
occam2
toolset
user manual - part 1

(User guide and tools)

INMOS Limited

72 TDS 275 02 March 1991

Copyright © INMOS Limited 1991

e ,Ilrmos, IMS and occam are trademarks of INMOS Limited.

INMOS is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 TDS 275 02

Contents overview
Contents

Preface

How to use the manual

User Guide

1 Introduction Introduces the toolset and transputer pro-
gramming.

2 Overview of the An overview of the toolset containing brief de-
toolset scriptions of each tool, an introduction to the

libraries, and explanations of the toolset con-
ventions.

3 Getting started Shows the command sequences to generate
single transputer programs.

4 Programming single An introduction to programming single trans-
transputers puters, with worked examples.

5 Configuring An introduction to programming and configur-
transputer networks ing transputer networks, with examples.

6 Loading transputer Describes how to load programs onto trans-
programs puters and transputer networks, with descrip-

tions of the tools that are used.

7 Debugging occam Describes how to use the debugger to debug
programs occam programs in post-mortem and break-

point modes.

8 Access to host Describes how to access host services using
services the host file server and i/o libraries.

9 Mixed language Describes how to use C in occam programs.
programming

10 Low level Describes the low level facilities of occam 2.
programming

11 EPROM Describes the EPROM programming facilities
programming of the toolset.

72 TDS 275 02 March 1991

Contents overview

Tools

12 icollect - code
collector

15 idump - memory
dumper

16 iemit - memory
configurer

17 ieprom - EPROM
program formatter

Describes the code collector which generates
executable code from single linked units or
configuration binary files.

Describes the file format convertor that con­
verts object files produced by earlier INMOS
toolsets into TCOFF format.

Describes the toolset debugger, with full de­
scriptions of its post-mortem and interactive
debugging facilities.

Describes the memory dumper tool which
dumps root transputer memory for post­
mortem debugging.

Describes the memory configurer tool which
helps to configure the transputer memory in­
terface.

Describes the EPROM program formatter
which creates executable files for loading into
ROM.

Describes the librarian tool that creates li­
braries of compiled code.

Describes the Iinker tool that links compiled
code into a single file.

Describes the binary lister tool for displaying
data from object files.

Describes the Makefile generator that creates
Makefiles for toolset compilations.

Describes the host file server that loads pro­
grams onto transputers and provides run-time
communications with the host.

Describes the T425 simulator tool which al­
lows programs to be run without hardware.

Describes the skip loader tool which loads
programs onto external subnetworks.

Describes the occam 2 compiler.

Describes the configurer which generates
configuration binary files from configuration
descriptions.

ilink -linker

isim - T425
simulator

iskip - skip
loader

oc - occam 2
compiler

occonf ­
configurer

i 1 ibr - librarian

ilist - binary
lister

imakef - Makefile
generator

iserver - host
file server

13 icvlink-
TCOFF file
convertor

14 idebug-
debugger

20

21

22

18

24

19

23

25

26

The Index

72 TDS 275 02 March 1991

2

Contents
Contents overview

Contents

Preface

How to use the manual

User guide

Introduction
1.1 Overview
1.2 Transputers
1.3 Transputers and occam

1.3.1 The occam programming model
1.3.2 Multitransputer programming
1.3.3 Reliability
1.3.4 Real time programming

1.4 Program development using the toolset
1.4.1 System design
1.4.2 Programming and code generation
1.4.3 Debugging

Overview of the toolset
2.1 Introduction

2.1.1 Standard file format
2.1.2 New configuration language

2.2 oc - the occam 2 compiler
2.3 Code generation tools

2.3.1 Linker
2.3.2 Configurer
2.3.3 Collector

2.4 Code loading
2.4.1 Host file server
2.4.2 Skip loader

2.5 Program development and support tools
2.5.1 Network debugger
2.5.2 Memory dumper
2.5.3 Librarian

iii

xxi

xxiii

3
3
3
5
5
6
7
7
7
7
8
8

9
9
9

10
12
12
13
13
13
13
13
14
14
14
15

15

72 TDS 275 02 March 1991

iv Contents

2.5.4 Binary lister 15
2.5.5 Makefile generator 15
2.5.6 File format convertor 16
2.5.7 T425 simulator 16 e2.6 EPROM support tools 16
2.6.1 EPROM programmer 16
2.6.2 Memory configurer 16
2.6.3 Memory Interface file convertor 16

2.7 The occam libraries 17
2.7.1 Constants 17
2.7.2 Complier libraries 17
2.7.3 Maths libraries 18
2.7.4 I/O Iibrarles 18

Hostlo library 18
Streamlo library 19

2.7.5 Other libraries 19
String handling library 19
Type conversion library 19
Extraordinary link handling library 19
Block CRC library 19
Debugging support library 19
Mixed language support library 20
DOS specific hostio library 20 e2.8 Program development 20

2.8.1 Development support 21
2.9 File extensions 22

File extensions for use with imakef 22
2.10 Host dependencies 23

Command line syntax 24
2.10.1 Libraries 24
2.10.2 Filenames 24
2.10.3 Search paths 25
2.10.4 Host environment variables 25
2.10.5 Default command line arguments 26

2.11 Toolset conventions 26
2.12 Command line syntax 27

Standard options 27
2.12.1 Error handling and message format 28

Severities 29
Information messages 30 e

72 TDS 275 02 March 1991

Contents v

3 Getting started 31
3.1 Example command line 31
3.2 Interrupting programs 31
3.3 Compiling and running a simple example program 32

3.3.1 Setting environment variables 33
3.3.2 Compiling the example program 33
3.3.3 Linking the example program 34
3.3.4 Creating a bootable file 34
3.3.5 Running the example program 35
3.3.6 Compiling and linking for other transputer types 36

3.4 Using imakef 36

4 Programming single transputers 39
4.1 Program examples 39
4.2 occam programs 39

4.2.1 Compiling programs 40
Compilation Information 41

4.2.2 Linking programs 41
4.2.3 Viewing code 42
4.2.4 Making bootable programs 42
4.2.5 Loading and running programs 42

4.3 Transputer types and classes 43
4.3.1 Single transputer type 43
4.3.2 Creating a program which can ru~ on a range of

transputers 44
4.3.3 Mixing code compiled for different targets 45
4.3.4 Classes/instruction sets - additional information 48

4.4 Error modes 50
4.4.1 Error detection 51

4.5 Interactive debugging 53
4.6 Alias and usage checking 54
4.7 Using separate vector space 55
4.8 Sharing source between files 57
4.9 Separate compilation 57

4.9.1 Sharing protocols and constants 58
4.9.2 Compiling and linking large programs 59

4.10 Using imakef 59
4.11 Libraries 60

4.11.1 Selective loading 60
4.11.2 Building libraries 61

4.12 Example program - the pipeline sorter 62

72 TDS 275 02 March 1991

vi

4.12.1 Overview of the program
4.12.2 The protocol
4.12.3 The sorting element
4.12.4 The input/output process
4.12.5 The calling program
4.12.6 Building the program
4.12.7 Automated program building

Contents

62
65
65
66
68
68
71

5 Configuring transputer networks 73
5.1 Introduction 73
5.2 Configuration model 74

5.2.1 Configuration language 75
5.2.2 Overall structure of a configuration description 77

5.3 Hardware description 79
5.3.1 Declaring processors 79
5.3.2 NODE attributes 79
5.3.3 NETWORK description 79
5.3.4 Declaring EDGEs 82
5.3.5 Declaring ARCs 82
5.3.6 Abbreviations 83
5.3.7 Host connection 84
5.3.8 Examples of network descriptions 84

5.4 Software description 86
5.4.1 Libraries of linked units 87
5.4.2 Example 87

5.5 Mapping descriptions 88
5.5.1 Mapping processes 89
5.5.2 Mapping channels 90
5.5.3 Moving code and data areas 91
5.5.4 Mapping without a MAPPING section 92
5.5.5 Mapping examples 92

5.6 Example: A pipeline sorter on four transputers 93
5.6.1 Building the program 96
5.6.2 Running the program 98
5.6.3 Automated program building 98

5.7 Use of conditionals in a configuration 99
5.7.1 Example: Configuration using conditional IF 99

5.8 Summary of configuration steps 101

72 TDS 275 02 March 1991

Contents ix

7.14.2 Compiling the facs program 138
Using imakef 138
Using the tools directly 138

7.15 Breakpoint debugging 139
7.15.1 Prerequisites for breakpoint debugging 139
7.15.2 Loading the program 139
7.15.3 Setting initial breakpoints 140
7.15.4 Starting the program 140
7.15.5 Entering the debugger 140
7.15.6 Inspecting variables 141
7.15.7 Backtracing 141
7.15.8 Jumping down a channel 141
7.15.9 Modifying a variable 141
7.15.10 Entering #INCLUDE files 142
7.15.11 Resuming the program 142
7.15.12 Clearing a breakpoint 142
7.15.13 QUitting the debugger 142

7.16 Post-mortem debugging 143
7.16.1 Prerequisites for post-mortem debugging 143
7.16.2 Running the example program 143
7.16.3 Creating a memory dump file 143
7.16.4 Running the debugger 144

7.17 Hints and further guidance 148
7.17.1 Invalid pointers 148
7.17.2 Examining and disassembling memory 148
7.17.3 occam scope rules 148
7.17.4 Debugging IF and CASE statements 150
7.17.5 Analysing deadlock 150
7.17.6 Inspecting soft configuration channels 153

7.18 Points to note when using the debugger 153
7.18.1 Abusing hard links 153
7.18.2 Examining the active network (the network is

volatile) 154
7.18.3 Using !lNSPECTI with channel communications 154
7.18.4 Selecting events from specific processors 154
7.18.5 Minimal confidence check 155
7.18.6 INTERRUPT key 155
7.18.7 Program crashes 155
7.18.8 Undetected program crashes 156
7.18.9 Debugger hangs when starting program 156
7.18.10 Debugge-r hangs 156

72 TDS 275 02 March 1991

x Contents

7.18.11 Catching concurrent processes with
breakpoints 156

7.18.12 Phantom breakpoints 157
7.18.13 Breakpoint configuration considerations 157 e7.18.14 Determining connectivity and memory sizes 158
7.18.15 Long source code lines 158
7.18.16 Setting breakpoints on the transputer seterr

instruction 158
7.18.17 Backtracing to occam configuration code 158

8 Access to host services 159
8.1 Introduction 159
8.2 Communicating with the host 159

8.2.1 The host file server 159
8.2.2 Library support 160
8.2.3 File streams 160

Protocols 161
8.3 Host implementation differences 161
8.4 Accessing the host from a program 162

8.4.1 Using the simulator 162
8.5 Multiplexing processes to the host 162

8.5.1 Buffering processes to the host 163
8.5.2 Pipelining 163

9 Mixed language programming 165
9.1 Introduction 165
9.2 Importing C functions 166

9.2.1 Deciding whether a static area is required 166
9.2.2 Functions which do not require static or heap 167
9.2.3 Declaring the C function 167

Translating C names 169
Linking 169

9.2.4 Functions which require static and/or heap 170
The static area 170
The heap area 170
Callc library 170

9.2.5 Example of using the callc library 173
9.2.6 Linking the program 175

9.3 Parameter passing 176
9.3.1 Return values 179
9.3.2 Examples of passing parameters 179

72 TDS 275 02 March 1991

Contents xi

10 Low level programming 185
10.1 Allocation 185

10.1.1 The PLACE statement 186
10.1.2 Allocating specific workspace locations 187
10.1.3 Allocating channels to links 188

10.2 RETYPING channels and creating channel array con-
structors 190

10.3 Code Insertion 192
10.3.1 Using the code Insertion mechanism 192
10.3.2 Special names 194
10.3.3 Labels and jumps 195
10.3.4 Programming notes 195

10.4 Dynamic code loading 195
10.4.1 Calling code 196
10.4.2 Loading parameters 198
10.4.3 Examples 199

10.5 Extraordinary use of links 203
10.5.1 Clarification of requirements 203
10.5.2 Programming concerns 204
10.5.3 Input and output procedures 204
10.5.4 Recovery from failure 205
10.5.5 Example: a development system 205

10.6 Scheduling 207
10.7 Setting the error flag 207

11 EPROM programming 209
11.1 Introduction 209
11.2 Processing configurations' 210

11.2.1 Single program, single processor, run from ROM 211
11.2.2 Configured program, single processor, run from

ROM 211
11.2.3 Single program, single processor, run from RAM 211
11.2.4 Configured program, single processor, run from

RAM 211
11.2.5 Configured program, multiple processor, run from

RAM 211
11.2.6 Configured program, multiple processor, root

run from ROM, rest of network run from RAM 211
11.3 The eprom tool: ieprom 212
11.4 Using the configurer and collector to produce ROM-

bootable code 212

72 TDS 275 02 March 1991

Contents

Compiled object files
Library flies
Linked object files

13.2.3 Output flies
13.3 Transputer classes and error modes
13.4 Summary of rules for using icvlink
13.5 Error messages

13.5.1 Warning Messages
13.5.2 Serious errors

xiii

249
249
249
250
250
250
251
251
251

14 idebug - debugger 253
14.1 Introduction 253

14.1.1 Post-mortem debugging 253
14.1.2 Breakpoint debugging 253
14.1.3 Mixed language debugging 254

14.2 The root transputer 254
14.2.1 Board wiring 255
14.2.2 Post-mortem debugging R-mode programs 255
14.2.3 Post-mortem debugging T-mode programs 255
14.2.4 Post-mortem debugging from a network dump

file 256
14.2.5 Debugging a dummy network 256
14.2.6 Methods for breakpoint debugging 256

14.3 Running the debugger 257
14.3.1 Toolset file types read by the debugger 259
14.3.2 Environment variables 259
14.3.3 Program termination 260
14.3.4 Post-mortem mode Invocation 260
14.3.5 Reinvoking the debugger on single transputer

prog~ms ~2

14.3.6 Breakpoint mode invocation 262
Clearing error flags on transputer boards 262
Program loading 263

14.3.7 Function key mappings 263
14.4 Debugging programs on INMOS boards 264

14.4.1 Subsystem wiring 264
14.4.2 Debugging commands 265
14.4.3 Detecting the error flag In breakpoint mode 265

14.5 Debugging programs on non-INMOS boards 265
14.6 Monitor page commands 265

14.6.1 Command format 266
14.6.2 Specifying transputer addresses 267

72 TDS 275 02 March 1991

xiv Contents

14.6.3 Scrolling the display 267
14.6.4 Editing keys 267
14.6.5 Commands mapped by ITERM 268
14.6.6 Summary of main commands 269 e14.6.7 Symbolic-type commands and scroll keys 271
14.6.8 Symbolic-type commands 292

14.7 Symbolic functions 292
14.7.1 Breakpoint functions 299

14.8 Error messages 301
14.8.1 Out of memory errors 301
14.8.2 If the debugger hangs 301
14.8.3 Error message list 301

15 idump - memory dumper 311
15.1 Introduction 311
15.2 Running the memory dumper 311

15.2.1 Example of use 312
15.3 Error messages 312

16 iemit - Memory configurer 315
16.1 Introduction 315
16.2 Running iemit 316 e16.3 Output files 318
16.4 Interactive operation 319

16.4.1 Page 0 319
16.4.2 Page 1 319
16.4.3 Page 2 324
16.4.4 Page 3 326
16.4.5 Page 4 327
16.4.6 Page 5 327
16.4.7 Page 6 328

16.5 Example iemit display pages 328
16.6 iemit error and warning messages 332
16.7 Memory configuration file 333
16.8 Memory interface conversion tool icvemit 336
16.9 Running icvemit 336
16.10 icvemit error messages 337

17 ieprom - EPROM program convertor 339
17.1 Introduction 339
17.2 Prerequisites to using the hex tool ieprom 339

72 TDS 275 02 March 1991

Contents xv

17.3 Running ieprom 340
17.3.1 Examples of use 341

17.4 ieprom control file 341
17.5 What goes In the EPROM 345

17.5.1 Memory configuration data 345
17.5.2 Jump Instructions 346
17.5.3 Bootable file 346
17.5.4 Traceback Information 346

17.6 ieprom output files 346
17.6.1 Binary output 347
17.6.2 Hex dump 347
17.6.3 Intel hex format 347
17.6.4 Intel extended hex format 347
17.6.5 Motorola S-record format 348

17.7 Block mode 348
17.7.1 Memory organisation 348
17.7.2 When to use block mode 348
17.7.3 How t~ use block mode 349

17.8 Example control files 349
17.9 Error and warning messages 351

18 ilibr - librarian 353
18.1 Introduction 353
18.2 Running the librarian 353

18.2.1 Default command line 355
18.2.2 Library Indirect files 355
18.2.3 Linked .object Input files 356

18.3 Library modules 356
18.3.1 Selective loading 356
18.3.2 How the librarian sorts the library index 356

18.4 Library usage files 357
18.5 Building libraries 357

18.5.1 Rules for constructing libraries 358
18.5.2 General hints for building libraries 358
18.5.3 Optimising libraries 358

Library build targetted at specific transputer
types 360
Semi-optimised library build targetted at all trans-
puter types 360
Optimlsed library targetted at all transputer
types 361

18.6 Error Messages 361

72 TDS 275 02 March 1991

xvi

18.6.1 Warning messages
18.6.2 Serious errors

Contents

362
362

19 ilink - linker 365
19.1 Introduction 365
19.2 Running the linker 365

19.2.1 Default command line 369
19.3 Llnker Indirect flies 369

19.3.1 Linker directives 369
19.3.2 Llnker Indirect files - supplied with the toolset 372

19.4 Llnker options 372
19.4.1 Processor types 372
19.4.2 Error modes - options H, S and x 373
19.4.3 TCOFF and LFF output files - options T, LB, Le 373
19.4.4 Extraction of library modules - option EX 374
19.4.5 Display Information - option I 374
19.4.6 Virtual memory - option KB 374
19.4.7 Main entry point - option ME 375
19.4.8 Link map filename - option MO 375
19.4.9 Linked unit output file - option 0 375
19.4.10 Permit unresolved references - option U 375
19.4.11 Disable interactive debugging - option Y 376

19.5 Selective linking of library modules 376
19.6 The link map file 376
19.7 Using imakef for version control 378
19.8 Error messages 378

19.8.1 Warning messages 378
19.8.2 Errors 379

Serious errors 380
19.8.3 Embedded messages 384

fI

20 ilist - binary lister
20.1 Introduction
20.2 Data displays

20.2.1 Example displays used in this chapter
20.3 Running the lister

20.3.1 Default command line
20.4 Specifying an output file - option 0
20.5 Symbol data - option A
20.6 Code listing - option C
20.7 Exported names - option E
20.8 Hexadecimal/ASCII dump - option H

385
385
385
386
387
388
389
389
392
393
394

72 TDS 275 02 March 1991

Contents

20.9
20.10
20.11
20.12
20.13
20.14
20.15
20.16

Module data - option M
Library index data - option N
Procedural interface data - option P
Specify reference - option R
Full listing - option T
File identification - option W
External reference data - option X
Error messages
20.16.1Warning messages
20.16.2Serious errors

xvii

395
396
397
398
398
400
402
402
403
403

21 imakef - Makefile generator
21.1 Introduction
21.2 How imakef works

21.2.1 Target files
21.2.2 File extensions for use with imakef

21.3 Running the Makefile generator
21.3.1 Example of use
21.3.2 Incorporating C modules
21.3.3 Configuration description files
21.3.4 Disabling debug data
21.3.5 Removing intermediate files
21.3.6 Files found on ISEARCH

21.4 imakef examples
21.4.1 Single transputer program
21.4.2 Multitransputer program
21.4.3 Mixed language program

21.5 Format of Makefiles
21.5.1 Macros
21.5.2 Rules

Action strings
21.5.3 Delete rule
21.5.4 Editing the Makefile

Adding options
Re-running imakef

21.6 Library usage files
21.7 Linker indirect files
21.8 Error messages

405
405
406
406
406
408
408
409
410
410
410
410
411
411
412
412
413
413
414
414
414
415
415
415
415
416
416

72 TDS 275 02 March 1991

xviii

22

23

24

iserver - host file server
22.1 Introduction

22.1.1 Loadable programs
22.2 Running the server

22.2.1 Examples of use
22.2.2 Supplying parameters to the program
22.2.3 Checking and clearing the network
22.2.4 Terminating the server
22.2.5 Options to use when loading the program
22.2.6 Specifying a link address - option SL
22.2.7 Terminating on error - option SE

22.3 Server functions
File system commands
Host environment commands
Server control commands

22.4 Error messages

isim -IMS T425 simulator
23.1 Introduction
23.2 Running the simulator

23.2.1 Passing in parameters to the program
23.2.2 Example of use
23.2.3 ITERM file

23.3 Monitor page display
23.4 Simulator commands

23.4.1 Specifying numerical parameters
23.4.2 Commands mapped by ITERM

23.5 Batch mode operation
23.5.1 Setting up ISIMBATCH
23.5.2 Input command files
23.5.3 Output
23.5.4 Batch mode commands

23.6 Error messages

iskip - skip loader
24.1 Introduction

24.1.1 Uses of the skip tool
24.2 Running the skip tool

24.2.1 Skipping a single transputer
Subsystem wired down
Subsystem wired subs

Contents

419
419
419
419
420
421
421
421
422
422
423
423
424
424
425
426

429
429
429
430
430
431
431
432
433
433
441
441
442
442
442
443

447
447
447
448
449
449
449

72 TDS 275 02 March 1991

Contents

24.2.2 Skipping multiple transputers
24.2.3 Loading a program
24.2.4 Monitoring the error status - option E

24.2.5 Clearing the error flag
24.3 Error messages

xix

449
450
451
451
452

25 oc - occam 2 complier 453
25.1 Introduction 453
25.2 Running the compiler 454

25.2.1 Filenames 458
25.3 Transputer targets 458
25.4 Compilation error modes 460
25.5 Enable/Disable Error Detection 461
25.6 Enabling/disabling warning messages 462
25.7 Support for interactive debugging 462
25.8 Separately compiled units and libraries 463
25.9 ASM and GUY code 463
25.10 Compiler directives 463

25.10.1 Syntax 464
25.10.2 #INCLUDE directive 464
25.10.3 #USE directive 465
25.10.4 #IMPORT directive 466

Changes from the IMS 0705/0605/0505 products 467
25.10.5 #COMMENT directive 468
25.10.6 #OPTION directive 469
25.10.7 #PRAGMA directive 470

#PRAGMA EXTERNAL "declaration" comment 471
#PRAGMA TRANSLATE identifier" string"
comment 471
#PRAGMA LINKAGE ["section-name"] comment 472

25.11 INLINE keyword 473
25.12 Implementation of channels 473
25.13 Implementation of usage checking 474

25.13.1 Usage rules of occam 2 474
25.13.2 Checking of non-array elements 475
25.13.3 Checking of arrays of variables and channels 475
25.13.4 Arrays as procedure parameters 476
25.13.5 Abbreviating variables and channels 477

25.14 Implementation of alias checking 477
25.14.1 Alias checking 477

Scalar variables 477
Arrays 478

72 TDS 275 02 March 1991

xx

25.15 Error messages
25.15.1 Warning messages
25.15.2 Errors

Contents

479
480
482

26 occonf - configurer
26.1 Introduction
26.2 Running the configurer

26.2.1 Search paths
26.3 Boot-from-ROM options
26.4 Configuration error modes
26.5 Enable/Disable Error Detection
26.6 Enabling memory lay-out re-ordering
26.7 Enabling/disabling warning messages
26.8 Support for interactive debugging
26.9 ASM and GUY code
26.10 Configurer diagnostics

26.10.1 Warning messages

485
485
486
488
488
489
490
490
491
491
492
492
493

72 TDS 275 02 March 1991

Preface
This manual is a combined user and reference guide to the occam 2 toolset.
Part 1 'User guide and tools' (this book) describes the toolset and shows how
it is used to develop and run transputer programs. Part 2 'occam libraries and
appendices' (72 TDS 276 02) describes the libraries supplied with the toolset
and provides reference data in the form of appendices. A guide to how to use
this manual, follows immediately after this preface.

The occam 2 toolset

The occam 2 toolset is a set of software tools for developing transputer pro­
grams on host systems. Used with the occam libraries, it provides a complete
environment for developing programs on transputers and transputer networks.

The toolset allows occam programs to be written using any convenient text
editor. Programs are then compiled and linked using programs resident on the
host or running on the transputer board. Self-booting code for single transputers
and multitransputer networks is produced using separate tools, and loaded from
the host system down the transputer link.

Tools that assist program development include a librarian tool for building code
libraries, a network debugger which provides both interactive and post-mortem
debugging facilities, and a transputer simulator that allows programs to be tested
without transputer hardware. A Makefile generator is provided to assist with
program version control, and a binary lister tool allows object files to be decoded
and displayed in a readable form.

Transputer programs are normally written in occam to make full use of trans­
puter parallel processing. Programs can also be written in C and included in
occam programs as separately compiled procedures.

The occam 2 toolset is intended for developing programs on transputers and
transputer boards that are loaded from the host via a transputer link. Boards
that boot from on-board ROM require application software to be in a format
suitable for blowing into ROM. Two tools are provided with the toolset to support
EPROM programming, they are the EPROM program formatting tool and the
EPROM memory configurer.

72 TDS 275 02 March 1991

xxii

Host versions

The manual is designed to cover all host versions of the toolset:

IMS D7205 - IBM and NEC PC running MS-DOS.
IMS D5205 - Sun 3 systems running SunOS
IMS D4205 - Sun 4 systems running SunOS
IMS D6205 - VAX systems running VMS

72 TDS 275 02

Preface

March 1991

How to use the manual
About the manual

The occam 2 user manual is divided into two parts, as follows:

• User Guide and tools 72 TDS 275 02

- Chapters 1 to 11 show how the tools are used to develop pro­
grams on single transputers and transputer networks.

- Chapters 12 to 26 provide details of individual tools in terms of
command line syntax, command options, running the tool and
possible error messages.

• occam libraries and appendices 72 TDS 276 02

- A detailed description is given of all the libraries supplied with the
toolset.

- A number of appendices provide reference material for program­
mers such as predefined names and constants, transputer in­
structions, and the implementation of occam on the transputer.
A glossary of terms and a short bibliography is also included.

References which span the two parts, take the form of a part number followed
by a chapter or section number. Each part contains its own index.

This manual does not contain details of how to install the software, which is to
be found in the Delivery Manual that accompanies the shipment.

The manual is intended to cover all host versions of the toolset; where there are
differences between the various host implementations, they are highlighted and
explained.

Readership

This manual is intended for programmers and system designers who wish to
develop transputer programs on host systems. Readers of the manual should
already be familiar with programming in a high level language, the software de­
velopment process, and the general ideas of occam and parallel processing.
Familiarity with the syntax of occam will also be an advantage, because oc­
cam programs and code fragments are used throughout the book to illustrate
concepts and procedures. For information about the occam language, refer
to the 'occam 2 Reference Manual', which accompanies this release. For an
introduction to occam programming, read 'A tutorial introduction to occam

72 TDS 275 02 March 1991

xxiv

programming'.

How to use the manual

The reader should also be familiar with the hardware and operation of the trans­
puter evaluation board on which the programs will be developed. Information
about INMOS transputer evaluation boards is available in the form of product
datasheets.

User guide

The User Guide, provided in part 1 of this manual, contains information to show
programmers how to use the tools to develop transputer programs. It describes
how to design and build programs for transputers and transputer networks.

Example programs supplied with the toolset are used extensively throughout the
User Guide to illustrate program design and development.

Chapter breakdown

For those who do not wish to read the entire Guide or wish to get started quickly,
some recommendations follow.

If you have not used the toolset before then you should first read chapter 2,
which contains an overview of the toolset.

Chapter 3, 'Getting started' is provided as a tutorial to show users how to compile,
link and run simple occam programs on a single transputer. The example used
is provided in the examples directory supplied with the toolset.

Before attempting to write any programs of your own you should read chapters
4 and 8, which show how to compile simple programs that use host terminal i/o.
If you are new to occam you should begin by writing a program which runs on
a single processor before attempting to write multiprocessor code.

Chapter 7 explains how to debug programs running on transputer boards, and
describes how to use the T425 simulator to test programs before loading them
onto hardware. Reading this chapter thoroughly and working studiously through
the examples will help to familiarise you with the operation of the debugger and
simulator tools.

Chapter 9 gives details of how to develop mixed language programs. It shows
how modules written in C can be inserted into an occam program using a set
of library procedures to initialise static and heap areas. Read and digest the
information in this chapter carefully before attempting to write mixed language
programs.

Chapters 10 and 11 provide more specialised information covering the use of

72 TDS 275 02 March 1991

How to use the manual xxv

the low level programming and EPROM programming facilities provided with the
toolset. These facilities are not aimed at the users who are new to occam or
transputers. Users intending to use the EPROM tools should be familiar with
INMOS transputers and with. memory products.

Tools

The Tools section, provided in part 1 of the manual, contains reference informa­
tion for all tools in the toolset. Each tool is described in a separate chapter.

The Tools section is not intended to be read in chapter order. Chapters should
be consulted as required to obtain information about how to use specific tools.

The occam libraries

Reference information for the occam libraries is given in part 2 of this manual.
All the occam library routines provided with the toolset are described. Routines
are grouped according to the library to which they belong.

Appendices

These appear at the end of part 2 of the manual. They provide reference infor­
mation on the following topics:

• Predefined names.

• Transputer instructions.

• Constants.

• The implementation of occam on the transputer.

• Configuration language definition.

• Bootstrap loaders.

• ITERM

• Host file server protocol.

A glossary of terms and a short bibliography is also included.

72 TDS 275 02 March 1991

xxvi

Conventions used in the manual

How to use the manual

Convention Description

Italics Used in command line syntax to denote parameters for which
values must be supplied. Also used for book titles and for
emphasis.

Bold Used for new terms, pin signals, and the text of error mes­
sages.

Teletype Used for listings of program examples and to denote user
input and terminal output.

IKEYI Used to denote function keys for the debugger and simulator
tools. Keyboard layouts for specific terminals can be found in
the Delivery Manual that accompanies the shipment.

D Used to indicate the continuation of a function key description.

Braces Used to denote lists of items in command line syntax.

{ }

Brackets

[]

Used to denote optional items in command line syntax.

Option prefix Examples of command line input are duplicated to show both
option prefix characters. Use the line containing the' I' char­
acter if you have an MS-DOS or VMS based system and the
line containing the '-' character if you are using any other host
including UNIX.

72 TDS 275 02 March 1991

