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, The Implementation of.OCCAM on the IMS T414

Introduction

Technical Note 8

This note provides information on the internal architecture of the processor of the ThiS T414
transputer by, frrstly, describing the overall organisation of the processor and then demonstrating its
use to implement the various constructs of occam. (occam is a trademark of the INMOS Group of
Companies). The demonstration is organized thus: various interesting fragments of occam
program are given, and for each fragment the instruction sequence generated by the compiler is
given, along with the size and execution time of each instruction in the sequence. Other high level
languages would give rise to similar or identical instruction sequences as the equivalent occam
fragments (at least for the sequential fragments).

The transputer has been designed so that programs can be compiled simply and straightforwardly,
and so that the use of high level languages results in efficient use of silicon capability.

As a consequence, its execution mechanisms differ in several respects from those of conventional
microprocessors. It is based on the use of very fast single byte instructions, which results in
faster and more compact code than is possible for a conventional instruction set The correct and
optimal sequence is easy for a compiler to compile, but impractical for hand coding.

The execution architecture contains an evaluation stack, which removes the need for instructions
to specify registers explicitly. Consequently, most of the executed operations (typically 80%) are
encoded in a single byte. Many of these, such as 'load constant', or 'add', require just one processor
cycle.

In general, a program needs much less store to hold it than an equivalent program in a conventional
microprocessor. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. As memory is word accessed, the processor
will receive four instructions for every fetch.

Short instructions also improve the effectiveness of the instruction fetch mechanism, which in
turn improves processor performance. The processor uses otherwise spare memory cycles to fetch
instructions. There are two words of instruction fetch buffer, with the result that the processor
rarely has to wait for an instruction fetch. Since the buffer is short, there is little time penalty
when a jump instruction causes the buffer contents to be ftIled.

The overall effect is thus that both compactness and speed have been achieved, together with
economical use of silicon.

The lowest level of programming transputers is to use occam (occam is equivalent in
effectiveness to a conventional microprocessor's assembler). It is far easier to understand the
occam corresponding to a sequences of instructions, than it is to understand the individual
instructions themselves. This note therefore describes the instruction set, and the use of occam as
its programming language, by describing the main usage of the various registers in the
machine, and then by giving typical instruction sequences for simple occam constructs.

l\1emory Organisation
The memory address space comprises a signed linear address space of2**32bytes. The instruction
architecture does not differentiate between on-chip and off-chip memory. This allows the
application designer to have complete control over the placement of code and data to take
advantage of the penormance benefits of on-chip memory.

The internal organization of the processor is based on the word length. All internal registers and
data paths on T414 are 32 bits wide.

A byte in memory is identified by a pointer, which is a single word of data divided into two parts
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- a word address and a byte selector. On T414 the byte selector occupies the least significant two
bits of the word; the word address occupies the most significant bits. Pointer values start from
the most negative integer and continue, through zero, to the most positive integer. This
enables the standard comparison functions to be used on pointer values in the same way that they
are used on numerical values.

For efficiency, the processor accesses memory a word at a time on word boundaries, and, where
necessary, performs appropriate byte manipulation operations.

The addressing instructions provide access to items in data structures, using short sequences of
single byte instructions, allowing the representation of data structure access to be independent
of the word length of the processor.

Registers for sequential programming

The design of the processor exploits the availability of fast on-chip memory by having only a
small number of registers. The small number of registers, together with the simplicity of the
instructions, enables the processor to have relatively simple and therefore fast data paths and
control logic.

Sequential programs use the following registers (Figure 1):

The workspace pointer which points to an area of store where local variables are kept.
The instruction pointer which points to the·next instruction to be executed.
The operand register which is used in the formation of instruction operands.

The A, B and C registers which form an evaluation stack. The evaluation stack is used for
expression evaluation, to hold the operands of scheduling and communication instructions, and
to hold the flfst three parameters ofprocedure calls.

Figure 1 Use of registers for sequential programming
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Support for concurrency

Technical Note 8

The processor provides efficient support for the occarn model of concurrency and
communication. It has a scheduler which enables any number of concurrent processes to be
executed together, sharing the processor time.

At any time, a concurrent process may be

active

inactive

- being executed
- on a list awaiting execution

- ready to input
- ready to output
- waiting until a specified time

The active processes waiting to be executed are held on a list This is a linked list of workspaces
of processes, implemented using two registers, one of which points to the fIrst process on the list,
the other to the last

In Figure 2, R is executing, and P and Q are active, awaiting execution.

Figure 2 Concurrent processes
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Whenever a process is unable to proceed, its instruction pointer is saved in its workspace and the
next process is taken from the list Actual process switch times are very small as little state needs
to be saved. The contents of the evaluation stack will not be needed when the process is resumed,
and so the evaluation stack is not saved. Two active lists are maintained, one for each priority.
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Communications

Technical Note 8

A channel provides a communication path between two processes. Channels between processes
executing on the same transputer are implemented by single words in memory (internal channels);
channels between processes executing on different transputers are implemented by
point-to-point links (external channels).

The processor uses the address of a channel to determine whether the channel is internal or
external. This means that the same instruction sequence can be used for both internal and
external channels, allowing a process to be written and compiled without knowledge of where its
channels are connected. In particular, either an internal or an external channel can be used as the
actual parameter for a channel parameter of a named process.

As in the occam model, communication takes place when both the inputting and outputting
processes are ready. Consequently, the process which frrst becomes ready must wait until the
second one is also ready.

A process prepares for input or output by loading the evaluation stack with a pointer to a buffer,
the identity of the channel~ and the count of the number of bytes to be transferred.

An internal channel is allocated a word in memory, and instructions compiled to initialize it to
empty. In figure 3, a process P is about to execute an input or an output message instruction.

Figure 3 Input or output on empty channel

P executing

registers

A count I channel
I word

B channel I
1------>1 empty

C pointer I 1
I

When a message is passed using an internal channel, the identity of the fIrst process to become
ready is stored in the channel word, and the pointer stored (with the instruction pointer ete) in the
workspace (Figure 4). The processor starts to execute the next process from the scheduling list
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Figure 4 Ready channel and process

Technical Note 8
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Figure 5 shows the second process to use the channel:

Figure 5 Input or output on ready channel
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The message is copied, the waiting process is added to the active process list, and the channel reset
to the empty state. It does not matter whether the inputting or the outputting process becomes
ready fIrst

When a message is passed via an external channel the processor delegates to an autonomous link
interface the job of transferring the message and deschedules the process. The link interface
transfers the message using direct memory access. When the message has been transferred
the link interface causes the processor to reschedule the waiting process. This allows the processor
to continue the execution of other processes whilst the external message transfer is taking place.

The following figures (6, 7) show the sequence of operations when two processes, executing on
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separate transputers, communicate using a link connecting the two transputers. Each process
prepares for the transfer as already described. •

Figure 6 Input and output on link interface
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Each link interface uses three registers to hold the following information

a pointer to the workspace of the process
a pointer to the message
a count of bytes to be transferred

When the input message or output message instruction is executed, these registers are
initialized, and the instruction pointer is stored in the process workspace. The processor starts to
execute the next process on the scheduling list.

Figure 7 Use of link interface registers
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When both processors have initialized both link interfaces, the message is copied, and each link
interface adds the respective process to the end of the local active list

~rrnmos corporation 1985 6



•

•

The Implementation of OCCAM on the IMS T414

Instruction format

Technical Note 8

For simplicity in reading the example code sequences, the instruction's names are shown
unabbreviated.

All instructions have the same format (Figure 8). Each is one byte long, and is divided into two
4 bit parts. The four most significant bits of the byte are the function code, and the four least
significant bits are the data value.

Figure 8 Instruction format

function data

This representation provides for sixteen functions, each with a data value ranging from 0 to 15.
Thirteen of these values are used to encode the most frequently occurring functions.

Two more of the function codes, prefIX and negative prefIX, are used to allow the operand
of any instruction to be extended in length. All instructions start by loading the four data bits
into the least significant four bits of the operand register, which is then used as the
instruction's operand (Figure 9). All instructions, except prefIX and negative prefix, end
by clearing the operand register, ready for the next instruction.

Figure 9 Use of operand register

function data

I
------------_\/-

operand register

The prefix instruction loads its four data bits into the operand register, and then shifts the
operand register up four places. The negative prefix instruction is similar, except that it
complements the operand register before shifting it up. Consequently operands can be extended to
any length up to the length of the operand register by a sequence of prefixing instructions. In
particular, operands in the range -256 to 255 can be represented using one prefIXing instruction.
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The following example shows the instruction sequence for loading the hexadecimal constant
#754 into the A register, and gives the contents of the 0 register and the A register after executing
each instruction

prefix *7
prefix *5
load constant *4

o register
#7

*75
o

A register
?
?

#754

The use of prefIXing instructions has certain beneficial consequences. Firstly, they are decoded
and executed in the same way as every other instruction, which simplifies and speeds instruction
decoding. Secondly, they simplify language compilation, by providing a completely uniform
way of allowing any instruction to take an operand of any size. Thirdly, they allow operands to
be represented in a form which is independent of the processor wordlength.

The processor does not allow interrupts between a prefixing instruction and the following
instruction. This removes the need to save the operand register on an interrupt.

The remaining function code, operate, causes its operand to be interpreted as an operation
on the values held in the evaluation stack. For example, the plus operation adds the values of
the A and B registers. The result is left in the A register, and C is copied into the B register.

The operate instruction allows up to 16 such operations to be encoded in a single byte
instruction. However, the prefixing instructions can be used to extend the operand of an operate
instruction just like any other. This allows the number of operations in the machine to be
extended indefmitely.

The encoding of the indirect functions is chosen so that the most frequently occurring
operations are represented without the use of a prefixing instruction. These include arithmetic,
logical and comparison operations, together with the most frequently used control functions
and register manipulation functions.

Prefixing instructions are not given explicitly in many of the examples which follow. However,
the extra byte(s) and cycle(s) are included in the costs which annotate the instruction sequences.
A * is used to indicate where the costs of a prefixing instruction has been included with those of a
direct function.

The examples give the execution time for each instruction, in terms of processor cycles. The
costs of fetching instructions and accessing data in external memory are not included.
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Sequential constructs

Local variables and constants

Description

Operations on locals and small constants are fast and compact.

Technical Note 8

The most common operations in any program are the loading of small literal values, and the
loading or storing of one of a small number of variables. The load constant instruction
enables values between 0 and 15 to be loaded onto the evaluation stack with a single byte
instruction. The load local and store local instructions transfer values between the evaluation
stack and locations in memory relative to the workspace pointer. The first 16 locations can be
accessed using a single byte insbUction.

Examples

In the following examples, x and y are assumed to be local variables within the fIrst sixteen
words of workspace.

occam instruction sequence bytes cycles

x := 0 load constant 0 1 1
store local x 1 1

x := #24 prefix 2 1 1
load constant 4 1 1
store local x 1 1

x := y load local y 1 2
store local x 1 1

~rrnmos corporation 1985 9



The Implementation of OCCAM on the IMS T414

Non-local variables and data structures

Description

Technical Note 8

Compact sequences of instructions are used to provide simple implementations of the
static links or displays used in the implementation of block structured programming languages,
and to provide efficient access to data structures.

This eliminates the need for complicated and difficult-to-use addressing modes.

The load non local and store non local instructions access locations in memory relative to
the A register.

Examples

In this example, z is assumed to have been declared externally to the PROC which contains
this assignment statement. The compiler allocates a local workspace location, here named
staticlink, to hold the address of the workspace containing the variable z.

occam instruction sequence bytes cycles

z := -1 negative prefix 0 1 1
load constant #F 1 1
load local staticlink 1 2
store non local z 1 2
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Expression evaluation

Description

Technical Note 8

Loading a value onto the evaluation stack pushes B into e, and A into B, before loading Storing
a value from A, pops B into A and e into B.

The A, B and e registers are the sources and destinations for arithmetic and logical operations. For
example, the add instruction adds the A and B registers, places the result in the A register, and
copies e into B.

If there is insufficient room to evaluate an expression on the stack, then the compiler introduces
the necessary temporary variables in the local workspace. However, expressions of such
complexity are, in practice, rarely encountered. Three registers provide a good balance between
code compacbless and implementation complexity.

Examples

In the following examples, the variables v, W, x, y and z are assumed to be in the frrst sixteen
words of workspace.

occam instruction sequence bytes cycles

y + z load local y 1 2
load local z 1 2
add 1 1

(v + w ) * (y + z)
load local v 1 2
load local w 1 2
add 1 1
load local y 1 2
load local z 1 2
add 1 1
multiply 2 39
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Arithmetic overflow

Description

Technical Note 8

The processor uses the sticky-bit method of error detection. The processor contains an error
flag, which is set on arithmetic overflow. The instruction test error sets the A register to
TRUE (least significant bit set to 1, all other bits zero) if the error flag is set, otherwise it sets
the A register to FALSE (all bits zero). In either case, the error flag is reset.

The instruction stop on error stops the current process if the error flag is set (NB the process
does not terminate).

The Error pin is connected directly to the error flag. If this pin is connected to the StopProc
pin, then the effect of any error is to stop the processor.

The error flag is preserved as part of the context of a priority 1 process when it is is interrupted
by a priority 0 process.

Example

occam instruction sequence

x := (v + w ) * (y + z)
test error
load local v
load local w
add
load local y
load local z
add
multiply
stop on error
store local x

~lrnmos corporation 1985
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Single Length Arithmetic

Description

Technical Note 8

Single length signed and single length modulo arithmetic is directly supported. In addition, a
quick unchecked multiply is provided, in which the time taken is proportional to the logarithm of
the second operand

Examples

Signed arithmetic (sets error on arithmetic overflow):

occam instruction sequence bytes cycles

x + 2 load local x 1 2
add constant 2 1 1

x + y load local x 1 2
load local y 1 2
add 1 1

x - y load local x 1 2
load local y 1 2
subtract 1 1

x * y load local x 1 2
load local y 1 2
multiply 2 39

x / y load local x 1 2
load local y 1 2
divide 2 42 (worst case)

x \ y load local x 1 2
load local y 1 2

remainder 2 41 (worst case)

Modulo arithmetic (arithmetic overflow not checked):

x (+ ) Y load local x 1 2
load local y 1 2
sum 2 2

x (- ) y load local x 1 2
load local y 1 2
difference 1 1

x .( *) y load local x 1 2
load local y 1 2
product 2 3-35
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Array access

Description

Technical Note 8

The subscript is evaluated, and left in the A register. It is then checked to be in range
(alternatively, the compiler may be able to perform this check at compile time). The error flag
(see arithmetic overflow) is set if the subscript is out of range. The transputer provides
instructions for subscript checking both from zero and from one.

The address of a data structure held in the local workspace is loaded using the load local
pointer instruction. The load non local pointer instruction is used to load the address of a
data structure relative to the A register.

The byte subscript and word subscript instructions are used to calculate the pointer to an
item in an array of bytes, or an array of words respectively. Both interpret the contents of the A
register as the address of the beginning of a data structure. These instructions are used to make
the code independent of the word length of the machine.

Example

In these examples, v is declared as [S]INT, W is declared as [3][S]BYTE, i is a local
variables.

occam instruction sequence

x := v[i] test error
load local i
load constant 5
check subscript from 0
stop on error
load local pointer v
word subscript
load non local 0
store local x

x .- w[2] [i] test error
load local i
load constant 5
check subscript from 0
load constant 3
product
add constant 2
stop on error
load local pointer w
byte subscript
load non local 0
store local x

* including a prefix instruction
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1
1
2
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1
1
1

2
1
1
2
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1
1
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4
2
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Bit manipulation operations

Description

Technical Note 8

Bit manipulation operations are provided by secondary instructions operating on the evaluation
stack.

Examples

occam

x /\ IF

x \/ y

x >< y

- x

x « y

x » 3

instruction sequence

load local x
load constant IF
and

load local x
load local y
or

load local x
load local y
xor

load local x
not

load local x
load local y
shift left

load local x
load constant 3
shift right

bytes cycles

1 2
1 1
2 2

1 2
1 2
2 2

1 2
1 2
2 2

1 2
2 2

1 2
1 2
2 3+y

1 2
1 1
2 6
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Boolean expressions

Description

Technical Note 8

Boolean expressions (Boolean values combined with AND, OR and NOn employ short circuit
evaluation techniques. If the contents of the A register is FALSE, the conditional jump
instruction adds its operand to the instruction pointer, without altering the evaluation stack.
Otherwise it pops the evaluation stack (ready for the next instruction(s) to replace the value of·
the fIrst operand by the value of the second operand of the AND or OR).

TRUE and FALSE are represented by the values 1 and 0 respectively. Thus they can both be
loaded in a single instruction, and a Boolean value negated by comparison with zero, using the
equals constant instruction with zero as operand. This loads the A register with TRUE if A
is initially 0 (FALSE), FALSE otherwise.

Examples

occam instruction sequence bytes cycles

NOT x load local x 1 2
equals constant 0 1 2

(jump taken)
x AND y load local x 1 2 2

conditional jump M 1 2 4
load local y 1 2

M:

x OR y load local x 1 2 2
equals constant 0 1 2 2
conditional jump M 1 2 4
load local y 1 2
equals constant 0 1 2

M:equals constant 0 1 2 2

NOT (x OR y) load local x 1 2 2
equals constant 0 1 2 2
conditional jump M 1 2 4

load local y 1 2
equals constant 0 1 2 2

M:
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Comparisons

Description

Technical Note 8

A comparison normally uses the modulo arithmetic difference instruction, followed by
a comparison to zero. The equals constant instruction provides comparison with a
constant value. It loads the A register with TRUE if A is initially the value in the operand
register, FALSE otherwise. Similarly, the greater than instruction loads the A register
with TRUE if B > A, FALSE otherwise.

Examples

occam

x = 5

x = y

x <> 5

x <> y

x > Y

x < Y

x >= Y

instruction sequence bytes cycl.es

load local x 1 2
equals constant 5 1 2

load local x 1 2
load local y 1 2
difference 1 1
equals constant 0 1 2

load local x 1 2
equals constant 5 1 2
equals constant 0 1 2

load local x 1 2
load local y 1 2
difference 1 1
equals constant 0 1 2
equals constant 0 1 2

load local x 1 2
load local y 1 2
greater than 1 2

load local y 1 2
load local x 1 2
greater than 1 2

load local y 1 2
load local x 1 2
greater than 1 2
equals constant 0 1 2
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Conditional behavior

Description

Technical Note 8

Example

Conditional behavior is provided by using both conditional jump and the unconditional
jump insb1Jctions. Both transfer control relative to the instruction pointer, providing position
independence and compact encoding. A timeslice may occur on an unconditional jump
inSb1Jction (this allows a process to be saved when a timeslice occurs without having to save
the evaluation stack).

occam instruction sequence bytes cycles
x < > 0

IF load local x 1 1 1 1
x = 0 equals constant 0 1 2 2 2

Y := 1 conditional jump M1 1 4 2 4
x > 0 load constant 1 1 1

y := 2 store local y 1 2
jump MO 1 3

M1:load local x 1 1 1
load constant 0 1 1 1
greater than 1 2 2
conditional jump M2 1 4 2
load constant 2 1 1
store local y 1 2
jump MO 1 3

M2:stop process 2 12
MO:
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Named processes (procedure calling)

Description

Technical Note 8

The use of PROCs saves on code space requirements. Each PROC also introduces a new
workspace, so local workspaces remain small, which, in turn, maximizes the efficiency of local
variable access.

The fIrst two parameters and the static link are passed to a named process on the evaluation
stack, the remaining parameters are passed in workspace locations, allocated, if necessary, using
the adjust workspace instruction.

To prepare for a procedure call, instructions are compiled to evaluate the third and subsequent
parameters, storing them in workspace locations starting from 0, and then to load onto the
evaluation stack the static linkand the fIrSt two parameters.

The call instruction saves the contents of the evaluation stack and the instruction register in the
locations immediately below the current workspace,copies the instruction pointer to the A
register, decrements the workspace pointer by four words, and jumps. The called procedure
allocates space for local variables by using the adjust workspace instruction, and deallocates
the space before exit VAL parameters are evaluated, and the value passed to the called procedure.
Other parameters are passed by pointer.

The return instruction assumes that the workspace pointer has the same value as immediately
after the corresponding call. It restores the instruction pointer from the stored value, and
adjusts the workspace pointer by four words.

*2 3

*2 3
1 2
1 2
l' 1
1 2
1 1
1 2
1 2
1 2

*2 8
1 2

1 2
2 7

Example
occam instruction sequence

PROC g(INT gl, VAL INT g2, g3, g4)
:

PROC f(VAL INT f1 , f2, INT f3)
VAR x:

g(x, f1, f2, f3)
. :

f:adjust workspace -1

adjust workspace -2
load local f3
load non local 0
store local 1
load local f2
store local 0
load local f1
load local pointer x
load local static link
call g
adjust workspace 2

adjust workspace 1
return

* including a prefix instruction
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Replicated SEQ

Description

Technical Note 8

The loop end instruction enables efficient implementation of all the occam replicated
constructs.

The index and count are evaluated, and stored in consecutive locations of local workspace. The
loop end instruction uses the B register as the address of the index, which is incremented. The
count, assumed in the next location, is decremented. If the result is greater than zero, the value
in the A register is subtracted from the instruction pointer. A timeslice may occur on a loop
end instruction.

Example

In these examples, index is the fIrst of two locations in local workspace, allocated by the
compiler for loop control.

occam instruction sequence bytes cycles

SEQ i = 0 FOR 10
P

load constant 0 1 1
store local index 1 1
load constant 10 1 1
store local index+1 1 1

L:P
load local pointer index 1 1
load constant M-L 1 1
loop end 2 12 6 (final time)

M:

SEQ i 0 FOR n
P

load constant 0 1 1
store local index 1 1
load local n 1 2
store local index+1 1 1
load local index+1 1 2
load constant 0 1 1
greater than 1 2
conditional jump M 1 2 4 (on jump)

L:P
load local pointer index 1 1
load constant M-L 1 1
loop end 2 12 6 (final time)

M:
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W~ILE

Description

Technical Note 8

The loop commences with the evaluation of the Boolean expression, and a conditional jump. The
end of the loop contains an unconditional jump to the top of the loop to re-evaluate the
expression. A timeslice may occur on the jump instruction.

Example

In this example, the body of the loop is assumed to occupy between 8 and 247 bytes of code.

occam instruction sequence bytes cycles

WHILE x > 0
p

L:load local x 1 2
load constant 0 1 1
greater than 1 2
conditional jump M *2 3 5 (final time)
p

jump L *2 4
M:

* including a prefix instruction
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Concurrency and communication
. PAR

Description

The start process and end process instructions make process creation and termination fast and
compact

When a parallel construct is executed, extra workspaces are created for the extra processes. A
termination block is created in the current workspace containing a count of the number of
components of the parallel construct and the instruction pointer of the instruction which
follows the parallel construct.

The first of the concurrent processes uses the existing workspace. Each of the remaining
concurrent processes is created by loading the address of its fIrst instruction and the address of its
workspace, and executing the start process instruction. This initializes the new workspace and
adds it to the end of the scheduling list, enabling the new concurrent process to be executed
together with the ones already being executed.

The correct termination of a parallel construct is assured by use of the end process instruction.
This examines the counter of the components of the parallel construct which are still executing. If
the counter is greater than one, then it is decremented, and the next process is taken off the
process queue. If the counter is equal to one, then this is the last component process to
terminate, and, after adjusting the workspace pointer, control is transferred to the next instruction
following the parallel construct

Example
In this example, PO and Pt are unspecified, but have workspace requirements of WO and
Wt. In the timings, it is assumed that PO terminates frrst (if Pt terminates first, then the
timings for the two end process instructions are exchanged).

bytes cycles

*2 3
*2 2

2 3
1 1
1 1
1 1

*2 2
*2 2

1 12
*2 3

1 1
1 13

*2 2
1 8

instruction sequence

PAR
PO
P1

occam

adjust workspace -2
load constant M-L
load pointer to instruction

L:store local 0
load constant 2
store local 1
load constant LO-L1
load local pointer -(WO+Wl)+2
start process

LO:adjust workspace -wo
po
load local pointer wo
end process

L1:P1
load local pointer WO+W1-2
end process

M:
* including a prefix instruction
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Replicated PAR

Description

Technical Note 8

Space is allocated for the workspaces of the component processes in a manner similar to an
unreplicated PAR. In addition, each workspace contains a location for its value of the
replicator index, and a pointer to the termination block. These permit one copy of the code to
be used for all components of the replicated parallel construct

The workspaces for the component processes are established using a loop. A dummy local variable
is used in the loop as a pointer to the workspace of the process being established.

Example

In this example, the component (replicated) process P is unspecified, but has a workspace
requirement of W. The offsets for locations in workspace for the loop index, count, temporary
pointer to the workspace being initialized, and in each component processes workspace for the
replicator index value and termination block pointer, are indicated by corresponding names.
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L5:P
load local tblockptr
load non local pointer 0
end process

L6:1oad local wternp
load non local pointer W
store local wtemp
load local pointer index
load constant L2-M
loop end

M:

• including a prefix instruction
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1
1
1
1
1
1
1

*2
2

4*P
8
4

47
8
4
4
4
8

36

Technical Note 8
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Input and output

Description

Technical Note 8

Input or output is performed by loading the pointer to the buffer, the address of the channel, and
the count of bytes to be transferred, and calling the input or output instruction. Optimised
communication (using less instructions to prepare for output) is provided by the output ,,'ord
and output byte instructions.

Examples

In the following examples, v is assumed to be an array of bytes. The times given include the
cycles used for copying the message if the channel is ready, otherwise the number of cycles required
are those annotated for when the channel is not ready.

occam instruction sequence bytes cycles

c ? v[i FOR 12]
load local i 1 2
load local pointer v *2 2
byte subscript 1 1
load local pointer c 1 1
load constant 12 1 1
input message 1 25 17 (not ready)

c 0 load constant 0 1 1
load local pointer c 1 1
output word 1 27 20 (not ready)

c ! BYTE(O) load constant 0 1 1
load local pointer c 1 1
output byte 1 27 20 (not ready)

c ? x load local pointer x 1 1
load local pointer c 1 1
load constant 1 1 1
byte count *2 3
input message 1 22 17 (not ready)

* including a prefix instruction
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Timer

Description

Technical Note 8

Input from the timer is performed using the load timer and timer input instructions.
timer input delays completion until the timer is (» the value in the A register. If this is
already the case when the instruction is executed, then no delay occurs. Waiting on the timer is
supported by hardware scheduling mechanisms, and so is not busy.

Examples

occam

TIME ? x

instruction sequence

load timer
store local x

bytes

2
1

cycles

2
1

TIME ? (» t load local t
timer input

~lri1mos corporation 1985
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2
36 4 (no delay)
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ALTernative

Description

Technical Note 8

Alternative input is supported by hardware scheduling mechanisms, and so is not busy. The
alternative is implemented by enabling the channels specified in each of its components. The
alternative wait instruction is then used to deschedule the process until one of the channel
inputs becomes ready, whereupon the process is scheduled again. The channel inputs are then
disabled. The disable instruction is also designed to select the component of the alternative to be
executed.

Example
In this example, the guarded processes are not specified. bO and bl are boolean variables, c is a
channel, and x is a local variable.

occam

ALT
bO & c ? x

PO
bl & c ? x

Pl

instruction sequence bytes cycles

L2:alt start 2 3
loa4 local pointer c 1 1
load local bO 1 2
enable channel 2 7
load local pointer c 1 1
load local bl 1 2
enable channel 2 7
alt wait 2 7 18 (not ready)
load local pointer c 1 1
load local bO 1 2
load constant LO-L3 1 1
disable channel 2 9

L3:load local pointer c 1 1
load local bl 1 1
load constant L1-L4 *2 2
disable channel 2 9

L4:alt end 2 5
LO:load local pointer x 1 1

load local pointer c 1 1
load constant 1 1 1
byte count 2 3
input message 1 22
PO
jump M

Ll:load local pointer x 1 1
load local pointer c 1 1
load constant 1 1 1
byte count 2 3
input message 1 22
P1

M:
* including a prefix instruction
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Replicated alternative

Description

Technical Note 8 I

"

This is similar to alternative. Loops are used to enable and disable the vector of channels. A
location in workspace is used to hold the replicator index, permitting one copy of the code to be
used for all the components.

Example
In this example, c is a vector of channels and x is a local variable.

occam instruction sequence bytes cyc1es
ALT i = [0 FOR 10] (10 channels)

c[i] ? x
P

L2:alt start
load constant 0
store local index
load constant 10
store local count

L1:load local index
load local pointer c
word subscript"
load constant 1
enable channel
load local pointer index
load constant L3-L1
loop end

L3:alt wait
load constant 0
store local index
load constant 10
store local count

L4:load local index
load local pointer c
word subscript
load constantl
load constant LO-L5
disable channel

L5:conditional jump L6
load local index
store local temp

L6:load local pointer index
load constant L7-L4
loop end

L7:alt end
LO:load local temp

store local replindex
load local pointer x
load local pointer c
load local replindex
word subscript
load constant 1
byte count
input message
p
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2
1
1
1
1
1
1
1
1
2
1
1
2
2
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
2
2
1
1
1
1
1
1
1
2
1

3
1
1
1
1

20
10
20
20
70
10
10
95
7 18 (not ready)
1
1
1
1

20
10
20
20
10
90
38

2
1

10
10
95

5
2
1
1
1
2
2
1
3

22
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Timer and SKIP guards

Description

Technical Note 8

If one or more guards in an alternative takes the form of a timer input, then timer alt start and
timer alt wait instructions are used. SKIP guards are directly supported by corresponding
enable skip and disable skip instructions.

Example

In this example, the guarded processes are not specified. b is a boolean variable, t is a local
variable.

occam instruction sequence bytes cycles

ALT
TIME ? (» t

PO
bl & SKIP

P1
L2:timer alt start

load local t
load constant 1
enable timer
load local b1
enable skip
timer alt wait
load constant 1
load constant LO-L3
disable timer

L3:load local b1
load constant L1-L4
disable skip

L4:alt end
LO:PO

jump M
L1:P1

M:

* including a prefix instruction
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2 5
1 2
1 1
2 9
1 2
2 4
2 13 49 (not ready)
1 1
1 1
2 31

*2 2
2 5
2 5
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Other instructions

Technical Note 8 ,,

byte arrays
byte arrays
slice assignment

loads the minimum integer
array subscription

The T414 transputer includes the following instructions. \Vhere not directly relevant to an
occam program, these instructions are provided for use by the development system or to support
languages other than occam.

miscellaneous facilities

minimum integer
word count
check subscript from 1
load byte
store byte
move message
set error
general call simple jump and link
general adjust workspace save and set W register

partword arithmetic

extend to word
check word

long arithmetic

extend to double
check single
long add
long subtract
long sum
long difference
long multiply
long divide
normalize
long shift left
long shift right

scheduling

run process
load current priority

booting and analyzing

(signed)

(signed)

start
test processor analyzing
save high priority registers
save low priority registers
store high priority front pointer
store high priority back pointer
store low priority front pointer
store low priority back pointer
store timer
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