
erence Manual and the Language and Libraries Reference Manual.

» 72 TDS 360 00 ANSI C Toolset Master Index

A separately bound master index which covers the User Guide, Toolset
Reference Manual, Language and Libraries Reference Manual, Optimiz-
ing Compiler User Guide and the Performance Improvement document.

72 TDS 347 01 October 1992

Preface Xi

Other documents

Other documents provided with the toolset product include:
» Delivery manual giving installation data, this document is host specific.
» Release notes, common to all Host versions of the toolset.

occam and FORTRAN toolsets

At the time of writing the occam and FORTRAN toolset products referred to in this
document set are still under development and specific details relating to them are
subject to change. Users should consult the documentation provided with the cor-
responding toolset product for specific information on that product.

Documentation conventions

The following typographical conventions are used in this manual:

Bold type Used to emphasize new or special terminology.

Teletype Used to distinguish command line examples, code fragments,
and program listings from normal text.

Italic type In command syntax definitions, used to stand for an argument
of a particular type. Used within text for emphasis and for book
titles.

Braces {} Used to denote optional items in command syntax.

Brackets [] Used in command syntax to denote optional items on the com-
mand line.

Ellipsis . . . In general terms, used to denote the continuation of a series. For
example, in syntax definitions denotes a list of one or more
items.

| In command syntax, separates two mutually exclusive alterna-
tives.

72 TDS 347 01 October 1992

Xii Documentation conventions

72 TDS 347 01 October 1992

Runtime Library

72 TDS 347 01 October 1992

2 Runtime Library

72 TDS 347 01 October 1992

1 Introduction and
runtime library
summary

This chapter introduces the ANSI C runtime library. It describes the library header
files that contain the function declarations, explains how to use them, and lists the
contents of each file. The chapter ends with a list of runtime errors which may
occur.

1.1 Introduction

The ANSI C runtime library is a library of functions which perform common pro-
gramming operations such as file input/output (I/0) and mathematical transforma-
tions. The library supplied with the toolset is a full ANSI standard library with addi-
tional support for parallel processing, channel communication, and semaphore
handling. Some additional non-ANSI functions are also provided, including float
versions of the standard mathematical functions, low level file handling functions,
and a variety of miscellaneous operations.

A number of header files are provided. These contain prototypes for every function
in the library, along with useful macros and constants.

Two versions of the ANSI C runtime library are supplied: the full libraries and the
reduced libraries.

The full libraries provide access to the host environment via the iserver. Thus
a file system is available along with other host resources. Communication with the
iserver is achieved via a pair of host link channels, one coming from the server
and one going to the server. Access to these channels is protected by semaphore
thus ensuring that communication is not corrupted by concurrent accesses. Such
protection cannot be guaranteed if the channels are written to directly.

The reduced library can be thought of as a subset of the full library. It is modified
so that routines which require access to the iserver in order to carry out their
prime function, e.g. file handling routines, are omitted. Other routines which access
the iserver for secondary reasons, e.g. exit when closing files on program ter-
mination, are modified so that iserver accesses are omitted. The host link chan-
nels are not defined for the reduced library. Thus when direct communication with
the iserver is not required or possible then the reduced library should be used,
if the full library is used instead then the behavior of the program is undefined as
an iserver access may be attempted when no iserver is present.

72 TDS 347 01 October 1992

4 1.1 Introduction

Note: Programs linked with the reduced library must be collected from a configura-
tion binary file, that is, the programs must be configured.

1.1.1 Accessing library functions

Library functions must be declared like any other C function, and is simply per-
formed by including the appropriate header file; the correct file to include can be
determined from the function synopsis (see chapter 2).

1.1.2 Linking libraries with programs

Function code is incorporated with the program by linking in the appropriate library
file.

Several linker indirect files are supplied to aid linking with the C runtime library.
Their primary use is to specify the set of C library files required when linkinga C
program (or a mixed language program which uses C). These linker indirect files
and their application are described in detail in section 3.11 of the ANS/ C Toolset
User Guide.

1.1.3 iserver protocols

All functions in the library use the communication protocols of the the host file
server to perform program I/0. These protocols are invisible to the C applications
programmer. iserver protocol and its underlying functions are described in
appendix D ‘iserver protocol’ of the ANSI C Toolset Reference Manual.

The library function server_transaction provides access to low level
iserver functions.

1.1.4 Functions which store data in static

Certain functions in the Runtime Library store data in the static area. If these func-
tions are called simultaneously by two concurrent processes there may be conten-
tion for the same data and return values may be unpredictable.

For example:

getenv stores the string associated with an environment variable in the static
area. If process ‘A’ calls getenv for environment variable ‘ENVA’, then the string
associated with ‘ENVA'is stored in static. Consider now that process ‘A’ is desche-
duled and a second process, ‘B’ starts, which then calls getenv for ‘ENVB'. Now
the string for ‘ENVB' is stored in static, overwriting the string for ‘ENVA'. If process
‘A’ now restarts and attempts to use the pointer returned by getenv to access
‘ENVA), it will find that it actually reads ‘ENVB'.

Functions which should be used with great care in concurrently executing pro-
cesses are as follows:

72 TDS 347 01 October 1992

1 Introduction and runtime library summary 5

asctime getenv localtime rand get abort action
signal stdlib strerror strtok tmpnam

More information about the the use of these functions can be found under the
detailed function descriptions in chapter 2.

The global variable errno should also be used with great care in a concurrent
environment since there is no protection on its assignment.

1.2 Header files

Header files contain functions declarations, macros, and other definitions grouped
together for convenient reference in a program. Header files generally contain dec-
larations of related functions along with definitions of supporting constants and
macros. Header files may consist only of macros and constants, for example,
limits.h.

Header files supplied with the ANSI C toolset are listed in Table 1.1.

72 TDS 347 01 October 1992

6 1.3 ANSI functions
Header file Description

assert.h* Diagnostics.

bootlink.h Boot link channel information.
channel.h Channel handling.

ctype.h* Character handling and manipulation.
dos.h DOS specific operations.

errno.h* Error handling.

float.h* Characteristics of floating types.
fnload.h Dynamic code loading functions.
host.h Host system information.
hostlink.h Host channel information.

iocntrl.h

Low level file handling.

limits.h*

Language implementation limits.

locale.h* Locale specific data.

math.h* Maths and trig functions.

mathf.h float versions of maths and trig functions.
misc.h Miscellaneous functions.

process.h

Process startup, handling, and control.

semaphor.h

Semaphore handling.

setjmp.h* Non-local jumps.

signal .h* Signal handling.

stdarg.h* Variable argument handling.

stddef .h* Standard definitions.

stdio.h¥ Standard 1/O and file handling.
stdiored.h Reduced library string formatting functions.
stdlib.h* General programming utilities.
string.h* String handling and manipulation.
time.h* System clock date and time.

* ANSI standard files

Table 1.1 ANSI C toolset header files

The rest of this chapter describes the contents of the header files and is divided
into three sections covering the three main groups of files; ANS! standard func-

tions; Concurrency functions; and Other functions.

1.3 ANSI functions

ANSI functions are contained in a series of header files defined in the ANSI stan-
dard. They encompass standard function sets such as file I/O, maths and trig func-

72 TDS 347 01

October 1992

1 Introduction and runtime library summary 7

tions, character and string handling, error handling, and many other functions in
common usage within existing non-ANSI environments.

1.3.1 Diagnostics <assert.h>
The header file assert.h contains a single macro definition:

Macro Description
assert Inserts diagnostics into the program.

The definition of assert depends upon the value of the macro NDEBUG, which is
not itself defined in assert.h.
1.3.2 Character handling <ctype.h>

The header file ctype . h declares a set of functions for character identification and
manipulation.

Function Description

isalnum Determines whether a character is alphanumeric.

isalpha Determines whether a character is alphabetic.

isentrl Determines whether a character is a control character.

isdigit Determines whether a character is a decimal digit.

isgraph Determines whether a character is a printable non—space char-
acter.

islower Determines whether a character is a lower—case letter.

isprint Determines whether a character is a printable character (includ-
ing space).)

ispunct Determines whether a character is a punctuation character.

isspace Determines whether a character is one which affects spacing.

isupper Determines whether a character is an upper-case letter.

isxdigit Determines whether a character is a hexadecimal digit.

tolower Converts an upper—case letter to its lower—case equivalent.

toupper Converts an lower—case letter to its upper—case equivalent.

1.3.3 Error handling <errno.h>

The header file errno . h declares the error variable errno and defines codes for
the values to which it may be set. The file also contains a number of other error
codes, not listed here, which are included for compatibility with earlier INMOS com-
piler toolsets.

Variable Description

errno Avariable of type volatile int. Setto a positive error codes
by several library routines.

72 TDS 347 01 October 1992

8 1.3 ANSI functions

Macro Description

EDOM The argument to a maths function is out of range.

ERANGE Overflow or underflow in a maths function.

ESIGNUM lllegal signal number supplied to signal.

EIO Error in low level I/O function used to communicate with the
server.

EFILPOS Error in file positioning functions ftell, fgetpos, or
fsetpos.

1.3.4 Floating point constants <float.h>

Macro Description
FLT_RADIX Radix of exponent representation.
FLT_ROUNDS Rounding mode for floating point addition.

FLT_MANT DIG

Number of digits in a £1oat mantissa.

DBL_MANT DIG

double form of FLT_MANT_DIG.

LDBL_MANT DIG

long double form of FLT MANT_ DIG.

FLT_EPSILON

Minimum number of type float such that 1.0 + x 1= 1.0

DBL_EPSILON

double form of FLT EPSILON

LDBL_EPSILON

long double form of FLT EPSILON

FLT_DIG Number of decimal digits of precision for £1oat parame-
ters.

DBL_DIG double form of FLT_DIG.

LDBL_DIG long double form of FLT_DIG.

FLT_MIN EXP Minimum £loat exponent.

DBL_MIN_EXP double form of FLT MIN_EXP

LDBL_MIN_EXT long double form of FLT MIN_EXP

FLT MIN Minimum normalized positive number of type float.

DBL_MIN double form of FLT MIN

LDBL_MIN long double form of FLT _MIN

FLT_MIN_10_EXP

Minimum negative integer such that 10 raised to that
power is a normalized £1oat number.

DBL_MIN_10_EXP

double form of FLT MIN 10_EXP

LDBL_MIN 10_EXP

long double form of FLT MIN 10_EXP

FLT_MAX EXP Maximum integer such that FLT_RADIX raised to that
power minus 1 is a valid float number.
DBL_MAX EXP double form of FLT_MAX EXP

LDBL_MAX_EXP

long double form of FLT_MAX EXP

72 TDS 347 01

October 1992

1 Introduction

and runtime library summary

Macro Description

FLT MAX Maximum representable number of type £loat
DBL_MAX double form of FLT MAX

LDBL-MAX long double form of FLT MAX

FLT_MAX 10_EXP

Maximum integer such that 10 raised to that power is a
valid float number.

DBL_MAX 10_EXP

double form of FLT_MAX 10_EXP

LDBL_MAX_10_EXP

long double form of FLT MAX 10_EXP

135

Implementation limits <limits.h>

limits.h defines a number of implementation constants in ANSI C.

Macro Description

CHAR BIT |The number of bits in a byte.

SCHAR MIN [Minimum value for an object of type signed char

SCHAR MAX [Maximum value for an object of type signed char

UCHAR MAX |Maximum value for an object of type unsigned char
CHAR MIN Minimum value for an object of type char.

CHAR MAX |Maximum value for an object of type char.

SHRT_MIN |Minimum value for an object of type short int.

SHRT MAX Maximum value for an object of type short int.

USHRT MAX |Maximum value for an object of type unsigned short int.
INT_MIN Minimum value for an object of type int.

INT MAX Maximum value for an object of type int

UINT_ MAX Maximum value for an object of type unsigned int.
LONG_MIN |Minimum value for an object of type 1long int.

LONG_MAX |Maximum value for an object of type long int.
ULONG_MAX |Maximum value for an object of type unsigned long int.
MB_LEN MAX |Maximum number of bytes in a multibyte character.

1.3.6 Localization <locale.h>

The header file locale.h defines two functions, some macros for use by
setlocale, and a single structure.

Function Description

localeconv |Assigns appropriate values to components in objects of type
struct leconv for the formatting of numeric quantities, accord-
ing to the rules of the current locale.

setlocale |Sets orinterrogates part of the program’s locale.

72 TDS 347 01

October 1992

10 1.3 ANSI functions

Macro Description

LC_ALL Names the entire locale (that is, all of the following macros).

LC_COLLATE |Used in the string locale functions strcoll and strxfrm.

LC_CTYPE Used in the character handling functions

LC_NUMERIC |Selects the decimal point.

LC_TIME Used in the locale dependent time functions.

LC_MONETARY |Affects monetary formatting information returned by the
localeconv function.

Structure Description

lconv A structure which describes a complete locale.

INMOS ANSI C supports only the standard "C” locale, which has the following fea-

tures:

o The execution character set comprises all 256 values 0 to 255. Values 0
to 127 represent the ASCII character set. Note: when the compiler com-
mand line option ‘FC’ is used the execution character set comprises 128
values in the range 0 to 127.

» The collation sequence of the execution character set is the same as for
plain ASCII.

¢ Printing is from left to right.

» The decimal point character is ‘.".

No other locales are permitted.

72 TDS 347 01

October 1992

1 Introduction and runtime library summary 1

1.3.7 Mathematics library <math.h>
math . h declares general maths functions and their associated constants.

Note: the following is true for all functions declared in math.h:

On domain errors: errno is set to EDOM;

0.0 is returned.

On range errors: errno is set to ERANGE;

HUGE_VAL is returned for overflow errors;
-HUGE_VAL is returned for underflow errors.

Function |Description
acos Calculates the arc cosine of the argument.
asin Calculates the arc sine of the argument
atan Calculates the arc tangent of the argument.
atan2 Calculates the arc tangent of argument 1 divided by argument 2.
ceil Calculates the smallest integer which is not less than the argument.
cos Calculates the cosine of the argument.
cosh Calculates the hyperbolic cosine of the argument.
exp Calculates the exponential of the argument.
fabs Calculates the absolute value of a floating point number.
floor Calctulates the largest integer which is not greater than the argu-
ment.
fmod Calculates the floating point remainder of argument 1 divided by
argument 2.
frexp Separates a floating point number into a mantissa and an integral
power of 2.
ldexp Multiplies a floating point number by an integer power of 2.
log Calculates the natural logarithm of the argument.
loglo Calculates the base 10 logarithm of the argument.
modf Splits the argument into fractional and integral parts
pow Calculates x to the powery.
sin Calculates the sine of the argument.
sinh Calculates the hyperbolic sine of the argument
sqrt Calculates the square root of the argument.
tan Calculates the tangent of the argument.
tanh Calculates the hyperbolic tangent of the argument.
Macro Value
HUGE_VAL |A constant value returned if overflow or underflow occurs. ‘
|

___ 72TDS34701

October 1992

12

1.3 ANSI functions

1.3.8 Non-ocal jumps <setjmp.h>

The header file setjimp.h declares two functions used to perform non-local gotos,

and a single type used by them.

Function

Description

longjmp

Performs a non-local jump to a given environment.

setjmp

Sets up a non-local jump.

The two functions are used in conjunction to first set a position (setjmp), then
jump to this position (Longjmp). When longjmp executes, it appears to the user
as if the program had just returned from the call to the associated setjmp.

Type

Meaning

jmp_buf

An array type used to save a calling environment.

1.3.9 Signal handling <signal.h>

The header file signal . h defines two functions for signal handling, one type, and
several constants.

Function |Description

raise Forces a pseudo-exception via the signal handler.

signal Defines the way in which errors and exceptions are handled.

Type Description

sig_atomic_t [Defines an atomic variable. This is a variable whose state is
always known, and which cannot be confused by asynchro-
nous interrupts.

Macro Description

SIG_DFL Uses the default system error/exception handling for the pre-
defined value.

SIG_IGN Ignores the error/exception.

SIG_ERR Returned when the signal handler is invoked in error.

SIGABRT Abort error.

SIGFPE Arithmetic exception.

SIGILL lllegal instruction.

SIGINT Attention request from user.

SIGSERV Bad memory access.

SIGSTERM Termination request.

SIGIO Input/output possible.

SIGURG Urgent condition on I/O channel.

SIGPIPE Wirite on pipe with no corresponding read.

72TDS 347 01

_ October1992

1 Introduction and runtime library summary 13

Macro Description

SIGSYS Bad argument to system call.
SIGALRM Alarm clock.

SIGWINCH Window changed.

SIGLOST Resource lost.

SIGUSR1 User defined signal.
SIGUSR2 User defined signal.
SIGUSR3 User defined signal.

1.3.10 Variable arguments <stdarg.h>

The header file stdarg.h contains a three macros and a type definition.

Macro Description

va_arg Accesses a member of a variable argument list.

va_end Clears up after accessing variable arguments.

va_start Initializes a pointer to a variable number of function argu- | .
ments in a function definition.

Type Description

va_list Atype used to hold information required by the variable argu-
ment functions.

1.3.11 Standard definitions <stddef.h>

The header file stddef.h defines a number of commonly used data types and

macros.
Type Description
prtdiff t The signed integral type of the result of subtracting two point-
ers.
size_t The unsigned integral type of the result ofthe sizeof opera-
tor.
wchar t An integral type whose range of values can represent distinct
codes for all members of the largest extended character set
amongst the supported locales.
72TDS 347 1 October 1992

14 1.3 ANSI functions

Macro Description

NULL A null pointer constant which is returned by many
library routines.

offsetof (type, id) Expands to an integral constant expression that

hastype size_t. The valueis the offset in bytes
from the beginning of a structure, designated by
type, of id.

For example:

struct item

{
long int x;
long int y;
}bi

offsetof (struct item, y) =4

1.3.12 Standard I/O <stdio.h>

The header file stdio.h defines the main I/O and file handling functions, three
types, and several macros.

Function Description

clearerr Clears the error and end-of-file indicators for a file stream.

fclose Closes a file stream.

feof Tests the state of the end-of-file indicator.

ferror Tests the state of the file error indicator.

fflush Flushes an output stream.

fgete Reads a character from a file stream.

fgetpos Gets the position of the read/write file pointer.

fgets Reads a line from a file stream.

fopen Opens a file.

fprintf Writes a formatted string to a file.

fputc Writes a character to a file stream.

fputs Wirites a string to a file stream.

fread Reads records from a file.

freopen Closes an open file, and re-opens it in a given mode.

fscanf Reads formatted input from a file stream.

fseek Sets the read/write file pointer to a specified offset in a file
stream.

fsetpos Sets the read/write file pointer to a position obtained from
fgetpos.

ftell Gives the position of the read/write pointer in the file stream.

fwrite Writes records from an array into a file.

72 TDS 347 01

October 1992

1 Introduction and runtime library summary

15

Function Description

gete Gets a character from a file.

getchar Reads a character from standard input.

gets Gets a line from standard input.

perror Writes an error message to the standard error output.

printf Writes a formatted string to standard output.

putc Writes a character to a file stream.

putchar Wirites a character to standard output.

puts Writes a line to standard output.

remove Removes access to a file.

rename Renames a file.

rewind Sets the file stream’s read/write position pointer to the start
of the file.

scanf Reads formatted data from standard input.

setbuf Controls file buffering.

setvbuf Defines the way that a file stream is buffered.

sprintf Wirites a formatted string to a string.

sscanf Reads formatted data from a string.

[tmpfile Creates a temporary file.

tmpnam Creates a unique filename.

ungetec Pushes a character back onto a file stream.

viprintf Writes a formatted string to a file (alternative form of
fprintf).

vprintf Writes a formatted string to standard output (alternative form
of printf).

vsprintf Writes a formatted string to a string (alternative form of
sprintf).

Type Description

FILE Defines a type used for recording all the information that the
system needs to control a file stream.

fpos_t Defines a structure able to hold a unique specification of
every position within a file.

size_t ;l'he unsigned integral type of the result ofthe sizeof opera-
(o]

Macro Description

NULL A null pointer constant that is returned by many routines.

The first group of three macros in the following list define integral constants which
may be used to control the action of setvbuf£; the next three macros define inte-
gral constants which may be used to control the action of £seek, and the remain-
der in the list are used throughout the I/O library:

72 TDS 347 01

October 1992

16 1.3 ANSI functions

Macro Description

_IOFBF Full /O buffering required.

_IOLBF Line buffering required.

_IONBF No I/O buffering required.

SEEK_SET Start seek at start of file stream.

SEEK_CUR Start seek at current position in file stream.

SEEK_END Start seek at end of file stream.

BUFSIZ The buffer size used by setbuf.

EOF End of file character.

L_tmpnam The size of an aray used to hold temporary file names gener-
ated by tmpnam. _

TMP_MAX The maximum number of unique file names generated by
tmpnam.

FOPEN_MAX The minimum number of files that can be open simulta-
neously.

FILENAME MAX |Maximum length of flename.

Characteristics of file handling

File handling by works on sfreams and has the following features:

File naming follows the conventions of the host system.
Zero length files can exist if they are permitted by the host system.

The same file can be opened multiple times. However, because there is no
support for shared access within stdio.h the results may be unpredict-
able.

In append mode the file position indicator is initially positioned at the end
of the file.

Spaces written out to a file before the newline character are also read in.

The last line of a text stream does not require a terminating newline charac-
ter.

A write on a text stream does not cause the associated file to be truncated
beyond that point.

No NULL characters are appended to data written to a binary stream.
The features of file buffering are as follows:

— In unbuffered streams characters appear from the source or des-
tination as soon as possible. Transmission of characters also
occurs if input is specifically requested.

72 TDS 347 01 October 1992

1 Introduction and runtime library summary 17

— In line- buffered streams a block of characters is built up and then
sent to the host system when a newline character occurs. Trans-
mission also occurs if input is specifically requested.

— In fully buffered streams a block of characters is sent to the host
system when the buffer becomes full.

In all buffering modes characters are also transmitted if the buffer becomes full, or
if the stream is explicitly flushed.
1.3.13 Reduced library 1/O functions <stdiored.h>

Thefile stdiored.h contains declarations of three print formatting functions from
stdio.h. They are for use in programs linked with the reduced runtime library.

Function Description

sprintf Writes a formatted string to a string.

sscanf Reads formatted data from a string.

vsprintf Writes a formatted string to a string (alternative form of
sprintf.

1.3.14 General utilities <stdlib.h>

The header file std1ib.h contains general programming utilities and associated
data types, constants, and macros. Many of the functions are implemented as

macros.

Note: the functions mblen, mbtowe, mbstowes, wetomb and westombs provide
a minimal implementation of the ANSI standard.

This is considered sufficient because the current toolset supports only the standard
C locale, and therefore any implementation is of limited praclical value.

The functions support an implementation of wide characters in which:

wchar t = int
MB MAX LEN = 1

72 TDS 347 01 October 1992

18 1.3 ANS| functions

Function Description

abort Causes the program to abort. The abort is equivalent to an
abnormal termination of the program.

abs Calculates the absolute value of an integer.

atexit Specifies a function to be called when the program ends.

atof Converts a string of characters to a double.

atoi Converts a string to an int.

atol Converts a string to a 1ong int.

bsearch Searches a sorted array for a given object.

calloc Allocates memory space for an array of items and initializes
the space to zeros.

div Calculates the quotient and remainder of a division.

exit Causes normal program termination.

free Frees an area of memory.

getenv Obtains the value of an environment variable from the host.

labs Calculates the absolute value of a long int.

1div Calculates the quotient and remainder of a long division.

malloc Allocates a specified area of memory.

mblen Determines the number of bytes in a multibyte character.

mbtowe Converts a multibyte char to a code of type wchar_t.

mbstowecs Converts a sequence of multibyte characters to a sequence
of codes of type wchar_t

gsort Sorts an array of objects.

rand Generates a pseudo-random number.

realloc Changes the size of an object in memory.

srand Set(si the seed for pseudo-random numbers generated by
rand.

strtod Converts the initial part of a string to a double and saves a
pointer to the rest of the string.

strtol Converts the initial part of a string to a 1ong int and saves
a pointer to the rest of the string.

strtoul Converts the initial part of a stingto anunsigned longint
and saves a pointer to the rest of the string.

system Passes a string to the host environment for execution as a
host command.

wctomb Converts a code of type wchar_t to a multibyte character.

westombs Opposite of mbstowcs. Converts a sequence of codes of

type wchar_t to a sequence of multibyte characters.

72 TDS 347 01

October 1992

1 Introduction and runtime library summary 19

Type Description

size t The unsigned integral type of the result of the sizeof opera-
tor.

wchar_t An integral type whose range of values can represent distinct
codes for all members of the largest extended character set
amongst the supported locales.

div_t The type retumed by div.

1div_t The type retumed by 1div.

Macro Description

NULL A null pointer constant which is returned by many library rou-

tines.

EXIT_FAILURE

An integral expression which may be used as an argument
to the exit function to return unsuccessful termination sta-
tus to the Host environment.

EXIT_SUCCESS

As EXIT_FAILURE but for successful termination

RAND_MAX Maximum value returned by rand function.
MB_CUR MAX Maximum number of bytes in a multibyte character.
72 TDS 347 01 October 1992

20

1.3 ANSI functions

1.3.15 String handling <string.h>

The header file string . h declares a number of string handling functions, and one

type.
Function Description
memchr Finds the first occurrence of a character in the first n charac-
ters of an area of memory.
memcmp Compares the first n characters of two areas of memory.
memcpy Copies characters from one area of memory to another (no
memory overlap allowed).
memmove Copies characters from one area of memory to another (the
areas can overlap).
memset Fills a given area of memory with the same character.
strcat Appends one string onto another.
strchr Finds the first occurrence of a character in a string.
strcmp Compares two strings.
strcoll Compares two strings (transformed according to the pro-
gram’s locale).
strcpy Copies one string to another.
strespn Counts the number of characters at the start of one string
which do not match any of the characters in another string.
strerror Converts an error number into an error message string.
strlen Calculates the length of a string.
strncat Appends one string onto another (up to a maximum number
of characters).
strncmp Compares the first n characters of two strings.
strncpy Copies one string to another (up to a maximum number of
characters).
strpbrk Finds the first character in one string that is present in
another string.
strrchr Finds the last occurmrence of a given character in a string.
strspn Counts the number of characters at the start of a string which
are also in another string.
strstr Finds the first occurrence of one string in another.
strtok Converts a string consisting of delimited tokens into a series
of strings with the delimiters removed.
strxfrm Transforms a string according to the locale and copies it into
an array (up to a maximum number of characters).

72 TDS 347 01

October 1992

1 Introduction and runtime library summary 21

Type Description

size t The unsigned integral type ofthe result ofthe sizeof opera-
tor.

Macro Description

NULL A null pointer constant which is returned by many library rou-
tines.

1.3.16 Date and time <time.h>

The header file time . h declares a number of functions for manipulating time, four
types, and some time and date constants.

In all the following funclions the local time zone is defined by the host system. Day-
light Saving Time is not available.

Function Description

asctime Converts the values in a broken-down time structure to an
ASCII string. (See below).

clock Calculates the amount of processor time used.

ctime Converts a calendar time to a string.

difftime Calculates the difference between two calendar times.

gmtime Converts a calendar time to a broken-down time, expressed
as coordinated universal time (UTC time). Always returns
NULL, because UTC time is not available in this implementa-
tion.

localtime Converts a calendar time into a broken-down time structure
format.

mktime Converts a broken-down structure into a time_t value.

strftime Does a formatted conversion of a broken-down time struc-
ture to a string.

time Reads the current time.

Type Description

size t The unsigned integral type of the result of the sizeof opera-
tor.

clock_t Used to store times in the form of processor clock ticks per
second.

time_t Used to store times in a fixed format.

struct tm A structure representing a broken-down time.

Macro Description

NULL A null pointer constant which is returned by many library

routines.
CLOCKS_PER_SEC |The number of processor clock ticks per second (priority
sensitive).

72 TDS 347 01

October 1992

22 1.4 Concurrency functions

Some functions declared in time.h act on broken-down times. A broken-down
time is represented as a structure as follows:

struct tm {
int tm sec; /* Secs after min [0,61] */
int tm min; /* Mins after hour [0,59] */
int tm_hour; /* Hours since midnight [0,23] */
int tm mday; /* Day of month [1,31] */
int tm_mon; /* Months since Jan [0,11] */
int tm year; /* Years since 1900 */
int tm wday; /* Days since Sunday [0,6] */
int tm_yday; /* Days since Jan 1 [0,365] */

int tm_isdst; /* Daylight saving flag */

1.4 Concurrency functions

Concurrency support in the runtime library is separated into three header files:
process.h which contains functions to set up, run, and control concurrent pro-
cesses with associated constants; channel'. h which contains functions for com-
municating along channels with associated channel constants such as link
addresses; and semaphor . h which contains the semaphore support functions.

72 TDS 347 01 October 1992

1 Introduction and runtime library summary

23

1.4.1 Process control <process.h>

Function Description
ProcAfter tIi)elays execution of a process until after a specified
me.
ProcAlloc Allocates stack space and initializes a process.
ProcAllocClean Cleans up after a process created using ProcAlloc.
ProcAlt Causes a process to wait for a ready input from a series
of channels. Channels are referenced by pointers.
ProcAltList As ProcAlt but references an array of channel point-
ers.
ProcGetPriority |Returns the priority of the current process.
ProcInit Initializes a process.
ProcInitClean Cleans up after a process created using ProcInit.
ProcJoin Waits for a list of asynchronous processes to terminate.
ProcJoinList Waits for a list (passed as an array) of asynchronous
processes to terminate.
ProcPar Starts a number of synchronized processes in parallel.
ProcParam Alters process parameters.
ProcParList As ProcPar but takes a list passed as an array of pro-
cesses.
ProcPriPar Starts two processes in parallel, the first being
executed at high priority and the second at low priority.
ProcReschedule Reschedules a process, that is, places it on the end of
the process queue.
ProcRun Starts a process at the same priority as the calling pro-
cess (the current priority).
ProcRunHigh Starts a high priority process.
ProcRunLow Starts a low priority process.
ProcSkipalt Similar to ProcAlt but does not wait if there are no
channels are ready.
ProcSkipAltList [As ProcSkipAlt but takes an amay of pointers to
channels.
ProcStop Stops a process.
ProcTime Reads the transputer clock.
ProcTimeAfter tliDetermines the sequence of two transputer clock
mes.
ProcTimeMinus t(i5ive$ the difference between two transputer clock
mes.
ProcTimePlus Gives the result of adding two transputer clock times.
ProcTimerAlt As ProcAlt but uses a timeout.
ProcTimerAltList |As ProcAltList but uses a timeout.
ProcWait Delays execution of a process for a specified time.

72 TDS 347 01

October 1992

24 1.4 Concurrency functions
Type Description
Process A structure that holds all the information about a concurrent
process.
Constant Description

PROC_HIGH The value retumed by ProcGetPriority for a
high priority process.

PROC_LOW The value returned by ProcGetPriority for a
low priority process.

CLOCKS_PER_SEC_HIGH |Number of processor clock ticks per second for a
high priority process.

CLOCKS_PER SEC_LOW |Number of processor clock ticks per second for a
low priority process.

1.4.2 Channel communication <channel.h>

Function Description

ChanAlloc Allocates and initializes a channel.

Chanln Inputs a message on a channel.

ChanInChanFail As ChanIn but incorporates the ability to reset a
channel on receipt of a message sent on another
channel (such as a link failure condition).

ChanInChar Inputs a byte on a channel.

ChanInit Initializes a channel.

ChanInInt Inputs an integer on a channel.

ChanInTimeFail As Chanln but incorporates a timeout after which
the channel is reset if no communication occurs.

ChanOut Outputs a message on a channel.

ChanOutChanFail As ChanInChanFail but for output channels.

ChanOutChar Outputs a byte on a channel.

ChanOutInt Outputs an integer on a channel.

ChanOutTimeFail As ChanInTimeFail but for output channels.

ChanReset Resets a channel.

DirectChanIn t Input a message on a channel.

DirectChanInChar ¥ |Input a byte on a channel.

DirectChanInInt t Input an integer on a channel.

DirectChanOut t Output a message on a channel.

DirectChanOCutChar 1 |Output a byte on a channel.

DirectChanOutIntt |Output an integer on a channel.

1 Direct. .. functions may not be used in all situations that their counterpart

Chan. . . functions can. See chapter 2 for detailed descriptions.

72 TDS 347 01

October 1992

1 Introduction and runtime library summary 25

Type Description

Channel The channel type.

Constant Description

NotProcess_p A special value used in process communication and
scheduling. Returned by ChanReset.

LINKOOUT Link zero output address.

LINK1OUT Link one output address.

LINK20UT Link two output address.

LINK30UT Link three output address.

LINKOIN Link zero input address.

LINK1IN Link one input address.

LINK2IN Link two input address.

LINK3IN Link three input address.

EVENT Event line address.

14.3 Semaphore handling <semaphor.h>

Function Description

SemInit Initializes a semaphore.

SemAlloc Allocates and initializes a semaphore.

SemSignal Releases a semaphore.

SemWait Acquires a semaphore.

Type Description

Semaphore Defines a semaphore type.

Macro Description

SEMAPHOREINIT |Initializes a semaphore (same action as SemInit but
implemented as a macro).

1.5 Other functions

The header files iocntrl.h, mathf.h, host.h, hostlink.h, bootlink.h,
dos.h, fnload.handmisc.h contain some further extensions to the ANSI run-
time library. These include UNIX-like I/O primitives; short maths functions; host
system utilities, host channel access utilities; DOS specific functions; dynamic
code loading functions and miscellaneous functions including debugging support

for idebug.

72 TDS 347 01

October 1992

26

1.5 Other functions

1.5.1 /O primitives <iocntrl.h>

Function Description

close Low level file close.

creat Low level file create.

filesize Returns the size of a given file.

getkey Gets the next character from the keyboard. Waits
indefinitely for the next key press. Does not echo the
character to the screen.

isatty Checks for terminal files.

1seek Low level file seek.

open Low level file open.

pollkey Gets the next character from the keyboard. Returns
immediately if no key press is available. Does not
echo the character to the screen.

read Low leve! read-from-file.

server_transaction |Allows access to iserver functions in a controlled
way.

unlink Low level file remove (corresponds to ANSI standard
function remove).

write Low level write-to-file.

The following macros are defined to control 1seek:

Macro Description

L_SET Seek from start of file.
L_INCR Seek from current position.
L_XTND Seek from end of file.

by creat and open:

The following macros which define the mode in which a file is opened, are used

Macro Description

O_RDONLY Open file in read only mode.
O_WRONLY Open file in write only mode.
O_RDWR Open file for reading and writing.
O_APPEND Open file in append mode.
O_TRUNC File is truncated before writing.
O_BINARY Open file in binary mode.
O_TEXT : Open file in text mode.

15.2 float maths <mathf.h>

The header filemathf£ . h contains declarations of the short maths functions. Short
maths functions are identical to ANSI standard functions except that all arguments

72 TDS 347 01

October 1992

1 Introduction and runtime library summary 27

and results are of type £1oat rather than double. Errors which generate the error
code HUGE_VAL (out of range) in the ANSI functions return HUGE_VAL_F in the
short maths functions.

Note: the following is true for all functions declared in mathf.h:

On domain errors: errno is set to EDOM;
0.0 is returned.

On range errors: errno is set to ERANGE;
HUGE_VAL _F is returned for overflow errors;
~HUGE_VAL_F is retumed for underflow errors.

Function |Description

acosf Calculates the arc cosine of the £1oat argument.
asinf Calculates the arc sine of the £loat argument.
atanf Calculates the arc tangent of the £1oat argument.

atan2f Calculates the arc tangent of (argument 1 divided by argument 2)
where the numerator and denominator arguments are both

floats.

ceilf Calculates the smallest integer which is not less than the float
argument.

cosf Calculates the cosine of the £loat argument.

coshf Calculates the hyperbolic cosine of the £1oat argument.

expf Calculates the exponential function of the £1oat argument.

fabsf Calculates the absolute value of the £1oat argument.

floorf Calculates the largest integer which is not greater than the £loat
argument.

fmodf Calculates the floating point remainder of (argument 1 divided by

argument 2) where the numerator and denominator arguments are
both £loats.

frexpf Separates a floating point number into a mantissa and integral

power of two.
ldexpf Multiplies a floating point number by an integral power of two.
logf Calculates the natural logarithm of the £1oat argument.
loglof Calculates the base-10 logarithm of the £1oat argument.
modff Splits the £1oat argument into fractional and integral parts.
powf Calculates x to the power of y where both x and y are £loats.
sinf Calculates the sine of the f1loat argument.
sinhf Calculates the hyperbolic sine of the f1loat argument.
sqrtf Calculates the square root of the £1oat argument.
tanf Calculates the tangent of the float argument.

tanhf Calculates the hyperbolic tangent of the £1oat argument.

72 TDS 347 01 October 1992

28

1.5 Other functions

1.5.3 Host utilities <host.h>

The header file host . h contains one function that returns host system information
and a number of host system constants.

Function Description

host_info [Returnsinformation aboutthe host system and transputer board.
Constant Description

_IMS HOST PC Standard PC host.
_IMS_HOST NEC NEC PC-9801 series host.
_IMS_HOST VAX VAX host.

_IMS HOST SUN3 Sun 3 host.

_IMS_HOST_ SUN4 Sun 4 host.

_IMS HOST_SUN386i Sun 386i host..
_IMS_HOST APOLLO APOLLO host.

IMS HOST IBM370 IBM 370 host.

_IMS 0S_DOS DOS operating system.
_IMS_Os_HELIOS HELIOS operating system.
_IMS OS_VMS VMS operating system.
_IMS 0S_SUNOS SunOS operating system.
_IMS 0Os CMs CMS operating system.

_IMS_BOARD_B004

IMS B004 PC transputer board.

_IMS_BOARD_B008

IMS B008 transputer module (TRAM) Mother-
board.

_IMS_BOARD_BO10

IMS B010 4-TRAM NEC PC Motherboard.

_IMS_BOARD_BO11

IMS B011 2-TRAM VME board.

_IMS_BOARD_BO014

IMS B014 8-TRAM VMEDbus slave card.

_IMS_BOARD_DRX11

INMOS VAX link interface board.

_IMS_BOARD_QTO

Caplin QT0 VAX/VMS link interface board.

_IMS_BOARD_BO015

IMS B015 NEC 9800 PC TRAM motherboard.

_IMS_BOARD_CAT

IBM CAT transputer board.

_IMS_BOARD_BO16

IMS B016 VMEbus master/slave motherboard.

_IMS_BOARD_UDP_LINK

IMS UDP Link support product.

1.5.4 Host channel access utilities <hostlink.h>

The header file hostlink . h contains two functions that return a pointer to the link
channel going to and coming from the host system.

Function

Description

from host_link

Retrieves the channel coming from the host.

to_host_link

Retrieves the channel going to the host.

72 TDS 347 01

October 1992

1 Introduction and runtime library summary 29

1.5.5 Boot link channel functions <bootlink.h>

This header file contains one function to obtain the channels associated with the
boot link.

Function Description
get_bootlink_channels |Obtains the channels associated with the boot
link.

1.5.6 MS-DOS system functions <dos.h>

The header file dos . h contains a number of functions for performing MS-DOS sys-
tem operations, plus one type. The file also contains definitions of associated struc-
tures, not documented here.

Allthe MS-DOS specific functions return an error if they are used on operating sys-
tems other than MS-DOS.

Function |Description
allocB86 |Allocates a block of host memory for use with the to86 and
from86 functions.

bdos Performs a MS-DOS function call interrupt

free86 Frees a block of host memory previously allocated with alloc86.
from86 Copies a block of host memory to transputer memory.

int86 Raises a software interrupt. Segment registers are untouched.

int86x As int86 but also sets the processor segment registers.
intdos As int86 but specific for a MS-DOS function call.
intdosx |As intdos but also sets the segment registers.
segread |Reads the segment registers.

to86 Copies a block of transputer memory to host memory.

Type Description
pcpointer |A type that can be used to hold a standard PC pointer.

1.5.7 Dynamic code loading functions <fnload.h>

The header file £nload.h contains functions to support dynamic code loading
using . rsc files. The functions interact with three ‘flavors’ of . rsc files:

e .rscfie
e .rsc file stored in ROM or RAM
+ .rscfile received over a channel

Two functions are provided for each case; one to retrieve information from the file
or file image and one to load the code from the file into internal memory.

72 TDS 347 01 October 1992

30

1.5 Other functions

Function

Description

get_code_details from file

Retrieves details from a . rsc file.

get code details_from memory

Retrieves details from the image of a
.rsc file, held in internal memory.

get_code_details from channel

Retrieves details from a . rscfile that
is received over a channel.

load_code_from file

Loads the code of a .rsc file into
internal memory.

load code_from memory

Transfers the code of a .rsc file
image from one section of internal
memory to another.

load code_from channel

Loads the code of a .rsc file,
received over a channel, into internal
memory.

fnload.h defines the type £n_info which has the following structure definition:

struct fn_data
{

int target_processor_type;
size_t stack size;
size_t vectorspace size;
size t static_size;
size_t entry_point offset;
size t code_size;

}:

typedef struct fn data fn_info;

/* as given in the .rsc file */

/* in bytes */

/* in bytes */

/* in bytes */

/* in bytes */

/* in bytes */

target_processor_type gives the processor type for which the code in the
.rsc file is compiled. The processor type is encoded as an integer; a list of pos-
sible values is given in section 3.5 of the ANS/ C Toolset Reference Manual.

1.5.8 Miscellaneous functions <misc.h>

The header file misc. h declares some additional non-ANSI functions, including
three debugging support functions, plus three constants that control the operation
of set_abort_action. It also contains functions to perform bit manipulation,

block moves and CRC calculations.

72TDS 347 01

October 1992

1 Introduction and runtime library summary 31

Function Description

BlockMove Copies a block of memory.

BitCnt Count the number of bits set.

BitCntSum Count the number of bits set and sum with an integer.

BitRevNBits Reverse the order of the least significant bits of an inie-
ger.

BitRevWord Reverse the order of the bits in an integer.

call_without_gsb

Calls the function (pointed to) without passing in the
global static base (gsb).

CrcByte Calculates CRC of most—significant byte of an integer.

CrcFromLsb Calculates the CRC of a byte sequence starting at the
least significant bit.

CrcFromMsb Calculates the CRC of a byte sequence starting at the
most significant bit.

CrcWord Calculates CRC of an integer.

debug_assert

Stops a process on a specified condition.

debug_message

Inserts a debugging message.

debug_stop

Stops a process.

exit noterminate

Exits the program without terminating the server. Used
for configured programs, otherwise like exit.

exit_repeat

Program termination with restart. As exit but allows
the program to be restarted on the processor.

exit_ terminate

Terminates the server. Used for configured programs,
otherwise like exit.

get_param Reads interface parameters for a configured pro-
cess.
halt_processor Halts the processor on which it is executed.

max_stack_usage

Estimates runtime stack usage in a program.

set_abort_action

Sets or queries the action to be taken by abort. The
possible actions are:exit without clearing files; or halt
the transputer.

Function

Description

get details of free_memory

Reports the details of memory con-
sidered by the configurer to be
unused.

get_details of_ free_stack_space

Reports the limits of free space on
the current stack.

Note: These two functions have been separated out from the main list of func-
tions purely because of the length of their names.

72 TDS 347 01

October 1992

32 1.6 Fatal runtime errors

Macro Description

ABORT EXIT Directs set_abort_action to cause a normal program
exit on abort.

ABORT_ HALT Directs set_abort action to halt the transputer on
abort.

ABORT QUERY Directs set_abort_action to return the current abort
action without resetting it.

1.6 Fatal runtime errors

Ermors are generated at severity level Fatal by the C runtime system when the pro-
gram cannot be run. Such errors may occur at startup or during program execution.

The main causes of runtime errors in a program are summarized below.
¢ Insufficient memory at startup.
» Stack overflow during execution.

o lllegal conditions detected by the library functions free, and realloc and
the concurrency library functions. These errors are described in detail
under the function descriptions in chapter 2.

When runtime errors occur the program terminates immediately with an error mes-
sage. All runtime error messages are prefixed with ‘Fatal-C_Library’.

1.6.1 Runtime error messages

Fatal-C_Library-Bad workspace pointer

This error message is issued when the stack checking code or dynamic
code loading functions detect that the current process is running in anille-
gal stack area. Legal stack areas are the main stack area defined at pro-
gram startup or parallel process stacks. Note: that this error may also
mean that global data stored in the static area has been corrupted.

Fatal-C_Library-Out of memory in system startup [number]

This error is generated when insufficient static or heap space is available
to run the program. number can take the following values:

1 — Insufficient memory to accommodate static area.
2 — Insufficient memory to accommodate static area.
3 —Insufficient heap space for the input and output channel arrays.

4 — Insufficient heap space for command line parameters to the pro
gram.

5 — Insufficient heap space to set up low level /O system.

72 TDS 347 01 October 1992

1 Introduction and runtime library summary 33

6 — Insufficient heap space to set up ANSI stdio level I/O system.

If this error occurs then either the available memory can be increased or
the program re-coded in a less memory-intensive way.

Fatal-C_Library-Stack overflow

This message is only generated when stack checking is enabled in the
compiler. It indicates stack overflow in the program and may be remedied
by increasing the specified stack size. If no stack size has been specified
and the default has been assumed by the program then the stack size can-
not be increased and the program should be re-coded.

Fatal-C_Library-Error in free (), bad pointer or heap corrupted

This error indicates an invalid pointer passed to free or corruption of the
heap. No specific recovery is possible and the program should be
debugged.

Fatal-C_Library-Error in realloc (), bad pointer or heap corrupted

This error indicates an invalid pointer passed to realloc or corruption of
the heap. No specific recovery is possible and the program should be
debugged.

Fatal-C_Library-Incorrect allocation of process workspace

This erroris generated by ProcInit if an attemptis made to define a work-
space which is nested within the workspace of an existing process or is
taken from the main program stack. An example of this would be an attempt
to use an automatic array as a process workspace.

Fatal-C_Library-Nested Pri Pars are illegal

This erroris generated by ProcPriPar whenitis called from a high priority
process. Calling ProcPriPar from a high priority process is prohibited in
this toolset.

Fatal-C_Library-Bad pointer to process clean function

An invalid process structure pointer has been pointed to ProcInitClean
or ProcAllocClean.

Fatal-C_Library-Attempt to start a process which is already running.

An attempt has been made to start a process (using ProcRun,
ProcRunLow. ProcRunHigh, ProcPar, ProcParlList or ProcPri-
Par) which has already been started and is still executing.

72 TDS 347 01 October 1992

34 1.6 Fatal runtime errors

72 TDS 347 01 October 1992

2 Alphabetical list of
functions

This chapter contains detailed reference information for the runtime library func-
tions and their operation.

21 Format
Function descriptions are laid out in a standard format. First, the function name is
given, highlighted in large type, followed on the same line by a brief summary of

its action.

The function name is followed by detailed information about the function under the
following headings:

Heading Information given

Synopsis: The file to be included and the function declaration.
Arguments: |A list of the function’s arguments and their meanings.
Results: The result(s) returned.

Errors: The action(s) taken on error.

Description: |A detailed description of the function and hints on usage.
Example: An example of the function’s use, where appropriate.
See also: A list of related functions, where appropriate.

211 Reduced library

Where functions are not available in the reduced library, this is indicated in the func-
tion description.

2.1.2 Macros

Where functions are implemented as macros, or as both macros and regular C
functions, this is also indicated in the detailed description.

For these functions the version used by the compiler depends on the syntax of the
calling statement. If the call uses parentheses around the function name (as in
(putchar) (ch)), the regular function is used; if parentheses are omitted (as in
putchar (ch)), the macro form is used instead.

72TDS 347 01 October 1992

36 2 Alphabetical list of functions

2.2 List of functions

abort . Aborts the program.
Synopsis:

#include <stdlib.h>
void abort(void);

Arguments:

None.

Results:

abort does not return.
Errors:

None.

Description:

abort causes immediate termination of the program. It does not flush output
streams, close open streams, or remove temporary files. abort passes SIGABRT
to the signal handler, to show that the program has terminated abnormally.

- The default action is to abort the program without halting the processor. The func-
tion can be set to halt the processor by first calling set_abort action with the
appropriate argument.

If set to halt, abort forces the processor to halt even if the program is not in HALT
mode, by explicitly setting the Halt-On-Error and Error flags.

See also:

exit exit terminate exit_noterminate halt processor
set_abort_action signal

72 TDS 347 01 October 1992

2 Alphabetical list of functions 37

abs Calculates the absolute value of an integer.
Synopsis:

#include <stdlib.h>
int abs(int j);

Arguments:
int j An integer.
Results:
Returns the absolute value of 5.
Errors:
If the result cannot be represented thé behavior of abs is undefined.
Description:
abs calculates the absolute value of the integer j.
abs is side effect free.
See also:

labs

72 TDS 347 01 October 1992

38 2 Alphabetical list of functions

acos Calculates the arc cosine of the argument.
Synopsis:

#include <math.h>
double acos (double x);

Arguments:
double x A number in the range [-1..+1].
Results:
Returns the arc cosine of x in the range [0..pi] radians and 0.0 on domain errors.
Errors:

A domain error occurs if x is not in the range [-1..+1]. In this case errnois set to
EDOM.

Description:
acos calculates the arc cosine of a number.
See also:

acosf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 39

acosf Calculates the arc cosine of a £1loat number.
Synopsis:

#include <mathf.h>
float acosf(float x);

Arguments:
float x A number in the range [-1..+1].
Results:
Returns the arc cosine of x in the range [0..pi] radians and 0.0F on domain errors.
Errors:

A domain error occurs if x is not in the range [-1..+1]. In this case errno is set to
EDOM.

Description:
float form of acos.
See also:

acos

72TDS 347 01 October 1992

40 2 Alphabetical list of functions

alloc86 Allocates a block of host memory. MS-DOS only.
Synopsis:

#include <dos.h>
pcpointer allocB6(int n);

Arguments:
int n The number of bytes of host memory to be allocated.
Results:
Returns a pointer to the allocated block of host memory.
Errors:

Returns a NULL PC pointer if the allocation fails and sets errno to the value EDOS.
Any attempt to use from86 on systems other than MS-DOS also sets errno to
EDOS. Failure of the function may also generate the server error message:

[Encountered unknown primary tag (50)]
Description:

alloc86 allocates a block of memory on the MS-DOS host and returns a pointer
to it. If the memory cannot be allocated, a NULL PC pointer is returned. The allo-
cated memory cannot be accessed directly by the transputer program but only by
means of the functions to86 and £rom8é6.

Note: Intel 80x86 architecture limits the amount of memory which can be con-
tained in a single segment to 65536 bytes; alloc86 cannot allocate more than this
architectural limit.

See also:

from86 to86

72 TDS 347 01 October 1992

2 Alphabetical list of functions 41

asctime Converts a broken-down-time structure to an ASCII string.
(See section 1.3.16 for a definition of broken-down-time).
Synopsis:

#include <time.h>
char* asctime (const struct tm *timeptr);

Arguments:

const struct tm *timeptr A pointer to the broken-down-time
structure to be converted.

Results:

Returns a pointer to the ASCII time string.
Errors:

None.

Description:

asctime returns the values in the timeptr structure as an ASCII string in the
form: Thu Nov 05 18:19:01 1987

The string pointed to may be overwritten by subsequent calls to asctime.

Example:

/* Displays the current time */

f#include <time.h>
#include <stdio.h>

int main()

{
struct tm *now;
time t clck;

time (&clck); /* Get current time in secs */

now = localtime(&clck);
/* Convert time to
a structure (tm) */
printf (“The time is: %s\n”, asctime(now));
}

Note: Care should be taken when calling asctime in a concurrent environment.
Calls to the function by independently executing, unsynchronized processes may
corrupt the returned time value.

See also:

ctime localtime strftime clock difftime mktime time

72 TDS 347 01 October 1992

42 2 Alphabetical list of functions

asin Calculates the arc sine of the argument.
Synopsis:

#include <math.h>
double asin(double x);

Arguments:
double x A number in the range [—1..+1].
Results:

Returns the arc sine of x in the range [-pi/2..+pi/2] radians and 0.0 on domain
errors.

Errors:

A domain error occurs if x is not in the range [-1..+1]. In this case errno is set to
EDOM.

Description:
asin calculates the arc sine of a number.
See also:

asinf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 43

asinf Calculates the arc sine of a £1loat number.

#include <mathf.h>
float asinf (float x);

Arguments:
float x A number in the range [-1..+1].
Results:

Retums the arc sine of x in the range [-pi/2..+pi/2] radians and 0.0F on domain
errors.

Errors:

A domain error occurs if x is not in the range [-1..+1]. In this case errno is set to
EDOM.

Description:
float form of asin.
See also:

asin

72TDS 347 01 October 1992

44 2 Alphabetical list of functions

assert Inserts diagnostic messages.
Synopsis:

#include <assert.h>
void assert(int expression);

Arguments:
int expression The condition to be asserted.
Results:
Returns no value.
Errors:
None.
Description:
assert is a debugging macro. If it is called with expression equal to zero,
assert terminates the program by calling abort. The action of abort when
called by assert depends on the most recent call to set_abort_action.

If expression is non-zero, no action is taken.

If the function is linked with the full runtime library and the expression evaluates
to zero, the following message is written to stderr:

*** agsertion failed: condition, file filename, line linenumber

If the function is linked with the reduced runtime library then no message is dis-
played if the assertion fails.

The definition of the assert macro depends upon the definition of the NDEBUG
macro. If NDEBUG is defined before the definition of assert then assert is
defined as:

f#define assert(ignore) ((void)O0)

If assert is defined first the definition is honored and NDEBUG is ignored.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 45

Example:

#include <stdio.h>
#include <assert.h>

float divide (float a, float b)
{

assert(b != 0.0F);

return a/b;

}

int main(void

{

—

float res;

res = divide(1.0F,2.0F);
printf(”1.0 divided by 2.0 is: %f\n”,res);
res = divide(1.0F,0.0F) ;
printf(”1.0 divided by 0.0 is: %f\n”,res);

/*
* Output:
*
* *%* aggertion failed: b != 0.0,
* file assert.c, line 6
*
*/

See also:

abort debug_assert

72 TDS 347 01 October 1992

46 2 Alphabetical list of functions

atan Calculates the arc tangent of the argument.
Synopsis:

#include <math.h>
double atan(double x);

Arguments:
double x A number.
Results:
Returns the arctan of x in the range [-pi/2..+pi/2] radians.
Errors:
None.
Description:
atan calculates the arc tangent of a number.
See also:

atanf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 47

atan2 Calculates the arc tangent of y/x.
Synopsis:

#include <math.h>
double atan2(double y, double x);

Arguments:

double y The numerator.
double x The denominator.
Results:

Returns the arc tangent of y/x in the range [-pi..+pi] radians and 0.0F on domain
errors.

Errors:

A domain error occurs if x and y are zero. In this case errno is set to EDOM.
Description:

atan2 calculates the arc tangent of y/x.

See also:

atan2f

72 TDS 347 01 October 1992

48 2 Alphabetical list of functions

atan2f Calculates arc tangent of y/x where both are floats.
Synopsis:

#include <mathf.h>
float atan2f (float y, float x);

Arguments:
float y The numerator.
float x The denominator.
Resulits:

Returns the arc tangent of y/x in the range [—pi..+pi] radians and 0.0 on domain
errors

Errors: 7

A domain error occurs if x and y are zero. In this case errno is set to EDOM.
Description:

float form of atan2.

See also:

atan2

72 TDS 347 01 October 1992

2 Alphabetical list of functions 49

atanf Calculates the arc tangent of a £1oat humber.
Synopsis:

#include <mathf.h>
float atanf(float x);

Arguments:
float x A number.
Results:
Returns the arc tangent of x in the range [-pi/2..+pi/2] radians.
Errors:
None.
Description:
float form of atan.
See also:

atan

72 TDS 347 01 October 1992

50 2 Alphabetical list of functions

atexit Specifies a function to be called when the program ends.
Synopsis:

#include <stdlib.h>
int atexit(void (*func) (void));

Arguments:

void (*func) (void) A pointer to the function to be called.
Results:
Returns zero if atexit is successful and non-zero if it is not.
Errors:
None.
Description:

atexit records that the function pointed to by func is to be called (without argu-
ments) at normal termination of the program.

A maximum of 32 functions can be recorded for execution on exit. They will be
called in reverse order of their being recorded (that is, last in, first out).

Note: In the parallel environment atexit works on program termination rather
than process termination. A maximum of 32 functions can be registered as exit
functions per program.

Example:

#include <stdlib.h>
#include <stdio.h>

void first exit(void)
{

printf (“First_exit called on exit\n”) ;

void second exit(void)

{
printf (”“Second exit called on exit\n”);

}

72 TDS 347 01 October 1992

2 Alphabetical list of functions

51

int main(void)
{
atexit (second exit);
atexit (first exit);
printf (“About to exit from program\n”);
return 0;

/*
Output:

First exit called on exit

*
*
* About to exit from program
*
* Second_exit called on exit
*

*/

See also:

exit

72 TDS 347 01

October 1992

52 2 Alphabetical list of functions

atof Converts a string of characters to a double.
Synopsis:

#include <stdlib.h>
double atof (const char *nptr);

Arguments:
const char *nptr A pointer to the string to be converted.
Results:
Returns the converted value or zero(0) on error.
Errors:

If the string cannot be converted, atof returns 0 (zero). If the conversion would
cause overflow or underflow in the double value, the behavior is undefined.

Description:

atof converts the string pointed to by nptr to a double precision floating point
number. atof expects the string to consist of:

1 Leading white space (optional).

2 A plus or minus sign (optional).

3 A sequence of decimal digits, which may contain a decimal point.
4

An exponent (optional) consisting of an ‘E’ or ‘e’ followed by an optional
sign and a string of decimal digits.

5 One or more unrecognized characters (including the string terminating
character).

atof ignores the leading white space, and converts all the recognized characters.
If there is no decimal point or exponent part in the string, a decimal point is
assumed after the last digit in the string.

The string is invalid if the first non-space character in the string is not one of the
following characters: +-0123456789

72 TDS 347 01 October 1992

2 Alphabetical list of functions 53

Example:

#include <stdio.h>
#include <stdlib.h>

int main()

char *array;
double x;

array = ” -4235.120E-3”;
x = atof (array);
printf (“Float = $f\n”, x);

array = 7 =735492.45";
x = atof (array):;
printf (”Float = %e\n”, x);

}
/i
Prints Float = —4.235120
Float = —7.354924e+05
*/
See also:

atoi atol strtod

72 TDS 347 01 October 1992

54 2 Alphabetical list of functions

atoi Converts a string of characters to an int.
Synopsis:

#include <stdlib.h>
int atoi(const char *nptr);

Arguments:
const char *nptr A pointer to the string to be converted.
Results:
Returns the converted value or zero(0) on error.
Errors:

If the string cannot be converted, atoi returns 0. If the conversion would overflow
or underflow, the behavior is undefined.

Description:

atoi converts the string pointed to by nptr to an integer. atoi expects the string
to consist of:

1 Leading white space (optional).
2 A plus or minus sign (optional).
3 A sequence of decimal digits.

4 One or more unrecognized characters (including the string terminating
character).

atoi ignores the leading white space, and converts all the recognized characters.

The string is invalid if the first non-space character in the string is not one of the
following characters: +-0123456789

72 TDS 347 01 October 1992

2 Alphabetical list of functions

55

Example:

#include <stdlib.h>
#include <stdio.h>

int main{(void)

/t
*
*
*
*
*

*/
See also:

char *array;
int x;

array = ” -4235";
x = atoi (array);
printf (“Integer is: %d\n”, x);

array = ”-735492 and some rubbish text”;

x = atoi (array);
printf (“Integer is: %d\n”, x);

Output:

Integer is: —-4235
Integer is: -735492

atof atol strtol

72 TDS 34

701

October 1992

56 2 Alphabetical list of functions

atol Converts a string of characters to a long integer.
Synopsis:

#include <stdlib.h>
long int atol(const char *nptr);

Arguments:
const char *nptr A pointer to the string to be converted.
Results:
Returns the converted value or zero(0) on error.
Errors:

If the string cannot be converted, atol retumns 0. If the conversion would overflow
or underflow, the behavior is undefined.

Description:

atol converts the string pointed to by nptr to a long integer. atol expects the
string to consist of:

1 Leading white space (optional).
2 A plus or minus sign (optional).
3 A sequence of decimal digits.

4 One or more unrecognized characters (including the string terminating
character).

atol ignores the leading white space, and converts all the recognized characters.

The string is invalid if the first non-space character in the string is not one of the
following characters: +-0123456789

72 TDS 347 01 October 1992

2 Alphabetical list of functions

57

Example:

#include <stdio.h>
#include <stdlib.h>

int main()

{

char *array;
long 1;

array = ” —735492 and trailing text”;
1 = atol(array):
printf (”“Long = %1d\n”, 1);
}
/*
Prints “Long = —735492”
*/
See also:

atof atoi strtod strtol

72 TDS 347 01

October 1992

58 2 Alphabetical list of functions

bdos Performs a simple MS-DOS function. MS-DOS only.
Synopsis:

#include <dos.h>
int bdos (int dosfn, int dosdx, int dosal);

Arguments:
int dosfn Value to assign to the ah register.
int dosdx Value to assign fo the dx register.
int dosal Value to assign to the al register.
Results:

Returns the value of the ax register or zero(0) on error.
Errors:

Returns zero (0) on error and sets errno to the value EDOS. Any attempt to use
bdos on operating systems other than MS-DOS also sets errno to EDOS. Failure
of the function may also generate the server error message:

[Encountered unknown primary tag (50)]

Description:

bdos performs an MS-DOS function call interrupt on the host with the ah register
(specifying the MS-DOS function call number) set to dos£n, and with the dx and
al registers set to dosdx and dosal respectively. It is a shorthand form of int86
for the very simplest MS-DOS function calls only.

bdos is not included in the reduced library.
See also:

intdos int86

72 TDS 347 01 October 1992

2 Alphabetical list of functions 59

BitCnt Count the number of bits set.
Synopsis:

#include <misc.h>
int BitCnt(int word);

Arguments:
int word The integer whose set bits are to be counted.
Results:
Returns the number of bits set in word.
Errors:
None.
Description:

The number of bits set in the integer argument word are counted. The count is
returned.

Example:

int data;
int num bits_set;

num bits_set = BitCnt(data);

When compiling for transputers which have the bitcnt instruction, calls to BitCnt
are implemented inline, provided that the header file <misc . h> has been included
in the source.

BitCnt is side effect free.

See also:

BitCntSum

72 TDS 347 01 October 1992

60 2 Alphabetical list of functions

BitCntSum Count the number of bits set and sum with an integer.
Synopsis:

#include <misc.h>
int BitCntSum(int word, int count in);

Arguments:
int word The integer whose set bits are to be counted.
int count_in The value to be summed with the humber of bits set in
word.
Results:

Returns the sum of count_in and the number of bits set in word.
Errors:

None.

Description:

The number of bits set in the integer argument word are counted and summed with
count_in. The sum is retumed. The sum is performed using modulo arithmetic,
so no overflow can occur.

Example:
int data[l10];
int count;
int i;
/* Sum the number of bits set in ’data’ */
count = 0;
for (1 =0; 1 < 10; i++)
count = BitCntSum(data[i], count);

When compiling for transputers which have the bitcnt instruction, callstoBitCnt-
Sum are implemented inline, provided that the header file <misc.h> has been
included in the source.

BitCntSum is side effect free.
See also:

BitCnt

72 TDS 347 01 October 1992

2 Alphabetical list of functions 61

BitRevNBits Reverse the order of the least significant bits of an inte-
ger.

Synopsis:

#include <misc.h>
int BitRevNBits (int numbits, int data);

Arguments:
int numbits The number of bits to reverse.
int data The integer whose least significant bits are to be
reversed.
Results:

Returns data with its numbits least significant bits reversed and its other bits
zeroed.

Errors:

If numbi ts is negative or numbits is greater than the number of bits in a word,
then the effect of calling Bi tRevNBi ts is undefined.

Description:

The order of the numbi ts least significant bits of data is reversed. All other bits
of data are zeroed. This result is returned. For example, on a 32-bit processor:

Data:
31 n 0
b31| bag| bag bn+1| bn |bn1 by | by | bg
Result:
31 n__. 0
ojo0|oO 0 | by | by bn-2(bn-1| bn

BitRevNBits is side effect free.

Example:
int data;
int numbits;
int rev_data;

rev_data = BitRevNBits(numbits, data);

72 TDS 347 01 October 1992

62 2 Alphabetical list of functions

When compiling for transputers which have the bitrevnbits instruction, calls to
BitRevNBits are implemented inline, provided that the header file <misc.h>
has been included in the source.

See also:

BitRevWord

72 TDS 347 01 October 1992

2 Alphabetical list of functions 63

BitRevWord Reverse the order of the bits in an integer.
Synopsis:

#include <misc.h>
int BitRevWord(int data);

Arguments:
int data The integer whose bits are to be reversed.
Results:
Returns data with all bits in reversed order.
Errors:
None.
Description:

The bit pattern in data is reversed end—for—end. The result is retumed. For exam-
ple, on a 32-bit processor:

Data:
31 0
bat| bsg| bye| by | by | by
Result:
31 0
bo| byfb2| e bag | b3o b3

BitRevWord is side effect free.

Example:

int data;
int rev_data;

rev_data = BitRevWord(data);

When compiling for transputers which have the bitrevword instruction, calls to
BitRevWord are implemented inline, provided that the header file <misc . h> has
been included in the source.

See also:

BitRevNBits

72 TDS 347 01 October 1992

64 2 Alphabetical list of functions

BlockMove Copy a block of memory
Synopsis:

#include <misc.h>
void BlockMove (void *dest, const void *source, size t n);

Arguments:
void *dest A pointer to the destination of the copy.
const void *source A pointer to the source of the copy.
size_ t n The number of bytes to be copied.
Results:

Returns no result.

Errors:

The behavior of BlockMove is undefined if the source and destination overlap.
Description:

BlockMove copies n bytes from the area of memory pointed to by source to the
area of memory pointed to by dest. The behavior of BlockMove is undefined if
the source and destination area overlap.

Example:

int source[27];
int dest([500];

BlockMove (dest, source, 27 * sizeof (int));

Calls to BlockMove are implemented inline, provided that the header file
<misc.h> has been included in the source.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 65

bsearch Searches a sorted array for a given object.
Synopsis:

#include <stdlib.h>
void *bsearch(const void *key,
const void *base,
size_t nmemb, size t size,
int (*compar) (const void *,
const void *));

Arguments:
const void *key A pointer to the object to be matched.
const void *base A pointer to the start of the array.
size t nmemb The number of objects in the array.
size t size The size of the array objects.

int (*compar) (const void ¥,
const void *) A pointer to the comparison function.

Results:

Returns a pointer to the object if found; otherwise bsearch returns a NULL pointer.
If more than one object in the array matches the key, itis not defined which one the
return value points to.

Errors:
None.
Description:

bsearch searches the array pointed to by base for an object which matches the
object pointed to by key. The array contains nmemb objects of size bytes.

The objects are compared using the comparison function pointed to by compar.
The function must return an integer less than, equal to, or greater than zero,
depending on whether the first argument to the function is considered to be less
than, equal to, or greater than the second argument.

The base array must already be sorted in ascending order (according to the com-
parison performed by the function pointed to by compar).

72 TDS 347 01 October 1992

66 2 Alphabetical list of functions

Example:
/-k

* Receives a list of argquments from the
* terminal, and searches them for the

* gtring ”“findme”.

%/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int compare{const void *argl, const void *arg2)

return (strnemp (* (char **)argl, *(char **)arg2,
strlen(* (char **)argl)));

int main(int argec, char *argv[])
{

char **result;

char *key = “findme”;

/* sort the command line arguments according
to the string compare function ’compare’ */

gsort (argv, argc, sizeof(char *), compare);

/* Find the argument which starts with
the string in ‘key’ */

result = (char **)bsearch(&key, argv, (size_t)argc,
sizeof (char *), compare);
if (result != NULL)

printf (”“\n’%s’ found\n”, *result);
else

printf (“\n’%s’ not found\n”, key);
}

See also:

gsort

72 TDS 347 01 October 1992

2 Alphabetical list of functions 67

call without_gsb calis the pointed to function without passing
the gsb.
Synopsis:

#include <misc.h>
void call_without_gsb(void (*fn_ptr) (void),
int number_ of words_for_ parameters,

.)
Arguments:

void (*fn_ptr) (void) A pointer to the function to be
called without a gsb.

int number of words for_ parameters The number of words that the
parameters in the ellipsis occupy.
The parameters of the function to
be called in the correct order for
that function.

Results:
None.
Errors:
None.
Description:

call_without gsb calls the specified function without passing a gsb as the first
(hidden) parameter. call _without_gsb requires that the called function uses
the same calling convention as the INMOS ANSI C toolset.

The function called must retumn void.

Note: no type checking is done on the parameters to the function to be called — it
is up to the user to ensure correctness.

In the header file where it is declared this function has the IMS_nolink pragma
applied to it, so it cannot be called by a pointer to it, other than by use of itself. This
function will not work unless the IMS_nolink pragma is applied to it.

72 TDS 347 01 October 1992

68 2 Alphabetical list of functions

calloc Allocates memory space for an array of items and initializes
the space to zeros.

Synopsis:

#include <stdlib.h>
void *calloc(size_t nmemb, size_ t size);

Arguments:
size_t nmemb The number of items in the array to be allocated.
size_t size The size of the array items.

Resuilts:

Returns a pointer to the allocated space if the allocation is successful; otherwise
calloc returns a NULL pointer. If either argument is zero calloc returns a NULL
pointer.

Errors:

calloc retums a NULL pointer if there is not enough free space in memory or if
either argument is zero.

Description:

calloe allocates space in memory for an array containing nmemb items, where
each item is gize bytes long. The allocated memory is initialized to zeros.

Programming note: On the T2 family of transputers pointers should always be
initialized explicitly, because the NULL pointer on these machines is represented
by a non-zero bit pattern.

See also:

free malloc realloc

72 TDS 347 01 October 1992

2 Alphabetical list of functions 69

ceil Calculates the smallest integer not less than the argument.
Synopsis:

#include <math.h>
double ceil (double x);

Arguments:
double x A number.
Results:
Returns the smallest integer (expressed as a double) which is not less than x.
Errors:
None.
Description:
ceil calculates the smallest integer which is not less than x.
ceil is side effect free.
See also:

floor ceilf

72 TDS 347 01 October 1992

70 2 Alphabetical list of functions

cellf Calculates the smallest integer not less than the £loat argument.
Synopsis:

#include <mathf.h>
float ceilf (float x);

Arguments:
float x A number.
Results:
Returns the smallest integer (expressed as type £1oat) which is not less than x.
Errors:
None.
Description:
float form of ceil.
ceilf is side effect free.
See also:

ceil floorf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 71

ChanAlloc Allocates and initializes a channel.
Synopsis:

#include <channel.h>
Channel *ChanAlloc(void);

Arguments:
None.
Results:

Returns a pointer to an initialized channel, or NULL if the space could not be allo-
cated.

Errors:

Returns NULL if space could not be allocated.

Description:

Allocates and initializes a channel. The space is allocated using malloc.

Note: All channels must have space reserved for them before they are used. The
space can be allocated using ChanAl1loc; explicitly using malloc or by using a

static or automatic variable. If ChanAl1loc is not used the channel should be initial-
ized using ChanInit.

The space allocated for a channel by ChanAlloce can be freed by passing the
channel pointer directly to free.

See also:

ChanReset

72 TDS 347 01 October 1992

72 2 Alphabetical list of functions

ChanlIn Inputs data on a channel.
Synopsis:

#include <channel.h>
void ChanIn(Channel *c, void *cp, int count);

.

Arguments:
Channel *c A pointer to the input channel.
void *cp A pointer to the array where the data will be stored.
int count The number of bytes of data.

Results:

Retumns no result.
Errors:

None.
Description:

Inputs count bytes of data on the specified channel and stores them in the array
pointed to by cp. The effect of this routine is undefined if count < 0.

See also:

ChanOut ChanInInt ChanInChar ChanInChanfail ChanInTimeFail

72 TDS 347 01 October 1992

2 Alphabetical list of functions 73

ChanInChanFail Inputs data on a link channel or aborts.
Synopsis:
#include <channel.h>

int ChanInChanFail (Channel *chan, void *cp,
int count, Channel *failchan);

Arguments:
Channel *c A pointer to the input channel.
void *cp A pointer to an array where the data will be stored.
int ecount The number of bytes of data.
Channel *failchan A pointer to the channel on which the failure message
is received.
Results:

Returns zero (0) if communication completes, one (1) if communication is aborted
by a message on the failure channel.

Errors:
None.
Description:

ChanInChanFail is used to perform reliable channel communication on a link.
The function inputs count bytes of data on the specified channel into the array
pointed to by cp. It can be aborted by an integer, and only an integer, passed on
failchan. Typically £ailchan will be a channel from a process which is monitor-
ing the integrity of the link.

_ Note: this function may not be used on a virtual channel supplied from either the
configurer or from the debugger idebug in interactive mode. This is described fur-
ther in section 6.3.2 of the ANSI C Toolset User Guide.

See also:

ChanIn ChanInTimeFail

72 TDS 347 01 October 1992

74 2 Alphabetical list of functions

ChanInChar Inputs one byte on a channel.
Synopsis:

#include <channel.h>
unsigned char ChanInChar (Channel *c);

Arguments:
Channel *c A pointer to the input channel.
Results:
Returns the input byte.
Errors:
None.
Description:

Inputs a single byte on a channel.

Note: The prototype of ChanInChar has changed from previous releases of the
toolseti.e. the D7214, D6214, D5214 and D4214 products, where ChanInChar
was of type Char.

See also:

ChanOutChar ChanlIn

72 TDS 347 01 October 1992

2 Alphabetical list of functions 75

ChanInlInt Inputs an integer on a channel.
Synopsis:

#include <channel.h>
int ChanInInt(Channel *c);

Arguments:
Channel *c A pointer to the input channel.
Results:
Returns the input integer.
Errors:
None.
Description: .
Inputs a single integer on a channel.
See also:

ChanOutInt ChanIn

72 TDS 347 01 October 1992

76 2 Alphabetical list of functions

ChanInit Initializes a channel pointer.
Synopsis:

#include <channel.h>
void ChanInit (Channel *chan);

Arguments:
Channel *chan A pointer to a channel.
Results:
Retumns no resuit.
Errors:
None.
Description:
Initializes the channel pointed to by chan to the value NotProcess p.
NotProcess_p is defined in channel .h.

Example:

#include <channel.h>
#include <stdlib.h>

Channel cl, *c2;
ChanlInit(&cl);

c2 = (Channel *)malloc(sizeof {(Channel));
ChanInit(c2);

See also:

ChanReset

72 TDS 347 01 October 1992

2 Alphabetical list of functions 77

ChanInTimeFail Inputs data on a channel or times out.
Synopsis:
#include <channel.h>

int ChanInTimeFail (Channel *chan, void *cp,
int count, int time);

Arguments:
Channel *c A pointer to the input channel.
void *cp A pointer to an array where the data will be stored.
int count The number of bytes of data.
int time The absolute time after which the communication is
aborted if no input occurs.
Results:

Retums zero (0) if the communication is successful, one (1) if timeout occurs
before the communication completes.

Errors:
None.
Description:

ChanInTimeFail is used to timeout channel communication on a link. It inputs
count bytes of data on the specified channel and stores them in the array pointed
to by ep, or aborts if the transputer clock reaches the specified absolute time. Typi-
cally it is used to notify delay on a link so that the communication can be routed
elsewhere.

Note: this function may not be used on a virtual channel supplied from either the
configurer or from the debugger idebug in interactive mode. This is described fur-
ther in section 6.3.2 of the ANS/ C Toolset User Guide.

See also:

ChanIn ChanInChanFail ChanOutTimeFail

72 TDS 347 01 October 1992

78 2 Alphabetical list of functions

ChanOut Outputs data on a channel.
Synopsis:

#include <channel.h>
void ChanOut (Channel *c, void *cp, int count);

Arguments:
Channel *c A pointer to the output channel.
void *cp A pointer to an array containing the output data.
int count The number of bytes of data.

Results:

Returns no result.
Errors:

None.
Description:

Outputs count bytes of data on the channel ¢. The data is taken from the amray
pointed to by cp. The effect of this routine is undefined if count < 0.

See also:

ChanIn ChanOutInt ChanOutChar

72 TDS 347 01 October 1992

2 Alphabetical list of functions 79

ChanOutChanFail Outputs data or aborts on failure.
Synopsis:

#include <channel.h>
int ChanOutChanFail (Channel *chan, void *cp,
int count, Channel *failchan);

Arguments:
Channel *c A pointer to the output channel.
void *cp A pointer to an array containing the output data.
int count The number of bytes of data.
Channel *failchan A pointerto the channel on which the failure message
is received.
Results:

Returns zero (0) if communication completes normally, one (1) if communication
is aborted by a message on the failure channel.

Errors:
None.
Description:

ChanOutChanFail is used to perform reliable channel communication on a link.
It outputs count bytes of data on the specified channel from the array pointed to
by ep. The function can be aborted by an integer, and only an integer, passed on
the channel failchan. Typically failchan will be a channel from a process
which is monitoring the integrity of the link.

Note: this function may not be used on a virtual channel supplied from either the
configurer or from the debugger idebug in interactive mode. This is described fur-
ther in section 6.3.2 of the ANSI C Toolset User Guide.

See also:

ChanOut ChanOutTimeFail

72 TDS 347 01 October 1992

80 2 Alphabetical list of functions

ChanOutChar Outputs one byte on a channel.
Synopsis:

#include <channel.h>
void ChanOutChar (Channel *c, unsigned char ch);

Arguments:

Channel *c A pointer to the output channel.
unsigned char ch The byte to be output.

Results:

Returns no result.
Errors:

None.
Description:

Outputs a single byte on a channel.

Note: The prototype of ChanOutChar has changed from previous releases of
the toolset i.e. the D7214, D6214, D5214 and D4214 products, where
ChanOutChar was of type Char.

See also:

ChanInChar ChanOut

72 TDS 347 01 October 1992

2 Alphabetical list of functions 81

ChanOutlInt Outputs an integer on a channel.
Synopsis:

#include <channel.h>
void ChanOutInt(Channel *c, int n);

Arguments:
Channel *c A pointer to the output channel.
int n The integer to be output.
Results:

Returns no result.

Errors:

None.

Description:

Outputs a single integer on a channel.
See also:

ChanOutInt ChanIn

72 TDS 347 01 October 1992

82 2 Alphabetical list of functions

ChanOutTimeFail Outputs data on a channel or times out.
Synopsis:

#finclude <channel.h>
int ChanOutTimeFail (Channel *chan, void *cp,
int count, int time);

Arguments:
Channel *c A pointer to the output channel.
void *cp A pointer to an array containing the output data.
int count The number of bytes of data.
int time The absolute time after which the communication is
aborted if no output occurs.
Results:

Retumns zero if the communication is successful, one (1) if timeout occurs before
the communication completes.

Errors:
None.
Description:

ChanOutTimeFail is used to timeout channel communication on alink. It outputs
count bytes of data on the specified channel from the array pointed to by cp. The
functions aborts if the transputer clock reaches the specified absolute time before
the communication takes place. Typically it is used to notify delay on a link so that
the communication can be routed elsewhere.

Note: this function may not be used on a virtual channel supplied from either the
configurer or from the debugger idebug in interactive mode. This is described fur-
ther in section 6.3.2 of the ANS/ C Toolset User Guide.

See also:

ChanOut ChanOutChanFail

72 TDS 347 01 October 1992

2 Alphabetical list of functions 83

ChanReset Resets a channel.
Synopsis:

#include <channel.h>
int ChanReset (Channel *c);

Arguments:
Channel *c A pointer to the channel to be reset.
Results:
Returns either NotProcess_p, or the transputer process descriptor Wdesc.
Errors:
None.
Description:

Resets a channel to the value NotProcess_p andreturns the transputer process
descriptor of the process waiting to communicate on the channel, or
NotProcess_p. Ifthe value returned is NotProcess_p, no process was waiting
on the channel, and any communication on that channel had completed success-
fully.

This function should not be used to reset a soft channel (a channel that connects
processes on the same processor), which has not been previously initialized using
ChanInit or ChanAlloc. There is in fact little point using this function on a soft
channel, because communication in that case can be assumed to be secure.

NotProcess_p is defined in channel .h.

Note: this function may not be used on a virtual channel supplied from either the
configurer or from the debugger idebug in interactive mode. This is described fur-
ther in section 6.3.2 of the ANS/ C Toolset User Guide.

See also:

ChanlInit

72 TDS 347 01 October 15 -2

84 2 Alphabetical list of functions

clearerr Clears error and end of file indicators for a file stream.
Synopsis:

#include <stdio.h>
void clearerr (FILE *stream);

Arguments:
FILE *stream A pointer to a file stream.
Results:
Returns no value.
Errors:
None.
Description:
clearerr clears the error and end of file indicators for a file stream.
See also:

rewind

72 TDS 347 01 October 1992

2 Alphabetical list of functions 85

clock Determines the amount of processor time used.
Synopsis:

#include <time.h>
clock t clock(void);

Arguments:

None.

Results:

Returns the time used by the program since it started, or (clock_t)—1 on error.
clock returns a value at the priority of the calling process.

Errors:

The value (clock_t)-1, indicating an error, is returned if any of the following
occur:

o the processor time is not available;
« the value cannot be represented;

« the priority of the process calling clock is different to that of the main pro-
cess.

Description:

clock retuns the processor time used by the program since it started. The era
for the clock function extends from directly before the user’s main function is
called until program termination.

To obtain the time in seconds the return value should be divided by
CLOCKS_PER _SEC.

Note: CLOCKS_PER_SEC takes the constant value CLOCKS_PER_SEC_HIGH or
CLOCKS_PER SEC_LOW depending on the priority of the process calling clock
i.e. high or low respectively.

e CLOCKS_PER SEC_HIGH has the value 1000000
e CLOCKS_PER_SEC_LOW has the value 15625

When the priority of the call to clock is known CLOCKS_PER SEC_HIGH or
CLOCKS_PER SEC_LOW can be used directly.

CLOCKS_PER_SEC is defined in the header file time.h, the two constants
CLOCKS_PER_SEC_HIGH and CLOCKS_PER SEC_LOW are defined in the
header file process.h.

72 TDS 347 01 October 1992

86 2 Alphabetical list of functions

Warning: the type definition of clock_t is unsigned int, however, on a 16-bit
transputer the value of high priority CLOCKS_PER_SEC is to big to be held in type
clock t.

Thus in the case of a high priority process on a 16-bit transputer, compiling the fol-
lowing expression (which calculates elapsed time in seconds) will result in a type
long instead of int.

clock() / CLOCKS_PER SEC

In addition, because the high priority timer on a 16-bit transputer wraps around
after the very short interval of 65 ms, the result of the above expression will always
be ‘0’ in this case.

clock is side effect free.

Note: clock should not be used in any C code which is to be imported by occam
using callc. lib.

See also:

asctime ctime localtime strftime difftime mktime time

72 TDS 347 01 October 1992

2 Alphabetical list of functions 87

close Closes a file. File handling primitive.
Synopsis:

#include <iocntrl.h>
int close(int £d);

Arguments:

int £d File descriptor of the file to be closed.
Resuits:
Returns 0 if successful or —1 on error.
Errors:
If an error occurs close sets errno to the value EIO and returns —1.
Description:

close is the lower level function used by fclose. It takes a file descriptor as a
argument instead of a FILE pointer. The file descriptor will usually have been
returned by the open or creat functions.

close is not included in the reduced library.

72 TDS 347 01 October 1992

88 2 Alphabetical list of functions

cos Calculates the cosine of the argument.
Synopsis:

#include <math.h>
double cos{(double x);

Arguments:
double x A number in radians.
Results:
Returns the cosine of x in radians.
Errors:
None.
Description:
cos calculates the cosine of a number.
See also:

cosf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 89

cosf Calculates the cosine of a £1loat number.
Synopsis:

#include <mathf.h>
float cosf (float x);

Arguments:
float x A number in radians.
Results:
Returns the cosine of x in radians.
Errors:
None.
Description:
float form of cos.
See also:

cos

72 TDS 347 01 October 1992

| 90 2 Alphabetical list of functions

Synopsis:

#include <math.h>
| double cosh(double x);

Arguments:
double x A number.

Results:

Returns the hyperbolic cosine of x or if a range error occurs returns HUGE_VAL
(with the same sign as the correct value of the function).

Errors:
Arange error will occur if x is so large that cosh would result in an overflow. In this

case cosh returns the value HUGE_VAL (with the same sign as the correct value
of the function) and errno is set to ERANGE.

Description:

‘ cosh calculates the hyperbolic cosine of a number.

| See also:

| coshf
\
|
|

72 TDS 347 01 ~_ October 1992

cosh Calculates the hyperbolic cosine of the argument.

2 Alphabetical list of functions 91

coshf Calculates the hyperbolic cosine of a £1oat number.
Synopsis:

#include <mathf.h>
float coshf(float x);

Arguments:
float x A number.
Results:

Returns the hyperbolic cosine of x or if a range error occurs returns HUGE_VAL_F
(with the same sign as the correct value of the function).

Errors:

A range error will occur if x is so large that coshf would result in an overflow. In
this case coshf retuns the value HUGE_VAL_F (with the same sign as the correct
value of the function) and errno is set to ERANGE.

Description:

float form of cosh.

See also:

cosh

72 TDS 347 01 October 1992

92 2 Alphabetical list of functions

CrcByte Calculate CRC of most significant byte of an integer.
Synopsis:

#include <misc.h>
int CrcByte(int data, int crec_in, int generator);

Arguments:
int data The most significant byte of this integer forms the data
for the CRC calculation.
int cre_in Initial value of CRC, or CRC value obtained from
previous call.
int generator The CRC generating polynomial.
Results:

Retumns the CRC of the most significant byte of data combined with cxc_in.
Errors:

None.

Description:

A full description of all the CRC functions supplied is given in appendix C.

CrcByte performs a cyclic redundancy check over the most significant byte of
data using crc_in as the initial CRC value. generator is the CRC generating
polynomial.

CrcByte is side effect free.
Example:

int data;

int crc_in;

int cre;

int generator;

crc = CrcByte(data, crc_in, generator):;

When compiling for transputers which have the crcbyte instruction, calls to
CrcByte are implemented inline, provided that the header file <misc.h> has
been included in the source.

See also:

CrcWord CrcFromLsb CrcFromMsb

72 TDS 347 01 October 1992

2 Alphabetical list of functions 93

CrcFromLsb Calculates the CRC of a byte sequence starting at the
least significant bit.

Synopsis:

#include <misc.h>
int CrcFromLsb (const char *string, size_t length,
int generator, intold_crc);

Arguments:

const char *string Pointer to the start of the byte sequence for which the
CRC is to be calculated.

size_t length Number of bytes in the sequence pointed to by
string.
int generator The CRC generating polynomial.
int old _cre Initial value of CRC.
Results:

CRC of the given byte sequence, starting at the least significant bit.
Errors:

None.

Description:

A full description of all the CRC functions supplied is given in appendix C.

The CcrcFromLsb function is provided to accommodate byte sequences in big-
endian format. The most significant bit of string is taken to be bit 0 of
string[0]. The generated CRC is given in big-endian format. generator and
old_crc are taken to be in little-endian format.

See also:

CrcFromMsb CrcWord CrcByte

72 TDS 347 01 October 1992

94 2 Alphabetical list of functions

CrcFromMsDb Calculates the CRC of a byte sequence starting at the
most significant bit.

Synopsis:

#include <misc.h>
int CrcFromMsb (const char *string, size t length,
int generator, int old_crc);

Arguments:

const char *string Pointer to the start of the byte sequence for which the
CRC is to be calculated.

size_t length Number of bytes in the byte sequence pointed to by
string.
int generator The CRC generating polynomiial.
int old _crec Initial value of CRC.
Results:

CRC of the given byte sequence, starting at the most significant bit.
Errors:

None.

Description:

A full description of all the CRC functions supplied is given in appendix C.

The CrcFromMsb function is intended for byte sequences in normal transputer for-
mat (little-endian). The most significant bit of the given byte sequence is taken to
be bit-16 or bit-32, depending, on the word size of the processor, of
string[length - 1].

generator, old_crc and the result of CreFromMsb are all also in normal trans-
puter format (little-endian).

See also:

CrcFromLsb CrcWord CrcByte

72 TDS 347 01 October 1992

2 Alphabetical list of functions 95

CrcWord Calculate CRC of an integer.
Synopsis:

#include <misc.h>
int CrcWord(int data, int crc_in, int generator);

Arguments:
int data The data for the CRC calculation.
int ecrc_in Initial value of CRC, or CRC value obtained from
previous call.
int generator The CRC generating polynomial.
Results:

Returns the CRC of data combined with cxrc_in.

Errors:

None.

Description:

A full description of all the CRC functions supplied is given in appendix C.

CrcWord performs a cyclic redundancy check over the single int data using
crc_inwhichis the CRC value obtained from the previous call (or the initial CRC
value). generator is the CRC generating polynomial. Can be used iteratively on
a sequence of ints to obtain a CRC value for the sequence.

CrcWord is side effect free.
Example:

int dataf10];

int i;

int cre;

int generator;

crc = 0;

for (i = 0; i < 10; i++)

crc = CrcWord(data[i], crc, generator);

When compiling for transputers which have the crcword instruction, calls to
CrcWord are implemented inline, provided that the header file <misc.h> has
been included in the source.

See also:

CrcByte CrcFromLsb CrcFromMsb

72 TDS 347 01 October 1992

96 2 Alphabetical list of functions

creat Creates a file for writing. File handling primitive.
Synopsis:

#include <iocntrl.h>
int creat(char *name, int flag);

Arguments:
char *name The name of the file to be created.
int flag A number which specifies the mode in which the file is
opened.
Results:

Returns a file descriptor for the file, or —1 on error.

Errors:

If an error occurs creat sets errno to the value EIO and returns —1.
Description:

creat creates a file with flename name and opens it in ‘write’ and ‘truncate’
modes. If the file already exists, and if the host system permits, the file is overwrit-
ten.

The value of £1ag determines how the file is opened. It can take two values, as
follows:

O_BINARY Open file in binary mode.
O_TEXT Open file as a text file.

The default is to open the file as a text file.

creat has the same effect as a call to open with the following arguments:
open(name, O WRONLY | O_TRUNC | flag);
creat is not included in the reduced library.

See also:

open

72 TDS 347 01 October 1992

2 Alphabetical list of functions 97

ctime Converts a calendar time value to a string.
Synopsis:

#include <time.h>
char *ctime(const time_t *timer);

Arguments:

const time t *timer A pointer to the calendar time.
Results:
Returns a pointer to a string representation of the time.
Errors:
None.
Description:

ctime converts the value pointed to by timer to a broken—down time structure,
and then writes the contents of the structure into a string in the following form:

Thu Nov 05 18:19:01 1987
(See section 1.3.16 for a definition of broken—down time).
ctime is equivalent to the following call to asctime:
asctime (localtime(timer));

Example:

/* Displays the current time */
#include <time.h>
#include <stdio.h>

int main(void)
{
time_t now;
time (&now) ;
printf(”The time is: %s\n”,ctime(&now));

Note: Care should be taken when calling ctime in a concurrent environment.
Calls to the function by independently executing unsynchronized processes may
corrupt the returned time value.

See also:

asctime localtime strftime clock difftime mktime time
gmtime

72 TDS 347 01 October 1992

98 2 Alphabetical list of functions

debug_assert Stops process/alerts debugger if condition fails.
Synopsis:

#include <misc.h>
void debug_assert(const int exp);

Arguments:
const int exp An integer expression for the condition to be asserted.
Results:
Returns no result.
Errors:
None.
Description:

debug_assert replaces assert for programs that will be debugged in break-
point mode. If expression evaluates FALSE debug_assert stops the process
and sends process data to the debugger. If expression evaluates TRUE no
action is taken.

If the program is not being run within the breakpoint debugger and the assertion
fails, then the function behaves like debug_stop.

See also:

assert debug message debug_stop

72 TDS 347 01 October 1992

2 Alphabetical list of functions 99

debug_message Inserts a debugging message.
Synopsis:

#include <misc.h>
void debug_message (const char *message);

Arguments:
const char *message The text of the message.
Results:
Retumns no result.
Errors:
None.
Description:

debug_message sends a message to the debugger which is displayed along with
normal program output. Only the first 80 characters of the message are displayed.

If the program is not being run within the breakpoint debugger the function has no
effect.

See also:

debug_assert debug_stop

72 TDS 347 01 October 1992

100 2 Alphabetical list of functions
debug_stop Stops a process and notifies the debugger.
Synopsis:

#include <misc.h>
void debug_stop(void);

Arguments:
None.

Results:

Returns no resuilt.

Errors:

None.

Description:

debug_stop stops the process and sends process data to the debugger.

If the program is not being run within the breakpoint debugger then the function
stops the process or processor, depending on the error mode in which the proces-

sor is executing.

See also:

debug_assert debug message halt_processor

72 TDS 347 01

October 1992

2 Alphabetical list of functions 101

difftime Calculates the difference between two calendar times.
Synopsis:

#include <time.h>
double difftime(time_ t timel, time t timeO);

Arguments:
time_t timel The first time.
time_t time0 The second time.
Results:

Returns the difference, in seconds, between timel and time0.
Errors:

None.

Description:

difftime calculates the difference in time between timel and time0
(timel - time0).

difftime is side effect free.
See also:

asctime ctime localtime strftime clock mktime time gmtime

72 TDS 347 01 October 1992

102 2 Alphabetical list of functions

DirectChanln Inputs data on a channel.
Synopsis:

#include <channel.h>
void DirectChanIn(Channel *c, void *cp, int count);

Arguments:
Channel *c A pointer to the input channel.
void *cp A pointer to the array where the data will be stored.
int count The number of bytes of data.

Results:

Returns no result.
Errors:

None.
Description:

Inputs count bytes of data on the specified channel and stores them in the array
pointed to by cp. The effect of this routine is undefined if count < 0.

This routine is a fast, inline, version of ChanIn: input is performed directly, using
the transputer’s input instruction; therefore this routine can only be used on the fol-
lowing sorts of channel:

¢ asoftchannel; i.e. any channel which communicates with a process on the
same processor

¢ a direct channel provided idebug is not being used in interactive mode.
A direct channel is a configuration level channel which occurs when no
more than two channels (one in each direction) are placed on a single link,
between adjacent processors.

The suggested use is with either soft channels or edge channels which
communicate outside the network with a device other than the host. Note:
it can be dangerous to make assumptions about the implementation of
directchannels. See section 6.3.1 in the ANSI C Toolset User Guide for fur-
ther guidance.

Calls to DirectChanIn are implemented inline, provided that the header file
<channel .h> has been included in the source.

See also:

ChanIn ChanInChar ChanInInt ChanInit
DirectChanInChar DirectChanInlInt

72 TDS 347 01 October 1992

2 Alphabetical list of functions 103

DirectChanInChar Input one byte on a channel.
Synopsis:

#include <channel.h>
unsigned char DirectChanInChar (Channel *c);

Arguments:
Channel *c A pointer to the input channel.
Results:
Retumns the input byte.
Errors:
None.
Description:
Inputs a single byte on a channel.
This routine is a fast, inline, version of ChanInChar: input is performed directly,
using the transputer’s input instruction; therefore this routine can only be used on

the following sorts of channel:

¢ asoftchannel; i.e. any channel which communicates with a process on the
same processor ‘

¢ a direct channel provided idebug is not being used in interactive mode.
A direct channel is a configuration level channel which occurs when no
more than two channels (one in each direction) are placed on a single link,
between adjacent processors.

The suggested use is with either soft channels or edge channels which
communicate outside the network with a device other than the host. Note:
it can be dangerous to make assumptions about the implementation of
direct channels. See section 6.3.1 in the ANS/ C Toolset User Guide for fur-
ther guidance.

Calls toDirectChanInChar areimplemented inline, provided that the headerfile
<channel .h> has been included in the source.

See also:
ChanInChar ChanOutChar
DirectChanIn DirectChanOutChar

72 TDS 347 01 October 1992

104 2 Alphabetical list of functions

DirectChanInInt Inputs an integer on a channel.
Synopsis:

#include <channel.h>
int DirectChanInInt (Channel *c);

Arguments:
Channel *c A pointer to the input channel.
Results:
Returns the input integer.
Errors:
None.
Description:
Inputs a single integer on a channel.
This routine is a fast, inline, version of ChanInInt: input is performed directly,
using the transputer’s input instruction; therefore this routine can only be used on

the following sorts of channel:

¢ asoft channel; i.e. any channel which communicates with a process on the
same processor

¢ a direct channel provided idebug is not being used in interactive mode.

. A direct channel is a configuration level channel which occurs when no

more than two channels (one in each direction) are placed on a single link,
between adjacent processors.

The suggested use is with either soft channels or edge channels which
communicate outside the network with a device other than the host. Note:
it can be dangerous to make assumptions about the implementation of
direct channels. See section 6.3.1 in the ANSI C Toolset User Guide for fur-
ther guidance.

Calls to DirectChanInInt are implemented inline, provided that the header file
<channel .h> has been included in the source.

See also:
ChanInInt ChanOutInt
DirectChanIn DirectChanOutInt

72 TDS 347 01 October 1992

2 Alphabetical list of functions 105

DirectChanOut Outputs data on a channel.
Synopsis:

#include <channel.h>
void DirectChanOut (Channel *c, void *cp, int count);

Arguments:
Channel *c A pointer to the output channel.
void *cp A pointer to an array containing the output data.
int count The number of bytes of data.

Results:

Returns no result.
Errors:

None.
Description:

Outputs count bytes of data on the channel c. The data is taken from the array
pointed to by cp. The effect of this routine is undefined if count < 0.

This routine is a fast, inline, version of ChanOut: output is performed directly, using
the transputer’s output instruction; therefore this routine can only be used on the
following sorts of channel:

¢ asoft channel; i.e. any channel which communicates with a process on the
same processor

e a direct channel provided idebug is not being used in interactive mode.
A direct channel is a configuration level channel which occurs when no
more than two channels (one in each direction) are placed on a single link,
between adjacent processors.

The suggested use is with either soft channels or edge channels which
communicate outside the network with a device other than the host. Note:
it can be dangerous to make assumptions about the implementation of
direct channels. See section 6.3.1 inthe ANSI C Toolset User Guide for fur-
ther guidance.

Calls to DirectChanOut are implemented inline, provided that the header file
<channel . h> has been included in the source.

See also:

ChanOut ChanOutInt ChanOutChar
DirectChanIn DirectChanOutInt DirectChanOutChar

72 TDS 347 01 October 1992

106 2 Alphabetical list of functions

DirectChanOutChar Outputs one byte on a channel.
Synopsis:

#include <channel.h>
void DirectChanOutChar (Channel *c, unsigned char ch);

Arguments:

Channel *c A pointer to the output channel.
unsigned char ch The byte to be output.

Results:

Returns no result.

Errors:

None.

Description:

Outputs a single byte on a channel.

This routine is a fast, inline, version of ChanOutChar: output is performed directly,
using the transputer’s output instruction; therefore this routine can only be used on

the following sorts of channel:

¢ asoft channel; i.e. any channel which communicates with a process on the
same processor

» a direct channel provided idebug is not being used in interactive mode.
A direct channel is a configuration level channel which occurs when no
more than two channels (one in each direction) are placed on a single link,
between adjacent processors.

The suggested use is with either soft channels or edge channels which
communicate outside the network with a device other than the host. Note:
it can be dangerous to make assumptions about the implementation of
direct channels. See section 6.3.1 inthe ANSI C Toolset User Guide for fur-
ther guidance.

Calls to DirectChanOutChar are implemented inline, provided that the header
file <channel.h> has been included in the source.

See also:
ChanInChar ChanOutChar
DirectChanInChar DirectChanOut

72 TDS 347 01 October 1992

2 Alphabetical list of functions 107

DirectChanOutlInt Outputs an integer on a channel.
Synopsis:

#include <channel.h>
void DirectChanOutInt (Channel *c, int n);

Arguments:
Channel *c A pointer to the output channel.
int n The integer to be output.
Results:

Returns no result.

Errors:

None.

Description:

Outputs a single integer on a channel.

This routine is a fast, inline, version of ChanOutInt: output is performed directly,
using the transputer’s output instruction; therefore this routine can only be used on

the following sorts of channel:

» asoft channel; i.e. any channel which communicates with a process on the
same processor

¢ a direct channel provided idebug is not being used in interactive mode.
A direct channel is a configuration level channel which occurs when no
more than two channels (one in each direction) are placed on a single link,
between adjacent processors.

The suggested use is with either soft channels or edge channels which
communicate outside the network with a device other than the host. Note:
it can be dangerous to make assumptions about the implementation of
direct channels. See section 6.3.1 inthe ANSI C Toolset User Guide for fur-
ther guidance.

CallstoDirectChanOutInt are implemented inline, provided that the headerfile
<channel .h> has been included in the source.

See also:
ChanInInt ChanOutInt
DirectChanInInt DirectChanOut

72 TDS 347 01 October 1992

108 2 Alphabetical list of functions

div Calculates the quotient and remainder of a division.
Synopsis:

#include <stdlib.h>
div_t div(int numer, int denom);

Arguments:
int numer The numerator.
int denom The denominator.
Results:

Returns a structure of type div_t which consists of the quotient and remainder.
The structure contains:

int quot The quotient.
int rem The remainder.

Errors:
If the result cannot be represented the behavior of div is undefined.
Description:

div calculates the quotient and remainder formed by dividing the numerator
numer by the denominator denom.

div is side effect free.
See also:

1div

72 TDS 347 01 October 1992

2 Alphabetical list of functions 109

exit Terminates a program.
Synopsis:

#include <stdlib.h>
void exit(int status);

Arguments:
int status A value denoting the program termination status.
Results:
exit does not return.
Errors:
None.
Description:

exit causes normal program termination and passes a termination code back to
the calling environment.

exit performs the following actions before the returning control to the calling envi-
ronment:

1 The functions recorded by atexit are called in reverse order of their reg-
istration.

2 All open output streams are flushed.
3 All open files are closed.
4 All files created by tmpfile are removed.

The value of status denotes success or failure of the program and determines
the value of the termination code passed back to the calling environment. If sta-
tus is zero or equal to EXIT_SUCCESS then the program is deemed to have been
successful and the value of the termination code passed to the calling environment
is EXIT_SUCCESS. If status is EXIT FAILURE then the program is deemed to
have been unsuccessful in some way and the value of the termination code passed
back to the calling environment is EXIT FAILURE. If status has any other value
then the termination code passed back to the calling environment is equal to sta-
tus.

Further actions on program termination are determined by the host environment
of the program. There are three cases:

1 A program linked with the full library which has not been dynamically
loaded:

72 TDS 347 01 October 1992

110 2 Alphabetical list of functions

The environment of a program linked with the full library is its connection
to the server. exit causes all such programs, except those using the
PROC . ENTRY entry point, to terminate the server. The server returns the
same termination code as is set up by exit except that EXIT SUCCESS
and EXIT_FAILURE are translated to the equivalent host specific success
and failure code.

2 A program linked with the reduced library which has not been dynamically
loaded :

Such a program can be considered to have no environment as such. There
is no server and so nowhere to pass the termination code to. In this case
the termination code is lost.

3 A program which has been dynamically loaded:

The environment of a dynamically loaded program is the program which
loaded and invoked it, its parent. Itis not the job of a child program to termi-
nate the server, this is a task for the parent, if the parent is of type 1 above.
The termination code set up by exit is stored in an implementation
defined manner (see section 3.6.9).

A summary of the action of exit, when not used in a dynamically loaded program
is as follows:

C entry point Terminate server
C.ENTRYD (linked with estartup. 1nk) Yes
C.ENTRYD.RC (linked with ecstartrd. 1nk) No
C.ENTRY (linked with cnonconf . 1nk) Yes
MAIN.ENTRY (Type 1 interface) t Yes
PROC.ENTRY (Type 2 interface) t No
PROC.ENTRY.RC (Type 3 interface) t No

1 Entry points used by occam interface code —amethod of mixed lan-
guage programming described in chapter 10 of the ANS/ C Toolset
User Guide.

For configured programs which are not dynamically loaded and which use the
C.ENTRYD entry point (i.e. are linked with estartup.1lnk), but which do not
require to terminate the server, the equivalent function exit_noterminate
should be used.

Caution : exi t should not be called from a function which is invoked as a C paral-
lel process. The effect on the program may be unpredictable. This restriction does
not apply to a call to exit which is meant to terminate the execution of a dynami-
cally loaded program which has been invoked as a parallel process.

Note: that exit should not be used by any C code which is to be imported by
occam, using calle.lib.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 111

Note: The behavior of exit has changed from previous releases of the toolset
i.e. the D7214, D6214, D5214 and D4214 products, where exit did not termi-
nate the server. Using the depreciated startup linker file startup. 1nk, gives

the original behavior.

Example:

#include <stdlib.h>
#include <stdio.h>

int main(void)
{ .
printf (“About to do an exit\n”);
exit (EXIT_ SUCCESS) ;

printf (“Not printed\n”);

}
See also:

atexit exit repeat exit_ terminate exit_noterminate

72 TDS 347 01 October 1992

112 2 Alphabetical list of functions

exit noterminate Version of exit for configured processes.
Synopsis:

#include <misc.h>
void exit noterminate(int status);

Arguments:
int status A value to be passed back to the calling environment.
Results:
Returns no result.
Errors:
None.
Description:

exit_noterminate is equivalent to exit, but designed for use in a configured
process when it is not desirable for the default action of terminating the server to
occur.

exit_noterminate will only override the termination of the server in configured
programs linked with the full runtime library. In all other cases it acts like exit and
status is passed back to the calling environment.

The effect of exit noterminate on server termination is summarized as fol-
lows:

C entry point Terminate server
C.ENTRYD (linked with cstartup. 1nk) No
C.ENTRYD.RC (linked with cstartrd. 1nk) No
C.ENTRY (linked with cnoncon£ . 1nk) Yes
MAIN.ENTRY (Type 1 interface) t Yes
PROC.ENTRY (Type 2 interface) t No
PROC.ENTRY.RC (Type 3 interface) t No

1 Entry points used by occam interface code —amethod of mixed lan-
guage programming described in chapter 10 of the ANS/ C Toolset
User Guide.

Note: if use is made of the predefined constants EXIT_FAILURE or EXIT_SUC-
CESS then the header file stdlib.h must be included.

Caution: exit_noterminate should not be called from a C function that is run-
ning in parallel with any other function. The effect on the program may be unpre-

72 TDS 347 01 October 1992

2 Alphabetical list of functions 113

dictable. This restriction does not apply to a call to exit_noterminate which is
meant to terminate the execution of a dynamically loaded program which has been
invoked as a parallel process. Calling exit_noterminate from a dynamically
loaded code is equivalent to calling exit.

Note: that exit_noterminate should not be used by any C code which is to be
imported by occam, using callec. lib.

See also:

exit exit repeat exit terminate

72 TDS 347 01 October 1992

114 2 Alphabetical list of functions

exi t_repeat Terminates a program so that it can be restarted.

Caution: use of this function should be avoided since it will not be supported in
future releases of the toolset.

Synopsis:

#include <misc.h>
void exit repeat(int status);

Arguments:

int status A value to be passed back to the calling environment.
Results:
Returns no result.
Errors:
None.
Description:
exit_repeat terminates the C program and returns its argument to the calling
environment. Unlike exit, exit_repeat retains the program and allows it to be
rerun without re-booting the transputer.
Only programs which consist of a single C program running on a single transputer,
and which have been made bootable using the collector ‘T’ option, can be repeat

invoked. In all other cases exit_repeat acts like exit.

Caution: exit_repeat should not be called from a C function that is running in
parallel with any other function. The effect on the program may be unpredictable.

The first element of the argv array is lost in the process of calling exit_repeat.
Therefore programs that read the program name from the first element of the array
will need to be re-booted.

Note: If use is made of the predefined constants EXIT FAILURE or EXIT SUC-
CESS then the header file std1ib.h must be included.

Note: that exit_repeat should not be used by any C code which is to be
imported by occam, using calle.lib.

See also:

exit

72 TDS 347 01 October 1992

2 Alphabetical list of functions 115

exit_ terminate Version of exi t for configured processes.
Synopsis:

#include <misc.h>
void exit_terminate(int status);

Arguments:
int status A value to be passed back to the calling environment.
Results:
Returns no result.
Errors:
None.
Description:

exit_ terminate has exactly the same action as exit. ltis included for compati-
bility with earlier issues of the toolset e.g. the D7214, D6214, D5214 and D4214
products and may not be supported in future versions of the toolset.

Caution: exit_terminate should not be called from a C function that is running
in parallel with any other function. The effect on the program may be unpredictable.

Note: that exit_ terminate should not be used by any C code which is to be
imported by occam, using calle.lib.

See also:

exit exit _repeat exit noterminate

72 TDS 347 01 October 1992

116 2 Alphabetical list of functions

exp Calculates the exponential function of the argument.
Synopsis:

#include <math.h>
double exp (double x);

Arguments:
double x A number.
Resuits:

Returns the exponential function of x or returns HUGE_VAL (with the same sign as
the correct value of the function) if a range error occurs.

Errors:

A range error occurs if the result of raising e to the power of x would cause over-
flow. In this case exp returns the value HUGE VAL (with the same sign as the cor-
rect value of the function) and errno is set to ERANGE.

Description:

exp calculates the value of the constant e (2.71828...) raised to the power of a
number.

See also:

expf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 117

expf Calculates the exponential function of a £1oat number.
Synopsis:

#include <mathf.h>
float expf (float x);

Arguments:
float x A number.
Results:

Returns the exponential function of x returns HUGE_VAL_F (with the same sign as
the correct value of the function) if a range error occurs.

Errors:

A range error occurs if the result of raising e to the power of x would cause over-
flow. In this case expf returns the value HUGE_VAL_F (with the same sign as the
correct value of the function) and errno is set to ERANGE.

Description:
float form of exp.

See also:

exp

72 TDS 347 01 October 1992

118 2 Alphabetical list of functions

fabs Calculates the absolute value of a floating point number.

Synopsis:

#include <math.h>
double fabs(double x);

Arguments:

double x A number.

Results:

Returns the absolute value of the argument.
Errors:

None.

Description:

fabs calculates the absolute value of a number.
fabs is side effect free.

See also:

fabsf

72 TDS 347 01

October 1992

2 Alphabetical list of functions

119

fabsf Calculates the absolute value of a £1oat number.

Synopsis:

#include <mathf.h>
float fabsf (float x);

Arguments:
float x A number.

Results:

Retumns the absolute value of the argument.

Errors:

None.

Description:

float form of fabs.
fabsf is side effect free.
See also:

fabs

72 TDS 347 01

October 1992

120 2 Alphabetical list of functions

fclose Closes a file stream.
Synopsis:

#include <stdio.h>
int fclose (FILE *stream);

Arguments:
FILE *stream A pointer to the file stream.
Results:
Returns zero if the close was successful and EOF if it was not.
Errors:
If an error is detected £close returns EOF.
Description:

fclose closes the file stream pointed to by stream; any associated buffers are
flushed. Any buffer which was allocated by the 1/O system is de-allocated.

Buffer data which is waiting to be written is sent to the host environment for writing
to the file. Buffer data which is waiting to be read is ignored.

fclose is called automatically when exi t is called. £close is not included in the
reduced library.

See also:

fopen

72 TDS 347 01 October 1992

2 Alphabetical list of functions 121

feof Tests for end of file.
Synopsis:

#include <stdio.h>
int feof (FILE *stream);

Arguments:
FILE *stream A pointer to a file stream.
Results:
Retumns zero if the end of file indicator for stream is clear, non-zero if it is set.
Errors:
None.
Description:

feof tests the state of the end of file indicator for the file stream stream. It returns
zero if the indicator is clear, and non-zero if it is set.

feof is not included in the reduced library.
See also:

ferror

72 TDS 347 01 October 1992

122 2 Alphabetical list of functions

ferror Tests for a file error.
Synopsis:

#include <stdio.h>
int ferror(FILE *stream);

Arguments:
FILE *stream A pointer to a file stream.
Results:
Returns zero if the error indicator for stream is clear, and non-zero if it is set.
Errors:
None.
Description:

ferror tests the state of the error indicator for the file stream stream. It returns
zero if the error indicator is clear, and non-zero if it is set.

ferror is not included in the reduced library.
See also:

feof

72 TDS 347 01 October 1992

2 Alphabetical list of functions 123

fflush Flushes an output stream.
Synopsis:

#include <stdio.h>
int fflush(FILE *stream);

Arguments:
FILE *stream A pointer to the stream to be flushed.
Results:
Retumns EOF if a write error occurred, otherwise 0.
Errors:
If a write error occurs, ££1ush retums EOF.
Description:

If stream points to an output stream, ££1ush causes any outstanding data for the
stream to be written to the file. The behavior is undefined for a stream which is nei-
ther open for output nor update.

If stream is NULL, ££1ush flushes all streams that are open for output.
£flush is not included in the reduced library.

See also:

ungetc

-2 TDS 347 01 October 1992

124 2 Alphabetical list of functions

fgetc Reads a character from a file stream.
Synopsis:

#include <stdio.h>
int fgetc(FILE *stream);

Arguments:

FILE *stream A pointer to a file stream.
Results:
Returns the next character from the file stream.
Errors:

If the stream is at the end of the file, the end of file indicator for the stream is set
and f£getc retumns EOF. If a read error occurs, the error indicator for the stream is
set and £getc retumns EOF.

Description:

fgetc returns the next character from the opened file identified by the file stream
pointer stream, and advances the read/write position indicator for the file stream.

fgetc is not included in the reduced library.
See also:

fgets fputc getc ungete

72TDS 347 01 October 1992

2 Alphabetical list of functions 125

fgetpos Obtains the value of the file position indicator.
Synopsis:

#include <stdio.h>
int fgetpos (FILE *stream, fpos t *pos);

Arguments:
FILE *stream A pointer to a file stream.
fpos t *pos A pointer to an object where the current value of the file
position indicator can be stored.
Results:

Returns zero if the operation was successful. If the operation fails £getpos sets
errno to EFILPOS and returns non-zero.

Errors:

If the operation was unsuccessful, £getpos returns a non-zero value and stores
EFILPOS in errno.

Description:

fgetpos stores the value of the file position indicator of the file stream stream
in the object pointed to by pos. This information is in a form usable by the £setpos
function.

fgetpos is not included in the reduced library.
See also:

fsetpos

72 TDS 347 01 October 1992

126 2 Alphabetical list of functions

fgets Reads a line from a file stream.
Synopsis:

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Arguments:
char *s A pointer to a buffer to receive the string.
int n The size of the array.
FILE *stream A pointer to a file stream.

Results:

Returns s if successful or a NULL pointer on error.
Errors:

fgets returns a NULL pointer if a read error occurs and the contents of the array
are undefined. If end offile is encountered before a character isread £gets returns
NULL and the contents of the array remain unchanged.

Description:

fgets reads a string of a maximum (n—1) characters from the file stream identified
by stream. fgets stopsreading when it encounters a newline character or an end
of file character. A string terminating character is written into the array after the last
character read. The newline character forms part of the string.

fgets is not included in the reduced library.

See also:

fgetc fputs gets

72 TDS 347 01 October 1992

2 Alphabetical list of functions 127

filesize Determines the size of a file. File handling primitive.
Synopsis:

#include <iocntrl.h>
long int filesize(int £d);

Arguments:
int fd A file descriptor.
Results:
Retumns the size of the file in bytes or -1 on error.
Errors:
If an error occurs filesize sets errno to the value EIO.
Description:

filesize takes afile descriptor and returns the size of the file in bytes. If the file
is open for writing, £ilesize returns the current size of the file.

filesize is not included in the reduced library.

72 TDS 347 01 October 1992

128 2 Alphabetical list of functions

floor Calculates the largest integer not greater than the argument.
Synopsis:

#include <math.h>
double floor (double x);

Arguments:
double x A number.
Results:
Returns the largest integer (expressed as a double) which is not greater than x.
Errors:
None.
Description:
floor calculates the largest integer which is not greater than x.
floor is side effect free.
See also:

ceil floorf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 129

floorf float form of floor.
Synopsis:

#include <mathf.h>
float floorf(float x);

Arguments:
float x A number.
Results:
Returns the largest integer (expressed as a float) which is not greater than x.
Errors:
None.
Description:
float form of £loor.
floorf is side effect free.
See also:

ceilf floor

72 TDS 347 01 October 1992

130 2 Alphabetical list of functions

fmod Calculates the floating point remainder of x/y.
Synopsis:

#include <math.h>
double fmod(double x, double y);

Arguments:

double x The dividend.
double y The divisor.
Results:

Returns (with the same sign as x) the floating point remainder of x/y. If y is zero
errno obtains the value EDOM and £mod returns zero.

Errors:

A domain error occurs if y is zero, and the function then returns zero. A range error
occurs if the result is not representable.

Description:
fmod calculates the floating point remainder of x/y.
See also:

fmodf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 13

fmodf Calculates the floating point remainder of x/y .
Synopsis:

#include <mathf.h>
float fmodf (float x, float y);

Arguments:
float x The dividend.
float y The divisor.
Results:

Returns (with the same sign as x) the floating point remainder of x/y. If y is zero
errno obtains the value EDOM and fmodf returns zero.

Errors:

A domain error occurs if y is zero and a range error occurs if the result is not repre-
sentable.

Description:
float form of £fmod.
See also:

fmod

72TNS 47 01 October 1992

132 2 Alphabetical list of functions

fopen Opens a file.
Synopsis:

#include <stdio.h>
FILE *fopen(const char *filename,
const char *mode);

Arguments:

const char *filename The name of the file to be opened.
const char *mode A string which specifies the mode in which the file
is to be opened.

Results:

Returns a file pointer to the stream associated with the newly opened file. fopen
returns a NULL pointer if it cannot open the file.

Errors:

If a file opened for reading does not exist or the open operation fails for any other
reason, fopen returns a NULL pointer.

Description:

fopen opens the file named by the string pointed to by fllename, in the mode
specified by the mode string.

fopen is not included in the reduced library.

The following are valid mode strings:

72 TDS 347 01 October 1992

2 Alphabetical list of functions 133

"r"
”w"

"rb"
”wb”

"ab”

”r+”
”w+”

”a+"

”r+b" or
”rb+!l
”w+b" or
”wb+”
"a+b" or
llab+"

Opens a text file for reading.

Opens atext file for writing. Ifthe file already exists it is truncated
to zero length. If the file does not exist, it is created.

Opens a text file for appending. If the file does not exist, it is
created.

Opens a binary file for reading.

Opens a binary file for writing. If the file already exists it is trun-
cated to zero length. If the file does not exist, it is created.

Opens a binary file for appending. If the file does not exist, it is
created.

Opens a text file for reading and writing.

Creates a text file for reading and writing. If the file exists, it is
truncated to zero length.

Opens a text file for reading, and writing at the end of the file. If
the file does not exist, it will be created.

Opens a binary file for reading and writing.

Creates a binary file for reading and writing. If the file exists, it
is truncated to zero length.

Opens a binary file for reading and writing at the end of the file.
If the file does not exist, it will be created.

File output must not be followed by file input without an intervening call to ££1ush
or one of the file positioning functions £seek, £setpos and rewind. Similarly,
input must not be followed by output without an intervening call to one of these
functions unless EOF is encountered. If a file is opened with a "+ in the mode string
(opened for update), the file can be read from and written to without closing and
reopening the file. However, you must call ££1ush, £seek, £setpos or rewind
between read and write operations.

Example:

#include <stdio.h>

int main(void)

{

FILE *stream;

stream = fopen(”data.dat”,”r”);

if (stream = NULL)

else
printf (“data.dat opened for read\n”);

}
See also:

printf (“Can’t open data.dat file for

read\n”) ;

fclose fflush freopen fseek fsetpos rewind

72 TDS 347 01

October 1992

134 2 Alphabetical list of functions

fprintf Writes a formatted string to a file.
Synopsis:
#include <stdio.h>
int fprintf (FILE *stream, const char *format, ...);
Arguments:

FILE *stream A pointer to an output file stream.

const char *format A string of characters specifying the format.
Subsequent arguments to the format string.

Results:

Returns the number of characters written, or a negative value if an output error
occurs.

Errors:

Returns a negative value if an output error occurs.

Description:

fprintf writes the string pointed to by format to the file stream stream. When
fprintf encounters a percent sign % in the string, it expands the corresponding
argument into the format defined by the format tokens after the sign.

fprintf is not included in the reduced library.

The format tokens consist of the following items:

72 TDS 347 01 October 1992

2 Alphabetical list of functions 135

1. Flags (optional):

- causes the output to be left-justified in its field.
+ causes the output to start with a ‘+’ or .

* ' (blank causes the output to start with a space if positive, and a ‘-’ if nega-
space) tive. If the space and + flags appear together, the space flag is
ignored.

causes:
— an octal number to begin with 0.
— a hex number to begin with 0x, or 0X for the x or X
conversion specifiers.
— a floating point number to contain a decimal point
in(e, E 1, G, g,).

0 For d,i,o,u,x,X,e,E,f,g,G, conversions (see below), leading zeros
are used to pad the field width. If both 0 and - flags both appear,
the 0 is ignored. For d,i,o,u,x,X conversions, if a precision is speci-
fied the O flag is ignored.

2. Minimum width (optional): The width is an integer constant which defines the
minimum number of characters displayed. If the integer constant is replaced by an

asterisk (‘*’), an int argument following the format string in the comresponding
position supplies the width.

3. Precision (optional):

The precision is specified by a decimal point followed by an integer constant which
defines:

¢ The maximum number of characters to be written in an ‘s’ conversion

¢ The number of digits to appear after the decimal pointinan ‘e’, ‘E’ or ‘f’ con-
version

¢ The maximum number of significant digits for a ‘g’ or ‘G’ conversion
¢ The minimum number of digits to appearina‘d’, ‘o', ‘u’, ’x’ or X’ conversion.
If the integer constant is replaced by an asterisk (‘*’), an int argument following

the format string in the corresponding position supplies the precision. If the integer
constant is omitted the value is taken to be zero.

72 TDS 347 01 October 1992

136 2 Alphabetical list of functions

4. Type specifier (optional):

h Specifies that a following ‘d’, ', ‘0’, ‘u’, X' or ‘X' conversion
appliesto a short intorunsigned short int, ora follow-
ing 'n’ conversion applies to a pointer to a short int.

1 Specifies that a following ‘d’, V', ‘o', ‘U’, ‘X’ or ‘X’ conversion
applies to a long int or unsigned long int, or a following 'n’ con-
version applies to a pointer to a long int.

L Specifies that a following ‘e’, ‘E’, 'f’, ‘g’ or ‘G’ conversion applies
to along double.

5. A single conversion character:

d,i The int argument is converted to signed decimal format.
o The int argument is converted to unsigned octal format.
u The int argument is converted to unsigned decimal format.

X The int argument is converted to unsigned hexadecimal for-
mat, using the letters "a’ to 'f'.

X The int argument is converted to unsigned hexadecimal for-
mat, using the letters 'A’ to 'F’.
£ The double argument is converted to the decimal format [-]

xxx.0xx. The number of characters after the decimal point is
equal to the precision. The default precision is six.

e,E The double argument is converted to the decimal format
x.00xetxx. The exponent is introduced with the conversion
character (e or E). The number of characters after the decimal
_point is equal to the precision. The default precision is six.

g,G The double argument is converted to an 'f' format if the expo-
nent is less than —4 or greater than the precision. Otherwise 'g’
is equivalentto 'e’, and ‘G’ is equivalent to 'E’. Trailing zeros are
removed from the result.

c The int argument is converted to unsigned char and written
as a single character.

s Characters are written from the string pointed to by the argu-
ment, up to the string terminating character.

P The argument must be a pointer to void and is converted to
hex. format for printing.

n The number of characters written so far will be put into the inte-
ger pointed to by the argument.

% The % character is written.

72 TDS 347 01 October 1992

2 Alphabetical list of functions

137

Example:
#include <stdio.h>

int main(void)
{
int i = 99;
int count = 0;
double fp = 1.5e5;
char *s = ”“a sequence of characters”;
char nl1 = '\n’;
FILE *stream;

if ((stream = fopen(”data.dat”, ”“w”)) == NULL)
printf ("Error opening data.dat for write\n”);
else
{
count += fprintf (stream,
”This is %s%c”, s, nl);
count += fprintf (stream,
7%d\n%£f\n”, i, fp);
printf ("Number of characters written to file
was: %d\n”, count);

}
See also:

fscanf printf

72 TDS 347 01

October 1992

138 2 Alphabetical list of functions

fputc Writes a character to a file stream.
Synopsis:

#include <stdio.h>
int fputc(int c, FILE *stream);

Arguments:
int ¢ The character to be written.
FILE *stream A pointer to a file stream.
Results:

Returns the character written if successful. If a write error occurs, fputec returns
EOF and sets the error indicator for the stream.

Errors:
fputc returns EOF if a write error occurs.
Description:

fputc converts ¢ to an unsigned char, writes it to the output stream pointed to by
stream, and moves the read/write position for the file stream as appropriate.

fputc is not included in the reduced library.
See also:

fgetc putc

72 TDS 347 01 October 1992

2 Alphabetical list of functions 139

fputs Writes a string to a file stream.
Synopsis:

#include <stdio.h>
int fputs(const char *s, FILE *stream);

Arguments:
const char *s A pointer to the string to be written.
FILE *stream A pointer to a file stream.

Results:

Returns non-negative if successful, and EOF if unsuccessful.
Errors:

fputs returns EOF if unsuccessful.

Description:

fputs writes the string pointed to by s to the file stream stream. The write does
not include the string terminating character.

fputs is not included in the reduced library.
See also:

fputc

72 TDS 347 01 October 1992

140 2 Alphabetical list of functions

fread Reads records from a file.
Synopsis:
#include <stdio.h>

size t fread(void *ptr, size t size, size_t nmemb
FILE *stream);

Arguments:
void *ptr A pointer to a buffer that the records are read into.
size t size The size of an individual record.
size_t nmemb The maximum number of records to be read.
FILE *stream A pointer to a file stream.

Results:

Returns the number of records read. This may be less than nmemb if an error or
end of file occurs. £fread returns zero if size or nmemb is zero.

Errors:
Returns the current number of records read if error occurs.
Description:

fread reads nmemb records of length size from the file stream stream into the
array pointed to by ptr.

fread is not included in the reduced library.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 141

Example:

#include <stdio.h>
#include <stdlib.h>

#define NUMEL 10

int main{()

{

i::: :::mout, numin, buffin[NUMEL], buffout[NUMEL];
FILE *stream;

/* write 10 integers to the file data.dat */
stream = fopen(”“data.dat”, "wb”);

j(.f {(stream =— NULL)

printf (”"Error opening data.dat for writing\n”);
abort() ;
}

for (i = 0; i < NUMEL; i++)
buffout[i] =i * i;

numout = fwrite(buffout, sizeof(int), NUMEL, stream);
fclose(stream) ;
printf ("Number of integers written = %d\n”, numout);
/* Now read the integers back again */
stream = fopen(”“data.dat”, "rb”);
if (stream — NULL)

printf (”Error opening data.dat for reading\n”);

abort () ;
}

numin = fread(buffin, sizeof (int), NUMEL, stream);
fclose(stream) ;
printf (“"Number of integers read = %d\n”, numin);

for (i = 0; i < NUMEL; i++)
printf (“buffin[%d] = %d\n”, i, buffin[i]);

See also:

feof ferror fwrite

72 TDS 347 01 October 1992

142 2 Alphabetical list of fur : tions

free Frees "an area of memory.
Synopsis:

#include <stdlib.h>
void free (void *ptr);

Arguments:
void *ptr ot ointer to the arsz. of memory to be freed.
Results: ‘
Returns no result.
Errors:
If ptr does not match any ofthe poir rspicyviov vr3umeit, ~.lloe, mailoc,
or realloc, or if the space has lr:ay be 2nfre 4 by a call it tree or realloc,

a fatal runtime error occurs and the following message is dispia;2di:

Fatal-C_Library-E:.or in free(), bad pointer or heap corrupted

Description:

freefree.ne areaof memory po - 3dte b ptrifithas* e<.... :viously allocated
k' calloec,malloc, or realloc. f ptr ! aNULL porsiar, . action occurs.
See also:

callocmalloc realloc

72 TDS 347 01 October 1992

2 Alphabetical list of functions 143

free86 Frees host memory space allocated by alloc86. MS-DOS only.
Synopsis:

#include <dos.h>
void free86 (pcpointer p);

Arguments:
pcpointer p A pointer to the host memory block to be freed.
Results:
Retumns no result.
Errors:

If an error occurs free86 sets errno to the value EDOS. Any attempt to use
free86 on operating systems other than MS-DOS also sets errno to EDOS. Fail-
ure of the function may also generate the server error message:

[Encountered unknown primary tag (50)]

Description:

free86 retums the block of host memory identified by p to MS-DOS for re-use.
p must be a pcpointer previously retumed by alloc86.

free86 is not included in the reduced library.
See also:

alloc86

72 TDS 347 01 October 1992

144 2 Alphabetical list of functions

f reopen Opens a file that may already be open.
Synopsis:

#include <stdio.h>
FILE *freopen (const char *filename, const char *mode,
FILE *stream);

Arguments:

const char *filename The name of the file to be opened.

const char *mode A string which specifies the mode in which the file is
to be opened.

FILE *stream A pointer to a file stream.

Results:

Returns stream, or a NULL pointer if the file cannot be opened.
Errors:

If the open fails £reopen returns a NULL pointer.

Description:

freopen attempts to close the file associated with the file stream stream. Failure
to close thefile is ignored, error and end of file indicators for the stream are cleared,
and freopen then opens the file referenced by £ilename and associates the file
with the file stream stream.

The file is opened in the mode specified by the string mode. Valid modes are the
same as for fopen.

freopen is not included in the reduced library.

freopen is normally used for redirecting the stdin, stdout and stderr
streams.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 145

Example:
#include <stdio.h>

int main()
{

FILE *stream;

/* assign stdout to a named file */
printf (“This text goes to stdout\n”);

stream = freopen(”data.dat”, ”“w”, stdout);
if (stream == NULL)
printf (”Couldn’t freopen stdout to
data.dat\n”);
else

{
printf ("This text goes to data.dat\n”);
fclose (stream) ;
}
See also:

fopen

72 TDS 347 01 October 1992

146 2 Alphabetical list of functions

frexp Separates a floating point number into a fraction and an integral
power of 2.
Synopsis:

#include <math.h>
double frexp(double value, int *exp);

Arguments:

double value The floating point number.

int *exp A pointer to an integer where the exponent is stored.
Results:

Returns the normalized fractional part of value. The fraction is returmed in the range
[0.5 ... 1) or zero. The exponent is stored in the int pointed to by exp.

Errors:

A domain error occurs if value is NaN or infinity. In this case the input value is
returned unchanged and *exp is set to 0.

Description:

frexp separates the floating point number value into a normalized fraction and an
integral power of 2. The exponent is stored in the int pointed to by exp. The frac-
tion is returned by the function.

If x is the value returned by frexp and y is the exponent stored in *exp then:
value = x * 2%*y

If value is zero then both x and y will be zero.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 147

Example:

#include <math.h>
#include <stdio.h>

int main()

double x;
double mantissa;
int exponent;

x = 3.141;

mantissa = frexp(x, &éexponent) ;

printf(”x = %f, mantissa = %f, exponent = %d\n”,
x, mantissa, exponent);

/i
* Qutput:
*
* x = 3.141000, mantissa = 0.785250,
* exponent = 2
*
*/
See also:

ldexp frexpf

72 TDS 347 01 October 1992

148 2 Alphabetical list of functions

£ rexpf Separates a floating point number of type £1loat into a fraction and
an integral power of 2.

Synopsis:

#include <mathf.h>
float frexpf(float value, int *exp);

Arguments:

float value The floating point number.

int *exp A pointer to the int into which the exponent is put.
Results:

Returns the fractional part of value. The normalized fraction is returned in the range
[0.5...1) or zero. The exponent is stored in the int pointed to by exp.

Errors:

A domain error occurs if value is NaN or infinity. In this case the input value is
returned unchanged and *exp is set to 0.

Description:
float form of frexp.
See also:

ldexpf frexp

72 TDS 347 01 October 1992

2 Alphabetical list of functions 149

from host link Retrieve the channel coming from the host.
Synopsis:

#include <hostlink.h>
Channel* from host link(void)

Arguments:
None.
Results:
Returns a pointer to the channel coming from the host.
Errors:
None.
Description:
from_host_link retrieves the channel coming from the host.

Note: that the link over which communication with the host occurs need not neces-
sarily be the same link as the one from which the transputer was booted.

This function is intended for use with dynamic code loading; care should be taken
if it is used elsewhere.

from_host_link is not in the reduced library.
See also:

get_bootlink channels to host_ link

72 TDS 347 01 October 1992

150 2 Alphabetical list of functions

from86 Transfers host memory to the transputer. MS-DOS only.
Synopsis:

#include <dos.h>
int from86(int len, pcpointer there, char *here);

Arguments:
int len ' The number of bytes of host memory to be transferred.
pcpointer there A pointer to the host memory block.
char *here A pointer to the receiving block in transputer memory.
Resulits:

Retumns the actual number of bytes transferred.
Errors:

Returns the number of bytes transferred until the error occurred and sets errno
to the value EDOS. Any attempt to use £rom86 on systems other than MS-DOS
also sets exrno to EDOS. Failure of the function may also generate the server error
message:

[Encountered unknown primary tag (50)]

Description:

from86 transfers 1en bytes of host memory starting at there to a coresponding
block starling at here in transputer memory. The function returns the number of
bytes actually transferred. The host memory block used will normally have been
previously allocated by a call to alloc8é.

from86 is not included in the reduced library.
See also:

to86 alloc86

72TDS 347 01 October 1992

2 Alphabetical list of functions 151

fscanf Reads formatted input from a file stream.
Synopsis:

#include <stdio.h>

int fscanf (FILE *stream, const char *format, ...);
Arguments:

FILE *stream An input file stream.

const char *format A format string.
Subsequent arguments to the format string.

Results:

Returns the number of inputs which have been successfully converted. If an end
of file character occurred before any conversions took place, £scanf returns EOF.

Errors:

If an end of file character occurred before any conversions took place, £scanf
returns EOF. Other failures cause termination of the procedure.

Description:

£scanf matches the data read from the input stream streamto the specifications
set out by the format string. The format string can include white space, ordinary
characters, or conversion tokens:

1. White space causes the next series of white space characters read to be
ignored.

2. Ordinary characters in the format string cause the characters read to be
compared to the corresponding character in the format string. If the characters do
not match, conversion is terminated.

3. A conversion token in the format string causes the data sequence read in to be
checked to see if it is in the specified format. If it is, it is converted and placed in
the appropriate argument following the format string. If the data is notin the correct
format, conversion is terminated.

The conversion tokens consist of the following items:

1. Token signifier:

% (percent character)

72 TDS 347 01 October 1992

152

2 Alphabetical list of functions

2. Assignment suppressor (optional):

* (asterisk). This causes the data sequence to be read in but not assigned
to an argument. Tokens that use the assignment suppressor should not
have a corresponding argument in the argument list.

3. Maximum width (optional):

The width is a decimal integer constant defining the maximum number of
characters to be read.

4. Type specifier (optional):

h

1

Specifies that a following 'd’, *i’, 'n’, '0’, 'u’, or 'x’ conversion
applies to a short intor uns:.gned short int.

Specifies that a following 'd’, ', 'n’, '0’, 'u’ or ’x’ conversion
applies to a long int or uns:Lgned long int, and a fol-
lowing 'e’, 'f or ’g’ conversion applies to a double.

Specifies that a following 'e’, ' or 'g’ conversion applies to a
long double.

5. A single conversion character:

d

e, £, g

72 TDS 347 01

Expects an (optionally signed) decimal integer. Requires a
pointer to an integer as the corresponding argument.

Expects an (optionally signed) integer constant. The integer
constant may be a hexadecimal or octal value, provided the
correct prefix is supplied. Requires a pointer to an integer as
the corresponding argument.

Expects an (optionally signed) octal integer.

Expects an (optionally signed) decimal integer. Requires a
pointer to an unsigned integer as the corresponding argu-
ment.

Expects an (optionally signed) hex integer (optionally pre-
ceded by an Ox or 0X). Requires a pomterto an integer as the
corresponding argument.

Expects an (optionally signed) floating point character con-
sisting of the following sequence of characters:

i A plus or minus sign (optional).

i A sequence of decimal digits, which may contain a decimal
point.

iii An exponent (optional) consisting of an 'E’ or'e’ followed by
an optional sign and a string of decimal digits. Requires a
pointer to a double as the corresponding argument.

Expects a string. Requires a pointer to an array large enough
to hold (size of the string plus a terminating null char) charac-
ters as the corresponding argument.

October 1992

2 Alphabetical list of functions 153

[Denotes the start of a scan set.

Expects a non—empty string of characters. Acceptable char-
acters are denoted by the scan set. The corresponding argu-
ment should be a pointer to an array large enough to accept
the string plus a terminating null character.

The characters between the left bracket [’ and the right
bracket ‘] make up the scan list.

The scan set is equal to the scan list unless the first character
in the scan list is a (*) in which case the scan set is made up
of all those characters which do not occur in the scan list.

The right bracket (]) can be included in the scan list if it is the
first character in the scan list, i.e. []is in the format string, or
if it is the second character in the scan list after the (1), i.e. [A]
isinthe format string. In these cases the scan list is terminated
by the next occurrence of a left bracket (]).

The string is read up until the first character which is not in the

scan set e.g.:
format string meaning
"% [abe]” match a string made up of a, b and c only.
"% [~abe]” match a string made up of any characters
except a, b and c.
"%[labe]” match a string made up of a, b, c and]
only.
"% [A]abe]” match a string made up of any characters
excepta, b, cand].
P Expects a hexadecimal string. Requires a pointer to a void
pointer as the corresponding argument.
n The number of characters received so far will be put into the

integer pointed to by the argument. This does not increment
the assignment count returned or read from the stream.

% Matches the % character.

Any mismatch between the token format and the data received causes an early
termination of £scanf.

fscanf is not included in the reduced library.

72 TDS 347 01 October 1992

154

2 Alphabetical list of functions

Example:

#include <stdio.h>
#include <stdlib.h>

int main()

{

int i, numout, numin;

FILE *stream;

float fp;

/* create a file of items to read back */
stream = fopen(”data.dat”, ”"w”);

if (stream == NULL)

{

printf (“Error opening data.dat for writing\n”);
abort() ;
}

numout = fprintf(stream, ”%f %d”, 3.141, 1024);
fclose(stream) ;

printf ("Number of characters written = %d\n”, numout) ;
/* Now read the items back again */

stream = fopen(”data.dat”, “r”);

if (stream == NULL)

{ printf (“Error opening data.dat for reading\n”);

: abort();

numin = 0;
numin += fscanf(stream, “%f %d”, &fp, &i);

fclose (stream) ;

printf ("Number of fields read = %d\n”, numin);
printf(”items read were: %f %d\n”, fp, i);

See also:

fprintf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 155

fseek Sets the file position indicator to a specified offset.
Synopsis:

#include <stdio.h>
int fseek (FILE *stream, long int offset,
int whence);

Arguments:
FILE *stream A pointer to a file stream.
long int offset The distance the file position indicator is moved.
int whence The start position for the seek.

Results:

Returns non-zero on error, otherwise £seek retums zero.
Errors:

£seek retumns non-zero on error.

Description:

fseek is used to move the file position indicator of a file to a specified offset within
the file stream stream. The offset is measured from a position defined by whence
and can take the following values:

SEEK_SET is the start of the file stream.
SEEK_CUR is the current position in the file stream.
SEEK_END is the end of the file stream.

If the file stream is a text stream the offset should either be zero or whence should
be set to SEEK_SET, and offset should be a value returned by a ftell.

fseek clears the end of file indicator for stream and undoes the effects of

ungetec. The file stream may be both read from and written to after £seek has
been called, provided the stream has been opened in an appropriate mode.

72 TDS 347 01 October 1992

156 2 Alphabetical list of functions

Example:

#include <stdio.h>
#include <stdlib.h>

int main()

FILE *stream;
int result;

stream = fopen(”data.dat”, “wb+”);
if (stream == NULL)
{ printf (”“Exrror opening data.dat for update\n”);
abort();
/* write something to the file so we can fseek around it */

fprintf (stream, ”1232456789”);

/* reset to the beginning of the file */
result = fseek(stream, 0L, SEEK_SET);

if (result)
{

printf (”“fseek failed\n”);
abort();

printf (”“first char in file is %c\n”, getc(stream));

/* reset to the beginning of the file */
result = fseek(stream, OL, SEEK SET);

/* move to third char in file */
result = fseek(stream, 2L, SEEK CUR);

if (result)
{

printf (“fseek failed\n”);
abort();

printf(”third char in file is %c\n”, getc(stream));

/* move to last char in file */
result = fseek(stream, -1L, SEEK_END);

if (result)
printf (”fseek failed\n”);

abort();
}
printf (“last char in file is %c\n”, getc(stream));
fclose (stream) ;

}

See also:

fsetpos, ftell, ungetc

72 TDS 347 01 October 1992

2 Alphabetical list of functions 157

f setpos Sets the file position indicator to an fpos_t value obtained from
fgetpos.

Synopsis:

#include <stdio.h>
int fsetpos (FILE *stream, const fpos_t *pos);

Arguments:

FILE *stream A pointer to a file stream.
const fpos_t *pos A pointer to an object containing the new value of the
file position indicator.

Results:
Retumns zero if the operation was successful, and non-zero on failure.
Errors:

If the operation was unsuccessful, £setpos sets errno to EFILPOS and returns
a non-zero value.

Description:

fsetpos sets the file position indicator of the file stream stream to the value in
pos. pos shall contain a value previously returned by fgetpos.

A successful call to £setpos clears the end of file indicator for the stream and will
undo the effects of an ungetc operation on the same stream. The file stream may
be both read from and written to after £setpos has been called, provided it has
been opened in an appropriate mode.

fsetpos is not included in the reduced library.

72 TDS 347 01 October 1992

158 2 Alphabetical list of functions

Example:
#include <stdio.h>

int main()

{
FILE *stream;
fpos t filepos;
int ch;

stream = fopen(”data.dat”,”w+”);
if (stream == NULL)
printf (“Couldn’t open data.dat for read\n”);
else
{
fprintf (stream, ”123456789");
rewind (stream) ;
ch = getc(stream);
printf (”First char in file is ’%c’\n”,ch);

/*
* Remember: getc() advances file pointer,
* so it now points
* to the second character in the file.

*/
if (fgetpos(stream,6 &filepos) != 0)

printf ("Error with fgetpos\n”);
ch = getc(stream);
printf (”Second char in file is ’%c’\n”,ch);
ch = getc(stream);
printf ("Third character in file is ’%¢’\n”,ch);

if (fsetpos(stream, &filepos) !=0)
printf (“Error with fsetpos\n”);

ch = getc(stream);
printf ("Reset file ptr and read 2nd char which is ’%c’\n”, ch);
fclose(stream) ;

}

See also:

fgetpos fseek ungetec

72 TDS 347 01 October 1992

2 Alphabetical list of functions 159

ftell Returns the position of the file position indicator for a file stream.
Synopsis:

#include <stdio.h>
long int ftell (FILE *stream);

Arguments:
FILE *stream A pointer to a file stream.
Results:

Retumns the current value of the file position indicator for the file stream stream,
or —1 on eor.

Errors:
ftell retums —1 on error and sets errno to EFILPOS.
Description:

ftell returns the current value of the file position indicator for the file stream
stream. For a binary stream the value is the number of characters from the begin-
ning of the file. For a text stream the value is unspecified but can be used by £seek
to reposition the file position indicator to its original position at the time of the call
to ftell.

ftell is not included in the reduced library.
See also:

fseek

72 TDS 347 01 October 1992

160 2 Alphabetical list of functions

fwrite Wirites records from an array into a file.
Synopsis:
#include <stdio.h>

size_t fwrite(const void *ptr, size_t size,
size t nmemb, FILE *stream);

Arguments:
void *ptr A pointer to a buffer that the records are read from.
size_t size The size of an individual record.
size_t nmemb The maximum number of records to be written.
FILE *stream A pointer to a file stream.

Results:

Returns the number of records written. This may be less than nmemb if a write error
occurs.

Errors:

fwrite returns zero if size or nmemb is zero. If an error occurs the number of
records read up to the error is returned.

Description:

fwrite writes nmemb records of length size from the amray pointed to by ptr to
the file stream stream. If an error occurs, the value of the file position indicator is
indeterminate.

fwrite is not included in the reduced library.
See fread for an example.
See also:

fread

72 TDS 347 01 October 1992

2 Alphabetical list of functions 161

get bootlink channels Obtains the channels associated
with the boot link.
Synopsis:
#include <bootlink.h>
int get bootlink channels(Channel** in ptr,
Channel** out ptr)
Arguments:

Channel** in ptr The address of a variable which will be assigned a
pointer to the input channel associated with the boot
link.

Channel** out_ptr The address of a variable which will be assigned a
pointer to the output channel associated with the boot
link.

Resuits:

Returns zero if the operation was successful and non—zero on failure.
Errors:

If the operation fails, *in_ptr and *out_ptr are undefined.
Description:

get bootlink channels retrieves the channels that are associated with the
link that the transputer was booted from.

Note: that the link over which communication with the host occurs need not neces-
sarily be the same link as the one from which the transputer was booted.

If used in a boot from ROM case, the obtained addresses will be undefined.
See also:

from host link to_host_link

72 TDS 347 01 October 1992

162 2 Alphabetical list of functions

get_code_details_from channel Retrieves details

from a dynamically loadable file that is transmitted over a channel.

Synopsis:

#include <fnload.h>

int get_code_details from_channel (Channel* in_channel,
fn_info* fn detalls)

Arguments:

Channel* in_channel A pointer to the channel over which the dynamically
loadable (. rsc) file is received.

fn_info* fn _details The address of a variable which will be assigned the
details from the transmitted file.

Results:

Returns zero if the operation was successful and non—zero on failure.

Errors:

If the operation was unsuccessful, *fn_details is undefined.

Description:

get_code details_from channel retrieves details from a dynamically load-
ableTile that is transmitted over a channel. It is assumed, on entry to this function,
that the next transmission over the specified channel will be the header of the

dynamically loadable (. rsc)file. The header data is received as a series of individ-
ual byte transmissions.

See also:

load code_from channel

72 TDS 347 01 October 1992

2 Alphabetical list of functions 163

get_code_details from file Retrieves details from a
dynamically loadable file which is stored on disc.

Synopsis:

#include <fnload.h>

int get_code_details_from file(const char* filename,
fn info* fn details,
size t* file hdr size)

Arguments:
const char* filename A string which is the name of the dynamically
loadable file.
fn_info* fn details The address of a variable which will be assigned

the details from the . rsc file.

size t* file hdr_size The address of a variable which will be assigned
the number of bytes at the start of the file before
the code block.

Results:
Returns zero if the operation was successful and non—zero on failure.
Errors:

If the operation was unsuccessful, *fn_details and *file_hdr_size are
undefined. The operation may fail for various reasons. For example, the given file-
name may refer to a file that does not exist or cannot be read.

Description:

get_code_details_from_file retrieves details from a dynamically loadable
code file. Such files have the default extension . rsec.

Ifget_code_details_from fileis used in aprogram linked with the reduced
library it always returns non-zero.

See also:

load _code_from file

72 TDS 347 01 October 1992

164 2 Alphabetical list of functions

get_code_details_from memory Retrieves details from
the image of a dynamically loadable file which is stored in internal memory .

Synopsis:

#include <fnload.h>

int get_code_details from memory(const void* addr_of file image,
fn_info* fn _details,
size t* file hdr size,
loaded fn_ptr* function pointer)

Arguments:

const void* addr of file image The start address of the image of
the dynamically loadable (.rsc)
file in intemal memory.

fn_info* fn details The address of a variable which will be
assigned the details from the file
image.

size_t* file hdr_size The address of a variable which will be

assigned the number of bytes at the
start of the file image before the code
block.

loaded fn_ptr* function pointer The address ofa variable which will
be assigned a pointer to the function
entry point in the file image.

Results:
Returns zero if the operation was successful and non—zero on failure.
Errors:

If the operation was unsuccessful, *fn_details, *file hdr_size and
*function_pointer are undefined.

Description:

get_code details from memory retrieves details from the image of a
dynamically loadable (. xsc) file which is held in internal memory.

The file contents are assumed to be laid out in increasing memory from the value
of addr_of file_image.

If the file image is in ROM and itis known that it does not write to itself then * func-
tion_pointer can be cast, if necessary, and used immediately to call the code
in the file image. If the file image is in ROM and does write to itself then the code
in it must first be loaded into RAM before that code can be called.

See also:

load code_from memory

72 TDS 347 01 October 1992

2 Alphabetical list of functions 165

get_details of free_memory Reports the details of
memory considered by the configurer to be unused.

Synopsis:

#include <misc.h>
int get_details of free memory(void** base of free_ memory,
size t* size of free_ memory

Arguments:

void** base of free memory The address of a variable which will be
assigned the word aligned address of
the start of unused memory.

size_t* size of free memory The address of a variable which will be
assigned the amount of unused
memory, in words.

Results:
Returns zero if the operation was successful and non-zero on failure.
Errors:

If the operation fails, *base_of free_memory and *size of free memory
are undefined.

Description:

When configuring one uses a configuration description. The configuration descrip-
tion gives, amongst other things, the amount of memory attached to each proces-
sor. The actual memory used on the processor is usually not the full amount as
given in the configuration description, and so there is unused memory at the top
of memory. It is the base and amount of this unused memory that is reported by
this function.

There is no free memory in the non—configured case.

72 TDS 347 01 October 1992

166 2 Alphabetical list of functions

get_details of free stack space
Reports the limits of free space on current stack.
Synopsis:
#include <misc.h>
void get_details of_ free_stack_space(void** stack_limit ptr,
size_t* remaining stack_space_ptr)
Arguments:
void** stack limit ptr The address of a variable which
will be assigned the limit of the
cumrent stack.
size t* remaining stack_space ptr The address of a variable which
will be assigned the approximate

number of bytes still unused of
the present stack.

Results:

Returns no result.
Errors:

None.
Description:

get_details of free_stack_space reports the limits of unused space on
the current stack.

The value given by *stack_limit_ptr is the address of the last word on the
stack, not to the first word after the top of the stack.

Just how approximate the value given by *remaining_stack_space ptris,
depends on when one uses the value; itis most accurate immediately after the call
to this function when it is slightly smaller than the exact value. This function does

not take into account the150 words that max_stack usage () includes in its
return value.

Note: get_details_of_ free stack_space should not be used by any C
code which is to be imported by occam, using callc.lib.

See also:

max_stack_usage

72 TDS 347 01 October 1992

2 Alphabetical list of functions 167

get_para.m Reads parameters from the configuration level. Applies only
to configured processes.

Synopsis:

#include <misc.h>
void *get param(int n);

Arguments:
int n The index of the required parameter in the interface list.
Results:

Returns a pointer to the specified configuration level parameter. If the parameter
is a scalar then a pointer to the parameter is returned. If the parameter is a channel
or array then the channel or amray pointer itself is returned.

Errors:
The function returns NULL on error. Possible causes of errors are:

Using the function when it is not valid, i.e. from a program not configured
using icconf.

Using a value of n less than 1.

Using a value of n which is greater than the number of available parame-
ters.

Description:

get_param reads parameters from the list specified in the interface attribute
for a configured process. It can only be used from a program which has been confi-
gured using icecon€£. It must not be used in a program which uses the special case
entry points MAIN . ENTRY, PROC. ENTRY or PROC . ENTRY . RC described in chap-
ter 10 of the accompanying ANSI C Toolset User Guide.

get_param is used to access the parameters given to a process in the interface
list at configuration level. It enables access to the nth parameter in the parameter
list (n is a non-zero positive integer). If the parameter is a scalar then a pointer to
the parameter is returned. If the parameter is a channel or array then the channel
or array pointer itself is returned.

get_paran is side effect free.

The following example shows how a C program can use get_param to obtain the
value of a variable defined in the interface parameter list of a process defined at
configuration level.

72 TDS 347 01 October 1992

168 2 Alphabetical list of functions

C program:

#include <stdio.h>
#include <stdlib.h>
#include <misc.h>

int main ()
{

int *value;

value = (int *)get param(3);
printf (“value = %d\n”, *value);
exit terminate (EXIT SUCCESS) ;

}

Configuration description:

/* Hardware description */
T414 (memory = 2M) B403;

connect B403.1link[0], host;

/* Software description */
process (stacksize = 20k, heapsize = 20k,
interface(input in,
output out,
int value)) test;

test(value = 427);

input from host;
output to host;

connect test.in, from host;
connect test.out, to_host;

/* Network mapping */
use ”testl.lku” for test;
place test on B403;

place to_host on host;
place from host on host;

place test.in on B403.1ink[O0];
place test.out on B403.1link[0];

The C program obtains the value 427 by reading the third interface parameter to
the configured process test and then displays it.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 169

getc Gets a character from a file.
Synopsis:

#include <stdio.h>
int getc(FILE *stream);

Arguments:
FILE *stream A pointer to a file stream.
Results:
Returns the next character from the file stream or EOF on error.
Errors:

Ifthe next character is the end of file character, or a read error occurs, getc returns
EOF.

Description:

getc returns the next character from the opened file identified by the file stream
pointer.

getc is not included in the reduced library.
See also:

fgetc getchar putc

72 TDS 347 01 October 1992

170 2 Alphabetical list of functions

getchar gets a character from stdin
Synopsis:

#include <stdio.h>
int getchar(void);

Arguments:

None.

Results:

Returns the next character from stdin or EOF on error.
Errors:

If the next character is the end of file character, or a read error occurs, getchar
returns EOF.

Description:

getchar is equivalent to getc with the argument stdin.
getchar is not included in the reduced library.

See also:

getc fgetc putec putchar

72 TDS 347 01 October 1992

2 Alphabetical list of functions] 171

getenv Returns a pointer to the string associated with a host environment
variable.

Synopsis:

#include <stdlib.h>
char *getenv(const char *name);

Arguments:

const char *name A pointer to the host environment variable name to be
matched.

Results:

Returns a pointer to the string associated with the given environment variable. A
NULL pointer is returned if the environment variable is not defined on the host, or
the program is linked with the reduced library.

Errors:
Retumns NULL if the environment variable is not defined on the host.
Description:

getenv returns a pointer to the string associated with the host environment vari-
able name. The string must not be modified by the program but can be overwritten
by a subsequent call to getenv.

If getenv is used in a program linked with the reduced library a NULL pointer is
always returned.

Note: Care should be taken when calling getenv in a concurrent environment.
Calls to the function by independently executing, unsynchronized processes may
corrupt the string pointed to by the retumed char pointer.

Example:

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
char *envvar;
envvar = getenv(”IBOARDSIZE”) ;
if (envvar == NULL)
printf ("IBOARDSIZE variable not set\n”);
else
printf (“IBOARDSIZE is : %s\n”,envvar);

72 TDS 347 01 October 1992

172 2 Alphabetical list of functions

getkey Reads a character from the keyboard.
Synopsis:

#include <iocntrl.h>
int getkey(void);

Arguments:
None.
Results:
Returmns the ASCII value of the character, or —1 on error.
Errors:
Returns —1 if an error occurs.
Description:

getkey returns the ASCII value of the next character typed at the keyboard. The
routine waits indefinitely for the next keystroke and only returns when akey is avail-
able. The effect on any buffered data in the standard input stream is host-defined.
The character read is not echoed at the terminal.

getkey is not included in the reduced library.

See also:

pollkey

72 TDS 347 01 October 1992

2 Alphabetical list of functions 173

gets Reads a line from from stdin
Synopsis:

#include <stdio.h>
char *gets(char *s);

Arguments:
char *s A pointer to an array where the read characters are
stored.
Results:

Returns s if successful or a NULL pointer on error.
Errors:

gets returns a NULL pointer if a read error occurs and the contents of the array
are undefined. If end of file is encountered before a character is read gets returns
NULL and the contents of the array remain unchanged.

Description:

gets reads characters from stdin into the array pointed to by s. The read termi-
nates at end of file or when a new-line character is read. The new-line character
is discarded and a null character is written after the last character written into the
array.

gets is not included in the reduced library.
See also:

fgets puts fputs

72 TDS 347 01 October 1992

174 2 Alphabetical list of functions

gmt:i.me Converts a calendar time to a broken—-down time, expressed as a
UTC time.

Synopsis:

#include <time.h>
struct tm *gmtime (const time t *timer);

Arguments:
const time_t *timer Calendar time to be converted.
Results:

Retumns a pointer to a broken-down time expressed as UTC time, or NULL if UTC
time is unavailable.

Errors:
Returns NULL if UTC time is not available.
Description:

gmtime converts a calendar time into a broken—down time (see section 1.3.16),
expressed as Universal Time (UTC).

Note: UTC is unavailable in this implementation and gmt ime a/ways returns NULL.
See also:

asctime ctime difrftime localtime strftime clock mktime time

72 TDS 347 01 October 1992

2 Alphabetical list of functions 175

halt processor Halts the processor
Synopsis:

#include <misc.h>
void halt processor(void) ;

Arguments:

None.

Results:

This macro does not return.
Errors:

None.

Description:

halt_processor is implemented as a macro. halt_processor halts the pro-
cessor on which it is executed. This is achieved by setting the HaltOnError flag
and then explicitly setting the ErrorFlag.

See also:

abort debug_stop

72 TDS 347 01 October 1992

176 2 Alphabetical list of functions

host_info Gets data about the host system.
Synopsis:

#include <host.h>
void host_info(int *host, int *os, int *board);

Arguments:
int *host A pointer to an int where the host type code will be stored.
int *os A pointer to an int where the operating system type code
will be stored.
int *board A pointer to an int where the board type code will be
stored.
Results:

Returns no result.

Errors:

If any host attribute is unavailable it is given the value 0.
Description:

host_info returnsinformation about the host environment. It stores codes for the
host type, host operating system and transputer board in the locations pointed to
by host, os, and board respectively.

host_info is not included in the reduced library.

The values that host can take are defined in the header host .h and are as fol-
lows:

_IMS_HOST_PC

_IMS HOST_NEC
_IMS_HOST VAX
_IMS_HOST_SUN3
_IMS_HOST_IEM370
_IMS_HOST_SUN4
_IMS_HOST_ SUN386i
_IMS_HOST_APOLLO

The values that os can take are as follows:

72 TDS 347 01 October 1992

2 Alphabetical list of functions 177

_IMS_0S_DOS
_IMS_OS_HELIOS
_IMS OS_VMS
_IMS_OS_SUNOS
_IMS OS_CMS

The values that board can take are as follows:
_IMS BOARD B004
_IMS_BORRD_B008
_IMS BOARD B010
_IMS _BOARD_BO11
_IMS BOARD_BO014
_IMS_BOARD_DRX11
_IMS BOARD_QTO
_IMS BORRD_BO15
_IMS_BOARD_CAT
_IMS_BOARD B016

_IMS_BOARD_UDP_LINK

72 TDS 347 01 October 1992

178 2 Alphabetical list of functions

int86 Performs a MS-DOS software interrupt. MS-DOS only.
Synopsis:
#include <dos.h>
int int86 (int intno, union REGS *inregs,
union REGS *outregs);

Arguments:

int intno The host software interrupt ID.
union REGS *inregs Values to be placed in processor registers.
union REGS *outregs Register values after the interrupt.

Results:
Returns the value of the ax register after the interrupt.
Errors:

Returns zero (0) on error and sets errno to the value EDOS. Any attempt to use
int86 on operating systems otherthan MS-DOS also sets errno to EDOS. Failure
of the function may also generate the server error message:

[Encountered unknown primary tag (50)]
Description:
int86 calls the host software interrupt identified by intno with the registers set
to inregs. Register values after the interrupt are returned in outregs and the
contents of the ax register are returned as the function result.
Segment registers cs, ds, ex, and ss are not set.
int86 is not included in the reduced library.
See also:

int86x intdos

72 TDS 347 01 October 1992

2 Alphabetical list of functions 179

int86x Software interrupt with segment register setting. MS-DOS only.
Synopsis:

#include <dos.h>

int int86x(int intno, union REGS *inregs,
union REGS *outregs,
struct SREGS *segregs);

Arguments:
int intno The MS-DOS software interrupt ID.
union REGS *inregs Values to be placed in processor registers.

union REGS *outregs Register values after the interrupt.
struct SREGS *segregs Values to be placed in segment registers.

Results:
Returns the value of the ax register after the interrupt.
Errors:

Retumns zero (0) on error and sets errno to the value EDOS. Any attempt to use
int86x on operating systems other than MS-DOS also sets errno to EDOS. Fail-
ure of the function may also generate the server error message:

[Encountered unknown primary tag (50)]

Description:
int86x calls the host software interrupt identified by intno with the registers set
to inregs and the segment registers set to segregs. Register values after the

interrupt are returned in outregs and the contents of the ax register are returned
as the function resuit.

int8eéxis useful for MS-DOS calls which take pointers to objects, normally speci-
fied by combining a 16-bit register with a segment register. If only some of the seg-
ment registers are modified, segread should be used to read values from the oth-
ers. Failure to do so can produce unpredictable results.

See also:

int86 intdosx

72 TDS 347 01 October 1992

180 2 Alphabetical list of functions

intdos Performs an MS-DOS interrupt. MS-DOS only.
Synopsis:
#include <dos.h>
int intdos(union REGS *inregs,
union REGS *outregs);

Arguments:

union REGS *inregs Values to be placed in processor registers.
union REGS *outregs Register values after the interrupt.

Results:
Returns the value of the ax register after the interrupt.
Errors:

Returns zero (0) on error and sets errno to the value EDOS. Any attempt to use
intdos on operating systems other than MS-DOS also sets errno to EDOS. Fail-
ure of the function may also generate the server error message:

[Encountered unknown primary tag (50)]

Description:

As int86 but calls the specific host software interrupt identified by hexadecimal
21 (MS-DOS function call).

See also:

int86 intdosx

72 TDS 347 01 October 1992

2 Alphabetical list of functions 181

intdosx Ms-DOS interrupt with segment register setting. MS-DOS only.
Synopsis:

#include <dos.h>

int intdosx(union REGS *inregs,

union REGS *outregs,
struct SREGS *segregs);

Arguments:

union REGS *inregs Values to be placed in processor registers.
union REGS *outregs Register values after the interrupt.
struct SREGS *segregs Values to be placed in segment registers.

Results:
Returns the value of the ax register after the interrupt.
Errors:

Returns zero (0) on error and sets errno to the value EDOS. Any attempt to use
intdosx on operating systems other than MS-DOS also sets errno to EDOS.
Failure of the function may also generate the server error message:

[Encountered unknown primary tag (50)]

Description:
As intdos but also sets segment registers.
See also:

intdos int86x

72TDS 347 01 October 1992

182 2 Alphabetical list of functions

isalnum Tests whether a character is alphanumeric.
Synopsis:

#include <ctype.h>
int isalnum(int c);

Arguments:
int ¢ The character to be tested.
Results:
Returns non-zero (true) if the character is alphanumeric and zero (false) if it is not.
Errors:
None.
Description:

isalnum tests whether the character c is in one of the following sets of alphabetic
and numeric characters:

'a’to’'z’'A'to '2' 0" to 'Y’
isalnum is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

See also:

isalpha isdigit

72 TDS 347 01 October 1992

2 Alphabetical list of functions 183

isalpha Tests whether a character is alphabetic.
Synopsis:

#include <ctype.h>
int isalpha(int c);

Arguments:
int ¢ The character to be tested.
Results:
Returns non-zero (true) if the character is alphabetic and zero (false) if it is not.
Errors:
None.
Description:
isalpha tests whether c is in one of the following sets of alphabetic characters:
'a'to’'z’’'A'to'Z’
isalpha is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

See also:

isalnum isdigit

72TDS 347 01 October 1992

184 2 Alphabetical list of functions

isatty Tests for a terminal stream.
Synopsis:

#include <ioentrl.h>
int isatty(int £d);

Arguments:
int £d A file descriptor.
Results:

Returns 1 (true) if the file descriptor refers to a terminal stream, otherwise returns
0 (false).

Errors:
None.
Description:

isatty determines whether a given file descriptor refers to one of the default ter-
minal files stdin, stdout, and stderr.

isatty is not included in the reduced library.

72TDS 347 01 October 1992

2 Alphabetical list of functions 185

iscntrl Tests whether a character is a control character.
Synopsis:

#include <ctype.h>
int iscntrl(int c);

Arguments:
int ¢ The character to be tested.
Results:

Returns non-zero (true) if the character is a control character and zero (false) if it
is not.

Errors:
None.
Description:

iscentrl determines whether c is a control character (ASCIl codes 0-31 and
127).

isentrl is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

72 TDS 347 01 October 1992

186 2 Alphabetical list of functions

isdigit Tests whether a character is a decimal digit.
Synopsis:

#include <ctype.h>
int isdigit(int c);

Arguments:

int ¢ The character to be tested.

Results:

Returns non-zero (true) if the character is a digit and zero (false) if it is not.

Errors:

None.

Description:

isdigit tests whether c is one of the following decimal digit characters:
'0''1"'2''3''4''5' 6" '7" '8 'Y’

isdigit is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

See also:

isalnum isalpha

72 TDS 347 01 October 1992

2 Alphabetical list of functions 187

isgraph Tests whether a character is printable (non-space).
Synopsis:

#include <ctype.h>
int isgraph(int c);

Arguments:
int ¢ The character to be tested.
Results:

Retums non-zero (true) if the character is a printable character (other than space)
and zero (false) if it is not.

Errors:
None.
Description:

isgraph tests whether c belongs to the set of printable characters excluding the
space character (' ’). The space character is considered in this test to be non-print-
able.

isgraph is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

See also:

iscntrl isprint isspace

72 TDS 347 01 October 1992

188 2 Alphabetical list of functions

islower Tests whether a character is a lower-case letter.
Synopsis:

#include <ctype.h>
int islower(int c);

Arguments:
int ¢ The character to be tested.
Results:

Returns non-zero (true) if the character is a lower-case letter and zero (false) if it
is not.

Errors:

None.

Description:

islower tests whether c is a character in the set of lower case characters:
'a'to 'z

islower is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

See also:

isupper

72 TDS 347 01 October 1992

2 Alphabetical list of functions 189

isprint Tests whether a character is printable (includes space).
Synopsis:

#include <ctype.h>
int isprint(int c);

Arguments: .
int ¢ The character to be tested.
Results:
Returns non-zero (true) if the character is printable and zero (false) if it is not.
Errors:
None.
Description:
isprinttests whether ¢ is a printable character (ASCII character codes 32—126).

Note: Unlike isgraph, isprint considers the space character (* ') to be print-
able.

isprint is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

See also:

isgraph

72 TDS 347 01 | October 1992

190 2 Alphabetical list of functions

ispunct Tests to see if a character is a punctuation character.
Synopsis:

#include <ctype.h>
int ispunct(int c);

Arguments:
int ¢ The character to be examined.
Results:

Returns non-zero (true) if the character is a punctuation character and zero (false)
if it is not.

Errors:
None.
Description:

ispunct tests whether ¢ is a punctuation character. For the purposes of this test
a punctuation is any printable character other than an alphanumeric or space (‘)
character.

ispunct is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

See also:

iscntrl isgraph isprint

72TDS 347 01 October 1992

2 Alphabetical list of functions 191

isspace Tests to see if a character is one which affects spacing.
Synopsis:

#include <ctype.h>
int isspace(int c);

Arguments:
int ¢ The character to be tested.
Results:

Retumns non-zero (true) if the character is a space character and zero (false) if it
is not.

Errors:
None.
Description:

isspace tests whether ¢ belongs to the set of characters which produce white
space. Characters which generate white space are as follows:

FORM FEED (\£)
LINE FEED/NEWLINE (\n’)
RETURN (\r")
SPACE)

TAB (\t)
Vertical TAB (\v)

isspace is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

72 TDS 347 01 October 1992

192 2 Alphabetical list of functions

isupper Tests whether a character is an upper—case letter.
Synopsis:

#include <ctype.h>
int isupper(int c);

Arguments:
int ¢ The character to be tested.
Results:

Returns non-zero (true) if the character is an upper—case letter and zero (false)
if it is not.

Errors:

None.

Description:

isupper tests whether c is a character in the set of upper—case letters:
'Ato’'Z

isupper is implemented as both a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

See also:

islower

72 TDS 347 01 October 1992

2 Alphabetical list of functions 193

isxdigit Tests to see if a character is a hexadecimal digit.
Synopsis:

#include <ctype.h>
int isxdigit(int c);

Arguments:
int ¢ The character to be tested.
Results:

Returns non-zero (true) if the character is a hexadecimal digit and zero (false) if
it is not. ’

Errors:
None.
Description:

isxdigit tests whether c belongs to the set of hexadecimal digits. These are as
follows:

lal lbl lcl ldl lel lfl IAI IBI lCl IDI IEI lFl lol l1l 12l 131 l4l 15l 16' l7l 18l lgl
isxdigit is implemented both as a macro and a function.

Note: the argument must be representable as an unsigned char or be equal to
EOF, otherwise the behavior of the function is undefined.

72 TDS 347 01 October 1992

194 2 Alphabetical list of functions

labs Calculates the absolute value of a long integer.
Synopsis:

#include <stdlib.h>
long int labs(long int j);

Arguments:
long int j A long integer.
Results:
Returns the absolute value of j as 2 long int.
Errors:
If the result cannot be represented the behavior of 1abs is undefined.
Description:
labs calculates the absolute value of the long int j.
labs is side effect free.
See also:

abs

72 TDS 347 01 October 1992

2 Alphabetical list of functions 195

ldexp Multiplies a floating point number by an integer power of two.
Synopsis:

#include <math.h>
double ldexp(double x, int exp);

Arguments:
double x The floating point number.
int exp The exponent.

Results:

Returns the value of:
x X (2°%P)

If arange error occurs returns HUGE_VAL (with the same sign as the correct value
of the function).

Errors:

A range error will occur if the result of 1dexp would cause overflow or underflow.
In this case 1dexp retumns the value HUGE_VAL (with the same sign as the correct
value of the function) and errno is set to ERANGE.
Description:
ldexp calculates the value of :

x X (2°%®)
See also:

frexp

72 TDS 347 01 October 1992

196 2 Alphabetical list of functions

ldexpf Multiplies a £1oat number by an integral power of two.
Synopsis:

#include <mathf.h>
float ldexpf (float x, int exp);

Arguments:
float x The floating point number.
int exp The exponent.

Results:

Returns the value of:
x X (2999)

If a range error occurs returns HUGE_VAL_F (with the same sign as the correct
value of the function).

Errors:

Arange error will occur if the result of 1dexpf£ would cause overflow or underflow.
In this case 1dexpf£ returns the value HUGE_VAL_F (with the same sign as the cor-
rect value of the function) and errno is sef to ERANGE.

Description:
float form of 1dexp.
See also:

ldexp frexp

72 TDS 347 01 October 1992

2 Alphabetical list of functions 197

ldiv Calculates the quotient and remainder of a long division.
Synopsis:

#include <stdlib.h>
ldiv_t ldiv(long int numer, long int denom);

Arguments:

long int numer The numerator.
long int denom The denominator.

Results:

Returns a structure of type 1div_t which consists of the quotient and remainder.
The structure contains:

long int quot The quotient.
long int rem The remainder.

Errors:

If the result cannot be represented the behavior of 1div is undefined.
Description:

1div calculates the quotient and remainder formed by dividing the numerator
numer by the denominator denom. All values are of type long int.

1div is side effect free.
See also:

div

72 TDS 347 01 October 1992

198 2 Alphabetical list of functions

load _code_from_channel Receives the code block of a
dynamically loadable file from a channel and copies it into internal memory.

Synopsis:

#include <fnload.h>

loaded fn_ptr load code_from channel (Channel* in_channel
const fn_info* fn details,
void* dest)

Arguments:

Channel* in_channel A pointer to the channel over which the code
block is received.

const fn_info* fn_detailsA pointer to the structure containing details of
the code in the code block.

void* dest A pointer to the point in internal memory
where the code is to be placed.

Results:

Returns a function pointer to the code that has been loaded.
Errors:

None.

Description:

load code_ from_channel receives the code block of a dynamically loadable
file, transmitted over a channel, and copies it into a designated area of internal
memory. It is assumed that there is enough memory available from dest, at
increasing addresses, for the code to be placed into it. It is also assumed, on entry
to the function, that the next transmission over the channel will be the code block
of the dynamically loadable (. rsc) file. The code block is received as a series of
individual byte transmissions.

See also:

get_code details from channel

72 TDS 347 01 October 1992

2 Alphabetical list of functions 199

load code from file Transfers code from a dynamically
loadable file to internal memory.

Synopsis:

#include <fnload.h>

loaded_fn ptr load code_ from file(const char* filename,
const fn _info* fn details,
size t f:.le hdr size,
void* dest)

Arguments:

const char* filename A string which is the name of the dynamically
loadable (. rsc) file.

const fn_info* fn detailsA pointer to the structure containing details of
the code in the code block.

size_t file_hdr_ size The number of bytes at the start of the file
before the code block.
void* dest A pointer to the point in internal memory

where the code is to be placed.

Results:

Returns a function pointer to the code that has been loaded, if the operation was
successful and NULL on failure.

Errors:
If the operation is unsuccessful NULL is returned.
Description:

load code_ from file transfers the code part of a dynamically loadable
(.zsc) file to a designated area of internal memory. It is assumed that there is
enough memory available from dest, at increasing addresses, for the code to be
placed into it.

If load_code_from file is used in a program linked with the reduced library it
always returns NULL.

See also:

get_code_details from file

72 TDS 347 01 October 1992

200 2 Alphabetical list of functions

load code_ from memory Transfers code from a dynamically
loadable file from one area of internal memory to another.

Synopsis:

#include <fnload.h>

loaded_fn ptr load code from memory(comst void* src,
const fn_info* fn details,
size t f11e hdr_size,
void* dest)

Arguments:
const void* srec The start address of the image of the
dynamically loadable file, in internal
memory.

const fn_info* fn_ detailsA pointer to the structure containing details of
the code in the code block.

size t file_hdr_size The number of bytes at the start of the file
before the code block.
void* dest A pointer to the point in internal memory

where the code is to be placed.
Results:
Returns a function pointer to the code that has been loaded.
Errors:
None.
Description:

load_code from memory transfers the code block of a dynamically loadable
(. zsc) file image stored in one part of internal memory, to another part of internal
memory. It is assumed that the file image is stored in increasing memory locations
from sre and that there is enough memory available from dest, at increasing
addresses, for the code to be placed into it.

See also:

get_code_details from memory

72 TDS 347 01 October 1992

2 Alphabetical list of functions 201

localeconv Gets numeric formatting data for the current locale.
Synopsis:

#include <locale.h>
struct lconv *localeconv(void) ;

Arguments:
None.
Results:

Returns a pointer to a structure of type 1conv which defines components of the
current locale.

Errors:
None.
Description:

The components of a 1conv structure (defined in 1ocale .h) are set according
to the current locale and a pointer to this structure is returned.

localeconv always returns a pointer to the same 1econv structure. It should not
be overwritten by the program but may be altered by subsequent calls to
setlocale oOr localeconv.

INMOS ANSI C supports only the standard "C” locale.
localeconv is side effect free.
See also:

setlocale

72 TDS 347 01 October 1992

202 2 Alphabetical list of functions

localtime Converts a calendar time into a broken—down time,
expressed as local time.

Synopsis:

#include <time.h>
struct tm *localtime (const time t *timer);

Arguments:
const time t *timer A pointer to the calendar time.

Results:

Returns a pointer to a broken—down structure, containing the value of the time
expressed as a local time.

Errors:
None.
Description:

localtime is used to convert a calendar time to a broken—down time expressed
as local time,

Note: Care should be taken when calling 1ocaltime in a concurrent environ-
ment. localtime always returns a pointer to the same broken—down time struc-
ture and so calls to the function by independently executing, unsynchronized pro-
cesses may corrupt the returned time value.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 203

Example:
/* prints the current date and time as a local time */

#include <time.h>
#include <stdio.h>

int main()

{
time_t current;
struct tm *bdt;

/* get the current time as a calendar time */
time (¤t) ;

/* convert this to a broken down time expressed as local time */
bdt = localtime (¤t);

/* Now convert the broken down time to a string and print it out */
printf(“Date and time = %s\n”, asctime(bdt));

See also:

asctime ctime strftime clock difftime mktime time

72 TDS 347 01 October 1992

204 2 Alphabetical list of functions

log Calculates the natural logarithm of the double argument.
Synopsis:

#include <math.h>
double log(double x);

Arguments:
double x A number.
Results:

Returns the natural log of x. If a range error occurs, it returns HUGE_VAL (with the
same sign as the correct value of the function). If a domain error occurs, it returns
zero.

Errors:
A domain error occurs if x is negative. In this case errno is set to EDOM.

Arange error occurs if x is zero. In this case 1log returns the value HUGE_VAL (with
the same sign as the correct value of the function) and errno is set to ERANGE.

Description:
log calculates the natural (base e) logarithm of a number.
See also:

logl0 logf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 205

logf Calculates the natural logarithm of a £1oat number.
Synopsis:

#include <mathf.h>
float logf(float x);

Arguments:
float x A number.
Results:

Returns the natural log of x. If a range error occurs, it returns HUGE VAL F (with
the same sign as the correct value of the function). If a domain error occurs, it
returns zero.

Errors:
A domain error occurs if x is negative. In this case errno is set to EDOM.

Arange error occurs if x is zero. In this case 1ogf returns the value HUGE_VAL F
(with the same sign as the correct value of the function) and errno is set to
ERANGE.

Description:
float form of 1log.
See also:

log loglof

72 TDS 347 01 October 1992

206 2 Alphabetical list of functions

loglo0 Calculates the base-10 logarithm of the double argument.
Synopsis:

#include <math.h>
double loglO(double x);

Arguments:
double x A number.
Results:

Returns the base ten log of x. If a range emror occurs returns HUGE_VAL (with the
same sign as the correct value of the function). If a domain error occurs returns

zero.
Errors:

A domain error occurs if x is negative. In this case errno is set to EDOM. A range
error occurs if x is zero. In this case 10g10 returns the value HUGE_VAL (with the
same sign as the correct value of the function) and errno is set to ERANGE.
Description:

1og10 calculates the base 10 logarithm of a number.

See also:

log loglof

72 TDS 347 01 October 1992

2 Alphabetical list of functions 207

loglof Calculates the base-10 logarithm of a £1oat number.
Synopsis:

#include <mathf.h>
float loglOf (float x);

Arguments:
float x A number.
Results:

Returns the base ten log of x. If a range error occurs returns HUGE_VAL _F (with
the same sign as the correct value of the function). If a domain error occurs returns
zero.

Errors:

A domain error occurs if x is negative. In this case errno is set to EDOM. A range
error occurs if x is zero. In this case 1og10f returns the value HUGE_VAL_F (with
the same sign as the correct value of the function) and errno is set to ERANGE.
Description:

float form of 1log10.

See also:

logl0 logf

72 TDS 347 01 October 1992

208 2 Alphabetical list of functions

longjmp Performs a non-local jump to the given environment.
Synopsis:

#include <setjmp.h>
void longjmp (jmp_buf env, int val);

Arguments:
jmp_buf env An array holding the environment to be restored.
int val The value to be returned by 1ongjmp.

Results:

longjmp itself does not retumn; the effect is as if the corresponding call to setjmp
which stored the environment in env had retumed the value of val. If val is zero,
setjmp returns 1 (this is because setjmp is only allowed to return zero the first
time it is called).

Errors:

None.

Description:

longjmp performs a non-local jump to the environment saved in env, by a pre-

vious call to setjmp. It returns in such a way that, to the program, it appears that
the comresponding setjmp function has retumed the value val.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 209

Example:
#include <setjmp.h>
#include <stdio.h>
#include <stdlib.h>
jmp_buf envl;

int sub_function()

longjmp (envl, 3);

int main()
int a;
switch (a=setjmp (envl))
{case 0: printf(”“1st time in top level\n”);
break;

default: printf(”“longjmp to top level — code %d\n”, a);
exit(EXIT SUCCESS);

sub_function():;
}

See also:

setjmp

72TDS 347 01 October 1992

210 2 Alphabetical list of functions

lseek Repositions the current file position. File handling primitive.
Synopsis:

#include <iocntrl.h>
int lseek(int fd, long int offset, int origin);

Arguments:
int fd A file descriptor.
long int offset The offset by which the file position will move.
int origin The start position for the seek.

Results:

Returns the new file position, or ~1 on error.

Errors:

If an error occurs 1seek sets errno to the value EI10.
Description:

1seek moves the current position within the file with file descriptor £d. The offset,
given by of £set, is measured from a position specified by origin:

L_SET The start of the file.
L_INCR The curent position in the file.
L _XTND The end of the file.

1seek is not included in the reduced library.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 211

malloc Allocates an area of memory.
Synopsis:

#include <stdlib.h>
void *malloc(size_t size);

Arguments:
size_t size The size of the space to be allocated in bytes.
Results:

Returns a pointer to the allocated space if the allocation was successful. Otherwise
a NULL pointer is returned. If size is zero malloc retums a NULL pointer.

Errors:
If there is not enough free space a NULL pointer is returned.
Description:

malloc allocates an area of memory of size bytes and retums a pointer toit. The
contents of the allocated space are undefined.

Example:
/* Allocate 500 bytes pointed to by arrayl */
char *arrayl;
arrayl = (char *)malloc(500);

See also:

calloc free realloc

72 TDS 347 01 October 1992

212 2 Alphabetical list of functions

max s tack_usage Report runtime stack usage.
Synopsis:

#include <misc.h>
long max stack usage(void);

Arguments:
None.
Results:

Returns the number of bytes of stack space used by the program or zero if stack
checking is disabled.

Errors:
If stack checking is not enabled in the compiler the function returns zero.
Description:

max_stack_usage returns an approximation of the amount of stack used by the
C main program up to the point at whichmax_stack_usage was called. A leeway
of 150 words is included in the returned value to account for library usage, in which
there is no stack checking.

Stack usage is measured on the main stack only, i.e. the stack in which the C main
program is executing at program startup. The value does not include any stack
used by a parallel process. max_stack_usage cannot be used from within a par-
allel process to obtain the stack usage of that process alone, it will always return
the stack usage of the main stack.

Note: This function can only be used when stack checking is enabled. If stack
checking is disabled the function returns 0 (zero).

max_stack_usage is side effect free.
See also:

get_details of free stack_space

72 TDS 347 01 October 1992

2 Alphabetical list of functions 213

mblen Determines the number of bytes in a multibyte character.
Synopsis:

#include <stdlib.h>
int mblen(const char *s, size_ t n);

Arguments:
const char *s Pointer to the multibyte character.
size t n The maximum number of bytes to be read.
Results:

If s is not a NULL pointer mblen retums the number of bytes that are contained in
the multibyte character pointed to by s, as long as the next n or fewer bytes form
a valid multibyte character.

If s points to a null character mblen returns zero, or—1 if s does not point to a valid
multibyte character.

mblen is side effect free.
Errors:

If the specified sequence does not correspond to a valid multibyte charactermblen
returns —1.

Description:

mblen evaluates the number of bytes in a multibyte character. The number of
bytes read is limited by n. In the current implementation the maximum length of a
character is 1 byte.

72 TDS 347 01 October 1992

214 2 Alphabetical list of functions

mbstowcs Converts multibyte sequence to wchar_t sequence.
Synopsis:

#include <stdlib.h>
size_t mbstowcs (wchar_t *pwcs, const char *s, size_t n);

Arguments:
wchar_t *pwc Pointer to the start of the array that receives the
converted codes.
const char *s Pointer to start of the array of multibyte characters to be
converted.
size t n The maximum number of codes stored in pwes.
Results:

mbs towcs returns the number of array elements modified, not including any termi-
nating zero codes or retums (size_t)-1 if an invalid multibyte character is
encountered. :

Errors:
If an invalid multibyte character is encountered mbstowcs returns (size_t)-1.
Description:

mbstowcs converts a sequence of multibyte characters into a sequence of codes.
It acts like the mbtowe function but takes as input an array of characters and
returns an array of codes.

Not more than n codes are written into pwes. If the initial and receiving objects
overlap, the behavior is undefined.

No multibyte characters that follow a null character are examined or converted.
See also:

mbtowec wcstombs

72 TDS 347 01 October 1992

2 Alphabetical list of functions 215

mbtowc Converts multibyte character to type wchar_t.
Synopsis:

#include <stdlib.h>
int mbtowc(wchar t *pwc, const char *s, size t n);

Arguments:
wchar_t *pwc Pointer to the storage location for the converted
character.
const char *s Pointer to the multibyte character to be converted.
size_ t n The maximum number of bytes to be read.
Results:

If s is not a NULL pointer, mbtowc either returns zero (if s points to a null character)
or returns the number of bytes that are contained in the converted multibyte char-
acter, as long as the next n or fewer bytes form a valid multibyte character.

If s is a NULL pointer, mbtowc returns zero. mbtowc returns —1 on error.
The value returned cannot be greater than n or the value of MB_CUR_MAX.
Errors:

mbtowc returns —1 if the next n or fewer bytes do not form a valid multibyte charac-
ter.

Description:

mbtowe converts a multibyte character to a wide character code and stores the
result in the object pointed to by pwe. In the current implementation the maximum
length of a character is 1 byte.

See also:

mbstowcs

72 TDS 347 01 October 1992

216 2 Alphabetical list of functions

memchr Finds first occurrence of a character in an area of memory.
Synopsis:

#include <string.h>
void *memchr (const void *s, int ¢, size_t n);

Arguments:

const void *s A pointer to the area of memory to be searched.

int ¢ The character to be searched for.

size t n The size in bytes of the area of memory to be searched.
Results:

If the character is found, memchr retums a pointer to the matched character. It
returns a NULL pointer if the character c is not in the first n characters of the area
of memory.

Errors:
None.
Description:

memchr finds the first occurrence of e in the first n characters of the area of memory
pointed to by s. ¢ is converted to an unsigned char before the search begins.

memchr is side effect free.

Example:

char buffer[100];
char *pointer_to_p;

/*
Find the first occurrence of 'p’

in the buffer
*/

pointer to p = (char *)memchr(buffer, 'p’, 100);
See also:

strchr

72 TDS 347 01 October 1992

2 Alphabetical list of functions 217

memcmp Compares characters in two areas of memory.
Synopsis:
#include <string.h>
int memcmp (const void *sl, const void *s2,
size t n);

Arguments:

const void *sl A pointer to one of the areas of memory to be compared.
const void *s2 A pointer to the other area of memory to be compared.
size t n The number of characters to be compared.

Results:
Returns the following:

A negative integer if the first byte in s1 which differs from the corresponding
byte in s2 is numerically less than the corresponding byte in s2.

A zero value if the two areas of memory are numerically the same.

A positive integer if the first byte in s1 which differs from the corresponding
byte in s2 is numerically greater than the comresponding byte in s2.

Errors:
None.
Description:

memcmp compares the first n characters of the areas of memory pointed to by s1
and s2.

The comparison is of the numerical values of the ASCII characters.
memcmp is side effect free.
See also:

strcemp

72 TDS 347 01 October 1992

218 2 Alphabetical list of functions

memcpy Copies characters from one area of memory to another (no
memory overlap allowed).

Synopsis:

#include <string.h>
void *memcpy(void *sl, const void *s2, size t n);

Arguments:
void *sl A pointer to the destination of the copy.
const void *s2 A pointer to the source of the copy.
size t n The number of characters to be copied.
Results:

Returns the unchanged value of s1.

Errors:

The behavior of memcpy is undefined if the source and destination overlap.
Description:

memcpy copies n characters from the area of memory pointed to by s2 (the source)
to the area of memory pointed to by s1 (the destination). The behavior of memepy
is undefined if the source and target areas overlap.

Calls to memcpy are implemented inline provided that:
1 The header file <string.h> has been inciuded in the source.

2 Either the return result is not required or the argument corresponding to the
formal argument s1 is a simple expression.

char source[200];
char destination[200];

memcpy (destination, source, 200);

See also:

memmove

 72TDS 347 01 October 1992

2 Alphabetical list of functions 219

memmove Copies characters from one area of memory to another.
Synopsis:

#include <string.h>
void *memmove (void *sl, const void *s2, size_t n);

Arguments:
void *sl A pointer to the destination of the copy.
const void *s2 A pointer to the source of the copy.
size t n The number of characters to be copied.
Results:

Returns the unchanged value of s1.

Errors:

None.

Description:

memmove copies n characters from the area of memory pointed to by s2 (the
source) to the area of memory pointed to by s1 (the destination). n characters from

S2 are first copied to a temporary area from where they are copied to S1. Thus the
copy is defined if the areas of memory overlap.

See also:

memcpy

72 TDS 347 01 October 1992

220 2 Alphabetical list of functions

memset Fills a given area of memory with the same character.
Synopsis:

#include <string.h>
void *memset(void *s, int ¢, size t n);

Arguments:

void *s A pointer to the area of memory to be filled.

int ¢ The character to be used for filling.

size t n The number of characters in the area of memory befilled.
Results:

Returns the unchanged value of s.
Errors:

None.

Description:

memset fills the first n characters of the area of memory pointed to by s with the
value of the character ¢. ¢ is converted to an unsigned char before it is written
into s.

Example:
/*
Zero the first hundred bytes of a buffer
*/
char buffer[200];

memset (buffer,’\0’, 100);

72 TDS 347 01 October 1992

2 Alphabetical list of functions 221

mktime Converts a broken—down time into a calendar time.
Synopsis:

#include <time.h>
time_t mktime (struct tm *timeptr);

Arguments:

struct tm *timeptr A pointer to a structure containing a broken—down
time.

Results:
Returns the calendar time equivalent of the broken—down time passed in.
Errors:

If the broken—down time pointed to by timeptr cannot be represented as a calen-
dar time, mktime returns —1, castto time_t.

Description:

mk time converis the broken—down time given in the broken-down-time structure
pointed to by timeptr into a calendar time of type time_t. The values of the
structure components tm_wday and tm_yday are ignored. Other components are
not restricted to the ranges specified in section 1.3.16. On completion all elements
of the broken—down time structure are set to correct values within the ranges speci-
fied. The calendartime value time_t represented by the broken—down time struc-
ture is returned.

72 TDS 347 01 October 1992

222 2 Alphabetical list of functions

Example:

#include <time.h>
#include <stdio.h>

int main()

/* define a broken—down-time structure. Note that day of month is
out of range */

struct tm broken down_time = {

0, /* seconds */
0, /* minutes */
11, /* hours */
34, /* day of month */
0, /* month of year */
93, /* year */

0, /* day of week (IGNORED) */
0, /* day of year (IGNORED) */
0 /* daylight saving flag */
}:
time t cal time;

cal time = mktime (&broken down_time) ;
printf (“Time is %s\n”, asctime (&broken_down_time)) ;
printf (”"Weekday is %d\n”, broken_ down_time.tm wday) ;

See also:

asctime ctime localtime clock difftime time

72TDS 347 01 October 1992

2 Alphabetical list of functions 223

modf Splits a double number into fractional and integral parts.
Synopsis:

#include <math.h>
double modf (double value, double *intptr);

Arguments:

double value The number to be split.
double *intptr A pointer to the recipient of the integral part.

Results:

Retumns the fractional part of value (the integral part is stored as a double in
*intptr).

Errors:

If the input value cannot be represented modf returns it unchanged and sets
*intptr to zero.

Description:

modf splits value into a fractional and integral part. Each part has the same sign
as value. The integral part is stored as a double in *intptr and the fractional
part is returned by mod£.

See also:

modff

72TDS 347 01 October 1992

224 2 Alphabetical list of functions

modff Splits the £1oat argument into fractional and integral parts.
Synopsis:

#include <mathf.h>
float modff (float value, float *intptr);

Arguments:

float value The number to be split.

float *intptr A pointer to the recipient of the integral part.
Results:

Returns the fractional part of value (the integral part is stored as a £loat in
*intptr).

Errors:

If the input value cannot be represented mod££ returns it unchanged and sets
*intptr to zero.

Description:
float form of modf.
See also:

modf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 225

Move2D Two—dimensional block move.
Synopsis:

#include <misc.h>
void Move2D (const void *src, void *dst, int width,
int nrows, int srcwidth, int dstwidth);

Arguments:
const void *src Source address for the block move.
void *dst Destination address for the block move.
int width The width in bytes of each row to be copied.
int nrows The number of rows to be copied.
int srcwidth The stride of the source array in bytes.
int dstwidth The stride of the destination array in bytes.
Results:
None.
Errors:

The effect of the block move is undefined if either width or nrows is negative.
The effect of the block move is undefined if the source and destination blocks over-
lap.

The block move only makes sense if sccwidth and dstwidth are greater or
equal to width.

Description:

Move2D copies the whole of the block of nrows rows each of width bytes from
src to dst. Each row of src is of width srewidth bytes; and each row of dst
is of width dstwidth bytes. If either width or nrows are zero, the 2 dimensional
move has no effect.

src—>
nrows dst -
<— width — \ lnrows
<— width —
<«—— srcwidth dstwidth ——

Figure 2.1 Two dimensional block move

72 TDS 347 01 October 1992

226 2 Alphabetical list of functions

When compiling for transputers which have the move2dinit and move2dall instruc-
tions, calls to Move2D are implemented inline, provided that the header file
<misc.h> has been included in the source.

Example:
#define SRCWIDTH 30
#define DSTWIDTH 50
char *src[20] [SRCWIDTH] ;
char *dst([40] [DSTWIDTH] ;
int width, nrows;

Move2D (src, dst, width, nrows, SRCWIDTH, DSTWIDTH) ;

See also:

Move2DNonZero Move2DZero

72 TDS 347 01 October 1992

2 Alphabetical list of functions 227

Move2DNonZero Two-dimensional block move of non—zero bytes.
Synopsis:

#include <misc.h>
void Move2DNonZero (const void *src, void *dst, int width,
int nrows, int srcwidth, int dstwidth);

Arguments:
const void *src Source address for the block move.
void *dst Destination address for the block move.
int width The width in bytes of each row to be copied.
int nrows The number of rows to be copied.
int srcwidth The stride of the source array in bytes.
int dstwidth The stride of the destination array in bytes.
Results:
None.
Errors:

The effect of the block move is undefined if either width or nrows is negative.

The effect of the block move is undefined if the source and destination blocks over-
lap.

The block move only makes sense if srewidth and dstwidth are greater or
equal to width.

Description:

Move2DNonZero copies all non-zero bytes of the block of nrows rows each of
width bytes from src to dst, leaving the bytes in the destination corresponding
to the zero bytesin the source, unchanged. This can be used to overlay a non-rect-
angular picture onto another picture. Each row of srcis of width srewidth bytes;
and each row of dst is of width dstwidth bytes.

If either width or nrows are zero, the 2 dimensional move has no effect.

Figure 2.1 (see Move2D) illustrates how a two dimensional block move is per-
formed.

When compiling for transputers which have the move2dinit and move2dnonzero

instructions, calls to Move2DNonZero are implemented inline, provided that the
header file <misc.h> has been included in the source.

72 TDS 347 01 October 1992

228 2 Alphabetical list of functions

Example:

#define SRCWIDTH 30
#define DSTWIDTH 50
char *src[20] [SRCWIDTH];
char *dst[40] [DSTWIDTH] ;
int width, nrows;

Move2DNonZero (src, dst, width, nrows, SRCWIDTH, DSTWIDTH);

See also:

Move2D Move2DZero

72 TDS 347 01

October 1992

2 Alphabetical list of functions 229

Move2DZero Two—dimensional block move of zero bytes.
Synopsis:

#include <misc.h>
void Move2DZero (const void *src, void *dst, int width,
int nrows, int srcwidth, int dstwidth);

Arguments:
const void *src Source address for the block move.
void *dst Destination address for the block move.
int width The width in bytes of each row to be copied.
int nrows The number of rows to be copied.
int srcwidth The stride of the source array in bytes.
int dstwidth The stride of the destination array in bytes.
Results:
None.
Errors:

The effect of the block move is undefined if either width or nrows is negative.

The effect of the block move is undefined if the source and destination blocks over-
lap.

The block move only makes sense if srewidth and dstwidth are greater or
equal to width.

Description:

Move2DZero copies all zero bytes of the block of nrows rows each of width bytes
from src to dst, leaving the bytes in the destination corresponding to the non—
zero bytes in the source, unchanged. This can be used to mask out a non-rectan-
gular shape from a picture. Each row of src is of width srcwidth bytes; and each
row of dst is of width dstwidth bytes.

If either width or nrows are zero, the 2 dimensional move has no effect.

Figure 2.1 (see Move2D) illustrates how a two dimensional block move is per-
formed.

When compiling for transputers which have the move2dinit and move2dzero

instructions, calls to Move2DZero are implemented inline, provided that the
header file <misc.h> has been included in the source.

72 TDS 347 01 October 1992

230 2 Alphabetical list of functions

Example:

#define SRCWIDTH 30

#define DSTWIDTH 50

char *src[20] [SRCWIDTH] ;

char *dst[40] [DSTWIDTH] ;

int width, nrows;

Move2DZero(src, dst, width, nrows, SRCWIDTH, DSTWIDTH) ;
See also:

Move2DNonZero Move2D

72 TDS 347 01 October 1992

2 Alphabetical list of functions 231

open Opens a file stream. File handling primitive.
Synopsis:

#include <iocntrl.h>
int open(char *name, int flags);

Arguments:
char *name The name of the file to be opened.
int flags Bit values which specify the mode in which the file is to
be opened.
Results:

Returns a file descriptor for the file opened or -1 on error.
Errors:

If an error occurs errno is set to EIO.

Description:

open opens the low level file name in a mode specified by £1ags. open is the low
level file function used by fopen.

open is not included in the reduced library.

The £1ags argument is a combination of bit values joined using the ‘bitwise or’ (])
operator. The bit values that can be specified are as follows:

Read/write Modes:

Flag Meaning

O_RDONLY Read only mode (priority 3).
O_WRONLY Write only mode (priority 2).
O_RDWR Read/write mode (priority 1).

File creation modes:

Flag Meaning

O_APPEND Characters appended to file (priority 1).

O_TRUNC File truncated before writing (priority 2).
File Types:

Flag Meaning

O_BINARY File opened in binary mode (priority 2).

O_TEXT File opened as a text file. (priority 1).

72 TDS 347 01 October 1992

232 2 Alphabetical list of functions

The f£lags argument should combine values from each of the three sections
above. For example, to open a binary file for writing in append mode the call would
be as follows:

open(filename, O BINARY | O WRONLY | O_APPEND);

To avoid conflicts between the various combinations of modes, the flag values are
assigned priority levels and are decoded accordingly. Priority increases with
increasing number. For example, if both O_WRONLY (priority 2) and O_RDONLY
(priority 3) are specified in the same call O_| WRONLY is ignored.

Priority levels also imply a default setting for open, namely: Read only/Text mode
(O_RDONLY | O_TEXT). (File create modes have no significance on a read only
file).

If a file which already exists is opened using O_TRUNC (open for writing in truncate
mode), and if the host system permits it, the file will be overwritten.

See also:

creat

72 TDS 347 01 October 1992

2 Alphabetical list of functions 233

perror Writes an error message to standard error.
Synopsis:

#include <stdio.h>
void perror (const char *s);

Arguments:
const char *s A pointer to an error message string.
Results:
No value is returned.
Errors:
None.
Description:

If s is not NULL and does not point to a null character, perror writes the string
s to the standard error output, followed by a colon, space, and the error message
represented by the value in errno. Otherwise only the error message for errno
is written. The entire message is followed by a newline.

Message strings are the same as those returned by strerror given the argument
errno.

perror is not included in the reduced library.
See also:

strerror

72TDS 347 01 October 1992

234 2 Alphabetical list of functions

pollkey Gets a character from the keyboard.
Synopsis:

#include <iocntrl.h>
int pollkey(void);

Arguments:
None.
Results:

pollkey returns the ASCIl value of a key pressed on the keyboard. It immediately
returns with —1 if no keystroke is available.

Errors:
None.
Description:

pollkey gets a single character from the keyboard. If no keystroke is available
the routine returns immediately with —1. The effect on any buffered datain the stan-
dard input stream is host-defined. The character read from the keyboard is not
echoed at the terminal.

pollkey is not included in the reduced library.

See also:

getkey

72 TDS 347 01 October 1992

2 Alphabetical list of functions 235

pow Calculates x to the power y.
Synopsis:

#include <math.h>
double pow(double x, double y);

Arguments:
double x A number.
double y The exponent.
Results:

Returns the value of x raised to the power y. If a range error occurs returns
HUGE_VAL (with the same sign as the correct value of the function). If a domain
error occurs it returns zero (0.0).

Errors:

A domain error will occur in the following situations:

1. X == AND y<=0
2. x<0 AND y is not an integer

In these cases errno is set to EDOM.

A range error will occur if the result of pow is too large to fit in a double. In this case
pow returns the value HUGE_VAL (with the same sign as the correct value of the
function) and errno is set to ERANGE.

Description:

pow calculates the value of x raised to the power y.

See also:

powf

72 TDS 347 01 " October 1992

236 2 Alphabetical list of functions

powf Calculates x to the power of y where both x and y are floats.
Synopsis:

#include <mathf.h>
float powf (float x, float y);

Arguments:
float x A number.
float y The exponent.
Results:

Retumns the value of x raised to the power y. If a range error occurs returns
HUGE_VAL _F (with the same sign as the correct value of the function). If a domain
error occurs it retumns zero (0.0F).

Errors:

A domain error will occur in the following situations:

1. x==0 AND y<=0
2. x<0 AND y is not an integer

In these cases errno is set to EDOM.

Arange error will occur if the result of pow£ is too large to fitin adouble. In this case
povwf returns the value HUGE_VAIL_F (with the same sign as the correct value of
the function) and errno is set to ERANGE.

Description:
float form of pow.
See also:

pow

72 TDS 347 01 October 1992

2 Alphabetical list of functions 237

printf Writes a formatted string to standard output.
Synopsis:

#include <stdio.h>

int printf(const char *format, ...);

Arguments:

const char *format A format string.
Subsequent arguments to the format string.

Results:

Retums the number of characters written, or a negative value if an output error
occurred.

Errors:

printf retumns a negative value if an output error occurred.

Description:

printf£ writes the string pointed to by format to standard output. When printf
encounters a percent sign % in the format string, it expands the equivalent argu-

ment into the format defined by the format tokens after the %. The meaning of the
format string is as described for fprint¢£.

printf is not included in the reduced library.
See also:

fprintf

72 TDS 347 01 October 1992

238 2 Alphabetical list of functions

ProcAfter Blocks a process until a specified transputer clock time.
Synopsis:

#include <process.h>
void ProcAfter (int time);

Arguments:
int time The transputer clock time at which the process will
restart.
Results:

Returns no result.

Errors:

None.

Description:

Delays execution of the current process until a specified transputer clock time. The
process will begin executing some time after the clock corresponding to the current
process priority reaches the value given by the input argument.

See also:

ProcWait

72 TDS 347 01 October 1992

2 Alphabetical list of functions 239

ProcAlloc Allocates the space for and sets up a parallel process.
Synopsis:

#include <process.h>
Process *ProcAlloc(void (*func) (),
int wsize, int param words, ...);

Arguments:

void (*func) () A pointer to the function which will be executed as a
parallel process.

int wsize The size in bytes of the stack space required by the
process.

int param words The number of words taken up by the arguments to
funec (less the initial process pointer).
A list of arguments which are to be passed to func.

Results:

Returns a pointer to a process structure which is subsequently used to refer to the
process, or a NULL pointer if ProcAlloc was unable to set up the process cor-
rectly.

Errors:
Returns a NULL pointer if an error occurs.
Description:

ProcAlloc sets up a function as a parallel process and returns a pointer which
is subsequently used to refer to the process.

func is a pointer to a function which is to be executed as a parallel process. The
function pointed to by func must be defined in the correct manner for a C paralle!
process, i.e. it must accept one fixed argument and zero or more non—fixed argu-
ments. The fixed argument is the first argument and is a process pointer. See sec-
tion 5.5 of the ANSI C Toolset User Guide.

wsize is the size of the stack space required by the program and is specified as
a number of bytes. If wsize is given the value 0 the default stack sizes of 4K on
32 bit machines and 1K on 16 bit machines are used. It is important that enough
space is allocated for the stack for the process. Ifinsufficient space is provided, the
results are undefined. The runtime library needs 150 words (600 bytes for 32 bit,
300 bytes for 16 bit machines), this must be allowed for, as well as the stack
requirement of the user functions (e.g. max_stack usage).

param_words is the number of words taken up by the non—fixed arguments to the
function pointed to by func. ProcAlloc expects the single fixed argument and
so this need not be included in the param words value. If all the non—fixed argu-

72 TDS 347 01 October 1992

240 2 Alphabetical list of functions

ments are word sized then param_words can be considered to be the number of
non—fixed arguments. If some arguments are not word sized then care should be
taken to ensure that param_words equals the number of words occupied by the
non—fixed arguments. In particular be sure to round up aggregate types to the
nearest word and be careful when using argument types which will be subject to
the C default argument promotions (see section 4.2.3). Because ProcAlloc
accepts the non—fixed arguments via a variable argument list (denoted by the ‘. . .’
in the argument list) the C default argument promotions are used on any arguments
passed as part of the variable argument list, e.g. all float arguments are automati-
cally promoted to double when passed to ProcAlloc. To overcome these difficul-
ties it may be easier to pass pointers to arguments which are larger than a word
or are subject to default argument promotions. Pointers are always word sized.

When the process is started it begins executing as if func were called with argu-
ments equivalent to the non—fixed arguments set up in the call to ProcAlloc.

ProcAlloc uses malloc to allocate memory space for use by the process. All
calls to ProcAlloc should be followed by a check for successful allocation. The
behavior of running an unitialized process is not defined.

Example:
/* to set up fred as a concurrent process with default workspace */

#include <process.h>
#include <stdlib.h>

void fred(Process *p, int a, int b, int ¢)

/* p is the fixed parameter */
/* a, b and c are the non-fixed parameters */

/* code for fred */
}

/* code fragment */
Process *p;

P = ProcAlloc(fred, /* function to be used as a parallel process */
o, /* use the default stack space size */
3, /* number of words taken up by non—fixed
parameters to fred. a, b and ¢ are all 1
word long */

1, /* value of a when fred starts executing */
2, /* value of b when fred starts executing */
3); /* value of ¢ when fred starts executing */
if (p = NULL)
abort():;
See also:
ProcInit ProcAllocClean

72 TDS 347 01 October 1992

2 Alphabetical list of functions 241

ProcAllocClean Cleans up after a process setup using
ProcAlloc.

Synopsis:

#include <process.h>
void ProcAllocClean (Process *p);

Arguments:
Process *p A pointer to a process structure.
Results:
None.
Errors:

If aninvalid pointer is passed to ProcAl1locClean a fatal runtime error occurs and
the following message is displayed:

Fatal-C_Library-Bad pointer to process clean function
and the processor is halted. If the reduced library is used no message is displayed.
Description:

ProcAllocClean is used to clean up after a process when it is known to have
terminated. The process is denoted by the process pointer passed in as the argu-
ment, which must have been initially set up using ProcAlloc. It will not work cor-
rectly for processes set up using ProcInit and if used in such a case may pro-
duce undefined behavior.

ProcAllocClean removes the process structure pointed to by its argument from
the list of initialized processes and frees any heap space used for the process
structure and workspace.

Caution: ProcAllocClean should only be used in the following situations:

1 with synchronous processes, i.e. those started using ProcPar or
ProcParlList, and it can be safely used only after the call to ProcPar or
ProcParlList has returned;

2 with asynchronous processes which are synchronized using ProeJoin or
ProcJoinlList, and it can only be safely used after the call to ProcJoin
or ProcJoinList retumns.

Any other use of this function may give rise to undefined behavior.
See also:

ProcAlloc ProcInitClean

72 TDS 347 01 October 1992

242 2 Alphabetical list of functions

ProcAlt Waits for input on one of a number of channels.
Synopsis:

#include <process.h>
int ProcAlt (Channel *cl, ...); i

Arguments:
Channel *cl The first in a NULL terminated list of pointers to channels.
The remainder of the list.
Results:

Returns an index into the argument list for the ready channel.
Errors:

None.

Description:

ProcAlt blocks the calling process until one of the channel arguments is ready
to input. The index returned for the ready channel is an integer which indicates the
position of the channel in the argument list. The index numbers begin at zero for
the first argument. ProcAlt only returns when a channel is ready to input. It does
not perform the input operation, which must be done by the code following the call
fo Procalt.

Example:

/* select from channels cl, c2, c3 */
#include <process.h>

Channel *cl, *c2, *c3;
int i;

/* allocate all channels */

i = ProcAlt(cl, c2, c3, NULL);
switch(i)
{
case 0: /* cl selected */
/* consume input from cl */
break;
case 1: /* c2 selected */
/* consume input from c2 */
break;
case 2: /* c3 selected */
/* consume input from c3 */
break;

}
See also:

ProcAltList

72 TDS 347 01 October 1992

2 Alphabetical list of functions 243

ProcAltList Waits for input on one of a list of channels.
Synopsis:

#include <process.h>
int ProcAltList(Channel **clist);

Arguments:
Channel **clist An array of pointers to channels terminated by NULL.
Results:

Returns an index into the c1ist array for the ready channel, or -1 if the first ele-
ment in the array is NULL (the array is empty).

Errors:
Returns -1 if c1ist is empty.
Description:

As ProcAlt but takes an array of pointers to channels. Returns —1 if the clist
array is empty.

See also:

ProcAlt

72 TDS 347 01 October 1992

244 2 Alphabetical list of functions

ProcGetPriority Returns the priority of the calling process.
Synopsis:

#include <process.h>
int ProcGetPriority(void) ;

Arguments:
None.
Results:

Returns zero (0) i.e. PROC_HIGH for a high priority process and one (1) i.e.
PROC_LOW for a low priority process.

Errors:
None.
Description:

Determines the priority level (high or low) of the process from which it is called. The
macros PROC_HIGH and PROC_LOW are defined for use with this function.

Calls to ProcGetPriority are implemented inline provided that the header file
<process.h> has been included in the source.

ProcGetPriority is side effect free.
See also:

ProcReschedule

72TDS 347 01 October 1992

2 Alphabetical list of functions 245

ProcInit Sets up a parallel process.
Synopsis:
#include <process.h>

int ProcInit(Process *p, void (*func) (), int *ws,
int wsize, int param words, ...);

Arguments:

Process *p A pointer to a process structure which can
subsequently be used to refer to the process.

void (*func) () A pointer to the function which will be executed as a
parallel process.

int *ws A pointer to an area of memory to be used as the stack.

int wsize The size in bytes of the memory area pointed to by
WS.

int param words The number of words taken up by the arguments to
func, (less the initial process pointer).
A list of arguments which are to be passed to fune.

Results:

Returns zero (0) if successful, non-zero otherwise.
Errors:

If insufficient stack space has been allocated to accommodate the arguments to
the function then ProcInit returns a non-zero value.

If the stack space pointed to by ws is nested within the stack space of an existing
process then a fatal runtime error occurs. The fatal runtime error causes the pro-
cessor to halt. If the full library is used then the following message is also output:

Fatal-C_Library-Incorrect allocation of process workspace
Description:
ProcInit sets up a function as a parallel process.

p is a pointer to a process structure which is initialized by ProcInit. When Pro-
cInit returns, p is subsequently used to refer to the process. func is a pointer
to a function which is to be executed as a parallel process. The function pointed
to by func must be defined in the correct manner for a C parallel process, i.e. it
must accept one fixed argument and zero or more non-fixed arguments. The fixed
argument is the first argument and is a process pointer. See section 5.5 of the ANS/
C Toolset User Guide.

ws is a pointer to the memory region which is to be used as the stack space for the
parallel process. This memory region can reside anywhere within the address

72 TDS 347 01 October 1992

246 2 Alphabetical list of functions

space of the transputer as long as itis not nested within the stack space of an exist-
ing process or main program. Thus an automatic array may not be used as stack
space for a process. Usually stack space will be allocated usingmalloe, calloc
or realloc or will have been declared as a static array. Failure to allocate this
memory region properly will cause ProcInit to fail with a fatal error.

wsize is the size of the memory region pointed by ws in bytes.

param_words is the number of words taken up by the non-fixed arguments to the
function pointed to by fune. ProcInit expects the single fixed argument and so
this need notbe includedinthe param_words value. If all the non-fixed arguments
are word sized then param words can be considered to be the number of non-
fixed arguments. If some arguments are not word sized then care should be taken
to ensure that param_words equals the number of words occupied by the non-
fixed arguments. In particular be sure to round up aggregate types to the nearest
word and be careful when using argument types which will be subject to the C
default argument promotions (see section 4.2.3). Because ProcInit accepts the
non-fixed arguments via a variable argument list (denoted by the ‘. . .’ in the argu-
ment list) the C default argument promotions are used on any arguments passed
as part of the variable argument list, e.g. all float arguments are automatically pro-
moted to double when passed to ProcInit. To overcome these difficulties it may
be easier to pass pointers to arguments which are larger than a word or are subject
to default argument promotions. Pointers are always word sized.

When the process is started it begins executing as if func were called with argu-
ments equivalent to the non-fixed arguments set up in the call to ProcInit.

ProcInit allows more control of the memory allocated for use by the parallel pro-
cess. If such control is not required then the user is recommended to use Procal -
loc instead.

Example:
/* to set up fred as a concurrent process with 4K of stack space */

#include <process.h>
#include <stdlib.h>

#define SIZE 4096
void fred(Process *p, int a, int b, int ¢)
{
/* p is the fixed parameter */
/* a, b and ¢ are the non-fixed parameters */

/* code for fred */

}
/* code fragment */
Process *p;

int *ws;
int result;

72 TDS 347 01 October 1992

2 Alphabetical list of functions 247

/* Allocate the process structure */

p = (Process *)malloc(sizeof (Process)) ;

if (p == NULL)
abort();

/* Allocate the stack space */

ws = (int *)malloc(SIZE);

if (ws = NULL)

abort () ;
result = ProcInit(p,
fred,
ws,
SIZE,
3 ’
1,
2,
3);
if (result !'= 0)
abort();
See also:

/t

/i
/t
/t
/t

/ﬁ
/'k
/i

pointer to a process structure which is
subsequently used as a handle to refer to
the process. */

function to be used as a parallel process */
pointer to stack space for the process */
size in bytes of stack space allocated */
number of words taken up by non-fixed

parameters to fred. a, b and ¢ are all 1

word long */
value of a when fred starts executing */
value of b when fred starts executing */
value of ¢ when fred starts executing */

ProcAlloc ProcInitClean

72 TDS 347 01

October 1992

248 2 Alphabetical list of functions

ProcInitClean Cleans up after a process set up using ProcInit.
Synopsis:

#include <process.h>
void ProcInitClean (Process *p);

Arguments:
Process *p A pointer to a process structure.
Results:
None.
Errors:

If an invalid pointer is passed to ProcInitClean afatal runtime error occurs and
the following message is displayed:

Fatal-C_Library-Bad pointer to process clean function
and the processor is halted. Ifthe reduced library is used no message is displayed.
Description:

ProcInitClean is used to clean up after a process when it is known to have ter-
minated. The process is denoted by the process pointer passed in as the argu-
ment, which must have been initially set up using ProcInit. It will not work cor-
rectly for processes set up using ProcAlloc and if used in such a case may
produce undefined results.

ProcInitClean removes the process structure pointed to by its argument from
the list of initialized processes. After ProcInitClean has been called, any area
of heap allocated for the process structure and workspace may be safely freed, or
if another memory region was used for the workspace, it may be reused.

If the workspace is freed or reused before a call to ProcInitClean then the
behavior is undefined. Note: that ProcInitClean does notitself free workspace
taken from the heap; this must be performed by the programmer, using the function
free.

Caution: ProcInitClean should only be used in the following situations:

1 with synchronous processes, i.e. those started using ProcPar or Proc-
ParList, and it can be safely used only after the call to ProcPar or Proc-
ParList has retumed;

2 with asynchronous processes which are synchronized using ProcJoin or
ProcJoinList, and it can only be safely used after the call to ProeJoin
or ProcJoinList retumns.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 249

Any other use of this function may give rise to undefined behavior.

See also:

ProcInit ProcAllocClean

72 TDS 347 01 October 1992

250 2 Alphabetical list of functions

ProcJoin Waits for a number of asynchronous processes to terminate.

Synopsis:
#include <process.h>
int ProcJoin(Process *pl, ...);
Arguments:
Process *pl The first in a list of pointers to process structures.

The remainder of the list, terminated by NULL.
Results:
Returns 0 for success and —1 for error.
Errors:
Returns the error result —1 if an empty argument list is received.
Description:
ProcJoin takes as its arguments a NULL terminated list of process pointers. The
function will not return until all the processes, denoted by the process pointers

passed in as arguments, have completed (or if there was an error).

The pointers are either returned from ProcAlloc or initialized by a call to
ProcInit.

ProcJoin is only for use with asynchronous processes started using ProcRun,
ProcRunHigh and ProcRunLow. An attempt to use ProcJoin with synchronous
processes (those started using ProcPar, ProcParList or ProcPriPar) will
give undefined results.

A process which makes a call to ProcStop should not be used with ProcJoin.
ProcStop will stop the process thereby preventing it from terminating normally,
thus ProcJoin will be unable to detect the termination of the process.

See also:

ProcJoinlList ProcStop

72 TDS 347 01 October 1992

2 Alphabetical list of functions 251

ProcJdoinList Wiaits for a number of asynchronous processes to
terminate.

Synopsis:

#include <process.h>
int ProcJoinList (Process **p);

Arguments:
Process **p An array of pointers to process structures terminated by
NULL.
Results:

Retumns 0 for success and —1 for error.

Errors:

Returns the error result —1 if an empty array is passed in.
Description:

As ProcJoin but takes a NULL terminated array of process pointers as its argu-
ment.

The pointers are either returned from ProcAlloc orinitialized by a call to ProcI-
nit.

ProcJoinList is only for use with asynchronous processes started using Pro-
cRun, ProcRunHigh and ProcRunLow. An attempt to use ProcJoinList with
synchronous processes (those started using ProcPar, ProcParList or Proc-
PriPar) will give undefined results.

A Process which makes a call to ProcStop should not be used with ProcJoin-
List. ProcStop will stop the process thereby preventing it from terminating nor-
mally, thus ProcJoinList will be unable to detect the termination of the process.
See also:

ProcJoin ProcStop

72 TDS 347 01 October 1992

252 2 Alphabetical list of functions

ProcPar Starts a group of processes in parallel.
Synopsis:
#include <process.h>
void ProcPar (Process *pl, ...);
Arguments:
Process *pl The first in a list of pointers to process structures.

The remainder of the list. Terminated by NULL.
Results:
Returns no resuilt.
Errors:

If ProcPar detects that a process which it is about to start is already running then
the following fatal runtime error is issued:

Fatal-C_Library-Attempt to start a process which is already running
Thus it is illegal to attempt to run a process in parallel with itself.
Description:

ProcPar takes a NULL terminated list of pointers to processes and starts the cor-
responding processes in parallel with each other at the priority of the calling pro-
cess. ProcPar Wwill not return until all of the processes associated, with pointers
passed as arguments to it, have terminated. The process pointers are either
returned from ProcaAlloc or initialized by ProcInit.

A process started using ProcPar is called a ‘synchronous process’.

Example:

/* start the four processes denoted by process
pointers pl, p2, p2, p4 in parallel. */

#$include <process.h>

Process *pl, *p2, *p3, *p4;

/* Set up and allocate procesges */
ProcPar (pl, p2, p3, p4, NULL);

See also:

ProcParList ProcStop

72 TDS 347 01 October 1992

2 Alphabetical list of functions 253

ProcParam Changes process arguments.
Synopsis:
#include <process.h>
void ProcParam(Process *p, ...);
Arguments:
Process *p A pointer to a process structure.

A list of arguments which are passed to the function
associated with p.

Results:

Returns no result.

Errors:

None.

Description:

ProcParam can be used to change the non-fixed arguments (see ProcAlloc or
ProcInit for a definition of ‘non-fixed arguments’) of the function associated with

p- See also section 5.5 of the ANSI C Toolset User Guide.

p is a pointer to a process structure which was previously returned from a call to
ProcAlloc or set up using a call to ProcInit.

The number of words of arguments should be the same as that specified in the orig-
inal call to ProcAlloc or ProcInit which set up p. If too many words of argu-
ments are given, the extra words are ignored. If too few words of arguments are
given then the unspecified words are undefined.

ProcParam must be used before the process begins execution. If it used while the
process is running then the results are undefined.

See also:

ProcAlloc ProcInit ProcAllocClean

72 TDS 347 01 October 1992

254 2 Alphabetical list of functions

ProcParlList Starts a group of parallel processes.
Synopsis:

#include <process.h>
void ProcParlList (Process **plist);

Arguments:
Process **plist A array of pointers to processes terminated by NULL.
Results:
Returns no result.
Errors:

If ProcParList detects that a process which it is about to start is already running
then the following fatal runtime error is issued:

Fatal-C_Library—Attempt to start a process which is already running
Thus it is illegal to attempt to run a process in parallel with itself.
Description:

As ProcPar but takes an array of pointers to processes. The pointers are either
returned directly from ProcAlloc or are pointers to processes initialized by Pro-
cInit.

A process started using ProcParList is called a ‘'synchronous process’.
See also:

ProcPar

72TDS 347 01 October 1992

2 Alphabetical list of functions 255

ProcPriPar Starts a pair of processes at high and low priority.
Synopsis:

#include <process.h>
void ProcPriPar (Process *phigh, Process *plow)

Arguments:
Process *phigh A pointer to the high priority process.
Process *plow A pointer to the low priority process.
Results:

Returns no result.
Errors:

Any attempt to call ProcPriPar from a high priority process generates a runtime
fatal error and the following message is displayed:

Fatal-C_Library-Nested Pri Pars are illegal

If ProcPriPar detects that a process which it is about to start is already running
then the following fatal runtime error is issued:

Fatal-C_Library-Attempt to start a process which is already running
Thus it is illegal to attempt to run a process in parallel with itself.
Description:

Starts two processes in parallel, the first at high priority and the second at low prior-
ity. Process pointers will have been returned directly from ProcAlloc, or are
pointers to processes initialized by ProcInit.

ProcPriPar cannot be called from a high priority process.
A process started using ProcPriPar is called a 'synchronous process'.
See also:

ProcPar ProcStop

72 TDS 347 01 October 1992

256 2 Alphabetical list of functions

ProcReschedule Reschedules a process.
Synopsis:

#include <process.h>
void ProcReschedule (void);

Arguments:
None.

Resuits:

Returns no result.

Errors:

None.

Description:

Causes the calling process to be rescheduled, that is, placed at the end of the
active process queue.

Calls to ProcReschedule are implemented inline provided that the header file
<process.h> has been included in the source.

See also:

ProcGetPriority

72 TDS 347 01 October 1992

2 Alphabetical list of functions 257

ProcRun Starts a process at the current priority.
Synopsis:

#include <process.h>
void ProcRun(Process *p);

Arguments:
Process *p A pointer to a process.
Results:
Returns no result.
Errors:

If ProcRun detects that a process which it is about to start is already running then
the following fatal runtime error is issued:

Fatal-C_Library—Attempt to start a process which is already running
Thus it is illegal to attempt to run a process in parallel with itself.
Description:

Executes a process in parallel with the calling process and at the same priority. The
two processes run independently and any interaction between them must be spe-
cifically set up using channel communication routines. The process pointer is
returned directly from ProcAlloc oris a pointer to a process initialized by ProcI -
nit.

ProcRun returns immediately after starting the process. Thus a process started
using ProcRun is called an ‘asynchronous process’.

Care should be taken that asynchronous processes do not attempt to communi-
cate with the server when it has been terminated by the main program. The Proe-
Join function can be used to guard against this. For more details see section 5.5.5
in the ANSI C Toolset User Guide.

See also:

ProcRunHigh ProcRunlow ProcPar ProcParList ProcPriPar Proc-
Stop ProcJdoin ProcJoinList

72 TDS 347 01 October 1992

258 2 Alphabetical list of functions

ProcRunHigh Starts a high priority process.
Synopsis:

#include <process.h>
void ProcRunHigh (Process *p);

Arguments:
Process *p A pointer to a process.
Results:
Returns no resuilt.
Errors:

If ProcRunHigh detects that a process which it is about to start is already running
then the following fatal runtime error is issued:

Fatal-C_Library—Attempt to start a process which is already running
Thus it is illegal to attempt to run a process in parallel with itself.
Description:

As ProcRun but starts the process at high priority. The process pointer will have
been returned directly from ProcAlloc, or will be a pointer to a process initialized
by ProcInit. ’

As with ProcRun care should be taken that processes started with this function
terminate before the main program.

A process started using ProcRunHigh is called an ‘asynchronous process’.
See also:

ProcRun ProcRunlow ProcPar ProcParList ProcPriPar ProcStop

72 TDS 347 01 October 1992

2 Alphabetical list of functions 259

ProcRunLow Starts a low priority process.
Synopsis:

#include <process.h>
void ProcRunLow (Process *p);

Arguments:
Process *p A pointer to a process.
Results:
Returns no result.
Errors:

If ProcRunLow detects that a process which it is about to start is already running
then the following fatal runtime error is issued:

Fatal-C_Library-Attempt to start a process which is already running
Thus it is illegal to attempt to run a process in parallel with itself.
Description:

As ProcRun but starts the process at low priority. The process pointer will have
been returned directly from ProcAlloc, or will be a pointer to a process initialized
by ProcInit.

As with ProcRun care should be taken that processes started with this function
terminate before the main program.

A process started using ProcRunLow is called an ‘asynchronous process’.
See also:

ProcRunHigh ProcRun ProcPar ProcParList ProcPriPar ProcStop

72 TDS 347 01 October 1992

260 2 Alphabetical list of functions

ProcSkipAlt Checks specified channels for ready input.
Synopsis:

#include <process.h>
int ProcSkipAlt(Channel *cl, ...);

Arguments:
Channel *cl The first in a list of pointers to channels.
The remainder of the list. Terminated by NULL.
Results:

Returns an index into the argument list for the channel ready to input, or —1 if no
channel is ready.

Errors:
None.
Description:

As ProcAlt but does not wait for a ready channel. If no channel is ready Proc-
SkipAlt returns immediately with the value —1.

Example:

/* select from channels cl, c2, e3 */
#include <process.h>

Channel *cl, *c2, *c3;
int i,

/* set up channels */

i = ProcSkipAlt(cl, c2, 3, NULL);
switch (i)
{
case -1: /* no channel ready */
break;
case 0: /* cl selected */
/* consume input from cl */
break;
case 1: /* c2 selected */
/* consume input from c2 */
break;
case 2: /* c3 selected */
/* consume input from c3 */
break;

}
See also:

ProcAlt ProcSkipAltList

72 TDS 347 01 October 1992

2 Alphabetical list of functions 261

ProcSkipAltList Checks a list of channels for ready input.
Synopsis:

#include <process.h>
int ProcSkipAltList (Channel **clist);

Arguments:
Channel **clist An array of pointers to channels terminated by NULL.
Results:
As ProcSkipAlt.
Errors:
None.
Description:
As ProcSkipAlt but takes a list of pointers to channels.
See also:

ProcSkipAlt

72 TDS 347 01 October 1992

262 2 Alphabetical list of functions

ProcStop De-schedules a process.
Synopsis:

#include <process.h>
void ProcStop(void) ;

Arguments:
None.

Results:

Returns no result.

Errors:

None.

Description:

ProcStop causes the current process to be stopped. The process stops execut-
ing immediately and is removed from the transputer scheduling lists. Thus it cannot
be restarted again.

ProcStop should not be used in a synchronous process (started using ProcPar,
ProcParList or ProcPriPar) or in any asynchronous process (started using
ProcRun, ProcRunHigh or ProcRunLow) which is the subject of a call to Proc-
Join or ProcJoinList. This is because ProcStop prevents normal termination
of a process.

Thus if a process which is associated with a call to one of ProcPar, ProcParL-
ist, ProcPriPar, ProcJoinor ProcJoinList makes acall to ProcStop then
these functions are unable to terminate because they rely on all their associated
processes terminating normally.

ProcStop may also be used to stop processes, declared at configuration level i.e.
in the configuration description file. This is achieved by calling ProcStop from the
main thread of execution of a C program.

See also:

ProcJoin ProcJoinList ProcPar ProcParlList ProcPriPar Pro-
cRun ProcRunHigh ProcRunLow

72 TDS 347 01 October 1992

2 Alphabetical list of functions 263

ProcTime Determines the transputer clock time.
Synopsis:

#include <process.h>
int ProcTime (void);

Arguments:
None.
Results:
Returns the value of the transputer clock.
Errors:
None.
Description:

Determines the transputer clock time. The value of the high priority clock is
returned for high priority processes and-the value of the low priority clock is
returned for low priority processes. Values retumed by this function can be used
by ProcTimeAfter, ProcTimePlus, and ProcTimeMinus.

Calls to ProcTime are implemented inline provided that the header file
<process .h> has been included in the source.

ProcTime is side effect free.
See also:

ProcTimeAfter ProcTimePlus ProcTimeMinus

72 TDS 347 01 October 1992

264 2 Alphabetical list of functions

ProcTimeAfter Determines the relationship between clock values.
Synopsis:

#include <process.h>
int ProcTimeAfter (const int timel, const int time2);

Arguments:

const int timel A transputer clock value retumed by ProcTime.
const int time2 A transputer clock value retured by ProcTime.

Results:

Returns 1 if timel is after time2, otherwise 0.
Errors:

None.

Description:

Determines the relationship between two transputer clock values. Remember that
the transputer clock is cyclic.

This is equivalent to:
(ProcTimeMinus (timel, time2) > 0)
ProcTimeAfter is side effect free.

See also:

ProcTime ProcTimePlus ProcTimeMinus

72 TDS 347 01 October 1992

2 Alphabetical list of functions 265

ProcTimeMinus Subtracts two transputer clock values.
Synopsis:

#include <process.h>
int ProcTimeMinus (const int timel, const int time2);

Arguments:

const int timel A transputer clock value returned by ProcTime.
const int time2 A transputer clock value returned by ProcTime.

Results:

Returns the result of subtracting time2 from timel.
Errors:

None.

Description:

Subtracts one clock value from another using modulo arithmetic. No overflow
checking takes place and the clock values are cyclic.

ProcTimeMinus is side effect free.
See also:

ProcTime ProcTimeAfter ProcTimeMinus

72 TDS 347 01 October 1992

266 2 Alphabetical list of functions

ProcTimePlus Adds two transputer clock values.
Synopsis:

#include <process.h>
int ProcTimePlus (const int timel, const int time2);

Arguments:

const int timel A transputer clock value retumed by ProcTime.
const int time2 A transputer clock value returned by ProcTime.

Results:

Returns the result of adding timel to time2.
Errors:

None.

Description:

Adds one clock value to another using modulo arithmetic. No overflow checking
takes place and the values are cyclic.

ProcTimePlus is side effect free.
See also:

ProcTime ProcTimeAfter ProcTimeMinus

72 TDS 347 01 October 1992

2 Alphabetical list of functions 267

ProcTimerAlt Checks input channels with time out.
Synopsis:
#include <process.h>
int ProcTimerAlt (int time, Channel *cl, ...);
Arguments:
int time An absolute transputer clock time, after which the function aborts

if no communication occurs.
Channel *cl The firstin a list of pointers to channels.
The remainder of the list. The list must be terminated by NULL.

Results:

Returns an index to the argument list, or —1 if the routine times out.
Errors:

None.

Description:

As ProcAlt but controlled by a timeout. If the transputer clock value associated
with the current priority exceeds time before any communication occurs, the rou-
tine terminates and returns the value —1.

Example:

/* select from channels cl, c2, e3 */
#include <process.h>

Channel *cl, *c2, *c3;
int i;

/* set up channels */

i = ProcTimerAlt (ProcTimePlus (ProcTime(), 50000), cl, c2, c3, NULL);
switch (i)
{
case -1: /* timed out */
break;
case 0: /* cl selected */
/* consume input from cl */;
break;
case 1: /* c2 selected */
/* consume input from c2 */
break;
case 2: /* c3 selected */
/* consume input from c3 */
break;

}
See also:

ProcAlt ProcTimerAltList

72TDS 347 01 October 1992

268 2 Alphabetical list of functions

ProcTimerAltList Checks alist of channels for input with time
out.

Synopsis:

#include <process.h>
int ProcTimerAltList(int time, Channel **clist)

Arguments:
int time The absolute transputer clock time after which the
function aborts if no communication occurs.
Channel **clist An array of pointers to channels terminated by NULL.
Results:

Returns an index into the clist array for the ready channel, or -1 if either the routine
times out or the first element in the array is NULL (an empty array).

Errors:
None.
Description:
[
As ProcTimerAlt, but takes an armray of pointers to channels.
See also:

ProcTimerAlt

72 TDS 347 01 October 1992

2 Alphabetical list of functions 269

ProcWait Suspends a process for a specified time.
Synopsis:

#include <process.h>
void ProcWait(int time);

Arguments:
int time The time delay measured in transputer clock ticks.
Results:
Returns no result.
Errors:
None.
Description:

Suspends execution of a process for a specified period of time. After the period
expires, the process is rescheduled. The delay is measured at the current clock

priority.
See also:

ProcAfter

72 TDS 347 01 October 1992

270 2 Alphabetical list of functions

putc Writes a character to a file stream.
Synopsis:

#include <stdio.h>
int putc(int c, FILE *stream);

Arguments:
int ¢ The character to be written.
FILE *stream A pointer to a file stream.
Results:

Returns the character written if the write is successful, or EOF if a write error occurs.
Errors:

putc returns EOF if a write error occurs.

Description:

pute converts c to an unsigned char, writes it to the output stream pointed to by
stream, and advances the read/write position indicator for the file stream.

putc is not included in the reduced library.
See also:

fputec

72 TDS 347 01 October 1992

2 Alphabetical list of functions 271

putchar Writes a character to standard output.
Synopsis:

#include <stdio.h>
int putchar(int c);

Arguments:
int ¢ The character to be written.
Results:

Returns the character written if successful. If a write error occurs, putchar returns
EOF.

Errors:
putchar retums EOF if a write efror occurs.
Description:

putchar converts c to an unsigned char, writes it to the standard output stream,
and advances the read/write position indicator for that file stream.

putchar is not included in the reduced library.
See also:

fputec getchar putc

72 TDS 347 01 October 1992

272 2 Alphabetical list of functions

puts Writes a line to standard output.
Synopsis:

#include <stdio.h>
int puts(const char *s);

Arguments:

const char *s A pointer to the string to be written.
Results:
Returns non-negative if successful, EOF if unsuccessful.
Errors:
puts returns EOF if unsuccessful.
Description:

puts writes the string pointed to by s to the standard output file stream, followed
by a newline character. The write does not include the string terminating character.

puts is not included in the reduced library.
See also:

fputs getchar gets putchar

72 TDS 347 01 October 1992

2 Alphabetical list of functions 273

gsort Sorts an array of objects.
Synopsis:

#include <stdlib.h>
void gsort(void *base, size_t nmemb, size_t size,
int (*compar) (const void *, const void *));

Arguments:
void *base A pointer to the start of the array to be sorted.
size_t nmemb The number of objects in the array.
size t size The size of the array objects.

int _(*compar) (const void *,
const void *) A pointer to the comparison function.

Results:

Returns no value.
Errors:

None.
Description:

gsort sorts objects in the array pointed to by base into ascending order, accord-
ing to comparisons performed by the function pointed to by compar. The array con-
tains nmemb objects of size bytes. The comparison function must return an inte-
ger less than, equal to, or greater than zero, depending on whether the first
argument to the function is considered to be less than, equal to, or greater than the
second argument. If two elements compare equal their order in the sorted array
is undefined.

Example:

#include <stdio.h>

#include <stdlib.h>

int sort compare (const void *argl,
const void *arg2)

return (int) (*((int *)argl) - *((int *)arg2));
{

int main({)

{
int i[10] = {1, 4, 6, 5, 2, 7, 9, 3, 8, 0};
int j;
qsort(i, 10, sizeof(int), sort_ compare):;
for (j = 0; j < 10; ++3)

printf (“%d\n”, i[jl):
See also:

bsearch

72 TDS 347 01 October 1992

274 2 Alphabetical list of functions

raise Forces a pseudo—exception via a signal handler.
Synopsis:

#include <signal.h>
int raise(int siqg);

Arguments:
int sig A signal number, as defined in signal.h.
Results:
Returns zero (0) if successful, non-zero if unsuccessful.
Errors:
If raise is called with an unrecognized signal number, it returns a non-zero value.
Description:
raise is used to send a signal to the running program. It causes the function
associated with signal number sigto be called. Functions are associated with sig-

nal numbers using the signal function.

Signals which can be raised are listed under the signal handling setup function
signal.

See also:

signal

72 TDS 347 01 October 1992

2 Alphabetical list of functions 275

rand Generates a pseudo-random number.
Synopsis:

#include <stdlib.h>
int rand(void);

Arguments:
None.
Results:
Returns a positive pseudo-random integer.
Errors:
None.
Description:
rand generates a pseudo-random inteder in the range 0 to RAND MAX.
See also:

srand

72 TDS 347 01 October 1992

276 2 Alphabetical list of functions

read Reads bytes from a file. File handling primitive.
Synopsis:

#include <iocntrl.h>
int read(int fd, char *buf, int n);

Arguments:
int f£d A file descriptor.
char *buf A pointer to a buffer where the bytes will be stored.
int n The maximum number of bytes that read will attempt to
obtain.
Results:

Returns the number of bytes read or —1 on error.
Errors:

If an error occurs read sets errno to the value EIO.
Description:

read attempts to read n bytes from the file described by £d into the buffer pointed
to by buf. It returns the number of bytes actually read. read may return a value
less than n if an end of file occurred orif the file is a terminal file, e.g. standard input,
if an end—of—line is encountered. n may be zero or negative but in these cases no
input will occur.

read is not included in the reduced library.
See also:

write

72 TDS 347 01 October 1992

2 Alphabetical list of functions 277

realloc Changes the size of an object previously allocated using

malloc, calloc Or realloc.
Synopsis:

#include <stdlib.h>
void *realloc(void *ptr, size_ t size);

Arguments:
void *ptr A pointer to the area of memory.
size_t size The new size of the area of memory.
Results:

Returns a pointer to the allocated space. If it was not possible to allocate size
bytes, or if the size requested is zero and the pointer argument is NULL, realloc
retums a NULL pointer.

Errors:

If it is not possible to allocate size bytes, realloc returns a NULL pointer. If ptr

does not point to an area of memory which was previously allocated by calloe,

malloc, or realloc and which has not been deallocated by a call to £ree or

realloc, a fatal runtime error occurs and the following message is generated:
Fatal-C_Library-Error in realloc(), bad pointer or heap corrupted

Description:

realloc allocates an area of memory of size size, and copies the previously
allocated area of memory pointed to by ptr into the newly allocated area. If the
previous area is larger than the new area, the overflow will be lost.

If ptr is NULL, realloc behaves like a call to malloc.

If sizeis zero and ptr is not a NULL pointer, the object pointed to by ptr is freed.
If ptr is invalid a runtime error from free may be generated.

See also:

calloc freemalloc

72 TDS 347 01 October 1992

278 2 Alphabetical list of functions

remove Removes a file.
Synopsis:

#include <stdio.h>
int remove (const char *filename);

Arguments:
const char *filename A pointer to the filename string.
Results:
Returns zero (0) if successful and non-zero if unsuccessful.
Errors:
If the remove operation was unsuccessful, remove retums a non-zero value.
Description:

remove deletes the file identified by the string pointer £ilename. If the file is open
it will be deleted only if this is permitted by the host system.

remove is not included in the reduced library.
See also:

rename

72TDS 347 01 October 1992

2 Alphabetical list of functions 279

rename Renames afile.
Synopsis:

#include <stdio.h>
int rename(const char *old, const char *new);

Arguments:

const char *old A pointer to the old filename.
const char *new A pointer to the new filename.

Results:

Returns zero if rename was successful and non-zero if it was not.
Errors:

If the rename was unsuccessful, rename returns a non-zero value.
Description:

rename changes the name of the file from o1d string to new string. If a file with the
new name already exists the existing file will only be overwritten if this is permitted
by the host operating system.

rename is not included in the reduced library.
See also:

remove

72 TDS 347 01 October 1992

280 2 Alphabetical list of functions

rewind Sets the file position indicator to the start of a file stream.
Synopsis:

#include <stdio.h>
void rewind (FILE *stream);

Arguments:
FILE *stream A pointer to a file stream.
Results:
No value is returned.
Errors:
None.
Description:

rewind sets the file position indicator of the file stream stream to the start of the
file. The error indicators for the stream are cleared.

rewind is not included in the reduced library.

Example:
#include <stdio.h>

int main()
{
FILE *stream;

stream = fopen(”data.dat”,”w+”);

if (stream = NULL)
printf (”Couldn’t open data.dat for write.\n”);
else
{
fprintf (stream, ”01234”);
rewind (stream) ;
printf (“First character in data.dat is: ‘%c’\n”, getc(stream));
}
}

/*
* Qutput:
*

*/
See also:

First character in data.dat is ’0’

fsetpos

72 TDS 347 01 October 1992

2 Alphabetical list of functions 281

scanf Reads formatted data from standard input.
Synopsis:

#include <stdio.h>

int scanf (const char *format, ...);

Arguments:

const char *format A format string.
Subsequent arguments to the format string.

Results:

Returns the number of inputs which have been successfully converted. If an end
of file character occurred before any conversions took place, scanf£ returns EOF.

Errors:

If an end of file character occurred before any conversions took place, scanf
returns EOF. Other failures cause termination of the procedure.

Description:

scanf matches the data read from the standard input to the specifications set out
by the format string, format. See £scanf for a description of the format string.

scanf is not included in the reduced library.
See also:

fscanf

72 TDS 347 01 October 1992

282 2 Alphabetical list of functions

segread Reads host processor segment registers. MS-DOS only.
Synopsis:

#include <dos.h>
void segread (struct SREGS *segregs);

Arguments:
struct SREGS *segregs The read-in values of the segment registers.
Results:
Returns no result.
Errors:
Any error sets errno to the value EDOS. Any attempt to use segread on operat-

ing systems other than MS-DOS also sets errno. Failure of the function may also
generate the server error message:

[Encountered unknown primary tag (50)]

Description:

segread reads the current values of the host 80x 86 processor's segment regis-
ters into segregs.

segread is not included in the reduced library.
See also:

intdos intdosx

72 TDS 347 01 October 1992

2 Alphabetical list of functions 283

SemAlloc Allocates and initializes a semaphore.
Synopsis:

#include <semaphor.h>
Semaphore *SemAlloc(int value);

Arguments:

int value The initial value of the semaphore.
Results:
Returns a pointer to an initialized semaphore or NULL on error.
Errors:
If space cannot be allocated SemAlloc returns a NULL pointer.
Description:

Allocates space for a semaphore and returns a pointer to it. The semaphore is set
to the value argument.

The space reserved for the semaphore by SemAl1loc may subsequently be freed
by passing the returned semaphore pointer to free.

See also:

SemInit

72 TDS 347 01 October 1992

284 2 Alphabetical list of functions

SemInit Initializes an existing semaphore.
Synopsis:

#include <semaphor.h>
void SemInit (Semaphore *sem, int value);

Arguments:

Semaphore *sem A pointer to a semaphore.

int value The initial value of the semaphore.
Results:

Returns no result.
Errors:

None.
Description:

SemInit initializes the semaphore pointed to by sem and assigns to it the initial
value value.

See also:

SemAlloc

72 TDS 347 01 October 1992

2 Alphabetical list of functions 285

SemSignal Releases a semaphore.
Synopsis:

#include <semaphor.h>
void SemSignal (Semaphore *sem);

Arguments:
Semaphore *sem A pointer to a semaphore.
Results:
Returns no resuilt.
Errors:
None.
Description:

Releases the semaphore pointed to by sem and runs the next process on the
semaphore’s queue. If no processes are waiting on the queue the semaphore
value is incremented.

See also:

SemWait

72 TDS 347 01 October 1992

286 2 Alphabetical list of functions

SemWait
Synopsis:

#include <semaphor.h>
void SemWait (Semaphore *sem);

Arguments:

Semaphore *sem A pointer to a semaphore.

Results:

Returns no result.
Errors:

None.

Description:

Acquires a semaphore.

Blocks the current process if the semaphore is already set to zero (acquired),
otherwise acquires the semaphore, decrements its value, and continues the pro-
cess. Blocked processes are added to a queue associated with the semaphore and
do not continue until the semaphore is released by a call to SemSignal by another

process.
See also:

SemSignal

72 TDS 347 01

October 1992

2 Alphabetical list of functions 287

server_ transaction Calls any iserver function.
Synopsis:

#include <iocntrl.h>
int server_ transaction(char *message, int length,
char *reply);

Arguments:
char *message The server packet to be sent.
int length The length of the server packet.
char *reply A pointer to an array where the reply packet is to be
stored.
Results:

Returns the length in bytes of the server reply packet, or —1 if an error occurs.
Errors:
possible causes of error are:
length being less than the minimum server packet length of 6 bytes.
length being greater than 510.
length being an odd number.
Description:

The runtime library provides functions which access a defined subset of ISERVER
functions. Some server functions are therefore not directly accessible by C func-
tion calls.

server_transaction allows controlled access to any ISERVER function from
aC program. It allows the full functionality of the supplied ISERVER to be used from
C and supports the calling of user-defined functions and alternative servers. A list
of callable functions supplied with the standard toolset ISERVER can be found in
appendix D ‘ISERVER protocol ' of the accompanying ANSI C Toolset Reference
Manual.

server_transaction sends the packet pointed to by message, of length
length, to the server. The server reply is stored in the array pointed to by reply.

For those familiar with occam, server_transébtion performs the equivalent
of the following occam output and input statements:

ToServer ! length::message
FromServer ? replylen::reply

where: ToServer and FromServer are the server channels.

72 TDS 347 01 October 1992

288 2 Alphabetical list of functions

length and replylen are the packet lengths and message and reply
are the data packets themselves.

replylen is the value returned by the function if no error occurs.

server_transaction provides low level access to the server in a secure man-
ner. The user constructed packet is forwarded to the server, and the reply sent, via
protected channels.

Note: There is no protection against the message and reply pointers being the
same, in which case the original message packet is overwritten.

The following example uses server transaction to obtain the transputer
board size by calling the Getenv server function.

The structure of the packet to request the boardsize environment variable is given
below. Numbers along the top row are Byte numbers.

01 2 3 4 5 6 7 8 9101112
321000 I B O AR D S I Z E

Byte 0 is the tag of the Getenv function. Bytes 1 and 2 make up a 16 bit number
which represents the length of the string IBOARDSI ZE. The string follows from byte
3 onwards.

The reply packet is similar except that byte 0 is the result byte and the string con-
tains the value of the environment variable.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 289

Example:

#include <misc.h>
#include <stdio.h>

int main()

{

/* 512 byte buffers */

char message[512], reply[512];

/* The env variable of interest */
char *name = “IBOARDSIZE”;

int length, i;

/* set up packet to send */

message[0] = 32; /* getenv tag */
/* length of env variable name */

message[l] = strlen(name);

message[2] = 0;

strepy (&message[3], name);

/* calculate total length of packet */

length = 3 + strlen(name);

/* make sure length is an even number */

length = (length + 1) & ~1;

/* perform the transaction */

length = server transaction(message, length, reply);
/* process reply */

if (length = -1)
printf (“error in server transaction\n”);
else

{
/* print out result byte */
printf (“result = %d\n”, reply[0]);
/* print out length of env variable value */
printf (”“length of result string = %d\n”,replyl[1]):;
/* terminate the result string */
reply|[(int) reply[1] + 3] = ’\0’;
/* print out the result string */
printf (”string = [%s]\n”, &reply[3]):;

72 TDS 347 01 . October 1992

290 2 Alphabetical list of functions

set_abort_action Sets/queries action taken by abort.
Synopsis:

j#finclude <misc.h>
int set_abort_action(int mode);

Arguments:
int mode The mode to be set.
Results:

Returns the previous termination mode (the mode in operation before
set_abort_action was called).

Errors:
None.
Description:

Sets, or queries, the mode of termination for abort. mode can have any of the
following values:

ABORT_EXIT Causes a call to abort to exit the program without
halting the transputer.

ABORT HALT Causes a subsequent call to abort to halt the
transputer.

ABORT_QUERY Returns the current abort mode. Leaves the mode un
changed.

If ABORT HALT is used abort first enables HALT mode by setting the Halt-On-~
Error flag and then sets the processor Error flag. When the transputer halts, a
message similar to the following message is displayed by the server:

Error: Transputer error flag has been set.

Note: Care should be taken when calling set_abort_action in a concurrent
environment. Calls to the function by independently executing, unsynchronized
processes may change the abort action. set_abort_action should normally be
called at the start of the program to set the acfion of abort for the entire program.

See also:

abort

72 TDS 347 01 October 1992

2 Alphabetical list of functions 291

setbuf Controls file buffering.
Synopsis:

#include <stdio.h>
void setbuf (FILE *stream, char *buf);

Arguments:

FILE *stream A pointer to a file stream.

char *buf A pointer to an array of size BUFSIZ or NULL.
Results:

Returns no value.

Errors:

None.

Description:

setbuf may be called after the file associated with stream has been opened, but
before it has been read from or written to. setbuf causes stream to be fully buff-
ered in the array buf. Itis equivalent to a call to setvbuf with the values _IOFBF

formode and BUFS1Z for size. If buf is aNULL pointer, the stream will not be buff-
ered.

setbuf is not included in the reduced library.
See also:

setvbuf

72 TDS 347 01 October 1992

292 2 Alphabetical list of functions

setjmp Sets up a non-local jump.
Synopsis:

#include <setjmp.h>
int setjmp (jmp_buf env);

Arguments:
jmp_buf env An array into which a copy of the calling environment is
put.
Results:

When first called, setjmp stores the calling environment in env and returns zero.
After a subsequent call to 1longjmp it returns a value set by longjmp, which is
always non-zero.

Errors:
The setjmp function should only appear in one of the following contexts:
« The entire controlling expression of a selection or iteration statement.

e One operand of a relational or equality operator with the other operand
being an integral constant expression. The resultant expression controls
a selection or iteration statement.

¢ The operand of a unary ! operator. The resultant expression controls a
selection or an iteration statement.

e The complete expression of an expression statement.
Description:

setjmpis used to set up a non-local goto by saving the calling environmentin env.
This environment is used by the 1longjmp function.

When first called, setjmp stores the calling environment in env and returns zero.
A subsequent call to 1long-jmp using env will cause execution to continue as if the
call to setjmp had just returned with the value given in the call to longjmp. This
value will always be non-zero, if Longjmp is called with a value of 0 then the corre-
sponding setjmp returns 1.

See also:

longjmp

72 TDS 347 01 October 1992

2 Alphabetical list of functions 293

setlocale Sets or interrogates part of the program'’s locale.
Synopsis:

#include <locale.h>
char *setlocale(int category, const char *locale);

Arguments:

int category A specification of which part of the locale is to be set
or interrogated.

const char *locale A pointer to the string which selects the environment
of the locale.

Results:

Returns "C’if locale isNULL, if *locale is NULL, orif *1localeis "C”. Otherwise
returns NULL.

Errors:
Returns NULL if the arguments are invalid.
Description:

setlocale sets or interrogates part of the program’s locale according to the val-
ues of category (the part to be set) and 1locale (a pointer to a string describing
the environment to which it is to be set).

category can take the following values:

1 LC-ALL All categories.

2 1LC_COLLATE Affects strcoll and strxfrm.

3 LC_CTYPE Affects character handling

4 LC_NUMERIC Affects the format of the decimal point
(e.g., '), etc).

5 LC_TIME Affects the strftime function.

6 LC_MONETARY Affects monetary formatting information. If

locale is a null string, setlocale returns the current locale for the given cate-
gory. In the current implementation the only acceptable locale is "C”.

See also:

localeconv

72 TDS 347 01 October 1992

294 2 Alphabetical list of functions

setvbuf Defines the way that a file stream is buffered.
Synopsis:

#include <stdio.h>
int setvbuf (FILE *stream, char *buf, int mode,
size t size);

Arguments:
FILE *stream A pointer to a file stream.
char *buf A pointer to a file buffer.
int mode The way the file stream is to be buffered.
size_t size The size of the file buffer.
Results:

setvbuf returns zero if successful, and non-zero if the operation fails.
Errors:

If mode or size is invalid, or stream cannot be buffered, setvbuf returns a non-
zero value.

Description:

setvbuf may be called after the file associated with stream has been opened,
but before it has been read from or written to. setvbuf causes stream to be buff-
ered in the format specified by mode. Valid formats are:

_IOFBF Fully buffered 1/0
_IOLBF Line buffered output
_IONBF Unbuffered I/O

The buffer used is of size byles. If buf is not a NULL pointer, it is used as the
buffer, otherwise an internally allocated array is used.

setvbuf is not included in the reduced library.
See also:

setbuf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 295

signal Defines the way that errors and exceptions are handled.
Synopsis:

#include <signal.h>
void (*signal (int sig, void (*func) (int))) (int);

Arguments:

int sig A signal number (a predefined value, describing an
error/exception type).

void (*func) (int) A signal handler function which is invoked when signal
sigis raised.

Results:

If the signal number is recognized a pointer to the function previously associated
with the signal number sig is returned, otherwise SIG_ERR is returned.

Errors:

If the predefined error/exception value is not recognized by signal, signal
returns SIG_ERR and sets errno to the value ESIGNUM.

Description:

signal specifies the functions to be called on reception of particular, predeter-
mined sighal values.

func can be any user-defined function which takes a single int parameter and
returns void, or one of the following two predefined functions which are imple-
mented as macros in the signal .h header file:

SIG_DFL Uses the default system error/exception handling for the
pre-defined value.
SIG_IGN Ignores the ermor/exception.

The functions will then be called in response to a raise or other invocation of the
signal handler, using a signal number as a parameter.

When a signal is raised the default signal handling is reset by a call of the form
signal (sig, SIG_DFL) and then the signal handler function is called. If sig
takes the value SIGILL then the default resetting still occurs.

The available signal numbers are as follows:

72 TDS 347 01 October 1992

296 2 Alphabetical list of functions

1 SIGABRT Abort error

2 SIGFPE Arithmetic exception

3 SIGILL lllegal instruction

4 SIGINT Attention request from user

5 SIGSEGV Bad memory access

6 SIGSTERM Termination request

8 SIGIO Input/output possible

9 SIGURG Urgent condition on I/O channel
10SIGPIPE Write on pipe with no corresponding read
11SIGSYS Bad argument to system call
12SIGALRM Alarm clock

13SIGWINCH Window changed

14SIGLOST Resource lost

15SIGUSR1 User defined signal

16 SIGUSR2 User defined signal
17SIGUSR3 User defined signal

The default handling and handling at program startup for all signals except
SIGABRT and SIGTERM is nho action. For SIGABRT the handling depends on
set_abort_action, and for SIGTERM the program is terminated via a call to
exit with the parameter EXIT_ FAILURE.

Example:
/

To arrange that an interrupt by the user
should not go through the default exception
handling system, call

signal(SIGILL, SIG_IGN)

If the signal is then raised in a
later part of the program:

raise(SIGILL)

* % ¥ % % ¥ ¥ B F ¥ ¥ ¥ * ¥

the signal will be ignored.
/

Note: Care should be taken when using signal in a concurrent environment.
Although simultaneous access to the function is controlled through a semaphore,
the registration of a function with the same signal number, for example by indepen-
dent parallel processes overrides the previous value.

See also:

raise

72TDS 347 01 October 1992

2 Alphabetical list of functions

297

sin Calculates the sine of the argument.

Synopsis:

#include <math.h>
double sin(double x);

Arguments:
double x A number in radians.
Results:
Returns the sine of x in radians.
Errors:
None.

Description:

sin calculates the sine of a number (given in radians).

72 TDS 347 01

October 1992

298 2 Alphabetical list of functions

sinf Calculates the sine of a f1loat number.
Synopsis:

#include <mathf.h>
float sinf (float x);

Arguments:
float x A number in radians.
Results:
Returns the sine of x in radians.
Errors:
None.
Description:
float form of sin.
See also:

sin

72 TDS 347 01 October 1992

2 Alphabetical list of functions 299

sinh Calculates the hyperbolic sine of the argument.
Synopsis:

#include <math.h>
double sinh(double x);

Arguments:
double x A number.
Results:

Returns the hyperbolic sine of x or if a range error occurs returns HUGE_VAL (with
the same sign as the correct value of the function).

Errors:

Arange error will occur if x is so large that sinh would result in an overflow. In this
case sinh retumns the value HUGE_VAL (with the same sign as the correct value
of the function) and errno is set to ERANGE.

Description:

sinh calculates the hyperbolic sine of a number.

72TDS 347 01 October 1992

300 2 Alphabetical list of functions

sinhf Calculates the hyperbolic sine of a f1loat number.
Synopsis:

#include <mathf.h>
float sinhf (float x);

Arguments:
float x A number.
Results:

Returns the hyperbolic sine of x or if a range error occurs returns HUGE_VAL _F
(with the same sign as the correct value of the function).

Errors:

A range error will occur if x is so large that sinhf would result in an overflow. In
this case sinhf returns the value HUGE_VAL_F (with the same sign as the correct
value of the function) and errno is set to ERANGE.

Description:

float form of sinh.

See also:

sinh

72 TDS 347 01 October 1992

2 Alphabetical list of functions 301

sprintf Writes a formatted string to another string.
Synopsis:
#include <stdio.h>
int sprintf(char *s, const char *format, ...);
Arguments:
char *s A string that the output is written to.

const char *format A format string.
Subsequent arguments to the format string.

Results:

Returns the number of characters written, excluding the string terminating charac-
ter.

Errors:

None.

Description:

sprint£ writes the string pointed to by format to s. When sprint£ encounters
a percent sign (%) in the format string, it expands the equivalent argument into the
format defined by the tokens after the %.

For the interpretation of the format string see the description of fprintf£.

Each token acts on the equivalent argument, that is, the third token relates to the
third argument after the format string. There must be a single argument for each
token. If the token or its equivalent argument is invalid, the behavior is undefined.
To use sprintf£ in the reduced library include the header file stdiored.h.
See also:

fprintf

72 TDS 347 01 October 1992

302 2 Alphabetical list of functions

sqgrt Calculates the square root of the argumenf.
Synopsis:

#include <math.h>
double sqgrt(double x);

Arguments:

double x A number.
Results:
Returns the non-negative square root of x or zero (0.0) on domain error.
Errors:
A domain error will occur if x is negative. In this case errno is set to EDOM.
Description:

sqrt calculates the square root of a number.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 303

sqrtf Calculates the square root of the £1oat argument.
Synopsis:

#include <mathf.h>
float sqrtf(float x);

Arguments:
float x A number.
Resulits:
Returns the non-negative square root of x or zero (0.0F) on domain error.
Errors:
A domain error will occur if x is negative. In this case errno is set to EDOM.
Description:
float form of sqrt.
See also:

sqgrt

72 TDS 347 01 October 1992

304 2 Alphabetical list of functions

srand Sets the seed for pseudo-random numbers generated by rand.
Synopsis:

#include <stdlib.h>
void srand(unsigned int seed);

Arguments:
unsigned int seed The new seed to be used by rand.
Results:
No value is returned.
Errors:
None.
Description:

srand causes rand to be seeded with the value seed. Subsequent calls to rand
will start a new sequence of pseudo-random numbers. If srand s called again with
the same value of seed the random number sequence will be repeated.

If rand is called before any calls to srand have been made the effect will be the
same as if srand had been called with a seed value of 1.

Care should be taken in parallel environments where concurrent calls to srand will
reseed all calls to rand, not just those in the calling process.

See also:

rand

72 TDS 347 01 October 1992

2 Alphabetical list of functions 305

sscanf Reads formatted data from a string.
Synopsis:
#include <stdio.h>
int sscanf (const char *s, const char *format, ...);
Arguments:

const char *s The string the data is read from.

const char *format A format string.
Subsequent arguments to the format string.

Results:

Returns the number of inputs which have been successfully converted. If a string
terminating character occurred before any conversions took place, sscanf
returns EOF.

Errors:

If a string terminating character occurred before any conversions took place,
sscanf returns EOF. Other failures cause termination of the procedure.

Description:

sscanf matches the data read from the string s to the specifications set out by the
format string. See £scanf for a description of the format string.

Each token acts on the equivalent argument, that is, the third token relates to the
third argument after the format string. There must be a single conversion sequence
received for each token. If the token is invalid, the behavior is undefined. Any mis-
match between the token format and the data received causes an early termination
of sscanf.

To use sscanf in the reduced library include the header file stdiored.h.
See also:

fscanf

72TDS 347 01 October 1992

306 2 Alphabetical list of functions

strcat Appends one string to another.
Synopsis:

#include <string.h>
char *strcat(char *sl, const char *s2);

Arguments:

char *sl1 A pointer to the string to be extended.
const char *s2 A pointer to the string to be appended.

Results:

Returns the unchanged value of s1.

Errors:

None.

Description:

strcat appends the string pointed to by s2 (including the null terminating charac-
ter) onto the end of the string pointed to by s1. The first character of s2 overwrites

the null terminating character of s1.

The string pointed to be s1 must be large enough to accept the extra characters
from s2.

See also:

strnecat

72 TDS 347 01 October 1992

2 Alphabetical list of functions 307

strchr Finds the first occurrence of a character in a string.
Synopsis:

#include <string.h>
char *strchr(const char *s, int c¢);

Arguments:
const char *s A pointer to the string to be searched.
int ¢ The character to be searched for.
Resulits:

If the character is found, strchr retumns a pointer to the matched character. It
returns a NULL pointer if the character ¢ is not in the string.

Errors:
None.
Description:

strchr finds the first occurrence of ¢ in the string pointed to by s. The search
includes the null terminating character. ¢ is converted to a char before the search
begins.

strchr is side effect free.

Example:

char string[l12] = “fdakjrejnij”;
char *n_pointer;

n_pointer = strchr(string, 'n’);

See also:

memchr strpbrk strrchr

72 TDS 347 01 October 1992

308 2 Alphabetical list of functions

strcmp Compares two strings.
Synopsis:

#include <string.h>
int strcmp(const char *sl, const char *s2);

Arguments:

const char *sl A pointer to one of the strings to be compared.
const char *s2 A pointer to the other string to be compared.

Results:
Returns the following :
A negative integer if the s1 string is numerically less than the s2 string.
A zero value if the two strings are numerically the same.
A positive integer if the s1 string is numerically greater than the s2 string.
Errors:
None.
Description:

stremp compares the two strings pointed to by s1 and s2. The comparison is of
the numerical values of the ASCII characters.

strcmp is side effect free.
See also:

memcmp strcoll strncmp

72 TDS 347 01 October 1992

2 Alphabetical list of functions 309

strcoll Compares two strings (transformed according to the program’s
locale).

Synopsis:

#include <string.h>
int strcoll(const char *sl, const char *s2);

Arguments:

const char *sl A pointer to one of the strings to be compared.
const char *s2 A pointer to the other string to be compared.

Results:
Returns the following :
A negative integer if the s1 string is numerically less than the s2 string.
A zero value if the two strings are numerically the same.
A positive integer if the s1 string is numerically greater than the s2 string.
Errors:
None.
Description:

strecoll compares the two strings pointed to by s1 and s2. Before comparison
takes place the two strings are transformed according to the LC_COLLATE cate-
gory of the program’s locale. Since the only permissible locale in the current imple-
mentation is "C”, strcoll is equivalent to strcmp.

The string comparison is of the characters' numerical ASCII codes.

streoll is side effect free.

See also:

memcmp stremp strncmp

72 TDS 347 01 October 1992

310 2 Alphabetical list of functions

strcpy Copies a string into an array.
Synopsis:

#include <string.h>
char *strcpy(char *sl, const char *s2);

Arguments:

char *sl A pointer to the array used as the copy destination.
const char *s2 A pointer to the string used as the copy source.

Results:

Returns the unchanged value of s1.

Errors:

The behavior of strepy is undefined if the source and destination overlap.
Description:

strcpy copies the source string (pointed to by s2) into the destination string
(pointed to by s1). The copy includes the null terminating character. The behavior
of strcpy is undefined if the source and destination overlap.

A call to strepy will be transformed into a call to memepy provided that:

1 The header file <string.h> has been included in the source.

2 The actual argument corresponding to the formal argument s2 is a string
literal.

This call to memcpy may subsequently be compiled inline.
See also:

memcpy strncpy

72 TDS 347 01 October 1992

2 Alphabetical list of functions 311

strcspn Counts the number of characters at the start of a string which do
not match any of the characters in another string.
Synopsis:

#include <string.h>
size_t strecspn(const char *sl, const char *s2);

Arguments:

const char *sl A pointer to the string to be measured.
const char *s2 A pointer to the string containing the characters to be
checked.)

Results:

Returns the length of the unmatched segment.
Errors:

None.

Description:

strespn counts the number of characters at the start of the string pointed to by
s1 which are not in the string pointed to by s2. As soon as strespn finds a charac-
ter present in both strings it stops and returns the number of characters counted.

The null terminating character is not considered to be part of the s2 string.
strespn is side effect free.

Example:

#include <stdio.h>
#include <string.h>

/* Print string up to any numeric characters. */

int main()

{
char *dec_string = ”1234567890”;

char *given_string = ”Hello there 123hello”;
size t no_chars;
no_chars = strcspn(given string, dec_string);
given string[no_chars] = ' \o’;
puts(given string);
/* prints “Hello there” */

}

See also:

strspn strtok

72 TDS 347 01 October 1992

312 2 Alphabetical list of functions

strerror Maps an error number to an error message string.
Synopsis:

#include <string.h>
char *strerror(int errnum);

Arguments:
int errnum The error number to be converted.
Results:
Returns a pointer to the error message string.
Errors:
None.
Description:

strerror generates one of the following error messages according to the value
of errnum:

Value of errnum |Message

EDOM EDOM - function argument out of range
ERANGE ERANGE - function result not representable
ESIGNUM ESIGNUM - illegal signal number to signal()
EIO EIO - error in low level server 1/O

EFILPOS EFILPOS - error in file positioning functions
0 No error (errno = 0)

If errnum is not one of the above values the following error is generated:
Error code <errno> <errnum> has no associated message
where: <errnum> is the value passed to strerror.

Note: Care should be taken when calling strerror in a concurrent environment.
Calls to the function by independently executing, unsynchronized processes may
corrupt the returned error string.

See also:

perror

72 TDS 347 01 October 1992

2 Alphabetical list of functions 313

strftime Does a formatted conversion of a broken—down time to a
string.
Synopsis:

#include <time.h>

size t strftime(char *s, size t maxsize,
const char *format,
const struct tm *timeptr);

Arguments:
char *s A pointer to the string where the formatted
string is written.
size_t maxsize The maximum number of characters to be
written into the string.
const char *format A pointer to the format string.

const struct tm *timeptr A pointer to a broken—down time.
Results:

If the number of characters written is less than maxsize, strftime returns the
number of characters written (not including the null terminating character). Other-
wise strftime returns zero (0).

Errors:

If the number of characters to be written exceeds maxsize, strftime returns
zero, and the contents of the string pointed to by s are undefined.

Description:

strftime is used to convert the values in a broken—down time structure accord-
ing to the demands of a format string, and to write the resulting string to a string.
The format string consists of ordinary characters and tokens. Normal characters
are written directly to s, and tokens are expanded. Tokens are single characters,
preceded by the percent character ‘s’

72 TDS 347 01 October 1992

314

2 Alphabetical list of functions

Token Meaning

%a
%A
%b
%B
%c

%d
%H
%
%i
%m
%M
%p
%S
%U

%w
%W
%X
%X
%y
%Y
%2
%%

Abbreviated day
Full day
Abbreviated month
Full month

Date and time

Day of the month as a decimal number.
Hours using twenty-four hour clock.
Hours using twelve hour clock.

Day of the year.

Month as a decimal number.

Minutes.

AM or PM.

Seconds.

Week number, counting Sunday as first day

of week one.
Day of week, counting from Sunday.

Week number, counting Monday as first day

Date in default format.
Time in default format.
Year without century.
Year with century.

Time zone if one exists.
"%’.

72 TDS 347 01

Range

(Mon — Sun).

(Monday — Sunday).
(Jan - Dec).

(January — December).

(e.g. Sun Jul 23
11:27:32 1989).

01-31
00-23
01-12
001 - 366
01-12
00-59

00 -61
00 -53.

0-6

00 -53.

(e.g. Sun Jul 23 1989).
(e.g. 11:27:32).
00-99

e.g. 1989

October 1992

2 Alphabetical list of functions 315

Example:

#include <stdio.h>
#include <time.h>

/* Display the day in different ways */

int main(void)

{
char day line[300];
struct tm *bdt;
time_t current;

time(¤t);
bdt = localtime(¤t);
strftime (day_line, 300,
"Different days are %a, %A, %j, %d, %w”,
bdt) ;
printf (day line);
}

See also:

asctime ctime localtime clock difftime mktime time

72TDS 347 01 October 1992

316 2 Alphabetical list of functions

strlen Calculates the length of a string.
Synopsis:

#include <string.h>
size_t strlen(const char *s);

Arguments:

const char *s A pointer to the string to be measured.
Results:
Returns the length of the string (excluding the null terminating character).
Errors:
None.
Description:

strlen counts the number of characters in the string up to, but not including, the
null terminating character.

strlen is side effect free.

Example:

char *string = ”String to be measured”;
size_t result;

result = strlen(string);

/*
Gives a result of 21

*/

72 TDS 347 01 October 1992

2 Alphabetical list of functions 317

strncat Appends one string onto another (up to a maximum number of
characters).

Synopsis:

#include <string.h>
char *strncat(char *sl, const char *s2, size_t n);

Arguments:

char *sl A pointer to the string to be extended.

const char *s2 A pointer to the string to be appended.

size_t n The maximum number of characters to be appended.
Results:

Returns the unchanged value of s1.
Errors:

None.

Description:

strncat copies a maximum of n characters from the string pointed to by s2 onto
the end of the string pointed to by s1. The first character of s2 overwrites the null
terminating character of s1. A null terminating character is appended to the end
of the result.

The string pointed to be s1 must be large enough to accept the extra characters
from s2.

See also:

strecat

72 TDS 347 01 October 1992

318 2 Alphabetical list of functions

strncmp Compares the first n characters of two strings.
Synopsis:

#include <string.h>
int strncmp(const char *sl, const char *s2, size t n);

Arguments:

const char *sl A pointer to one of the strings to be compared.
const char *s2 A pointer to the other string to be compared.
size t n The maximum number of characters to be compared.

Results:
Returns the following :
A negative integer if the s1 string is numerically less than the s2 string.
A zero value if the two strings are numerically the same.
A positive integer if the s1 string is numerically greater than the s2 string.
Errors:
None.
Description:

strncmp compares up to the first n characters of the strings pointed to by s1 and
s2. The comparison is of the numerical values of the ASCII characters.

strncemp is side effect free.

Example:
/*
Compares two strings

*/

char stringl[50], string2([50];
int result;

strepy(stringl, ”“Text”);
strepy(string2, ”“Textual difference”);
result = strncmp (stringl, string2, 4);
/*
strnemp returns 0
*/

See also:

memcmp stremp strcoll strncmp

72 TDS 347 01 October 1992

2 Alphabetical list of functions 319

strncpy Copies a string into an array (to a maximum number of
characters).

Synopsis:

#include <string.h>
char *strncpy(char *sl, const char *s2, size t n);

Arguments:
char *sl A pointer to the array used as the copy destination.
const char *s2 A pointer to the string used as the copy source.
size t n The maximum number of characters to be copied.
Results:

Returns the unchanged value of s1.

Errors:

The behavior of strncpy is undefined if the source and destination overlap.
Description:

strncpy copies up to n characters from the source string (pointed to by s2) into
the destination array (pointed to by s1). The behavior of strncpy is undefined if
the source and destination overlap.

If the source string is less than n characters long, the extra spaces in the destina-
tion array will be filled with null characters.

See also:

strcpy

72 TDS 347 01 October 1992

320 2 Alphabetical list of functions

strpbrk Finds the first character in one string present in another string.
Synopsis:

#include <string.h>
char *strpbrk(const char *sl, const char *s2);

Arguments:

const char *sl A pointer to the string to be searched.
const char *s2 A pointer to the string containing the characters to be
searched for.

Results:

Retumns a pointer to the first character found in both strings. If none of the charac-
ters in the s2 string occur in the s1 string, strpbrk returns a NULL pointer.

Errors:
None.
Description:

strpbrk finds the first character in the string pointed to by s1 which is also con-
tained within the string pointed to by s2.

strpbrk is side effect free.

Example:

/* Return a pointer to the first occurrence of
\rI, \cl, or \mr, t/

#include <stdio.h>
#include <string.h>

int main()

{
char *string = “The Inmos C Compiler”;
char *result;

result = strpbrk(string, “ram”);
printf ("%s\n”, result);
}

/* result = “mos C Compiler” */

See also:

strchr strrchr

72 TDS 347 01 October 1992

2 Alphabetical list of functions 321

strrchr Finds the last occurrence of a given character in a string.
Synopsis:

#include <string.h>
char *strrchr(const char *s, int c);

Arguments:
const char *s A pointer to the string to be searched.
int ¢ The character to be searched for.
Results:

Returns a pointer to the last occurrence of the character.
Errors:

Returns NULL if ¢ does not occur in the string.
Description:

strchr finds the last occurrence of ¢ in the string pointed to by s. The search
includes the null terminating character. ¢ is converted to a char before the search
begins.

strrchr is side effect free.

Example:

/* Finds the last time that /9’ occurs in a string */

#include <stdio.h>
#include <string.h>

int main()

{
char *string = ”9 times 9 = 81”;
char *result;
result = strrchr(string, ’9’);
printf (“%s\n”, result);
/* result = 79 = 81”7 */

}

See also:

strpbrk strchr

72 TDS 347 01 October 1992

322 2 Alphabetical list of functions

strspn Counts the number of characters at the start of a string which
are also in another string.
Synopsis:

#include <string.h>
size_t strspn(const char *sl, const char *s2);

Arguments:

const char *sl A pointer to the string to be measured.
const char *s2 A pointer to the string containing the characters to be
searched for.

Results:

Returns the length of the matched segment.
Errors:

None.

Description:

strspn counts the characters at the start of the string pointed to by s1 which are
also present in the string pointed to by s2. As soon as strspn finds a character
in the first string which is not present in the second string, it stops and returns the
number of characters counted.

strspn is side effect free.

Example:

#include <string.h>
#include <stdio.h>

int main(void)

{
char *string = ”“cracking”;
size_t result;

result = strspn(string, ”arc”);
printf (”%d\n”, result);
/* 4 in this case */

}
See also:

strcspn strtok

72 TDS 347 01 October 1992

2 Alphabetical list of functions 323

strstr Finds the first occurrence of one string in another.
Synopsis:

#include <string.h>
char *strstr(const char *sl, const char *s2);

Arguments:

const char *sl A pointer to the string to be searched.
const char *s2 A pointer to the string to be searched for.

Results:

Retumns a pointer to the string in s1, if found. If s2 points to a string of zero length,
the function returns s1. If the s2 string does not occur within the s1 string the func-
tion returns NULL.

Errors:
None.
Description:

strstr finds the first occurrence of the s2 string (excluding the null terminating
character) in the s1 string.

strstr is side effect free.

Example:

#include <string.h>
#include <stdio.h>

int main()
{
char *stringl "string to be searched”;

char *string2 = ”sea”;

printf (“%$s\n”, strstr(stringl, string2));
}

/* Displays “searched” */
See also:

strpbrk strspn

72 TDS 347 01 October 1992

324 2 Alphabetical list of functions

strtod Converts the initial part of a string to a double and saves a pointer
to the rest of the string.

Synopsis:

#include <stdlib.h>
double strtod(const char *nptr, char **endptr);

Arguments:

const char *nptr A pointer to the string to be converted.
char **endptr A pointer to the object which is to receive a pointer to
the rest of the string.

Results:

Returns the converted value ifthe conversion is successful. If no conversion is pos-
sible or underflow occurs, strtod returns zero. HUGE_VAL is returned if overflow
occurs.

Errors:

If the result would cause overflow, errno is set to ERANGE and the value
HUGE_VAL is returned. If the result would cause underflow, errnois setto ERANGE
and zero is returned.

Description:

strtod converts the initial part of the string pointed to by nptr to a number repre-
sented as a double. strtod expects the string to consist of the following
sequence:

1. Leading white space (optional).

2. A plus or minus sign (optional).

3. A sequence of decimal digits, which may contain a decimal point.

4. An exponent (optional) consisting of an 'E’ or ’e’ followed by an optional
sign and a string of decimal digits.

5. One or more unrecognized characters (including the null string
terminating character).

strtod ignores the leading white space, and converts all the recognized charac-
ters. If there is no decimal point or exponent part in the string, a decimal point is
assumed after the last digit in the string.

The string is invalid if the first non-space character in the string is not one of the
following characters:

+-.0123456789

If endptr is not NULL, and the conversion took place, a pointer to the unrecog-
nized part of the string is stored in the object pointed to by endptr. If conversion
did not take place, the location is set to the value of nptr.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 325

Example:

#include <stdio.h>
#include <stdlib.h>

int main()

{

char *array = ”97824.3E+4Goodbye”;
char *number_ end;

double x;

x = strtod(array, é&number_end);
printf (”strtod gives %f\n”, x);
printf(“Number ended at %s\n”, number_end);
}

/*

Prints:
strtod gives 978243000.000000
Number ended at Goodbye

*/

See also:

atof atoi atol strtol

72 TDS 347 01 October 1992

326 2 Alphabetical list of functions

strtok Converts a delimited string into a series of string tokens.
Synopsis:

#include <string.h>
char *strtok(char *sl, const char *s2);

Arguments:

char *sl A pointer to the string fo be broken up or a NULL pointer.
const char *s2 A pointer to the delimiter string.

Results:

Returns a pointer to the first character of a token. A NULL pointer is returned if no
token is found.

Errors:
None.
Description:

strtok is used to break up the string pointed to by s1 into separate strings. The
input string is assumed to consist of a series of tokens separated from one another
by one of the characters in the delimiter string pointed to by s2.

When strtok is first called, each character in the string pointed to by s1 is
checked to see ifitis also present in the delimiting string pointed to by s2. strtok
recognizes the first character which is not in the delimiter string as the start of the
first token. If no such character is found it is assumed that there are no tokens in
sl1, and strtok returns a NULL pointer.

Having found the start of a token, the strtok function searches for the end of the
token, represented by a character present in the delimiting string. If such a charac-
ter is found, it is overwritten with the null terminating character and strtok saves
a pointer to the following character for use in a subsequent call. If no such character
is found the token extends to the end of the string. strtok returns a pointer to the
first character of the token.

The next token from the string is extracted by calling strtok with a NULL pointer
as the first argument. This causes strtok to use the pointer saved during the pre-
vious execution.

Note: Care should be taken when calling strtok in a concurrent environment.
Calls to the function by independently executing, unsynchronized processes
change the pointer saved internally by strtok in an unpredictable way and may
produce unexpected results.

72 TDS 347 01 October 1992

2 Alphabetical list of functions

327

Example:

#include <stdio.h>
#include <string.h>

int main()

{
char *string = ”“String*of things,to,,be*split”;
char *token;

token = strtok(string, ”* ,”);

while (token != NULL)

{
printf ("Token found = %s\n”, token);
token = strtok(NULL, “* ,”);

/*
* Gives the output:

* Token found = String
* Token found = of

* Token found = things
* Token found = to

* Token found = be

*/ Token found = split
*

72 TDS 347 01

October 1992

328 2 Alphabetical list of functions

strtol Converts the initial part of a string to a Long int and saves a
pointer to the rest of the string.
Synopsis:

#include <stdlib.h>
long int strtol (const char *nptr,
char **endptr, int base);

Arguments:
const char *nptr A pointer to the string to be converted.
char **endptr A pointer to the object which is to receive a pointer to
the rest of the string.
int base The radix representation of the integer string to be
converted.
Results:

Returns the converted value if the conversion is successful. If no conversion is pos-
sible, strtol returns zero. If the result would cause overflow the value LONG_MAX
or LONG_MIN is returned (depending on the sign of the result).

Errors:

If the result would cause overflow the value LONG_MAX or LONG_MIN is returned
(depending on the sign of the result), and errno is set to ERANGE.

Description:

strtol converts the initial part of the string pointed to by nptr to a long integer.
strtol expects the string to consist of the following:

1. Leading white space (optional).

2. A plus or minus sign (optional).

3. An octal '0’ or hexadecimal '0x’ or '0X’ prefix (optional).

4. A sequence of digits within the range of the appropriate base. The letters
'a’to 'Z’, and 'A’ to 'Z’ may be used to represent the values 10 to 35. For
example, if base is set to 18, the characters for the values 0 to 17 (0’ to
'9’ and ’a’ to 'h’ or A’ to 'H’) are permitted.

5. One or more unrecognized characters (including the null string
terminating character).

strtol ignores leading blanks, and converts all recognized characters. The string
is invalid if the first non-space character in the string is not a sign, an octal or hexa-
decimal prefix, or one of the permitted characters.

If endptr is not NULL, and the conversion took place, a pointer to the rest of the
string is stored in the location pointed to by endptr. If no conversion was possible,
and endptr is not NULL, the value of nptr is stored in that location.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 329

Example:

#include <stdio.h>
#include <stdlib.h>

int main()
{
char *array = ”“12345abcGoodbye”;
char *number end;
int base;
long 1;

for(base = 2; base < 12; base += 3)
{
1 = strtol(array, &number_ end, base);
printf (“base = %d, strtol gives %1ld\n”,
base, 1);
printf (”“Number ended at %s\n\n”, number end);
}

~
*

Prints base = 2, strtol gives 1
Number ended at 2345abcGoodbye

base = 5, strtol gives 194
Number ended at 5abcGoodbye

base = 8, strtol gives 5349
Number ended at abcGoodbye

base = 11, strtol gives 194875
Number ended at bcGoodbye

¥ o ¥ ¥ ¥ ¥ X F # ¥ ¥ ¥ *

*
~

See also:

atoi atol strtod strtoul

72 TDS 347 01 October 1992

330 2 Alphabetical list of functions

strtoul Converts the initial part of a string to an unsigned long int
and saves a pointer to the rest of the string.
Synopsis:

#include <stdlib.h>
unsigned long int strtoul (const char *nptr,
char **endptr, int base);

Arguments:
const char *nptr A pointer to the string to be converted.
char **endptr A pointer to the location which is to receive a pointer to
the rest of the string.
int base The radix representation of the integer string to be
converted.
Results:

Returns the converted value if the conversion is successful. If no conversion is pos-
sible, strtoul returns zero. If the result would cause overflow the value
ULONG_MAX is returned.

Errors:

If the result would cause overflow the value ULONG_MAX is returned and errno is
set to ERANGE.

Description:

strtoul converts the initial part of the string pointed to by nptr to an unsigned
long int. strtoul expects the string to consist of the following:

1. Leading white space (optional).

2. An octal ’0’ or hexadecimal '0x’ or '0X’ prefix (optional).

3. Assequence of digits within the range of the appropriate base. The letters
'a’to ’Z’, and 'A to ’Z’ may be used to represent the values 10 to 35. For
example, if base is set to 18, the characters for the values 0 to 17 ('0’ to
'9’ and 'a’ to 'h’ or 'A’ to 'H’) are permitted.

4. One or more unrecognized characters (including the null string
terminating character).

strtoul ignores the leading white space, and converts all the recognized charac-
ters. The string is invalid if the first non-space character in the string is not an octal
or hexadecimal prefix, or one of the permitted characters (signs are not permitted).
If endptr is hot NULL, and the conversion took place, a pointer to the rest of the
string is stored in the location pointed to by endptr. If no conversion was possible,
and endptr is not NULL, the value of nptr is stored in that location.

See also:

atoi atol strtod strtol

72 TDS 347 01 October 1992

2 Alphabetical list of functions 331

strxfrm Transformsa string according to the locale and copies it into an
array (up to a maximum number of characters).

Synopsis:

#include <string.h>
size_t strxfrm(char *sl, const char *s2, size t n);

Arguments:
char *sl A pointer to the array used as the copy destination.
const char *s2 A pointer to the string used as the copy source.
size t n The maximum number of characters to be copied.
Resulits:

strxfrm returns the length of the transformed string.
Errors:

None.

Description:

strxfrm copies up to n characters from the source string (pointed to by s2) into
the destination array (pointed to by s1), after transforming the source string
according to the program’s locale. Since the only permissible locale is "C”,
strxfrm is equivalent to strncpy. The behavior of strxfrm is undefined if the
source and destination overlap.

Ifnis zero then s1 may be a NULL pointer, in which case strxfrmreturns the num-
ber of characters in the transformed string.

If the source string is less than n characters long, the extra spaces in the destina-
tion array will be filled with null characters.

Because "C” is the only locale supported by this implementation, the behavior of
strxfrm resembles that of a less efficient strncpy.

See also:

strncpy

72 TDS 347 01 October 1992

332 2 Alphabetical list of functions

sys tem Passes a command to host operating system for execution.
Synopsis:

#include <stdlib.h>
int system(const char *string);

Arguments:
const char *string A pointer to the string to be passed to the host.
Results:

If string is a NULL pointer, system retumns a non—zero value if a command pro-
cessor exists or zero otherwise. If string is not a NULL pointer system returns
the return value of the command which is host-defined.

Errors:

None.

Description:

system passes the string pointed to by string to the host environment to be
executed by a command processor. string can be any command defined on the

host system, but should not be a command which causes the transputer to be re-
booted as this would overwrite the program executing the call.

If string is a NULL pointer the call to system is an enquiry as to whether there
is a command processor.

The mode of execution of the command is defined by the host system.

Use of systemin the reduced library always returns 0 as there is no command pro-
cessor available in this case.

Note: Issuing a command that boots a program onto the transputer running the
current program causes the program to fail by overwriting the memory.

72 TDS 347 01 October 1992

2 Alphabetical list of functions

333

tan Calculates the tangent of the argument.

Synopsis:

#include <math.h>
double tan(double x);

Arguments:
double x A number in radians.
Resuilts:
Returns the tangent of x in radians.
Errors:
None.

Description:

tan calculates the tangent of a number (given in radians).

See also:

tanf

72 TDS 347 01

October 1992

334 2 Alphabetical list of functions

tanf Calculates the tangent of a £1loat number.
Synopsis:

#include <mathf.h>
float tanf(float x);

Arguments:
float x A number in radians.
Results:
Returns the tangent of x.
Errors:
None.
Description:
float form of tan.
See also:

tan

72 TDS 347 01 October 1992

2 Alphabetical list of functions 335

tanh Calculates the hyperbolic tangent of the argument.
Synopsis:

#include <math.h>
double tanh(double x);

Arguments:
double x A number.
Results:
Returns the hyperbolic tangent of x.
Errors:
None.
Description:
tanh calculates the hyperbolic tangent of a number.
See also:

tanhf

72 TDS 347 01 October 1992

336 2 Alphabetical list of functions
tanhf Calculates the hyperbolic tangent of a £1oat number.
Synopsis:

#include <mathf.h>
float tanhf (float x);

Arguments:
float x A number.

Results:

Returns the hyperbolic tangent of x.

Errors:

None.

Description:

float form of tanh.
See also:

tanh.

72 TDS 347 01

October 1992

2 Alphabetical list of functions 337

time Reads the current time.
Synopsis:

#include <time.h>
time_t time(time_ t *timer);

Arguments:
time t *timer A pointer to an object where the current time can be
stored.
Results:

Returns the value of the current time. If the current time is not available, time
returns —1, cast to time_t.

Errors:
time returns (time _t)-1, if the current time is not available.
Description:

time returns the closest possible approximation to the current time, and loads it
into the location pointed to by timer, unless timer is NULL.

time always returns —1 in the reduced library since there is no access to the cur-
rent time in this case.

See also:

asctime ctime localtime strftime clock difftime mktime

72 TDS 347 01 October 1992

338 2 Alphabetical list of functions

tmpfile Creates a temporary binary file.
Synopsis:

#include <stdio.h>
FILE *tmpfile (void);

Arguments:
None.
Results:

Returns a pointer to the newly created file stream, or a NULL pointer if the file could
not be created.

Errors:

Returns a NULL pointer if the file cannot be created.

Description:

tmpfile attempts to create a temporary binary file in the current directory. If the
file is successfully created it is opened for update, that is, in mode "wb+". The file

will automatically be removed when the program terminates or the temporary file
is explicitly closed.

tmpfile is not included in the reduced library.
See also:

tmpnam

72 TDS 347 01 October 1992

2 Alphabetical list of functions 339

tmpnam Creates a unique filename.
Synopsis:

#include <stdio.h>
char *tmpnam(char *s);

Arguments:
char *s A pointer to the destination string for the filename.
Results:

If s is a NULL pointer, tmpnam returns a pointer to an internal object containing the
new filename. Otherwise the new filename is put in the string pointed to by s, and
tmpnam returns the unchanged value s. In this case s must point to an array of at
least L_tmpnam characters.

Errors:

The effect of calling tmpnam more than TMP_MAX times is undefined.
Description:

tmpnam creates a unique filename (that is, one which does not match any existing
filename) in the current directory. A different string is created each time tmpnam
is called. tmpnam may be called up to TMP_MAX times.

Note: Care should be taken when calling tmpnam in a concurrent environment.
Calls to the function by independently executing, unsynchronized processes may
corrupt the retuned file pointer.

tmpnam is not included in the reduced library.
See also:

tmpfile

72 TDS 347 01 October 1992

340 2 Alphabetical list of functions

to_host_link Retrieve the channel going to the host.
Synopsis:

#include <hostlink.h>
Channel* to_host link(void)

Arguments:
None.
Results:
Returns a pointer to the channel going to the host.
Errors:
None.
Description:
to_host_link refrieves the channel going to the host.

Note: that the link over which communication with the host occurs need not neces-
sarily be the same link as the one from which the transputer was booted.

This function is intended for use with dynamic code loading; care should be taken
if it is used elsewhere.

to_host_link is not in the reduced library.
See also:

from_host link get bootlink_channels

72 TDS 347 01 October 1992

2 Alphabetical list of functions 341

to86 Transfers transputer memory to the host. MS-DOS only.
Synopsis:-

#include <dos.h>
int to86(int len, char *here, pcpointer there);

Arguments:
int len The number of bytes of transputer memory to be
transferred.
char *here A pointer to the transputer memory block.

pcpointer there A pointer to the host memory block.
Results:
Returns the actual number of bytes transferred.
Errors: ‘

Returns the number of bytes transferred until the error occurred and sets errno
to the value EDOS. Any attempt to use to86 on operating systems other than MS-
DOS also sets errno to EDOS. Failure of the function may also generate the follow-
ing server error message:

[Encountered unknown primary tag (50)]

Description:

to86 transfers 1en bytes of transputer memory starting at here to a correspond-
ing block starting at there in host memory. The function returns the number of
bytes actually transferred. The host memory block used will normally have been
previously allocated by a call to alloc86.

to86 is not included in the reduced library.
See also:

from86 alloc86

72 TDS 347 01 October 1992

342 2 Alphabetical list of functions

tolower Converts upper-case letter to its lower-case equivalent.
Synopsis:

#include <ctype.h>
int tolower (int c¢);

Arguments:
int ¢ The character to be converted.
Results:

Returns the lower-case equivalent of the given character. If the given character is
not an upper-case letter it is returned unchanged.

Errors:

None.

Description:

tolower converts the character c toits lower-case equivalent. If ¢ is not an upper-
case letter it is not converted. Valid upper-case letters are ASCII characters in the
range 'A'to 'Z'.

tolower is side effect free.

See also:

toupper

72 TDS 347 01 October 1992

2 Alphabetical list of functions 343

toupper Converts lower-case letter to its upper-case equivalent.
Synopsis:

#include <ctype.h>
int toupper(int c);

Arguments:
int ¢ The character to be converted.
Results:

Returns the upper-case equivalent of the given character. If the given characteris
not a lower-case letter it is returned unchanged.

Errors:

None.

Description:

toupper converts the character c to its upper-case equivalent. If ¢ is not a lower-
case letter, it is not converted. Valid lower-case letters are ASCII characters in the
range 'a’ to 'z’.

toupper is side effect free.

See also:

tolower

72 TDS 347 01 October 1992

344 2 Alphabetical list of functions

ungetc Pushes a character back onto a file stream.
Synopsis:

#finclude <stdio.h>
int ungetc(int ¢, FILE *stream);

Arguments:
int ¢ The character to be pushed back.
FILE *stream A pointer to a file stream.
Results:

Returns the pushed back character if successful, or EOF if unsuccessful.
Errors:

Returns EOF if unsuccessful.

Description:

ungetc converts c to an unsigned char and pushes it back onto the input stream
pointed to by stream. The next use of any of the gete family of functions will return
c unless a repositioning function has been called in between (£E£1ush, £seek,
rewind or £setpos).)

If ungete is called more than once on the same stream without the file stream
being read in the meantime, the operation will fail.

ungetc is not included in the reduced library.

Example:

#include <stdio.h>
#include <ctype.h>

/*

* Function to read an integer.

* Leaves the next character to be read

* as the one immediately after the number.

*/

int get number()
{
int dec = 0;
int ch;

while(isdigit(ch = getc(stdin)))
dec = dec * 10 + ch ~ 0’ ;

ungetc(ch,stdin) ;

return (dec) ;

}
See also:

fflush getc

72 TDS 347 01 October 1992

2 Alphabetical list of functions 345

unlink Deletes a file.
Synopsis:

#include <iocntrl.h>
int unlink (char *name);

Arguments:

char *name The name of the file to be deleted.
Results:
Returns 0 if successful or —1 on error.
Errors:

If an error occurs unlink sets errno to the value EIO.
Description:

unlink deletes the file by removing the filename from the host file system. It is
equivalent to the ANSI library function remove.

unlink is not included in the reduced library.
See also:

remove

72 TDS 347 01 October 1992

346 2 Alphabetical list of functions

Va_arg Accesses a variable number of arguments in a function definition.
Synopsis:

#include <stdarg.h>
lype va_arg(va_list ap, lype);

Arguments:
va_list ap A pointer to a variable argument list.
type Any C type.

Results:

va_arg returns the value of the next argument in the variable argument list which
is assumed to have type type.

Errors:

If the type specified in va_arg disagrees with the type of the next argument in the
argument list the effects are undefined.

Ifthere is no next argumentinthe list, or the next argument is a register variable,
an array type, or a function, the behavior is undefined. If the next argument is of
a type incompatible with the variable type after default promotions (see section
4.2.3), the following compile time error is generated:

Serious—icc—<filename>(linenumber) - illegal type used with va_arg

Description:

Each invocation of va_arg extracts a single argument value from a variable length
argument list. va_arg must have been initialized by a previous call o va_start.
The final use of va_arg should be followed by a call to va_end to ensure a clean
termination.

va_arg can only be used when there is at least one fixed argument in the variable
length argument list.

va_arg is implemented as a macro.

72 TDS 347 01 October 1992

2 Alphabetical list of functions

347

Example;

#include <stdio.h>
#include <stdarg.h>

*

* Sends the number of strings defined in
number_of_strings,

* and given in the parameter list,
to standard output.

*/

void var_string_ print(int number of strings,
{

va_list ap;

va_start(ap, number of strings);
while (number of_strings—- > 0)
puts(va_arg(ap, char *));
va_end(ap) ;
}

int main()
{
var_string_print(2, ”“Hello”, ”World”);

/*
* Displays:
* Hello
* World
*/

}
See also:

va_end va_start viprintf vprintf vsprintf

72 TDS 347 01

October 1992

348 2 Alphabetical list of functions

va_end Cleans up after accessing variable arguments.
Synopsis:

#include <stdarg.h>
void va_end(va_list ap);

Arguments:
va_listap A pointer to a variable argument list.
Results:
No value is returned.
Errors:
None.
Description:

va_endtidies up afterthe use of va_startandva_arg. Ifitis notused, abnormal
function return may occur.

va_end can only be used when there is at least one fixed argument in the variable
length argument list.

va_end is implemented as a macro.
See also:

va_arg va_start

72 TDS 347 01 October 1992

2 Alphabetical list of functions 349

va_s tart Initializes a pointer to a variable number of function arguments
in a function definition.

Synopsis:

#include <stdarg.h>
void va start(va_list ap, parmN);

Arguments:
va_listap A pointer to a variable argument list.
parmN The name of the last fixed argument in the function
definition.
Results:

No value is returned.
Errors:

If parmNis declared as storage class register, as afunction or array, or as atype
that is incompatible with the type of the variable after argument promotion, the
behavior is undefined.

Description:

va_startis used in conjunction with va_arg and va_end. It initializes ap for fur-
ther use by va_arg. va_start can only be used when there is at least one fixed
argument in the variable length argument list.

va_start is implemented as a macro.

See also:

va_arg va_end

72 TDS 347 01 October 1992

350 2 Alphabetical list of functions

vEprintf Analtemative form of £print£. Which accepts a variable
argument list in va_1list form.
Synopsis:

#include <stdio.h>
int vfprintf (FILE *stream, const char *format,
va_list argqg);

Arguments:
FILE *stream An output file stream.
const char *format A format string.
va_listarg A pointer to a variable argument list, initialized by
va_start.
Results:

Returns the number of characters written, or a negative value if an output error
occurs.

Errors:
Returns a negative value if an output error occurs.
Description:

vEprintf is a form of £print£ in which the variable arguments are replaced by
a pointer to a variable argument list. v€printf should be preceded by a call to
va_start, and followed by a call to va_end.

vEprintf is not included in the reduced library.

See fprintf for a description of the format string.

72TDS 347 01 October 1992

2 Alphabetical list of functions 351

Example:

#include <stdio.h>
#include <stdarg.h>

void write_file(FILE *stream, char *format, ...)

{

va_list apo;

va_start (apo,format) ;

fputs ("“WRITE FILE TEXT ”, stream);
viprintf (stream, format, apo);
va_end (apo) ;

}

int main()

{

FILE *stream;

int a = 10;

char *b = ”string”;

stream = fopen(”newfile”,”w”);
if (stream == NULL)
printf (“"Error opening file\n”);
else
{
write file(stream, ”%d, %s”, a, b);
fclose (stream) ;
}
}

/* writes the string ”WRITE_FILE TEXT 10, string”
to the file newfile */

See also:

fprintf va_argva_end va_start vprintf vsprintf

72 TDS 347 01 October 1992

352 2 Alphabetical list of functions

vprintf An altemative form of print£. Which accepts a variable
argument list in the form of ava_list.

Synopsis:

#include <stdio.h>
int vprintf(const char *format, va_list arg);

Arguments:
const char *format A format string
va_listarg A pointer to a variable argument list, initialized by
va_start.
Results:

Returns the number of characters written, or a negative value if an output error
occurred.

Errors:

vprintf returns a negative value if an output error occurs.

Description:

vprintf is a form of print£ in which the variable arguments are replaced by a
pointer to a variable argument list. vprintf should be preceded by a call to
va_start, and followed by a call to va_end.

vprintf is not included in the reduced library.

See fprintf for a description of the format string.

See also:

printf va_argva startva end vfprintf vsprintf

72 TDS 347 01 October 1992

2 Alphabetical list of functions 353

vsprintf An alternative form of sprint£. Which accepts a variable
argument list in the form of a va_list.
Synopsis:

#include <stdio.h>
int vsprintf(char *s, const char *format,
va_list arg);

Arguments:

const char *s The string to which the formatted string is written.
const char *format A format string.

va_list arg A pointer to a variable argument list, initialized by
va_start.

Results:

Returns the number of characters written.

Errors:

None.

Description:

vsprintf is a form of sprintf in which the variable arguments are replaced by
a pointer to a variable argument list. vsprintf should be preceded by a call to
va_start, and followed by a call o va_end.

To use vsprintf in the reduced library include the header file stdiored.h.
See fprintf for a description of the format string.

See also:

sprintf vfprintf va_argva endva_start

72TDS 347 01 October 1992

354 2 Alphabetical list of functions

wcestombs Converts wchar_t sequence to multibyte sequence.
Synopsis:

#include <stdlib.h>
size_t wcstombs(char *s, const wchar t *pwes, size_t n);

Arguments:

char *s Pointer to the start of the array where the resuits will
be stored.

const wchar t *pwes Pointer to the start of the wide character
sequence to be converted.

size t n The maximum number of bytes to be stored.

Results:

wcstombs returns the number of bytes modified, not including any terminating
zero codes or —1 on error.

Errors:

If an invalid code is encountered westombs returns (size_t)-1.

Description:

westombs converts a sequence of wide-character codes into a sequence of multi-
byte characters. It acts like the wetomb function but takes as input an array of

codes and returns an array of characters.

Not more than n bytes are written into s. If the initial and receiving objects overlap,
the behavior is undefined.

Storage of a null character terminates the function.

72 TDS 347 01 October 1992

2 Alphabetical list of functions 355

wctomb Converts type wchar_t to multibyte character.
Synopsis:

#include <stdlib.h>
int wctomb (char *s, wchar_t wchar);

Arguments:
char *s Pointer to the array object that will receive the
multibyte character.
wchar_t wchar Code of wide character to be converted.
Results:

If s is not a NULL pointer, we tomb returns the number of bytes in the multibyte char-
acter corresponding to wchar.

If s is a NULL pointer, wetomb retumns zero. wetomb returns —1 on error.

The value returned cannot be greater than n or the value of MB_CUR_MAX.
Errors:

If wchar does not correspond to a valid multibyte character wetomb returns —1.
Description:

wetomb converts a wide-character code to a multibyte character to and stores the
result in the array pointed to by s. At most MB_CUR_MAX characters are stored.

72 TDS 347 01 October 1992

356 2 Alphabetical list of functions

write Writes bytes to a file. File handling primitive.
Synopsis:

#include <iocntrl.h>
int write(int f£fd, char *buf, int n);

Arguments:
int £d A file descriptor.
char *buf A pointer to a buffer from which the bytes are obtained.
int n The maximum number of bytes that write will attempt
to output.
Results:

Returns the number of bytes written or —1 on error.
Errors:

If an error occurs write sets errno to the value EIO.
Description:

write writes n bytes from the buffer pointed to by buf to the file specified by £d.
If n is zero or negative no output occurs.

write is not included in the reduced library.
See also:

read

72 TDS 347 01 October 1992

3 Modifying the runtime
startup system

This chapter describes a version of the C runtime startup code, supplied in source
form, which may be modified by users. It enables the runtime startup code to be
tailored for a particular application, removing procedures which are not required
and thereby reducing the runtime overhead. The supplied source code is fully
commented and should be read in conjunction with this document. Note: the sup-
plied source is only applicable to this release of the toolset (Dx314) and cannot be
guaranteed to work with future releases.

Only users who are knowledgeable about the implementation of ANSI C and are
familiar with the construction of C runtime systems in general, should attempt to
maodify this code. It is intended as a means of tuning system performance and is
aimed at experienced users.

This chapter covers the following topics:
* A description of the runtime startup code and how it is built.
* Recompiling and linking modified runtime source code.

* An example of a modified runtime system together with the procedure to
build it.

The degree to which the supplied startup code is modified is at the user’s discretion
and it is their responsibility to ensure that any procedures removed are truly redun-
dant to the application. A single library entry or whole sections of the startup code
may be removed e.g. the code to set up heap or stack checking or to initialize the
input/output (I/O) system.

3.1 Introduction

The runtime system supplied as source code and which is described here, is
designed for use in configured systems only. (A separate startup system is pro-
vided without source code for non—configured programs). The configuration sys-
tem considers the C system entered via the runtime startup as a process. Thus,
within this chapter the current invocation of a C main program is referred to as the
‘current process’.

The source which is shipped is the same as that used to create the runtime startup
system for configured systems, which is supplied as part of the standard library.
The code produces the C.ENTRYD and C.ENTRYD.RC entry points used via
cstartup.lnk or cstartrd. 1nk for linking modules prior to configuration.

72 TDS 347 01 October 1992

358 3.2 Overview of system

3.2 Overview of system

The code as supplied can be compiled in two ways: one for the full library; and one
for the reduced library. The reduced version is a subset of the full system, having
no host server I/0 support.

The runtime startup code consists of two stages using the routines in the files:
centrydl.c and centryd2.c. The first routine is called by the configuration
system. This in tumn calls the second routine which then calls main (). See figure
3.1.

Full runtime library: Reduced runtime library:
configuration system configuration system
C.ENTRYD C.ENTRYD.RC

| | |
CENTRYD_stage2

|

main

Figure 3.1 Runtime startup system calling sequence

C.ENTRYD and C.ENTRYD . RC are the entry points to stage 1 of the startup code
for the full and reduced systems respectively. CENTRYD_stage2 is the common
entry point to stage 2 of the startup system and is used for both versions.

Both centrydl.c and centryd2. c use pre—processor conditional compilation
directives which enable full and reduced versions of the runtime startup code to
be generated from a common source. The symbol ‘REDUCED’ may be defined at
compile time, in order to build the reduced version of the library, see section 3.9.

If the full library is used and communication with the server is required then the first
two configuration parameters to the process must be channels. The first being the
channel from the server; the second being the channel to the server.

The actions performed by the supplied runtime startup code are shown in figure
3.2

72 TDS 347 01 October 1992

3 Modifying the runtime startup system 359

Full runtime library: Reduced runtime library:

(centrydl.c)

‘Setupgsb

Initialize static

Figure 3.2 Actions performed by runtime startup code

3.3 The gsb and use of the IMS_nolink pragma

All C functions find the static area by means of a hidden first parameter, the global
static base (gsb), which is the address of the base of the static area. This parame-
ter is passed implicitly to all C functions at the front of the parameter list. User
parameters follow the gsb directly.

72 TDS 347 01 October 1992

360 3.4 Interface to runtime startup code

When a function calls another function it passes the gsb that it received (as its hid-
den first parameter) as the first parameter to the called function. So, the C compiler
automatically adds the gsb to the front of a parameter list when making a call. Simi-
larly the called function has code added by the compiler which picks up the gsb.
This parameter is therefore, completely invisible to the user.

The passing of the gsb can be disabled by declaring the function to be called as
a nolink function using the IMS nolink pragma. A function can also be
instructed not to expect a gsb by declaring the function as nolink in the file in
which it is defined.

3.4 Interface to runtime startup code

The runtime system is selected by the user via the linker indirect file specified at
link time i.e. cstartup.lnk or estartrd.lnk. Configuration data is then
passed to the runtime startup code during configuration.

The full runtime system has the following interface:
void CENTRYD(struct Conf_ Process *pdata);

This is the prototype for the full system. The reduced system has the same format
but a different name i.e. CENTRYD_RC. Note: the name is translated to an occam
style name including a dot e.qg.

CENTRYD becomes C.ENTRYD
CENTRYD_RC becomes C.ENTRYD.RC

In addition the configurer expects an occam style descriptor; the C compiler
pragma IMS_descriptor is used for this purpose.

The descriptor defines the workspace and vector space requirements of the run-
time startup code. The vector space requirement is zero as C does not use vector
space. A workspace requirement of 5 words is defined. This is in keeping with
occam which automatically specifies the workspace for each routine it compiles.
Five words is a somewhat arbitrary amount to specify butis derived from the follow-

ing:

» 3 words to cover the transputers below workspace requirement. 3 is a con-
servative estimate as only 2 words are required for the current range of
transputers.

« 1 word to cover the amount by which C. ENTRYD and C. ENTRYD . RC adjust
the workspace.

* 1 word of leeway.

This amount of workspace is generally not required as the startup code could just
as easily reside in the user specified stack space. However, if the workspace

72 TDS 347 01 October 1992

3 Modifying the runtime startup system 361

requirement of C. ENTRYD is specified as zero and the user makes a mistake and
specifies a stack space that is extremely small, e.g. 1 or 2 words, then there would
not be enough room to accommodate even the below workspace requirements of
the call to c. ENTRYD. The allocation of the 5 words of workspace ensures that the
transputer can at least set up its process chains correctly.

Since the functionis called as if it were 0ccam, a gsb is not passed, so the function
is declared as nolink before it is defined. Thus it will not expect a hidden gsb
parameter.

The single parameter passed in to the function is a pointer to the configuration pro-
cess structure for the current process. This structure contains the following
information used by the runtime startup code:

» Address of the start of the static area.
» Size of the static area in bytes.

* Address of the start of the heap area.
» Size of the heap area in bytes.

» Address of the origin of the stack area.
 Size of the stack area in bytes.

» The configuration parameter data. Used in the startup code for the full run-
time system to obtain the channels from and to the server. It is also used
if the user makes a call to get_param().

The above details are set up by the configurer according to the information sup-
plied by the user in a configuration description (. c£s) file.

The internal details of the structure are not important to this description and cannot
be guaranteed to stay the same in future. Accesses to the relevant parts of the
structure can be found in the source code.

3.5 Details of stage 1 of the runtime startup code

Stage 1 of the runtime startup code is responsible for initializing the static area and
calling the second stage of the runtime startup in such a way that the hidden static
base parameter, the gsb, is set up.

Stage 1 of the runtime startup code can be found in the source file centrydl.c.

3.5.1 Initialize static

The first job of stage 1 is to initialize the static area by calling the routine
initialise static. Before this is done no accesses to static data or external
variables may be made.

72 TDS 347 01 October 1992

362 3.5 Details of stage 1 of the runtime startup code

Stage 1 of the runtime startup is declared as nolink (see section 3.4) and there-
fore a valid gsb is not obtained. Furthermore initialise_static cannot be
called as if it were a normal C function (because it would expect a gsb). In order
for initialise static to work correctly it must be passed a gsb explicitly.

To achieve this initialise_static is declared as nolink to the stage 1 run-
time startup and the address of the base of static is passed as an extra parameter
at the start of the parameter list. The definition of initialise static in
istatic.c, (see section 3.9) is not declared as nolink and so it picks up the
passed first parameter as if it were the hidden gsb.

Apartfromthe gsb, initialise statictakes a pointertothe base ofthe static
area plus two size values. The first is the static size required, the second is the
amount of space available. In the supplied source these two sizes are the same.

Insome cases itis possible that initialise_static could be called toinitialize
an area of memory which is larger or smaller than the required size, e.g. setting
up a static area using the init.static routine from the occam library
calle.lib.

If the areais too small then the routine returns the value 1. This error does not occur
in the source (as supplied), and is therefore not checked for. If any modifications
are made which would mean that the required static size is different to the size of
static area provided then the return value of initialise static should be
checked. If an error is detected the only safe course of action is to halt the proces-
sor e.g.

if (initialise static(...))
halt_processor();

This is because no static has been set up and so no error messages can be printed,
neither can any library function like abort be called as they depend on static data.
More details about static initialization can be found in section 3.8.

3.5.2 Call stage 2 startup code and set up gsb

Having set up the static area, the second stage of the runtime startup is called. It
is important to ensure that the correct value of gsb is propagated through the pro-
gram. This is achieved by declaring the call to stage 2 as nolink while declaring
its definition as normal (the same as for initialise static) and passing the
address of the static area explicitly as the first parameter.

Stage 2 picks this up as if it were the hidden gsb and subsequently passes it as
a hidden first parameter to any functions it calls, including main. These functions
in turn pass the gsb on in any calls they make and so on. In this way the correct
value of gsb is propagated through the program.

If no static data is required by the process then main can be called directly from
stage 1 thereby omitting stage 2. Details are given at the end of the source file
centrydl.c.

72 TDS 347 01 October 1992

3 Modifying the runtime startup system 363

3.6 Details of stage 2 of the runtime startup code

Stage 2 of the runtime startup code is responsible for setting up global data
required by the runtime system. The sequence of operations performed by this
code is described in the following sections. Stage 2 of the runtime startup code can
be found in the source file centryd2.c.

3.6.1 Set up bounds of stack

The first task of stage 2 is to define the boundaries of the stack for the main thread
of execution, i.e. the stack that the program is running within, when the main func-
tion begins executing. The bounds of the stack are defined by setting up two global
variables as follows:

_IMS stack_base A pointer to the origin of the stack.

_IMS_stack limit A pointer to the bottom of the memory area set aside
for use as the stack. This represents the maximum
extent to which the stack can grow.

The implementation of the following facilities uses the two global variables to deter-
mine whether a pointer points into the main thread stack:

¢ Stack checking.
» Parallel process initialization routines.
* The get_details_of_ free_stack_space function.
e The max_stack_usage function.
The two global variables must be set up if any of the above facilities are used.

3.6.2 Initialize heap

The next task of stage 2 is to initialize the heap. This is achieved by setting up four
global variables. True heap initialization will not take place until the first use of a
heap allocation function. The variables are as follows:

_IMS heap_init_implicit |A boolean flag used to determine whether
heap initialization occurs implicitly on the first
use of a memory allocation function or whether
runtime system implicit heap initialization is
used so this variable must always be set to

TRUE.

_IMS heap_start A pointer to the base of the memory area to be
used as the heap.

_IMS heap size The size of the memory area to be used as the

heap. This size is given in bytes.

_IMS sbrk_alloc_request |The size of the block of memory that sbrk
adds to the space available for use by the heap
allocation routines. This size is given in bytes.

72 TDS 347 01 October 1992

364 3.6 Details of stage 2 of the runtime startup code

sbrk is a low level routine which retumns a block of memory for use by the heap
allocation routines: calloc, malloc and realloc. These blocks of memory are
contiguously allocated from the heap area, defined by the variables
_IMS heap_startand_IMS_heap size. The size of these blocks of memory
isgivenby IMS sbrk . alloc :_request. The default sizes for the blocks are 4K
on a 32 bit processor and 1K on a 16 bit processor. The minimum size for
_IMS_sbrk_alloc_request is 16 bytes on a 32 bit processor and 8 bytes on
a 16 bit processor. A value smaller than this does not allow enough space for the
memory allocation functions to maintain information on the state of the heap.

If no heap is required then all these initializations can be omitted.

Note: that the runtime system depends on the presence of a heap for its imple-
mentation of I/O. Thus removing the heap precludes the use of the full library. The
heap may only be removed if the reduced library is to be used.

3.6.3 Initialize pointer to configuration process structure

The next item to be initialized is a global variable which points to the configuration
process structure which was passed to C.ENTRYD (or C.ENTRYD.RC).

_IMS PData A pointer to the configuration process structure for this pro-
cess.

This global variable is used by the following functions:
¢ get_ param
¢ get_bootlink channels
* get details of free memory

These functions obtain information via the configuration process structure. In par-
ticular get_param needs _IMS_PData so that it can find the data block contain-
ing the parameters set up at the configuration level.

Note: that _IMS PData must be set up if the I/O system is to be used because
the I/O system obtains the server channel via get_param.

3.6.4 Initialize 1/O system

Now the I/O system can be set up. This is not done in the reduced case.

The first job in setting up the I/O system is to establish a link to a server. In a confi-
gured system using the full library the first two configuration parameters must be
the server channels. get_param is used to obtain these channels and then the
function set_host_1link is called which stores the channels for use by the run-
time system.

72 TDS 347 01 October 1992

3 Modifying the runtime startup system 365

The function io_and hostinfo_init is now called. This allocates the space
required by the i1o system and initializes file system data. It also obtains informa-
tion from the server about which host system is being used. Setting up the 1/0 sys-
tem requires a heap to have been initialized.

3.6.5 Get command line arguments

The next job is to obtain the command line arguments arge and argv. This is not
done in the reduced case. The arguments are obtained by calling the function
GetArgsMysel£. Server communication must have been established before this
call.

3.6.6 Save exit return point

A call to setjmp is the next action. This records the position to 1ongjmp to when
exit is called. The return position is stored in the following global variable:

[_IMS_startenv | The position to Llongjmp to when exit is called. |

3.6.7 Initialize clock

The final action before calling main is to store the current process time and current
process priority. These values are used by the elock function when calculating
elapsed processor time and are stored in the following variables:

_IMs_sStartTime The value of the processor clock just before the
call tomain.

_IMS clock _priority [The priority at which the startup code is running.

The priority is required because clock is defined to work only at the priority at
which the C program was started. If clock is not required, these initializations may
be omitted.

3.6.8 Callmain
The runtime system is now set up and main is called. The call is different in the
full and reduced cases. The reduced case does not have true values of argec and

argv and so these are set up in a way that satisfies the ANSI standard.

main is called as an argument to exit. Thus returning from main with a value
behaves the same as calling exit with that value.

The call to exit can be omitted if required. Note: that if the call to exit is used,

then the call to setjmp must also remain, otherwise exi t will not know where to
longjmp to.

72 TDS 347 01 October 1992

366 3.7 Interface tomain

3.6.9 Terminate server if required

The final action of the startup code is to determine whether to terminate the server.
This depends on how the program (once main has retumed) was exited. The
default action is to terminate the server. This can be overridden by calling
exit noterminate.

The global variable _IMS_entry term mode is used to determine how the pro-
gram exited. It is set up by the exit funcfions. Bit 2 of _IMS_entry term mode
is set if the server is to be terminated.

if the server is to be terminated the value returned by main or passed as the argu-
ment to an exit function must be returned to the calling environment. This value
is stored in the global variable _IMS_retval. To terminate the server the function
terminate_serveris called with the return value as its argument.

Special action is taken in the case of the two values EXIT_SUCCESS and
EXIT_ FAILURE. These are word length values; the server expects 32 bit values
for these special status values and so these are converted before the call to ter-
minate_ server.

_IMS _entry term mode |Used to determine whether the server should
be terminated. If bit 2 is set then the server is
terminated

_IMS retval The value to be passed to the server when it
terminates. Either returned from main or the
argument to an exit function.

3.7 Interface tomain
The INMOS interface to main is as follows:

#include <channel.h>

int main(int argec, char *argv[], char *envp,
Channel *in[], int inlen,
Channel *out[], int outlen);

In this version of the runtime startup only arge and argv are of interest. The rest
of the arguments are included for compatibility with previous systems. They are
set up as follows:

Argument Value
envp NULL
in NULL
inlen 0
out NULL
outlen 0

72 TDS 347 01 October 1992

3 Modifying the runtime startup system 367

3.8 Static initialization

The function initialise static performs static initialization in two stages.
The first stage is to clear the entire static area to all zeros. Thus all static data with-
out explicit initializers is set to zero. The next stage initializes all non-zero static
data.

Each object file which defines static or external data has included within it a static
initialization routine. This routine initializes the parts of the static area associated
with the object file. During linking the linker creates a chain of all the static initializa-
tion routines called the "static initialization chain™. The second stage of static initial-
ization walks this chain calling each routine in tumn.

Each entry on the chain consists of a header and a routine. The header is used
to link the chain together, it contains the byte offset to the next entry in the chain
or zero if the entry is the last on the chain. The start of the chain is found using a
word patched by the linker. This word contains the byte offset to the first entry in
the chain. The function get_init chain_start, (defined in getinit.s, see
section 3.9) returns a pointer to this word. Figure 3.3 illustrates the layout of a static
initialization chain in memory.

header 1

routine 1

start

header 2
routine 2 |

header n

routine n

Figure 3.3 Static initialization chain

In figure 3.3 start contains the offset to header 1, which contains the offset to
header 2, and so on to header n which contains the value 0 to denote the end
of chain.

72 TDS 347 01 October 1992

368 3.9 Source files supplied and rebuilding

Having obtained the address of the header, incrementing it by one word yields the
address of the routine. The routine has the prototype:

void routine(void) ;

and can be called via a function pointer.

3.9 Source files supplied and rebuilding

This section provides a summary of the source files supplied and describes how
to rebuild the runtime code once it has been modified.

The following source files are supplied:

centrydl.c The stage 1 runtime startup code. This is the entry point
called by the configuration system.

centryd2.c The stage 2 runtime startup. This is called by stage 1 and is
responsible for initializing global data for the runtime system.

uglobal.h A header file declaring all the global variables which are ini-
tialized by the stage 2 runtime startup code.

startup.h A header file defining all the support functions called by the
runtime startup code.

config.h A header file defining the structure passed to the runtime sys-
tem by the configuration system.

istatic.c The initialise_static function. This is responsible for

initializing the static area and is called from the stage 1 run-
time startup code.

getinit.s The get_init_chain_start function. This returns a
pointer to the head of the static initialization chain. Itis called
by initialise_statiec.

In order to generate a runtime system which is suitable for use with all possible
processor types it is usual to compile the above for the T2, TA and T8 processor
classes.

Note: the compilation should be performed using the standard ice compiler. The
optimizing icc compiler does not include some of the support required, i.e. it does
not support 16-bit transputers or debug information.

The following example shows how to compile the above source files for the T8
transputer class:

72 TDS 347 01 October 1992

3 Modifying the runtime startup system 369

UNIX based toolsets:

icc centrydl.c -t8
icc centryd2.c -t8
ice istatic.c -t8

icc getinit.s —-pp -t8 > getinit.pps
icc getinit.pps —-t8 -as

MS-DOS based toolsets:

icc centrydl.c /t8
icc centryd2.c /t8
jcc istatic.c /t8

icc getinit.s /pp /t8 > getinit.pps
icc getinit.pps /t8 /as

VMS based toolsets:

icc centrydl.c /t8
icc centryd2.c /t8
icc istatic.c /t8

DEFINE SYS$OUTPUT temp.pps

icc getinit.s /pp /t8

DEASSIGN SYS$OUTPUT

icc temp.pps /t8 /as /o getinit.tco

Note: that stack checking must NOT be enabled for any of these files. The stack
checking code is not set up properly until after the startup code has executed and
would fail if used before. Pragmas in the source files ensure that stack checking
is not enabled.

Note: how getinit. sis built in two stages. The first stage uses the C preproces-
sor, the second uses the assembler. (The icc ‘PP’ option sends output to stdout
by default; this is redirected to a named file, ready for input to the assembler).

If the reduced versions are required use the command line option ‘d’ to add the
symbol ‘REDUCED’ to the command line of all invocations of icc, except those
which use the ‘as’ option.

This procedure may be repeated for classes T2 and TA as appropriate.

The object files produced from the above should be added to the linker command
line along with all other object files. They should NOT be made into a library. (If
they are in a library then the linker cannot be guaranteed to link in the modified ver-
sion of the startup code in preference to that which exists in the standard library).

An example of how to recompile and link the runtime source is given in section
3.11.

72 TDS 347 01 October 1992

370 3.10 Notes

3.10 Notes
This section lists some final considerations:

¢ The final size of the bootable obtained depends on the bootstrap scheme
used. See the documentation for the configurer icconf and the collector
icollect for details of this. (Chapters 2 and 3 of the ANS/ C Toolset Ref-
erence Manual, respectively).

¢ The runtime startup code includes a 16 byte information%module. This
is a special TCOFF module, used by other tools e.g. the debugger, to find
the address of the main routine. The information$module also con-
tains TCOFF comments giving the version number of the library. If
required, the information%module can be omitted by removing the fol-
lowing line from either estartup. 1nk or estartrd. 1nk, before linking:

#reference information%module

72 TDS 347 01 October 1992

3 Modifying the runtime startup system 3N

3.11 Example

In the following example a copy of centryd2. ¢ is modified to omit the code to
obtain the command line arguments and initialize the clock function. The modified
entry point is to be built for the full runtime library.

/* @(#)centryd2.c 1.18 10/1/92 */
/* Copyright (C) INMOS Ltd, 1992 */

/tiﬁttitiititiiit*i**ttii*iﬁttiti‘tiiititttttititititi*ttiiitiiiiﬁt*it*tttittt
*

This file contains the second stage of the C runtime startup code for
use in configured systems. This source is used to build the entry
points:

C.ENTRYD : linked using cstartup.lnk
C.ENTRYD.RC : linked using cstartrd.lnk

The reduced version is obtained by defining the REDUCED preprocessor
symbol.

By modifying this code it is possible to greatly reduce the size of
runtime overhead which is added by the standard C entry points.

Note that this code relies on the presence of a static area. If no
static area is required then main() can be called directly from the
first stage and this stage may be omitted. See the file centrydl.c for
more information.

FULL STAGE 2 : a) Set up bounds of stack.
b) Set up heap.
c) Set up pointer to configuration process structure.
d) Set up I/0 system and host system type.
e) Get command line args.
f) Save return point for exit.
g) Set up clock.
h) Call main.
i) Terminate server if required

REDUCED STAGE 2 : a) Set up bounds of stack.
b) Set up heap.
c) Set up pointer to configuration process structure.
d) Save return point for exit.
e) Set up clock.
£) Call main.

Note that the order in which the above tasks are done is significant.
Changing the order may cause the system to fail.

LR N N I BN N N B R O B N N N N N N N N N N N N N B N BN N 2R I N N A
L NN B BN N B NN N N N N N N I N N NN N R N B R NN NN O N N N N NN

*
iiiiitﬁti*tt*ﬁ**ﬁt*iit*tiii*’tti*itt*itﬁttti***tiitit*ti*ii*ﬁi*i*i*ii*iii****/

/iitttiiiiiii*ii*iti*ti*tii*i‘ttiiiitiiitiitiittiiﬁfiiiti*ﬁ*ﬁ*iti*t*i**iiti*i*
*

* Make sure stack checking is disabled when this file is compiled. Stack
* checking must not be enabled in the start up code because global data
* required by the stack checking code is not set up yet.

*

* * % *

*
iiitiitii**it*tiitit*liii*iii*itiiii*iiiiiiiiiii*ii*i**ii***tiiii*i**i*******/

#pragma IMS_off (stack_checking)

/t*iiii*i*tiiiiiittt*tttiiiitiﬁitQiﬁt*itttﬁﬁ*tittfiit*ﬁ*iiiii*i*i*i*ﬁi***ﬁ****
* *

* Include files. *
* *

72 TDS 347 01 October 1992

372

3.11 Example

iititii*itiiitititi*tiiii*itt'ttttittiitii*iit*iii*i*iit*iiﬁii*i*itii*ii*iiil/

#include
#include
#include
#include
#include
#include
#include
#include
#include

<setjmp.h>
<channel.h>
<stddef.h>
<stdlib.h>
<process.h>
“uglobal.h”
“startup.h”
<misc.h>
“config.h”

for
for
for
for
for
for
for
for
for

setjmp

Channel

NULL

exit

ProcTime and ProcGetPriority
globals

startup internal functions
get_param

Conf_Process

/**ii*iii*itiiti*tiiiti*i*ttiii*itﬁtiittiiiﬁﬁi**i*itiitiiii*iti*i**ititiii**it

*

* Declare main using the INMOS standard argument list.

*

*
*
*

***iiit*ti*it*tiiiitﬁttiiﬁ*ititi*i*iiiiittii*iitttitiii**iiiti*ititti*ii*i*i*/

extern int main(int argc, char **argv, char **envp,
Channel *in[], int inlen,
Channel *out{[], int outlen);

/*i*i*ii*ii**t*iti*t*itiiiiii**iiiiiittiti*i*ti**i****itiiﬁﬁi*ittiiiiiii*ti*i*

*

*

* Define the second stage routine. The name is translated to avoid invading *
* the user’s name space.

*

*
*

*tii*iiiti*iii*titiii**t*iit*it*tit*iitiiiiiii*ti**i***iiii**i*it*i*i**ﬁiiiit/

#pragma IMS_ translate (CENTRYD_stage2, ”CENTRYD_stage2%c”)

void CENTRYD_ stage2(struct Conf Process *pdata)

{
/* x
* This is where the argc and argv variables that are passed to main were *
* defined. They are removed because we are not providing this facility *
* in the modified code. */

Jrddkhkhkkhdhhkkdhdkhhhhdhkhhkkh kb hd bk bk dhhh kbbb hh kb hkd b kkkhkhhkkhdddhhdh

d*

* Set up the bounds of the stack for the main thread of execution. These
globals are used by the following:
1. Stack checking.
2. The get_details of_free stack space function.
3. Parallel processes (use of ProcAlloc and ProcInit).
4. The max stack_usage function.
If any of these features are used then the following initialisations
may not be omitted.

*

¥ o % N ¥ N NN *

_IMS_stack_limit

_IMS_stack_base

: The maximum extent to which the stack can
grow. Note that the stack is a falling

stack.
: Pointer to base of stack.

* ok % N % % % % % % % ¥ * ¥

*

********itiii**t*ti*ﬁ**********i*ii**ttit****tttiii****tti********i****ii*/

_IMS stack_limit = (int *) ((unsigned int)pdata->StackAddr -
pdata->StackSize) ;
_IMS_stack base = (int *) (pdata->Stackaddr);

72TDS

347 01

October 1992

3 Modifying the runtime startup system 373

/i*iii*i*ﬁii*iﬁiiiiiiii**itttiiittttiiittiiitttitititttlitii*iiiitti*i*ii*i
*
* Set up the heap. If no heap is required then these initialisations can
* be omitted.
* Note that a heap must be set up if the full library is being used.
* _IMS_heap_ start : A pointer to the base of the heap. *

* O+ % ®

* _IMS_heap_init implicit : A boolean which is set to TRUE if the heap *
* is initialised implicitly on the first call*
* of a memory allocation function. This must *
* always be set to TRUE otherwise the heap *
* allocation functions will fail. *
* _IMS heap size : The size of the heap memory region in *
* bytes. *
* _IMS sbrk_alloc_request : The size of block which sbrk adds to the *
*

memo: space available to malloc. *
*iitt'tt**t*itittitiitittiiittttitiiﬁttttii*tttit*itittt*ﬁittitiiiii*ii*t*/

_IMS heap start

_IMS heap size
_IMS_heap_init implicit
_IMS sbrk alloc_request

{(int *) (pdata->HeapAddr);
pdata->HeapSize;

TRUE;

SBRK_REQUEST;

/itiiiti**ﬁ*ii'iii*i*it*tiit'*iiiii*iiitiiiiﬁiti'iitiiiﬁfi*iti*ittiii****i*

* Set up the global variable which is used by some functions to obtain *
* a pointer to the configuration process structure set up by the *
* configurer. *
* The following functions make use of this global: *
* 1. get param *
* 2. get bootlink channels *
* 3. get_details_of free memory *
* If none of these functions are used then this initialisation may be *
* omitted. *
* Note that get param is used below, so that if the initialisation of *
* _IMS PData is omitted then make sure that the call to get_param below *
* is not required, and hence omitted. *
*i*itt*ii*it*ii**ii*i*iiii*tittiitﬁii**titiii*t*ittii**i*ttt*i*ti*tit*i*ii/

_IMS_PData = pdata;
#ifndef REDUCED

/ﬁ***iti**iii**t*it**tiiii*i'ittiiﬁi*tiitt*tiii*it*i**t*iti*ti*ii**tii****t
* Set up the host link information. The runtime system assumes that the *
* first two configuration parameters are channels fromserver and *

* toserver respectively. This is not required in a reduced system. *
itittiiﬁiii*ﬁﬁ*ttttt****tiitﬁttttiittt*iit*ti*iittii*li**iiiﬁ**ii*t*ii*i*t/

{
Channel *in, *out;

in = (Channel *)get param(l);
out = (Channel *)get param(2);
set_host_link(in, out);

}

/titii***i*i*i****i*'iiit*itiliittiiiiiiitit**i*iti*iiiti***i**i*****t****i
* Set up the I/O system and obtain the host type. The I/O system
* consists of three layers and all three are set up by this call.
* The host information is required so that the I/O system can determine
* the type of the host file system. Note that this means that the
* host_info function is only available as long as the following is
*
*
*

* ok R % M

called. The host link information must have been set up before the I/O
system is initialised. This is not required in a reduced system.

A heap must have been set up in order for this call to succeed. *
iiﬁ*ﬁ**itii***ii*ittittiiti*tttii*iiiiiiiiiii*i*i*iitit**iii***iiiti*ti*it/

72 TDS 347 01 October 1992

374 3.11 Example

io_and hostinfo_init();

/*
* This is where the call to obtain the command line arguments was made. *

*/

#endif /* REDUCED */

[rrkkdhhkkhdhk ke ke ke ok kA kA kAR AR AR ARk hhhh ko dkkkd ko dhdk kb d kA d kA kk kb ke dkhd

* Call setjmp to mark the return position for a call to exit. The set]mp *

* is only required as long as a call to exit() is subsequently used.
ﬁtii*t**tiii*tttittt*ititittiittittiitlitt*titttttitit*tittiti*****iti*ii*/

if (setjmp(_IMS_startenv) = 0)

{
/* -
* This is where the code to initialise the clock function used to be. *
* In this example we do not require the clock function and so we have *
* deleted the lines which did the initialisation. *
* */

/*****i*t*ﬁiiﬁ*titiii**t******tﬁttiiti**t*****ttt*ii**tti*tti***ii*****t*
* Call main. We call main as an argument to exit. Thus returning from

main is like a call to exit. The call to exit ensures that ANSI

behaviour on closing open files etc. is followed. Note that the

reduced case also sets up argc and argv as required by ANSI.

If ANSI behaviour is not important then a minimal call to main which

still returns the result of main to the environment is as follows:
_IMS _retval = main(0, NULL, NULL, NULL, 0, NULL, 0);

Since only those systems which terminate the server can return a

value to the calling environment then we only need to store to

_IMS retval if we subsequently call terminate_server. *
i*ii**i*iﬁ*ii*tttiﬁti*t*iitﬁtitiiﬁit*tittttt*iiii**tititiﬁt*t**tt*t*iiit/

LR N NN B BN N R N
* o % % N O % * ¥

* We force the use of the call to main from the reduced version of *
* this file since this sets up some dummy values for argv and argc. *

{
char *argv[2] = (“”, NULL };

exit(main(l, argv, NULL, NULL, 0, NULL, 0));
}

}
#ifndef REDUCED

/****ﬁi****i*t*iti*it**iii*******iii*iitﬁif*iii**ii***iitit*ﬁ*iitititti*iii

* main has returned, we must now decide whether to terminate the server. *
Not required for the reduced case. *
We terminate the server only if exit terminate was called. *
The global variable _IMS entry term mode can be used to decide whether *
exit, exit repeat, exit terminate or exit noterminate was called to *
exit the program. exit repeat and exit terminate act like exit in *
the configured case so we only worry about whether exit_noterminate is *
called. If exit noterminate is called the bit 2 of _IMS entry term mode*
is clear. If this level of control is not required the test or the call¥*
to exit terminate or both can be omitted. *
The return value of the program is stored in _IMS_ retval by exit. We *
must convert the special values for EXIT SUCCESS and EXIT FAILURE to *
their iserver counterparts sps.success and sps.failure. Note that we *
nead a long value to contain the server status which is a 32 bit value *

*

*

on all processors.
ek dkk ko hh kb kk ko kh ko kb kkdhd bk kkkd bk kdkkk bk ok hkdkdk bk h bk ddkk /

* % ok o % % % % ¥ % o % ¥ ¥

72TDS 347 01 October 1992

3 Modifying the runtime startup system 375

if ((_IMS_entry_term mode & TERM BIT) != 0)
{
long int status = (long int)_IMS retval;
if (status == EXIT SUCCESS)
status = SPS_SUCCESS;
else if (status = EXIT FAILURE)
status = SPS_FAILURE;
terminate_server (status);
}

#endif /* REDUCED */
}

3.11.1 Building the modified runtime system

The new version of centryd2 . ¢ must be compiled so that it can be used as part
of the startup code. For this example a version is required which works with the
full library, on 32 bit transputers which do not have floating point units. The compila-
tion command is as follows:

UNIX based toolsets: MS-DOS/VMS based toolsets:
icc centryd2.c -ta icc centryd2.c /ta

This produces the object file centryd2. teco. This object file is linked along with
the rest of the object files and libraries which are required to build the program.

For example:

To link in the new version of centryd2. tco for a program comprising one file:
main. tco, targeted at a T425 transputer, use the following command:

UNIX based toolsets:

ilink main.tco centryd2.tco —-f cstartup.lnk -t5

MS-DOS/VMS based toolsets:
ilink main.tco centryd2.tco /f cstartup.lnk /t5

This creates main . 1ku which consists of a C main called via startup code which
includes the new version of centryd2. tco.

main.lku can now be used as part of a configured system.

72 TDS 347 01 October 1992

376 3.11 Example

72 TDS 347 01 October 1992

Language Reference

72 TDS 347 01 October 1992

378 Language Reference

72TDS 347 01 October 1992

4 New features In
ANSI| C

This chapter describes the new features added by the ANSI standard to the C lan-
guage.

This chapter is not intended to be a reference to ANSI standard C but rather a sum-
mary of differences from the previous widely-known definition of the language. For
a formal description of the language the reader is referred to the ANSI reference
documents and to ‘C: A Reference Manual’ by Harbison and Steel.

Kernighan and Ritchie’s original description of the language as defined in their
book 'The C programming language '’ (First edition 1978), is referred to in this
chapter as ‘K & R C'. Details of these publications can be found in the bibliography
to the rear of this manual.

This chapter is divided into two sections:

4.1 Asummary of the new features added by ANSI to the original definition of
the language.

4.2 Detailed descriptions of the new features.

41 Summary of new features in the ANSI standard

The following tables list the new features in the ANSI standard. The tables list the
main areas of change and briefly describe how they differ from the original imple-
mentation of the language.

Area of change ANSI standard

Function declarations |Parameter lists in function declarations can include type
specifiers with or without identifiers. The new void type
can be used and the list may end with an ellipsis ‘...’ to
indicate a variable number of parameters.

Type specifiers 1. New types:
enum
void

2. New type qualifiers:
const
volatile

3. New type specifiers:
signed

72TDS 347 01 October 1992

380

4.2 Details of new features

Area of change

ANSI standard

Identifiers
Keywords

Constants

Operators
Character types

Hardware characteris-
tics
Compiler control lines

Structures and unions

Initialization
Trigraphs

Where specified alone, signed, const, and vola-
tile imply the appropriately qualified int type.

3. New types:
unsigned char
unsigned long
signed char

The first 31 characters of internal names are significant.
1. Keyword entry is no longer valid.

2. New keywords:

const

enum

signed

void

volatile
Integer constants can use the suffix U to denote an
unsigned integer constant.

Floating point constants can use the suffixes F (for
float) and L (for long double).

New unary operator ‘+' added to complement ‘-’

Character constants are of type int and are sign
extended in type conversions.

New character escape codes: \” \? \x\a\v
Signedness of char types is implementation defined.

The type short is at least 16 bits long and the type
long at least 32 bits long.
New preprocessor directives:

felif

#error

#pragma
Some preprocessor macros are also defined.
Structures and unions can be:

Assigned to other structures and unions.
Passed by value to functions.
Returned by functions.

Unions can be initialized.

Character trigraphs are introduced to support the ISO
646 invariant character set.

Table 4.1

72 TDS 347 01

New features in ANSI C

October 1992

4 New features in ANSIC 381

4.2 Details of new features

4.21 Function declarations

A new form of function declaration is available which allows types to be specified
for parameters in the function’s parameter list. Declarations can omit parameter
identifiers and give only the type specifiers.

It is also possible to specify a variable number of parameters by terminating the
parameter list with an ellipsis ‘. . .". For example:

void add numbers(int *sum, int a, int b);
/* Declaration with identifiers */

void add numbers{int *, int, int);
7* Declaration without identifiers */

void add many numbers(int *sum, int n, ...);
* Declaration with variable parameters */

A function with no parameters can be specified by specifying the keyword void
as the only parameter in the parameter list. For example:

int hello(void);
A function declarator using a parameter type list defines a prototype for that func-
tion.
4.2.2 Function prototypes

Function prototypes are a new way of declaring functions. They make programs
easier to read and function call errors easier to find.

When using function prototypes:
1 Functions must be explicitly declared before any call is made.
2 Multiple declarations of the same function must agree exactly.
3 Function declarations must use the parameter type list form.
4

When calling a function, the number and types of the parameters must
agree with the specification in the declaration.

5 Arguments to functions are converted to the types specified in the declara-
tion.

4.2.3 Functions without prototypes

Non-prototyped functions as described in K & R C are still permitted in ANSI C.

72 TDS 347 01 October 1992

382 4.2 Details of new features

Arguments to non—prototyped functions have the following default argument
promotions:

¢ an argument of type char, short int, int bit-field, or enumeration type
are converted to type int (signed int, if this will correctly represent the
argument, unsigned int otherwise).

« an argument of type float is converted to type double.

4.2.4 Declarations

Type qualifiers can be used in pointer declarations. This is particularly useful for
creating constant pointers, pointers to constants and pointers to volatiles. For
example:

const int *ptr_to constant;
/* Declares a pointer to a constant int */

int *const constant ptr;
/* Declares a constant pointer to an int */

volatile int *ptr to volatile;
/* Declares a pointer to a volatile int */

4.2.5 Types, type qualifiers and type specifiers

This section describes the ANSI standard syntax for types, type qualifiers and type
specifiers.

The following have been added:

Type qualifiers — const and volatile.

Type specifiers — enum, signed and void.
const defines a constant object which cannot be changed in the program. const
can be used alone or with other type specifiers struct, union, enum or with the

type qualifier volatile. Used alone it implies const int. For example:

const int month = 10;

month = 11; /* Not allowed */
month++; /* Not allowed */

const can be used within pointer declarations to declare variable pointers to
constant values, or constant pointers to variable values.

enum is used to create enumerated types. An enumerated type defines a
sequence of integer values for groups of logical names. The sequence of values

72 TDS 347 01 October 1992

4 New features in ANSI C 383

begins at 0 and increments by one unless specific values are assigned. For exam-
ple:

/* Define an enumerated type for the days of the week */
enum days {monday, tuesday, wednesday, thursday,
friday, saturday, sunday};
enum days today; /* Declare today as a variableof type days */
today = friday;
if (today = sunday)

The default value of a constant can be overridden by assigning a specific integer
value. If a member of the list is not assigned a value explicitly, it takes on the value
of (previous constant + 1). For example:

enum poets {corso, burroughs, ginsberg = 9, cummings};
/* corso = 0, burroughs = 1, cummings = 10 */

signed complements the existing type specifier unsigned. It may be used alone,
where it implies signed int, or to qualify the following types: int, short int,
long int, char.

voidis mainly used to declare functions which do not return a value. For example:

void add numbers();

main ()

{

int *answer;

add_numbers (answer,23,42);
}

void add numbers(sum, b, c)
int *sum;
int b,c;
{
sum = b + c;

}

Another use for void is in a cast expression where a returned value is discarded.
For example:

/* Ignore the return value of fputc */
(void) fputc(ch,stream);

volatile identifies an object as modifiable outside the control of the implementa-
tion. For example, the object may refer to a memory mapped port which is used
by a modem. volatile can be used to protect objects from unpredictable com-
piler optimizations.

volatile can be used alone or with other type specifiers and qualifiers. Used
alone volatile implies volatile int.

72 TDS 347 01 October 1992

384 4.2 Details of new features

An object can be both volatile and const in which case it can not be modified
by the program but could be modified by an external process (for example, a real
time clock). For example:

volatile int port one;
const volatile int clock;

4.2.6 Constants

This section summarizes the changes to the syntax for integer, floating point, string
and character constants.

The suffix U can follow integer constants to indicate type unsigned. U can be used
in conjunction with the existing L suffix and the order is not significant. For exam-
ple:

42u 1096U 100lu 2048UL

The suffix F can follow floating point constants to indicate type £1oat and the suffix
L to indicate type 1ong double. For example:

3.1F 4.2L
The type long float is no longer allowed.

Adjacent string constants are concatenated into a single string terminated by a null
character ("\0’).

The following new character escape codes are defined:

Code |Description

\? Gives the question mark character. This should be used where a ques-
tion mark could be mistaken for part of a trigraph.

\” Gives the double quote character.
\a Rings the bell (equivalent to CTRL-G).
\v Gives a vertical tab.

\xn |Gives the character represented by n, where n is the ASCII code of the
character represented in hexadecimal. For example, \x2B gives the
character +.

4.2.7 Preprocessor extensions
This section describes the predefined preprocessor directives and macros.

Compiler directives

Directive |Description
#elif Abbreviation of #else #if.

72 TDS 347 01 October 1992

4 New features in ANSIC 385

#error Generates a compiler error message containing optional text.

#pragma |Causes an implementation-defined effect. In ANSI C this directive
is used to select a particular combination of compiler options or to
override options given on the command line.

Predefined macrosa\:y

Macro Description
__DATE __ |The current date, in the form: Mmm dd yyyy
__FILE _ |The name of the current source file, expressed as a string literal.

__LINE _ (The line number of the current line in the source file, expressed as
a decimal constant.

__STDC___ |A non-zero value if the implementation conforms to ANS| C.
TIME The current time, in the form: hh:mm: ss.

4.2.8 Structures and unions

In ANSI C structures and unions can be assigned to other structures or unions,
passed by value to functions, and returned by functions. Unions can be initialized.

When a structure is given as an argument to a function a copy of the structure is
created for use within the function. For example:

struct record

{

char firstname[30];
int age;

}i

void print_name(struct record person);

struct record test(struct record first,
struct record second);

main ()

{
struct record ph;
struct record rl;

ph.firstname = “"Phil”;
ph.age = 27;

/* Assigning a structure to a structure */
current_person = ph;

/* Passing a structure as an argument to a
function */
print_name (current person);

/* Returning a structure from a

function */
winner = test(ph, rl);

72 TDS 347 01 October 1992

386 4.2 Details of new features

Unions can be initialized. The initialization is performed according to the type of
its first component and the expression used to perform the initialization must evalu-
ate to the correct type.

For example:

union alltypes {
double bigfloat;
int digit;
char letter;

} initalltypes = 3.1;

union complex {
struct {int a; char b;} s;
double bigfloat;

} initcomplex = {42, 'x’ };

4.29 Trigraphs

Trigraphs are added to enable C programs to be written using only the 1ISO 646
invariant code set. ISO 646 is a subset of 7-bit ASCII which contains only those
characters present on all keyboards.

Trigraphs and the characters that they represent are listed in the following table.

Trigraph Character
represented
7= #
??([
??) 1
??/ \
22/ A
?27< {
27> }
22! |
?2?2- ~

All other trigraph-like sequences are treated as literal strings. For example, the
sequence ??+ is not a trigraph and is treated as the literal sequence that it repre-
sents.

Trigraphs are converted to the equivalent character before lexical analysis takes
place.

Trigraph escape codes

The character escape code \? has been added to allow the printing of trigraph
strings. The trigraph string should be preceded by the escape character. For
example:

”“This is a backslash: ??/";
“This is not a trigraph \??/”;

static char textal]
static char textb[]

L]

72TDS 347 01 October 1992

o Language
extensions

This chapter summarizes the INMOS extensions to the C language. It describes
the concurrency features, compiler pragmas, and lists the predefinitions, all of
which are described in detail elsewhere in this book, It also describes the __asm
statement that supports the insertion of transputer code into C programs.

The INMOS implementation of ANSI C provides the following language extensions
beyond the ANSI standard:

* Concurrency support.
¢ Pragmas.
» Additional predefined macros.

¢ Assembly language support.

5.1 Concurrency support

Concurrency support is provided by a set of library functions with associated pre-
defined data types and data structures. The library functions are declared in three
standard C header files along with all related constants and macros.

Functions are provided for creating and manipulating processes (process .h), for
synchronizing processes and exchanging data down channels (channel . h), and
for creating and manipulating semaphores (semaphor .h).

Full details of how to create parallel programs using the ANSI C concurrency
extensions can be found in chapter 5 ‘Parallel processing ' of the accompanying
Toolset User Guide.

5.2 Pragmas
A series of special compiler operations are implemented as options to the
#pragma directive. The options available are listed below. Details of the pragmas,

their syntax and options can be found in section 1.4.11 in the accompanying Tool-
set Reference Manual.

72 TDS 347 01 October 1992

388

5.3 Predefined macros

Pragma

Description

IMS_codepatchsize |Specifies the size of a reserved code patch.

IMS descriptor

Creates a TCOFF descriptor for C functions.

IMS_ linkage

Adds tags for segment ordering.

IMS_nolink

Enables functions to be compiled without a static link
parameter. Used when calling occam code from C,
and C functions from occam.

IMS_nosideeffects |Marks a function as side effect free. This pragma is

implemented for the optimizing C compiler but is
ignored by the standard C compiler.

IMS_modpatchsize

Specifies the number of bytes reserved for a module
number patch.

IMS_on Enables specific compiler checks. Checks to be
enabled are specified as arguments to the pragma.
IMS_off Disables specific compiler checks. Takes the same set

of check arguments as IMS_on.

IMS_translate

Translates all references to one name into another
name. Used to create aliases for external routines
which contain prohibited characters.

5.3 Predefined macros

The following predefined macros are provided in the ANSI C toolset in addition to
the standard definitions required by the ANSI standard.

Constant Meaning/value

__CC_NORCROFT |Indicates a compiler derived from the Norcroft C compiler.
Set to the decimal constant one (1).

_Icc Indicates the ANSI C compiler icc. Set to the decimal

) constant one (1).

_PTYPE Indicates the target processor type. Takes the following
values:
2'-T212 '3'-T225
‘4'-T414 '5' — T425/T426/T400
‘8’ — T800 '9’ —T801/T805
‘A’ — Class TA ‘B’ — Class TB

_ERRORMODE A decimal constant indicating the execution error mode.
Takes the following values:
1-HALT 2-STOP 3-UNIVERSAL
Note: all compiled object code generated by iccisin UNI-
VERSAL mode.

__SIGNED_CHAR _|A decimal constant indicating the signedness of the plain
char type. Itis only defined if the ice ‘FC’ command line
option is used. When defined it takes the value ‘1’.

72 TDS 347 01

October 1992

5 Language extensions 389

5.4 Assembly language support

The insertion of transputer code into C programs is performed using the __asm
statement. Sequences of transputer instructions specified in this way are
assembled in line by the compiler.

The rest of this section assumes some familiarity with the transputer instruction
set. For a list of transputer instructions see appendix A ‘Transputer instruction set’
in the accompanying Toolset User Guide.

A more detailed description of the instruction set including information about archi-
tecture and design can be found in ‘Transputer instruction set: a compiler writer’s
guide .

The full syntax of the __asm statement is given in section A.3.

5.4.1 Directives and operations

__asm statements can contain any number of primary or secondary transputer
operations, optionally preceded by a size qualifier, or transputer pseudo-opera-
tions. Any transputer instruction can be prefixed with a label.

In the transputer instruction set primary operations are direct functions, prefixing
functions, or the special indirect function opr. Primary operations are always fol-
lowed by an operand which can be any constant or constant expression. If addi-
tional pfix and nfix instructions are required to encode large values the assem-
bler automatically generates the required bytes.

Secondary operations are any transputer operation, that is, any instruction
selected using the opr function.

Pseudo-operations are instructions to the assembler, built up from sequences of
instructions. Like macros, they expand into one or more transputer instructions,
depending on their context and parameters.

Pseudo-operations that are supported by __asm are listed in table 5.1.

72 TDS 347 01 October 1992

390

5.4 Assembly language support

Pseudo-operation

Description

1d expression

Loads a value into the Areg.

st Ivalue

Stores the value from the Areg.

1ldab expression, expression

Loads values into the Areg and
Breg. The left hand expression
is placed in Areg.

stab Ivalue, Ivalue

Stores values from the Areg
and Breg. The leftmost element
receives Areg.

ldabe expression, expression, expression

Loads values into Areg, Breg
and Creg. The leftmost expres-
sion is placed in Areg.

stabe Ivalue, Ivalue , lvalue

Stores values from the Areg,
Breg, and Creg. The leftmost
element receives Areg.

[size constant] j label Jump
[size constant] cj label Conditional jump
[size constant] call label Call

[size constant] 1dlabeldiff label — label

Loads the difference between
the addresses of two labels into
Areg.

byte constant {, constant }

This instruction takes as an
argument a list of constant val-
ues. Only the lower 8 bits of the
constant values are generated
i.e. if the constantis too large to
fitin a byte, only the least signifi-
cant bits will be generated. The
assembler copies the literal
bytes into the instruction
stream.

word constant {, constant }

Generates constants of the tar-
get-machine word length. This
instruction takes as an argu-
ment a list of constant values. If
the constant is too large to fit in
a target-machine word, only the
lower bits will be generated.

align

This instruction takes no oper-
ands. It generates padding
bytes (prefix 0) until the current
code address is on a word
boundary.

Table 5.1

72TDS 347 01

Pseudo-operations

October 1992

5 Language extensions 391

Ivalues can be any valid modifyable C Ivalue, and labels can be any valid C label.

The 1dlabeldiff operation loads the difference between the addresses of two
labels into Areg.

5.4.2 size option on _asm statement

The size option on __asm statements that incorporate transputer operations,
direct, prefixing and certain pseudo-instructions, forces the instruction to occupy
a set number of bytes. If the instruction is shorter than this, it is padded out with
trailing prefix O instructions. If the instruction cannot fit in the specified number of
bytes, a compiler error is reported. The size option allows instructions to be built
with the same size and is intended to assist the creation of jump tables.

5.4.3 Labels

Labels can be placed on __asm statements or on any line of transputer code.
Labels placed inside and outside the __asm statement are handled identically. C
statements are permitted to goto a label set inside an __asm statement and vice
versa.

5.4.4 Notes on transputer code programming

1 Floating-point (fp) registers cannot be loaded directly; they must be loaded
or stored by first loading a pointer to the register into an integer register and
then using the appropriate floating-point load or store instruction.

2 The operands to the load pseudo-ops must be small enough to fitin a regis-
ter and the operands to the store pseudo-ops must be word-sized modifi-
able Ivalues.

5.4.5 Useful built-in variables

Special recognition of the following variables is built into the compiler.

extern volatile const void *_lsb Pointer to the base of a file’s static
area.

extern volatile const void *_params Pointer to the base of the current
function’s parameter block.

Given access to a function’s parameter block and using the calling conventions
described in section 6.16, it is possible to determine the function’s return address,
the global static pointer, and the calling function’s workspace as in the following
example:

72 TDS 347 01 October 1992

392 5.4 Assembly language support

void p(int a, int b)

typedef struct paramblock
{ void *return_address;
void *gsb;
int regparaml, regparam2;
} paramblock;

extern volatile const void *_params;

paramblock *pp = _params;

/* return address is: pPp—>return_address
global static base is: pp—>gsb
caller’s wptr is: (void *) (pp + 1); */

5.4.6 Transputer code examples

This section contains listings of programs fragments that illustrate common uses
of embedded instruction code.

Setting the transputer error flag

void set_error_ flag(void)

{

__asm { seterr; }
}

Loading constants using literal operands

#define answer 42
const int ¢

__asm {
lde 17; /* decimal */
lde Oxff; /* hex */
1lde 0377; /* octal */
1dc answer; /* defined by macro */
1ldc sizeof(c); /* constant expression */
1lde 10+47; /* ditto */

72 TDS 347 01 October 1992

5 Language extensions 393

Labels and jumps
void p(void)
int a, b, c;

/* The following code performs
if (b > c) a=b; else a =c; */

__asm{
1ld b;
1d c;
gt;
cj labell;
l1d b;
st a;
j done;
labell:
1d c;
st a;
done: ;
}
}
Jump tables

#include <stdio.h>
#define JUMP SIZE 3
void p(int i)

__asm{ 1ld i;
/* load the index */
adc -1;
/* subtract base subscript */
lde JUMP_SIZE;
/* scale by size of table entry */
prod;
ldlabeldiff table - here;
/* load pointer to start of table */

1dpi;
here:
bsub;
/* add the offset */
gecall;
/* jump to ith. entry */
table:

size JUMP_SIZE j labl;
size JUMP_SIZE j lab2;
size JUMP_SIZE j lab3;
size JUMP_SIZE j lab4;

}
labl: printf(”i
lab2: printf(”i
lab3: printf(”i
lab4: printf(”i

17); return;
2"); return;
3”); return;
4”); return;

72TDS 347 01 October 1992

394 5.4 Assembly language support

Loading floating point registers
void p(void)

float a, b, c;
/* The following code performs
a=b-c¢c; */
__asm{
1d &b;
fpldnlsn;
1d &c;
fpldnlsn;
fpsub;
1d &a;
fpstnlsn;

}
Using align/word to return an element of a table
int p(int i)

/* The following code returns the ith
element of the table defined below */

int res;

__asm{
14 i;
ldlabeldiff table - here;
1dpi;

here:

wsub;
1dnl 0;
st res;

3j done;
/* Make sure table is word aligned
for 1ldnl to work correctly */
align;
table:
word 1,1, 2, 3, 5, 8, 13, 21, 34;
}
done:
return res;

}

Inserting raw machine code

The following code inserts the actual machine code (in hex) for the ret instruction.
void ret_hex(void)
{

__asm { byte 0x22, O0xFO; }
}

72 TDS 347 01 October 1992

6 Implementation
detalls

This appendix describes the implementation of the language in areas where the
ANS]| standard is flexible or allows alternative solutions.

Note: the document ‘Performance improvement with the INMOS Dx314 ANSI C

Toolset’ which accompanies the toolset, considers performance aspects and sug-
gests ways in which C programs may be improved.

6.1 Data type representation

6.1.1 Scalar types

C scalar type representations on 32 and 16 bit transputers are described in the fol-
lowing table.

unsigned char 32 |Represented in a word in which the lower eight
and | bits are significant, the upper bits are zero.
16

signed char 32 |Represented in a word in which the lower eight

and | bits are significant, bit 7 is the sign-bit, the upper
16 |bits are zero.

char 32 | The representation of char differs depending on
and [whether the compiler FC option is used to make
16 |plain chars signed. When FC is used char has
the same representation as signed char; with-
out FC the representation is the same as
unsigned char.

unsigned short 32 |Represented in a word in which the lower 16 bits
are significant, the upper bits are zero.

16 |Represented in a word in which all 16 bits are sig-
nificant.

signed short 32 |Represented in a word in which the lower 16 bits
are significant, bit 15 is the sign bit, the upper bits
are zero.

16 |Represented in a word in which all 16 bits are sig-
nificant, bit 15 is the sign bit.

72 TDS 347 01 October 1992

396 6.1 Data type representation

unsigned int 32 |Represented in a word in which all 32 bits are sig-
nificant.

16 |Represented in a word in which all 16 bits are sig-
nificant.

signed int 32 |Represented in a word in which all 32 bits are sig-

nificant, bit 31 is the sign bit.

16 |Represented in a word in which all 16 bits are sig-
nificant, bit 15 is the sign bit.

unsigned long 32 |Represented in a word in which all 32 bits are sig-
nificant

16 |Represented in two words in which all 32 bits are
significant,the lower addressed word contains the
least significant bits.

signed long) 32 |Represented in a word in which all 32 bits are sig-
nificant, bit 31 is the sign bit

16 |Represented in two words in which all 32 bits are
significant, bit 15 of the upper word is the sign bit.
The lower addressed word contains the least sig-

nificant bit.
float 32 [Represented in a word, in IEEE single-precision
format.
16 |Represented in two words, in IEEE single-preci-
sion format.
double 32 |Represented in two words, in IEEE double-preci-
sion format.
16 |Represented in four words, in IEEE double-preci-
sion format.
enumeration 32 |Represented in a word in which all 32 bits are sig-
nificant.
16 |Represented in a word in which all 16 bits are sig-
nificant.

All signed integer types are represented in twos-complement form and all
unsigned integer types in binary form.

All floating point types are represented in a form defined by the ANSI/IEEE stan-
dard 754-1985.
6.1.2 Arrays

Each element of an array of char occupies 8 bits and each element of an amray
of short occupies 16 bits.

Elements of arrays of any other type are represented as the element would be rep-
resented if it was not in an array. An array is padded at the high-end address to
the next word boundary: the padding has no defined value.

72 TDS 347 01 October 1992

6 Implementation details 397

6.1.3 Structures

Structure fields are allocated starting from the lowest address. Fields of type char
are allocated on a byte boundary, and are represented in 8 bits.

On 32-bit machines only, fields of type short are allocated on an even-address
boundary, and are represented in 16 bits. Thus, adjacent char or short fields
may be packed into the same word.

Adjacent bit-fields are packed into the same word if possible: the first bit-field is
placed in the least significant bits of the word. If there is not enough room left after
a previous bit-field, a bit-field will be placed in the least significant bits of the next
word. Fields of any other type are represented as they would be if the field was not
in a structure. A structure is padded at the high-end address to the next word
boundary: the padding has no defined value.

The compiler uses the following rules when laying out the fields within a structure:

« Crequires that structure fields are laid outin memory in the same order that
they are in the source code.

¢ chars may have any alignment.

» shorts are aligned on an even boundary.

» word-sized or larger objects are aligned on a word boundary.
 structures, unions and arrays are aligned on a word boundary.

char and short fields will be packed into the same word where possible, without
breaking any of the above rules.

72 TDS 347 01 October 1992

398

6.1 Data type representation

Example 1 (structuring on a 32-bit processor):

struct d {

char hid[8];
unsigned short inuse;
char flagsl;

char flags2;

unsigned long tkey;
unsigned short tfil;

long npos;
unsigned short kmod;

unsigned short kbhz;

unsigned short rmod;

} structure;

The first byte of hid is on a word boundary (as
the first byte of structure is on a word boundary),
it occupies 8 bytes (2 whole words).

This occupies the lower two bytes of the follow-
ing word.

This is packed into byte 2 of the same word as
inuse.

This is packed into the upper byte of the same
word as inuse and flagsl.

This occupies the following word.

This occupies the lower two bytes of the follow-
ing word.

This has to be allocated on the next word bound-
ary, so two bytes are left unused.

This occupies the lower two bytes of the follow-
ing word.

This is packed into the upper two bytes of the
same word as kmod — 16-bit objects are placed
at even addresses (rule 2), not word—addresses.

This occupies the lower two bytes of the follow-
ing word.

Two bytes are left unused.

This can be represented graphically as follows:

Byte 0 1 2 3

Word

0 hid[0] hid[1] hid[2] hid[3]
1 hid[4] hid[5] hid[6] hid[7]
2 <—— inuse —* flagsl flags2
3 tkey

4 - tfil — <—— unused —*
5 npos

6 <-— kmod — -— kbhz —
7 «— rmod — <—— ynused —

Example 2 (structuring on a 32-bit processor):

If the structure fields are reordered, by moving t£il so that it is no longer word
aligned, then a more efficient packing could be obtained:

72 TDS 347 01

October 1992

6 Implementation details 399

struct d {
char hid[8];
unsigned short inuse;
char flagsl;
char flags2;
unsigned long tkey;
long npos;
unsigned short kmod;
unsigned short kbhz;
unsigned short rmod;
unsigned short tfil;
} structure;

this would give the following:

Byte 0 1 2 3

Word

0 hid[0] hid[1] hid[2] hid[3]
1 hid[4] hid[5] hid[e6] hid([7]
2 <—— inuse —* flagsl flags2
3 tkey

4 npos

5 <— kmod —* -— kbhz —
6 <*— rmod — -— tfil —

Note: the INMOS C compiler will generate more efficient code to load a short if
it is word-aligned, so this new packing means that more code will be needed to
access tfil, asitis no longer word-aligned. (Again, this is very dependant upon
the way the INMOS ANSI C compiler currently handles structures.)

A general rule for obtaining the smallest structure size possible, is to order the
fields in increasing order of size.
6.1.4 Unions

Each field of a union is represented as it would be if it was not in a union. A union
is padded at the high-end address to the next word boundary: the padding has no
defined value.

6.2 Type conversions
6.2.1 Integers

The result of converting an unsigned integer, u, to a signed integer, s, of equal
length, if the value cannot be represented, is calculated as follows:

72 TDS 347 01 October 1992

400 6.3 Compiler diagnostics

If max.s is the largest number that can be represented in the signed type then:
result = u —2(max.s + 1)

An integer is converted to a shorter signed integer, by first converting it to an
unsigned integer of the same length as the shorter signed integer (by taking the
nonnegative remainder on division by the number one greater than the largest
unsigned number that can be represented in the type with smaller size), and then
converting to the corresponding signed integer, as described above.

6.2.2 Floating point

When converting an integral number to a floating-point number that cannot exactly
represent the original value, the IEEE 754 ‘Round to Nearest’ rounding mode is
used.

When converting a floating-point number to a narrower floating-point number, the
IEEE 754 ‘Round to Nearest’ rounding mode is used.

When converling a floating—point number to an integral number, the IEEE 754
‘Round to Zero’ rounding mode is used; this is mandated by the ANSI standard.

6.3 Compiler diagnostics

Diagnostics are generated at severity levels: Information; Warning; Error, Serious;
and Fatal. All compiler messages are generated in standard toolset format (see
section A.7 of the ANSI C Toolset Reference Manual).

6.4 Environment

6.4.1 Arguments to main

The interface to main is as follows:
#include <channel.h>
int main(int arge, char *argv[], char *envp[],

Channel *in[], int inlen,
Channel *out[], int outlen);

where: int argc is the number of arguments passed to the program from the
environment, including the program name.

char *argv[] is an armray of pointers to the passed arguments.

char *envp[] is an array of pointers for the getenv function. In this
implementation it is set to NULL.

72 TDS 347 01 October 1992

6 Implementation details 401

Channel *in[] is an array of input channels.

int inlen is the number of elements in the input channel array.
Channel *out[] is an array of output channels.

int outlen is the number of elements in the output channel array.

If there is no server interface, then the number of arguments, arge, is set to one,
and argv points to an array of two elements; argv [0] is a pointer to the null string
(”"); and argv[1] is NULL.

The value of envp is always NULL in order to retain compatibility with previous
releases of the toolset e.g. the D711, D611 and D511 products.

The in and out arrays are set up differently depending on which linker startup file
is used:

Configured case:

When the program is configured, either the linker startup file estartup.lnk is
used to harness the full runtime system, or estartrd. 1nk is used to harness the
reduced runtime system. In either case the passing of the in and out arrays to
main () is not supported. The values of these parameters are as follows:

in is set to NULL
inlenis setto 0
out is set to NULL
outlenissetto 0
Unconfigured case

In this case it is assumed that the program has been collected by icollect and
linked with the full runtime system, by using the linker startup file cnonconf . 1nk.
The unconfigured case supports the passing of input and output channels from the
configuration level to the in and out arrays in the main () parameter list. This is
compatible with the previous release of the toolset i.e. the D7214, D6214, D5214
and D4214 products. The values of these parameters are as follows:

in[0] is set to NULL
in[1] FromServer channel
out[0] is set to NULL
out[1] ToServer channel

Note: this case may be unsupported in future releases.

72 TDS 347 01 October 1992

402 6.5 Identifiers

6.4.2 Interactive devices

stdin, stdout and stderr are treated as if they are connected to an interactive
device.

6.5 Identifiers
The first 250 characters in an identifier are significant.

Case distinctions are significant in an identifier with external linkage.

6.6 Source and execution character sets

The source character set comprises those characters explicitly specified in the
Standard, together with all other printable ASCII characters. The execution char-
acter set comprises all 256 values 0 to 255. Values 0 to 127 represent the ASCII
character set. Note: when the compiler command line option ‘FC’ is used the
execution character set comprises 128 values in the range 0 to 127.

There are eight bits in a character in the execution character set.

Each member of the source character set is a member of the ASCII character set
and maps to the same member of the ASCII character set in the execution charac-
ter set.

All characters and wide characters are represented in the basic execution charac-
ters set. The escape sequences not represented in the basic execution character
set are the octal integer and hexadecimal integer escape sequences, whose val-
ues are defined by the Standard.

Shift states for encoding multibyte characters

There is only one shift state, which is the initial shift state as specified in the Stan-
dard. Multibyte characters do not alter the shift state.

Integer character constants

The value of an integer character constant that contains more than one character
is given by:

%(value of ith character << (8 * i))
Wide character constants which contain more than one multibyte character are
disallowed.
Locale used to convert multibyte characters

The only locale supported to convert multibyte characters into corresponding wide
characters (codes) for a wide character constant is the ‘C’ locale.

72 TDS 347 01 October 1992

6 Implementation details 403

Plain chars

By default a “plain” char has the same range of values as unsigned char. How-
ever, if the compiler command line option FC is used, a “plain” char has the same
range of values as a signed char.

6.7 Integer operations
Bitwise operations on signed integers

Signed integers are represented in twos complement form. The bitwise operations
operate on this twos complement representation.

Sign of the remainder on integer division
The remainder on integer division takes the same sign as the divisor.
Right shifts on negative-valued signed integral types

Signed integers are represented in twos complement form. The default behavior
of the compiler is as follows:

The right-shift operates on this twos complement form; zero bits are shifted
in at the left-hand side; thus a negative-valued signed integer, if right-
shifted more than zero places, will become positive.

It is possible, using the ‘FS' command line option, to change this behavior to the
following:

The right-shift operétes onthis twos complement form; the sign—Dbit is dupli-
cated at the left-hand side; thus a negative-valued signed integer, will
remain negative.

6.8 Registers

The compiler attempts to place register variables at shorter offsets from the work-

space pointer.

6.9 Enumeration types

The values of enumeration types are represented as integers.

6.10 Bit fields
A “plain” int bit-field is treated as an unsigned int bit-field.

Bit-fields are allocated low-order to high-order within an integer (i.e. the first field
textually is placed in lower bits in the integer).

72 TDS 347 01 October 1992

404 6.11 volatile qualifier

A bit-field cannot straddle a word boundary.

6.11 volatile qualifier

An access to an object that has volatile-qualified type is a ‘read’ from the memory
location containing the object (if the object’s value is required), or a ‘write’ to the
memory location containing the object (if the object is assigned to).

If the volatile object is an array, then the access will be only to the appropriate ele-
ment of the array.

If the volatile object is a structure and only a field of the structure is required, then
the access will be only to the appropriate field. If the object is not an array element
or structure field, then the object occupies a whole number of words, and all the
words will be accessed. Otherwise, if the array element or structure field is shorter
than a word, then only the appropriate bytes will be accessed.

Ifthe objectis a bit-field, then in the case of read access, the entire word containing
the bit-field will be read; and in the case of write access, the entire word containing
the bit-field will be first read, and then written.

Note: If the object is an array element or structure field of type short on a 32-bit
transputer, or if the object is larger than two words, then the transputer block move
instruction is used for the access. On some transputers, if a block move instruction
is interrupted, when it resumes it may reread the same word of memory which was
read immediately before the interrupt. This may cause problems with some periph-
eral devices.

6.12 Declarators
There is no restriction upon the number of declarators that may modify an arithme-
tic, structure, or union type.

6.13 Switch statement

There is no restriction upon the number of case values in a switch statement.

6.14 Preprocessing directives

Constants controlling conditional inclusion

The value of a single-character character constant in a constant expression that
controls conditional inclusion matches the value of the same character constant
in the execution character set. Such a character constant may NOT have a nega-
tive value.

72TDS 347 01 October 1992

6 Implementation details 405

Date and time defaults

When date of translation is not available, _ DATE _ expands to
“Jan 1 1900"

When time of translation is not available, TIME _ expands to

“00:00:00"

6.15 Static data layout

The static data area comprises a local static area for each object file (or more spe-
cifically, each object file which uses static data) together with a module table. Fig-
ure 6.1 illustrates this.

local static for file 4
file 4 Isb
local static for file 3
file 3 Isb —=
local static for file 2
file 2 Isb —
local static for file 1
file 1/sb —
L module table I
gsb —L—— —

Figure 6.1 Static data layout

The module table contains an entry for every file with a local static area, which con-
sists of a word containing a pointer to that file’s local static area.

The base of the module table is called the global static base, or gsb.

6.15.1 Local static data layout

Usually, static data objects defined in a file are allocated space in that file’s local
static area. However, under certain conditions, a static data object may be placed
in the text section (i.e. the section which contains the code) for that file, see section
6.15.2.

Local static data is allocated in the local static area in the same order as it appears
in the source code.

72 TDS 347 01 October 1992

406 6.15 Static data layout

The global static base (gsb), is passed as a hidden first parameter to every routine.

To access a piece of static data, the compiler loads the gsb, then does an indirect
load to pick up the entry in the module table for the current file. This gives a pointer
to the local static area (the local static base, or /sb). If the static datum required is
in the local static area, it may be accessed using the Isb; but if it is in another file’s
static area, then another level of indirection is required.

If a function makes frequent access to the local static area, then the /sb is cached
into a temporary in local workspace before the first of its uses (usually, this is on
entry to the function).

6.15.2 Constant static objects

If a static data object can be guaranteed to be non—modifiable, then the C compiler
is sometimes able to allocate it in the text section (i.e. the section which contains
the code) for the file in which it is defined. The object must be non—modifiable, as
the text section must be ROMable.

This can be useful as it can reduce the amount of memory required for that object:
if the object is placed in the static data are then it must be initialized at program
start—-up and the value of the initializer is held in the text section. By allocating the
object directly in the text section, no initializer is necessary. Note: that this will not
reduce the size of the text section (and hence the size of the bootable file), but it
will reduce the size of the static data area.

The exact conditions which must be satisfied for the object to be placed in the text
section are:

¢ The static data object must be declared as const.
* The static data object must not be declared as volatile.
» The static data object must have an initializer.

» The initializer must contain no pointers except NULL pointers (absolute
pointer values cannot be put into the text section as they are only known
at run-time).

¢ The static data object must not be externally visible (references to external
objects have to know whether the object they are referencing is in the text
section or the data section).

This can be useful if a program contains a very large table of constants or constant
data; for example:

static const char data[] = { 1, 27, 34, 52,
.., 5,4, 0}

will be allocated in the text section.

72 TDS 347 01 October 1992

6 Implementation details 407

Note: that the conditions above require that the constant static data object must
not be visible in any other files. This can be worked around by defining a pointer
to the constant static object and making the pointer externally visible. For the
above, we can define:

extern const char *datap = &data[0];
and then other files may access data indirectly through datap.

If it is required to ensure that a data object is not allocated in the text section, for
instance if ROM space is limited, then it should not be declared as a const.

6.16 Calling conventions

6.16.1 Parameter Passing

There are two methods of parameter passing, depending upon whether or not the
function involved has a type which includes a prototype.

For a function call, if the function has a type that includes a prototype, then each
actual parameter is converted to the type of the corresponding formal parameter,
otherwise the default argument promotions are performed on each actual parame-
ter.

» an argument of type char, short int, int bit-field, or enumeration type
is converted to type int. (Signed int if this will correctly represent the
argument, unsigned int otherwise.)

¢ an argument of type £loat is converted to type double.
« arguments of all other types are unmodified.

For a function definition, if the function type does not include a prototype, then cal-
lee narrowing is performed upon each formal parameter: this converts it from its
promoted type (as obtained by the default argument promotions) to its declared
type. If the function type does include a prototype, then no type conversion is per-
formed.

The default argument promotions are performed upon arguments forming part of
a variable parameter list.

6.16.2 Calling Sequence

A pointer to the static area is normally passed as an extra parameter to every func-
tion. This parameter is called the global static base (gsb) and contains the address
of the module table, which is at the base of the whole static area for the program.

The compiler pragma IMS_nolink (f) directs the compiler to compile the function
fwithout a gsb parameter. Any direct calls to f within the scope of this pragma will

72 TDS 347 01 October 1992

408 6.16 Calling conventions

not have a gsb included in the argument list. If the function is defined within the
scope of the pragma, then it will be compiled without a gsb formal parameter (the
compiler will flag a serious error if the function definition requires a gsb, for exam-
ple, if it accesses static data). This pragma is provided to ease the calling of
occam from C and vice versa.

The declared parameters are found in order immediately after the gsb. The type
of each parameter is determined using the rules described in section 8.1 above.
Each parameter occupies an integral number of words. Parameters are repre-
sented in memory exactly the same as if they had been declared as automatic, see
section 6.1.

The first three words of parameters are loaded onto the integer register stack
(Areg will contain the gsb), and are written into memory by the call instruction.

Parameters may be modified by the called routine. Thus after the call, they cannot
be guaranteed to contain the same value as was passed in.

On entry to a function the contents of both the cpu evaluation stack and the fpu
evaluation stack (if it exists) are undefined and the workspace pointer addresses
the workspace containing the return address and parameters:

word (high addresses)
offset
o+l (last parameter passed in)
| |
4 (first parm stored by caller)
3 (Creg as saved by call instruction)
2 | parm1 starts (Breg as saved by call instruction)
1 static link (Areg as saved by call instruction)
0 Iret (return address if call used)
Wptr
-1 free |
(top of stack)

The return value from a function is sent back in the Areg where possible. If the
result is a scalar occupying less than aword, the value returned in Areg will be the
value of the scalar widened to the number of bits per word.

72 TDS 347 01 October 1992

6 Implementation details 409

If the return value will notfitin a register, then the caller will supply another parame-
ter as the second actual parameter (when the user’s parameters will begin in posi-
tion three). This will be a pointer to an area large enough to receive the return
value. This will be the case for functions returning structures which are larger than
aword and for functions returning double values when not executing on a floating
point transputer (e.g. T800), or returning £1oat or 1ong values on a 16 bit trans-
puter (e.g. T225).

For transputers with an on-chip floating-point unit, floating values will be returned
in FAreg, whether they are float or double. However, for the 32 bit, non-floating
point, processors (e.g. T400), float values will be returned as unconverted bit pat-
terns in the Areg; and double values returned in an area pointed to by the result
pointer parameter. For 16-bit transputers, floating values are always returned via
an extra parameter pointing to the return area. Structures and unions that occupy
a word (and contain no fields shorter than a word) are returned in Areg. All other
structures and unions are returned in an area pointed to by a result pointer param-
eter.

6.16.3 Rules for aliasing between formal parameters

The following rules cover assumptions made by the INMOS C compiler with regard
to aliasing between function parameters.

1 The compiler may not assume that there are no aliases between formal
parameters.

2 Where a function result is returned by assignment through a result pointer
in the function body, the compiler may not assume that there are no aliases
of the object referred to by the result pointer parameter.

Hence the compiler must ensure that all accesses to variables which could be
potentially aliased by the result pointer have already occurred before the assign-
ment through the result pointer.

6.17 Runtime library

The null pointer constant to which the macro NULL expands to is (void *)O0.

72 TDS 347 01 October 1992

410 6.17 Runtime library

72 TDS 347 01 October 1992

Appendices

72 TDS 347 01 October 1992

412 Appendices

72 TDS 347 01 October 1992

A Syntax of language
extensions

This appendix defines the language extensions in the ANSI C toolset.

A1 Notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF). Briefly:

1 Terminal strings of the language — those not built up by rules of the lan-
guage — are printed in teletype font e.g. void.

2 Each phrase definition is built up using a double colon and an equals sign
to separate the two sides.

3 Alternatives are separated by vertical bars (')

4 Optional sequences are enclosed in square brackets ([’ and 7).

5 Items which may be repeated zero or more times appear in braces ({’ and

1)

A.2 {#pragma directive

control-line =

pragma o=

parameter

72 TDS 347 01

#pragma pragma

IMS_on (parameter {, parameter})

IMS_off (parameter { , parameter})

IMS linkage ([”name”])

IMS_nolink (functionname)

IMS_modpatchsize(n)

IMS_codepatchsize(n)

IMS_translate (name, "newname ")

IMS_nosideeffects (functionname)

IMS_descriptor (functionname, language, \
workspace, vectorspace, \
"string”)

channel pointers |cp
inline ops | il
inline_string ops |is
printf_checking |pec

October 1992

414 A.3 __asm statement

| scanf_checking | se
| stack checking | se
| warn bad target |wt
| warn_deprecated |wd
| warn_implicit | wi
A3 _ asmstatement
statement e asm-statement
asm-statement = __asm {{asm-directive }}
asm-directive = [size constant] primary-op constant ;
[size constant]| secondary-op ;
pseudo-op ;

identifier. asm-directive

primary-op = any primary instruction (in lower case)
secondary-op = any secondary instruction (in lower case)
pseudo-op = 1d expression

st lvalue

1dab expression , expression

stab lvalue , Ivalue

ldabc expression , expression , expression
stabe lvalue , lvalue , Ivalue

[size constant] j label

[size constant] ej label

[size constant] call label

[size constant] ldlabeldiff label - label
byte constant { , constant }

word constant { , constant }

align
lvalue = expression
constant e constant-expression
label o= identifier
expression o= as defined in X3.159-1989 ANSI standard for C

as defined in X3.159—1989 ANSI standard for C
as defined in X3.159-1989 ANSI standard for C

constant-expression ::

identifier

primary instructions and secondary instructions are listed in appendix A of the
ANSI C Toolset User Guide.

72TDS 347 01 October 1992

B ANSI standard
compliance data

This appendix lists details of the INMOS implementation of C in areas of the lan-
guage where formal documentation is required by the ANSI standard. The
information is provided for compliance with the standard and to provide a conve-
nient reference point for programmers wishing to port the toolset to other hosts.

The formal ANSI requirement in each area is given followed by a reference to the
appropriate section in the standards document. This is followed by a description
of the INMOS implementation in that area.

Where the information required is provided in other areas of this book or the ANSI
C Toolset documentation a reference is given to the appropriate section.

B.1 Translation
* How a diagnostic is identified (§ 2.1.1.3)

Diagnostics are displayed to stderr (UNIX and VMS) or stdout (MS-
DOS) in a standard format. The display format is described in section A.7
of the ANSI C Toolset Reference Manual.

B.2 Environment
+ The semantics of the arguments to main (§ 2.1.2.2.1)
The prototype of C main is as follows:

#include <channel.h>

int main (int argc, char *argv[], char *envpl[],
Channel *in[], int inlen,
Channel *out[], int outlen);

where: argc is the number of arguments passed to the program from the
environment, including the program name.

*argv[] is an array of pointers to the passed arguments.

*envp[] is an array of pointers for the getenv library function — imple-
mented in ANSI C as NULL.

Channel *in[] is an array of input channels.

72 TDS 347 01 October 1992

416

B.3 Identifiers

B.3

B.4

int inlen is the number of elements in the array.

Channel *out[] is an array of output channels.

int outlen is the number of elements in the array.

An extension for configured programs allows exira parameters to be
passed by defining them as interface parameters within the configura-

tion description. These configuration level parameters can be accessed by
the C program using the runtime library function get_param.

What constitutes an interactive device (§ 2.1.2.3)

stdin, stdout and stderr are treated as if they are connected to an
interactive device.

Identifiers

The number of significant initial characters (beyond 31) in an identi-
fier without external linkage (§ 3.1.2).

The first 250 characters in the identifier are significant.

The number of significant initial characters (beyond 6) in an identifier
with external linkage (§ 3.1.2).

The first 250 characters in the identifier are significant.

Whether case distinctions are significant in an identifier with exter-
nal linkage (§ 3.1.2).

Case distinctions are significant in an identifier with external linkage.

Characters

The members of the source and execution character sets, except as
explicitly specified in the Standard (§ 2.2.1).

The source character set comprises those characters explicitly specified
in the Standard, together with all other printable ASCIl characters. The
execution character set comprises all 256 values 0 — 255. Values 0 — 127
represent the ASCII character set.

The shift states used for the encoding of multibyte characters
(§2.2.1.2).

There is only one shift state, which is the initial shift state as specified in
the Standard. Multibyte characters do not alter the shift state.

72 TDS 347 01 October 1992

B ANSI standard compliance data 417

B.5

The number of bits in a character in the execution character set
(§ 2.2.4.2.1).

There are eight bits in a character in the execution character set.

The mapping of members of the source character set (in character
constants and string literals) to members of the execution character
set (§ 3.1.3.4).

Each member of the source character setis a member of the ASCIl charac-
ter set. It maps to the same member of the ASCII character set in the
execution character set.

The value of an integer character constant that contains a character
or escape sequence not represented in the basic execution character
set or the extended character set for a wide character constant
(§ 3.1.3.4).

All characters and wide characters are represented in the basic execution
character set. The escape sequences not represented in the basic execu-
tion character set are the octal integer and hexadecimal integer escape
sequences, whose values are defined by the Standard.

The value of an integer character constant that contains more than
one character or a wide character constant that contains more than
one multibyte character (§ 3.1.3.4).

See section 6.6.

The current locale used to convert multibyte characters into corre-
sponding wide characters (codes) for a wide character constant
(§ 3.1.3.4).

The only locale supported is the ‘C’ locale.

Whether a “plain” char has the same range of values as signed char
or unsigned char (§ 3.2.1.1).

By default, a “plain” char has the same range of values as unsigned char.
However, if the compiler command line option ‘FC’ is used, a “plain” char
has the same range of values as a signed char.

Integers

The representations and sets of values of the various types of inte-
gers (§ 3.1.2.5).

For all data-type representations see section6.1.1 in this manual.

72 TDS 347 01 October 1992

418 B.6 Floating point
* The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented (§ 3.2.1.2).
See section 6.2.1.
* The results of bitwise operations on signed integers (§ 3.3).
Signed integers are represented in twos complement form. The bitwise
operations operate on this twos complement representation.
* The sign of the remainder on integer division (§ 3.3.5).
The remainder on integer division takes the same sign as the divisor.
¢ The result of a right shift of a negative-valued signed integral type
(§3.3.7).
Signed integers are represented in twos complement form. The right-shift
operates on this twos complement form.
By default, zero bits are shifted in at the left-hand side; thus a negative-val-
ued signed integer, if right-shifted more than zero places, will become posi-
tive.
However, if the compiler command line option ‘FS’ is used, the sign bit is
duplicated at the left-hand side; thus a negative signed integer, if right—
shifted more than zero places, will remain negative.
B.6 Floating point
* The representations and sets of values of the various types of float-
ing-point numbers (§ 3.1.2.5).
For all data-type representations see section 6.1.1 in this manual.
¢ The direction of truncation when an integral number is converted to
a floating-point number that cannot exactly represent the original
value (§ 3.2.1.3).
When converting an integral number to a floating-point number, the IEEE
754 'Round to Nearest’ rounding mode is used.
¢ The direction of truncation or rounding when a floating-point number
is converted to a narrower floating-point number (§ 3.2.1.4).
When converting a floating-point number to a narrower floating-point num-
ber, the IEEE 754 'Round to Nearest' rounding mode is used.
B.7 Arrays and pointers

The type of integer required to hold the maximum size of an array, that
is, the type of the sizeof operator, size_t (§3.3.3.4, § 4.1.1).

72TDS 347 01 October 1992

B ANSI standard compliance data 419

B.8

B.9

The type of the sizeof operator, size_t, is unsigned int.
The result of casting a pointer to an integer or vice versa (§ 3.3.4).

When a pointer is cast to an integer or vice versa, and the number of bits
in the integer is the same as the number of bits in the pointer, the bit repre-
sentation remains unchanged.

When an integer is cast to a pointer, and the number of bits in the integer
is different from the number of bits in the pointer, the integer is first cast to
type int, and the result of this cast is then cast to the pointer type.

Note: A NULL pointer on a 32-bit transputer has the representation all bits
zero, so that casting an integer variable of value zero to a pointer will result
in a NULL pointer. However, a NULL pointer on a 16-bit transputer DOES
NOT have the representation all bits zero, so that it is incorrect to assume
that an integer variable of value zero, when cast to a pointer will result in
a NULL pointer. (the ANSI standard guarantees that an integer constant
of value zero, when cast to a pointer, will result in a NULL pointer.)

On a 32-bit transputer, the value of the NULL pointer constant is 0; on a
16-bit transputer, the value of the NULL pointer constant is 0x8000.

The type of integerrequired to hold the difference between two point-
ers to elements of the same array, ptrdiff t (§ 3.3.6, § 4.1.1).

int. Note: that this means that it is not possible to declare an array of
char-sized objects which is larger than half of the integer range, and take
the difference of a pointerto the end and a pointer to the start. This is partic-
ularly important on a 16-bit processor, i.e. ptrdiff t will not correctly
represent the difference between the two ends of an array of char-sized
objects larger than 32767 bytes.

There is no problem with arrays of elements which are larger than char.

Registers

The extent to which objects can actually be placed inregisters by use
of the register storage-class specifier (§ 3.5.1).

The register storage class specifier is used to allocate objects at a lower
offset in workspace. Objects cannot be placed in registers.
Structures, unions, enumerations, and bit-fields

A member of aunion object is accessed using amember of a different
type (§ 3.3.2.3).

For the implementation of unions see section 6.1.4 in this manual.

72 TDS 347 01 October 1992

420 B.10 Qualifiers
¢ The padding and alignment of members of structures (§ 3.5.2.1). This
should present no problem unless binary data written by one imple-
mentation are read by another.
For the implementation of structures see section 6.1.3 in this manual.
¢ Whether a “plain” int bit-field is treated as a signed int bit-field or as
an unsigned int bit-field (§ 3.5.2.1).
A “plain” int bit-field is treated as an unsigned int bit-field.
* The order of allocation of bit-fields within an int (§ 3.5.2.1).
Bit-fields are allocated low-order to high-order within an int (i.e. the first
field textually is placed in lower bits in the int).
¢ Whether a bit-field can straddle a storage-unit boundary (§ 3.5.2.1).
A bit-field cannot straddle a word boundary.
¢ The integer type chosen to represent the values of an enumeration
type (§ 3.5.2.2).
The values of enumeration types are represented as ints.
B.10 Qualifiers

What constitutes an access to an object that has volatile-qualified
type (§ 3.5.3).

An access to an object that has volatile-qualified type is a 'read’ from the
memory location containing the object (if the object’s value is required), or
a 'write’ to the memory location containing the object (if the object is
assigned to). If the volatile object is an array, then the access will be only
to the appropriate element of the array. If the volatile object is a structure
and only a field of the structure is required, then the access will be only to
the appropriate field. If the object is not an array element or structure field,
then the object occupies a whole number of words, and all the words will
be accessed. Otherwise, if the array element or structure field is shorter
than a word, then only the appropriate bytes will be accessed.

If the object is a bit-field, then in the case of read access, the entire word
containing the bit-field will be read; and in the case of write access, the
entire word containing the bit-field will be first read, and then written.

Note that if the object is an array element or structure field of type short
on a 32-bit transputer, or if the object is larger than two words, then the
transputer block move instruction is used for the access. On some trans-
puters, if a block move instruction is interrupted, when it resumes it may

72 TDS 347 01 October 1992

B ANSI standard compliance data 421

B.11

B.12

B.13

reread the same word of memory which was read immediately before the
interrupt. This may cause problems with some peripheral devices.

Declarators

The maximum number of declarators that may modify an arithmetic,
structure, or union type (§ 3.5.4).

There is no restriction upon the number of declarators that may modify an
arithmetic, structure, or union type.

Statements

The maximum number of case values in a switch statement
(§ 3.6.4.2).

There is no restriction upon the number of case values in a switch state-
ment.

Preprocessing directives

Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion matches the
value of the same character constant in the execution character set.
Whether such a character constant may have a negative value
(§ 3.8.1).

The value of a single-character character constant in a constant expres-
sion that controls conditional inclusion matches the value of the same char-
acter constant in the execution character set. Such a character constant
may NOT have a negative value.

The method for locating includable source files (§ 3.8.2).

See section 1.4.9 in the ANSI C Toolset Reference Manual.

The support of quoted names for includable source files (§ 3.8.2).
See section 1.4.9 in the ANSI C Toolset Reference Manual.

The mapping of source file character sequences (§ 3.8.2).

See section 1.4.9 in the ANSI C Toolset Reference Manual.

The nesting limit for #include directives (§ 3.8.2).

There is no nesting limit for #include directives.

72 TDS 347 01 October 1992

422

B.14 Library functions

¢ The behavior on each recognized #pragma directive (§ 3.8.6).

See section 1.4.11 in the ANS! C Toolset Reference Manual.

¢ The definitions for_ DATE _and__TIME _ when respectively, the

date and time of translation are not available (§ 3.8.8).

When date of translation is not available, _ DATE__ expands to:
7Jan 1 1900”

When time of translation is not available, _ TIME__ expands to:

”700:00:00”

B.14 Library functions

¢ The null pointer constant to which the macro NULL expands (§ 4.1.5)

(void *)0

* The diagnostic printed by and the termination behavior of the assert

function (§ 4.2)

*** agsertion failed: condition, file file, line line

assert terminates by calling abort. The action of abort depends upon
the use of the set_abort_action function. See the specification of
abort in chapter 2.

¢ The sets of characters tested for by the isalnum, isalpha,iscntrl,

islower, isprint and isupper functions (§ 4.3.1)

isalnum:’'0-'9''A-'Z' 'a’-'2'

- isalpha:'A-'Z''a-'Z

isentrl : character codes 0-31 and 127
islower :'a-'z’

isprint : character codes 32-126
isupper : 'A-'Z

« The values returned by the mathematics functions on domain errors

(§4.5.1)

All mathematics functions return the value 0.0 on domain errors.

¢ Whether the mathematics functions set the integer expression

errno to the value of the macro ERANGE on underflow errors. (§ 4.5.1)

The maths functions do set errno to ERANGE on underflow errors.

¢ Whether a domain error occurs or zero is returned when the fmod

function has a second argument of zero. (§ 4.5.6.4)

72 TDS 347 01 October 1992

B ANSI standard compliance data) 423

Ifthe second argument to £mod is zero then a domain error occurs and the
function returns zero.

* The set of signals for the signal function (§ 4.7.1.1) SIGABRT,
SIGFPE, SIGILL, SIGINT, SIGSEGV, SIGTERM, SIGIO, SIGURG, SIG-
PIPE, SIGSYS, SIGALRM, SIGWINCH, SIGLOST, SIGUSR1, SIGUSR2,
SIGUSR3.

* The semantics for each signal recognized by the signal function
(§4.7.1.1)

SIGABRT Abnormaltermination, such as initiated by the abort func-
tion.

SIGFPE Erroneous arithmetic operation, such as zero divide or an
operation resulting in overflow.

SIGILL Detection of an invalid function image, such as an illegal
instruction.

SIGINT Receipt of an interactive attention signal.
SIGSEGV Invalid access to storage.

SIGTERM Termination request sent to the program.
SIGIO Input/output possible.

SIGURG Urgent condition on 10 channel.
SIGPIPE Write on pipe with no-one to read.
SIGSYS Bad argument to system call.

SIGALRM Alarm clock.

SIGWINCH Window changed.

SIGLOST Resource lost.

SIGUSR1 User-defined signal 1.

SIGUSR2 User-defined signal 2.

SIGUSR3 User-defined signal 3.

¢ The default handling and the handling at program startup for each
signal recognized by the signal function. (§ 4.7.1.1)

The handling at program startup is identical to the default handling, which
is as follows:

SIGABRT The action of SIGABRT depends upon the
set_abort_action function. See the specification of
abort in chapter 2.

SIGFPE No action.
SIGILL No action.
SIGINT No action.

72 TDS 347 01 - October 1992

424

B.14 Library functions

SIGSEGV No action.

SIGTERM Terminate the program via a call of exit with the parame-
ter EXIT FAILURE.

SIGIO No action.
SIGURG No action.
SIGPIPE No action.
SIGSYS No action.
SIGALRM No action.
SIGWINCH No action.
SIGLOST No action.
SIGUSR1 No action.
SIGUSR2 No action.
SIGUSR3 No action.

If the equivalent of signal (sig, SIG_DFL); is not executed prior
to the call of a signal handler, the blocking of the signal that is per-
formed (§ 4.7.1.1)

The equivalent of signal (sig, SIG_DFL) ; is executed prior to the call
of a signal handler.

Whether the default handling is reset if the SIGILL signal is received
by a handler specified to the signal function (§ 4.7.1.1)

The default handling is reset if the SIGILL signal is received.

Whether the last line of a text stream requires a terminating newline
character. (§ 4.9.2)

The lastline of a text stream does not require a terminating newline charac-
ter.

Whether space characters that are written out to a text stream
immediately before a newline character appear when read in. (§ 4.9.2)

Space characters written out to a text stream immediately before a newline
character do appear when read in.

The number of null characters that may be appended to data written
to a binary stream. (§ 4.9.2)

No null characters are appended to data written to a binary stream.

Whether the file position indicator of an append mode stream is ini-
tially positioned at the beginning or end of the file. (§ 4.9.3)

The file position indicator of an append mode stream is initially positioned
at the end of the file.

72 TDS 347 01 October 1992

B ANSI standard compliance data 425

» Whether a write on a text stream causes the associated file to be trun-
cated beyond that point. (§ 4.9.3)

A write on a text stream will not cause the associated file to be truncated
beyond that point.

¢ The characteristics of file buffering. (§ 4.9.3)

When a stream is unbuffered characters appear from the source or des-
tination as soon as possible.

When a stream is line buffered characters are transmitted to and from the
host environment as a block when a newline character is encountered.

When a stream is fully buffered characters are transmitted to and from the
host environment as a block when a buffer is filled.

In all buffering modes characters are transmitted when the bufferis full and
when input is requested on an unbuffered or line buffered stream, or when
the stream is explicitly flushed.
See also section 1.3.12.

¢ Whether a zero length file actually exists (§ 4.9.3)

The library can support a zero length file if it is permitted on the host envi-
ronment.

¢ The rules for composing valid file names. (§ 4.9.3)

The rules for composing valid file names are the same as those found on
the host system.

¢ Whether the same file can be opened multiple times. (§ 4.9.3)
Although the system will allow a file to be opened multiple times the icc
stdiolibrary has no support for shared access to a single file and so unex-
pected results may occur if this is attempted.

* The effect of the remove function on an open file. (§ 4.9.4.1)

The remove function will delete an open file only if this is permitted on the
host system.

¢ The effect if a file with the new name exists prior to the call to the
rename function. (§ 4.9.4.2)

The rename will cause an existing file with the new name to be overwritten
only if this is permitted on the host system.

72 TDS 347 01 October 1992

426

B.14 Library functions

The output for $p conversion in the fprintf function. (§ 4.9.6.1)
The output for the $p function is a hexadecimal number.

The input for the $p conversion in the £scanf function. (§ 4.9.6.2)
The input for the $p conversion is a hexadecimal number.

The interpretation of a - character that is neither the first nor the last
character in the scanlist for %[conversion in the £scanf function.
(§ 4.9.6.2)

A - characteris treated in the same manner as all other characters no mat-
ter where it appears in the scan set.

The value to which the macro errnois set by the fgetpos or ftell
function on failure. (§ 4.9.9.1, § 4.9.9.4)

errno is set to the value EFILPOS by the £tell or £getpos function on
failure.

The messages generated by the perror function. (§ 4.9.10.4)

Value of Message

errno

0 (zero) No error {(errno = 0)

EDOM EDOM - function argument out of range

ERANGE ERANGE - function result not representable
ESIGNUM ESIGNUM - lllegal signal number to signal()

EIO EIO - error in low level server /O

EFILPOS EFILPOS - error in file positioning functions

default Error code (errno) ermo has no associated message

The behavior of the calloc, malloc, or realloc function if the size
requested is zero. (§ 4.10.3)

If the size requested is zero in calloc or malloc then no action is taken
and and the functions return NULL.

If the size requested is zero in realloc and the pointer parameteris NULL
then no action is taken and the function returns NULL. The case where size
is zero and the pointer is not a NULL pointer is defined by the ANSI stan-
dard.

The behavior of the abort function with regard to open and tempo-
rary files. (§ 4.10.4.1)

The abort function will cause termination without closing open files or
removing temporary files. Note that the behavior of abort may be altered

72 TDS 347 01 October 1992

B ANSI standard compliance data 427

B.15

by set_abort_action (see specification of the function in chapter 2) but
whichever behavior is selected, open files will not be closed, and tempo-
rary files will not be removed.

The status returned by the exi t function if the value of the argument
is other than zero, EXIT_SUCCESS, or EXIT_ FAILURE. (§ 4.10.4.3)

The status returned by the exi t function in this case is the numerical value
of the argument.

The set of environment names and the method for altering the envi-
ronment list used by the getenv function.(§ 4.10.4.4)

The set of environment names is defined by the host system.

The method of altering the environment list on a given system is particular
to the server executing on that system. (Or, more accurately, particular to
the compiler with which the server was compiled).

The contents and mode of execution of the string by the system
function. (§ 4.10.4.5)

The string shall contain any of the commands which can be supported by
the host operating system. Care should be taken so that no commands are
issued which would cause the transputer to be booted, thereby overwriting
the program which executed the system call. The mode of execution is
defined by the host system.

The contents of the error message strings returned by the strerror
function. (§ 4.11.6.2)

These are identical to the messages printed by the perror function. See
above.

The local time zone and Daylight Saving Time. (§ 4.12.1)

The local time zone is defined by the host system. Daylight Saving Time
information is unavailable.

The era for the clock function. (§ 4.12.2.1)

The erafor the clock function extends from directly before the users main
function is called until program termination.

Locale-specific behavior

The content of the execution character set, in addition to the required
members. (§ 2.2.1)

The execution character set comprises all 256 values 0 — 255. Values 0 —
127 represent the ASCII character set.

72 TDS 347 01 October 1992

428

B.15 Locale—specific behavior

The direction of printing. (§ 2.2.2)
Printing is from left to right.

The decimal—-point character. (§ 4.1.1)
The decimal pointis *.".

The implementation defined aspects of character testing and case
mapping functions (§ 4.3)

The only locale supported is “C” and so there are no implementation
defined aspects of character testing or case mapping functions.

The collation sequence of the execution character set. (§ 4.11.4.4)

Only the C locale is supported and so the collation sequence of the execu-
tion character set is the same as for plain ASCII.

The formats for time and date (§ 4.12.3.5)

All the day and month names are in English.

date and time format. Thu Nov 9 15:42:39 1989
date format: Thu Nov 9, 1989
time format: 15:42:39

72 TDS 347 01 October 1992

C CRC Résumeé

This appendix provides a résumé of the CRC functions supplied with the toolset.
Brief descriptions of each function are also given in chapter 2.

C.1 Summary of functions
The following CRC functions are provided:

int CrcWord (int data,
intcrc_in,
int generator) ; — Calculates the CRC of an integer.

int CrcByte (int data,
int crc_in,
int generator) ; — Calculates the CRC of the most
significant byte of an integer.

int CrcFromLsb (const char *string,
size t length,
int generator,
int old_crc) ; — Calculates the CRC of a byte
sequence starting at the least
significant bit.

int CrcFromMsb (const char *string,
size t length,
int generator,
int old_crec) ; — Calculates the CRC of a byte
sequence starting at the most
significant bit.

C.2 Cyclic redundancy polynomials

A cyclic redundancy check value is the remainder from modulo 2 polynomial divi-
sion. Consider bit sequences as representing the coefficients of polynomials; for
example, the bit sequence 10100100 (where the leading bit is the most significant
bit (msb)) corresponds to P(x) = x” + x° + x2.

CrcWord and CrcByte calculate the remainder of the modulo 2 polynomial divi-
sion:

(x"H(x) + F(x))/G(x)

where: F(x) corresponds to data (the whole word for CrcWord; only the most sig-
nificant byte for CrcByte)

72 TDS 347 01 October 1992

430 C.2 Cyclic redundancy polynomials

G(x) corresponds to generator
H(x) corresponds to crc_in
n is the word size in bits of the processor used (i.e. n is 16 or 32).

(crxc_in can be viewed as the value that would be pre-loaded into the
cyclic shift register that is part of hardware implementations of CRC gener-
ators.)

CrcFromMsb and CrcFromLsb calculate cyclic redundancy check values from
byte strings. Such values can be of use in, for example, the generation of the frame
check sequence (FCS) in data communications.

CrcFromMsb and CreFromLsb calculate the remainder of the modulo 2 polyno-
mial division:

(x¥* H(x) + x"F(x))/G(x)
where: F(x) corresponds to string{]
G(x) corresponds to generator
H(x) corresponds to old_crc
k is the number of bits in string[]
n is the word size in bits of the processor used (i.e. nis 16 or 32).

(o1d_crc can be viewed as the value that would be pre-loaded into the
cyclic shift register that is part of hardware implementations of CRC gener-
ators.).

C.2.1 Format of resuilt

When representing G(x) in the word generator, note that there is an implied bit
set to 1 before the msb of generator. For example, on a 16-bit processor, with
G(x) = x76 + x72+ x5+ 1, which is #11021, then generator must be assigned
#1021, because the bit corresponding to x"8is implicit. Thus, a value of #9603 for
generator, comresponds to G(x) = x76 + x5+ x12+x10+ x9+ x + 1, for a 16-bit
processor.

A similar situation holds on a 32-bit processor, so that:
G(X) =X32+X26+ X23+x22+x16+x12+x11+x10+ XB+ x7+ X5+X4+ X2+ x+1
is encoded in generator as #04C11DB7.

Itis possible to calculate a 16-bit CRC on a 32-bit processor. For example if G(x)
=x76+x12+ x5+ 1, then generator is #10210000, because the most significant
16 bits of the 32-bit integer form a 16-bit generator and for:

72 TDS 347 01 October 1992

C CRC Résumé 431

C3

Cc4

CrcWord, the least significant 16 bits of cxe_in form the initial CRC value;
the most significant 16 bits of data form the data; and the calculated CRC
is the most significant 16 bits of the result.

CrcByte, the most significant 16 bits of cre_in form the initial CRC value;
the next 8 bits of crc_in (the third most significant byte) form the byte of
data; and the calculated CRC is the most significant 16 bits of the resuilt.

CrcFromMsb, the least significant 16 bits of o1d_cre form the initial CRC
value; the calculated CRC is the most significant 16 bits of the result from
CrcFromMsb.

CrcFromLsb, the least significant 16 bits of o1d_crc form the initial CRC
value; the calculated CRC is the least significant 16 bits of the result from
CrcFromLsb.

Notes on the use of the CRC functions

The predefines CrcByte and CrcWord can be chained together to help
calculate a CRC from a string considered as one long polynomial. A simple
chaining would calculate:

(xkH(x) + F(x))/G(x)

where F(x) corresponds to the string and k is the number of bits in the
string. This is not the same CRC that is calculated by CrcFromMsb and
CrcFromLsb which shift the numerator by x”.

The CrcFromMsb function is intended for byte sequences in normal trans-
puter format (little-endian). The most significant bit of the given string is
taken to be bit-16 or bit-32, depending, that is, on the word size of the pro-
cessor, of string[length - 1]. generator, old_crc and the result
of CrcFromMsb are all also in normal transputer format (little-endian).

The CrcFromLsb function is provided to accommodate byte sequences
in big-endian format. The most significant bit of string is taken to be bit
0 of string[0]. The generated CRC is given in big-endian format. gen-
erator and old_cre are taken to be in little-endian format.

Example of use

Suppose it is required to transmit information between two 32-bit transputers, and
the message that is to be transmitted is the byte sequence from (string +4)
to (string+(4+message length)), where there are message_length
bytes in the message. Both the transmitter and receiver use the same 32-bit gener-
ating polynomial and o1d_crc value. There are two methods for the receiver to
check messages:

72 TDS 347 01 October 1992

432 C.4 Example of use

First crecFromMsb is given the message as an input string, the result is placed into
the first four bytes of string and the message is sent. The receiver can either:

give the received string (which is (message_length + 4) bytes long)
to CrcFromMsb and expect a result of zero,

or

give the received (string + 4) to CrcFromMsb and check that the
result is equal to the int contained in the first four bytes of the received
string.

These methods of checking are equivalent. If the check fails then the transmitted
data was corrupted and re-transmission can be requested; if the check passes
then it is most probable that the data was transmitted without corruption - just how
probable depends on many factors, associated with the transmission media.

72TDS 347 01 October 1992

Index

SymbOIS _IMS clock priority, 365

_IMS_entry term mode, 366

. ., ellipsis. See Ellipsis _IMS_heap_init implicit,

#elif, 380, 384 363

#erro_r, 380, 385 _IMS_heap_size, 363

#pragma, 380, 385, 387 _IMS_heap_start, 363
IMS_codepatchsize, 388 IMS HOST APOLLO, 28

IMS descriptor, 388
IMS linkage, 388 _IMS_HOST IBM370, 28
-IMS_modpatchsize, 388 _IMS HOST_NEC, 28
IMS nolink, 359, 388, 407

IMS nosideeffects, 388 _TMS_HOST_PC, 28

IMS_off, 388 _IMS_HOST_SUN3, 28

IMS_on, 388 IMS HOST SUN386i, 28

IMS translate, 388 - = -

synfax, 413 _IMS _HOST_SUN4, 28

asm, 389 _IMS HOST VAX, 28

syntax, 414 _IMS 0Os_CMs, 28
__CC_NORCROFT, 388 _IMS_0S_DOS, 28
__SIGNED CHAR 388 _IMS_OS_HELIOS, 28

ERRORMODE, 388 _IMS_OS_SUNOS, 28
—ICC, 388 _IMS_OS_VMS, 28
_IMS_BOARD B004, 28 _IMS_PData, 364
_IMS_BOARD_B008, 28 _IMS_retval, 366
_IMS_BOARD B010,28 _glélg_sbrk_alloc_request,

_IMS_BOARD_B011,28 _IMs stack base, 363

_IMS_BORRD_B014, 28 _IMS_stack_limit, 363
_IMS_BOARD_BO015, 28 _IMS_startenv, 365
_IMsS_BORRD_BO16, 28 _IMS StartTime, 365
_IMS_BOARD CAT, 28 _IOFEF, 16
_IMS_BOARD_DRX11, 28 _IOLBF, 16
_IMS_BOARD_QTO, 28 _IONBF, 16
_IMS_BOARD_UDP_LINK, 28 _PTYPE, 388

72 TDS 347 01 October 1992

434

Index

A

abort, 18, 36, 422, 426
setting action, 290

ABORT_EXIT, 32
ABORT HALT, 32
ABORT_QUERY, 32
abs, 18, 37
Absolute value
float type, 119

floating point number, 118
integer number, 37

acos, 11, 38
acosf, 27, 39
Aliasing, 409
alloc86, 29, 40
Allocate

channel, 71

DOS memory, 40

memory, 68, 211

process, 239
semaphore, 283

Alphabetic character, test for, 7,
183

Alphanumeric character, test for, 7,
182

ANSIC
argument promotions, 382, 407
implementation data, 395
language extensions, 387
new features, 381
runtime library, 3
standard, compliance data, 415
standard functions, 6
trigraphs, escape, 386

Append string, 306, 317

Arc cosine function, 38

Arc sine function, 42

Arc tangent function, 46

arge, 365

72 TDS 347 01

Arguments
ANSI C, default promotions, 382,
407
to main, 400, 415
variable, 346

argv, 365

Arrays
implementation, 396, 418
searching, 65

asctime, 21, 41
asin, 11,42
asinf, 27

Assembly code, 389
literal bytes, 390
operands, 389

Assert
condition, 44
debug condition, 98

assert, 7,44, 422
assert.h, 7
atan, 11,46
atan2, 11,47
atan2f, 27,48
atanf, 27, 49
atexit, 18, 50
atof, 18, 52
atoi, 18, 54
atol, 18, 56

B

Backus—Naur Form, C language
extensions, 413

bdos, 29, 58

Bit fields, implementation, 403
BitCnt, 31,59

BitCntSum, 31, 60
BitRevNBits, 31, 61
BitRevWord, 31, 63

Bits in a byte, number of, 9

October 1992

Index

435

BlockMove, 31, 64
BNF, 413
bootlink.h, 29

Broken—down time
converted to string, 41
structure, 21, 22

bsearch, 18, 65
BUFSIZ, 16

C

C main program, 357
C.ENTRYD, 357
C.ENTRYD.RC, 357

call without gsb, 31, 67
Calling conventions, 407
calloc, 18, 68

Case
convert to lower case, 342, 343
test for lower case, 188
test for upper case, 192

ceil, 11,69

ceilf, 27,70
centrydl.c, 358, 368
centryd?.c, 358, 368
ChanAlloc, 24, 71
Chanln, 24, 72
ChanInChanFail, 24, 73
ChanInChar, 24, 74
ChanInInt, 24,75
ChanInit, 24, 76
ChanInTimeFail, 24, 77
Channel, data type, 25

Channel
allocate function, 71
character input, 74
character output, 80
initialization, 76

72 TDS 347 01

input
function, 72
recovery from failure, 73, 77
integer input, 75
integer output, 81
output
function, 78
recovery from failure, 79
reset, 83
secure input, 73, 77
secure output, 79, 82
channel.h, 22, 24
ChanOut, 24,78
ChanOutChanFail, 24, 79
ChanOutChar, 24, 80
ChanOutlInt, 24, 81
ChanOutTimeFail, 24, 82
ChanReset, 24, 83
char
See also Character
default promotion, 382
implementation, 395
plain, 403, 417
CHAR BIT,9
CHAR MAX, 9
CHAR MIN, 9
Character
constants, integer, 402
escape codes, 380, 384, 386
handling functions, 7
input on channel, 74
multibyte, 402, 416
locale, 402
output on channel, 80
sequences, ANSI trigraphs, 386
sets, 402, 416
execution, 402
source, 402
wide, 417
See also wchar_t

Clear file stream, 84
clearerr, 14, 84

Clock
addition of values, 266

October 1992

436

Index

comparison of values, 264
subtraction of value, 265

clock, 21, 85, 427
clock_t, 21
CLOCKS_PER_SEC, 21
CLOCKS_PER_SEC_HIGH, 24
CLOCKS_PER SEC_LOW, 24
close, 26, 87

Close file stream, 120
Communication. See Channel

Compare
characters in memory, 217
strings, 308
times, 264

Compiler
control lines, 380
preprocessor directives, 384
implementation data, 421

Concurrency
functions, 22
support, 387

config.h, 368
const, 379, 382, 406

Constants
floating point, 380
integer, 380, 402
signal handling, 12
syntax, 384

Control character, test for, 7, 185

Conversion
char to double, 52
error number to string, 312
floating point, 400
integers, 399
lower to upper case, 343
string to double, 324
string to int, 54
string to long int, 56
time to string, 97
to calendar time, 221
to local time, 202
upper to lower case, 342

72 TDS 347 01

Copy, characters in memory, 218
cos, 11,88

cosf, 27, 89

cosh, 11, 90

coshf, 27, 91

Cosine function, 88

CRC functions, résumé, 429
CrcByte, 31, 92, 429
CrcFromLsb, 31, 93, 429
CrcFromMsb, 31, 94, 429
CrcWord, 31, 95, 429
creat, 26, 96

Create file, 96
See also fopen; open

cstartrd. 1nk, 357
cstartup. 1nk, 357
ctime, 21, 97
ctype.h,7

Cyclic redundancy functions,
résumé, 429 |

D

Data
output on channel, 78
representation, 395
Data types, implementation, 395
Date and time
broken—down
convert to string, 41
structure, 22
daylight saving, 427
defaults, 405
functions, 21
local time zone, 427
DBL DIG, 8
DBL_EPSILON, 8
DBL_MANT DIG, 8 ,
DBL_MAX, 9
DBL_MAX 10_EXP, 9

October 1992

Index

437

DBL_MAX_EXP, 8
DBL_MIN, 8

DBL_MIN 10_EXP, 8
DBL_MIN_EXP, 8

Debug, messages, 99
debug_assert, 31, 98
debug message, 31, 99
debug_stop, 31, 100
Decimal digit, test for, 7, 186

Declarators, 382
implementation, 404, 421

Default
argument promotions, 382, 407
date, 405
time, 405

Delete, file, 345

difftime, 21, 101
DirectChanln, 24, 102
DirectChanInChar, 24, 103
DirectChanInInt, 24, 104
DirectChanOut, 24, 105
DirectChanOutChar, 24, 106
DirectChanOutInt, 24, 107
Directives, preprocessor, 380
div, 18, 108

div_t, 19

Division, 108

dos.h, 29

double, 382, 396

D)2/gamic code loading, functions,

E

EDOM, 8, 312, 426
EFILPOS, 8, 426
EFIPOS, 312

72 TDS 347 01

EIO, 8, 312, 426
Ellipsis, 381

End of file
character, 16
test, 121

entry, 380
enum, 379, 382
enumeration, 396

Enumeration types, 382
implementation, 403

EOF, 16
ERANGE, 8, 312, 422, 426

errno, 5,7, 426
on underflow, 422

errno.h,7

Error
handling, 7, 295
in file stream, 122

Error flag, setting, 392
See also abort;
halt processor;
set_abort_action

Error messages, fatal runtime, 32
Escape codes, 380

ESIGNUM, 8, 312, 426

EVENT, 25

Examples
CRC functions, 431
transputer code, 392

Execution character set, 402

exit, 18, 109, 120
status returned, 427

Exit program, 109

EXIT FAILURE, 19
exit_noterminate, 31, 112
exit repeat, 31, 114
EXIT_SUCCESS, 19
exit_terminate, 31, 115
exp, 11, 116

October 1992

438 Index
expf, 27, 117 read, 140
. . . read character, 124
Exponent!al, ﬂoat!ng point, 236 write, 160
Exponential function, 116, 235 write, 356

Extensions, language, 387, 413

F

F, floating point suffix, 380, 384
fabs, 11, 118
fabsf, 27, 119
Fatal runtime errors, 32
fclose, 14, 120
feof, 14, 121
ferror, 14, 122
£flush, 14, 123
fgetc, 14, 124
fgetpos, 14, 125, 426
fgets, 14, 126
FILE, 15
File
buffering, 16, 291
close, 87
create temporary, 338
delete, 345
open, 132
pointer
repositioning, 210
reset, 157
set to start, 280
read, 276
remove, 278
renaming, 279
size, 127
stream
buffering, 294
clearing error, 84
close, 120
error, 122
position, 155
position indicator, 125
push character back, 344

72TDS 347 01

FILENAME MAX, 16
filesize, 26, 127
Fill memory, 220
Find string, 307

in string, 320

float, 396
default promotion, 382

float.h, 8

Floating point
constants, 380, 384
conversion, 400
exponential, 236

implementation data, 396, 418

log, 205

multiply, 195
remainder, 130
separation, 146, 223
truncation, 400

floor, 11,128
floorf, 27, 129
FLT_DIG, 8
FLT_EPSILON,B
FLT MANT DIG, 8
FLT MAX, 9
FLT_MAX 10_EXP, 9
FLT_MAX EXP, 8
FLT MIN, 8
FLT_MIN_10_EXP, 8
FLT RADIX, 8
FLT_ROUNDS,8
Flush file stream, 123
fmod, 11, 130, 423
fmodf£, 27, 131
fn_info, 30
fnload.h, 29

October 1992

Index

439

fopen, 14, 132
mode strings, 133

FOPEN_MAX, 16
fpos_t, 15

fprintf, 14, 134
fputc, 14, 138
fputs, 14, 139
fread, 14, 140

free, 18, 142

Free memory, 142, 143
free86, 29, 143
freopen, 14, 144
frexp, 11, 146
frexpf, 27, 148

from host link, 28, 149
from86, 29, 150
fscanf, 14, 151, 426
fseek, 14, 155
fsetpos, 14, 157
ftell, 14, 159, 426
FTL_MIN_EXP, 8

Full library. See Library

Function
declarations, 379, 381
parameter lists, 379
variable, 381
prototypes, 381

fwrite, 14, 160

G

General utility functions, 17

Get character
from file, 169
from stdin, 170

get_bootlink_channels, 29,
161, 364

72 TDS 347 01

get_code details_from channel,

30, 162
get code_details from file,

30, 163

get_code_details_from memory,

30, 164

get_details of free memory,
31, 165, 364

get_details of free stack space,

31, 166, 363
get_init chain start, 367
get_param, 31, 167, 364, 416
GetArgsMyself, 365
getc, 15, 169
getchar, 15, 170

getenv, 18, 171
environment used, 427

getinit.s, 368
getkey, 26, 172
gets, 15,173

Global static base, 405, 407
modifying runtime startup, 359

gntime, 21, 174

H

halt_processor, 31, 175
Hardware characteristics, 380
Header files, 5

Heap area, for runtime startup, 363
Hexadecimal digit, test for, 7, 193
High priority process, 258

Host
data, 176
environment variables, 171
functions, 28
link, access, 28
sending command, 332
versions, ix

host.h, 28

October 1992

440

Index

host_info, 28, 176
hostlink.h, 28
HUGE_VAL, 11
Hyperbolic

cosine, 90

sine, 299
tangent, 335

/0, 237
buffering, 16
functions, 14
line buffering, 16

Identifiers, 380, 416
implementation, 402

Implementation

arrays, 396

details, 395

structures, 397

types, 395

unions, 399
information%module, 370
initialise_statiec, 361, 367
Initialization

channel, 76

process, 245

semaphores, 284

unions, 386

variable arguments, 349

Input/output functions, 14

int, 380, 396
default promotion, 382
output on channel, 81

INT MAX, 9

INT MIN, 9
int86, 29, 178
int86x, 29, 179
intdos, 29, 180
intdosx, 29, 181

72 TDS 347 01

Integer

bitwise operations, 403
constants, 380

syntax, 384
conversion, 399
division, 108
implementation data, 417
input on channel, 75
remainder on division, 403
result of right shift, 403

Interrupt, MS-DOS, 178, 179
io_and_hostinfo_init, 365
iocntrl.h, 26

isalnum, 7, 182, 422
isalpha, 7, 183, 422

isatty, 26, 184

isentrl, 7, 185, 422
isdigit, 7, 186

iserver, access to functions, 287
isgraph, 7, 187

islower, 7, 188, 422

ISO 646, character set, 386
isprint, 7, 189, 422
ispunct, 7, 190

isspace, 7, 191

istatic.c, 368

isupper, 7, 192, 422
isxdigit, 7,193

J

jmp_buf, 12
Jump tables, 393
Jumps, 393

K

Kemighan & Ritchie, 379
Keyboard, read, 172
Keywords, 380

October 1992

Index 441
L diagnostic functions, 7
general utility functions, 17
L header files, 5

floating point suffix, 380, 384
integer suffix, 384

L_INCR, 26

L_SET, 26

L_tmpnam, 16
L_XTND, 26

Labels, and __asm, 391
labs, 18, 194
Language extensions, syntax, 413
LC_ALL, 10
LC_COLLATE, 10
LC_CTYPE, 10
LC_MONETARY, 10
LC_NUMERIC, 10
LC_TIME, 10

lconv, 10

LDBL DIG, 8

LDBL EPSILON, 8
LDBL_MANT DIG, 8
LDBL_MAX, 9

LDBL _MAX 10 EXP, 9
LDBL MAX EXP, 8
LDBL_MIN, 8
LDBL_MIN 10_EXP, 8
LDBL_MIN_EXP, 8
ldexp, 11, 195
ldexpf, 27, 196
1div, 18, 197
1div_t, 19

Library
ANSI functions, 6
character handling functions, 7
communication protocols, 4
date and time functions, 21

72 TDS 347 01

host functions, 28
implementation data, 422
linking with program, 4
mathematics, 11
miscellaneous functions, 25
parallel processing, 22
reduced, 3

runtime, 3

signal handling functions, 12
standard definitions, 13
string handling functions, 20

Limits, 9
limits.h, 9
LINKOIN, 25
LINKOOUT, 25
LINK1IN, 25
LINK1OUT, 25
LINK2IN, 25
LINK20UT, 25
LINK3OUT, 25
Linking, libraries, 4

load_code from channel, 30,
198

load_code_from file, 30,199

load code_ from_memory, 30,
200

Locale, 402, 427
See also Set program locale
data, 201
setting, 293

locale.h, 9
localeconv, 9, 201
Localisation functions, 9
localtime, 21, 202
log, 11, 204

log1o0, 11, 206
logl0f£, 27, 207

logf, 27, 205

October 1992

442

Index

long, 380

Long division, 197

Long integers, 194
LONG_MAX, 9
LONG_MIN, 9

longjmp, 12, 208

Low priority process, 259

Lower case
convert to, 7
convert to upper, 343
test for, 7, 188

1seek, 26, 210

M

Macros
error handling, 8
floating point, 8, 9
implementation limits, 9
locale, 10
predefined, 388
signal handling, 12
standard, 14
time and date, 21

main function, 357
meaning of arguments, 400

malloe, 18, 211
math.h, 11
mathf.h, 26
Maths functions, 11
max_stack_usage, 31, 212, 363
MB_CUR_MAX, 19
MB_LEN_MAX, 9
mblen, 18, 213
mbstowces, 18, 214
mbtowe, 18, 215
memchr, 20, 216
memcmp, 20, 217
memcpy, 20, 218

72 TDS 347 01

memmove, 20, 219

Memory
allocate, 211
allocate DOS memory, 40
allocate function, 68
DOS transfer, 150
freeing, 142
insufficient, 32
reallocate, 277

memset, 20, 220

Minimum fp exponent, 8
misc.h, 30

Miscellaneous functions, 25
mktime, 21, 221

mod£, 11, 223

modff, 27, 224

Move2D, 225
Move2DNonZero, 227
Move2DZero, 229

MS-DOS
function call, 58
read registers, 282
software interrupt, 178, 179, 180,
181
system functions, 29

Multibyte characters, shift states,
402

Multiple processes, 242

N

Natural logarithm, 204
NDEBUG, 7
Non-ANSI functions, 25

Non-local jump, 12, 208
setting up, 292

Non-space printable character, test
for, 7

NotProcess_p, 25
NULL, 21

October 1992

Index

443

NULL, implementation, 422

NULL pointer constant, 14, 15, 19,
21
implementation, 409

o)

O_APPEND, 26
O_BINARY, 26
O_RDONLY, 26
O_RDWR, 26

O_TEXT, 26
O_TRUNC, 26
O_WRONLY, 26
offsetof, 14
open, 26, 231

Open file, 132

Open file stream, 231
Operators, unary, 380

P

Parameters, passing, 407
pcpointer, 29
perror, 15, 233, 426

Plain chars, 403

Pointers, implementation data, 418
Poll keyboard, 234
pollkey, 26, 234

pow, 11, 235

povwf£, 27, 236

Pragmas, 387

Preprocessor, directives, 380, 384
implementation data, 421

Printable character, test for, 7, 187,
189

printg, 15, 237

72 TDS 347 01

Priority, process, 244
PROC_HIGH, 24

PROC_LOW, 24
ProcAfter, 23, 238
ProcAlloc, 23, 239
ProcAllocClean, 23, 241
ProcAlt, 23, 242
ProcAltList, 23, 243
Process, structure type, 24

Process
allocate, 239
get parameters, 253
get priority, 244
initialization, 245
prioritizing, 255
rescheduling, 256
starting, 257
starting multiples, 252
stopping, 262
suspending, 269
timing, 263
timing out, 267

process.h, 22,23
ProcGetPriority, 23, 244
ProclInit, 23, 245
ProcInitClean, 23, 248
ProcJoin, 23, 250
ProcJoinList, 23, 251
ProcPar, 23, 252
ProcParam, 23, 253
ProcParList, 23, 254
ProcPriPar, 23, 255
ProcReschedule, 23, 256
ProcRun, 23, 257
ProcRunHigh, 23, 258
ProcRunLow, 23, 259
ProcSkipAlt, 23, 260
ProcSkipAltList, 261
ProcStop, 23, 262

October 1992

444 Index

ProcTime, 23, 263 Random numbers, 275
ProcTimeAfter, 23, 264 seeding, 304

. . Read
ProcTimeMinus, 23, 265 character from file, 124

ProcTimePlus, 23, 266 current time, 337
; formatted input, 151, 281
ProcTimerAlt, 23, 267 formatted string, 305
ProcTimerAltList, 23, 268 from file, 276
ProcWait, 23, 269 from file stream, 140
s from keyboard, 172
Program, execution time, 85 line
Program termination, 109 from stdin, 173
for configured programs, 112, 115 from stream, 126
function call, 50 MS-DOS registers, 282
with restart, 114 read, 26, 276

without terminating the server, 112 Read/write pointer, position, 159

realloc, 18, 277
Reduced library, 3

Protocol, used by library, 4
Prototypes, 381

prtdiff t,13 i/o related functions, 17
Pseudo—operations, 389 register, 403, 419
Pseudo—random numbers, 275 Registers, 419
Punctuation character Remainder, of division, 197

definition of, 190 remove, 15, 278

test for, 7, 190 rename, 15, 279
pute, 15,270 Reopen file, 144
putchar, 15, 271 Reset
puts, 15, 272 channel, 83

file pointer, 157
Q Restarting programs, 114
ret instruction, 394

gsort, 18, 273 rewind, 15, 280
Qualifiers, implementation data, Runtime

420 errors, fatal, 32
Quotient, of division, 197 hor o iystem, modiying, 357

R S

raise, 12,274 Scalar types, implementation, 395
rand, 18, 275 scanf, 15, 281
RAND MAX, 19 SCHAR MAX, 9

72 TDS 347 01 October 1992

Index 445
SCHAR MIN, 9 SIG_ERR, 12

Search, array, 65 SIG_IGN, 12

SEEK CUR, 16 SIGABRT, 12, 296, 423

SEEK—EN'D, 16 SIGALRM, 13, 296, 423, 424
SEEK_SET, 16 SIGEGV, 296

segread, 29, 282

SemAlloc, 25, 283
semaphor.h, 22, 25
Semaphore, structure type, 25

Semaphore
acquiring, 286
allocating, 283
initializing, 284
releasing, 285

SEMAPHOREINIT, 25

SemInit, 25, 284

SemSignal, 25, 285

SemWait, 25, 286

server_ transaction, 4, 26, 287

Set file pointer, 155

Set program locale, 9
See also Locale

set_abort_action, 31, 36, 290,

427
set_host_link, 364
setbuf, 15, 291
setjmp, 12, 292
setjmp.h, 12
setlocale, 9, 293
setvbuf, 15, 294
short, 380

short int, default promotion, 382

SHRT MAX, 9
SHRT MIN, 9
sig_atomic_t, 12
SIG DFL, 12

72TDS 347 01

SIGFPE, 12, 296, 423
SIGILL, 12, 296, 423
SIGINT, 12,423

SIGIO, 12, 296, 423, 424
SIGLOST, 13, 296, 423, 424

Signal

handler, 36

handling, 295
constants, 12
functions, 12
macros, 12
types, 12

raise, 274

signal, 12, 295, 423
signal.h, 12

signed, 379, 383

signed char, 380, 395
signed int, 396

signed Vlong, 396
signed short, 395
SIGPIPE, 12, 296, 423, 424
SIGSEGV, 423, 424
SIGSERV, 12

SIGSTERM, 12

SIGSYS, 13, 296, 423, 424
SIGTERM, 296, 423, 424
SIGURG, 12, 296, 423, 424
SIGUSRI, 13, 296, 423, 424
SIGUSR2, 13, 296, 423, 424
SIGUSR3, 13, 296, 423, 424
SIGWINCH, 13, 296, 423, 424
sin, 11, 297

sinf, 27,298

October 1992

446 Index
sinh, 11, 299 stdin, 402, 416
. get character, 170
sf"hfé;" 300 read line, 173
size 13 15 15 stdio.h, 14
size_t,13,15,19, 21 stdiored.h, 17
sizeof. See size_t stdlib.h, 17

Skipping channels, 260
Sort, 273
Source character set, 402

Space character
printable, 189
test for, 7, 191

sprintf, 15, 17, 301
sqrt, 11,302
sqrtf£, 27, 303
Square root, 302
srand, 18, 304
sscanf, 15, 17, 305

Stack
for runtime startup, 363
overflow, 32
usage, 212

Standard definitions, 13

Standard error, writing error mes-
sage, 233

Standard input, 281

Standard output, 237, 271, 352
writing to, 272

startup.h, 368

Statements, implementation data,
421

Static area, runtime startup initial-
ization, 367

Stalic data layout, 405
constant, 406
local, 405

stdarg.h, 13
stddef.h, 13
stderr, 402, 416

72 TDS 347 01

stdout, 402, 416
strcat, 20, 306
strchr, 20, 307
stremp, 20, 308
streoll, 20, 309
strepy, 20, 310
strespn, 20, 311

strerror, 20, 312
return values, 427

strftime, 21, 313

String
appending, 306, 317
compare, 308, 311
compare and count, 322
compare characters, 318
convert to double, 324
convert to long int, 330
convert to tokens, 326
copy to array, 310, 319
handling functions, 20
length, 316
transform by locale, 331

String constants, syntax, 384
string.h, 20
strlen, 20, 316
strneat, 20, 317
strnemp, 20, 318
strnepy, 20, 319
strpbrk, 20, 320
strrchr, 20, 321
strspn, 20, 322
strstr, 20, 323
strtod, 18, 324

October 1992

Index

447

~ strtok, 20, 326
strtol, 18, 328
strtoul, 18, 330

Structures, 380
implementation, 397
syntax, 385

strxfrm, 20, 331

Switch statement, implementation,

404
Syntax, notation, 413
system, 18, 332

T

tan, 11,333
tanf, 27, 334
tanh, 11, 335
tanhf, 27, 336

Temporary file, 338
names, 16

Terminal I/O, test for, 184

Terminate, 109
configured programs, 112, 115
program, 36
See also abort; exit

terminate_server, 366

Termination, invoking function at,
50

Time, 337
See also Date and time
conversion, formatted, 313
difference, 101
UTC, 174

time, 21, 337
time.h, 21
time_t, 21
Timer. See Clock
TMP_MAX, 16
tmpfile, 15, 338

72 TDS 347 01

tmpnam, 15, 339
to_host link, 28, 340
to86, 29, 341

tolower, 7,342

Toolset, documentation, ix
conventions, Xi

toupper, 7, 343

Transputer, instructions, 389
size option, 391

Trigraphs, 380, 386

Type, 382
conversion, 399
implementation, 395
qualifiers, 382
signal handling, 12
specifiers, 379

U

U, integer suffix, 380, 384
UCHAR MAX, 9
uglobal.h, 368

UINT MAX, 9
ULONG_MAYX, 9

Unary operators, 380
ungetc, 15, 344

Unions, 380
implementation, 399
initialization, 380, 386
syntax, 385

unlink, 26, 345
unsigned, 384

unsigned char, 380, 395
unsigned int, 396
unsigned long, 380, 396
unsigned short, 395

Upper case
convert to, 7
convert to lower, 342
test for, 7, 192

October 1992

448 Index

USHRT_MAX, 9
UTC time, 174

\'

va_arg, 13, 346
va_end, 13, 348
va_list, 13
va_start, 13, 349, 350

Variable argument lists, 13, 346,
381
cleaning up, 348

Variables, built-in, 391
vEprintf£, 15, 350
void, 379, 383
volatile, 379, 383, 406
implentation, 404
vprint§£, 15, 352
vsprintf, 15, 17, 353

w

Wait. See ProcAfter; ProcHait
wchar_t, 13,19

wcstombs, 18, 354

wctomb, 18, 355

Wide characters. See Character

Write
character, to file, 138, 270
error message, to stderr, 233
line, to stdout, 272
string, to stream, 139
to file, 356
to stream, 160

write, 26, 356

Write formatted string
to file, 134, 350
to standard output, 237
o stdout, 352
to string, 301, 353

72 TDS 347 01 October 1992

	Contents overview
	Contents
	Preface
	Host versions
	About this manual
	About the toolset documentation set
	Other documents
	occam and FORTRAN toolsets
	Documentation conventions

	Runtime Library
	1 Introduction and runtime library summary
	1.1 Introduction
	1.1.1 Accessing library functions
	1.1.2 Linking libraries with programs
	1.1.3 iserver protocols
	1.1.4 Functions which store data in static

	1.2 Header files
	1.3 ANSI functions
	1.3.1 Diagnostics <assert.h>
	1.3.2 Character handling <ctype.h>
	1.3.3 Error handling <errno.h>
	1.3.4 Floating point constants <float.h>
	1.3.5 Implementation limits <limits.h>
	1.3.6 Localization <locale.h>
	1.3.7 Mathematics library <math.h>
	1.3.8 Non-local jumps <setjmp.h>
	1.3.9 Signal handling <signal.h>
	1.3.10 Variable arguments <stdarg.h>
	1.3.11 Standard definitions <stddef.h>
	1.3.12 Standard I/O <stdio.h>
	Characteristics of file handling

	1.3.13 Reduced library I/O functions <stdiored.h>
	1.3.14 General utilities <stdlib.h>
	1.3.15 String handling <string.h>
	1.3.16 Date and time <time.h>

	1.4 Concurrency functions
	1.4.1 Process control <process.h>
	1.4.2 Channel communication <channel.h>
	1.4.3 Semaphore handling <semaphor.h>

	1.5 Other functions
	1.5.1 I/O primitives <iocntrl.h>
	1.5.2 float maths <mathf.h>
	1.5.3 Host utilities <host.h>
	1.5.4 Host channel access utilities <hostlink.h>
	1.5.5 Boot link channel functions <bootlink.h>
	1.5.6 MS-DOS system functions <dos.h>
	1.5.7 Dynamic code loading functions <fnload.h>
	1.5.8 Miscellaneous functions <misc.h>

	1.6 Fatal runtime errors
	1.6.1 Runtime error messages

	2 Alphabetical list of functions
	2.1 Format
	2.1.1 Reduced library
	2.1.2 Macros

	2.2 List of functions
	abort
	abs
	acos
	acosf
	alloc86
	asctime
	asin
	asinf
	assert
	atan
	atan2
	atan2f
	atanf
	atexit
	atof
	atoi
	atol
	bdos
	BitCnt
	BitCntSum
	SitRevNBits
	BitRevWord
	BlockMove
	bsearch
	call_without_gsb
	calloc
	ceil
	ceilf
	ChanAlloc
	ChanIn
	ChanInChanFail
	ChanlnChar
	Chanlnlnt
	Chanlnit
	ChanlnTimeFail
	ChanOut
	ChanOutChanFail
	ChanOutChar
	ChanOutlnt
	ChanOutTimeFail
	ChanReset
	clearerr
	clock
	close
	cos
	cosf
	cosh
	coshf
	CrcByte
	CrcFromLsb
	CrcFromMsb
	CrcWord
	creat
	ctime
	debug_assert
	debug_message
	debug_stop
	difftime
	DirectChanln
	DirectChanInChar
	DirectChanlnlnt
	DirectChanOut
	DirectChanOutChar
	DirectChanOutInt
	div
	exit
	exit_noterminate
	exit_repeat
	exit_terminate
	exp
	expf
	fabs
	fabsf
	fclose
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	filesize
	floor
	floorf
	fmod
	fmodf
	fopen
	fprintf
	fputc
	fputs
	fread
	free
	free86
	freopen
	frexp
	frexpf
	from_host_link
	from86
	fscanf
	fseek
	fsetpos
	ftell
	fwrite
	get_bootlink_channels
	get_code_details_from_channel
	get_code_details_from_file
	get_code_details_from_memory
	get_details_of_free_memory
	get_details_of_free_stack_space
	get_param
	getc
	getchar
	getenv
	getkey
	gets
	gmtime
	halt_processor
	host_info
	int86
	int86x
	intdos
	intdosx
	isalnum
	isalpha
	isatty
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	labs
	ldexp
	ldexpf
	Idiv
	load_code_from_channel
	load_code_from_file
	load_code_from_memory
	localeconv
	localtime
	log
	logf
	log10
	log10f
	longjmp
	lseek
	malloc
	max_stack_usage
	mblen
	mbstowcs
	rnbtowc
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	modf
	modff
	Move2D
	Move2DNonZero
	Move2DZero
	open
	perror
	pollkey
	pow
	powf
	printf
	ProcAfter
	ProcAlloc
	ProcAllocClean
	ProcAlt
	ProcAltList
	ProcGetPriority
	Proclnit
	ProclnitClean
	ProcJoin
	ProcJoinList
	ProcPar
	ProcParam
	ProcParList
	ProcPriPar
	ProcReschedule
	ProcRun
	ProcRunHigh
	ProcRunLow
	ProcSkipAlt
	ProcSkipAltList
	ProcStop
	ProcTime
	ProcTimeAfter
	ProcTimeMinus
	ProcTimePlus
	ProcTimerAlt
	ProcTimerAltList
	ProcWait
	putc
	putchar
	puts
	qsort
	raise
	rand
	read
	realloc
	remove
	rename
	rewind
	scanf
	segread
	SemAlloc
	Semlnit
	SemSignal
	SemWait
	server_transaction
	set_abort_action
	setbuf
	setjmp
	setlocale
	setvbuf
	signal
	sin
	sinf
	sinh
	sinhf
	sprintf
	sqrt
	sqrtf
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strftime
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	strtoul
	strxfrm
	system
	tan
	tanf
	tanh
	tanhf
	time
	tmpfile
	tmpnam
	to_host_link
	to86
	tolower
	toupper
	ungetc
	unlink
	va_arg
	va_end
	va_start
	vfprintf
	vprintf
	vsprintf
	wcstombs
	wctomb
	write

	3 Modifying the runtime startup system
	3.1 Introduction
	3.2 Overview of system
	3.3 The gsb and use of the IMS_nolink pragma
	3.4 Interface to runtime startup code
	3.5 Details of stage 1 of the runtime startup code
	3.5.1 Initialize static
	3.5.2 Call stage 2 startup code and set up gsb

	3.6 Details of stage 2 of the runtime startup code
	3.6.1 Set up bounds of stack
	3.6.2 Initialize heap
	3.6.3 Initialize pointer to configuration process structure
	3.6.4 Initialize I/O system
	3.6.5 Get command line arguments
	3.6.6 Save exit return point
	3.6.7 Initialize clock
	3.6.8 Call main
	3.6.9 Terminate server if required

	3.7 Interface to main
	3.8 Static initialization
	3.9 Source files supplied and rebuilding
	UNIX based toolsets
	MS-DOS based toolsets
	VMS based toolsets

	3.10 Notes
	3.11 Example
	3.11.1 Building the modified runtime system
	For example
	UNIX based toolsets
	MS-DOS/VMS based toolsets

	Language Reference
	4 New features in ANSI C
	4.1 Summary of new features in the ANSI standard
	4.2 Details of new features
	4.2.1 Function declarations
	4.2.2 Function prototypes
	4.2.3 Functions without prototypes
	4.2.4 Declarations
	4.2.5 Types, type qualifiers and type specifiers
	4.2.6 Constants
	4.2.7 Preprocessor extensions
	Compiler directives
	Predefined macros

	4.2.8 Structures and unions
	4.2.9 Trigraphs
	Trigraph escape codes

	5 Language extensions
	5.1 Concurrency support
	5.2 Pragmas
	5.3 Predefined macros
	5.4 Assembly language support
	5.4.1 Directives and operations
	5.4.2 size option on __asm statement
	5.4.3 Labels
	5.4.4 Notes on transputer code programming
	5.4.5 Useful built-in variables
	5.4.6 Transputer code examples
	Setting the transputer error flag
	Loading constants using literal operands
	Labels and jumps
	Jump tables
	Loading floating point registers
	Using align/word to return an element of a table
	Inserting raw machine code

	6 Implementation details
	6.1 Data type representation
	6.1.1 Scalar types
	6.1.2 Arrays
	6.1.3 Structures
	Example 1 (structuring on a 32-bit processor)
	Example 2 (structuring on a 32-bit processor)

	6.1.4 Unions

	6.2 Type conversions
	6.2.1 Integers
	6.2.2 Floating point

	6.3 Compiler diagnostics
	6.4 Environment
	6.4.1 Arguments to main
	Configured case
	Unconfigured case

	6.4.2 Interactive devices

	6.5 Identifiers
	6.6 Source and execution character sets
	Shift states for encoding multibyte characters
	Integer character constants
	Locale used to convert multibyte characters
	Plain chars

	6.7 Integer operations
	Bitwise operations on signed integers
	Sign of the remainder on integer division
	Right shifts on negative-valued signed integral types

	6.8 Registers
	6.9 Enumeration types
	6.10 Bit fields
	6.11 volatile qualifier
	6.12 Declarators
	6.13 Switch statement
	6.14 Preprocessing directives
	Constants controlling conditional inclusion
	Date and time defaults

	6.15 Static data layout
	6.15.1 Local static data layout
	6.15.2 Constant static objects

	6.16 Calling conventions
	6.16.1 Parameter Passing
	6.16.2 Calling Sequence
	6.16.3 Rules for aliasing between formal parameters

	6.17 Runtime library

	Appendices
	A Syntax of language extensions
	A.1 Notation
	A.2 #pragma directive
	A.3 __asm statement

	B ANSI standard compliance data
	B.1 Translation
	B.2 Environment
	B.3 Identifiers
	B.4 Characters
	B.5 Integers
	B.6 Floating point
	B.7 Arrays and pointers
	B.8 Registers
	B.9 Structures, unions, enumerations, and bit-fields
	B.10 QuaIifiers
	B.11 Declarators
	B.12 Statements
	B.13 Preprocessing directives
	B.14 Library functions
	B.15 Locale-specific behavior

	C CRC Resume
	C.1 Summary of functions
	C.2 Cyclic redundancy polynomials
	C.2.1 Format of result

	C.3 Notes on the use of the CRC functions
	C.4 Example of use

	Index

