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Preface
This manual is a combined user and reference guide to the occam 2 toolset.
Part 1 'User guide and tools' (this book) describes the toolset and shows how
it is used to develop and run transputer programs. Part 2 'occam libraries and
appendices' (72 TDS 276 02) describes the libraries supplied with the toolset
and provides reference data in the form of appendices. A guide to how to use
this manual, follows immediately after this preface.

The occam 2 toolset

The occam 2 toolset is a set of software tools for developing transputer pro­
grams on host systems. Used with the occam libraries, it provides a complete
environment for developing programs on transputers and transputer networks.

The toolset allows occam programs to be written using any convenient text
editor. Programs are then compiled and linked using programs resident on the
host or running on the transputer board. Self-booting code for single transputers
and multitransputer networks is produced using separate tools, and loaded from
the host system down the transputer link.

Tools that assist program development include a librarian tool for building code
libraries, a network debugger which provides both interactive and post-mortem
debugging facilities, and a transputer simulator that allows programs to be tested
without transputer hardware. A Makefile generator is provided to assist with
program version control, and a binary lister tool allows object files to be decoded
and displayed in a readable form.

Transputer programs are normally written in occam to make full use of trans­
puter parallel processing. Programs can also be written in C and included in
occam programs as separately compiled procedures.

The occam 2 toolset is intended for developing programs on transputers and
transputer boards that are loaded from the host via a transputer link. Boards
that boot from on-board ROM require application software to be in a format
suitable for blowing into ROM. Two tools are provided with the toolset to support
EPROM programming, they are the EPROM program formatting tool and the
EPROM memory configurer.
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xxii

Host versions

The manual is designed to cover all host versions of the toolset:

IMS D7205 - IBM and NEC PC running MS-DOS.
IMS D5205 - Sun 3 systems running SunOS
IMS D4205 - Sun 4 systems running SunOS
IMS D6205 - VAX systems running VMS

72 TDS 275 02
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How to use the manual
About the manual

The occam 2 user manual is divided into two parts, as follows:

• User Guide and tools 72 TDS 275 02

- Chapters 1 to 11 show how the tools are used to develop pro­
grams on single transputers and transputer networks.

- Chapters 12 to 26 provide details of individual tools in terms of
command line syntax, command options, running the tool and
possible error messages.

• occam libraries and appendices 72 TDS 276 02

- A detailed description is given of all the libraries supplied with the
toolset.

- A number of appendices provide reference material for program­
mers such as predefined names and constants, transputer in­
structions, and the implementation of occam on the transputer.
A glossary of terms and a short bibliography is also included.

References which span the two parts, take the form of a part number followed
by a chapter or section number. Each part contains its own index.

This manual does not contain details of how to install the software, which is to
be found in the Delivery Manual that accompanies the shipment.

The manual is intended to cover all host versions of the toolset; where there are
differences between the various host implementations, they are highlighted and
explained.

Readership

This manual is intended for programmers and system designers who wish to
develop transputer programs on host systems. Readers of the manual should
already be familiar with programming in a high level language, the software de­
velopment process, and the general ideas of occam and parallel processing.
Familiarity with the syntax of occam will also be an advantage, because oc­
cam programs and code fragments are used throughout the book to illustrate
concepts and procedures. For information about the occam language, refer
to the 'occam 2 Reference Manual', which accompanies this release. For an
introduction to occam programming, read 'A tutorial introduction to occam
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programming'.
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The reader should also be familiar with the hardware and operation of the trans­
puter evaluation board on which the programs will be developed. Information
about INMOS transputer evaluation boards is available in the form of product
datasheets.

User guide

The User Guide, provided in part 1 of this manual, contains information to show
programmers how to use the tools to develop transputer programs. It describes
how to design and build programs for transputers and transputer networks.

Example programs supplied with the toolset are used extensively throughout the
User Guide to illustrate program design and development.

Chapter breakdown

For those who do not wish to read the entire Guide or wish to get started quickly,
some recommendations follow.

If you have not used the toolset before then you should first read chapter 2,
which contains an overview of the toolset.

Chapter 3, 'Getting started' is provided as a tutorial to show users how to compile,
link and run simple occam programs on a single transputer. The example used
is provided in the examples directory supplied with the toolset.

Before attempting to write any programs of your own you should read chapters
4 and 8, which show how to compile simple programs that use host terminal i/o.
If you are new to occam you should begin by writing a program which runs on
a single processor before attempting to write multiprocessor code.

Chapter 7 explains how to debug programs running on transputer boards, and
describes how to use the T425 simulator to test programs before loading them
onto hardware. Reading this chapter thoroughly and working studiously through
the examples will help to familiarise you with the operation of the debugger and
simulator tools.

Chapter 9 gives details of how to develop mixed language programs. It shows
how modules written in C can be inserted into an occam program using a set
of library procedures to initialise static and heap areas. Read and digest the
information in this chapter carefully before attempting to write mixed language
programs.

Chapters 10 and 11 provide more specialised information covering the use of
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the low level programming and EPROM programming facilities provided with the
toolset. These facilities are not aimed at the users who are new to occam or
transputers. Users intending to use the EPROM tools should be familiar with
INMOS transputers and with. memory products.

Tools

The Tools section, provided in part 1 of the manual, contains reference informa­
tion for all tools in the toolset. Each tool is described in a separate chapter.

The Tools section is not intended to be read in chapter order. Chapters should
be consulted as required to obtain information about how to use specific tools.

The occam libraries

Reference information for the occam libraries is given in part 2 of this manual.
All the occam library routines provided with the toolset are described. Routines
are grouped according to the library to which they belong.

Appendices

These appear at the end of part 2 of the manual. They provide reference infor­
mation on the following topics:

• Predefined names.

• Transputer instructions.

• Constants.

• The implementation of occam on the transputer.

• Configuration language definition.

• Bootstrap loaders.

• ITERM

• Host file server protocol.

A glossary of terms and a short bibliography is also included.
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Conventions used in the manual
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Convention Description

Italics Used in command line syntax to denote parameters for which
values must be supplied. Also used for book titles and for
emphasis.

Bold Used for new terms, pin signals, and the text of error mes­
sages.

Teletype Used for listings of program examples and to denote user
input and terminal output.

IKEYI Used to denote function keys for the debugger and simulator
tools. Keyboard layouts for specific terminals can be found in
the Delivery Manual that accompanies the shipment.

D Used to indicate the continuation of a function key description.

Braces Used to denote lists of items in command line syntax.

{ }

Brackets

[ ]

Used to denote optional items in command line syntax.

Option prefix Examples of command line input are duplicated to show both
option prefix characters. Use the line containing the' I' char­
acter if you have an MS-DOS or VMS based system and the
line containing the '-' character if you are using any other host
including UNIX.
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