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Preface

In this book we describe the software and hardware implementation of transputer
parallel processing systems. We hope to bring together information from a multi­
tude of sources in a more readily accessible form.

This book is not intended as a substitute for a study of engineering data when
detailed design decisions are to be made, but should act as a guide to the capabilities
of the transputer family and transputer-based systems. This should help the reader
to choose the software and hardware solution that will best suit their problem.

Neither of us is an employee of INMOS Ltd, but we are both transputer users by
choice, one in an academic environment, the other as head of a research-oriented
software development company. Thus our opinions are our own, and do not always
coincide with those of INMOS, and at times may be directly opposed. Despite this
we would like to acknowledge the help provided by INMOS in the preparation of
this book.

We would like to thank the following for permission to reproduce diagrams in
the book: INMOS for Figures 2.1, 7.1-7.10, 8.1, 8.7-8.10 and 9.6; Meiko for Figure
8.11; and Parsytec GmbH for Figures 8.6 and 8.13-8.15.

The majority of our programming examples are in C, rather than occam, and
we assume that the reader has a knowledge of C.

One of us (I.D.G.) thanks the University of Bath for a Visiting Fellowship, during
the tenure of which this book was completed. We would also acknowledge the help
provided by those transputer hardware and software manufacturers whose products
are mentioned in the text.

Shepton Mallet
1990

ix

I.D.G.
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Notational Conventions

Internal processor registers and flags are shown in italics:

A, B, C, Error, HaltOnError

Program examples and processor opcodes are shpwn in monospace typewriter font:

writeln("Hello World");
ldl 5

Signal and pin names are shown in the monospace font:

BootFromRom, notError

Hexadecimal numbers are preceded by Ox, and shown in the monospace font:

OxF (4 bits)
OxFO (8 bits)
OxFOF1 (16 bits)
OxFOF1F2F3 (32 bits)
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Trademarks

UNIX is a trademark of AT&T.

VAX and PDP-II are trademarks of Digital Equipment Corp.

IBM is a trademark of International Business Machines.

Computing Surface, In-Sun Computing Surface are trademarks of Meiko Ltd.

Helios is a trademark of Perihelion Software Ltd.

e ,Dnlmos , IMS and occam are trademarks of INMOS Limited. INMOS is a member
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Chapter 1

Introduction

The rush to provide faster and faster computer systems seems to have taken us
headlong from the classic IBM mainframe of the 1960s through the departmental
minicomputers, typified by the VAX of the 1970s into the massive flood of personal
computers during the 1980s. It is a well known but instructive cliche that the
amount of computing now available in a wristwatch would have taken huge boxes
of air-conditioned power thirty years ago.

The focus of the development of fast, innovative processors has shifted from
the computer manufacturers to a small, and shrinking, group of semiconductor
manufacturers. These semiconductor manufacturers continue to promise bigger (or
rather smaller) and better devices each year, and there seems to be no limit to the
amount of computing power that will eventually be available on your desktop.

Two questions need to be asked at this point: why do we need all this computing
power, and how are we going to be provided with it?

1.1 Why more power?

This first question is often forgotten; computers just get faster and faster all the
time. For many users, computers are already fast enough. Consider someone using
a word processor or spreadsheet on a personal computer; so long as the text is
displayed or the spreadsheet updated within a second or so then getting a faster
computer so that the update takes half a second hardly seems worthwhile. These
users have no real need of more computer power, and are happy with their system.

Other users can clearly see room for improvement. If the word processor has
been replaced with a desktop publishing package then the speed with which the
system responds may well become more critical. Unlike the previous system a
character is represented on the screen by a pixel pattern defined by a chosen font.
The computerlsystem has to perform a signifi·cant amount of extra work in this
case. All the word-processor software had to do to display a character was to load
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its value into a hardware register; the character generator built into the display
circuitry would then cause the correct pixels to be sent to the screen.

The modern flexible font system places a much greater burden on the software.
A software-routine must locate the correct bitmap for the character, size and font
required, possibly generating it from a stored set of Bezier curves. The computer
must then set each individual pixel on the screen to represent the required char­
acter. All of this work is needed just to display a single character. There is then
considerable extra effort required in order to scale pictures, move columns of text
around a screen, change the width and format of columns and so on. The amount
of extra work to be performed ranges from 100 to 1000 times more.

It is hardly surprising that a computer capable of providing excellent performance
when faced with simple tasks suddenly shows its limitations when asked to handle
a much more complicated program. What is sometimes not appreciated is exactly
how much more complex desktop publishing is than simple word processing. So far
as the user is concerned it is a simple step up from limited fonts and poor quality
to multiple proportional fonts and high quality.

Current software users are becoming more critical of the user interface provided.
Originally it was perfectly acceptable for a software package to have obscure com­
mands that had t~ be typed before it could be persuaded to do anything. Users
were not to be trusted with anything as complicated as a computer, unless they
were willing to spend hours reading the manuals and attending training courses.
It was also considered a matter of honor that individual companies developed a
certain house style, so that pressing a particular key on one package might have a
devastatingly different effect from the same key in a package from a rival manufac­
turer.

Modern developments have shown that good software should be intuitive. If
the user has learned one program package then the next package, albeit from a
different software house, should behave in a similar fashion. Standard screens have
been replaced by windows, overlaid on other windows. More than one program can
be run at the same time. The screen itself is capable of displaying complex graphics
and variable-sized fonts. A mouse is used to select from iconic images of programs,
while pull-down menus are used to select the different options.

This general improvenlent in the user interface has had yet another major impact
on the amount of computer power required behind it. Graphical systems have
become the standard for every computer user, rather than being used occasionally
by specialists in order to plot a diagram or draw a graph. Graphics resolution has
improved dramatically from 320 x 200 pixels on the screen to 1024 x 768 or more.
All of this uses more and more computer power.

On the general scale, more computer po\ver enables us to produce better models
of the real world. These might be higher quality graphical models, quicker statistical
models or more accur.ate engineering models. As our requirements for these models
increase then our appetite for computer power also increases. Consider areas*iuch
as computer simulation, where a full simulation of an intricate piece of engineering
such as a power station must be performed in order to verify the design. Even on
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the largest of present computers such simulations can take years.
There are many areas of potential computer applications that are not currently

being addressed because the technology is simply too slow. Good examples here
are concerned with getting the computer to do anything that the human brain is
good at, such as voice recognition, image analysis and pattern recognition, artificial
vision, and natural language understanding. We are a very long way from the
science fiction of having a robot come into the room, recognize us and understand
our natural speech. Current research into the software solutions to these problems
suggests that huge amounts of computer power will be required.

1.2 How do we get more power?

The preceding section put forward some arguments as to why more computing
power is required now, and why we see no saturation of this requirement in the
future. This section describes some of the problems in making computers faster
and faster.

The underlying and absolute physical limitation is the speed of light. Certain
semiconductor manufacturers seem to be suggesting that their particular technology
has a rosy and unencumbered future, with faster and totally compatible models
coming out each year for ever. This is, of course, impossible. The technology wall
presented by the speed of light is at the top of a technology hill. Not only is it
impossible to scale the wall, it also gets extremely difficult even to get close to it.

Desktop personal computers used to be based on microprocessors with an 8 MHz
clock speed, and recent developments have seen the introduction of 33 MHz chips.
At first glance this can be seen as the gradual, but irresistible, onwards march of
technology. A more detailed examination shows that even this change has led to
more problems than might first have been assumed.

Consider the problem of attempting to design a memory interface. As anyone
who has bought a personal computer will know, a microprocessor with a clock rate
of 16 MHz will not run twice as fast as one with a clock speed of 8 MHz. A normal
dynamic memory chip will have an access time of between 80 and 100 nsee, and
the faster the chip the more expensive it gets.. It is possible to use static RAM
devices, which have a much shorter access time, but which are perhaps ten times as
expensive, and are not available in such high density packages as dynamic memory.
Thus the memory is unlikely to be able to keep up with the 16 MHz processor. A
common solution is to provide a cache memory of fast RAM, but this is expensive,
and relies on the locality of programs and data.

Bus structures become much less useful as processor speeds increase. Until re­
cently it was common·for a microprocessor system to consist of a CPU board and
some memory boards connected by a high-speed bus. However, processors are now
sufficiently fast that memory access is unacceptably slowed by the physical layout
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of the bus and its associated capacitances. Even high-speed peripheral interfaces
can no longer reside on the bus.

Part of the approach to solving these problems has been to place more of the re­
quired circuitry on a single chip. On-chip devices, such as cache memory, memory
management units and floating-point units, are preferable. as no external buffers
are required and the distances involved are very small. Complex single-chip devices
have been made possible by the development of very large scale integration (VLSI),
which in its turn is encouraged by the requirement for more and more complex
devices. The recent Intel processor, the i860, may have a reduced instruction set
architecture but with more than one million transistors it is hardly a simple device.
These complex chips have their own problems. The chips are difficult to manufac­
ture with high yields, and are therefore expensive. They dissipate a lot of heat,
which has to be remov~d froni the chip in some way, and they require fast memory
and generate fast signals, which places strict limits on board design.

An analogy to this problem is that of trying to get a drink in a crowded bar. The
bartender starts to get overwhelmed, and so a replacement with more experience is
brought in. He works faster, but still cannot cope with the increasing demand, and
so another replacement is found who has been training for the Olympics. Although
she is now racing from one side of the bar to the other, she still cannot cope.
Efficiency is lost, more drinks are spilled and glasses broken.

The solution, of course, is to replace the single bartender with five or six who
share the work. If the amount of work increases yet again, more staff are brought
in to continue the service.

In order to produce more and more powerful computers we must provide power
through multiple processors, working together to achieve a solution to a large shared
problem. The techniques of parallel computation are applicable to all scales of
processor, from the smallest to the largest, and will not be made obsolete by new
technology, as we will always require more power than can be provided by any single
processor, whatever its technology.

1.3 Types of parallel computer

There are many ways in which to define a taxonomy of parallel computers. !\n
early attempt by Flynn (1966, 1972) divided computer systems into four major
categories based on the number of instruction and data streams that are processed
simultaneously. Flynn's categories are as follows:

• Single instruction stream, single data stream machines (SISD).
• Single instruction stream, multiple data stream machines (SIMD).
• Multiple instruction stream, single data stream machines (MISD).
• Multiple instruction stream, multiple data stream machines (MIMD).
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The SISD architecture still describes most of today's large and small computers,
where a single program executes using a single set of data. SISD machines can
potentially have multiple functional units, such as vector processors or pipelines,
as is common in today's 'uniprocessor' supercomputers.

SIMD machines execute· the same instruction stream simultaneously on many
sets of data - examples are array processors such as the ICL Distributed Array
Processor (Reddaway, 1984). Systems with this architecture are restricted in the
problems that they can solve, but are particularly suited to operations on large
matrices.

MISD machines potentially execute many instructions in multiple streams on a
single data stream. However, no examples of this machine organization seem to
exist.

We will be concerned here principally with the MIMD machines, where multiple
sets of possibly different instructions are executed concurrently on multiple data
sets. This is the most general model, as it is possible to make a MIMD machine
behave as either a MISD or SIMD machine by suitable programming.

The Flynn taxonomy provides a crude separation of machine types. For a more
sophisticated analysis and alternative taxonomies the reader is referred to Hockney
and Jesshope (1988) and Krishnamurthy (1989).

1.4 MIMD architectures

In this book we discuss the hardware implementation and programming of machines
of the MIMD type. Such systems are already commen, and two main Q.rchitectures
have emerged which differ in how the processors communicate to share data and
control. It is clear that the processors should communicate, either with each other
or with a controlling processor, in order that the computing task may be distributed
over the parallel system and the results of the computation collated.

1.4.1 Shared-memory machines

In shared-memory systems the processors use a common pool of memory, normally
with some hardware constraints to avoid memory access conflicts. Tasks commu­
nicate through shared variables, and code and data may also be shared by tasks
running on different processors. One clear disadvantage of the shared-memory ar­
chitecture is that a limited memory bandwidth must be shared by all the processors
in the system. Thus as each new processor is added, the system performance does
not imvrove linearly, but follows the law of diminishing returns. The amount of.
degradation is clearly very dependent on the application, and on the details of the
memory architecture. The memory contention problem thus limits the number
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of processors that can be added to the system, and the large memory bandwidth
required in the main memory adds to its cost.

1.4.2 Distributed-memory machines

Alternatively, each processor may have its own local memory, and communicate
with the others over hardware channels or links. The total memory bandwidth and
instruction execution rate thus increase linearly as more processors are added to
the system. The principal limitation of this message-passing architecture lies in the
communication links. If in a system of n processors each ·must communicate directly
with all of the others then n(n - 1)/2 bidirectional links would be required. This
would result in an impossibly complex architecture with even a modest number of
processors. Thus practical solutions limit the number of hardware links to each
processor, and provide either software or hardware message switching so that data
and control information can be transferred between processors as the application
requires. If this communications system and the topology of interconnection are
not well designed, then communications overheads can severely limit the overall
performance of the parallel machine.

1.5 The transputer

The INMOS transputer is the first single-chip microprocessor that provides a high­
speed processor, fast inter-processor communications, and explicit support for mul­
tiple processes and multiple processor systems. The design aims were for a device
that would be used in multiple processor message-passing systems, where each pro­
cessor had its own physical memory, but with support for multiple shared-memory
processes on each transputer. What the transputer does not provide, therefore, is
any memory management on chip, or any support for off-chip memory management
devices.

The intended application areas range from process control, with 1-50 loosely
coupled processors, workstations with 4-16 processors, to computing accelerators
and supercomputers with over 256 processors. The transputer is a reasonably recent
development and yet it has already had a profound impact on the way in which
certain types of problems are solved.



Chapter 2

The Transputer

This chapter describes the architecture of the transputer family. In fact there is a
fairly wide range of transputer devices available, but the family resemblance is very
strong, and they all follow the basic outline described here. The family members
are described in summary at the end of th~s chapter; more detailed information on
the properties of individual devices is given in later chapters.•The basic components of all microprocessors are the instruction execution and
decoding unit, often called the central processing unit or CPU, and an external
memory interface or EMI. The CPU reads instructions from memory via the EMI
and executes them sequentially. These two components make up the complete in­
ternals of older chips such as the Z80 or the 68000. Many modern chip designs
concentrate on making this standard processor and memory interface combination
run as fast as possible. However, increasing sophistication in VLSI technology has
allowed designers to increase the level of system integration, and to include on­
chip functions that previously required external coprocessors. The most important
additions are memory management, floating-point arithmetic, and instruction and
data caches. In each case the provision of these functions on chip provides a sub­
stantial performance improvement over the same function implemented in external
hardware.

Memory management hardware provides a mapping between the large virtiIal
address space of the processor and the relatively small amount of physical memory.
Each process can have a separate virtual address space and a different mapping
into physical memory, and thus the memory used by one process can be protected
from access by other processes and can ap'pear to grow beyond the physical memory
limits. The address translation hardware can be made to run much faster when
the memory management module is integrated on the same chip as the CPU and
memory interface.

The same is true of floating-point coprocessors. The performance of an external
coprocessor may be limited by the speed at which the main processor can load
it with instructions and operands and store the results in memory. The external
coprocessor· interface also tends to share the same signal lines as the EMI, and to

7
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Figure 2.1 The generic transputer

reduce the memory bandwidth of the system. This has led the designers of some
of the most recent high-performance microprocessors, such as· the 80486 and i860,
to include on-chip floating-point units.

Another common addition on chip is a cache of some kind, which allows fre­
quently accessed data and code to be held on chip. Sometimes this cache is im­
plemented for instructions only, as on the 68020; or with separate instruction and
data caches as on the i860. The transputer family uses a rather different approach
at present, having on-chip RAM that can be used in exactly the same manner as
external memory, except that accesses to the internal memory are at least two to
three times faster. Unlike a cache, this requires the programmer to make explicit
use of the fast RAM, and to decide if it should contain code, or data, or a mixture
of both.

The major extra function built in to every member of the transputer family is
that of on-chip communications. It is this single item that makes the transputer
unique, as every transputer comes equipped with the ability to communicate with
other transputers. It is thus very easy to construct arrays of processors working
together as a MIMD computer.

In summary, a transputer (Figure 2.1) is a single-chip VLSI device with proces­
sor, memory and communications links, which represents a slight deviation from
current microprocessor technology. Along with various support devices it is manu­
factured by INMOS Ltd, part of the SGS-Thompson Microelectronics Group. The
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first transputer product, the IMS T414, was introduced in 1986, and by December
1989 there were ten processors in the family. The common features of all present
transputers are as follows:

• High-speed integer processor with microcoded process scheduler.
• On-chip fast -static memory.
• Up to four links for communication with other transputers.
• Internal timers.
• External memory interface.

However, the transputer lacks one feature that we have begun to expect in more
conventional microprocessors: there is no support for memory management, or
for virtual memory. This lack is a result of the design goals of the transputer.
It is a device intended for the implementation of multiprocessor systems, where
each processor has its own local memory and processors communicate by message­
passing along fast links. Thus protection of the address space of one process from
the actions of another can be provided by putting the two processes on separate
transputers, rather than by a memory management scheme.

The transputer family consists of a number of different processors that have been
optimized for different tasks. However, the overall architecture of the transputer
makes it easy to construct and to program systems containing a mix of these trans­
puter types. The transputer links make hardware interconnection fairly easy, and
the transputer instruction set is designed so that programs can be written that are
independent of the word length of the processor, even at the binary level. Trans­
puters will normally be used in multiprocessor systems and thus the performance
of the individual processor is not so critical. If more processor power is required,
more processors can be added with very little modification of the software.

2.1 Microprocessor architectures

Current microprocessors fall into two main groups. On the one hand lie the com­
plex instruction set computers (CISC) where a rich instruction set is available to
manipulate data both in -memory and in registers. The alternative approach is
based on the reduced instruction set (RISC) philosophy. Here a small number of
instructions are available, most acting only on data in registers. The logic behind
the RISC approach is that it is possible to construct a faster computer by keeping
it simple.

The transputer CPU does not fall readily into either category. It has a simple
instruction set which means that it tends to be viewed as a RISC processor. It
is, however, much more than a RISC processor because of the extra functionality
built into the chip to support high-level concepts such as processes, timers and
inter-process communication.

It is useful to review some of the more familiar microprocessor families at this
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stage in order to compare them with the transputer. The two major families of
CISC processors started with the 8086 from Intel and the 68000 from Motorola.
The Intel range has expanded to include the 80486, whereas Motorola have the
68040 at the top end of their range.

The Intel 80386 is a popular 32-bit chip providing integer-only operations. A
floating-point coprocessor may be added externally. There is a set of registers of
which many have special purposes in certain instructions. The chip provides a
way of emulating the older 8086 processor with its segmented architecture, but
in native mode a full 32-bit linear address space is available. "There is a range of
specific opcodes intended to speed up certain operations such as copying strings as
well as the standard arithmetic and logical operations. Many operations may be
performed directly to memory without loading the value into a register. The chip
contains an integral memory management module.

The Motorola 68030 at first sight seems slightly more symmetric. There are
sixteen general-purpose registers but these are divided into two types, called data
and address registers, and many operations can only be performed in one type.
Special addressing modes use the registers in different ways and can decrement or
increment them as a side-effect of other instructions. The chip is integer only but
an external floating-point coprocessor adds a separate set of floating-point registers.
There are no special string instructions, instead an instruction cache is provided
which ensures that any short loop becomes resident on chip. A data cache is also
used to speed performance. The linear memory address space is handled by an
integral memory management unit. Many standard operations, such as addition,
can load one argument from memory but always leave the result in a register. The
instruction set includes a number of special case operations to manipulate such
things as program modules.

Both Intel and Motorola have recently announced their entry into the RISC
camp in the shape of the Intel i860 and the Motorola 88000 microprocessors. The
88000 has thirty-two general-purpose 32-bit registers and two completely separate
address buses for instructions and data. As with many RISC designs, all operations
are handled in registers; two specific load and store operations are the only way
of accessing memory. A floating-point unit is provided on the chip, whereas cache
and memory management are handled externally by other members of the 88000
family.

Another RISC chip is the SPARC design from. Sun Microsystems. This is a classic
RISC design which has been used to extend a range of computers previously based
on 68020 processors. The logic behind a RISC processor is that most programs are
written in a high-level language and compilers are not very good at using special­
purpose instructions. Most processors spend 90 percent of their time executing 10
percent of their instructions; the next step is to speed up those instructions and
leave out the complicated ones, such as multiplication, which can be provided by
software. The SPARC design provides a simple but fast processor based on three­
address instructions so that each opcode is of the form 'add Rl to R2 and place the
result in R3'. The result is that each instruction is 32 bits wide; the problem with
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the RISC approach is the processor can spend a large amount of its time reading
these simple instructions in order to execute them.

The SPARC design has one interesting design feature not generally found on
other commercial RISC chips: the concept of a 'register window'. A compiler can
make good use of a small number of register~ and ensure that few redundant stores
and loads from memory are made. However, as soon as a procedure is called the
current register set is dumped because the compiler does not know what registers
are used in the procedure; when the procedure returns the registers are restored
from memory. The SPARC architecture provides a different set of registers for the
new procedure which are allocated from a circular buffer. Only when the entire
register set has been used up does the compiler need to save the previous contents.

2.2 Transputer architecture

The internal design of the transputer is unlike that of any of the preceding pro­
cessors. A central concept of the transputer is that of the process and this can
be seen throughout the instruction set. A process represents an individual thread
of control and the transputer switches between running processes to provide the
illusion that they are all running simultaneously. This process switching is some­
times called multi-tasking and is normally handled by an operating system, but
in the transputer it is implemented totally by the hardware and microcode of the
processor.

The register model of the transputer is shown in Figure 2.2. All registers are
either 16 or 32 bits long, depending on the word length of the transputer. Registers
A, Band C form an evaluation stack and transputer instructions are designed
around the use of this stack rather than using general-purpose registers. A stack
depth of three provides a good compromise between the ability to evaluate most
expressions on the stack and having as little as possible to save when a context
switch occurs.

Register W is the workspace pointer, a pointer into the local variables associated
with the currently executing process. Many instructions refer to data by their offset
from the workspace pointer. The instruction pointer register I points to the next
instruction to be executed, and this corresponds to the program counter PC in
more conventional processors. The operand register 0 is used in the construction
of instruction operands.

2.2.1 The process scheduler

A unique feature of transputer architecture is that it contains a microcoded sched­
uler which maintains two process queues, one at high and one at low priority.
Processes in the high-priority queue are allowed to execute until they terminate, or
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require input or output. However, low-priority processes are automatically time­
sliced at about 1 msec intervals, and can also be interrupted by a high-priority
process. These queues are implemented as linked lists through the workspaces of
the active processes, the front and back of the queues are pointed to by two pairs
of registers, one for each priority. The mechanics of process switching are discussed
in detail in Section 3.7.

Associated with each priority level is a timer and a timer process queue. The
high-priority timer ticks once every microsecond, the low-priority timer every 64
JLsec, or exactly 15,625 ticks per second. The number of bits in the timer registers
depends on the processor model: for 16-bit processors the high-priority timer will
cycle in about 65.5 msec, the low-priority timer in 4.2 sec; for 32-bit processors the
high-priority timer cycles about every 4,295 sec (1.2 hours), the low-priority timer
about every 76 hours. The timer registers can be read directly, or the scheduler
can be instructed to queue a process for execution after the timer has reached a
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certain value. The timer queues are again implemented as linked lists within the
workspace of the waiting processes, but the entries are sorted into time order. The
front pointers to the timer queues are stored in reserved locations.

Another important feature of the scheduler is its ability to select one of a group of
processes for execution, depending on the occurrence of some event. These events
may be the completion of a data input, the expiration of a timer period or an
external interrupt.

2.2.2 Communications

As the transputer has been designed for use in message-passing parallel computers
it has strong support for inter-process communication. This has been designed so
that there is almost no difference to the programmer whether the communication
is between two processes executing on the same or on different transputers.

Data is transferred between two processes on the same transputer by copying
data between their memory spaces. This transfer is synchronized by means of a
channel control word, which is a single word anywhere in memory. Communication
only takes place when both the inputting and outputting process are ready, and
processes waiting for conlmunication take up no processor time. Thus two trans­
puter processes may synchronize by passing a message between them. Communica­
tion between two processes on different transputers uses just the same mechanism,
synchronized by special channel control words that lie in reserved locations in low
memory. The same instructions are used to set up the transfer, and the link engines
in each transputer take care of the direct memory access (DMA) transfer between
link and memory, with no processor intervention.

Each of the presently available transputers has either two or four external links.
These are full duplex comrIlunications links that can exchange data with other
transputers at 5, 10 or 20 million bits per second (Mbps), the speed being selected
by voltages applied to three pins on the transputer package. The bidirectional
data rate that can ·be achieved over the links depends on the types of processors
exchanging data, and the link speed, but ca~ be up to about 2.4 Mbytes per second
for T800 transputers with 20 Mbps links.

The link data are transferred as a serial byte stream, each byte being acknowl­
edged by the receiving transputer. No attempt is made to detect errors on the link;
it is assumed that the communications medium is error-free, or that higher levels
of communications will detect and correct errors.

2.2.3 Interrupts

The transputer has a single source of external interrupts, the EventReq input. The
programming interface of this input is implemented so that it appears as another
channel control word, located in low memory. A process instructed to wait on the
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event channel will be descheduled until the EventReq input is taken high, when
it will be rescheduled. When this occurs the event handshake output EventAck is
driven high by the processor. In order to provide a rapid response to interrupts the
process waiting for event input must have high priority, and be the only high-priority
process running. If these conditions are met the worst case interrupt response time
is about fifty processor cycles. This fast interrupt response is obtained by making
long instructions interruptable.

2.2.4 Memory

The present members of the transputer family have 2 or 4 Kbytes of on-chip fast
static RAM, which occupies the very bottom of the memory space. Some of this
is reserved for processor microcode functions. This is an inadequate amount of
memory for the majority of applications, and thus each transputer has an external
memory interface. Reads or writes to internal memory are fast, requiring only a
single cycle of the processor clock. External memory access is much slower, requiring
at least two processor cycles and usually four or five in dynamic memory systems.

Memory addresses are signed, thus the memory of a transputer starts at the low­
est possible negative number, Minlnt, which is Ox8000 on a 16-bit and Ox80000000
on a 32-bit transputer. It runs through zero to the largest possible positive number,
Maxlnt, Ox7FFF or Ox7FFFFFFF. Several locations at the bottom of memory are re­
served for processor functions, as shown in Table 2.1. In this table the addresses are
shown as word offsets from Minlnt, the actual byte address depending on the word
length of the transputer. The lowest eight words contain the channel control words
for the four external links, with the event control word in the ninth location. The
next two locations contain the front pointers for the high-priority and low-priority
timer process queues. Above these are the seven words that store the processor
state when a low-priority process is interrupted by a high-priority process, the only
occasion when the processor state has to be saved.

2.2.5 System services

The system services interface includes signals necessary to reset and boot the trans­
puter, to set the speed of its processor and its links, to signal errors and to respond
to external events. The transputer can be reset into either of two modes, deter­
mined by the value of the Analyse signal when Reset is asserted. If reset with
Analyse inactive the transputer will boot from memory if the signal BootFromRom
is connected high. If BootFromRom is low the transputer will listen on its links,
and can accept a bootstrap program or commands to write (poke) or read (peek)
memory locations via the links. The Analyse input is used as a debugging aid.
If Analyse is taken high while the transputer is running it will halt very shortly
after, and the links will become inactive. Reset may then be asserted. When Reset
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Table 2.1 Reserved memory locations

Word address
Minlnt+28

Minlnt+18
Minlnt+17
Minlnt+16
Minlnt+15
Minlnt+14
Minlnt+13
Minlnt+12
Minlnt+11
Minlnt+10
Minlnt+9
Minlnt+8
Minlnt+7
Minlnt+6
Minlnt+5
Minlnt+4
Minlnt+3
Minlnt+2
Minlnt+1
Minlnt

Name
MemStart

MemStart
EreglntSaveLoc
STATUSIntSaveLoc
CreglntSaveLoc
BreglntSaveLoc
AreglntSaveLoc
IptrlntSaveLoc
WdesclntSaveLoc
TptrLoc1
TPtrLocO
Event
Link3Input
Link2Input
Link1Input
LinkOlnput
Link30utput
Link20utput
Link10utput
LinkOOutput

Use
T805, T801, T800, T425, T225

reserved for extended
instructions
(not T212, M212, T414)

T414, T212, M212

register save
area

low-priority timer
high-priority timer
event channel

link control
words

comes low again the transputer will be in its reset state, but the registers will con­
tain information on the state of the machine when it was halted by the assertion
of Analyse.

2.3 The transputer family

The transputer family consists of three main groups: the 16-bit T2 series; the 32-bit
integer-only T4 series; and the 32-bit T8 series, which have an on-chip 32/64-bit
floating-point processor. Within these groups processors are distinguished by the
amount of on-chip RAM, the number of links, details of the instruction set and
the type of memory interface. However, all transputers conform to the general
architecture model shown in Figure 2.1. Here we will introduce the present members
of the transputer family, as summarized in Table 2.2; a' more detailed description
is given in Chapter 7.
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Table 2.2 The transputer family (December 1989)

16-bit transputers
T212 T222 T225 M212

Word length 16 16" 16 16
Internal RAM 2K 4K 4K 2K
~mber of links 4 4 4 2
Extended instructions n y y n
Debugging instructions n n y n

32-bit transputers
T400 T414 T425 T800

Word length 32 32 32 32
Internal RAM 2K 2K 4K 4K
Number of links 2 4 4 4
Hardware FPU n n n y

T801 T805
32 32
4K 4K
4 4
Y Y

2.3.1 Sixteen-bit transputers

The T212 was the original 16-bit transputer, with 2 Kbytes of internal static mem­
ory; the T222 is a more recent device with 4 Kbytes of internal memory and an
extended instruction set. The T225 is almost identical to the T222, but contains
extra instructions to support debugging. The M212 is a derivative of the T212 with
a built-in disk interface, 1 Kbyte of RAM and 4 Kbytes of internal ROM containing
disk controller firmware. The M212 has only two external links, the other two are
used as part of the disk interface.

2.3.2 Thirty-two-bit transputers

The T414 is the original member of the transputer family. It has a 32-bit integer
processor with 2 Kbytes of internal RAM. The T425 is an updated version of
the T414, with block move inE;tructions. This processor introduced instruction set
extensions to support debugging, and is intended eventually to replace the T414.
The recently announced T400 is a simplified and low-cost version of the T425, with
only two links and 2 Kbytesof on-chip memory.

The first transputer specifically designed for numerical applications was the
T800. This has 4 Kbytes of internal memory, and a floating-point unit (FPU)
capable of operating to the IEEE-754 specification on 32- and 64-bit numbers. As
the FPU is on chip the floating-point performance is excellent. The T805 is a de­
velopment of the T800 with the same debugging support in its instruction set as
the T225 and T425. The T801 is similar, but has a high-speed static RAM external
memory interface, rather than the programmable interface of the other members of
the T8 and T4 series. This makes it able to run faster, but requires more expensive
and less compact memory devices. The 32-bit transputers are available in "a range
of clock speeds from 20 to 30 MHz.
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2.3.3 Future transputers

INMOS have recently announced their plans for the development of a much higher
speed transputer, code-named the HI. This device is intended to have a processor
roughly ten times the speed of present transputers, and links capable of an aggregate
data rate of 80 Mbytes per second. The processor will have support for standard
operating systems, presumably some form of memory management, and a simplified
interface to dynamic RAM. It should be available in early 1991.



Chapter 3

The Instruction Set

This chapter describes the instruction set of the transputer. As previously noted,
the transputer cannot be seen to lie in either the classi9 RISC or CISC camps. For
programmers used to other microprocessors it can seem strange. It has a small
number of registers, organized as a stack, and all instructions are stack, rather
than register, oriented. It has little concept of condition codes, there are limited
instructions for accessing memory and no sophisticated memory-addressing modes.

On the other hand, the concepts of processes, inter-process communication and
process scheduling are handled directly by the device. Fundamentally, multiple
processor architectures and inter-processor communications are designed into the
transputer and its instruction. set.

This chapter provides an overview of the instruction set and does not intend to
be exhaustive. A full list of the transputer instruction set is provided in Appendix
A.

3.1 The evaluation stack

The instruction set of the transputer is designed around the idea of a stack as
opposed to the idea of registers. Most other processors use these registers to ma­
nipulate values. Consider adding two numbers on a processor such as a 68000. The
numbers would normally reside in memory and the result would eventually have
to be stored back in memory. The 68000 is not capable of performing this directly
even though it is a CISC processor. The sequence of operations would be as follows:

MOVE.L
ADD.L
MOVE.L

memX,DO
memY,DO
DO,memZ

which loads value X into the register DO, adds the 'value Y to it, then stores it
back. In a RISC processor the ADD instruction would only work on registers, so the

18
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sequence could be described as follows (we continue to use 68000 style mnemonics
for clarity):

MOVE.L memX,DO
MOVE.L memY,D1
ADD.L D1,DO
MOVE.L DO,memZ

Inside the transputer the approach is similar, except that a stack is used. The
actual operations to add the two numbers would be as follows:

ldl
ldl
add
stl

memX
memY

memZ

Here the ldl instruction is used to transfer data from memory to a stack. The add
instruction takes the top two values off the stack, adds them together and places
the result on the top of the stack. The stl instruction is then used to store the top
of the stack back into memory.

In a more conventional processor an assembly language programmer or compiler
writer attempts to optimize performance by keeping suitable values in registers so
that redundant access to memory is avoided. In the transputer the same approach
is used to keep values within the evaluation stack as they are required. The stack
is only three items deep and consists of the three registers A, Band C. The action
of ldi can be described more formally as follows:

Copy the value of B into C
Copy the value of A into B
Load from memory into A

Thus two consecutive ldl instructions place two values from memory into A and
B. The add instruction can again be described more formally as:

Add B to A
Copy the value of C into B
Leave C undefined

or informally as popping two values off the stack, adding them together and pushing
the result onto the stack. In the same way the stl instruction pops a value off the
stack and stores it into memory, or:

Store A in memory
Copy the value of B into A
Copy the valu~ of C into B
Leave C undefined

In order to make effective use of this evaluation stack care must be taken in the
order of evaluation of expressions, to ensure that wherever possible an intermediate
expression is stored within the stack. The stack may seem limited in that it only
holds three items but this is sufficient for most expressions.
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y x Previous function space

O(A7) 4(A7) 8(A7)

Figure 3.1 Local variable access in Motorola 68000 processor

3.2 Simple instructions

The previous chapter gave an introduction to the transputer registers. Explicit
reference to a transputer register is never made, as access to registers is always
implicit in each instruction. The instruction pointer lis manipulated by instructions
which specify transfer of control while the workspace pointer W may be thought of
as a stack pointer for a falling stack.

In a high-level language we need a way to store local variable~ and this is tradi­
tionally done with respect to a stack pointer. Consider the following fragment ~f C
code:

f ()
{

int x, y;

x += y;

}

Here two variables local to the function f are declared and used later in a calculation.
Again it is worth considering how this is done in other processo~s. On a CISC
machine such as a 68000 the address register A7 is used as a falling stack. Space for
local variables is allocated on this stack and can be addressed by positive offsets
relative to A7. If we wish to store 32-bit values then these byte offsets must be
multiples of 4, as shown in Figure 3.1.

Thus the code generated for the addition of x and y might look as follows:

MOVE.L
ADD.L
MOVE.L

4(A7),D1
O(A7),D1
D1,4(A7)

In the transputer, memory is allocated as offsets from the workspace pointer W
(see Figure 3.2) in a very similar way, except that the offsets used are word offsets.
The size of a word depends on the type of the transputer, being 16 bits for the T2
series and 32 bits for the others.

The instructions to load local data are always relative to W so it need not be
specified. The only argument needs to be the offset from W, and so the same code
fragment to add two local variables together would be generated as follows:
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Figure 3.2 Local variable access in transputer

Idl
Idl
add
stl

1
o

1

This scheme has the advantage that the same code will work on a T212, a T414 or a
T800 with 16-bit values used on the T212 and 32-bit values on the other processors.
It also shows why 16-bit integers should not be used on 32-bit transputers as the
only size of local variable supported is the word. There are ways of accessing a byte
from memory, which are described below, but the only way to use 16-bit integers is
to shift and mask 32-bit numbers. For this reason many compilers give a warning
message if a high-level language program declares values as 16-bit objects.

Besides local variables in the workspace, access is also required to other areas in
memory, commonly into structures in languages such as C. This is where indirection
is required, using the value of one memory location to refer to another. Consider
the following C code fragment:

main(argc, argv)
int argc;
char *argv[];
{

char *arg;

arg = argv[3];

}

Here the value of argv is a pointer to an array of argument slots, each of which
contains a further pointer to a string. The assignment to arg causes an indirection
via argv and the value of the index. The code to generate this on a 68000 might
look as follows:

MOVEA.L
MOVE.L

8(A7),AO
12(AO),4(A7)

In the first line we access the array pointer stored on the stack and save it in AO.
In the second line we indirect through an offset of 12 on AO to get the third array
item, which is then stored as a'local. Note that an offset of 8 is required because
that is the byte offset of the third word in the array argv.
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On the transputer we perform indirection using the Idnl instruction. The same
code fragment would translate to transputer code as follows:

Idl 2
Idnl 3
stl 0

In the first line we access the pointer argv from the stack. The second line uses
this plus the word given as argunlent as a pointer from which a memory location is
loaded. The last line stores this back into memory again. Note that the transputer
again uses a worp rather than a byte offset for the argument to Idnl.

3.3 Encoding

The previous sections have given a very simple introduction to· the transputer in­
struction set. We have E,een how code fragments can be compiled on the transputer
and have been able to compare this with a mote familiar processor such as the 68000.
This section describes the way in which the transputer encodes both instructions
and data for greater code density.

Any computer architecture must choose a way in which numbers are stored.
There are two differing requirements here. First, there is the maximum size of an
integer which can be supported. Or! any 32-bit processor this is normally a 32­
bit value. Secondly, there is the need to make the instruction set as compact as
possible. For example, the 68000 series processors have an instruction to load an
immediate value into a register. In the standard form this instruction is 6 bytes
long: 2 bytes for the instruction code 'move immediate' plus 4 bytes for the value
to be loaded. This is clearly wasteful when the number to be loaded is only small,
and analysis of programs shows that loading small numbers such as 0, 1 or 4 is
much more common than loading large numbers. The 68000 therefore has a special
'move quick' operation, which is only 2 bytes long and which can be used to load a
number in the range -128 to +127.

There are several problems in having different instructions for the special case
of small numbers. On the 68000 there are specific instructions for loading immedi­
ate values and adding or subtracting small numbers but the range is different for
addition and subtraction, limiting these numbers to between 0 and 7. There are no
special instructions for multiplication by small numbers or for any other immediate
operations.

The transputer has a more elegant and flexible mechanism than this. A number
within the transputer is represented by the number of bytes required and no more.
The number is always represented in this way no matter where it is used within
an instruction and no matter what the instruction. The approa;ch is totally flexible
giving no logical maximum integer size. A similar scheme is also used for encoding
instructions, leading to a very dense and compact instruction set.
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Figure 3.3 Instruction byte and operand register (f=instruction byte function (4 bits);
o=instruction byte operand (4 bits))

Transputer instructions are encoded in a stream of bytes. Each byte consists of
two nibbles, the upper four bits containing a function code, the lower four bits an
argument (Figure 3.3). Thus there are sixteen different function codes, consisting
of thirteen ~direct functions' and three special functions. For the thirteen direct
functions the function code is the opcode of the instruction to be performed. Before
executing the instruction the argument part of the byte is loaded into the bottom
four bits of the operand register 0, where it acts as the operand of the instruction.

Consider the encoding for loading a constant value onto the top of the stack.
This instruction is called Ide for 'load constant'. This is a direct function and is
represented by Ox4. A number in the range 0-15 is represented by the argument
nibble. Thus the complete instruction to load constant 8 onto the stack is repre­
sented by a single byte Ox48. After the instruction has been executed, the operand
register is cleared.

But often we will want to load a constant that is greater than 15. Larger operands
are generated by using special functions pfix (Ox2) and nfix (Ox6), which act as
prefixes to the other functions. The pfix function loads its four argument bits into
the operand register, and then shifts the register up four bits. The nfix instruction
acts in exactly the same way, but complements the operand register before shifting
it up. These functions are the only operations that do not clear the operand register
after execution. For example, we can represent Ide Ox15 by two bytes Ox21 Ox45,
or pfix 1; Ide 5. The pfix instruction loads register 0 with the value Ox01 and
then shifts it up four places, so that 0 contains Ox10. The Ide instruction then
inserts the argument from its own instruction word into the lowest four bits of 0
and uses the result Ox15 as the operand for the instruction. The register 0 is then
zeroed ready for the next operation.

This mechanism is highly extensible and is limited only by the size of the internal
registers. Table 3.1 showsthe contents of the 0 register during the evaluation of the
sequence of bytes required to represent the instruction Ide Ox892, which is Ox28
Ox29 Ox42. In the same way nfix (Ox6) may be used to construct a negative
number. For example, the instruction Ide -3 is represented by the byte sequence
nfix 0; Ide -3 orOx60 Ox43.

Notice that it is also possible to encode numbers in a way that uses a fixed
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Table 3.1 Execution of Ide Ox892

o before
o

80
890

Opcode
28
29
42

o during
8

89
892

o after
80

890
o

amount of memory simply by using pfix instructions with a zero argument. Hence
Ox20 can sometimes be used as a no-op within the transputer, and it is useful to pad
short numbers to a standard length with this code. This technique is sometimes
employed when a linker is to be used to pad values after a compilation has taken
place. A later section of this chapter discusses this problem in more detail.

The 'operate' function opr is used to extend the instruction set. The operand of
opr is taken as the opcode to be performed. Thus:

opr 5

instructs the transputer to perform the opcode Ox5, which is in fact add. The
encoding for opr is OxF so the complete add instruction is encoded as OxF5. This
scheme allows a further sixteen instructions to be encoded as a byte along with
the thirteen encoded as a nibble. ~L\.gain, these sixteen I-byte instructions have
been chosen to be the most commonly used after the direct functions. As the
opcode of the instruction executed by the opr function is contained in the operand
register, this register clearly cannot be used as the operand of the instruction. Thus
instructions executed by opr take their operands from the evaluation stack or from
memory.

Further instructions are available using larger operands to the opr instruction.
For example:

opr Ox41

executes opcode Ox41, which is a shift left instruction. This is encoded as pfix 4;
opr 1 or Ox24 OxF1, using the pfix instruction to extend the number range of the
opcode.

This may sound rather complicated but the entire mechanism can be encapsu­
lated in a few lines of code. The following C routine is used to encode a number in
the most efficient manner:

#define f_pfix Ox20
#define f_nfix Ox60
#define TRUE 1
#define FALSE 0

void encodestep();

void encode( op, arg)
int op, arg;
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{

if (arg < 0)
eneodestep«-arg) » 4, TRUE);

else
if (arg> 15) eneodestep(arg»4, FALSE);

printf("%2x\n", op I (arg & Oxf));
}

void eneodestep(arg, negative)
int arg, negative;
{

if (arg > 15)
{

eneodestep«arg»4), negative);
printf("%2x", f_pfix I

«negative? -arg : arg) & Oxf));
}

else
printf("%2x", (negative? f_nfix f_pfix)

I (arg & Oxf));
}

Here are some encodings of various numbers:

Ide 12
Ide 40
Ide 257
Ide -12
Ide -40
Ide -257

Ox4e
Ox2248
Ox212041
Ox6044
Ox6248
Ox612F4F

Clearly the encoding scheme can result in a very compact instruction stream. Re­
verting back to the sample segment of C code to add together two local variables,
we can compare the size of the instruction set on the ClSC processor and the
transputer. The 68000 version is as follows:

MDVE.L
ADD.L
MDVE.L

4(A7) ,DO
0(A7),D1
D1,4(A7)

Ox202F0004
OxD2AFOOOO
Ox2F410004

Compare the size of the code with the transputer version, which is as follows:

ldl
ldl
add
stl

1
o

1

Ox71
Ox70
OxF5
OxD1
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The thirteen instructions allocated to single nibbles have been carefully chosen
to be those used most commonly and are shown in Table 3.2. These include loading
a constant, a local variable, a non-local variable, a local pointer and a non-local
pointer. It is also possible to store local and non-local variables, adjust the W
pointer register, add and compare constants, make conditional and non-conditional
jumps and call procedures using a single nibble. Sixteen more of the commonly
used instructions are encoded as single bytes (Table 3.3). The 'Cycles' column
shows the number of processor clock cycles taken to execute each instruction when
its non-register operands are in internal RAM. Many of these simple instructions
execute in a single clock cycle.

Table 3.2 Direct functions

Function code
OxO
Ox1
Ox2
Ox3
Ox4
Ox5
Ox6
Ox7
Ox8
Ox9
OxA
OxB
OxC
OxD
OxE
OxF

Mnemonic
j
ldlp
pfix
ldnl
Ide
ldnlp
nfix
ldl
adc
call
cj
ajw
eqc
stl
stnl
opr

Cycles
3
1
1
2
1
1
1
2
1
7
2/4
1
2
1
2

Instruction
jump
load local pointer
prefix
load non-local
load constant
load non-local pointer
negative prefix
load local
add constant
call
conditional jump (taken/not taken)
adjust workspace
equals constant
store local
store non-local
operate

Table 3.3 Single-byte operations

Byte Mnemonic Cycles Instruction
OxFO rev 1 reverse
OxF1 lb 5 load byte
OxF2 bsub 1 byte subscript
OxF3 endp 13 end process
OxF4 diff 1 difference
OxF5 add 1 add
OxF6 gcall 4 general call
OxF7 in 2w+19 input message
OxF8 prod x product
OxF9 gt 2 greater than
OxFA wsub 2 word subscript
OxFB out 2w+19 output message
OxFC sub 1 subtract
OxFD startp 12 start process
OxFE outbyte 23 output byte
OxFF outword 23 output word

w= number of words transferred.
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3.4 Further instructions

Many of the instructions in the transputer are easily recognizable in other processors
and are not worth an explicit mention here. A full list of the transputer instruction
set is given in Appendix A.

These instructions include standard operations, such as signed and unsigned
arithmetic operations; logic operations such as AND, OR, EXCLUSIVE-OR; and shifts.
Unlike many other microprocessors, the transputer does not contain a special piece
of hardware called a barrel shifter which is used to implement shifting of data. This
means that shifting data is slow compared to some other processors; in particular,
the unchecked multiply instruction called prod shou~d be used in preference to shifts
when multiplying by a constant power of two.

The transputer also contains explicit support for operations on values. longer than
a word; these are especially useful on the 16-bit series. Versions of the signed and
unsigned arithmetic opera~ions are provided, as well as extended shift instructions
to shift double-sized objects. The normalize instruction norm may be used to shift
left a double-sized object until its most significant bit is one, keeping track of the
number of shifts needed.

As mentioned earlier, the transputer normally works entirely in words, which are
either 16 or 32 bits depending on the type of transputer. It is possible to access
individu~l bytes through instructions that allow loading and storing bytes. There is
also provision for handling byte-sized structures, so that the same code could work
on transputers with different word sizes. The bsub instruction is used to return the
address of an offset within a byte structure. In the same way the wsub instruction
returns the address of an offset within a word-sized structure, avoiding the need
for explicit multiplication by two or four. The bent instruction can be used to
multiply the A register by the number of bytes in a word, whatever that is. A
complementary instruction went decomposes an address into a word offset and a
byte selector.

Structures can be copied efficiently using the move instruction, which takes its
arguments from the evaluation stack. This instruction will copy A bytes of data
from the address in C to the destination address in B. This is an efficient one­
dimensional copy and the more recent transputer variants, such as the T800 and
T425, also have two-dimensional copy instructions. The move instruction does not
allow overlapping source and destinations.

3.5 Position-independent code

An important feature of many modern microprocessors is that code produced for
them can be 'position independent' in that the code contains no absolute addresses.
The instructions may be loaded anywhere in memory without the need for any
changes to the code. This is normally good programming practice as it is also
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a prerequisite for producing 'pure code', which can be shared by many different
processes. It also allows for code to be moved once it is loaded into memory.

On the transputer the use of pure code is highly important. As the transputer
supports multiple processes in the instruction set it is important that standard
libraries be shared by all the processes. Position-independent code may also be
passed between interconnected processors, being loaded into different memory lo­
cations in different processors. The production of position-ir.ldependent code is
made possible by the ldpi instruction, which loads a pointer to an instruction.
Consider attempting to load the address of a string, ready to print it out with
printf or some such similar routine. This string will normally be located some­
where within the program code. The following code would be used to perform the
required action:

Ide (L1-L2)
ldpi

L1:

L2: byte "Hello World"

Here the A register is loaded with the offset of the string from the instruction
following the ldpi, which is used to add in the current value of the instruction
pointer or I register. The sequence Ide 0; ldpi may be used to access the address
of the next instruction.

3.6 Flow of control

The transputer supports the normal range of instructions to alter the flow of control
and these are listed in Table 3.4. The eall instruction is used to call a procedure;
the instruction pointer I is pushed onto the stack, followed by the three registers
A, Band C. The argument to call is then added to I to transfer control. The new

Table 3.4 Flow of control instructions

Code Mnemonic Cycles Description
Jumps
OxO j 3 jump - direction function
OxA cj 4 conditional jump (taken)

2 (not taken) - direct function
Ox21 lend 1°/5 loop end (loop backlexit)

Call and return
Ox9 call 7 call - direct function
Ox06 gcall 4 general call
Ox20 ret 5 return
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function will then commonly allocate some workspace by using the ajw instruc­
tion to decrement W. At the end of the routine the workspace used is deallocated
with another ajw; the ret instruction is then used to deallocate the four slots of
workspace used by call and to jump back to the place indicated by the saved 1.
This mechanism allows up to three arguments to be passed in the registers; extra
arguments would normally be pushed onto the workspace stack before the call.

The call instruction is normally useful for calling routines where the offset is
known in advance. This is not the case when calling a routine where the address
is to be computed at run time. The instruction gcall is provided which simply
swaps [and A, thus enabling the address to be computed into A and then jumped
to. Another gcall could be used to return.

It is also often useful to be able to write a routine in such a way that it can be
called from either call or gcall. -The easiest way to do this is to assume that all
routines are going to be accessed via call instructions. If a gcall must be used,
a 'stub' procedure is generated and a call is made to this instead, passing the
address of the procedure as an extra argument. The call tp the stub will set up the
workspace correctly and the stub needs only to pick up the extra argument at the
end and jump to this using gcall.

Transfer of control can also be made using unconditional and conditional jumps
j and cj while for-loop control is handled with lend. The transputer programmer
should note that the instructions j and lend both have a curious side-effect - they
may destroy the contents of all the evaluation stack registers A, Band C. This
can be very confusing because at first it seems slightly odd that the registers are
trashed at these points, and secondly because they are not always altered. So an
assembler routine might work at some times and not at others.

3.7 Process scheduling

The curious side-effect of registers sometimes being altered, mentioned above, is
easy to -explain. The transputer instruction set supports multiple processes, and
the low-priority processes are time sliced by the chip. This means that once one
low-priority process has used a certain amount of CPU time, the processor switches
to another low-priority process waiting to run. This switch is a hidden transfer of
control that in theory can take place at any time. However, the designers of the
transputer wanted to make the process switch highly efficient. In order to make a
process switch the chip has to save the current [pointer in the workspace, save the
workspace pointer W somewhere in memory, retrieve another workspace pointer
W' for a new process, retrieve the saved [' from W' and start execution again. If
this was to take place at any time the microcode would need to also save A, Band
C from the original process, and reload A', B ' and C' for the new one. This is in
fact what is done when a high-priority process interrupts a low-priority one; but
because ther~ is only one high-priority process queue, and high-priority processors
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never interrupt each other, the registers may be saved in fixed locations in fast
on-chip RAM. For low-priority processes it would mean six extra external memory
accesses on each time slice if the registers had to be saved in this way.

The solution instead is only to attempt to·switch between low-priority processes
at certain points, and not to bother to save A, Band C when making the switch.
The only question is: at what point in a program can switching be allowed? Clearly,
trashing A between a ldl and the next ade is no good at all, so the chip must
.attempt to switch between processes only on certain instructions. The instructions
chosen must appear regularly in all programs so that time slicing always takes place.
The obvious choIces are the instructions that transfer control, because they must
appear in a program that is looping and therefore taking CPU time. Thus at each j
and lend instruction the processor performs its time slice test and might switch to
another process. Process switching can also take place when processes are waiting
for communication; this is described in more detail later.

It is important to be aware of the underlying time slicing when programming
the transputer in its asspmbly language. First, compiler writers should ensure that
their compiler code includes the loop and jump instructions, which is of course
normally the case anyway. Secondly, any hand-coded assembler that is attempting
to perform something time-critical should not include j or lend if running at low
priority because both instructions have the possibility to take a large amount of real
time if other processes are scheduled at that point.· Finally, two processes might
wish to communicate using shared data and it is important that the data remain in
a consistent state. The programmer might ,wish to ensure that no time slicing takes
place between the start and end of a certain operation. In this case lend should be
avoided and conditional jumps on false (Ide 0); ej) used instead of j. This puts
an extra zero into the top of the stack which can be removed by an add instruction
at the destination of the jump.

The processes that are ready to run, and w~ich are time sliced if they are at
low priority, are held internally in two lists, one for each priority. The next process
to run is held at the head of the list. The startp instruction can be used to add
a new process to the correct list and endp used to terminate the current process.
The endp instruction is slightly more complicated as it is passed the identity of
the process to run next, and this successor process is. not actually started until a
specified number of processes have all executed endp. The effect is that one process
can create a number of child parallel processes, perform some work and then execute
endp itself. When all of the child processes have completed, the parent process is
reactivated.

A process can ask to suspend itself using the stopp instruction. It remains in a
state of suspended animation until another process executes a runp instruction on
it. The value passed to runp specifies the process identity and also whether it is to
be restarted at high or low priority. A process can determine its own priority using
the lpri instruction.
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3.8 Channels

Communication between transputer processes is handled by what are called 'chan­
nels'. Data may be sent down a channel by one process and received by another
process waiting on that channel. If there is no process waiting to receive the data
from the channel, then the sender waits. The concept of the channel is central to
the philosophy of the transputer, because a channel is used to transmit information
not only between processes in the same processor but also between processes on
different processors. In each case the instructions used are the same, although in
the internal version the data are copied in memory, while in the external version
the data go out on one of the serial links. This means that a piece of compiled code
can be passed channels as arguments and the code need not distinguish between
internal and external cases.

A channel is controlled by a word in memory. This holds either a process identi­
fier which represents a process and its priority, or the most negative number Minlnt,
which cannot represent a process. Eight memory locations at the low end of the
address space are reserved as channel control words for the external channels con­
nected to the duplex serial links. Any other memory location may be used as an
internal channel control word, but it must first be initialized to the most negative
integer using the mint instruction.

Communication is achieved using the instructions in, out, outbyte and outword
(see Table 3.5). The out instruction takes a message pointer, a length and a channel
control word address. It transmits the information via the channel to a process
executing the in instruction. This states how many bytes are expected, from which
channel, and where the incoming buffer is located. The outbyte and outword
instructions can be used to transfer a single word or byte to a specified channel;
there are no similar input instructions.

Channel control words are initialized with Minlnt. The first process to be ready
to use the channel executes, say, an in instruction. This looks at the chan:qel
control word, notices that it is initialized and hence detects that this is the start of
the transaction. The location of the message buffer is saved at a negative offset on
the workspace stack. The value of the channel control word is then altered to the

Table 3.5 Channel communication and associated instructions

Code
OxOE
OxOF
Ox07

OxOB

Ox42
Ox12

Mnemonic
outbyte
outward'
in

out

mint
resetch

No.. of cycles
23
23
2w+18
20
2w+20
20
1
3

Description
output byte
output word
input message - proceeds
- communication waits
output message - proceeds
- communication waits
load A with Minlnt
reset channel

The code shown is the operand required by the apr function which executes the instruction.
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current process identifier and the current process is descheduled.
When the second process executes the other half of the transaction the out in­

struction will detect that the channel has another process waiting on it. It retrieves
the receive message buffer saved in the workspace of the waiting process and copies
the number of bytes specified in the out to perform the data transfer. It then
resets the channel control word back to Minlnt to mark it empty and reschedules
the waiting process.

If the processes happened to execute in the other order then the procedure would
be similar. The out instruction would save the output buffer, set the channel control
word to the current process and deschedule the process. The in instruction would
then actually perform the copy, using the argument specified to in to determine
the length of the transfer.

From this description it will be clear that messages sent down channels must
be received using the same length in as was used with the out. Similarly, an in
specifying a message buffer of I-byte or 1 word must be used to receive data sent
with outbyte and outward. It is not possible to receive, say, 5 bytes sent as a 4­
byte outward and a I-byte outbyte. This is because the number of bytes actually
transferred would depend on which process executed its input or output instruction
last, and hence whether the number of bytes to be transferred was taken from the
in or the out instruction.

External channels are implemented using a DMA transfer down the link. The
process starting the transfer is descheduled until the transfer has completed. When
the receiving process in the other transputer executes the other half of the transac­
tion, that process too is descheduled while the data is handshaked over the links.
When both processors have written and read the number of bytes specified to the
in and out instructions, each process involved is rescheduled. This means that
it is in fact possible to send a message down a link using several out instructions
and receive it with a single in instruction. Using this aspect of the transfer would
mean that a particular program would need to be aware of the type of channel in
use. The instruction set has been carefully designed so that this is not normally
necessary.

Some care needs to be taken when exchanging messages down links. If the
message is a single transfer then there is no problem, but the message must be of
fixed length so that both processes know how many bytes are to be written and
read. More commonly, variable length messages would be required, and in this
case the message could have a fixed length header containing the length of the
following variable length data section. Again, there is no problem if there is only
one process performing output. on a particular channel, as the header will always
be sent, followed by the data section.

Problems can start to occur if more than one process is allowed to output a
message, as can happen when different processes are attempting to print debugging
information, for example. In this case the first process can output a header, and
then become descheduled. A second process might then run which also starts to
output a header, but sends this header when the receiving process is expecting the
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variable length data section of the first message. The result is a pair of garbled
messages.

There are two solutions to this problem. The first is always to have a sender
process to which messages are sent; only this process is allowed to perform output
down the link. This mechanism works reasonably well but the message may have to
be copied twice unless the sender process is allowed read access to any data held in
memory. This is of course always physically the case, but in many software systems
internal message passing by copying rather than by reference is preferable because
the reference mechanism does not work between different processors.

The second solution is to make use of a semaphore flag, which is used to guard
the use of the link. If a process wishes to send a message it sets the flag, which is
inspected by other processes wishing to use the link. The second process can either
go to sleep for a while, or it can add its message to a queue that is handled by the
first process just before the semaphore is unset.

Channels can be reset using the resetch instruction. This is useful when com­
munication between two processors has failed for some reason and the channel is
to be brought back into use again. The result of resetch is the value stored in
the channel control word. If this is a process identifier then it is possible to restart
the process waiting on the channel using the runp instruction. It would also be
necessary in this case to ensure that the process was informed that it had been
rescheduled in this way and that the data transfer had not taken place as expected.

3.9 Timer

Like many microprocessors intended for embedded applications the transputer con­
tains two internal timers. One is associated with high-priority processes and has a
'tick' every microsecond. The other is associated with low-priority processes and
has a 'tick' every 64 Jlsec. The high-priority clock is used for, among other things,
the time slicing between low-priority processes. Every 1024 ticks the current pro­
cess is examined. If it is the same process as was running at the last inspection
1024 Jlsec ago then it is descheduled at the next j or lend instruction as described
above. This means that low-priority process~s are time sliced at irregular intervals
greater than 1024 J-lsec.

The current value of the clock can be read using the ldtimer instruction. The
actual clock read depends on the priority of the process doing the reading. The
value is returned in ticks, so the process priority needs to be taken into account
when comparing the number of ticks with real time. The clock ticks are also only
held as a single 32-bit register (or 16-bit) and so wrap around after a certain amount
of time.

A process may be put to sleep for a specific amount of time by specifying a timer
input using the instruction tin. This instruction causes the process to become
descheduled until the specified time has passed. The process will become ready to
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run again after the time has elapsed; it may not actually run until a little after as
it may have to wait for the current process to be time sliced~ The following code
fragment will cause a low-priority process to be delayed for a second or a little
more. Note that 15,625 is the number of 64 J-lsec ticks in one second.

Idtimer
Ide 15625
sum
tin

The value returned from Idtimer is unsigned, so it is important to use the unsigned
operators sum and diff rather than add and sub. Such a process could be used, for
example, to maintain a real time clock by adding to a seconds, minutes and hours
field when it was reawakened.

3.10 Alternation

The section above described the simple use of the clock. A more common use of
a timer is to time out events that might fail, especially timing out messages sent
via external channels to other transputers and which may fail to get there. In this
case we want to be able to say that a process is to wait until either the message
completes or a certain timeout period has expired. Thus the transputer instruction
set supports alternation, the ability to choose which of a number of processes to
schedule, according to some condition occurring outside the processes: a channel
input becoming ready, a timer input or an Event input.

The basic design of the alternate implementation is as follows (see Table 3.6).
The alt instruction is executed first. This is then followed by a number of enable
instructions that identify the different alternative events to be waited for. The
altwt instruction is then executed and this causes the process to be descheduled
until one or more of the alternative events occurs. A matching set of disable in­
structions are then executed, one for each event that was enabled. The order in

Table 3.6 Alternation instructions

Code
Ox43
Ox44

Ox45
Ox49
Ox30
Ox48

Ox2F

Mnemonic
alt
altwt

altend
enbs
diss
enbc

disc

No. of cycles
2
5
17
4
3
4
7
5
8

Description
alt start
alt wait - channel ready
alt wait - channel not ready
alt end
enable skip
disable skip
enable channel - ready
enable channel - not ready
disable channel
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which the disable instructions are executed is used to specify a priority of items
where more than one event has occurred. The result from the disable indicates
whether that event actually happened. Finally an altend instruction is executed,
which causes control to be transferred to the correct code to handle the event that
happened.

The enable instructions specifying alternatives are used to construct language
elements called 'guards.' A guard has a boolean part, which is constructed as
normal, and then either a check for a channel, a timer or nothing at all. Each of
these three possibilities has its own instruction - enbc, enbt and enbs respectively.
They all take the boolean part of the guard in A and the channel or timeout in B.
Unless the boolean is true the enable instruction has no effect.

After the altwt instruction has been executed a matching set of disable instruc­
tions from the set disc, dist and diss must be executed. These must be passed
the same booleans and values as their enable counterparts; they must also be passed
the offset of an address which contains the code used to handle that alternative.
Once the altend instruction is executed control passes to this address. If the al­
ternative involved waiting for a channel then the first action should be to read that
channel. The disable instructions themselves also return TRUE; this can be used to
distinguish different alternatives where the same code address is used for each.

The following example would wait for one of two channels, and read the data
from the first: /

2
1
L1-LA

alt
ldl 1
Ide 1
enbc
ldl 2
Ide 1
enbc
altwt
ldl 1
Ide 1
Ide LO-LA
disc
ldl
Ide
Ide
disc

LA: altend
- Case channel
LO:
- Case channel
L1:

- start alt
- load channel address
- load boolean true
- enable channel 0
- load channel address
- load boolean true
- enable channel 1
- wait for one event
- load channel address
- load boolean true
- offset of LO from altend
- disable channel 0
- load channel address
- load boolean true
- offset of L1 from altend
- disable channel 1

o ready

1 ready

If any of the alternatives include waiting for the timer via an enbt or dist, then
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the alt and altwt instructions must be replaced by talt and taltwt.

3.11 Error handling

Unlike many other microprocessors the transputer supports only one type of error in
~its integer processor. The value of an internal flag called ErrorFlag is normally set
to zero; under certain conditions this may be changed to one. 'Unfortunately these
conditions do not include attempting to access a non-existent memory location, or
accessing a word from an address that is not a multiple of the number of bytes per
word. Both of these common errors are not detected at all.

The ErrorFlag can be set explicitly by using the seterr instruction (see Table
3.7). It can be cleared by the testerr instruction, which loads A with true if the
ErrorFlag was set. The state of the ErrorFlag is reflected by an output pin Error.
The pin can be connected to some external hardware, which can cause this state
to be detected by a host processor, or which can turn on an error lamp.

The status of the ErrorFlag can be checked with the testerr instruction; nor­
mally a sequence of operations to be checked would be enclosed by testerr in­
structions - the first to clear the flag and the second to read it. A suitable error
message could then be given if the ErrorFlag was set. The stoperr instruction can
be used instead of the final testerr; this stops the current process (as in stopp) if
the ErrorFlag is set.

Alternatively, the transputer can be placed in a mode where the processor is
brought to an immediate halt if ErrorFlag is set. This action is controlled by the
HaltOnErrorFlag, and instructions are provided to clear, set and test this.

The ErrorFlag is always set when arithmetic overflow occurs, or when the trans­
puter executes a specific error check instruction that fails. Arithmetic overflow can
occur on any of the following instructions:

adc add constant
add add
sub subtract

Table 3.7 Error-handling instructions

Code
Ox29
Ox10
Ox55
Ox57
Ox58
Ox59
Ox13
Ox4D

Mnemonic
testerr
seterr
stoperr
clrhalterr
sethalterr
testhalterr
csubO
ccnt1

Instruction
test ErrorFlagfalse and clear
set ErrorFlag
stop on error
clear HaltOnError
set HaltOnError
test HaltOnError
check subscript from 0
check count from 1
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mul multiply
div divide
rem remainder
ladd long add
lsub long subtraction
Idiv long divide
fmul fractional multiply

The error check instructions may be used to check that parameters passed to
various operations are legal. The csubO instruction sets ErrorFlag if B is greater
than A and can thus be used to check subscripts. The ccnt1 instruction is similar,
except that it checks that the value in B is greater than zero and less than or equal
to A.

Although the transputer normally deals with words, either 16 or 32 bits long,
support is provided to extend part words such as bytes to words and to extend
words to double words. These conversions are achieved by using the xword and
xdble instructions. Two matching instructions cword and edble are used to detect
whether a word can be represented in a part word, or whether a double can be
represented by a word. If the value cannot be represented in this way the ErrorFlag
is set.

3.12 The extended instruction set

The instructions detailed above have applied to all members of the transputer
family, be they 16- or 32-bit versions. However, the introduction of the T800
saw some extra functionality included. Although the majority of the extra T800
instructions refer to on-chip floating-point support described in a later section, the
T800 also had a number of extra general-purpose instructions added (see Table
3.8). This extended instruction set has been recently included in the T222, T225,
T400, T425, T801 and T805 variants.

The most elementary extra instruction is dup, which simply duplicates the top
of the stack, moving A to Band B to C. This useful instruction was, one assumes,
simply forgotten in the original design of the T414.

In addition to dup, another extra instruction wsubdb is provided to aid the
manipulation of double-word quantities. This behaves exactly like wsub except
that each item is assumed to be two words rather than one word long.

The next section of support provided in the later chips includes more instructions
to handle bit manipulation. These are useful in various graphics routines and also
in the computation of cyclic redundancy checks or CRCs. The in~tructionbitent
may be used to count the number of bits set to one in a word. It adds the total
number of bits set in A to the count in B, with the final result appearing in A. This
is useful in a loop counting the number of bits set in an array. The instructions
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Table 3.8 Extended instruction set

Code Mnemonic Instruction
Ox5A dup duplicate top of stack
Ox5B move2dinit initialize data for

two-dimensional block move
Ox5C move2dall two-dimensional block copy
Ox5D move2dnonzero two-dimensional block copy

non-zero bytes
Ox5E move2dzero two-dimensional block copy zero

bytes
Ox74 crcword calculate CRe on word
Ox75 crcbyte calculate eRe on byte
Ox76 bitcnt count bits set in word
Ox77 bitrevword reverse bits in word
Ox78 bitrevnbits reverse bottom n

bits of word
Ox81 wsubdb form double-word subscript

bitrevword and bitrevnbits are used to reverse either all or part of the bits in a
word.

Support for CRC calculation is provided via the crcword and crcbyte instruc­
tions, which are designed to be used in an iterative loop, once per word or byte in
the array whose CRC is to be calculated. The A register holds the word or byte
that is to be combined with the accumulated CRC held in B, using the generator
in C.

3.13 Graphics support

Extra instructions are also provided in later variants of the transputer for graphics
applications. These center on the concept of two-dimensional block moves. The
standard instruction set includes the move instruction, which copies a certain num­
ber of bytes in memory from one point to another. This can be thought of as
copying a single row of memory, while the two-dimensional copy can be viewed as
copying a rectangular area.

Consider the diagram in Figure 3.4. The set of bytes representing the rectangle
is actually stored in memory as three rows of ten consecutive bytes. In order to
describe this area, we must know the start address of the first row, the width of
each row and the number of rows to be copied. We can also refer to the number of
rows as the length of the rectangle. In addition we need to know the stride being
used, which is the number of bytes to be added to the address of the start of the
first row to get to the start of the second row. If the stride is equal to the width
then all the bytes are consecutive in memory.

It is clearly useful to be able to specify a stride greater than the width. Consider
a video screen in memory providing a display of 512 rows by 512 columns, with
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Start address

\--.----.---r-~~

~~:~I
.......'I(E-----Width-------i.~

~-------Stride-----------:l~

Figure 3.4 A rectangle in memory

each pixel being a single byte of video memory. We shall assume that the screen
memory is contiguous through the address space. The screen can be viewed as a
two-dimensional array, so that in C the top left pixel would be screen [0,0], the
top right pixel would be screen[0,511] and so on. Alternatively we could regard
the screen as a one-dimensional array; in this case array [511] would refer to the
top row, rightmost pixel while array [512] would refer to row 1, leftmost pixel.

Within this screen we wish to be able to copy a rectangle representing a window
from one place on the screen to another. In the following diagram we assume that
the window has its top left corner at (2,10) and is of width 100 pixels and height
50 pixels (Figure 3.5).

The parameters needed in this case to describe the window are as follows:

• The base address. This is the address of the first pixel in the window which is
at offset (row*stride)+eolumn from the start of the screen or &array+1034.

• The width of the rectangle, which in this case is 100.

• The length of the rectangle, which is 50 in our example.

• The stride, which is the distance from the start of one row to the start of the
next, or 512.

With this information we are rea9.y to use the two-dimensional copy in its sim­
plest form. We provide the description of the source rectangle, and need only to
supply the address of the destination. The instruction to perform the move is called
move2dall, but it requires more than three arguments., This problem is handled by
performing the instruction move2dinit before the actual move2dall, to preload the
first set of parameters. The instruction sequence would be ~f the following form:

Ide 512
dup
Ide 50
move2dinit

- load source stride
- load destination stride
- load length
- set up first parameters
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.......'lI(~-------512----------~~

~100~

512

Figure 3.5 A screen with a rectangular window

- Ptr to source
- load destination offset

- load source offset1034
arrayptr

Ide
ldl
bsub
Ide 411
ldl arrayptr
bsub - Ptr to destination
Ide 100 - load width
move2dall - perform the copy

The final move2dall will copy all the bytes in the rectangle to their new position,
in one instruction. This is extremely fast, and can be used to move rectangular
areas around within the video flyback time.

The two-dimensional copy can be used in many more ways than it might at first
appear. Note that in the code example above a dup instruction was used to set the
destination stride to the same as the source stride. In general this need not be the
case, and it is very useful to be able to make these values different. For example,
we may have wanted to copy the window off the screen into some area which was
not part of the video RAM, and hence not visible. In this case we would want to
represent the window in the most compact way possible, with rows of t~e window
laid end to end. We would perform the same instruction sequence but with the
destination stride set to equal the width of the rectangle. We could then r~place

the window on the screen with the source and destination strides reversed.
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The two-dimensional copy can also be used to clear a screen, by setting all the
bytes to a particular color. First we take a single byte of memory and set this to
the required value. Next we set up a two-dimensional copy, providing the address
of this byte as the starting point. We specify the width as one, as we have only a
single byte in our source.

We then specify the length of the source area as the number of pixels in our
destination; for example, the entire screen would require a value of 512 x 512. The
trick is to set the stride of the source area to zero, while setting the stride of the
destination area to one. The move2dall instruction will perform a row copy from
the source to the destination while counting down the value given as length. At the
end of each row, specified by the value for width, the source stride is added to the
source row start address and the destination stride added to the destination row
start address.

In this case the source stride is zero and the destination stride is one; thus the
single byte is copied into a large contiguous area ofmemory in one instruction.

The technique can be modified to clear a window on the screen. First, a single
byte is copied into the first row of the window using a single moved2all as described
above. A further two-dimensional copy is then set up which specifies this first row
as the source, and the start of the second row of the window as the destination. The
width is given as the width of the window, while the length is set to the number of
rows in the window less the one already done. The source stride is again set to zero,
while the destination stride is set to the stride for the screen, 512 in our example.

The move2dall instruction actually copies data from the source to the destina­
tion area. There are two further instructions, which behave in a slightly different
fashion. The move2dnonzero instruction will only copy bytes that are non-zero.
The bytes in the destination corresponding to zero bytes in the source are left un­
changed. This may be used to copy an outline onto a picture already present in
the destination.

The move2dzero copies only zero bytes to the destination. This can be used to
zero selectively certain parts of the destination according to a template provided
as source.

3.14 Floating-point support

The original T414 transputer had little support for floating point. A number of
instructions were provided in order to aid the implementation of floating-point
arithmetic in software, but there were no floating-point instructions implemented
in hardware. This is in common with most microprocessors, where floating-point
support is often added by means of an external coprocessor.

The T4 series processors provide the instruction unpacksn which turns an IEEE
format floating-point number into the constituent exponent and mantissa parts.
This operation is common to all the code to emulate floating point in software.
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Similarly the instructions roundsn, postnormsn and norm are used to normalize,
round and then pack the expanded exponent and mantissa back into IEEE format.

The final part of the T4 support package includes Idinf to load the IEEE repre­
sentation of infinity, and cflerr which sets the error flag if the A register contains
infinity or the IEEE representation of 'not a number'. Table 3.9 shows the T4
floating-point support instructions.

The T8 series provides a full implementation of IEEE-754 32-bit and 64-bit
floating-point arithmetic in hardware, and as a result it does not include the in­
structions described above. This is a nuisance as it makes it difficult to provide
floating-point code which works on either a T4 or a T8. Clearly, any floating-point
intensive code should be targeted for the T8, as the instructions for floating point
are extremely fast. This is because the floating-point unit is internal on the T8 se­
ries devices, and is not an external coprocessor, unlike many other microprocessor
systems.

The speed of a T8 is also enhanced by the asynchronous nature of the floating­
point unit, allowing integer operations to continue while the floating-point unit
is busy. This is of particular importance where an address must be calculated,
such as the address of an element in a multi-dimensional FORTRAN array. In
a code fragment such as A(I+J) = X *'1 the floating-point multiplication should
be set running as soon as possible. The floating-point operations use an extra
stack of registers called FA, FB and FC. Where possible, the values of X and Y
should be loaded in registers FA and FB, and then the floating-point multiply
instruction fpmul executed. This will return a result into FA, but while the floating­
point processor is running and not interacting with the integer registers, the integer
engine is available for work. The instructions to compute the address of A(I+J)
will execute in parallel with the floating point multiplication. The integer processor
and the floating-point processor resynchronize when the value of FA is stored to
memory.

Many of the extra T8 instructions use a standard instruction called fpentry,
which causes a specific floating-point instruction to be executed depending on the
value of A. These routines have mnemonics which start fpu, so that, for example,
fpuabs replaces register FA with its absolute value. This is actually implemented
by performing the following two instructions:

Table 3.9 T4 floating-point support instructions

Code
Ox63
Ox6D
Ox6C

Ox71
Ox73

Mnemonic
unpacksn
roundsn
postnormsn

Idinf
cflerr

Description
unpack single-length number
round single-length floating-point number
post-normalize correction of
single-length floating-point number
load single-length infinity
set error flag if A value 'is either
floating-point infinity or
Not-a-Number in IEEE representation
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Ide fpuabs_value
fpentry

although some assemblers do this work automatically.
The instruction set additions for floating point are not described in any more

detail here, except to say that besides supporting floating-point arithmetic for single
and double precision numbers, complete with error checking where required, they
also provide hardware support for floating-point remainder and square root. These
last two operations are particularly unusual as they are implemented as a sequence
of instructions rather than a single opcode. The reason for this is that they are
likely to take a long time, and the designers of the transputer did not wish to
extend the potential interrupt latency period. Instead they provide a set of two or
three instructions to perform the single job, allowing interrupts to occur between
each instruction. Thus the code sequence to produce a single pr~cision square root,
rounded to the nearest represent~blevalue is as follows:

fpusqrtfirst\index{fpusqrtfirst}
fpusqrtstep\index{fpusqrtstep}
fpusqrtstep
fpusqrtlast\index{fpusqrtlast}

The instructions must be performed in this order, the fpusqrtstep instruction
being repeated, in order to compute the square root. Any other combination is
likely to crash the transputer.

The remainder calculation uses two instructions: fpremfirst which is executed
once, and fpremstep which is executed repeatedly until it returns the value 0 to
the A register. The code to compute a remainder is as follows:

fpremfirst
eqe 0
ej next

loop: fpremstep
ej loop

next:

The remainder instruction uses both the floating-point and integer evaluation
stacks, and cannot be overlapped with any integer processor instructions.

3.15 Debugging instructions

The T801 and more recent transputers include a set of instructions and a new
processor flag to simplify the problem of setting breakpoints in transputer code
(see Table 3.10). l;he problem arose from the fact that transputer instructions can
be as short as 1 byte, and thus could not be replaced by a multi-byte jump to some
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Table 3.10 Debugging instructions

Code
OxOO

OxB1

OxB2
OxB3
OxB4
Ox7A
Ox7B
Ox7C
Ox7D

Mnemonic
jmp 0

break

clrjObreak
setjObreak
testjObreak
timerdisableh
timerdisablel
timerenableh
timerenablel

Cycles
3
11
13
9
11
1
1
2
1
1
6
6

Description
jump 0, break not enabled
break enabled, high priority
break enabled, low priority
break, high priority
break, low priority
clear EnableJ0BreakFlag
set EnableJ0BreakFlag
test if EnableJ0BreakFlag
disable high-priority timer interrupt
disable low-priority timer interrupt.
enable high-priority timer interrupt
enable low-priority timer interrupt

debugging code. This is the procedure followed in conventional microprocessors,
such as the 68000. As all the I-byte instructions had already been allocated, INMOS
had to give another meaning to an already existing instruction, and j 0, opcode
OxOO was chosen. This is very seldom used, as it has no effect on the flow of
control, but does represent a potential descheduling point. An extra processor flag
EnableJOBreakFlag was added to control the interpretation of j O. When this flag
is not set, j 0 has its usual interpretation. However, if EnableJOBreakFlag is set,
then execution of the j 0 instruction results in a context switch. The values of I
and W of the executing process are swapped with values taken from fixed locations
in memory just above MemStart. The address map is shown in Figure 3.6.

A debugger can examine an executing applications program by loading the values
of I and Wof the breakpoint-handling process into low memory, and then replacing
the appropriate instruction byte in the applications code by OxOO and setting the
EnableJOBreakFlag. When the j 0 instruction is executed, control will pass to
the debugging process. The debugger may then return control to the application
program by executing either a break or a j 0 instruction.

The related instructions that disable the timer queue~ can be used to prevent
timer events from interfering with debugging. If the queues are halted, no process
waiting on the timers will be scheduled until the queues are enabled again. Processes

MemStart

IPtr (low priority)

WPtr (low priority)

IPtr (high priority)

... WPtr (high priority),.

8000007C

80000078

80000074

80000070

Figure 3.6 Breakpoint instruction memory locations
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are not lost, but their execution may be delayed.
The ability to disable the timer queues has also proved useful in other contexts.

The move instruction can execute for a long time when moving a large amount
of data. Thus it has been made interruptible so that a low-priority move cannot
unreasonably delay the running of a high-priority process. However, when the
move instruction restarts it may repeat the copying of the word during which it
was interrupted. Normally this is not a problem, but problems can occur if the
instruction is being used to transfer data into a memory-mapped hardware fifo
buffer, which can appear to receive extra data bytes. Halting the timer queues
removes one potential source of interruption to the move instruction.

3.16 Processor identification

We have seen that many instructions behave identically on different processors of
the transputer family. However, it would be very useful to be able to determine
the type of processor on which code was executing, and whether or not it had a
floating-point unit. The more recent transputer processors have the Iddevid, load
device identity, instruction to fulfil this need.

The Iddevid instruction loads the A register with a small integer whose value
depends on the processor type. The value loaded will be 0-9 on the T425, 10-19
on the T805, 20-29 on the T801, and 40-49 on the T225. On the T212, M212,
T222 and T414 the instruction has no effect, on the T800 it sets B equal to C and
leaves A undefined. We can write a simple instruction sequence that will identify
the processor. First, initialize the evaluation stack so that A == -3, B == -2 and
C == -1, then execute the Iddevid instruction.

Ide -1
Ide -2
Ide -3
Iddevid

We can then identify the processor from the new contents of the evaluation stack.
On recent processors the device identity will have been loaded into A, the value of
A pushed down into B, and the value of B pushed into C. The stack will be:

A device ID, positive integer
B -3
C -2
On the T800 the value of A will be undefined; it might happen to be a positive
integer in the range of one of the device identities, but the value of B will be the
same as the old value of C. The evaluation stack will contain:
A undefined
B -1
C -1
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On the T212, M212, T222 and T414 processors the evaluation stack will not be
altered and will contain:

A -3
B -2
C -1

The key to which group our processor belongs is in register B. If this contains
-3 then the Iddevid instruction has executed successfully and the processor ID is
in A. If B contains -1 then the processor is a T800, if -2 then the processor is one
of the old group on which the Iddevid instruction has no effect.

Tables 3.11 and 3.12 show the instructions supported by the current range of
16-bit and 32-bit processors.

Table 3.11 Which processor has which instructions: 16-bit

T212 T222 T225 M212
Extended

Table 3.8 n y y n
Debugging

Table 3.10 n n y n
FP support

Table 3.9 n n n n
Hardware FPU

instructions n n n n

fmul instruction n n n n

Notes: The instruction set of the M212 is identical with that of the T222.

Table 3.12 Which processor has which instructions: 32-bit

T400 T414 T425 T800 T801 T805
Extended

Table 3.8 y n y y y y
Debugging

Table 3.10 y n y n y y
FP support

Table 3.9 y y y n n n
Hardware FPU

instructions n n n y y y

fmul instruction y y y y y y



Chapter 4

Low-Level Programming

This chapter describes some of the issues involved with programming a transputer
at the lowest level. For many readers, the detailed operations described here will
be performed by a software development environment. Other information will only
be of essential interest to those writing a compiler or linker for the device.

4.1 Linking code

Code for the transputer may be produced from an assembler, or more likely from
a high-level language compiler. In either case it is often necessary to combine
the program with library routines, either provided within the software system or
written locally.

The normal technique used to handle this is through the use of external variables.
In a C program we may wish tq refer to the routine printf. This is ~pecified as being
an external value, and until the program is linked with the C runtime system, the
actual location of the routine printf is unknown. The linker satisfies the reference
and patches the code to refer to the correct place.

In other microprocessors this is reasonably simple to achieve. The compiler
can detect the use of an external reference, and simply generates a JSR or similar
instruction followed by four empty bytes. This hole in the code is where the linker
will patch the eventual location. of the routine printf. Four bytes are sufficient
for a 32-bit processor; although some processors have 16-bit variants of the JSR
instruction these are rarely used by compilers as this would restrict the resulting
program to be no more than 64 Kbytes long. The mechanism is slightly wasteful of
space on many computer syst.ems because the most significant byte following the
JSR will always be zero unless more than 24 Mbytes of memory are being used.
This is normally accepted as there are very rarely any 24-bit variants of JSR.

The situation on the transputer is rather different. An external routine will
either be called via the call instruction, where the offset to call is part of the

47
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instruction itself; or else it will be used via the geall instruction where the offset
is loaded as a constant using Ide.

In the last chapter we discussed the variable length representation of numbers,
and the way in which pfix is used to build up a number larger than a nibble. This
can cause a difficulty where externals are to be used, as the amount of space to be
left for the value of the external is unknown. In order to allow for arbitrary sized
programs, 7 bytes would need to be left for each external, thus allowing the largest
possible number to be patched in by the linker. Alternatively some limit of, say, 5
bytes must be chosen, thus creating a limit on the maximum size of program.

This problem also appears within the implementation of an assembler or com­
piler. Consider loading an address into A. The Ide instruction must be used to load
the offset of a label, which is then converted to an address by ldpi. The assembler
must know the offset of the label from the current program counter, and generate
the correct value. This is easy in the simple example below, where the address of
a string is being loaded:

Ide L1
ldpi

L1: .byte IIHello World"

In this case the assembler knows the length of ldpi, and hence knows the value
to be assigned for the offset of L1. But now consider a slightly more complicated
version as follows:

Ide L1
ldpi
Ide L2
ldpi

L1: .byte IIHello World"
L2: .byte "Again"

The problem here is that the assembler does not know the offset of L1 because there
is a further Ide between it and the label. The length of this second Ide is not yet
known, because the offset of L2 is not known yet.

This particular example may be resolved by working out the offset of L2 and
then handling the offset for L1, but this cannot be done in all cases. Consider the
slightly more general problem as follows:

L2: .byte "Again"
Ide L1
ldpi
eall _printf
Ide L2
ldpi

L1: .byte "Hello World"

Here the offset of L1 depends on the offset used in the eall instruction, which may
not be known until link time, and on the size of the second ide instruction. This
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in turn depends on the size of the first Ide instruction, which of course depends
on the offset of L1. This type of circular dependency is the general problem which
must be resolved.

The solution is reasonably simple but time consuming. A data structure repre­
senting the entire program is built in memory. Fixed length sections of code can
be held as binary, but any label must be kept as a pointer to the label and an
associated size. Initially all offsets are assumed to fit in one nibble, with no prefixes
needed. A pass over the program is made, altering all those that require a larger
offset to a suitable value. A further pass is then made, expanding those instructions
that do not now fit because the previous pass expanded instructions. This process
continues until no more changes need to be made.

This algorithm is the only one that is guaranteed to converge. The alternative,
which entails shrinking code, has the advantage that iterations can be terminated
at any point and you are left with a working, but non-optimal sized program.
Unfortunately the algorithm can become caught and fail to converge.

This process can take a long time. A program of about 560 Kbytes needs about
300 passes before it converges. The process can be speeded up considerably by
assuming an initial size of 3 bytes, and only expanding those instructions that are
longer than this. However, the full optimization process is worthwhile for a finished
program, as it removes about 10 percent of the program code; this 10 percent
normally consists of wasted pfix instructions within crucial inner loops.

It is also apparent from this discussion that it is useful to perform this code size
optimization within the linker, so that external variables do not lead to less than
optimal programs. It is not vital that this is done, as externals are used less than
other labels, but it does save some wasted code. In our experience it has been
convenient to combine the function of assembler and linker into a single program.

4.2 Code generation issues

There are a number of differences between a transputer and other microprocessors
that make life difficult for those charged with implementing high-level languages.

The biggest problem in designing a code generator for the transputer is the
absence of any static data area. Normally a language requires two types of variable,
commonly called local data and static data. In a language such as C, local variables
are those declared within procedures and held on the stack; static variables are
either called global or static in C and they persist beyond the procedure call.

The W register acts as a stack pointer, and hence local variables are stored at
offsets from W. The Idl and stl instructions are used to refer to these variables,
and the only design decision is whether to alter W whenever new variables come
into scope, or whether to alter Wonce for each procedure and thus possibly waste
stack space for the sake of less code.
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Low memory Static data

Ox80004000

Spare memory

Figure 4.1 Allocation of static data area below program code at Ox80004000

Accessing the static data area is more difficult. One solution is to insert references
in the code to specific areas of memory. The actual memory address is determined
by a linker which patches the code to refer to absolute memory. A loader ensures
that these fixed memory locations are allocated and initialized correctly. Given this
model, static data might be allocated starting at address Ox80004000, as shown in
Figure 4.1. Thus a code fragment to access a static value held at offset Oxl0 from
the static base would be as follows:

Ide Ox80004010
Idnl 0

This mechanism has the slight problem that the code for loading a large constant
such as this is rather long, although sometimes better code can be generated by
using mint followed by an ade. However, the II!ain problem with this mechanism
is that only one program can be loaded at a time, as the linker has the static base
address built into it.

The standard solution for static data has been to use relocatable code. In this
case the loader patches the code to refer to the correct offset and also adds relocation
information to the code module. When the loader loads the program it allocates
memory for the code and also for the static data. As it loads the program it uses
the relocation information to patch the code once more to ensure that the absolute
references to static data refer to the correct place in memory (Figure 4.2). There are
also problems with this mechanism. First, the compiler must leave the maximum
sized slots in the code for the loader to patch, as the value of the static pointer will
not be known until load time.

Secondly, the code produced is not position-independent. Once the code has
been loaded it cannot be moved. It is sometimes useful to be able to shuffle code
segments in memory to make more space and this requires position-independent
code. More importantly, it is often very useful to be able to download a copy of a
program down a link into another transputer. In order to be able to do this using
relocatable code the relocation information would need to be stored and downloaded
as well.

ILow memory 0 Program code I Static data I ...
Figure 4.2 Allocation of static data area above program code
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Program B

Figure 4.3 Allocation of static data areas and shared library for two programs

The final problem with relocatable code is that it is not possible to share it. If
a transputer is running two programs, both written in C, they will both need to
use the C runtime library. In the model described above each program will have a
copy of the library and will relocate references to routines such as printf to the
two different copies, even though the code will be the same.

One solution to this problem is to pass a static data pointer to every routine
called. This means that for each routine the first parameter is always the static
data pointer. An access to a static data item offset by p words from the static data
pointer will require code of the form:

load static data pointer
load data offset by p words from static
data pointer

This has the disadvantage that an extra parameter must be passed to all routines.
The advantages are that the code to access static data is reasonably compact, and
it is position-independent. If the values of the static data pointer for two programs
are the same, then they will share both code and data.

Although it is nearly always useful to share code, it is not usually useful to
share data. A possible adaptation to this scheme is to arrange that the static data
pointer points to an area of memory private to each program. Within this region
are allocated static variables, while shared libraries are represented by pointers to
the actual code (Figure 4.3). Two programs may have different static data pointers,
pointing to two static data areas. Within each data area are pointers to the same
shared code segments.

There is one further code generation issue concerned with making most efficient
use of the stack. You will recall that there are two instructions Idl and stl used
to access values from the stack, and that these are single byte instructions for stack
offsets 0-15. Stack offsets in the range 16-255 require a single pf i;x: instruction,
making 2 bytes in total. Larger stack offsets require more pfix instructions.

It is clearly best to use the small offsets as much as possible, both to reduce the
code size and to speed up execution. Consider the following C program fragment:
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H_BUf_ferpo.____
W W+1 W+21

Figure.4.4 Local data access

foo()
{

int a;
char buffer[80];
int b;

}

At first thought a compiler might allocate stack as in Figure 4.4. In this example,
we need to use a pfix and then a Idl to access the value of a, which we will almost
certainly need more often than every location in the array buffer. There are two
major ways to achieve better code. The first is simply to sort the variables so that
those used more often are closer to the bot.tom of the stack, and hence need fewer
(or no) pfix instructions. This is often a useful thing to do, but it makes debugging
a failed program that much more difficult because only the compiler knows where
it has put things.

The second method is to use two distinct stacks for scalar values and for vectors
such as C arrays and structures. In this case the stack might look like Figure 4.5.

Here we have kept a vector stack pointer VB as well as the normal stack pointer
W. The VB pointer is used to implement a rising stack based at the end of the scalar
stack. This arrangement is convenient because in~reasing the stack size increases
the space available for both scalar and vector stacks, and because VB can also then
be used to check for stack overflow conditions.

The disadvantage with using a vector ·stack is that the value of VB must be
maintained somewhere, and access to vectors is more expensive than keeping them
on the W stack. The value of VB may be held as a static variable, in which case
it must be incremented when a routine is entered and decremented when it is left.
Alternatively the value of VB can be passed up the stack, being suitably incremented
where vectors are required. This approach has the advantage that 'when a routine
exits, the VB is automatically restored to its previous value.

I Buffer tSpare stackl~ ···
VS W W+1 W+2

Figure 4.5 Local data access with vector stack pointer
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vs

Figure 4.6 Stack frame when called routine does not use any vector stack space

A very useful code generation technique involves combining the static data
pointer SDP and the vector stack pointer VS which are then both passed up the
stack during each routine call. The compiler passes a pointer to a two-word block
of memory up the stack which contains both SDP and VS. In the common case
where VS need not be altered, this pointer is passed right through each routine. If
some vector stack is required, a new two-word block is allocated on the stack and
initialized with SDP and the altered value of VS. When the routine exits, the old
block containing SDP and the original VS is used.

Thus, in a routine that did not use any vectors the stack would look as in Figure
4.~. The value P is passed as the first argument to the "routine, and is stored by
the call instruction just below the saved program counter I'. P itself refers to a
two-word memory block in a previous stack frame which contains SDP and the
current VS.

The stack for a routine that did use some vector stack space would look like
Figure 4.7. Here the value of P passed by the previous routine is used only during
the construction of the new two-word parameter block; SDP is copied directly and
the new VS created by adding the size of the extra vector stack required to the old
VS.

Buffer Spare stack b a SOP P

vs WW+1W+2

Figure 4.7 Stack frame when called routine uses vector stack space

4.3 Bootstrapping

When a transputer is reset it behaves in one of two ways, depending on the value of
a pin prosaically entitled BootFromROM. If this pin is held high, then the transputer
assumes that there is some ROM at the far end of its memory space and attempts
to execute the instruction held in the top 2 bytes of the memory. If the pin is held
low, then the transputer is to be booted from its links.
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While a transputer is waiting to be booted from its links it behaves in a useful
fashion familiar to those readers who have ever programmed in BASIC. If any
link receives a byte of value 1, then the transputer awaits a further word. This is
assumed to be a memory address at which the transputer then 'peeks'; the link
then outputs a word which represents the contents of that memory location. In
the same way a header byte of zero is used to indicate a 'poke' message; a word
of address is sent down the link followed by the word of data which is then stored
there.

If a value greater than one is sent as that first header byte, then the transputer
reads that many bytes into its internal RAM. It then starts executing the code so
loaded.

No matter how the initial bootstrap program is loaded into the transputer, once
it starts running there are various operations it has to perform. The eventual aim of
the bootstrap is either to start some ROM application or to load a larger program
into the processor, either from the link that sent the bootstrap program or from a
fixed link. Before it can do this various parts of the transputer must be initialized.

The first stage of initialization involves setting the scheduling queues to con­
sistent values; special instructions are provided to set the' high- and low-priority
pointers and the timer queues. Then both the timers must be started and the
ErrorFlag and HaltOnErrorFlag cleared.

The transputer comes up in this state irrespective of whether the chip was being
simply reset (by pulsing the Reset pin), or whether it was being analyzed (by
holding Analyse while pulsing Reset). However, the T805 and T425 transputers
will clear ErrorFlag and HaltOnError if the transputer is reset without Analyse
being asserted. Whether or not Analyse was asserted can be determined by the
bootstrap process executing the testpranal instruction.

After a normal reset the bootstrap should initialize the bottom nine words of
memory corresponding to the four links and the event channel. It should then
continue to perform any external hardware operations required, such as writing
to all memory locations to enable parity error detection. It should then jump to
the ROM application or input the rest of the program from one of the links. An
example bootstrap is given below.

testerr
clrhalterr
mint
sthf
mint
stlf
mint
mint
stnl 9
mint
mint

clear ErrorFlag
clear HaltOnError
load value
initialize the high-priority queue
load value
initialize the low-priority queue
load value
load address
initialize timer queue 0
load value
load address



initialize timer queue 1

get loop count
load address
point to link word
reset the channel
point to loop control block
load loop extent
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stnl 10
Ide 0
sttimer zero timer

Prepare to initialize channels
ajw 2 provide two extra words of workspace
Ide 0 load zero
stl 0 initialize loop variable
Ide ·9 load 9
stl 1 loop limit

Loop to initialize channels
loop1: Idl 0

mint
wsub
resetch
Idlp 0
Ide loop2-1oop1
lend

loop2: loop

4.4 Debugging

As described earlier, the transputer may be analyzed rather than reset. This is a
mechanism introduced by the designers of the transputer to enable a programmer
to find out what has happened once a transputer has crashed. This provides some
useful information which can be used by post-mortem debuggers.

If the processor was being analyzed, then the bootstrap would normally execute
the instructions saveh and savel. These save the current values of the high and low
scheduling queues' front and back pointers for later inspection. In addition some
of the values that the registers had when the analyze occurred are made available
to the bootstrap when it starts; the A register holds the old instruction pointer I
and B holds the old workspace pointer W. Various internal lists are not reset and
can be examined, as can the previous values of ErrorFlag and HaltOnErrorFlag.

The low end of memory contains some fixed locations which may be used by
a post-mortem debugger. It is often useful to inspect some of these low memory
locations after a transputer has crashed. In particular a debugger should look at
the locations used to save the current state of a low-priority process when it is
interrupted by a high-priority one. This will represent the state of the system when
the last high-priority process ran, and is, particularly useful when the program has
jumped somewhere at random, leaving the previous I and W pointers invalid.

The low memory of a 32-bit transputer has the following structur~:
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Address

Ox80000000
Ox80000004
Ox80000008
Ox8000000C
Ox80000010
Ox80000014
Ox80000018
Ox8000001C
Ox80000020
Ox80000024
Ox80000028
Ox8000002C
Ox80000030
Ox80000034
Ox80000038
Ox8000003C
Ox80000040
Ox80000044
Ox80000048

Description

link 0 output
link 1 output
link 2 output
link 3 output
link 0 input
link 1 input
link 2 input
link 3 input
event input
high-priority timer queue
low-priority timer queue
W save area
I save area
A save area
B save area
C save area
status save area
E save area
start of free memory (T414)

At this point, on the T414, memory may be used by the user. On the T800 the
following extra locations are used to store information when performing a block
copy:

Address

Ox80000048
Ox80000070

Description

two-dimensional block move save area
start of free memory (T800)

In general the information provided after a transputer crash is often of little use. In
a language such as C it is very easy to reference non-existent memory accidentally,
or to jump to data rather than code. In the first case some value i~ returned,
which is only seen to be garbage much later in the program. In fact it is often
highly beneficial to have some external control registers, or video display RAM,
decoded to appear at location OxOOOOOOOO. This at least gives some indication
that a program is accessing through a null pointer, which is a common error.

In the second case the transputer just performs something, rather than providing
some sort of 'illegal instruction' error. There is little that can be done in this case.

Although a post-mortem debugger is often useful, programmers often need to
have a more complex debugger, showing what led to a problem rather than the
aftermath. The hardware of the early transputers provides very little help here,
and the best mechanism is either a full interactive debugger or some sort of trace
vector.
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A trace vector is an area of memory reserved for error diagnostics. A call to
a trace () routine will store the current value of the instruction pointer I, along
with any parameters passed to the routine, into the trace vector. The post-mortem
debugger can then interrogate this trace vector to display the history of the last
few calls made to trace () before the system crashed.

The trace vector mechanism is useful in parallel systems, where it is often difficult
to arrange for even a simple print statement to arrive at the processor connected to
a terminal before the system crashes. In many cases the very action of performing
a print perturbs the system so that the bug no longer occurs, or manifests itself in
some other fashion.

A fully interactive debugger is difficult to implement on the standard transputers,
as it is not possible to insert a breakpoint instruction. A debugger will normally
insert a breakpoint into a section of code by replacing the original code with some
call to the debugger. When the breakpoint is to be passed, the original code is
either interpreted or the original code replaced and executed.

The problem with this approach is that the breakpoint value to be inserted must
be as small as the shortest instruction. Consider the case when the code contains a
jump around the original instruction. If the breakpoint instruction were longer than
the instruction it replaces, then the jump would encounter half of the breakpoint
instruction. Consider setting a breakpoint on the adc instruction of the following
code fragment:

cj loop!
adc 4

loop!: stl 5

Unless the breakpoint instruction were a single byte, the same size as the adc 4,
then the stl 5 would be corrupted. If the conditional jump were taken, then this
corrupted instruction would be executed.

Normally, the only way in which a debugger can be called is by inserting a jump
or call into the code, both of which are longer than a single byte and hence prone
to the problem. This problem has been addressed in the more recent versions of
the transputer, where a single byte instruction has been taken to implement a
breakpoint instruction. The code chosen was previously that used for j 0, which
is of course meaningless.

This is of no use in debugging the earlier transputers. Here two alternatives
exist. The first is to ensure that sufficient gaps are left in the code, possibly before
those code segments that correspond to a line of original source, and only to place
breakpoint jumps in there. This is useful, but makes it difficult to step through
code as the debugger must be able to analyze the generated code to determine the
correct places where the breakpoint jumps may be inserted.

The second alternative is to cause a compiler to generate code which calls a
debugging library. This library either returns immediately, or calls the debugger.
This mechanism has two advantages. First, the library code may be shared by
several processes. Each process may opt to enable the debug library and hence call
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the debugger. Secondly, it is possible to debug a process in another processor by
ensuring that the debugging library sends messages via links from the test proces­
sor to the debugging one. However, the disadvantage of this approach is that the
program is slowed down by the inclusion of the calls to the debugger, even when the
debugging library causes an immediate return to the problem program. Addition­
ally, the program must be compiled' with the debugecalls inserted, thus changing
the nature of the code and possibly causing the problem to go away.

4.5 A disassembler

It was mentioned earlier that after a transputer has been reset the links may be used
to peek and poke memory. Given this mechanism, it is often useful to construct a
disassembler so that the original code can be viewed. The symmetric nature of the
transputer instruction set makes this reasonably easy to achieve, and the following
example provides the outline of a simple disassembler for the basic instruction set.

First we provide two arrays which contain the names of the transputer instruc­
tions. The first array covers the direct instructions corresponding to the nibble
values 0-15. Although the names pfix and nfix are provided here they are not
normally used as the disassembler decodes the numbers that these instructions are
used to encode. Similarly the opr instruction is not normally printed because the
disassembler will print the correct mnemonic for the extended instruction.

char *directfns [] = { 1* direct functions *1
"j " "ldlp " "pfix " "ldnl ",
"Ide " "ldnlp", "nfix " "ldl ",
"adc " "call " "cj " "ajw ", , , ,
"eqc " "stl " "stnl " "opr ", ,
};

In a similar fashion we provide another array which stores first the names of those
instructions represented by a single byte. This byte always has the first nibble set to
the code for opr (OxF) and hence these values represent the instructions identified
by a single byte in the range OxFO to OxFF.

char *oper[] = { 1* one-byte operations *1
"rev" , "lb" , "bsub", "endp",
"diff", "add", "gcall", "in",
"prod", "gt", "wsub", "out",
"sub", "startp", "outbyte", "outword",

The next set of instructions are much larger, and represent those that require 2
bytes. The first nibble of the first byte will always be the code for pfix (Ox2),
while the first nibble of the second byte will always be the code for opr (OxF). Thus
these names match the sequence of bytes Ox21FO to Ox21FF, Ox22FO to Ox22FF and
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so on up to Ox2AFC. Note that not all codes are used and these slots are identified by
a zero. These names are included in the same array since all these instructions are
decoded as opr with an argument, where the argument may be a number formed by
a pfix. The disassembler handles the pfix instruction before analyzing the opr.

1* two-byte operations *1
"seterr", 0, "resetch", "csubO",
0, "stopp", "ladd", "stlb",
"sthf", "norm", "ldiv", "ldpi",
"stlf", "xdble", "ldpri", "rem",
"ret", "lend", "ldtimer", 0,
0,0,0,0,
0, "testerr", "testpranl", "tin",
"div" , 0, "dist", "disc",
"diss", "Imul", "not", "xor",
"bent", "Ishr", "lshl", "lsum",
"Isub", "runp", "xword", "sb",
"gajw", "savel", "saveh", "wcnt",
"shr", "shl", "mint", "aIt",
"aItwt", "altend", "and", "enbt",
"enbc", "enbs", "move", "or",
"csngl", "ccnt!", "tal~", "ldiff" ,
"sthb", "taItwt", "sum", "mul" ,
"sttimer", "stoperr", "cword", "clrhalterr",
"sethalterr", "testhalterr", "dup","move2dinit",
"move2dall" , "move2dnonzero" , "move2dzero" , 0,
0, 0, 0, "unpacksn",
0, 0, 0, 0,
0, 0, 0, 0,
"postnormsn", "roundsn"", 0, 0,
0, "Idinf", "fmul", "cflerr",
"crcword", "crcbyte", "bitcnt" ,"bitrevword",
"bitrevnbits", 0, 0, 0,
0, 0, 0, 0,
0, "wsubdb", "fpIdnIdbi" , "fpchkerr",
"fpstnIdb", 0, "fpldnlsni" , "fpadd",
"fpstnlsn", "fpsub", "fpIdnldb", "fpmul",
"fpdiv", 0, "fpIdnlsn", "fpremfirst",
"fpremstep","fpnan","fpordered","fpnotfinite",
"fpgt", "fpeq", "fpi32tor32", 0,
"fpi32tor64", 0, "fpb32tor64", 0,
"fptesterr","fprtoi32", "fpstnli32", "fpIdzerosn" ,
"fpIdzerodb", "fpint", 0, "fpdup",
"fprev", 0, "fpIdnladddb" , 0,
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"fpldnlmuldb", 0, "fpldnladdsn", "fpentry",
"fpldnlmulsn" , 0, 0, °
};

Other floating-point instructions are executed by loading register A with a con­
stant value and then calling fpentry; although this is normally represented by
the sequence ldc n; fpentry, no attempt is made here to display the extended
flo~ting-pointoperation so identified.

The codes for pf ix, nf ix and opr are identified as these are handled specially.

#define f_pfix
#define f_nfix
#define f_opr

Ox2
Ox6
Oxf

/* function code */
/* operand */

The following declarations are used to define space for the function part of an in­
struction, the instruction operand and a buffer where the instruction being handled
is kept. The definition of a routine gbyte () is also found here. This routine is pro­
vided elsewhere and returns the next byte from the transputer memory. If th~s

program were running on a transputer then it would merely return the byte held
at location curpos.

int function;
int operand;
unsigned char ivec[8];

1* buffer for decoded instructions */
int curpos;

1* pointer to current memory location */
extern unsigned int gbyte()

1* routine to return next byte */

The code proper starts with the procedure decode(). This is used to decode a
~et of bytes into correct function and operand parts. It handles any pfix or nfix
instructions in the byte stream, call~ng gbyte () as many times as required. It also
copies the bytes involved in the instruction into the buffer ivec.

void decode()
{

int i = 0;
int a_byte;
operand = 0;

for (;;) {
a_byte = gbyte();
curpos++;
ivec[i++] = a_byte;
function = a_byte»4;
operand = (operand « 4) I (a_byte & Oxf);
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switch ( (int) function ) {
case f_nfix: operand = -operand;
case f_pfix: break;
default return;

}

}

}

The final routine performs the disassembly. First the decode () routine is called to
decompose the bytes. This also determines the length of the instruction. Most of
the code here is to ensure that subsequent instructions are printed aligned. The
current position in memory is printed, followed by up to 4 bytes of the instruction.

void disasm()
{

int loc = curpos;
int i, ilen;

decode();
ilen = curpos-loc;

printf("%81x: ",loc);

for ( i = 0 ; i < min«int)ilen,(int)4)
printf("%02x ",ivec[i]);

for ( ; i < 4 ; i++ ) printf(1I ");
printf(" ");

The next part of the disasm() routine inspects the value of the function. If this
identifies a direct instruction, then the name is printed, followed by the argument
given by the value of operand. Otherwise if the function is f _opr, then the value of
operand identifies the instruction and the name is printed from the second array.

if ( 0 <= function && function < f_opr )
printf("%s %81x ",directfns[function],operand);

elif (0 <= operand && operand <= Oxac && oper[operand] != 0)
printf("%s",oper[operand]);

else
printf("UNKNOWN %21x %8Ix",function,operand);

printf("\n");

The final part of this example prints in hexadecimal any remaining byte from a
particularly long sequence on the next line.

if( i < ilen ) {
printf(" : II);

for ( ; i < ilen ; i++ )
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printf("%02x ",ivec[i]);
printf("\n");

}

}



Chapter 5

Transputer Languages

The majority of transputers will probably end up in embedded computer systems,
where the transputers act as the controlling processors for a device, such as a laser
printer or a missile. These transputers will be completely under the control of the
applications program; it is very unlikely that they will be used with any underlying
operating system.

However, during the program development process it is necessary that some
operating system facilities be available, such as access to a disk filing system and
terminals, and that there should be facilities to run text editors, assemblers, high­
level language compilers and debuggers. The simplest way to provide these is to use
an existing machine as a host, running a server program that communicates with

Host
Display

.-~

Mouse

(~.\

Keyboard

Disk

Transputer
link

Transputer 104--- To transputer
network

Figure 5.1 Host-server model: the host is connected to the transputer network by a
single link

63
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the transputer system. This also has the advantage that compilers and debuggers
may be written to run on the transputer rather than being cross-compilers running
on the host. Thus all that requires to be ported to a new host is a relatively simple
server program. The server model also has the advantage that developers can
continue to use the facilities of a familiar operating system, such as its command
language and utility programs. Figure 5.1 shows a host-server model.

The first such system to be made available was the INMOS Transputer De­
velopment System or TDS. The TDS included a server, and an integrated occam
programming environment including a compiler, an unusual 'folding' editor, a linker
and a configurer. The server ran on a PC host, communicating with an INMOS
B004 board consisting of a T414-15 with 2 Mbytes of RAM interfaced by a link
adaptor to the PC bus. This product was provided with several versions of server
programs in Intel 8088 assembler and in C.

A successor to the TDS server is a more general-purpose server called the
'iserver'. This is also available with a number of standalone tools such as com­
pilers, editors, linkers and so on. The iserver will run on any computer system to
which a transputer link can be interfaced. The server supports a protocol down
the link which provides access to the screen, keyboard and files of the host. This
protocol is used by the various tools that run on the transputer. Whenever the
editor, for example, needs to read a file it calls a set of occam routines which send
a request to the server. The server locates the file by calling the host operating
system and sends it down the link to the editor. The editor then uses other occam
routines which interact with the server to display characters on the host's screen
and to read keyboard strokes.

The principal language provided with the TDS was occam, a high-level language
that was designed for, and with, the transputer. Many INMOS documents describe
it as the best possible language for programming the transputer, and for several
years it was the only language available.

The name occam is derived from William of Occam (or Ockam, c. 1270-1349),
an English scholar and philosopher. It was he who originated Occam's Razor, which
states in its most familiar form, 'Entities are not to be multiplied without reason'.
The maxim was never actually stated in this form by Occa~, but he did say, 'It is
vain to do with more what can be done with fewer'. An early variant, occam 1 or
'proto-occam', certainly lives up to this concept, although the latest version, occam
2, is much more complex.

Occam 2 provides most of the features that you would expect in a high-level
language. However, many programmers used to languages such as Pascal or C
will find occam unusual; there is no recursion, no structures or records except
in input and output, no dynamic memory allocation, and no user-defined types.
On the other hand, occam provides access to some of the transputer's facilities
in a very clear and simple fashion. In particular it supports multiple concurrent
processes, multiple processors, inter-process communications and the control of
process scheduling.

Although INMOS has been a very strong advocate of occam, many programmers
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have preferred to continue using the more traditional languages, such as FORTRAN
and C. This has been partially due to the difficulty that some programmers find in
working with occam and the TDS, but must mainly be the result of the very small
amount of existing occam software. For example, many large scientific packages
are available only in FORTRAN, and important packages such as the X Window
System are distributed only in C.

However, standard FORTRAN and C contaiIi little if any support for parallel
programming and this has had to be added, either by language extensions or in the
runtime library support. In particular, a compiler for a standalone transputer sys­
tem must support the server protocol, multi-tasking, internal and external channels,
timers, and the distribution of code over a network of transputers. Two main ways
of adding such features to conventional languages have found favor with software
developers:

• Using the language unchanged, but adding parallel programming support through
the runtime library.

• Altering the syntax of the language to add parallel programming constructs.

Below we describe occam in more detail and then go on to show how parallel fea­
tures have been added to a conventional language, using C as an example. However,
similar techniques have been used in FORTRAN and Pascal implementations.

5.1 Occam

As occam was designed, in parallel so to speak, with the transputer, the occam
model of computation is based on communicating processes (Hoare, 1985). Pro­
cesses have distinct memory spaces, but a mild degree of memory sharing is allowed
in that two or more concurrent processes may read the same area of memory. How­
ever, if any process can write to memory, then no concurrent process is allowed
to read that memory. Messages are passed between processes along channels, and
messages act to synchronize processes. A process sending a message, or a process
attempting to receive a message, will wait until the transaction is complete.

As well as explicit support for concurrent programming on a single transputer,
occam includes a configuration language that allows the user to compile and config­
ure a system that will run on a network of transputers. In this section we describe
the main features of occam 2 in outline. This is not intended to be a complete or
tutorial description of the language. Several excellent books on occam 2 now exist,
and we particularly recommend Jones and Goldsmith (1988).
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5.1.1 Processes

An occam program consists of one or more concurrently executing processes. Each
process performs a sequence of actions, and then terminates. Each action may
be an assignment, an input or an, output. An assignment changes the value of a
variable, an input receives a value from a channel, an output sends a value to a
channel.

If no input is available from the/channel, the process will wait. Similarly, if the
process at the other end of the channel is unable to receive the output, the send­
ing process will wait. Thus input and output provide both data transfer between
processes and synchronization of processes. Both the sending and receiving process
must be ready before the data transfer will take place.

Assignment process is shown in a familiar way by the :=operator:

variable := expression

Input is designated by the ? operator:

channel ? variable

and output by the ! operator:

channel ! expression

There are two special processes. The SKIP process starts to execute, does nothing
and then terminates. Thus it is equivalent to a NO-OP in assembly language pro­
gramming. The STOP process starts to execute, does nothing, but never terminates.
We will see how these special processes are used in the following sections.

5.1.2 Process sequences

Most conventional languages assume that statements, the 'lines of code', will be
executed one after another in sequence. However, in occam this is not necessarily
so, and the sequential nature of a process must be shown explicitly by the SEQ
construct: Thus in occam we might say:

INT a :
CHAN OF INT chan1, chan1
SEQ

chan1 ? a
a := a * 5
chan2 ! a

This program fragment declares a to be a variable, of type INT, and chan1 and
chan2 to be channels, also of type INT. It consists of a sequence of three processes
that input a value into a (from some other process), multiply it by the constant 5,
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and output it to another process. The declarations have the scope of the imme­
diately following construct, and are indented to the same depth. Indentation by
two spaces is used to show the scope of the sequential construct; in all cases oc­
cam uses indentation to show structure, where other languages might use begin ...
end or {. '.....}.

5.1.3 Parallel processes

Occam processes may also execute concurrently, or in parallel. This is denoted by
the use of the PAR construct:

INT a,b
CHAN OF INT chan!
PAR

chan! ! a
chan1 ? b

has the effect of copying the value of a into b and is equivalent to the following
assignment statement:

-- declarations
SEQ

b := a

The lexical order of the processes with the PAR construct is not important, and the
processes will be started in an arbitrary order. Thus the following code fragment:

-- declarations
PAR

chan! ? b
chan! ! a

is exactly equivalent.
The PAR construct is a process that will terminate when all of its component

processes terminate. Thus a SKIP process may be added to the PAR construct with
essentially no effect. However, adding a STOP process would mean that the PAR
construct would never terminate.

Occam says nothing about which of the processes in the PAR construct will exe­
cute first, or which will get a larger share of processor time. When it is necessary
to give one process priority over another, then the PRI PAR construct must be used
as follows:

PRI PAR
process_a
process_b
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This construct is limited to two processes. Whenever the first process can execute it
will; the second process will only execute after the first has completed or is waiting
for an input or output.

The occam 2 PRI PAR is limited to two components, which map directly on to
the high- and low-priority processes of the underlying hardware. If we want one set
of processes to execute at high priority and another set at low, then PAR constructs
must be nested in the PRI PAR as follows:

PRI PAR
PAR

high_1
high_2

PAR
low_1
low_2
low_3

In transputer implementations of occam 2, a high-priority process will not be
time sliced but will execute until completion or waiting for input or output. Only
when all high-priority processes are unable to execute will the low-priority processes
get their time slices. Because of the limitations of this mechanism, PRI PAR can
only be used at the outermost level of a program, not within any enclosing PAR
constructs.

5.1.4 Alternatives

It is often important to choose between alternative actions, depending on the order
in which inputs become available. For example, a simple channel multiplexor copies
the data from two inputs onto a single output (Figure 5.2). In occam this can be
written using the ALT construct as follows:

INT a :
CHAN OF INT chanin1, chanin2, chanout
ALT

chanin1 ? a
chanout ! a

chanin2 ? a
chanout ! a

This could also be written:

-- declarations
SEQ

ALT
chanin1 ? a
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chaninI

chanout

chanin2

Figure 5.2 A two-input multiplexor

chanin2 ? a
chanout ! a

Whichever of the inputs becomes ready first will execute, and the appropriate
process will read data into a. The whole process will then terminate, which is
not what is required of a multiplexor. In order to keep the multiplexor running
continuously, the above code must be embedded in a non-terminating loop:

-- declarations
WHILE TRUE

SEQ
ALT

chanin1 ? a
chanin2 ? a

chanout ! a

Each of the alternatives may consist of a number of processes, in sequence, parallel,
or indeed another ALT. Thus to tag each output with the input from which it came,
we could write the following:

WHILE TRUE
SEQ

ALT
chanin1 ? a

SEQ
chanout 1
chanout ! a

chanin2 ? a
SEQ

chanout 2
chanout ! a

No relative priority is given to the processes within the ALT; the compiler can
make an arbitrary decision as to which process will be executed if two or more
become ready simultaneously. When priority is important the PRI ALT construct
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can be used. This gives priority to the lexically first element of the construct which
will always be chosen for execution if it becomes ready before or at the same time
as any other element.

PRI ALT
chan1 ? a

process. 1
chan2 ? b

process.2
chan3 ? c

process.3

In the example above, if inputs are available simultaneously on chan1 and either of
the other channels then process. 1 will be started. Only if either chan2 or chan3
become ready without chan1 being ready will process. 2 or process. 3 be run.
Unlike PRI PAR, PRI ALT is not limited to two components. However, all compo­
nents of a PRI ALT except the first behave in the same manner as the components
of an ALT. If the first component of an PRI ALT is chosen it is run at the priority
of the enclosing construct, rather than at high priority.

5.1.5 Guards

In the ALT example above, the input statement that precedes each of the alternative
actions is known as a guard. An ALT or PRI ALT is a sequence of guarded processes,
where each guard is an input, a timer or a SKIP process with, optionally, a boolean
condition. The guard:

go & chanin1? a

will be ready only if go is TRUE and chanin1 has an input.
A SKIP guard is always ready, and thus will execute whenever the boolean con­

dition is true. The guard:

go & SKIP

is ready for execution whenever go is true. The boolean conditions within ad ALT
should not have the po.ssibility of all being false at once. When the ALT statement
has been entered the conditions cannot change, and thus the ALT process will act
as a STOP if the boolean conditions on all the guards are false.

5.1.6 Arrays of processes

The FOR construct creates an array of processes, which can operate in sequence,
parallel or as alternatives.
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SEQ input = 1 FOR 8
chan[input] ? buffer[input]

creates an array of eight sequentially executing processes that each input from a
channel in the array chan into a corresponding cell of the array buffer. This is
then equivalent to:

SEQ
chan [1] ? buffer [1]
chan [2] ? buffer [2]

?
?

chan [8] ? buffer [8]

Thus the SEQ ... FOR construct acts in a similar fashion to the FOR loop in Pascal'
or other high-level languages.

The FOR construct can also be used with PAR and ALT, so that:

PAR input = 1 FOR 8
chan[input] ? buffer[input]

creates an array of eight concurrently executing processes, and:

ALT input = 1 FOR 8
chan[input] ? buffer[input]

an array of alternatives, each waiting for input from one of the channels chan [1] ...
chan [8]. The loop limits in PAR ... FOR. .. and ALT ... FOR. .. must be constants,
as occam 2 does not allow the dynamic creation of processes; the total number
of processes must be known at compile time. This serious limitation is a feature
of occam 2, rather than a consequence of the design of the transputer process
scheduler.

5.1.7 Channel protocols

In occam 1 a channel was a stream of words or bytes, and the only outputs and
inputs allowed were of these types. However, the channel i~selfdid not have a type,
and thus no type checking for channels was implemented. This led to confusion
and error if what was put into a channel was not what was read from it.

The transputer implements internal channel input or output by copying data in
memory. As we have discus~ed in Section 3.8, the second process to attempt input
or output determines the number of bytes that are copied. If the processes do not
agree on the number of bytes to be transferred, then the transfer will appear to
take place but erroneous data will be copied. If we attempt the same erroneous
communication over a hardware link it will fail in one of the transputers involved,
as the link engine will be unable to complete the transfer.
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Occam 2 provides a method for specifying the contents of messages sent along
channels which can prevent this kind of error. An occam 2 chann~l is declared with
a PROTOCOL as in the following examples:

CHAN OF BYTE a:
CHAN OF INT b:
CHAN OF REAL64 data:

The above protocols declare that the channels will be used only for input or output
of a single variable of the appropriate type.

A protocol can also be of array type:

CHAN OF [20]INT data:

which will receive or transmit streams of 20 INTs.
Where the size of the array to be transmitted is unknown, it is possible to

declare a counted array protocol, which consists of an integer describing the size of
the array, followed by that number of array elements:

CHAN OF INT::[]INT counted.chan :
[32] INT vector :

When data are transmitted the first word must be the count of the number of array
items to be sent.

-- declarations
SEQ

counted.chan ! 2 :: vector

will send a count of 2, followed by the first two elements of the array vector.
Similarly, the count is the first data item to be received. Thus:

INT itemcount :
[20] INT datain
SEQ

counted.chan? itemcount :: datain

will place the number of data elements received in the variable itemcount, and
that number of INT elements in the array datain.

A protocol can also be a sequence of variables of the same or different types.
This is achieved through the declaration of a sequential protocol, for example:

PROTOCOL DataPacket IS BYTE; REAL32; REAL32; INT:

In this protocol declaration the elements are separated by semicolons. The protocol
thus declared can then be used in the declaration of a channel:

CHAN OF DataPacket InStream :

which can only be used for the input and output of streams of the sequence BYTE,
REAL32, REAL32, INT.
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5.1.8 Timers

A timer in occam is treated rather like a channel. Timers may be declared singly:

TIMER working :

or as arrays:

TIMER [20]intervals:

Each timer can be read as if it were a channel returning a single integer value:

INT start, end:
SEQ

working ? start
intervals [2] ? end

This will read the value of the timer appropriate to the priority of the process in
which the timer input occurs. However, when comparing times read in this way, it
must be remembered that the number of ticks is read as an unsigned INT, with a
number of bits equal to the word length of the transputer. Thus it is quite possible
that the timer will roll over during any timing interval. Occam therefore provides an
AFTER operator which causes a process to wait until the timer reaches a particular
value:

working ? AFTER timeout

where timeout contains the value of the timer which will be waited for. Thus, to
suspend execution for, say, 1000 ticks, one needs the following sequence:

TIMER s:
VAL INT wait IS 1000
INT now :
SEQ

s ? now
s ? AFTER now PLUS wait

where PLUS denotes unsigned addition. If the wait is required to be in seconds it
must be computed using the number of ticks per second of that particular clock.

This form of wait can be used as a guard to provide for a timeout on some other
input:

TIMER s
CHAN OF INT inkey :
VAL INT timeout 2000
INT input, now:
SEQ

s ? now
ALT
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inkey ? input
process. input (input)

s ? AFTER now PLUS timeout
write.string(terminal.screen,"Input failed")

This will accept an input from the channel inkey, provided that it occurs within
timeout ticks. If not, the timer guard will become ready, and an error message will
be displayed.

5.1.9 Placement

As occam is intended for the low-level programming of transputers, it contains
features that allow the user to specify the position that variables occupy in the
processor's memory, and also on which processor a particular process will execute.
This is known as placement.

As we have discussed in Chapter 2, the hardware memory map of the transputer
is byte-addressed, with signed addresses running from MinInt to MaxInt. The
occam memory map is somewhat different. Addresses are unsigned words, running
from 0 to the top of the address space. We can use the PLACE keyword to assign a
memory address to a variable:

INT i:
PLACE i AT 28:

will place the integer variable i at hardware memory address Ox80000070 on a
32-bit processor, or Ox8038 on a 16-bit processor. This can be useful in allocating
variables to the on-chip fast RAM, but tends to compromise the security of occam,
as two processes can place variables at the same address, and can access them with
no control.

Where this type of placement is most useful is in associating channels with
hardware links. The link control words lie in the bottom eight words of the memory
map, as in Table 5.1. For example:

CHAN OF INT chanin, chanout:
PLACE chanin AT 7:
PLACE chanout AT 3:

places the channels chanin and chanout on hardware link 3 input and output.
Placement of variables can also be used to gain access to memory-mapped peri­

pherals; however, this is rather unsafe as more than one process can gain access
to the peripheral in an uncontrolled manner. Also the occam standard gives no
guarantee that a variable name appearing in an expression will only be accessed
once. It is therefore much safer to treat memory-mapped devices as PORTs, which
are extensions of the occam channel concept to locations in memory. If a PORT is
declared and placed at an address, it is read and written to using channel input
and output:
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Table 5.1 Occam and hardware addresses of link control words

Control Word Occam address

LinkOOut 0
Link10ut 1
Link20ut 2
Link30ut 3
LinkOln 4
Link1In 5
Link2In 6
Link3In 7

PORT OF INT memloc:
PLACE memloc at #10000000
INT i;
SEQ

memloc ? i

Hardware address
16-bit 32-bit
Ox8000 Ox80000000
Ox8002 Ox80000004
Ox8004 Ox80000008
Ox8006 Ox8000000C
Ox8008 Ox80000010
Ox800A Ox80000014
Ox800C Ox80000018
Ox800E Ox8000001C

This code fragment will read the contents of the specified memory location into i.
It guarantees that only one read access will be made to memloc.

5.1.10 Configuration

Allocation of processes to processors is normally known as configuration. The
occam configuration language uses an extension of the PAR construct, PLACED PAR.
This can only be used at the outermost level of an occam program, and specifies
that a process is placed on a particular processor. The code fragment:

-- declarations
PLACED PAR

PROCESSOR 0
taskO

PROCESSOR 1
task1

declares that taskO runs on processor 0, and task1 on processor 1. The FOR
construct may be used with PLACED PAR, and so to run the same process on ten
transputers, PROCESSOR 0-9, we can write:

PLACED PAR i = 0 FOR 10
PROCESSOR i

task

Links can be declared outside a processor, and so can be used to tie processes
together that execute on different processors. If the process task is defined with
two parameters, an input and an output channel, then:
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[11] CHAN OF INT32 chan
PLACED PAR i = 0 FOR 10

PROCESSOR i
task(c[i],c[i+1])

declares a pipeline of task processes executing on different processors, and passing
data from one to the next through the elements of the channel array chan []. These
channels must be made to correspond to 'physicallinks by placement. As an example
the input link below is defined as link 1, and the output as link 2:

VAL INT ~ink1In IS 5:
VAL INT Link20ut IS 2:
[11] CHAN OF INT32 chan
PLACED PAR i = 0 TO 10

PROCESSOR i
PLACE c[i] AT' Link1In
PLACE c[i+1] AT Link20ut
task(c[i], c[i+1])

Here the constants Link1In and Link20ut have been defined as the occam addresses
of the channel words corresponding to link 1 input and link 2 output.

5.2 Runtime library support for parallelism in C

As we have discussed earlier, it is possible to add support for parallel programming
to a conventional language either by modifications to the language syntax, or by
leaving the language unchanged and providing runtime library functions for process
creation and inter-process communication. The language we use here to illustrate
how C may be extended by adding runtime library functions is Parallel C, from
3L Ltd. This is a transputer C compiler that implements the language described
in Kernighan and Ritchie (1978), not the later ANSI standard. The extensions to
support parallel computation are provided in the runtime library, and in a configurer
that will construct systems to run on transputer arrays. This is the compiler that
forms the basis of the INMOS D511, 611 and 711 products. Helios C and Logical
Systems C are similar to 3L C in their approach to providing parallelism.

A Parallel C application consists of a collection of one or more concurrently
executing tasks. Each task has its own region of memory for code and data, a
vector of input ports, and a vector of output ports. The tasks are complete C
programs, linked together with all or part of the runtime library. How these tasks
are distributed over an array of transputers will be discussed in the section on the
configuration language.

Within each task there can be one or more concurrently executing threads. These
are processes that are similar to the components of a PAR structure in 'occam, but
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able to share global data. In Parallel C many instances of the same function can
be active simultaneously as threads, each with its own copy of local data. Threads
can share' global data and other global resources snch as channels and the runtime
library. Semaphores are provided to contr"ol access to these global resources; channel
input or output and timer support are provided as runtime library routines. Each
package of library routines has associated with it an 'include' file that defines various
useful constants.

5.2.1 Creating threads

A thread is created in Parallel C by a call to the thread_start function:

thread_start (fn, ws, wssize, flags, nargs, argi,
... , argn)

Here fn is the name of the function to be executed as a thread, ws is a pointer to
a workspace, and wssize the size of that workspace in bytes. The flags ~rgument

contains either THREAD_URGENT or THREAD-NOTURG, to indicate if a high- or low­
priority thread is to be started. A variable number of arguments may be passed to
the function by thread_start, the number of arguments is given in nargs, and the
arguments in arg1 to argn. A simpler form of thread creation is provided by the
thread_create function:

char *thread_create(fn, wssize, nargs, argi,
... , argn)

This routine starts a thread at "the same priority as the calling routine, with
workspace taken from the heap. The function returns a pointer to that workspace,
or NULL if insufficient space is available and the thread cannot 1?e started.

Threads stop when they return to the calling routine, or by a call to thread_stop.
Threads stopped by thread_stop can be restarted by a call to thread-restart (p),
where p is a pointer to the workspace of the thread. Threads may also be suspended
when it is necessary to reset a channel, and can be restarted by thread-restart.
Table 5.2 summarizes the Parallel C thread routines.

Table 5.2 Parallel C thread routines

thread_start
thread_create
thread_stop
thread_restart
thread_deschedule
thread_priority

start a general thread
start a thread simply
stop a thread
restart a stopped thread
pause a thread for about one time slice
return the priority of the current thread
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5.2.2 Inter-process communication

The procedures that provide channel input and output in Parallel C are shown in
Table 5.3. Each procedure is passed an argument of type CHAN, a predeclared type
which represents the address of a channel control word. Channel addresses can be
obtained in three ways:

• The addresses of channels connected to the hardware links of transputers are
contained in predefined constants LinkOlnput ... Link3Input and LinkOOutput
... Link30utput.

• The addresses of channels associated with the vectors of input and output pro­
cesses of a Parallel C program are passed to the program through the main
program parameter line.

• Any integer variable may be used as a channel control word. Channels defined
in this way must be initialized before use by a call to chan_init.

Table 5.3 Parallel C .channel support

Input and output routines
chan_in_byte
chan_in_word
chan_in..message
chan_out_byte
chan_out_word
chan_out..message

Timed input and output
chan_in_byte_t
chan_in_word_t
chan_in..message_t
chan_out_byte_t
chan_out_word_t
chan_out..message_t

Initialization
chan_init
chan_reset

5.2.3 Semaphores

input a byte from a channel
input a word (4 bytes)
input a stream of bytes
output a byte to a channel
output a word to a channel
output a message to a channel

input a byte or timeout
input a word or timeout
input a stream of bytes or timeout
output a byte or timeout
output a word or timeout
output a message or timeout

initialize a channel word
reset a channel

As stated above, Parallel C threads can share global resources, such as data, chan­
nels and the runtime library. Thus a mechanism has had to be implemented to
resolve access conflicts. This is based on the semaphore, a global memory location
that each thread may examine and alter in a single uninterruptible instruction.
Each semaphore may have a queue of threads waiting on it. When the cUlrently
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active thread has ceased to need the resource protected by the semaphore it sig­
nals this, and one of the waiting processes is selected for execution. Of course,
one must be very careful that all threads needing a resource wait on the appropri­
ate semaphore, and that all threads signal the semaphore on ceasing to need the
resource.

Parallel C provides a predefined data type SEMA. A semaphore, s, declared as
this type must be initialized by a call to sema_init as follows:

sema_init(&s,v)

This sets up the semaphore so that the queue of threads waiting on it is empty, and
the value ofthe semaphore is v. When a thread requires a resource controlled by a
semaphore it makes a call to serna_wait (&s). If the value of the semaphore is zero,
it is left unchanged and the thread added to the list of threads waiting on s. If it is
non-zero, the value is decreased by 1, and the thread continues its execution. When
the thread has completed its use of the resource it must call serna_signal (&s). If
there are other threads waiting on the semaphore its value will be zero." One of
these threads will be reactivated, and the value of the semaphore left as zero. If
there are no threads waiting on the semaphore its value, which may be zero, will
be increased by one.

In most cases only one thread at a time may use a resource. The semaphore
should be given an initial value of 1. Each thread either finds the semaphore count
at 1, and continues its execution after decreasing it to 0, or finds it at 0, when it
waits. When a thread calls the serna_signal routine it will always find a semaphore
value of 0. The semaphore value will remain unchanged if there are other threads
waiting, otherwise it will be increased to 1.

Table 5.4 Parallel C semaphore routines

sema_init
sema_wait
sema_wait-n
sema_s ignal
sema_s ignal-n

initialize a semaphore
wait on a semaphore
perform n wait operations
signal a semaphore
perform n signal operations

It is interesting at this point to see how semaphores could be implemented if
this facility were not provided in the runtime library. The impleme~tationshown
below is based on that provided in the Helios operating system; it is not necessarily
similar to the way that semaphores are actually implemented in Parallel C: The
procedures developed below would have to be run at high priority, so that there
is no possibility of corruption of the semaphore mechanism by simultaneous calls
from two or more processes.

A semaphore consists of a count, and a (possibly empty) list of processes waiting
on the semaphore. Thus a semaphore structure may be declared as follows:
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typedef struct SEMA {
word Count; 1* semaphore counter *1
Id *Head; 1* head of process list *1
Id *Tail; 1* tail of process list *1

} SEMA;

The structure Id is used to construct the linked list of processes, and has the
following form:

typedef struct Id {

word state; 1* save area for process state *1
Id *next; 1* pointer to next item in list *1

} Id;

To initialize the semaphore the count must be set to the required value (usually 1),
and an empty process list set up:

void sema_init(SEMA *sem, word count)
{

sem->count = count;
sem->Head NULL;
sem->Tail = (Id~*)sem;

}

The cast (Id *) allows the tail pointer to refer back to the semaphore record when
the linked process list is empty.

To wait on the semaphore the value of the count must first be decremented and
tested. If the result is less than zero the process must be added to the queue waiting
on the semaphore, otherwise the process may proceed:

void sema_wait(SEMA *sem)
{ Id w;

sem->Count--;
if (sem->count < 0)

{

w.next = Null;
sem->Tail->next = &w;
sem->Tail = &w;
w.state = thread_stope);

}
}

The function thread_stope) removes the current process from the scheduling queue,
saving its W register and priority so that it can be restarted.

To signal the semaphore that the process has completed the use of the shared
resource, the sema_signal () function must increment the count, and start the next
process in the queue:
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void sema_signalignal(SEMA *sem)
{

sem->Count ++;
if (sem->Count < 1)

1* there are waiting processes */
{

Id *w = sem->Head;
sem->Head = w->next;
if (sem->Head == NULL)

sem->Tail = (Id *) sem;
thread_restart(w->state);

}

}

Again, the casts are used to allow the storage of the address of the semaphore record
in the tail pointer of the linked list. The thread-restart () function reschedules a
process which has been descheduled by thread_stop () .

5.2.4 Alternation

Parallel C provides no direct implementation of the transputer's use of alternatives,
or of the occam ALT construct. Thus, if an action is required when the first of a
possible set of events occurs it is necessary to set up a thread waiting on each of
the events. These threads are then controlled by the use of a semaphore so that
only one is allowed to execute.

Let us take as a simple example the two-input multiplexor of Figure 5.2. In
occam this can be implemented as a procedure:

PROC mult2 (CHAN OF INT chanin1, chanin2, chanout)
INT a:
WHILE TRUE

ALT
chanin1 ? a

chanout ! a
chanin2 ? a

chanout ! a

The shared resource here is the output channel chanout, which is protected in
occam by the fact that only one of the components of the ALT will execute each
time round the loop. In C we must use a semaphore to protect the channel. The
C multiplexor function can then be written as follows:

void mult2(chanin1, chanin2, chanout)
CHAN *chanin1, chanin2, chanout;
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{

SEMA sem, *s;
char *test;

s = &sem;
sema_init(s, 1); 1* initialize semaphore *1

test = thread_create(copy,10,2,chanin1,chanout);
if (test == NULL) exit{);

test = thread_create(copy,10,2,chanin2,chanout);
if (test == NULL) exit();

for (;;) timer_delay(1000000000);
1* loop that uses very little processor time *1

}

This function starts by initializing the semaphore with a count of 1. It then creates
two threads, each waiting on one of the input channels. The copy function reads
the input from its channel and, if necessary, waits until the output channel is free:

void copy (s, chanin, chanout)
SEMA *s;
CHAN chanin, chanout;

{ int data;
for (;;) 1* non-terminating loop *1

{ data = chan_in_word(chanin);
1* wait for input *1

sema_wait(s);
1* wait for output to be free *1

chan_out_word(data);
1* write out the data *1

sema_signal(s);
I*signal output channel free */

}

}

5.2.5 Configuration

A Parallel C application is made up of a number of tasks, dis.tributed over a number
of processors, and connected together by unidirectional channels. The channels that
connect processes on different processors must be associated with physical wires
that can carry one channel in each direction. A host processor must be declared
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running the server task, here called afserver for historical reasons. Clearly, there
must be a path through the 'wires' (actually the transputer links) to each processor,
so that the system is connected and can be booted. The configuration instructions
are processed by the 'config' program, which reads in the appropriate task images
produced by the 3L compilers and linker, and produces a file that is suitable for
booting a transputer array.

For example, if we wish to run a program compute on a single transputer, the
configuration instructions required will be as follows:

processor host
processor root

wire? host[O] root[O]

task afserver ins=1 outs=1
task compute ins=1 outs=1

place afserver host
place computer root

connect? afserver[O] compute[O]
connect? compute[O] afserver[O]

The processor statements name the processors that are in the system. One pro­
cessor must always be named host; it is assumed that it is of type pc and will run
the afserver task. There may be other PCs connected into the system and they
must be declared with type=pc, so that the system does not attempt to boot them
as transputers. To declare two transputers, a host PC and another PC, we would
write:

processor host
processor transputer1
processor transputer2
processor other_PC type = pc

The wire statement specifies the physical link connections between processors. A
wire can be given a name, but this is often not necessary and a? can be substituted
for the name. So, if in the example above each of the processors is connected to its
neighbor in the list by one link, then we would write:

wire? host[O] transputer1[O]
wire? transputer1[1] transputer2[O]
wire? transputer2[1] other_pe[O]

The order of the processors in each wire declaration is not important, as the physical
link is bidirectional.
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The task statement declares programs that are to be loaded on the transputer
network, and can also be used to specify the amount of memory required by each
task. This is essential when more than one task is to be loaded on a single trans­
puter. The task statement may also specify that file from which the task code is
to be loaded.

The place statement places an individual process on a particular processor, the
afserver server task must alway~ be placed on the host pc. A process may only
be placed on one host; if we require several copies of. the same code, then each
copy must be given a different task name, but may be taken from the'same file, for
example:

task in1 file="inprocess.b4"
task in2 file="inprocess.b4"

place in1 transputer1
place in2 transputer2

Connect statements then specify the way in which processes will be ·connected
by channels. If the processes are on different processors, then the physical links or
'wires' will be used. If the processes are on the same processor the connections will
be made by internal channels. To make a bidirectional connection two connect
statements are necessary. For example:

connect afserver[O] compute[O]
connect co~pute[O] afserver[O]

makes a bidirectional connection between the afserver task and the compute task.
As these tasks are on the host and root processors respectively the connection will
be made along the 'wire' connecting these processors. This has been defined above
as joining link 0 on host to link 0 on root.

The configuration file is used as the input to the 3L configuration program which
outputs a transputer network program containing a distributing loader. This pro­
gram is loaded simply by copying it byte by byte into the transputer at the root of
the network. The distributing loader then bootstraps each processor in the network,
and then loads on it the appropriate code.

5.3 Adding parallel syntax to C

An alternative approach to making a parallel processing version of C is to extend
the language syntax to support parallel processing structures. This has the disad­
vantage that the code produced is not standard C, which limits portability. On
the other hand, the addition of parallel constructs can lead to a much more natural
programming style than relying on runtime library extensions. The example we use
here is the Parsys par.c compiler.
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5.3.1 Concurrent execution

To execute C statements concurrently in par.c they are enclosed within a par con­
struct, just as in occam. For example:

par {
buffer();
read_it();
write_it();

}

will run the routines buffer(), read_it() and write_it() concurrently.

5.3.2 Channel pseudo-variables

Channel input and output is handled by channel pseudo-variables. These can be
used where variables are normally used, but will have the effect of reading or writing
a channel. Pointers to channels are also allowed. A channel must be initialized by
a call to resetch, and can then be used for input or output:

channel chan1;

main()O
{ resetch(&chan1);

resetch(&chan1);
par {

process_1();
process_2();
}

}

process_1()
1* output a constant to a channel *1
{

}
chan1 256345;

process_2()
1* input an integer from a channel *1
{ int i;

i = chan1;
printf(lI%d\n",i);

}
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The data type that is sent over the channel depends on the type of the expression
that is assigned to the pseudo-variable. Clearly, the sending and receiving process
must agree on the type.

Pointers to channels are used when a channel has to be associated with a hard­
ware link. Thus to set up a channel at the link 0 input we can declare a pointer to
it and initialize that pointer with the correct hardware address. Data can then be
read from the link by using that address on the right-hand side of an assignment,
so that the function:

int get_word()
{

channel *linkOin = (channel *) Ox80000010;
return(*linkOin);

}

inputs a word from hardware link O.

5.3.3 Timers

The two transputer timers are accessed by a pseudo-variable called timer, which
is read depending on the priority of the process. Three different operations are
possible to set, read or wait on the timer:

int i;

(int) timer 0; 1* set timer to 0
the (int) cast is required *1

i = timer; 1* read the timer into i *1

timer = 100; 1* wait until timer == 100 *1

timer += 100; 1* sleep for 100 ticks *1

5.3.4 Alternation

Alternation in par.c is implemented in a similar way to that of occam. An alt
keyword introduces a group of statements, each consisting of a guard and a block
of code. If one or more guards becomes ready, then the code belonging to the
lexically first ready guard in the sequence will be executed. There are three types
of guards: boolean, channel and timer.

A boolean guard consists of the keyword guard followed by a boolean expression
and terminated by a colon:
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guard a > b :

This type of guard will be ready if the boolean expression is true; the booleans are
evaluated once when the alt statement is entered.

A channel or timer guard has an optional boolean part with a channel address
or a timer expression:

guard &chanO
guard a > b, &chanl
guard &chan2, complete TRUE
guard timer += 1000 :

We may now write our simple multiplexor function in this flavor of C:

int mult(chanl, chan2, chanout)
channel chan1, chan2, chanout);
{ int i;
for {;;}
alt{

guard &chanl :
chanout = chanl;
break;

guard &chan2 :
chanout = chan2;
break;

}

}
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Software Environments

The previous chapter described a number of different languages used to program
parallel transputer-based computers. Although the languages were all different,
they embodied a common view of the context in which the transputers were to
be used. This was the host-server model, where a host computer runs a server
program which communicates with the transputer network.

The program running within the transputer network can perform input/output
(I/O) in one of two ways. First, it can request services from the server using a
suitable protocol. The server then performs the actions needed on the program's
behalf, and sends back the data so requested. This protocol can be used to access
files, the keyboard, a mouse or any other peripheral connected to the host.

Secondly, a program can communicate directly with the hardware on which it is
running; in this case I/O is normally performed by direct manipulation of hardware
registers.

The host-server mechanism is highly efficient, as there is no overhead in memory
space or execution time taken by any system software. Many functions normally
provided by an operating system or other low-level system software are not required
in the' transputer because they are already provided in the instruction set. These
include process scheduling, high- and low-priority processes and inter-process com­
munication. It is reminiscent of the early stages of microcomputer technology where
a program interacted directly with the hardware with no supporting layer of system
software. Such a scheme is used very commonly today whenever a microprocessor
is being used in any embedded situation. This embedded use is the target for any
semiconductor manufacturing company - it is far better for them to be able to
place a chip in every video cassette recorder than it is to have one in a best-selling
personal computer, merely because the number of units sold is so large.

INMOS always had this embedded marketplace in mind when it designed the
transputer, and the host-server model is a system designed to aid in creating stand­
alone systems that do not need I/0, such as keyboards, screens and disk files. A
good example of such an embedded application is a laser printer controller.

There are, however, many cases where the facilities provid~d by the naked trans-

88
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puter are insufficient. First, the programmer must be fully aware of the hardware
on which the program is to run. The number of processors and the topology of the
processor network is built into the program. The program cannot run without this
exact hardware, and if more processors are a1ded the program cannot use them
until it is recompiled. Clearly this is of little importance in an embedded system,
but becomes more important when transputers are used in generalized applications.

These problems are becoming exacerbated by the way in which computer system
builders are employing the transputer. In some cases very large systems are being
built to solve a particular problem. These systems can have as many as 1024 trans­
puters and several gigabytes of RAM; such supercomputers ar~far too expensive
to be used for just one carefully crafted problem. Instead, owners of such machines
would like to be able to buy standard application packages that will work on the
particular hardware available, be this one transputer or one thousand. Having pur­
chased the application, they would like to be able to buy extra transputers and
have the application run faster. This is not possible with an application that runs
on a naked transputer.

A second problem arises from the lack of standards available when programming
at such a low level. For example, it is possible to clear the screen and move the
cursor around on a transputer connected to a personal computer by sending certain
control codes to the screen. These same control sequences may well not work on a
transputer connected to a workstation or to a large minicomputer. The way in which
files are specified will be very different depending on the operating system running
on the host computer; UNIX, MS-DOS and VMS all use different mechanisms.
These filenames will need to be quoted explicitly within a transputer application.
A program designed to run on four transputers connected in a certain topology and
hosted on a VAX will therefore not run on exactly the same transputer hardware
but connected to a personal computer without altering and recompiling.

The large computer systems mentioned above commonly have electronic link
configuration. Such systems should be available to run a single large problem on all
the transputers, and when that job completes it should be possible to reconfigure
the system into four or five smaller networks and run different programs in each.
Ideally this reconfiguration - as well as the management of the processor resource
- should be handled by system software.

Another problem concerned with programming naked transputers comes from
the application program being required to handle naked peripherals. At the lowest
level this means that any program running in a transputer that has hardware capa­
ble of causing an event by toggling the EventReq input must contain code to cope
with this event. At a higher level it means that application programmers must learn
about the quickest way to provide reliable message passing between two processes
running on different processors, especially where there is no direct link connection
between them. At a higher level still it is easy for an application programmer to
make poor use of a piece of hardware such as a disk drive by getting complex tuning
values such as the interleave factor wrong.

In all these cases it is useful to have some system software contained within
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the transputer. Such a system might provide some or all of our requirements: an
efficient, standardized interface, a way of running programs independent .of the
topology and adequate control of hardware resources. A full operating system will
normally add to this a set of standard tools and one or more user interfaces.

6.1 Express

Some of the early development work in parallel computing took place at Caltech.
Much of this work was initially based on Intel Hypercubes and N-cube machines.
One of the early outcomes of this work was the requirement to be able to run parallel
programs on these different machines but within the same fundamental operating
environment. The system that evolved there has been ported to the transputer,
and is marketed commercially as Express.

Express is an operating environment that runs on a number of parallel processors.
It provides certain operations normally found within an operating system in order
to provide the basic functionality required by parallel programs. These operations
include the ability to communicate, to share data, read files, perform graphics and
so on.

Although this may sound like the specification of an operating system, Express is
not an operating system in the conventional sense. It does not provide mechanisms
for handling terminals or disk units at a fundamental level; instead it passes such
requests back to an operating system running on some host machine. This has the
advantage that the user of Express need not learn a new operating system because
all of the facilities of the familiar host operating system are still available. It does,
of course, mean that the host must be connected to the transputer network in some
way.

Express is best described as a set of tools and utilities designed for parallel
processing. These are as follows:

• A set of both high- and low-level communications primitives used to send mes­
sages between processors.

• A transparent I/O system, allowing any transputer in the network access to
the facilities of the host operating system, as if the program running on the
transputer were actually running on the host.

• A parallel graphics system available to all the transputers on the network. Both
low-level graphics primitives and high-level packages such as contouring and
three-dimensional operations are available.

• A debugger called NDB. This is similar to the standard UNIX tool called dbx,
and provides source level debugging. As this uses the standard message-passing
primitives, it can be used to debug parallel programs.
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• A performance evaluation tool called PM. This is a graphical system providing
the user with feedback on the way in which the transputers are being used. The
user can identify various potential performance bottlenecks such as CPU usage,
message-passing latency and link traffic.

Express also provides a library of functions which encompass a large part of the
underlying work required· to construct a parallel application. Consider a large job
where the same action is to be performed on a number of pieces of data, such as
image enhancement of a large picture. The normal style of parallel programming
used here is to create a master program and many copies of a slave, each running
on a separate transputer. The master program divides the work into slices which
are handed out to the slaves, each of which performs the work in parallel.

Express provides a number of useful tools for this purpose. The first is a utility
that generates runtime parameters for the slave programs, allowing them to adapt
to the number of nodes and other changes in their environment. The second tool
may be used to create the master program automatically, mapping the large picture
into smaller pieces suitable for distribution. A third tool combines the output from
the slaves back into a single answer.

The library routines can also be used to disguise the number and topology of
the transputer network. For example, a routine is provided which is similar to the
C routine scanf. When the user types a line of input at the terminal every slave
is sent a copy of the line, just as if the line had been typed to each slave. In the
same way each slave can issue an output command such as printf, but only one
of the identical copies will be printed on the screen.

The library also provides explicit support for processor farms. A farm is a useful
technique when the same subroutine must be run on a large number of data items
and there is no intercommunication between the different calls. Express provides
support for the model where the majority of the program code still runs on the host
machine. A small change is made so that the program on the host specifies what
data are to be sent to the transputer network, what results are expected back and
what subroutine to call in parallel on the data array. The programmer need not
be concerned with the actual communication required in order to package the data
and transmit it around the network.

6.2 Linda

Linda is another system that has been designed to make it easier to program in
parallel. It can be described as a programming language, although it i~ actually
a set of calls embedded within an existing programming language such as C or
FORTRAN, providing some of the functionality of an operating syst~m.

Linda was designed by David Gelernter (1985,1988) in the Department of Com­
puter Science at Yale University as a portable parallel programming system that
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was both efficient and easy to use. The transputer implementation is just one of a
large number of different ports of Linda which range from shared memory systems
to a network of minicomputers.

The basic abstraction of Linda is very simple and rather elegant. Linda supports
the idea of data represented by 'tuples', which are a sequence of data fields each of
a defined type. These tuples may be launched into 'tuple space' from which they
may be either copied or extracted. Tuples are taken out of tuple space by matching
field values and not by specifying some tuple identifier. This latter is familiar to
users of databases, whereas tuples in Linda can only be· retrieved by.performing
some suitable SELECT operation on tuple space.

This basic idea of Linda is easy to understand. Tuples are thrown into the tuple
space rather like fish into a pond. Any processor can throw fish into the pond, and
any processor can place a fishing rod into the pond. Each rod has a value attached
to it, and only tuples that match the value will be caught. The template used as
the basis for the match may specify any combination of the fields of the tuples, and
tuple values may include a type of wild card which will match any template value.

This is actually implemented by providing a set of function calls in the host
language, as shown for C in Table 6.1. This mechanism is good for the type of
parallel problem described above which can be divided up into slices to be handled
by multiple copies of the same slave program. The master simply starts up the
slave processes by using the eval(t) call. This causes a new process to be spawned
to evaluate the tuple passed to it. This tuple will contain the initial parameters for
the program. The master then divides up the problem and passes the slices into
tuple space using out(t). Each slave process waits for work by using rd(s) to
retrieve any tuple. Alternatively a slave may wait for some special tuple because it
can handle certain types of work more efficiently.

Linda provides a useful abstraction for parallel programming. The most obvious
potential flaw is the efficiency of the associative memory mechanism required to
implement the tuple matching. On a static topology a compiler can be used to
direct tuples to likely candidates, but even here some data tuples may have to be
passed around redundantly between processors. In a more dynamic system the
inter-processor communication bandwidth of transputers may easlIy be exceeded.

Table 6.1 Linda function calls in C

Function call
out(t)
eval(t)
in(s)

rd(s)

inp(s)
rdp(s)

Description
evaluate tuple t and then add it to tuple space
add tuple to tuple space and then evaluate it
wait until tuple matching template s is available,
then extract it
wait until tuple matching s is available,
then extract a copy
if tuple matching s is available extract it, else return false
if tuple matching s is available extract copy,
else return false
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6.3 Trollins

One of the approaches to the problem of running UNIX on a transputer system
has been that taken by Trollius. This is an operating system for parallel archi­
tecture computers where each computer is regarded as consisting of a number of
transputer-based calculation nodes connected to some conventional architecture
machine running UNIX. Originally named Trillium, Trollius was designed and im­
plemented within the Cornell Theory Center.

Trollius consists of a kernel that is booted into a network of transputers, which
provides a set of library calls for programs running under it. Two languages, C
and FORTRAN, are provided, as well as a number of development tools such as
an assembler, linker and debugger. The system is designed to extend the existing
UNIX environment of a single user into a set of transputers which then act as an
accelerator. Support is provided for programmers in C and FORTRAN to access
the facilities of the UNIX host such as terminal and file systems. A message-passing
scheme is implemented which allows UNIX and any transputer node to exchange
messages, and for any node to communicate with any other.

Trollius can be seen more as an extension to an existing UNIX system rather than
a complete implementation of UNIX. There are very few of the UNIX system calls
supplied within the transputer, no support for multiple users within a transputer
network connected via a single link adaptor and no user interface or user level
commands running on the transputer itself.

6.4 Mach

Mach is a multiprocessor operating system originally developed at Carnegie Mel­
lon University, and currently being expanded and enhanced by a large number of
commercial companies (Accetta et aI, 1986). It was designed to provide a new
foundation for UNIX development by providing access to both loosely coupled and
tightly coupled processors in a coherent fashion. The original development was
for the VAX and attempted to maintain binary compatibility with the standard
Berkely UNIX 4.3 bsd.

To our knowledge there is no current implementation for the transputer, and
indeed this is not surprising given Mach's support for the large virtual address
space, which cannot be supported by the current range of transputers. However,
a brief discussion of Mach is included here because the style of Mach is highly
relevant to' the transputer, and because future releases of the transputer may be
able to support it.

One of the main features of Mach is the distinction between tasks and threads; a
task is a unit of resource allocation and includes a unique address space. Each task
contains multiple threads that share the address space and, may execute in parallel
on different processors.
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Virtual memory is provided for each task, and any thread may access any part
of the virtual address space. This essentially provides a shared virtual memory
between threads within the same task. The sharing of virtual memory could lead
to unacceptable performance on a system of connected transputers, but is clearly
useful on a machine with true shared memory.

Mach provides a capability-based inter-process communication scheme based on
messages containing typed data. These messages are sent across machine bound­
aries in a transparent fashion, requiring no specific network support. In order to
maintain a consistent client-server interface an interface language is used. The
message-passing system is integrated with the virtual memory mechanism so that
large messages are sent efficiently using the physical shared memory when available.

6.5 Meikos

One of the earliest designers of hardware based around the transputer has been a
company called Meiko. Their highly successful 'Computing Surface' was designed
from the outset to use transputers as the engine for a scientific and engineering
supercomputer (Chesney and Ganz, 1989). That the Computing Surface should
use transputers is hardly surprising since Meiko was set up by some of the original
designers of the transputer chip after they left INMOS.

The Meiko solution to software systems for the Computing Surface has been to
provide a mechanism whereby the different users can share the Computing Surface
resource. This is done by dividing the computer into a number of 'domains', each
of which has no access to any of the others. The division into domains, and the
associated inter-domain cOJIlmunication, is handled by a combination of syst~m

software and dedicated hardware.
Within each domain the user is free to run whatever software he or she wishes.

The entire domain may be used to run a program intended to run on naked trans­
puters. The program can communicate with the host using various server protocols,
and communication from the domain to the actual server is handled by the underly­
ing system software. All the links are configured electronically, so that it is possible
to order up different domains in different topologies and test out varying parallel
programming solutions quickly and easily.

The domain approach also allows operating systems to run within a domain.
/ Meiko provide a version of UNIX called Meikos, which is essentially a single-user
system. Multiple copies of Meikos can run for many different users, each in its own
domain. A separate domain runs a fileserver providing shared file access.

This is a highly flexible approach, but it still requires the user to be aware of such
issues as transputer topologies and parallel programming techniques. Although it
is easy to order a larger domain than the one currently being used, the source of
the program must be available so that it can be recompiled for the extra processors
involved.
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Meikos itself runs in a single processor; in order to use the extra processors within
the domain an application written in a suitable parallel language must be used.

6.6 Helios

The operating system called Helios was designed by Perihelion Software for multiple­
processor transputer systems (Perihelion, 1989). Although appearing similar to
UNIX at the user level, the underlying implementation is entirely different in order
to handle the multiple processors. Helios is based on the client-server model for
operating systems, .a technique that is widely used in many current systems, such
as NFS and X Windows. A client process wishing to access a system resource, such
as opening a file, sends a message to a server process requesting this action to be
performed on its behalf. The server replies with another message indicating success
or failure. Subsequently the client can read or write this file by sending further
messages to the server. This inter-process message passing is used to provide a
model for parallel programming that is independent of the underlying transputer
architecture.

In a standalone transputer network a parallel program consists of communicating
processors. Each processor runs a number of processes, and processors communicate
by writing data down links.

Under Helios, programs consist of communicating tasks. Each task consists of
a number of processes, and tasks communicate by reading and writing data down
pipes. The actual mapping of tasks to processors is left up to the operating system,
which also handles the multiplexing of physical links. Although a task may contain
multiple processes, a task may not straddle processor boundaries. More than one
task may run within a single processor.

The pipe mechanism is implemented on top of the underlying message-passing
system, thus allowing the tasks making up the parallel program to be distributed
over an arbitrary network of interconnected processors. The program must still be
constructed using suitable parallel algorithms, but a binary version can be provided
which runs on any number of processors connected in any topology. Of course, such
a program will run faster on certain systems than others.

Consider the example 9f a master program and several slaves, where the master
allocates work to the slaves as they become ready, and each slave sends back an
acknowledgment when th~ work has been completed. This could be represented
as the logical model given in Figure 6.1, where there are four slaves and a single
master.

This logical description is translated by Helios into a :>hysical mapping given the
processors available. For example, if only two processors were available, then the
system might look as shown in Figure 6.2.

Alternatively, if many processors were available, each task might be allocated a
processor all to itself, as shown in Figure 6.3.
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Figure 6.1 System of a master task and four slaves
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Figure 6.2 Five tasks distributed over two processors

The message-passing system and library I/0 calls are handled by the Helios
nucleus. This must be installed on each processor in the system and requires about
100 Kbytes of memory. The nucleus also provides memory allocation routines,
semaphores and performance monitoring code.

It is useful to compare the Helios approach to parallel programming with the
standalone languages described in the previous chapter. In a naked transputer
network, communication is handled either by a language feature such as ? or ! in
occam or by a library call such as chan_out_word in C. In Helios this is a standard
library I/O call, such as the POSIX routines read and write.

The function of creating a parallel execution thread is handled by the PAR
construct in occam. In standalone C this can be performed by the routine call
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Figure 6.3 Five tasks distributed over five processors

create_thread. This is similar under Helios, where the Fork routine is used to
create a thread (or process) within ~ Helios task running in the same processor.

A parallel thread that is to run on another processor must be identified to the
configurer program before an occam or standalone C program is run. Under Helios
the POSIX routine vfork is used to dynamically create a new task, possibly within
a different processor.

The action of waiting for one of a number of events to occur, and then scheduling
a process to run in order to handle that event is handled in occam by the ALT
construct. Under Helios and in standalone C the events are allocated a thread
each, and each thread waits for its event to occur. When an event takes place the
corresponding thread sets a global value to indicate what is happening, and uses a
semaphore to wake up a central thread. This is similar to the UNIX approach of
using a select mechanism to await an I/O event on a number of different channels,
although by having multiple processes the event can come from a timer, I/O or the
transputer's EventReq input.

6.7 UNIX

In many transputer applications the UNIX operating system would seem to be the
immediate and obvious choice. UNIX is widely used in workstations and in other
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scientific and engineering applications. There are a range of languages, other tools
and complete applications ready to run under UNIX. It is widely supported by a
large range of hardware manufacturers from the giants like IBM and DEC right
down to tiny system integrators. It has been available for over ten years and the
basic system is mature and resilient.

There is, however, one major problem with UNIX. This is that UNIX was orig­
inally designed for a single processor and a memory management unit. A good
example of the classic UNIX computer was the PDP-II from DEC, which might
contain a 72 Mbyte disk and 512 Kbytes of RAM. Within this, UNIX would provide
support for five or so user processes plus ten or so system processes, where each
process was limited to 128 Kbytes. A paged memory management unit was used
for two major operations. The first of these was to enable UNIX to roll out to
disk pages of memory belonging to inactive processes. When a process was later
scheduled and attempted to access this non-existent page, an interrupt was caused
that enabled UNIX to swap in the page.

Secondly, the memory management unit provided every process with a private
memory address space, each starting at zero and extending as large as required
subject to the addressing constraints of the underlying processor. In this way the
whole 512 Kbytes of memory in a PDP-II could be shared by map.y processes,
each no larger than 128 Kbytes. Perhaps more importantly the private address
space provided protection between different processes. It was not possible for one
program running as a UNIX process to read or write the memory associated with
any other.

This inter-process protection ensured that UNIX was popular in many academic
institutions, and from there its popularity has spread. Modern implementations
normally use advanced memory management units to provide true virtual me:r;nory,
giving every UNIX process an enormous virtual address space of 16 Mbytes or so,
expanding as required. Memory protection is enhanced so that code areas may be
shared but the individual data areas of each process are protected.

The transputer does not have memory management. There is none provided on
the chip and it is practically impossible to add it externally, as individual instruc­
tions are not restartable. This was not an oversight on the part of the designers; the
transputer is intended to be used in conjunction with other transputers where each
processor has its own private memory. The original transputer design envisaged
an operating system such as UNIX running on a network of transputers, where
each process runs on its own processor. In this kind of system memory protection
between processes is the same as that between processors; such a mechanism is
completely foolproof and would not be subject to the same 'trapdoors' by which
it is possible for malicious programs to corrupt other processes in shared memory
machines.

There are problems with the one process/one processor approach to implement­
ing UNIX. The first is that it is far too expensive, especially when many UNIX
processes exist merely so that they can wake up every hour or so and create an­
other process. In these circumstances it is highly wasteful to allocate a complete
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transputer and external memory just for this job.
The second problem is that there is still no virtual memory. If a program needs

an address space of 16 Mbytes, it needs 16 Mbytes of physical memory connected
to it. If UNIX wishes to run ten user processes, each with a process address space
of 16 Mbytes, then at first glance ten transputers each with 16 Mbytes will be
required.

In theory it is possible to share the memory in a multiple transputer system
by extracting the code and data of a process from a particular transputer, saving
this on disk somewhere and then starting a new process in the transputer with
the large memory attached.. When a suitable time slice has expired, the running
program could be halted, extracted and written to disk and the original program
reinstated. This approach would allow several large processes to run on a transputer
system where there were only a few large memory processors, although the cost of
swapping between processes would be high. We know of no current implementation
that attempts to do this. The maximum size of any process would still be limited by
the maximum amount of external memory connected to a processor in the network.

A third problem concerned with implementing UNIX is that the transputer al­
ready contains many of the mechanisms normally found inside operating systems.
In particular, UNIX contains a kernel responsible for creating and manipulating
processes and for communication between processes. The transputer already has
much of this in its hardware and microcode. A UNIX implementor may decide
to ignore this support and implement another type of process mangement system,
thus wasting the support provided and creating a much slower and less efficient
alternative.

On the other hand, the implementor could decide to delve into the internals of
UNIX, attempting to match the transputer's view of a process with that of UNIX.
Besides the problems involved with retaining compatibility and reliability, UNIX
expects the processor to be able to be switched to a 'supervisor' mode where it can
inspect the state of processes and internal data structures without user processes
running. This is only possible using transputer processes if the 'supervisor' state
is implemented by switching to a high-priority process. This priority is also used
for interrupts so that the interrupt handling latency is extended and the system no
longer reacts in real time.

An alternative approach to providing a UNIX-like operating system for the trans­
puter has been taken in a system known as transIDRIS. The original IDRIS was
a UNIX-like system, similar to UNIX Version 6, which required no memory man­
agement. IDRIS has since been extended to provide a set of POSIX-compatible
calls within an operating system that has been ported to a large number of dif­
ferent processors. The transIDRIS system is the name given to the port to the
transputer.

In transIDRIS the central transputer is taken to be the master, and all extra
transputers are regarded as slaves. Within the master processor runs a nucleus that
contains all of the functions normally provided in a POSIX system. Each slave pro­
cessor contains a cut-down kernel which provides inter-processor communication
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back to the master processor. A process running on a slave processor makes sys­
tem calls that are actually handled by the master processor, with the slave kernel
handling the communication back to the master.

In many ways there are similarities here to the Trollius system, except that
in the case of Trollius the calls are passed back to some other processor running
UNIX, and in transIDRIS the calls are passed back to a master transputer running
transIDRIS.

Another alternative approach has been taken by a US company, Cogent Research.
They have produced a transputer workstation that uses Linda, with PostScript to
handle the graphics. This is all implemented on top of a simple UNIX-like system
that is similar in many ways to the Minix operating system described by Andrew
Tanenbaum (1987). Here the inter-process message passing has been arranged so
that messages can be passed transparently between processors. A function known
as the 'oracle' is in charge of the way in which processes are allocated to processors.

Recent announcements from INMOS would seem to indicate that future versions
of the transputer will provide some form of memory management. It is unlikely
that this will include a full-paged virtual memory system, at least in the short term.
However, in the long term changes to the underlying hardware may well enable the
porting of standard operating systems, such as UNIX System V.



Chapter 7

Transputer Family
Hardware

In this chapter we begin the discussion of the hardware aspects of the transputer.
Although each device has its own particular characteristics there are sufficient sim­
ilarities, even at the input and output signal level, for it to be useful to discuss
transputers as a family, and to consider the differences between devices only when
necessary. As a typical example, Figure 7.1 shows a block diagram of the T805,
one of the most recent transputers, and Figure 7.2 the data paths within the T805.
This will be used as a model against which to compare the other transputers.

7.1 Hardware architecture

The register model of the transputer and its instruction set have been discussed
in detail in Chapters 2 and 3. All transputers have a fast integer processor, with
an instruction set that has evolved over the past few years. Many instructions
operate in a single cycle of the processor clock, and transputers are at present
manufactured with clock speeds of up to 25 MHz, with 30 MHz devices expected
shortly. INMOS have adopted a fairly conservative approach to performance figures,
claiming 10 Mips (million instructions per second) for a 20 MHz processor. All
transputers operate from the same external clock speed of 5 MHz; the processor
clock is obtained from an internal phase-locked loop multiplier.

The processor fetches instructions a word at a time, in order to reduce the effect
of the lower access speed when code is kept in external memory. However, there is
no data cache, and data fetches will be slowed if data are in external memory.

7.1.1 Floating-point unit

The floating-point unit of the T8 series transputers is a 32/64-bit unit, conforming
to the IEEE 754-1985 specification. The FPU contains an evaluation stack similar
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to that of the integer processor, with three registers FA, FB and FC. Each register
can contain either a 32- or 64-bit number, and has a flag to show which is stored.
Its design is the result of a compromise between maximizing overall processor per­
formance and minimizing chip area. Thus the FPU has no flash multiplier or barrel
shifter. Despite this, the performance is quite satisfactory, with single and dou­
ble precision multiplication times of 550 and 1000 nsec respectively, for a 20 MHz
device. The FPU operates concurrently with the integer processor, and thus com­
putation can be speeded up by overlapping integer and floating-point processing.
This is especially impC?r~ant in compiling a language such as FORTRAN, where the
cost of array index calculations can almost be hidden by clever code generation.
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7.1.2 Links

The INMOS link is perhaps the key to the entire transputer system. A link will
provide a simple two-wire connection between transputers that is capable of trans­
ferring data at almost 2 Mbytes per second. The link operates at TTL levels, and
direct connections can be made for distances up to a few inches, suitable for connec­
tion within a circuit board, or between adjacent boards. For longer distances, the
links can be made by matched transmission lines, driven by more powerful buffers,
or transmitted along optical fibers. The link protocol provides no error detection
or correction capabilities, thus'iorequiring that the physical medium that carries the
data be error free, or· that errors be handled by software. Three standard speeds of
5, 10 and 20 Mbps are supported, although not all transputer family devices can
work at all of these speeds.

o 234 5 6 7

Data packet

/ y
Start bit Data byte

"~ Acknowledge packet

Stop bit

Figure 7.3 Link byte format

Data on the link are sent one byte at a time, and each byte must be acknowledged
by the receiving transputer. This acknowledgment indicates to the transmitting
device that it can send another byte. The byte format is shown in Figure 7.3; a
data packet co~sists of a high start bit, followed by a second high bit, and then
the eight bits of the data byte. It is terminated by a single low stop bit. The
acknowledge packet has a high start bit, followed by a single low stop bit. In early
transputers, such as the T212 and T414, the acknowledgment is not sent until the
entire data packet has been received. Thus a minimum of 13 bit times, or 1.3 J.1sec
at 10 Mbps, is required for each byte to be sent and acknowledged. This gives a
theoretical upper limit of 751 Kbytes per second at 10 Mbps and 1.47 Mbytes per
second at 20 Mbps.

The T800 sends the acknowledge packet soon after it has started to receive the
data packet. Thus only 11 bit times are required per byte, giving data transfer
upper limits of 888 Kbytes per second at 10 Mbps and 1.73 Mbytes per second
at 20 Mbps. This is a substantial improvement over the T414, and overlapped
acknowledge has been implemented in all the more recent transputers. Table 7.1
shows measured data transfer speeds between various processors at different link
speeds. This has been measured with a message size of 64 Kbytes, so that the
overhead due to the transfer setup.time is negligible.
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Table 7.1 Measured unidirectional link speeds

Transfer
Link speed
Bit times per byte

T800--?T800
1.69
11.3

T414--?T800
1.36
14.0

T800--?T414
0.90
21.0

T414--?T414
0.80
23.8

Measured with T800c and T414b transputers at a link rate of 20' Mbps, in units of Mbytes
per second

It can be seen that the actual throughput achieved is lower than the theoretical
maximum, especially for transfers that do not use overlapped acknowledge. Data
rates can also be reduced by delays in the physical link, which lengthens the time
taken for the handshake; this is discussed further in Section 7.4 and Chapter 8.

Each of the presently available transputers has four external links, except for
the M212 where two of the links are used in the disk interface, and the low-cost
T400 where only two links are provided in order to save silicon real estate. The
link data are transferred between the link and memory by DMA, with no processor
intervention after the transfer is set up, and therefore communication uses almost
no processor time. The traditional method used to connect transputers over short
distances is with an unscreened, twin-twisted pair cable. This results in a link with a
characteristic impedance of about 100 ohms. The quality of the TTL signal on such
a link gradually deteriorates as longer links are used. Eventually, after 20 inches or
so, the signal becomes too distorted, and errors will occur. As mentioned above,
the INMOS link assumes that the transmission medium is error free. Methods of
connecting links over longer distances are discussed in Chapter 8.

7.1.3 Memory

All transputers have a small amount, 2 or 4 Kbytes, of internal static RAM. This is
very fast, and accessed in one cycle of the processor clock. Thus the bandwidth of
the internal memory varies from 40 Mbytes per second for a 16-bit device running
at 20 MHz, to 120 MBytes per second for a 30 MHz, 32-bit device. This memory
occupies the lowest portion of the address space, where some locations are reserved
for processor functions. On some processors the internal RAM can be disabled
by applying a high level to the DisablelntRam input. When this is done the
corresponding portion of the address space is mapped to external memory. Of
course the processor will not function if this external memory does not exist. As the
internal memory is seldom sufficient for applications programs, each transputer has
an external memory interface or EMI. The 16-bit processors have a non-multiplexed
external address and data bus which can address up to 64 Kbytes of memory. This
interface is optimized for static RAM, and can read and write in two processor
cycles. Thus external memory is just half the speed of the internal RAM, giving a
maximum memory bandwidth of 20 Mbytes per second for a 20 MHz device.

The T801 has a very similar external memory interface, with 32-bit address and
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data buses. This is capable of data transfer rates of up to 60 Mbytes per second
for a 30 MHz device.

The T4 series processors and the other members of the T8 family have a more
complex multiplexed EMI. This is programmable and can generate all the signals
necessary to control dynamic memory devices. Several preprogrammed configura­
tions can be selected, or the interface can be programmed by a string of 36 bits
read from high memory after the processor is reset. The complexity of the inter­
face makes it slightly slower, and an external memory access requires at least three
processor clock cycles. However, it is more common for large memory designs to
require four or even five cycles unless very high speed memory devices are used.
The topic of designing systems with the transputer memory interfaces is discussed
in detail in Chapter 9.

7.1.4 Error signals

Internally transputers have an ErrorFlag flag that is set by certain error conditions.
The Error output reflects the state of this flag, OR'ed with the state of the Errorln
signal, which is provided only on the T805, T800 and T425 processors. If the
HaltOnErrorflag is set, the processor will halt as soon as ErrorR1:ag is set. On early
transputers the ErrorFlag can only be reset by executing the testerr instruction
as ErrorFlag is not cleared by processor reset, thus making it possible to detect
this condition after reset even when Analyse has not been asserted. However, in
the T805 and T425 ErrorFlag and HaltOnError are cleared on reset if Analyse has
not been asserted.

7.1.5 Event handling

Transputers have only a single source of external interrupts, the Event_Req input.
This signal is active high, and when asserted makes the external event channel
ready to communicate with a process. If there is a process waiting for input on the
Event channel, the processor takes EventAck high, and the process is scheduled.
EventAck is taken low by the processor a maximum of one processor cycle after
EventReq is returned low. If the waiting process is at high priority it will run
when any other high-priority processes scheduled before it have completed or are
waiting. Similarly, a low-priority process will run when all high-priority processes
have completed, or are paused, and any other low-priority processes scheduled ahead
of it have either had their time slice or are waiting for I/O. Thus, for predictable
response to interrupts the event response process should be run at high priority
and be the only high-priority process running. If this guideline is followed, then
the interrupt latency - the time before the high-priority process statts running - is
typically 19 processor cycles, and a maximum of 78 cycles, assuming that on-chip
RAM is being used. If the FPU is not being used, then the maximum time is
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58 processor cycles. For a 20 MHz processor the interrupt latency is thus typically
950 nsec, with a maximum of 2.9 J-lsec if the FPU is not being used and 3.9 J-lsec if
it is.

The T805, T801 and T425 proc'essors also have an EventWaiting output. This
is asserted whenever a process attempts input from the Event channel. Thus this
output can be used to indicate to it peripheral that the transputer is ready to
respond to an EventReq input. EventWaiting is taken low as soon as EventAck
goes high.

7.1.6 Reset, analyse and bootstrapping

As with most microprocessors, transputers have an external reset signal that returns
the device to a known state after switch. on. However, an Analyse input is provided
that, if asserted before Reset, causes the transputer to save some of its internal
state. This can be a very helpful debugging tool.

The timing of the Reset signal is shown in Figure 7.4. Reset must be high for
a minimum of eight periods of Clockin, and the clock must be running for at least
10 msec before Reset goes low again.

The Analyse input acts as a debugging aid. If Analyse is taken high the pro­
cessor will halt and save some of its internal state. If the processor is then reset,
the saved state can be examined 'using peek and poke operations down the links.
The time taken for the processor to halt depends on the processes running when
Analyse is asserted, as the processor halts at the next descheduling point of a low­
priority process. This can be as long as three time slice periods after Analyse goes
high.

The actions taken when Reset goes low depend on the type of memory inter­
face and the state of the BootFromRom input. The programmable interfaces of the
32-bit transputers require a configuration period, as described in the memory in­
terface section above; this is not required by the 16-bit transputers or the T801.
After memory configuration the transputer will bootstrap itself from memory if the

I Analyse

I
I

~200nsec

J
Reset----­I

I
I
I
I
I
I
I
I
I
I
I
I
I
~

-II
I

~

3msec

Figure 7.4 Timing of Reset and Analyse signals
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BootFromRom input is high. The bootstrap is assumed to lie at the most positive end
of memory, at Ox7FFFFFFE for 32-bit transputers and Ox7FFE for 16-bit parts. This
location would normally contain a jump to bootstrap code in some other part of the
memory map. The possible contents of bootstrap code are discussed in Chapter 4.

If BootFromRom is low the transputer will wait for messages on its links. If the
first or control byte of the message is greater than 1 then that number of bytes
are read from the link into memory, starting at location MemStart. This code is
then started as a low-priority process. It would normally control the reading in
of a secondary bootstrap, which would load the applications program or operating
system. If the control byte is 0, the transputer expects two more words of data (16
or 32 bits, depending on the processor). The first word is interpreted as a memory
address, and the contents of the second word are written (poked) into memory
at that address. If the control byte is a 1 then the transputer expects a single
word from the link, which is also interpreted as a memory address. Data are read
(peeked) from memory at this location and transmitted down the link. Any link
can be used for the peek and poke process, but each complete operation must use
the same link. At any time the receipt of a message with a control byte of greater
than 1 will cause the transputer to boot from that link.

7.1.7 Clocking

The Clockln input expects a square-wave clock signal at 5 MHz. The clock fre­
quency is independent of the transputer type and processor speed; internal clocks
are generated by a phase-locked loop frequency multiplier. The accuracy required of
the clock is mostly a function of link communication between transputers; this will
not function properly if the difference in clock speeds is more than about 400 ppm.

The processor clock signal is output on the pin ProcClockOut. On the more
recent transputers the multiplication factor, and thus the processor frequency, can
be selected by voltages applied to the three ProcSpeedSelectO-2 pins, as shown in
Table 7.2. Of course, the processor must be a suitable type to run at the processor

Table 7.2 Processor speed selection

Proe Pree Pree Processor Processor
Speed Speed Speed clock cycle
Seleet2 Seleet1 SeleetO speed (MHz) time (nsec)
0 0 0 20.0 50.0
0 0 1 22.5 44.4
0 1 0 25.0 40.0
0 1 1 30.0 33.3
1 0 0 35.0 28.6
1 0 1 invalid
1 1 0 17.5 57.1
1 1 1 invalid
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speed selected. The ProcSpeedSelectnO-2 pins are marked 'Hold to Ground' in
the specification of the T414, which normally runs at 20 MHz. This is the only
significant difference between the pinouts of the T800 and the T414, and means
that a 20 MHz T800 is a pin-compatible replacement for a 20 MHz T414.

7.2 The transputer processors

The development of the transputer processors has been a process of gradual refine­
ment of the instruction set and the external interface, and the correction of design
errors. This development has been paralleled by a gradual speeding up of the pro­
cessors, and a reduction in cost. However, these changes haye been made in a way
that has preserved upwards compatibility of both hardware and software.

The refinement of the instruction set has seen· the addition of quite complex
instructions for block moves and eRC calculations, as well as simple operations like
dup, which duplicates the value at the top of the stack. The most recent transputers
have a set of instructions for supporting debugging; these instructions will prove
extremely useful as debugging transputers has been a very difficult process.

The hardware changes have both speeded up the processors and added useful sig­
nals such as RefreshPending, EventWaiting and processor speed selection. These
changes have been made in a way that preserves pin compatibility with the earlier
T414 and T212 transputers.

7.2.1 The 16-bit transputers

The T212 was the original 16-bit transputer, with 2 Kbytes of internal static mem­
ory; it has now been replaced by the T222 (Figure 7.5) which has 4 Kbytes of in­
ternal memory and an extended instruction set. The T225 is a recently announced
version of the T222 with additional debugging instructions. The M212 disk pro­
cessor (Figure 7.6) is a T212 with a built-in disk interface, 1 Kbyte of RAM and
4 Kbytes of internal ROM containing disk controller firmware. The M212 has only
two external links as the other two are used as part of the disk interface.

The three 16-bit transputers have similar external memory interfaces, described
in detail in Chapter 9. The internal memory occupies the most negative region of the
16-bit signed address space, starting at Ox8000. The lowest locations are reserved
for link and event channels (Table 7.3), but the space above these is available to
users.

External memory space starts at the top of the internal memory and extends
to the most positive address, Ox7FFF, allowing 62 Kbytes of external memory on
the T212 and 60 Kbytes on the T222. The amount of external memory that may
be used with the M212 depends on the mode in which it is run. In Mode 1 the
4 Kbyte internal ROM is mapped into the address space at Ox7000 to Ox7FFF, and
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Figure 7.5 Block diagram of T222

only 58 Kbytes of external memory may be used. In Mode 2 the internal ROM
is not available, and a full 62 Kbytes of external address space is available (see
Table 7.3).

Both internal and external memory are 16 bits wide. The internal memory is ac­
cessed in one cycle of the processor clock, or 50 nsec for a 20 MHz device. This gives
the internal memory a bandwidth of 40 Mbytes per second. The external memory
interface requires a minimum of two processor cycles for each word transferred, thus
an external memory access requires twice as long as an internal access.

7.2.2 The 32-bit transputers

The T414 (Figure 7.7) is the original member of the transputer family. It has a
32-bit integer processor, with 2 Kbytes of internal RAM. This is now being replaced
by the T425, which has 4 Kbytes of internal RAM, the extended instruction set
and debugging instructions.
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The first floating-point transputer was the T800, which also introduced both
overlapped acknowledge and th~ extended instruction set. The T800 will eventually
be replaced by the T805 (Figure 7.1) which has debugging instructions and adds the
EventWaiting and RefreshPending outputs. The T801 is similar to the T805, but
with a different memory interface. Each of these processors is. available in processor
speeds up to 25 MHz with .30 MHz versions expected soon.

The 32-bit transputers have a similar memory map to the 16-bit devices. Memory
addresses are signed 32-bit integers, running from the most negative Ox80000000
to the most positive Ox7FFFFFFF. Internal memory occupies the lowest part of the
address space, and again the bottom locations are reserved for channel I/0, event
and timer handling and register save areas. Extra space is reserved for the use of
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Table 7.3 Memory maps for the 16-bit processors

T212 T222 M212
Mode 1 Mode 2

Base of
internal memory Ox8000 Ox8000 Ox8000 Ox8000

Start of user
memory (MemStart) Ox8024 Ox8024 Ox8024 Ox8024

Top of internal
memory Ox87FF Ox8FFF Ox83FF Ox83FF

Start of external
memory Ox8800 Ox9000 Ox8400 Ox8400

Top of external
memory space Ox7FFF Ox7FFF Ox6FFF Ox7FFF

Internal ROM
Base Ox7000
Top Ox7FFF

the extended instruction set, and thus the start of usable memory (MemStart) is
at Ox80000048 for the T4l4 and at Ox80000070 for the other 32-bit processors.
Internal memory can be accessed in one cycle of the processor clock, giving a mem­
ory bandwidth of 80 Mbytes per second for a 20 MHz device, and 120 Mbytes per
second for a 30 MHz device. The T801 has a non-multiplexed external memory
interface, similar to that of the 16-bit processors. This requires a miminum of two
processor clock cycles for each word transferred, half the bandwidth of the internal
memory. The other 32-bit transputers have a programmable EMI, which contains a
10-bit refres~ counter and can generate all the signals required to control dynamic
RAM devices. This interface is rather slower than that of the T801, and requires
at least three processor cycles for each access. However, three-cycle memory needs
very fast and expensive memory chips and fast external address multiplexing, and
most external memory implementations use four or five processor cycles to avoid
these problems.

7.3 Transputer support devices

One of the important features of the transputer is that it does not need a wide
range of support devices to provide such functions as communications and memory
interfacing. However, INMOS have provided two styles of support device: the
link adaptors to allow the connection of transputer links to more conventional
bus-orientated systems and the link switch, which makes possible the electronic
configuration of the links between transputers.
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7.3.1 Link adaptors

When it is necessary to connect a transputer link to a parallel device, such as
the bus of a conventional microprocessor, a link adaptor may be used. Two link
ad~ptor types are now available, the INMOS COlI and C012. Block diagrams of
these devices are shown in Figure 7.8. The COlI has two modes: Mode 1 which
provides separate 8-bit parallel data I/O ports; and Mode 2 with a single parallel
I/O port. Mode 2 provides identical functionality with the C012 device.
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Figure 7.8 (a) COlI Mode I and (b) COlI Mode 2 and COI2; input SeparateIQ does
not exist on the COl2

7.3.2 COlI Mode I

In this mode the device is configured as a peripheral interface with separate data
input and output ports (Figure 7.8a). The lines IValid and lAck provide a simple
handshake on input to the device. When the data on 10-7 are valid, IValid should
be taken high by the peripheral device. The link then transmits the data on 10-7,
and when the transfer is complete and has been acknowledged, takes lAck high.
When the peripheral device takes IValid low, lAck is taken low by the COlI.

A data byte received by the COlI is loaded into the output port QO-7, and
QValid is then taken high by the device. After the data have been read by the
peripheral it must take QAck high. The COlI will then send an acknowledgment
packet on the link to signal that data transfer is complete. It will then set QValid
low, and the peripheral may take QAck low again. Table 7.4 summarizes Mode 1
COlI.
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Table 7.4 Mode 1 C011

Pin I/0 Function
Linkln in data from link
LinkOut out data to link
lO-7 in data input from bus
lValid in indicates valid data written

from bus into lO-7
lAck out indicates input data

successfully transmitted to link
QO-7 out data output to bus
QValid out indicates valid data available

in output register
QAck in indicates that output data has

been read

7.3.3 COlI Mode 2 and COl2

In Mode 2 the COlI has a bidirectional I/O port, and appears identical in function
to the C012 (Table 7.5 and Figure 7.8b).

The device has four registers that are selected by the inputs RSO and RS1. The
input data register contains the serial data input from the link. If there are valid
data in the register, the data present flag will be set in the read status register
(Figure 7.9a). This input data register is read only; writing to it will have no effect.
The input status register has a data present flag (bit 0) and the input interrupt
enable bit (bit 1) for Inputlnt. The data present flag is set when valid data arrives
in the input data register. It is reset when the data input buffer is read, or by the
Reset input.

Data. written to the output data register· will be transmitted down the serial

Table 7.5 C012 and Mode 2 C011

Pin I/O
Linkln in
LinkOut out
DO-7 in/out
notes in
RnotW in

RSO-1 in

Inputlnt out
Outputlnt out
LinkSpeed in

Function
data from link
data to link
bi-directional data bus
selects the device
select reading from or writing to
the parallel port, used with RSO-1
selects one of the four registers:
RS1 RSO Register
o 0 read data
o 1 write data
1 0 input status
1 1 output status
interrupt on receive data ready
interrupt on transmit data buffer empty
select link speed:
high = 20 Mbps, low 10 Mbps
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7 6 5 4 3 2 o

7 6 5 4 3 2 o

Figure 7.9 (a) COlI Mode I and (b) COl2 status registers

link. The output ready flag in the output status register indicates that the device
is ready for new data. Data will be lost if the device is written to when this flag
is low. The output data register is write only. The output status register (Figure
7.9b) contains the output ready flag and the interrupt control bit for Outputlnt:
The output ready flag is set when the device is reset, and cleared when a data byte
is written into the output data register. The flag is set again when the data has
been successfully transmitted down the link and acknowledged. If the interrupt
control bit is set, then Outputlnt will be taken high.

7.3.4 The C004 link switch

Electronically reconfigurable transputer arrays are made possible by the use of
the C004 link crossbar switch (Figure 7.10). This provides thirty-two inputs and
thirty-two outputs, which can be connected in any configuration. The switch is
programmed by a separate programming link. Like other devices of the transputer
family, the links can run at either 10 or 20 Mbps, but 5 Mbps is not available.

As the bidirectional transputer link requires two wires, two inputs and two out­
puts from the C004 are required for each physical link. Thus-a single C004 can set
up sixteen connections between transputers. This allows all the possible intercon­
nections of links in eight transputers, two link connections between each of sixteen
transputers, and one link between each of thirty-two transputers. The internal
structure of the C004 (Figure 7.10b) shows that each output has associated with
it a 6-bit latch. The bottom five bits of this latch contain the number of the input
to which this output is connected; the most significant bit indicates whether or not
this connection has been made.
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The C004 is programmed (see Table 7.6) by byte sequences sent down the con­
figuration link. The reset command removes all connections, and sets all the C004
outputs to the low, inactive, state. The connection commands (0 and 1) load the
internal latches with the input number to which the output is to be connected.
However, these connections are not made until the setup command is received.

The simple connect command, 0, sets up a connection between one input and one
output. For example, to program the C004 so that the only connection is between
input 2 and output 6, the following byte sequence is required:

4
026
3

reset C004
specify connection
activate the C004

The link connection command, byte 1, sets up two connections within the C004.
This is useful if the transputer links are wired so that the link inputs and outputs of
each link are connected to the same numbered C004 output and input. For example,
Figure 7.11 shows link 0 of two transputers, A and B, wired to C004 ports 5 and
10. To connect these links we may either use two simple connect commands:

o 5 10
o 10 5

or one link connect command:

1 5 10

The order of the links in the second command string is immaterial, as a bidirectional
connection is made.

The state of the C004 connections can be read by the Enquire command. When
sent with an output number, this command returns a byte containing the inp:ut
number to which this output is connected; the top byte of the integer is set if the
output is connected, reset if it is disconnected.

The delay between input and output of the C004 is about 1.75 bit times, re­
gardless of whether the links are run at 10 or 20 Mbps. Table 7.7 shows some
measurements on data transfer rate made through C004 links.

Table 7.6 C004 programming commands

Command
o [input] [output]
1 [link1] [link2]

2 [output]
3

4

5 [output]
6 link1 link2

Function
connect [input] to [output]
connect [link1] input to [link2] output
and [link2] input to-[link1] output
return the input to which output is connected
sent at the end of every command sequence
to activate the device
reset the device. All outputs are disconnected
and held low
output [output] is disconnected and held low
disconnects [link1] and [link2]
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5
LinkAO 1-------...5 C004 101--------i~ LinkBO

10

Figure 7.11 Two transputers connected to a C004

Table 7.7 Data rates between transputers connected
through various numbers of C004 link switches

Data path

-T800 to T800
T414 to T800
T800 to T414
T414 to T414

Number of link switches
o 1 2
1.69 1.35 1.07
1.36 1.06 0.89
0.91 0.76 0.68
0.80 0.69 0.60

Measurements made with 20 Mbps links, on 20 MHz T800c
and T414b transputers, and shown in units of Mbytes per second

It is clear from these measurements that the link data rate is reduced by about
15-20 percent by a single C004, even for those transputers that have overlapped
acknowledge. Adding a second C004 reduces the data rate to about 70 percent of
its original value.



Chapter 8

System Integration

The previous chapter described the overall architecture of the transputer range.
This chapter is concerned with some of the details of building a system based on
transputers.

At first glance this may seem very simple, just a case of adding some memory to
various transputers and connecting up the links.

There are, however, a number of points to be considered. For example, the
distance between each transputer will affect the link buffering scheme and the max­
imum data rate available. Different manufacturers have used different types of reset
and analyze schemes, and these are rarely compatible.

This chapter does not intend to act as a guide to actually building transputer
systems. It doe~ attempt to highlight some of the design decisions required, and
various solutions to some of the problems. It is also intended to indicate whether
certain products from one manufacturer are compatible with those from another.
In order to perform this role the last part of the chapter describes some of the
available transputer hardware; this is meant to show the range available at the
time of writing (December 1989) and is not to be taken as either an exhaustive list
nor as a particular recommendation.

8.1 Connecting transputer links

At the heart of any multi-transputer system lie the links that transfer data from
one processor to another (see Figure 8.1). These links operate a very simple byte
protocol, where each byte transmitted is acknowledged by the receiving transputer,
and there is no hardware error detection or correction. It is important therefore that
the link connections should be made with a reliable physical medium, operating well
within its specification. For very short distances direct <?onnection is satisfactory,
but at longer distances attenuation and reflections affect the magnitude and shape
of the received signals. Thus more sophisticated methods have to be used.

120
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Figure 8.1 Link waveforms

The published specifications affecting the link waveform are shown in Table 8.1;
these include typical values for the rise and fall times of the link outputs. There is
one additional parameter, the link speed itself. The link bit rate is generated by
multiplying up the Clockln signal, and for proper operation of the links the Clockln
frequency of two connected transputers should not differ by more than 400 ppm,
giving a requirement that each individual clock should be stable to 200 ppm. This
is not a very severe requirement, and is easily met by standard crystal oscillators.

Table 8.1 Link waveform specifications

Symbol Parameter Min. Nom. Max. Units
TJQr LinkOut rise time 12 20 nsec
TJQf LinkOut fall time 5 10 nsec
TJDr Linkln rise time 20 nsec
TJDf Linkln fall time 20 nsec
TJQJD buffered edge delay 0 nsec
TJBskew variation in T JQJD 20 Mbps 3 nsec

10 Mbps 10 nsec
5 Mbps 30 nsec

CLIZ Linkln capacitance @ 1 MHz 7 pF
CLL LinkOut load capacitance 50 pF
RM series resistor for 100 ohm

transmission line 56 ohms
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Figure 8.2 Data rates in Mbytes per second vs transputer separation for two T800c
transputers

8.1.1 Link data rate

As each byte of a message is individually acknowledged, a delay in the handshake
will reduce the data rate of the link. We have seen this when data are sent through
C004link switches (Table 7.7), and the same effect occurs when data are transferred
on long physical connections. Figure 8.2 shows how the calculated data rate varies
with connection length for the three link speeds. Here we have assumed that two
T800c transputers are communicating along a cable with a signal velocity 66 percent
of the speed of light. A striking feature of these results is that with increasing
distance the advantage of using the higher bit rates becomes almost negligible~

This is because the limitation on data rate is the round trip delay, rather than
the bit rate. It is much more convenient to use the 5 Mbps bit rate with its less
severe skew requirements when designing link connections over 500 yards or so.
For very long connections it may be necessary to use a different link technology,
acknowledging each message rather than each byte.
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8.1.2 Matching

Short links can simply be made by directly connecting the links of two transputers.
However, this method breaks down when the connections are sufficiently long for
transmission line effects to become important. This occurs when the propagation
time along the link is about one-third of the rise or fall time of the signals trans­
mitted along it. The transputer parameters in Table 8.1 show that the shortest
transition of LinkOut is fall time, which can be as little as 5 nsee for a lightly
loaded output. Thus tra~smission line effects will be noticed for propagation de­
lays of more than about 2 nsec, which corresponds to a length of 16 inches for a
cable which has a signal velocity of 66 percent of the velocity of light. This is the
origin of the rule of thumb that direct link connections can be made for distances
up to 12 inches or so.

Reflections occur on a transmission line wherever there is a discontinuity in
its characteristic impedance, and can be reduced by using a constant impedance
transmission medium, and by matching the link output to this. This is most simply
done by a series matching resistor (Figure 8.3), which gives a more efficient coupling
of the link signal into the line, and also reduces the effect on the link output of
reflections from the receiver end. The link output can be matched to a 100 ohm
transmission line by a resistor of about 56 ohms.

However, some reflections from the receiving end will still reach the link output,
and if received during a link signal transition may cause improper operation of the
link hardware and loss of data. To avoid this possibility, matched link connections
should have a round-trip propagation time of less that about 0.8 bit times, so that

LinkOut Linkln

Transputer 1 Transputer 2

Linkln LinkOut

(a)

56n 1oon transmission line
LinkOut Linkln

Transputer 1
56n Transputer 2

Linkln LinkOut

(b)

Figure 8.3 Direct and matched link connections (nominal value shown for series match­
ing resistor)
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the reflections of each signal edge are received before the next edge is transmit­
ted. This delay time corresponds to a cable length of approximately 3.5 yards at
20 Mbps, 7 yards at 10 Mbps and 14 yards at 5 Mbps.

8.1.3· Link buffering

When longer connections are to be made the link signals must still be transmitted
along constant-impedance media, but must also be buffered both to combat atten­
uation and to avoid the effects of reflected signals on the link output. In designing
buffering schemes it is important to meet the rather strict skew requirements of
the link signals (Table 8.1). Skew is a, distortion of the received waveform caused
by changes in the propagation delay of the transmission system. It is often due
to variations in the rise and fall times of buffering devices, and can most easily be
avoided by using high-bandwidth buffers with short propagation delays.

For short distances links can be buffered by single-ended output devices such as
FACT buffers (Figure 8.4a). These have good skew characteristics, but are difficult
to match closely to transmission lines. They are also more sensitive to noise than
differential drivers and receivers. The use of FACT appears satisfactory up to about
20 yards.

For longer distances differential drivers and receivers are recommended. The
RS422 standard (see Figure 8.4b) provides specifications for data r~tes up to 10
Mpps over twisted pair cable. However the skew specifications of RS422 are not very
tight, and the standard does not apply to the 20 Mbps rate. Despite these potential
problems the successful use of RS422 devices has been reported at distances of
10 yards or so for 20 Mbps and 30 yards at 10 Mbps.

Differential ECL buffers (Figure 8.4c) provide very high bandwidth with tight
skew specifications, and are suitable for 20 Mbps links. Meiko (1987) has proposed
a standard for 20 Mbps link connections using the 10H124 quad TTL to ECL buffer
and the 10H125 quad ECL to TTL receiver and 100 ohm twisted pair cable. Among
the disadvantages of EeL are the a~ditional -5.2V power supply required and the
general difficulty of using ECL devices.

8.1.4 Optical fibers

INMOS have described a 5 Mbps fiber optic link that will work at distances of
500 yards or more. From Figure 8.2 it is clear that there is very little advantage in
using the higher bit rates at suc~ ,distances. This is fortunate, as the skew inherent
in the optical medium and the d~vices that drive it becomes far too large for correct
operation of links at high bit rates. Table 8.2 shows a summary of link buffering
techniques and their characteristics.
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Table 8.2 Link connection techniques

Technique
Direct
Matched

FACT buffers
RS422

ECL buffers
Fiber optics

Max. distance
12 in.
14 yards
7 yards
3.5 yards
20 yards
40 yards
20 yards
20 yards
>1000 yards

Remarks
cheap
5 Mbps
10 Mbps
20 Mbps
potential noise problems as single-ended
at 5 Mbps
at 10 Mbps
at 20 Mbps
bit rate limited by skew

FACT
device 50n transmission line

LinkOut ...... Linkln......
/7}l7

Transputer 1 Transputer 2

LinkIn .A LinkOut
/7J77

~

(a)

LinkOut 1--r::::L:x>oocooc::>o<::>o<:>o<>c::tl,;>---1 Linkln

Transputer 2

LinkOut

Transputer 1

Linkln ",--O;=:>oc<x:>o<:><x>O<><XX:::JO

(b)

LinkOut I--O!:::x>o<x><x><:><><::><>o<>cr::;~-I Linkln

Transputer 1 Transputer 2

Linkln J--O;;:D<:>OC::>O<::><><:>OC:>OC:::><>Qo-~ LinkOut

(c)

Figure 8.4 Link buffering techniques: (a) FACT buffering with series matching resistor;
(b) RS422 drivers and receivers connected by lOOn twisted pair; (c) ECL drivers and
receivers connected by lOOn twisted pair
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8.2 Reset, analyse and error schemes

For a multi-transputer system to be reliable it must be possible to discover when a
processor fails, to investigate the causes of that failure, and to restart the offending
processor if the error is not too serious. These functions have to be carried out by
means of the Error, Analyse and Reset signals, and the links. The best way of
connecting these signals in a large system of transputers is not obvious, and several
attempts have been made to find a satisfa.ctory solution.

8.2.1 Subsystem reset

In the original INMOS scheme each transputer board has three system services
ports: up, down and subsystem, which are used to connect boards together in a
hierarchy (Figure 8.5). The up port receives notReset and notAnalyse signals
from its ancestor in the hierarchy, and transmits these signals on to its siblings and
children through the down and subsystem ports respectively. The processor on the
board can also assert subsystem notReset and notAnalyse, normally by writing
to special locations in its external memory space. These signals are ORed with the
corresponding signals received at the up port. Thus any processor can assert Reset
or Analyse simultaneously for all processors below it in the hierarchy, and the host
can reset the whole system.

Error signals are propagated· in the opposite direction, down notError is ORed
with the on-board error signal and transmitted through the up port. Subsystem
notError is not automatically propagated, but can be read by the on-board pro­
cessor, which may then assert its own Error output. Thus each processor can be

Figure 8.5 Up, down, subsystem
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aware of the error state of all of the processors below it in the hierarchy.
It is clear that ,in this reset scheme it is impossible to reset or examine the error

state of an individual processor, except for an isolated processor at the bottom of
the hierarchy.

8.2.2 Distributed reset

Parsytec have introduced a distributed reset scheme (see Figure 8.6) where the
concept of the link is extended to include bidirectional reset signals. A transputer
can reset any transputer'to which it is connected by such an extended link. Each
transputer has an error latch, mapped into its external memory space, which serves
to store the .origin of any error. Three kinds of error can be detected: internal
errors that assert the transputer's Error output, memory parity errors, or address
errors caused by the transputer attempting to access non-existent memory. When
any error occurs Analyse is asserted, which causes the offending transputer to halt.

A processor connected to the halted transputer can now reset it, and use peek
operations along the link to determine the cause of the error. It may then attempt
to reboot the transputer over the link.

8.2.3 Bus systems

One of the earliest large-scale commercial transputer systems was the Meiko Com­
puting Surface. The architecture of this product is outlined in Section 8.6.1; here
we are concerned only with the'reset scheme. Each transputer board in the Com­
puting Surface is connected by a proprietary interface device to the Supervisor Bus.
This is an 8-bit parallel bus, and is controlled by a transputer board known as the

VG - LinkO 11(-' LinkO
Link 1RS422 11("

11(-' Link2
VG - Link1 11(-' Link3 T4141T800 DRAM

RS422 interface
4 Mbyte

VG - Link2 Local reset DRAM
RS422

VG - Link3
0
1

RS422 2

20 Mbit/s 3
Data/reset

Figure 8.6 Distributed reset
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Local Host. The Supervisor Bus has several functions:

• It acts as a route for debugging messages.
• It supports software and hardware for failure detection and reporting.
• It controls electronic configuration of the inter-processor links.
• It provides a reset and analyze function for individual transputers or for the

whole or sections of the machine.

This clearly provides a very general reset and analyze mechanism, but at the cost
of quite a complex bus interface at each processor.

The Atari Transputer Workstation also uses a bus system for reset control. How­
ever, this is a very simple system with only two wires called fast and slow, which
are daisy-chained through the processors. Its position on the daisy-chain assigns
each transputer a small integer address. When a transputer is to be reset, slow is
asserted and fast pulsed a number of times. A circuit attached to each transputer
counts the number of times that fast is pulsed before slow is deasserted, and resets
the transputer if this number corresponds to its address. The protocol supports the
assertion of Reset and Analyse, either together or separately, for a single processor
or for all processors together. The whole of this logic can be implemented in a single
PAL.

8.3 Transputer modules and motherboards

Although the transputer is a useful component in its own right, there are certain
disadvantages in constructing equipment with 'raw' transputers. For one thing,
the amount of on-chip memory is insufficient for the majority of applications. The
transputer must be mounted on a suitable printed circuit board (PCB), power and
ground supplied at low impedance with sufficient decoupling, ~nd the memory in­
terface designed. To avoid many of these problems the transputer module or TRAM
was developed. A TRAM consists of one or more transputers mounted on a PCB,
with memory and perhaps other interface circuitry (see Figure 8.7). The TRAM in
turn is mounted on a motherboard that supplies power and distributes the clock;
many motherboards also have one or more C004 link switches for reconfiguration of
the TRAM-mounted transputer links. INMOS and other companies now supply a
wide range of TRAMs and motherboards, and various standards have been defined.

8.3.1 Module architecture

The basic size of a TRAM is 1.05 x 3.66 inches; this is referred to as size 1. Larger
and smaller TRAMs (Table 8.3) can be constructed based on this basic module,
most commonly by increasing the overall width. Sixteen connections are made to
the TRAM in two groups of eight, one at each end of the module.
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Figure 8.7 TRAM geometry
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Table 8.3 TRAM sizes

Size

1/4
2/4
1/2
1
2
4
8

Distance between
pin rows (in.)
0.6
0.6
1.5
3.66
3.66
3.66
3.66

Width·
overall (in.)
1.05
2.15
1.05
1.05
2.15
4.35
8.75

The signals brought to the pins of a TRAM are kept to a minimum: the power
pins Vee and GND; Reset, Analyse and notError; four links; and LinkSpeedA and
LinkSpeedB to select the speed of the links. If both LinkSpeedA and LinkSpeedB
are low the links will operate at 10 Mbps, if they are both high the links operate
at 20 Mbps. Other combinations are reserved for future enhancement, and it is
assumed that 5 Mbps will not need to be used. The Error pin of the transputer
is inverted at the notError TRAM output, and driven by a open collector or open
drain circuit. Thus the notError signals of several modules may be wire ORed
together. This means that the Errorln pin is not used on transputers mounted on
modules, and should be held to ground. Table 8.4 gives the TRAM pinouts.

It may be useful for a TRAM to control a group of other transputers or TRAMs.
Conventionally this group is known as a subsystem, and three subsystem con­
trol signals are defined: SubSystem Reset, SubSystem Analyse and SubSystem
notError. Pin positions have been allocated in the TRAM specification for these
signals, positioned inside pins 1, 2 and 3 of the standard module (Table 8.5).

The subsystem is controlled by reading and writing at memory locations above
memory address zero. A module may have multiple subsystem outputs, and if so

Table 8.4 TRAM pinouts

Link20ut 1 16 Link3In
Link2IN 2 15 Link30ut
Vee 3 ~4 GND
Link10ut 4 13 LinkOln
Link1In 5 12 LinkOOut
LinkSpeedA 6 11 notError
LinkSpeedB 7 10 Reset
Clockln 8 9 Analyse

Table 8.5 TRAM subsystem pinouts

Pin Signal
1a SubSystem notError
2a SubSystem Reset
3a SubSystem Analyse
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Table 8.6 TRAM memory map for 32-bit transputers

Address
Ox7FFFFFFF
Ox7FFFFFFE

}
OxOOOOOOOC
Ox00000008
Ox00000004
OxOOOOOOOO
Ox8FFFFFFF

}
MemStart

}
Ox80000000

Description
top of address space
ROM bootstrap

peripheral space

parity control
SubSystem Analyse
SubSystem Reset

user RAM, internal and external

reserved internal RAM space

their control locations are separated by 16 bytes. The base address is OxOOOOOOOO
for 32-bit transputers, and a write into this location sets SubSystem Reset to reflect
the state of bit 0 of the byte written. A read from this location returns the value of
SubSystem Error in bit o. Location Ox00000004 is used for SubSystem Analyse,
a write here asserts this signal if bit 0 is 1, deasserts it if bit 0 is 0 (see Table 8.6).
Note that these locations can often be written to accidentally in a language such
as C, where 0 is used as a null pointer value. The effect may be to reset another
transputer, leading to a very subtle bug.

TRAMs .may implement memory parity checks. If so, the parity logic is con­
trolled through a register at address Ox00000008 on 32-bit transputers. Writing
a 1 to bit 0 of this register should enable parity checking, writing a 0 should disable
it. Reading the byte returns the status of the parity check. Bit 0 is set if a parity
error has occurred, bits 1 and 2 indicate in which byte it has occurred, and the
other bits may contain information showing which memory bank is in error. It is
up to the designer and programmer to decide what action should be taken when
a parity error occurs, but normally notError will be asserted, and data transfers
from the offending transputer halted.

8.3.2 Typical TRAMs

A size 1 TRAM can contain a transputer and about eight memory devices. At
the present level of technology, this corresponds to 1 Mbyte of dynamic memory,
or around 256 Kbytes of static RAM. However, as memory densities increase, the
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amount of memory available on a size 1 TRAM will increase to 4 or 16 Mbytes.
The present INMOS TRAMs are shown in Table 8.7. Several third-party manu­

facturers also produce TRAMs, and although some manufacturers compete in the
compute-only market, most have preferred to produce special-function TRAMs,
such as graphics and peripheral interfaces. A list of TRAM manufacturers is given
in Appendix C. It is now possible to construct a complete transputer workstation
using only TRAMs and a suitable motherboard.

8.3.3 Motherboards

The minimum function of the motherboard is to provide power and clock distribu­
tion, to make link connections between modules and to OR together the notError
signals from the modules into a board Error signal. Additionally, many mother­
board designs have C004 link switches on board, and provide external interfaces,
for example to the IBM PC or VME buses.

INMOS has described a standard link configuration for motherboards, shown in
Figure 8.8a. This has the module sites connected in a pipeline arrangement, with
link 2 of each module wired to link 1 of the next. Link 1 of the first module and

Table 8.7 INMOS TRAMs

Compute only
Part .Transputer
no.
B401 T414-20, T425-25 or T800-25
B402 T222-20
B403 T414-20, T425-20, or T800-20
B404 T414, T425 or T800
B405 T800-20
B410 T801
B411 T425-20 or T800-20
B416 T222
B417 T800

Memory Subsystem Size
size/ cycles
32K/3 SRAM no 1
8K/2 SRAM no 1
1M/3 DRAM yes 4
32K/3 SRAM, 2M/4 DRAM yes 2
8M/5 DRAM yes 8
160K/2 SRAM no 2
1M/3 DRAM no 1
64K/2 SRAM no 1
64K/3 SRAM, 4M/4 DRAM yes 4

Special application
Part Application Description
no.
B408 graphics

B409 graphics

B419 graphics

B407 ethernet
B422 SCSI
B418 R01tI
B421 GPIB
B415 link
B420 vector

T800-20, 1M/4 DRAM, 1.25M/4 dual port RAM (use with B409),
max. resolution 1024 X 768, size 8
T222-20, video timing generator, color lookup tables (use with B408),
max. dot rate 64 MHz, size 8.
T800-20, G300 color video controller, 2M/4 DRAM, 2M/4 VRAM,
max. video resolution 1280 X 1024, 8 bits/pixel, size 2
T222-20, 64K/3 SRAM Am7990 lance
T222-20, 64K/2 SRAM, subsystem, target/initiator, size 2
T222-20, 256K Hash ROM, subsytem, size 2
T222-20, 48K SRAM, 8K EEPROM, GPIB controller, size 4
RS422 buffer for 4 links, reset and system services, size 1
vector processing TRAM. T800-25, 1M DRAM, 256K dual-port
SRAM, vector processor, size 2
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Figure 8.8 Motherboard architecture

link 2 of the last are taken off the board as the PipeHead and PipeTail respectively.
Thus several boards can be connected together to form a longer pipeline (Figure
808b). Links 0 and 3 of each module are taken to a C004 link switch, of which
the board may have more than one. Each C004 is controlled by a T212 (or T222)
transputer, and these configuration transputers are also linked into a pipeline from
board to board (Figure 8.8c).

Figure 8.9 shows the complete block diagram of the B008 IBM PC motherboard.
This has ten module sites, arranged in the standard pipeline through links 1 and 2.
Links 0 and 3 of each module are taken to a single C004 link switch, so that
any transputer can be connected to any other through two links. The B008 is
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Figure 8.9 BOOB block diagram

interfaced to the PC bus with a C012 link adaptor. This link can be patched into
the PipeHead, into module 0 link 0, or into any other module via the link switch.
The link switch itself can be reset and configured by the on-board T222 controller.

The B012 double eurocard motherboard has a rather different link interconnec­
tion scheme (see Figure 8.10). This board has sixteen module sites, arranged in the
standard pipeline. There are two C004linkswitches with the link 3 outputs and the
link 0 inputs connected to one C004, and the link 3 inputs and the link 0 outputs
connected to the other. Thus link 3 on any transputer can be connected to link 0
on the same or any other transputer, the connection going once through each of the
C004s. Clearly, relevant connections of the C004s must be configured identically for
this to work. The link delay between two transputers is not increased by using the
two C004 devices, as the link signals go through each only once. Spare C004 inputs
and outputs are taken to the edge connector to make interboard connections.



PC and other boards 135

~ t Edge connector links ~ t
IMS C004 (lC2)

('IJ ('IJ

-S ('IJ 8 ca0 .s
,~~ ~

~s:: .s
~ ....::l ....::l

Linklnl LinkOut2 Linklnl LinkOut2
"""

LinkOutl Slot 0 Linkln2 LinkOutl Slot 15 Linkln2
.....

~) 0 0 0

8 l::= 8~ ~

~
.5 ~

~ W' .....:l .s
....::l ....::l

IMS C004 (lC3)

f t Edge connector links f t
Figure 8.10 Link interconnections on the B012 motherboard

8.4 PC and other boards

Shortly after INMOS produced the first transputer they announced a range of
board-level products that they hoped would enable transputer users to get starte1
quickly on application development. Initially four board types were produced: the
BOOI with a T4l4 and 32 Kbytes of static memory; the B002, a T4l4 with 2 Mbytes
of dynamic RAM and two RS232 ports; the B003, four T4l4 each with 256 Kbytes
of memory; and the B004, a PC bus board with a T4l4 and 2 Mbytes of dynamic
RAM. This last proved immensely popular as it was able to run the Transputer
Development System in a low-cost environment. The design was published and this
led to a large number of imitations and compatible products produced by third­
party manufacturers.

Since then the range of transputer boards has grown, until now there are more
than one hundred different types available. In Appendix C we have attempteq to
list some of the presently available transputer products, both self-contained boards
and TRAMs. This list will of course be found to be incomplete, but should act as
a rough guide to what is available and from whom.
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8.4.1 PC boards

As mentioned above, the B004 was the original PC board. It had a slow T4l4­
15 processor and was interfaced to the PC bus with COOl link adaptor (now an
obsolete device). The PC bus interface was quite slow, and did not use DMA, but
it was adequate to run the TDS. INMOS have since replaced the B004 with the
B008 TRAM motherboard (Figure 8.9).

Many new boards have now been produced, compatible with the B004 standard
but with additional features such as faster processors, additional memory and DMA
bus interfaces. With the present level of technology it is possible to put onto a single
PC board a single transputer with up to 16 Mbytes of memory, or up to seventeen
transputers, including ohe with sufficient memory to run the TDS or a compiler.
This represents an enormous scaling up of the processing power of the simple PC,
and various software products have been brought out to take advantage of this
hardware. A good example is the Racal-Redac Bloodhound autorouter, which is
sold as an add-on to their Cadstar PC-based PCB design system. The package
includes the autorouter software, the Helios operating system and a T800 PC card.

The other area of great growth has been in graphics boards. The T800 is a
reasonably good graphics processor in itself, and has also been combined with a
high-speed graphics processor in PC boards.

8.4.2 Other boards

As well as PC products a large range of transputer boards has been developed to
other bus standards, and for standalone transputer systems. For those dissatisfied
with the PC environment several manufacturers have produced boards for the Sun
range of workstations, as well as VME bus boards that can be used in Suns or other
VME systems. Most of these boards have TRAM sites, and so can be populated
with INMOS or other manufacturers' TRAMs.

An interesting range of boards is produced by Parsytec. Their Megaframe system
consists of a number of products designed for industrial control applications. There
are processor boards with up to 4 Mbytes of memory, interface, I/O and video
boards. These are interconnected by a common backplane that carries link and reset
signals, using the distributed reset scheme described in Section 8.2.3. However, each
of these boards can also be used in one of a number of standard backplanes, e.g.
VME, PC, Siemens SMP and Kontron ECB, by means of bus bridgehead modules
that sit between the board and the backplane.
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8.5 Workstations

The PC was the original transputer workstation, and perhaps the majority of trans­
puter development systems are now PC based, running the TDS or an operating
system such as Helios. However, there have been some attempts to build completely
new workstations based on transputers, but perhaps using other processors for I/O
operations.

8.5.1 The Atari Transputer Workstation

The Atari Transputer Workstation (ATW) was first produced in 1988. The heart
of the system is a T800 with 4 Mbytes of memory, 1 Mbyte of dual-ported video
memory, and a bit blitter. The system memory is expandable up to 16 Mbytes.
The T800 is connected by one link to a Motorola 68000 I/O processor, which pro­
vides access to keyboard, mouse and disk. The other three links can be connected
to 'farmcards', containing four T800 transputers each with 1 Mbyte of four-cycle
memory. Up to three farmcards can be accommodated in the standard box, with
an electronic link configuration board containing two C004 link switches. Expan­
sion boxes are available for larger systems with further electronic link configuration
modules. The ATW runs Helios and X Windows as the standard user interface.

8.5.2 Cogent Research

The US company Cogent Research has produced a transputer workstation series
called the XTM. Each workstation contains two T800 transputers, a graphics dis­
play and a keyboard. Connections are provided via buffered transputer links to a
central 'node. This contains up to sixteen transputers and a hard disk, along with
Nubus connections for expansion boards.

The system software is written in Linda, implemented on top of a cut-down
version of UNIX called QIX. The graphics interface is driven via Display PostScript
and a version of the News windowing system.

8.6 Large-scale transputer systems

Although INMOS originally designed the transputer for process control purposes
it has proved a powerful building block for designers of supercomputer systems
using multiprocessor architectures. The built-in links make the design of such
large-scale computers reasonably simple, although large systems bring their own
set of problems. Meiko was the first company to produce large-scale commercial
transputer systems.
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8.6.1 The Meiko Computing Surface

A Computing Surface (Chesney and Ganz, 1989) consists of a number of computing
elements connected by the link network and a supervisor bus. Each element (Figure
8.11) has one or more transputer processors, memory, link and supervisor bus in­
terfaces, and perhaps some element-specific hardware. The elements are controlled
by the Local Host, a transputer processor which is the master of the supervisor
bus, controls the link network and interfaces the system to the host processor.

A recent product is the In-Sun Computing Surface, which has all the components
of a computing surface on a single Sun board.

(a)

Memory
Element­
specific
function

Supervisor
bus

(b)

Link network

Figure 8.11 Computing Surface element architecture
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8.6.2 The Supernode

A European Community ESPRIT I project in the mid-1980s provided some of the
funding for the development of the T800 transputer and also supported a consor­
tium of universities and commercial organizations in the development of the 'Super­
node', a seventeen transputer building block for supercomputers (Harp, 1987; Harp
et ai, 1987). Two commercial products emerged from this project, the Telmat
T-node and the Parsys SN series systems.

The Supernode (see Figure 8.12) contains sixteen worker transputers with a
control transputer. All links from all processors are connected to a programmable
electronic sw'itch. Each transputer is connected into the proprietary control bus
system, implemented as a gate array. This bus has a master-slave protocol with
the control transputer as master of the bus. It can reset, analyze, examine the error
state and reboot each transputer.

The hardware modules consist of worker boards of eight transputers with various
memory sizes, e.g. 256 Kbytes static, 1, 2 and 4 Mbytes dynamic. There are
memory server modules, consisting of a T414 with 16 Mbytes, and disk servers
with a T414, 16 Mbytes memory and SCSI and floppy disk interfaces.

8.6.3 Parsytec Supercluster series

The Supercluster has a hierarchical cluster-oriented architecture with the T800
or T801 processing element at the lowest level. Sixteen processing elements and

Worker
transputers

A Disk
server

Control bus

Link switch

Switch
control

Control transputer

To higher-level
control or host

Figure 8.12 Supernode architecture
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a network configuration unit are combined to form a computing cluster (Figure
8.13). Four computing clusters form the smaI1\est Supercluster, which also has a
System Services Cluster containing mass storage controllers, and user interface and
applications-specific devices; see Figure 8.14. The Supercluster has two additional
network control units for communication between the computing clusters. Users'
workstations can also be connected into the system.

The network control unit (Figure 8.15) consists of T212 and T414 control pro­
cessors which drive two 96 x 96 configuration matrix switches. Using the Parsytec
distributed reset scheme, each link has both data and reset signals, and so one ma­
trix switch configures the data line while the other configures the reset lines. The
data switches use C004 link switches, whilst a proprietary device is used for reset
signal switching.
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The mass storage controllers consist of a T414 processor with 4 Mbytes of mem­
ory and a SCSI interface. There can be up to four of these controllers in each
system services cluster, daisy-chained through communications links. Superclus­
ter machines are compatible with the Megaframe series of boards described above,
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which provide applications-specific hardware and also access to other buses through
bridgehead devices.
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Chapter 9

Transputer Hardware
Design

This final chapter provides a further level of detail in the hardware design of trans­
puter systems. We describe some of the different options available when adding
external memory to both 16-bit and 32-bit transputers. The remainder of this
chapter describes a design for a complete size 2 TRAM.

9.1 Sixteen-bit transputer memory interface

The T212, T222 and M212 have a conventional 16-bit memory interface optimized
for static memory access. The interface has separate address and data buses, and
two byte-write strobes which specify which byte is to be modified in write op­
erations. A chip enable signal selects external memory for both read and write
operations, and a wait input can be used to lengthen the memory cycle. All timing
of the interface is referred to the processor clock output ProcClockOut. Table 9.1
summarizes the 16-bit interface signals.

One unusual feature of the interface is an input signal MemBAcc, which can be
used to indicate that byte-wide memory is connected. If this signal is asserted at
the beginning of a memory cycle, the cycle is split into two byte read or write cycles,

Table 9.1 16-bit memory interface signals

Pin
MemAO-15
MemDO-15
notMemWrBO-1
notMemCE
ProcClockOut
MemBAcc
MemWait

I/O
out
in/out
out
out
out
in
in

Function
16-bit external memory address
16-bit bidirectional data bus
byte-write strobes
chip enable for memory
processor clock output
specifies byte-wide memory
delays the memory cycle

143
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using AO to indicate which byte is to be accessed. If all of the external memory is
byte-wide, then MemBAcc can be wired permanently high.

The normal memory cycle takes two cycles of the processor clock, and is divided
into four Tstates, Ti to T4 (Figure 9.1), each half a period of ProcClockOut long.

At the beginning of a read cycle, address data are placed on the address bus,
are valid at the start of Ti, and remain valid until the end of T4. During Ti,
notMemWrBO and notMemWrBi go high (inactive), followed by notMemCE going low
(active). The memory data must now be put onto the bus, at a specified setup time
before the data are latched during T3. Data must be removed from the bus by the
end of T4. If the memory devices cannot meet the data setup requirement, T2 can
be exten1ed by takine; MemWait high within a short time of notMemCE becoming
active. There is also a minimum hold time for MemWait after notMemCE goes active.

The address bus has the same timing in a write cycle as for the read. Shortly
after the start of Ti, one or both of the byte-write strobes will go low, to indicate
which bytes must be written to. Then notMemCe will go active, and the write data

Read
cycle

Write
cycle

MemAO-15

notMemCE

DataO-15

DataO-15

notMemWrBO-I

TI T2 T3

I
I

II
I

T4

Figure 9.1 Sixteen-bit memory access timing
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will be placed on the bus at the start of T2, and removed at the end of T4. These
data should be latched into memory on the rising end of notMemCE, which occurs
near the end of T3. Again, if the data setup time is insufficient for'the memory
used, T2 can be extended by the MemWait signal. If the MemBAcc pin is taken high
at the beginning of any word read or write cycle, then that cycle will be split up
into two byte-access cycles. If all of the external memory is byte-wide then MemBAcc

can be wired permanently high.
A minimum parts-count memory layout is shown in Figure 9.2 using two 32Kx

8-bit static RAM devices. This design provides 60 Kbytes of external memory on a
T222; the only chip decoding required is to use the byte strobes to select the device
to be written to on byte-write operations'. The T222 memory timing parameters
are shown in Table 9.2. The critical parameter for a read cycle is TAVDrV, the time
that the memory address is valid before read data must be available. On a write
cycle the critical parameter is TDwVEH, the data setup time before chip enable goes
high.

Eight-bit wide static devices such as the Toshiba TC55257 are not normally
available with access times less than about 85 nsec; in Figure 9.2 the wait state
generator lengthens the memory cycle to three processor clock cycles. The D-type
flip-flop holds MemWait high until the rising edge of ProcClockOu't at the end of
T2. As MemWait is sampled during T2, wait states Wi and W2 are inserted into the
memory cycle. MemWait is taken high again at the rising edge of ProcClockOut. after
notMemCE goes high, i.e. at the end of T4 (see Figure 9.3). Lower density 16K x4-bit

ClockIn (5M Hz) 1JlF

() Vee I ~~4" LinkOIn notMemCE
notMemWrBI

10KQ .: - notMemWrBO I-
I-

D hWait-state WE CS., Link
inputs I F74 Q generator

56Q ProcClockOut
IWE CST222 elk 32Kx8MemWait20MHz SRAM--

~
,flO 1~ j~I

I 32Kx8
Reset inputs , ,no-'i SRAM
Analyse
MemReq MemGranted

I

...:,.......~

...: ~

""' ............... ""
MemAI-15

Figure 9.2 Sixteen-bit memory application
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Table 9.2 T222-20 memory timing parameters

Symbol Parameter Min. Max.
TAVEL address valid before chip enable low 8
TELEH chip enable low period 68 80
TELEL delay before chip enable reassertion 19
TEHAX address hold after chip enable high
TELDrV data valid from chip enable low 0 50
TAVDrV data valid from address valid 0 63
TDrVEH data setup before chip enable high 22
TEHDrZ data hold after chip enable high 0 20
TWEHEL write enable setup before chip enable low 18
TPCHEL ProcClockOut high to chip enable low 8
TDwVEH data setup before chip enable high 50
TEHDwZ data hold after write 5 25
TDwZEL write data invalid to next chip enable 1
TWELEL write enable setup before chip enable low -8
TEHWEH write enable hold after chip enable high -3 6

All parameters are in nsec

Wait states

TI T2 WI W2 T3 T4

OO~~~~~ ~ ~1

ProcClockOut

MemWait

~

-

I
I
I
I
I
I
I
I
I
I

~....-----....r
Figure 9.3 Wait-state generator timing

devices with faster access times can be used without wait states if external memory
speed is important.

Direct access to the external memory by peripheral devices is provided for by·
the MemReq and MemGranted signals. The processor samples MemReq during every
cycle of the processor clock when it is carrying out internal memory access. During
external memory access MemReq is sampled in the fir§t high phase of ProcClockOut
after notMemCE goes low. MemoryGranted is asserted by the processor very quickly
if an internal memory operation is in progress, with a delay of 85 to 100 nsec for a
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20 MHz T2l2. Otherwise, the memory grant will be delayed until the end of the
external memory cycle. Just how long this delay is depends on whether MemWait is
being used to slow down external memory cycles. Before MemGranted goes active,
the data and address bus, byte-write strobes and notMemCE will be put in a high
impedance state. They will remain in that state until after MemReq is released and
the processor has deasserted MemGranted. There is no upper limit to the length
of time that MemReq may be held high. Thus DMA may be used by an external
device to load a bootstrap program into memory immediately after reset, if MemReq

is held high during the reset period. As soon as MemReq is released, the processor
will access the first instruction of the bootstrap at location Ox7FFE.

9.2 Thirty-two bit programmable memory interface

One of the most interesting aspects of design using the 32-bit transputer is the
programmable external memory interface. This interface can be used to add dy­
namic or static memory to a transputer system with almost no external logic. The
interface can generate all the strobes required for dynamic memory (see Table 9.3),
and contains a 10-bit refresh counter.

Table 9.3 Programmable memory interface signals

Signal I/0 Function
MemAD2-31 in/out multiplexed address and data bus
MemnotWrDO in/out data bit 0, multiplexed with write

cycle flag
MemnotRfD1 in/out data bit 1, multiplexed with refresh

cycle flag
notMemSO out fixed memory strobe
notMemS1-4 out programmable memory strobes
notMemRd out read strobe
notMemWrBO-3 out byte-write strobes, programmable for

early or late write
notMemRf out refresh indicator
RefreshPending out refresh is pending

(T805 and T425 only)
MemWait in wait request
MemRequest in DMA request
MemGranted out DMA grant

The basic unit of memory timing is the unit Tm, which is half a cycle of the
processor clock. This will be 25 nsec for a 20 MHz processor, 1~.7 nsec for a
30 MHz device. The memory cycle is divided into six\ Tstates, T1 to T6, (see
Table 9.4) each of which can be programmed to be 1-4 Tm long, giving a minimum
external Inemory cycle time of three processor clock periods. The length of T4 can
be extended indefinitely by the MemWait input.
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Table 9.4 Tstates

Tl address setup before address valid strobe
T2 address hold time after address valid strobe
T3 read cycle tristate or write cycle data setup
T4 extendible data setup time
T5 read or write data
T6 data hold

9.2.1 Read and write cycles

Each Tstate corresponds to a different part of the memory access cycle (Table 9.3
and Figure 9.4). During T1 the memory address is placed on the multiplexed ad­
dress and data bus, where it 'is held until the end of T2. The strobes notMemSO and
notMemS1 both go low at the end of T1, and so either can be used to latch the ad­
dress. Strobe notMemSO goes high again at the end of TS, the duration of notMemS1
is programmable. During T1 and T2 the lowest two bits of the address/data (AD)
bus, MemnotWrDO and MemnotRfD1 provide an early indication of a write or a refresh
cycle.

In a read cycle both MemnotWrDO and MemnotRfD1 will remain high until the
transputer tristates the AD bus during T3. The read strobe notMemRd goes low at
the end of T3. Data are read by the processor at the end of TS when the read strobe
goes high again. The transputer always reads a complete word of data; byte-read

TI T2 T3 T4 T5 T6

ProcClockOut

notMemSO \L.- ........!
notMemSl

notMemRd

\

notMemWrBO-3 //Y~~-_-~/\""-'-_----J!
Early write /

Late write

Figure 9.4 Thirty-two-bit memory access
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accesses are managed internally. The duration of T4 can be extended indefinitely
by holding MemWait high. This signal is sampled on a falling edge of ProcClockOut
during T3, and if high T4 will be extended until MemWait goes low again.

In a write cycle MemnotWrDO will be low during T1 and T2. The data are placed
on the AD bus during T3, and held until the end of T6. Four byte-write strobes
notMemWrBO-3 can be programmed to go low either during T3 (early write) or during
T4 (late write); in either case the strobes go high again at the end of T5. These
strobes should be used to enable writing into the memory devices of each byte, and
the written data should be latched by the strobes going high. Again, the duration
of T4, the data hold part of the write cycle, can be extended indefinitely by the
MemWait input. This signal is sampled on a falling edge of ProcClockOut during
T3, and if high T4 will be extended until MemWait goes low again.

A refresh cycle is indicated by the processor holding MemnotRfD1 low T1 and T2,
and MemRF going low after MemnotRfD1. A refresh cycle (Figure 9.5) has the same
timing as a normal read or write cycle except that two Tm periods are added before
T1. The strobes notMemSO-4 are generated as normal, but both notMemRd and the
byte-write strobes remain high. A lO-bit refresh address is put out on MemAD2-11;
MemAD12-30 stay high but MemAD31 remains low.

The T805 and T425 have a RefreshPending output that indicates that the
processor is about to perform a refresh cycle. The signal will remain active until
the refresh cycle is started. This signal can be used by a DMA device to determine
when refresh is due, and to suspend DMA while the processor carries out the refresh
cycle.

R R T1 T2 T3 T4 T5 T6

ProcC1ockOut

MemAD2-11

notMemSO

notMemRf

-------tI~Jd~~~~II--------

\ ,---
\ ,---

MemnotRfD1 __--.ly \"'"-------
Figure 9.5 Refresh-cycle timing
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Figure 9.6 Summary of programmable strobes

. 9.2.2 Programmable strobes

The signals described above are usually sufficient for static memory applications,
but dynamic memory will need to use the additional programmable strobes. These
are summarized in Figure 9.6. The strobe ;notMemSl has been mentioned already.
This always falls at the beginning of T2, but its duration is programmable from zero
to thirty-one periods of Tm. However, it will rise at the end 0f T6 even if configured
to be longer. The three strobes notMemSl-4 all go high at the end of T5, but can
be programmed to go low from one to thirty-one Tm after the end of T2. A strobe
programmed with a zero delay will never go low.

The data that configure the memory interface consist of 36 bits that are read
in from the least significant bit of memory location Ox7FFFFF6C to Ox7FFFFFF8

at reset time by the MemConfig pin. However, seventeen predefined configurations
are supplied, and can be selected by connecting the MemConfig pin to one of the
other pins of the memory interface. Table 9.5 shows the encoding of the memory
configuration, and Table 9.6 the predefined configurations. It is very useful to have
software that can display'the memory cycle given the configuration data, and this
is provided as part of the INMOS Transputer Development System, and also as a
C program in Appendix B.
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Table 9.5 Memory configuration encoding

Ox7FFFFF6C T1 lsb Ox7FFFFFB4 notMemS2 bit 1
70 T1 msb B8 notMemS2 bit 2
74 T2 lsb BC notMemS2 bit 3
78 T2 msb CO notMemS2 bit 4
7C T3 lsb C4 notMemS3 bit 0
80 T3 msb C8 notMemS3 bit 1
84 T4 lsb CC notMemS3 bit 2
88 T4 msb DO notMemS3 bit 3
8C T5 lsb D4 notMemS3 bit 4
90 T5 msb D8 notMemS4 bit 0
94 T6 lsb DC notMemS4 bit 1
98 T6 msb EO notMemS4 bit 2
9C notMemS1 bit 0 E4 notMemS4 bit 3
AO notMemS1 bit 1 E8 notMemS4 bit 4
A4 notMemS1 bit 2 EC RI lsb
A8 notMemS1 bit 3 FO RI msb
AC notMemS1 bit 4 F4 Refresh enable
BO notmemS2 bit 0 F8 Late write

9.2.3 DMA

DMA can be requested at any time by taking MemReq high. This signal is sam­
pled during T6 of both refresh and external memory cycles, and every low period
of ProcClockOut for internal memory access. The address bus is floated one pro­
cessor clock period after the ProcClockOut rising edge which follows the sample.
DMA devices can monitor the RefreshPending signal on the T805 and T425, and
may suspend DMA when a refresh cycle is due. Otherwise, memory refresh is th.e
responsibility of the DMA device.

9.3 Design example - a size 2 TRAM

In this section we will give the complete design of a size 2 T800 or T425 TRAM
TRAM, with various options for processor and memory speed. The simplicity and
low parts count of this design well illustrate the ease of hardware design with the
transputer. Our design goals are as follows:

• T800 or T425 transputer, 20-30 MHz.
• 1-8 Mbytes dynamic RAM, 1 or 4 Mbit devices, slow or fast.
• Size 2 TRAM.
• Minimum parts count, maximum speed with devices used.
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Table 9.6 Predefined memory configurations

Pin T1 T2 T3 T4 T5 T6 S1 52 S3 S4 Wr RI Tm
MemnotWrDO 1 1 1 1 1 1 30 1 3 5 1 72 3
MemnotRfD1 1 2 1 1 1 2 30 1 2 7 1 72 4
MemAD2 1 2 1 1 2 3 30 1 2 7 1 72 5
MemAD3 2 3 1 1 2 3 30 1 3 8 1 72 6
MemAD4 1 1 1 1 1 1 3 1 2 3 e 72 3
MemAD5 1 1 2 1 2 1 5 1 2 3 e 72 4
MemAD6 2 1 2 1 3 1 6 1 2 3 e 72 5
MemAD7 2 2 2 1 3 2 7 1 3 4 e 72 6
MemAD8 1 1 1 1 1 1 30 1 2 3 e 3
MemAD9 1 1 2 1 2 1 30 2 5 9 e 4
MemAD10 2 2 2 2 4 2 30 2 3 8 1 72 7
MemAD11 3 3 3 3 3 3 30 2 4 13 1 72 9
MemAD12 1 1 2 1 2 1 4 1 2 3 e 72 4
MemAD13 2 1 2 1 2 2 5 1 2 3 e 72 5
MemAD14 2 2 2 1 3 2 6 1 3 4 e 72 6
MemAD15 2 1 2 3 3 3 8 1 2 3 e 72 7
MemAD31 4 4 4 4 4 4 31 30 30 18 1 72 7

Descriptions:
MemnotWrDO dynamic RAM in 3 processor cycles
MemnotRfD1 dynamic RAM in 4 cycles
MemAD2 dynamic RAM in 5 cycles
MemAD3 dynamic RAM in 6 cycles
MemAD4 multiplexed address dynamic RAM in 3 cycles
MemAD5 multiplexed address dynamic RAM in 4 cycles
MemAD6 multiplexed address dynamic RAM in 5 cycles
MemAD7 multiplexed address dynamic RAM in 7 cycles
MemAD8 fast static RAM in 3 cycles
MemAD9 static RAM in 4 cycles with wait generator
MemAD10 general purpose, 7 cycles
MemAD11 general purpose, 9 cycles
MemAD12 dynamic RAM in 4 cycles
MemAD13 dynamic RAM in 5 cycles
MemAD14 dynamic RAM in 6 cycles
MemAD1f? dynamic RAM in 7 cycles
MemAD31 general purpose, 12 cycles

9.3.1 Initial design

We will assume that in order to achieve a minimum parts count we must use one
of the predefined memory interface configurations. Which configuration we use
will depend on the processor. and memory speed, although we probably need not
consider memory slower than 120 nsec or faster than 60 nsec access time. The
TRAM size and parts count requirements suggest that either 256K x 4-bit or 1M
x 4-bit dynamic memory devices should be used.

Fast 74ACT841 10-bit transparent latches can be used to latch the processor
address at the end of Tt. These devices have an output enable time of about
8 nsec, and the latch enable can be driven from notMemSO. Ten-bit column and
row addressing allows the use of ranis to 1M x 4-bit. The other memory control
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signals and latch output enables will be driven from a fast PAL, with a delay time
of roughly 7 nsec. These considerations lead to the block diagram shown in Figure
9.7.

9.3.2 System services and links

The schematic of the processor, system services and link connections are shown
in Figure 9.8. The Reset and Analyse signals are taken unchanged to TRAM
input pins. Errorln is grounded, and Error connected to the base of a transistor
which provides the open collector notError output. The Clock input is also taken
directly from a TRAM pin; ProeSpeedSeleet2 is held high and ProeSpeedSeleetO
and ProeSpeedSeleet1 can be pulled high or low to select processor speeds between
20 and 30 MHz. The on-chip phase-locked loop is decoupled by a 1 J.lF capacitor
connected between CapPlus and CapMinus; these connections must be by very short
PCB tracks for correct operation.

The four link inputs are protected against static discharge by diodes to Vee, and
pulled low in the disconnected state by 10 Kohm resistors. The link outputs have
56 ohm series matching resistors. Link speed selection is provided by connecting
LinkSpeedA on the TRAM to LinkOSpeeial on the transputer, and LinkSpeedB
to Link123Speeial and pulling LinkSpeeial high. This meets the TRAM speci­
fication which assumes that all links should be at either 10 or 20 Mbps, but it also
allows LinkO to be set at a different speed to the other links.

elk

Link i/O

o~_---I
1 ~_---1

2 ~----I

3 --4-----1

T800
orT425

16 memory
devices

reset, analyse and error

Figure 9.7 TRAM outline design
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Figure 9.8 Processor, system services and link connections

9.3.3 Memory design

Figures 9.9 and 9.10 show the schematics of the basic memory design. Memory
addresses are latched by notMemSO going low at the end of Tl; all other memory
control signals are generated by a fast PAL for maximum flexibility. Only one bank
of memory i~ shown in Figure 9.10; the second bank is identical. Each bank has a
separat~ ras signaL The bank is selected by address bit 11 for 256K x 4 dynamic
ram devices and bit 22 for 1M x 4 devices. In refresh cycles both banks are active,
but no cas occurs; refresh cycles are identified by notMemRf becoming active.

We now consider the design and timing of memory for a 20 MHz processor with
four-cycle memory. Four cycles at 20 MHz is 200 nsec, and from Table 9.7 we can.
see that memory with an access time of at most 100 nsec can be used. There are two
four-cycle configurations obtained by connecting MemConfig to either ADS or AD12
(Figure 9.11). If we use notMemSl as the row address strobe, the ADS configuration
gives a ras low time of 125 nsec, which is more than adequate, but a ras precharge
time of only 75 nsec, which does not meet the memory specification. Therefore we
must use the AD12 configuration which gives approximately 100 nsec access time
and 100 nsec precharge. This strobe ~onfigurationis not available on the T414.
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Figure 9.9 Memory interfacing

Table 9.7 T'ypical memory and transputer parameters

Access

(nsec)
60
70
80
100
120

ras precharge

(nsec)
55
60
70
80
90

Cycle time

(nsec)
125
140
160
190
220

Number of processor cycles
in memory cycle timing
20 MHZ 25 MHz 30 MHz
2.5 3.1 3.8
2.8 3.5 4.8
3.2 4.0 4.8
3.8 4.8 5.7
4.4 5.5 6.6
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I
Tl T2 T3 T3 T4 T5 T5 T61 Tl T2 T3 T3 T4 T5 T5 T6

ProcClockOut

I

notMemSO , rn ,---
I
I

notMemSl , I
I

\ II
I
I
I

\ I
I

\ InotMemS2 I
I
I
I

\ I
I

\ InotMemS3 I
I
I
I

notMemS4 and \ I
I

\ II
notMemRd I

I
I

notMemWrBO-4 \ I
I

\ II
(early write) I

I
I

(a) (b)

Figure 9.11 (a) AD5 and (b) AD12 memory strobe configurations

The strobe notMemS2 can control column and. row address multiplexing, and cas
can be derived from notMemS3.

A complete timing diagram must take into account delays in the PAL and address
latches, and the variations in strobe timing of the transputer. In the transputer
specification the programmable strobe timing is related to notMemSO, and its timing
is in turn related to ProcClockOut. Assuming accurate strobe timing and a 20 MHz
processor leads to the timing diagram of Figure 9.12.

The timing requirements for full-speed memory with a 25 MHz processor are
much tighter. Three processor cycles at 25 MHz processor takes 120 nsec, and
Table 9.7 suggests that it is just possible to achieve this memory timing with 60 nsec
access time devices. The only three cycle configuration is AD4, which gives 60 nsec
access and 60 nsec precharge times. Similarly, using notMemS3 as. cas gives a low
time of 40 nsec and a hold time for ras after cas goes low of 20 nsec. This is just
within the published specification of the Hitachi HM41256H devices. The complete
timing diagram is shown in Figure 9.13; clearly the tolerances are a little lower than
would be hoped for in a truly reliable design, but TRAMs have been constructed
to this specification and work well.
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T1 T2 T3 T3 T4 T5 T5 T6

ProcClockOut
20MHz

Address latch
enable
(notMemSO)

ras
(notMemS1) =I Fras~~~c~~rge

.....1.1--__ 100 nS ~
I raswidth
I
I

Memory address
multiplexor
(notMemS2)

Column address valid

cas
(notMemS3)

I 50nS 1-------1
~ras to cas.......~..~- 100 nS

delay cas width

~ 7 nS PAL delay

~ 8 nS address latch delay

Figure 9.12 Memory timing for AD12 configuration with 20 MHz processor
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Tl T2 T3 T4 T5 T6
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Address latch
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(notMemSO)

ras
(notMemSl) =I Frasp~~~arge
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I raswidth
I

Memory address
multiplexor
(notMemS2)

Column address valid

cas
(notMemS3) I I II 40nS ~

;ras to cas
I delay .., ,

~ 40nS ~
cas width

~ 7 nS PAL delay

~ 8 nS address latch delay

Figure 9.13 Memory timing for AD4 configuration with 25 MHz proces,sor



Appendix A

Instruction Set Reference

In this appendix we present an informal specification of the transputer instruction
set. The instructions have been tabulated in functional groups, and some instruc­
tions will appear in more than one table. For each instruction we give its 'opcode'.
For direct functions this will be the function nibble of the instruction byte, for other
integer processor instructions it is the value that must be loaded into the operand
register 0 when the opr function is executed. Some floating-point instructions are
executed by the fpuentry instruction, which interprets an 'opcode' that has been
loaded in the A register.

The next column of each table contains the mnemonic of the instruction, and
the third column timing information. This timing information assumes that any
non-register operands are in internal (one-cycle) memory; the timings for external
memory operands vary in a rather complex way which is described in the perfor­
mance section of the engineering data of each processor. Differences in timings for
16- and 32-bit processors are indicated in the few cases where this is necessary.

The fourth column of each table indicates if an instruction is a potential de­
scheduling point (D), or can affect the value of the processor error flag (E) or the
floating-point unit error flag (F). The fifth column is an informal description of the
action of the instruction.

Constants

Constant

Minlnt
BytesPerWord
TRUE
FALSE

16-bit value

Ox8000
2

1
o

32-bit value

Ox80000000
4

1
o

160

Description

minimum integer value
number of bytes in a word
representation of logical true
representation of logical false
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Prefix, operate and direct functions

Prefix

Ox2 pfix 1

Ox6 nfix 1

Operate

OxF opr

prefix; load operand into lowest 4 bits of 0 then shift 0
up 4 places
negative prefix; load operand into lowest 4 bits of 0,
complement 0 then shift 0 up 4 places

operate; load operand into lowest 4 bits of 0, then start
the execution of the instruction whose opcode is in 0

Direct

OxO j 3 D jump; set I == 1+0, A, Band C become undefined (see
also debugging instructions)

Ox1 ldlp 1 load pointer to local; load A with the address of the
word offset by 0 from W

Ox3 ldnl 2 load non-local variable; load A with the word offset by
o from A

Ox4 Ide 1 load constant; sets A == 0, a large constant can be
loaded by a series of pfix or nfix operations preced-
ing the Ide

Ox5 ldnlp 1 load pointer to non-local; load A with the address of the
word offset by 0 from A

Ox7 ldl 2 load local; load A with the word offset by 0 from W
Ox8 ade 1 E add constant; set A == A + 0
Ox9 call 7 call; set W == W - 4
Oxa cj 2 (not taken) conditional jump;

4 (taken); if A == 0 then set I == 1+0 else pop A
OxB ajw 1 adjust workspace; set W == W + 0
oxe eqe 2 equals constant; if A == 0 set A == 1 else set A == 0
OxD stl 1 store local; store the value of A at the word offset by 0

from W
OxE stnl 2 store non-local; store the value of B in the word offset

by 0 from A

Notes: The direct functions load the data part of the instruction byte into the
lowest 4 bits of the 0 register before execution. All functions except pfix and
nfix clear the operand register after execution.
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In the load and store instructions the 0 register must contain a word offset
(rather than a byte offset), and the base register, A or W, must point to a word
boundary.

Arithmetic/logical instructions

Ox46 and 1
Ox4B or 1
Ox33 xor 1
Ox32 not 1
Ox41 shl n+2
Ox40 shr n+2
Ox05 add 1 E
OxOC sub 1 E
Ox53 mul 38 E

23 E
Ox72 fmul 35 E

40 E
Ox2C div 39 E

24 E

Ox1F rem 37 E
21

Ox09 gt 2
Ox04 diff 1
Ox52 sum 1
Ox08 prod b+4

m+5

bitwise AND; A == A&B

bitwise OR; A == AlB

bitwise exclusive OR; A == A EB B
bitwise NOT; A == rv A
shift left B by A places
shift right B by A place
add; A == A + B, checked
subtract; A == B - A, checked
multiply, 32-bit processor
multiply, 16-bit processor; A == A * B, checked
fractional multiply; no rounding
fractional multiply, rounding
divide; 32-bit processor
divide, 16-bit processor; set A == B / A~ error flag
is set if A is zero or if A == -1 and B == Minlnt
since the result would be -Minlnt which cannot be
represented
remainder, 32-bit processor
remainder, 16-bit processor; generates the remainder
after dividing B by A, sets error flag under the same
conditions as div
greater than; if B > A then set A == 1 else set A == 0
unsigned subtraction; set A == Bunsigned - Aunsigned

unchecked addition; set A == Bunsigned + Aunsigned

product; A == A *B, unchecked, b is the position of
the most significant bit (msb) of A
product for negative register A. The fast implemen­
tation of prod for negative A is not used on the T414,
T222 or T212

Notes: In all the above instructions except not the values of the operands are
taken from A and B. The result is stored in A, the value of C is popped into B
and the new value of C is undefined.
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Ox16 Iadd 2 E long add; A == (B + A) + CIsb, set error flag if carry
is generated

Ox38 Isub 2 E long subtract; A == (B - A) - CIsb, set error flag if
borrow is generated

Ox37 Isum 3 long sum; form (B+A)+CIsb. Load least significant
word of result into A and most significant (carry) bit
into B

Ox4F Idiff 3 long difference; form (B - A) - Cisb. Load least sig-
nificant word of result into A and borrow bit into
B

Ox31 Imul 33 long multiply; form (A * B) + Cisb. Load least sig-
nificant word of result into A, most significant into
B

Ox1A Idiv 35 E long divide; divide double length unsigned value in B
and C (most significant word (msw) in C) by single
length unsigned value in A. Load A with result, B
with remainder. Overflow causes error flag to be set

Ox36 Ishl n+3 long shift left, shift double word in C and B, A places
to the left. A contains least significant word (lsw)
and B msw of the result

n-28 long shift left
Ox35 Ishr n+3 long shift right, as Ishl, except shift right A places

n-28 long shift right
Ox19 norm n+5 normalize

n-26 normalize n > 32
3 normalize, n == 64

Notes: In the long arithmetic instructions the operands are taken from the three
evaluation stack registers, the lsw of the result is placed in A and the msw in B.
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General instructions

OxOO rev 1 exchange values of A and B
Ox3A xword 4 sign extend the part word in B to a whole word. The

part word is indicated by setting its most significant bit
in A

Ox56 cword 5 E check word; if B ~ A V B < - A then set ErrorFlag,
checks that the value in B can be represented in a bit
field whose msb is set in A

Oxld xdble 2 extend to double
Ox4C csngl 3 E check ·single; converts from a double length integer in

A and B, msw in B, to a single length integer in A.
ErrorFlag is set if there are significant bits in B

Ox42 mint 1 load A with Minlnt
Ox5A dup 1 duplicate top of stack; sets A == A, B == A and C == B;

T805, T801, T425 and T225 only
Ox79 pop 1 rotates evaluation stack; sets A == B, B == C and C == A;

T805, T801, T425 and T225 only

Two-dimensional block move instructions

Ox5B

Ox5C

Ox5D
Ox5E

move2dinit

move2dall

move2dnonzero
move2dzero

8

*

*
*

the source stride in C, the destination stride in B
and number of rows to copy in A are set up for
one of the move2d instructions
performs a two-dimensional block copy from the
array given in C to the array given in B, A con­
tains the number of bytes in each row to copy,
other parameters must have already been set up
by move2dinit
two-dimensional block copy of non-zero bytes
two-dimensional block copy of zero bytes

Notes: See Section 3.13. Only in T805, T801, T800 and T425. Timing is very
complex and best discovered by measurement in the actual system.
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CRC and bit manipulation instructions

36
n+4

35
11
b+2

bitrevword
bitrevnbits

ereword
erebyte
bitent

Ox74
Ox75
Ox76

Ox77
Ox78

calculate CRC on word
calculate CRC on byte
count bits set in word; A == B + count, the result
in A is the sum of the number of bits set in A plus
the value in B, so that the number of bits set in
a sequence of words may be totalled. The time
taken by the instruction depends on the position
of the msb of A
reverse the bit pattern in A
the bottom A bits of B are reversed and the result
left in A with the more significant. bits zeroed

Notes: Only on T805, T801, T800, T425 and T225 processors. In the CRC instruc­
tions the A register holds the word or byte to be combined with the -accumulated
CRe in B, using the generator in C. For erebyte the byte to be combined must
be the top byte of A.
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Indexing/array instructions

Ox02 bsub 1 byte subscript; load A with the address of the byte
offset by B from the base address in A. This acts
as an unchecked addition of A and B in present
transputers

OxOA wsub 2 word subscript; load A with the address of the word
offset by B words from the base address in A

Ox81 wsubdb 3 double word subscript; load A with the address of
the double word offset by B double words from the
base address in A. T805, T801, T800 and T425 only

Ox34 bent 2 byte count; sets A = A * BytesPerWord, converting
a length in words into a length in bytes. Helpful in
writing code that is independent of processor word
length

Ox3F went 5 word count; decomposes an address in A into a word
address, returned in A, and a byte selector, returned
in B

Ox01 Ib 5 load byte; loads a single byte from the address con-
tained in A, the most significant bytes of A are zeroed

Ox3B sb 4 store byte; stores the least significant 8 bits of B in
the byte pointed to by A

Ox4A move 2w+8 move message; copy t~e number of bytes given in A
from the starting at C to the block starting at B, if
the blocks overlap the result is undefined
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Timer instructions

Ox4E talt 4
Ox51 taltwt 15 D

48 D
Ox47 enbt 8
Ox2E dist 23

Ox22
Ox2b

Idtimer
tin

2
30
4

D
loads the current value of the timer into A
(time future)
(time past)
waits until the current priority time is AFTER the
time value in A. If the required time has already
passed the process continues, but if not the pro­
cess is placed on the .. timer queue
timer ALT start - see ALT instructions
timer ALT wait (time past) - see ALT instructions
timer ALT wait (time future)
enable timer - see ALT instructions
disable timer - see ALT instructions

Notes: Which timer is used in these instructions depends on the priority of the
process executing the instruction. '"fhe high-priority timer ticks every microsecond,
the low-priority timer every 64 J-lsec.

Input / output instructions

Ox07
OxOB
OxOF
OxOE
Ox12

in
out
outword
outbyte
resetch

2w+19
2w+19
23
23
3

D input message
D output message
D outputword
D output byte

reset channel

Notes: See Section 3.8.
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ALT instructions

Ox43 alt 2 ALT start
Ox44 altwt 5 D ALT wait (channel ready)

17 D ALT wait (channel not ready)
Ox45 altend 4 ALT end
Ox49 enbs 3 enable skip
Ox30 diss 4 disable skip
Ox48 enbc 7 enable channel (ready)

7 enable channel (not ready)
Ox2F disc 8 disable channel

Notes: See Section 3.10.
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Ox1B ldpi 2

Ox3C gajw 2

Ox06 gcall 4

Ox21 lend 10
5

Ox9 call

Ox20 ret

7

5

call; call a procedure whose entry point is offset 0
bytes the next instruction; set W == W - 4, W[O] ==
I, W[l] == A, W[2] == B, W[3] == C, A == I and
I == I + o. Direct function
return; return from a procedure call by loading I
from W[O] and incrementing W by 4 words. This
reverses the action of call; the values of A, Band
C are not affected, allowing up to three results to be
returned
load pointer to instruction; set A == I + A, loads the
address of instruction offset by A from I
general adjust workspace; swaps values of A and W,
allows W be set to an arbitrary value
general call; swaps values of A and I, allows the use
of any form of calling sequence.

D loop end (loop)
D loop end (done)

A loop is controlled by two contiguous words of mem­
ory pointed to by B, the first word containing the
loop variable, the second the number of iterations
left to perform. This instruction decrements the it­
eration count, and if the result is greater than zero
increments the loop variable and branches to the in­
struction whose offset is given in A which is positive
for backward jumps and negative for forward jumps;
set B[l] == B[l] - 1; if B[l] > 0 then set B[O] ==
B[O] - 1 and I == I - A

Scheduling instructions

OxOD startp 12 D start process
Ox03 endp 13 D end process
Ox39 runp 10 run process
Ox15 stapp 11 stop process
Ox1E ldpri 1 load current priority

Notes: See Section 3.7.
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Error handling instructions

Oxi3 csubO 2 E check subscript from 0; if Bunsigned 2:: Aunsigned

then set error flag. Pops stack once
Ox4D centi 3 E check count from 1
Ox29 testerr 2 test error false and clear (no error)

3 test error false and clear (error)
Oxi0 seterr 1 E set error
Ox55 stoperr 2 D stop on error (no error)
Ox57 clrhalterr 1 clear HaltOnErrorFlag
Ox58 sethalterr 1 set HaltOnErrorFlag
Ox59 testhalterr 2 test HaltOnErrorFlag

Notes: See Section 3.11.

Processor initialization instructions

1

2
4
4
1
1
1
1
1

ldmemstartval

testpranal
saveh
savel
sthf
sthb
stlf
stlb
lddevid

Ox7E

Ox2A
Ox3E
Ox3D
Oxi8
Ox50
OxiC
Ox54
Oxi7C

test processor analyzing
save high-priority queue registers
save low-priority queue registers
store high-priority front pointer
store high-priority back pointer
store low-priority front pointer
store low-priority back pointer
load A with the device identity: T425 0-9; T805
10-19; T801 20-29; T225 40-49. This instruction
is a NOP on the T414, T222 and T212 processors,
on the T800 it sets B = C and leaves A undefined.
load A with the value of MemStart. Only on T805,
T425 and T225 processors

Notes: These instructions will normally only be used in the bootstrapping sequence.
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OxO

OxB1

OxB2
OxB3
OxB4
Ox7A
Ox7B
Ox7C
Ox7B

jump 0

break

clrjObreak
setjObreak
testjObreak
timerdisableh
timerdisablel
timerenableh
timerenablel

3
11
13
9
11
1
1
2
1
1
6
6

D jump 0 (break not enabled)
jump 0 (break enabled, high-priority)
jump 0 (break enabled, low-priority)
break (high-priority)
break (low-priority)
clear EnableJOBreak flag
set EnableJOBreak
test EnableJOBreak set
disable high-priority timer interrupt
disable low-priority timer interrupt
enable high-priority timer interrupt
enable low~priority timer interrupt

Notes: See Section 3.15. On T805, T801, T425 and T225 only.
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Floating-point support instructions

Ox6D roundsn 12/15
Ox6C postnormsn 5/30

Ox71 Idinf 1
Ox9C fptesterr 1

3

15

Ox73 cflerr

Ox63 unpacksn

E sets Error-Flag if A contains floating-point in­
finity or Not a Number (NaN)
unpacks single length floating-point number
in A, returning exponent in B, fraction in' A.
The fraction does not include the implied msb
of a normalized floating-point number. The C
register is loaded with 4 * B plus a flag value
of 0 if A == 0, 1 if A contained a normalized
or unnormalize.d floating-point number, 2 if A
was a floating-point infinity, 3 if A is NaN
round single-length floating-point number
post-normalize correction of single-length
floating-point number
load A with 32-bit floating-point infinity
On processors with hardware floating-point
this instruction serves to load the A register
with 1 if the floating-point error flag is set.
On the T425 and T400 the instruction will al­
ways load A with 1, making it possible to test
for the presence of a hardware floating-point
unit by resetting the error flag and then exe­
cuting this instruction. This instruction was
not implemented on. the T414.

Notes: See Section 3.14. These instructions are available only on the T425 and
T414 processors, i.e. those 32-bit processors without a floating-point unit. The pur­
pose of these instructions is to facilitate the software implementation of IEEE-754
standard floating-point arithmetic. The norm, postnormsn and roundsn instruc­
tions are used in code sequences that convert integers to floating-point numbers.
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Floating-point instructions

Entry code and miscellaneous instructions

OxAB

OxA4
OxA3

fpentry

fprev
fpdup

1

1
1

floating-point entry; starts the execution of the
floating-point instruction whose opcode is in A
floating-point reverse; swap contents of F A and F B
floating-point duplicate; push F B into FC, set
FB == FA

Notes: See Section 3.14.

Load/store instructions

Ox8E fpldnlsn 2 floating-point load non-local single
Ox8A fpldnldb floating-point load non-local double
Ox86 fpldnlsni 4 floating-point load non-local indexed single
Ox82 fplsnldbi 6 floating-point load non-local indexed

double
Ox9F fpldszerosn 2 load zero single
OxAO fpldzerodb 2 load zero double
OxAA fpldnladdsn 8/11 F floating-point load non-local and add single
OxA6 fpldnladddb 9/12 F floating-point load non-local and add

double
OxAC fpldnlmulsn 13/20 F floating-point load non-local and multiply

single
OxA8 fpldnlmuldb 21/30 F floating-point load non-local and multiply

double
Ox88 fpstnlsn 2 floating-point store non-local single
Ox84 fpstnldb 3 floating-point store non-local single
Ox9E fpstnli32 4 store non-local int32

Notes: The floating-point load and store instructions all use A as the source or
target address. For an indexed load B contains the index value, which will be used
as a word or double word offset, depending on the size of the object loaded. The
'load and ... ' instructions are short versions of common instruction sequences. Each
load instruction sets a flag associated with the F A register to indicate the length
of the object that has been loaded. The arithmetic and store instructions check
this flag, so that different instructions are not needed for 32- and 64-bit operations.
The timings shown are in the form typical/maximum cycles.
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Arithmetic instructions

Ox87 fpadd 6/9 6/9 F
Ox89 fpsub 6/9 6/9 F
Ox8B fpmul 11/18 18/27 F
Ox8C fpdiv 16/28 31/43 F
OxOB* fpuabs 2/2 2/2 F

Ox8F fpremfirst 36/46 36/46 F

Ox90 fpremstep 32/36 32/36

Ox01* fpusqrtfirst 27/29 27/29 F

Ox02* fpusqrtstep 42/42 42/42

Ox03* fpusqrtlast 8/9 8/9

floating-point addition
floating-point subtraction
floating-point multiplication
floating-point division
replace F A by its absolute
value
floating-point remainder first
step
floating-point remainder
iteration
floating-point square root
first step
floating-point square root
iteration
floating-point square root last
step

OxOA* fpuexpinc32 6/9 6/9 F F A = F A * 232

Ox09* fpuexpdec32 6/9 6/9 F ~A = F A/232

Ox12* fpumulby2 6/9 6/9 F F A = F A * 2.0
Ox11* fpudivby2 6/9 6/9 F FA = F A/2.0

Notes: Opcodes suffixed by * are the values that have to be loaded into the
A register before the fpentry instruction is executed. Timings shown are typi­
cal/maximum processor cycles for 32-bit (column 3) and 64~bit (column 4) operands.

The four binary arithmetic operations calculate F BopFA, leaving the result in
F A and popping FC into F B. The new value of FC is undefined.

The remainder and square root operations are carried out by code sequences,
for details see Section 3.14. The remainder is calculated from a divisor in FA and
dividend in F B, the result is returned in F A. The contents of FC will be lost.
Each remainder instruction pushes a boolean into A to control looping, thus the
contents of the integer evaluation stack will also be lost. In fpsqrt F A contains the
input and result, but F Band FC are used in the calculations and their previous
contents lost. The iteration step fpsrtstep must be carried out twice for a 32-bit
number, five times for a 64-bit number.



175

Rounding mode instructions

Ox22* fpurn 1 set rounding mode to Round_to-Nearest
Ox06* fpurz 1 set rounding mode to Round_to_Zero
Ox04* fpurp 1 set rounding mode to Round_to_Plus_Infinity
Ox05* fpurm 1 set rounding mode to round Round_to....Minus_Infinity
Notes: The floating-point load instructions set the rounding mode to Round_to
-Nearest, this is the IEEE-754 default mode. To use another mode it is necessary
to set it explicitly before each arithmetic oper,ation.

Comparison instructions

Ox94
Ox95
Ox92
Ox91
Ox93
OxOE*
OxOF*
Note:

fpgt 4/6 F floating-point greater than
fpeq 3/5 F floating-point equality
fpordered 3/4 floating-point orderability
fpnan 2/3 floating-point NaN
-fpnotfinite 2/2 floating-point not finite
fpuchki32 3/4 F check in range of type int32
fpuchki64 3/4 F check in range of type int64

Timings shown are typical/maximum processor cycles.

Conversion instructions

Ox07*
Ox08*
Ox9D
Ox96
Ox98
Ox9A
OxOD*
OxA1

Note:

fpur32tor64 3/4 F real32 to real64
fpur64tor32 6/9 F real64 to real32
fprtoi32 7/9 F real to int32
fpi32tor32 8/10 int32 to real 32
fpi32tor64 8/10 int32 to real64
fpb32tor64 8/8 bit32 to real64
fpunoraound 2/2 real64 to real32, no round
fpint 5/6 F round to floating integer

Timings shown are typical/maximum processor cycles.

Error-handling instructions

Ox83 fpchkerror 1 E load ErrorFlag with the OR of
ErrorFlag and FpErrorFlag

Ox9C fptesterror 2 F set A to TRUE if FpErrorFlag not set,
and clear FpErrorFlag

Ox23* fpuseterror 1 F set FpErrorFlag
Ox9C fpuclearerror 1 F clear FpErrorFlag
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Memory Configuration
Program

The memory connguration program takes as its input a set of specifications for the
duration of the Tstates and the timing of the strobes. These are in the order:

T1 T2 T3 T4 T5 T6
81 82 83 84
L W

where the Tn gives the duration of each Tstate, 81 is the length of strobe notMem81,
and 82-4 are the delays of strobes notMem82-4 after the start of T2. All of these
parameters are in units of Tm (half-cycles of ProcClockOut). If any strobe coefficient
is specified as zero, this strobe will not go low.

The next non-blank character indicate3 early or late byte-write strobes, an upper
or lower case 'L' showing late write, any other character early write. The final input
parameter is an integer specifying the number of wait states to be added to T4.

The name of the file containing the configuration is passed to the program
in the parameter line, and the configuration details are read in by the function
read_config. The Tstate durations ~re calculated in set_tstates where the wait
states are added into T4. If wait states would cause T5 to start on a falling edge of
ProcClockOut an extra Tm is added to T4.· The duration of the complete memory
cycle must always be an even number of Tm and an extra Tm will be added to T6 if
necessary.

The function set_strobes computes the starting and ending point of each pro­
grammable strobe, and of the read and write strobes. The results are printed by the
function print_data, which reports the starting and ending points of each Tstate
and strobe in units of Tm from the beginning of the memory cycle. It is easy to use
these results to drive a program to plot the memory cycle, but this is not included
here as the cod"e is so device dependent.
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For example, the program input corresponding to the AD12 predefined configu­
ration is as follows:

11212 1
4 1 2 3
e 0

The output produced by the program is then:

Transputer memory configuration program
Configuration file: cfg/ad12.cfg

T state durations
T1 T2 T3
1 1 2

T4
1

T5
2

T6
1

Strobe coefficients
S1 S2 S3 S4

4 1 2 3
Early write
o wait states inserted into T4

Tstates
start end

T1 0 1
T2 1 2
T3 2 4
T4 4 5
T5 5 7
T6 7 8

Strobes
start end

notMemSO 1 7
notMemS1 1 5
notMemS2 2 7
notMemS3 3 7
notMemS4 4 7
notMemRd 4 7
notMemWr 2 7
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#include <stdio.h>
#include <ctype.h>
#define TRUE 1
#define FALSE 0

struct T { int end; int duration; };
struct S { int start, end, data; };

char *config_name;

describing the configuration *1
1* Tstate information *1
1* strobe coefficients *1
1* number of wait states inserted *1
1* boolean for early or late write *1

notMemWr; 1* read and write strobes *1

1* global variables
struct T tstate[7];
struct S strobe[5];
int waits;
int early_write;
struct S notMemRd,

void read_config(char *config_name)
{
FILE *c_file;
int i, c = , ';
c_file:= fopen(config_name, "r");
printf("\n Configuration file: %s\n",config_name);

1* get tstate durations *1
for (i = 1; i < 7; i++) fscanf(c_file,"%d",&tstate[i];duration);
printf("\nT state durations \n T1 T2 T3 T4 \
T5 T6\n");
for (i = 1; i < 7; i++) printf(" %5d ",tstate[i].duration);

1* get strobe coefficients *1
for (i = 1; i < 5; i++) fscanf(c_file,"%d",&strobe[i].data);
printf("\nStrobe coefficients\n S1 S2 S3 S4\n");
for (i = 1; i < 5; i++) printf(II %5d ",strobe[i].data);

1* get early or late write flag *1
while (isalpha(c) == 0)

c = fgetc(c_file); 1* get first non-blank char*1
if (c == 'L' I I c == '1')

{ early_write = FALSE;
printf("\n Early write \n");

}

else { early_write = TRUE;
printf("\n Late write \n");

}

fscanf(c_file,"%d",&waits);
printf(" %d wait states inserted into T4\n", waits);
}



void set_tstates()
1* compute the end point of each tstate *1
{ int i;

1* add the wait states into T4 *1
tstate[4] .duration = tstate[4] .duration + waits;
tstate[O].end = 0;
for (i=1; i <5; i++)

tstate[i] . end = tstate[i-1].end + tstate[i].duration;

1* add in an extra wait state to T4 if T5 would have to begin on
a falling clock edge *1

if (waits != 0 && ( tstate[4].end % 2) == 1)
{ tstate[4].end = tstate[4].end + 1;

tstate[4].duration = tstate[4].duration + 1;
waits = waits + 1;
printf("Extra wait state added\nlt );

}

for (i = 5; i <7; i++)
tstate[i].end = tstate[i-1].end + tstate[i] .duration;

1* If the total number of T's is odd, one must be added to T6 *1
if «tstate[6] . end %2 ) == 1)

{tstate[6].end = tstate[6].end + 1;
tstate[6].duration = tstate[6].duration + 1;
printf(ltExtra Tm added to T6\n");

}
}

void set_strobes()
{ int i;

1* notMemSO, fixed format strobe, from end of T1 to end of T5 *1
strobe[O].start = tstate[1].end;
strobe [0] . end = tstate[5].end;

1* notMemS1 *1
strobe[1].start = tstate[1].end;
strobe[1].end = strobe[1] . start + strobe [1] .data~_

if (strobe[1].end > tstate[6].end) strobe[1].end = tstate[6].end;
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/* notMemS2-4, start at least one Tm after start of T2,
end at end of T5; if configured with zero then never go low */

for (i = 2; i < 5; i++)
{ if (strobe[i] .data > 0)

{
strobe[i].start = tstate[1].end + strobe[i].data;
strobe[i].end = tstate[5].end;

}
else strobe[i] . end = strobe[i].start 0; /* never low */

}

/* Read and write strobes */
notMemRd.start tstate[3].end;
notMemRd.end tstate[5].end;

if (early_write) notMemWr.start = tstate[2].end;
else notMemWr.start = tstate[3].end;

notMemWr.end = tstate[5].end;
}

void print_data()
{ int i;
printf("\n\n Tstates
printf (" start
for (i = 1; i < 7; i++)

printf ("T%d %d

\n");
end\n\n");

%d\n",i,tstate[i-1].end, tstate[i].end);

%d \n",i,strobe[i].start,strobe[i].end);
%d\n",notMemRd.start, notMemRd.end);
%d\n",notMemWr.start, notMemWr.end);

printf("\n\n Strobes \n");
printf(" start end\n\n");
for (i = 0; i < 5 ; i++)
printf ("notMemS%d %d
printf ( "notMemRd %d
printf("notMemWr %d
}

int main( int argc, char *argv[])
{
printf("Transputer memory configuration program\n");
if (argc <2) exit(O);
read_config(argv[1]);/* read the configuration data file */
set_tstates(); /* set up the end points of the T states*/
set_strobes(); /* set up the end points of the strobes */
print_data(); /* print the results */
return(O);
}
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Prodnet list

This appendix gives some of the hardware components available at the time of
writing (December 1989) and the suppliers involved. Clearly such information will
go out of date fairly rapidly, so the list should be considered as a set of guidelines
rather than an exhaustive list.

Compute-only TRAMs

INMOS

B401 T414-20, T425-25 or T800-25 32K/3 SRAM, size 1
B402 T222-20, 8K/2 SRAM, size 1
B403 T414-20, T425-20 or T800-20, IM/3 DRAM, subsystem, size 4
B404 T414, T425 or T800 32K/3 SRAM, 2M/4 DRAM, subsystem, size 2
B405 T800-20, 8M/5 DRAM, subsystem, parity, size 8
B410 T801 160K/2 SRAM, size 2
B411 T425-20 or T800-20, IM/3 DRAM, size 1
B416 T222, 64K/2 SRAM, size 1
B417 T800, 64K/3 SRAM, 4M/4 DRAM, subsystem, size 4

Transtech

TTMI
TTM2
TTM3
TTM4
TTM5
TTM6
TTM7
TTM8
TTM9

T414, T425 or T800 at 20 MHz, 32K/3 SRAM, size 1
T414, T425 or T800 at 20 MHz, 128K/3 SRAM, size 1
T414, T425 or T800 to 25 MHz, IM/3 or IM/4 size 1
T414, T425 or T800 at 20 MHz, IM/4, subsystem, size 4
T414, T425 or T800 to 25 MHz, IM/3 or IM/4, size 2
T414, T425 or T800 to 25 MHz, 2M/3 or 2M/4, subsystem, size 2
T414, T425 or T800 to 25 MHz, IM/3 or IM/4, subsystem, size 1
T414, T425 or T800 to 25 MHz, 4M/3 or 4M/4, subsystem, size 2
T414, T425 or T800 to 25 MHz, 4M/3 or 4M/4, subsystem, size 4
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TTM15
TTM16
TTM17

T'l'M18

T414, T425 or T800 to 25 MHz, 4M/3 or 4M/4, subsystem, size 1
T414, T425 or T800 to 25 MHz, 4M/3 or 4M/4, size 1
T414, T425 or T800 to 25 MHz, 4M/3 or 4M/4, subsystem,
upgradable to 8M, size 2
T414, T425 or T800 to 25 MHz, 8M/3 or 8M/4, subsystem, size 2

Special application TRAMs

Graphics

INMOS B408: T800-20, 1M/4 DRAM, 1.25M/4 dual-port RAM (use with B409), max.
resolution 1024 X 768, size 8.

INMOS B409: T222-20, video timing generator, color lookup tables (use with B408), max.
dot rate 64 MHz, size 8.

INMOS B419: T800-20, G300 color video controller, 2M/4 DRAM, 2M/4 VRAM, max.
video resolution 1280 X 1024, 8 bits/pixel size 2.

Ethernet

INMOS B407: T222-20, 64K/3 SRAM Am7990 lance.

SCSI

INMOS B422: T222-20, 64K/2 SRAM, subsystem, target/initiator, size 2.

T2 systems: Paradise-1 SCSI size 4, T222.

ROM

INMOS B418: T222-20, 256K flash ROM, subsystem, size 2.

GPIB

INMOS B421: T222-20, 48K SRAM, 8K EEPROM, GPIB controller, size 4.

Link interface

INMOS B415: RS422 buffer for four links, reset and system services, size 1.
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Other

INMOS B420: Vector processing TRAM. T800-25, 1M DRAM, 256K dual-port SRAM,
vector processor, size 2.

PC boards

Cesius

Scientific accelerator: T800-25, 4 or 16M DRAM.

INMOS

B008-1: Ten TRAM sites, C004 link switch, T212 controller, C012 bus interface.

Transtech

TMB04: T414-20, T425-20, T800-20 or T800-25 plus four TRAM sites. Up to 16 Mbytes
RAM, 4 or 3 cycle, C012 bus interface, DMA.

TMB05: M212 disk processor, 20 or 55 Mbytes winchester, four TRAM sites, DMA.

TMB08: Ten TRAM sites, C004 link switch, T222 controller, C012 bus interface, DMA,
INMOS B008 compatible.

Microway

Monoputer: T414, 2 Mbytes RAM.

Quadputer: Four T414 or T800, each with 1 or 4 Mbytes RAM.

Videoputer: T800, 1 or 4 Mbytes RAM, 1 Mbyte video RAM, 256 colors from palette of
16.7 million. Max. display resolution 1024 x 1024.

Parsytec

TPM-PC: T800~20 or T414, 256K to 8M DRAM, optional 0004.

MTM-PC: Four T800-20 or T414-20, IM/4 DRAM each, two C004, two TRAM sites.

BBK-PC: Adaptor for adding busless transputer cards to PC (see Parsytec entries under
non-bus cards)
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Quintek

FASTlS: T425 or T800 1M DRAM.

FASTIXL T425 or T800, 2, 4, 8 or 16 M DRAM.

FAST4: Four T425 or T800, 1M per processor.

FAST9: Nine T425 or T800, 1M per processor, 0004.

FASTI7: One processor with 4M, sixteen with no external memory.

Harlequin: T8004 Mbytes RAM and 512K VRAM, display resolution 512 X 512. Frame
grabber included.

Sang

MEGA-LinkOl: One to four T245/T800, 1 or 4 Mbytes per transputer.

MEGA-Link02: T425 orT800, G300, 1-8 Mbytes RAM, 1-2 Mbytes video RAM, 256
colors from 16.7M, max. resolution 1280 X 1024. DMA.

MEGA-Link03: T245/T800 1-32 Mbytes RAM, DMA.

Gemini

GM8101: T800, 4 or 8M DRAM, B004 compatible.

GM8102: T800, I-16M DRAM, pipeline of five T800 with no memory, 0004.

GM8103: T800 2M DRAM, 0.5-4M video RAM, max. video resolution 1536 X 1152, 8
bits/pixel. 0012 interface to bus.

GM8104: T800, 1M DRAM, 0.5-4M video display memory, video resolution to 1024 X 768,
32 bits per pixel. Frame grabber.

GM8110: Motherboard. Ten TRAM sites, 0004, T212, B008 compatible.

GM8401: DMA link adaptor.
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VME and Sun

INMOS

BOII-2 6u bus master: T800-20, 2 Mbytes dual-ported RAM, two TRAM slots, two
RS232.

B014-1 6u bus slave: Eight TRAM slots, two C004, C012 bus interface.

B016-1 6u bus master/slave: T801-25, 256K static RAM, 4 Mbytes dual-ported RAM,
256 Kbytes PROM, two RS232 ports.

Meiko

In-Sun computing surface boards: One to four T800, up to 4M shared DRAM, 1M dual
port to VME bus. Message link switch and system supervisor.

Transtech

MCP501: Eight TRAM slots.

Parsytec

VMTM: Multi-transputer board for VME and Sun, 6u, four T800-20 or T414-20, IM/4
each, two C004, four link adaptor interface to VME bus.

BBK-V2: Active bus bridge for VME and Sun, 6u, master/slave, T800-20 or T414-20, 2M
dual-port DRAM.

BBK-Vl: Passive bus bridge for VME and Sun VME DMA controller to C012 link inter­
face.

MTM-SUN: Multi-transputer 9u module for Sun. Four T800-20, 1M each, expandable to
10 with Parsytec cards 64 X 64 link switch, dual-port RAM interface to VME bus.

HP

Protek

TRM12A motherboard for HP series 300 DID-II backplane, twelve TRAM sites, T212
controller, two C004, link adaptor interface to host.
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TRM4A motherboard for HP series 200/300 DIO-I backplane, four TRAM sites, C004,
T212 controller, link adaptor interface to host.

PS/2

Parsytec

TPM-PS/2 T800-20 or T414-20, 256K to 4M DRAM, optional C004 daughterboard, three
daughterboard sockets.

BBK-PS/2 Active bus bridge for PS/2 microchannel T800-20 or T414-20, 2M dual-port
DRAM, DMA.

Quintek

Poppy: One processor, 4M.

Apple Macintosh

Levco

TransLink II: Motherboard, four TRAM sites, C012 interface to bus.

Parsytec

TPM-MAC: Transputer board for MAC T800-20 or T414-20, 256K to 7M DRAM, op­
tional C004 daughterboard, three sockets for daughterboards.

MTM-MAC: Dual transputer board for Apple Mac-II, two T800-20 or T414-20, 2M
DRAM per processor. Link adaptor interface to bus.

Digital Equipment Q-bus

Caplin

QTO: Bus interface board, T212 providing four links with separate control signals. 2K
dual-port SRAM, 4K EPROM, DMA to Q-bus.
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QTl: T414 or T800 128K/3 SRAM, 4M DRAM, subsystem, no bus interface.

QT2: Two T414 or T800, 1 or 2M DRAM each, subsystem, no bus interface.

QT4: Four T414 or T800, 1M each, no bus interface.

QTVIO: Graphics card, T800 2M SRAM, max. resolution 512 X 512 12 bits/pixel, video
digitizer, 256 colors from 16.7M, no bus interface.

QTIO: Communications modules with T222, 16K SRAM, 16K EPROM, one parallel,
eight serial ports. No bus interface.

QTX: Link configuration module. T222 controlling C004, thirty-two links and eight sub­
systems. No bus interface.

Parsytec

BBK-MBl: Passive bus bridge to DEC Q-bus DMA from bus to four separate COI2 link
adaptors with RS-422 link drivers.

NEC-PC

INMOS

BOI5-I: Five TRAM slots, COI2 bus interface.

Acorn Archimedes

Gnome

Transputer baseboard for Archimedes workstation: 1 transputer up to 8 Mbytes TRAM
motherboard, four TRAM sites.

Non-bus

INMOS

BOI2-1: Double extended eurocard, sixteen TRAM slots, two C004, T212 controller.
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Transtech

TMB12: Double extended eurocard, sixteen TRAM sites, two C004, T222 controller,
INMOS B012 compatible.

Parsytec

Wide range of cards with various different options of processors and memory config­
urations. Graphics cards and a SCSI interface also available. These cards have a
proprietary bus but may be used in a PC via the bus adaptor BBK-PC.

Workstation makers

Atari

ATW standalone workstation with 68000 10 processor, T800, 4M, video with custom
blitter, display resolutions from 512 x 512 x 32 bits to 1280·x 1024 x 4 bits. Slots for up
to three farm cards of four processors each.

Cogent

Multi-user workstation with two T800 processors per display station and multiple proces­
sor base station with Nubus interfaces.

Thema

Thema workstation containing 80286 or 80386 PC board and multiple transputer system
board slots which can take various combinations of custom boards, including video, SCSI
and compute modules.

Large-scale system makers

Meiko: Computing Surface.

Parsys: SuperNode (SN series).

Parsytec: Supercluster.

Telmat: T.Node.
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Company Addresses

Caplin

Caplin Cybernetics Ltd, C26 Poplar Business Park, 10 Prestons Road, London E14 9RL.
Tel. 071-538 1716, fax 071 538 4151.

Cesius

Cesius Computer Inc., 2111 Wilson Boulevard, Suite 700, Arlington, VA 22201, USA.

Cesius Ltd, 660 Aztec West, Almondsbury, Bristol BS12 4SD, UK. Tel. Bristol (0454)
612425, fax (0454) 618188.

CSA

Computer System Architects, 950 N. University Avenue, Provo, UT 84704, USA. Tel.
(801) 374-2300, fax (801) 374-2306.

Distributed Software Ltd

670 Aztec West, Almondsbury, Bristol BS12 4SD, UK. Tel. Bristol (0454) 612777, fax
(0454) 618188.

Gemini

Gemini Computer Systems Ltd, Springfield Road, Chesham, Bucks HP5 1PW, UK. Tel.
(0494) 791010, fax (0494) 784545.

Gnome

Gnome Computers Ltd, 16 Histon Road, Cambridge CB4 3LE, UK. Tel. Cambridge
(0223) 461520.

Thema

Thema, Rontgenstrasse 31, 7080 Aalen, FRG. Tel. (07361) 44031, fax (07361) 44030.
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INMOS

INMOS Ltd, 1000 Aztec West, Almondsbury, Bristol BS12 4SQ, UK. Tel. Bristol (0454)
616616, fax (0454) 617910.

Levco

6160 Lusk Boulevard, Suite C-100, San Diego, CA 92121, USA. Tel. (619) 457-201, fax
(619) 457-2325.

Meiko

Meiko Ltd, 650 Aztec West, Bristol BS12 4SD, UK. 'reI. Bristol (0454) 616171, fax (0454)
618188.

Meiko Scientific Corp., 400 Oyster Point Boulevard, Suite 523, South San Francisco, CA
94080, USA. Tel. (415) 952-9900, fax (415) 952-7092.

Microway

Microway (Europe) Ltd, 32 High Street, Kingston upon Thames, Surrey KT1 1HL, UK.
Tel. 081-541 5466.

MIMD

MIMD Systems Inc., 1301 Shoreway Road, Suite 430, Belmont, CA 94002, USA. Tel.
(415) 595-7303, fax (415) 595-8158.

Parsytec

Paracom Inc., Building 9 Unit 60, 245 W. Roosevelt Road, West Chicago, IL 60185, USA.
Tel. (312) 293-9500, fax (312) 231-0345.

Paracom GmbH, Jiilicher Strasse 338, D-5100 Aachen, FRG. Tel. (241) 166000, fax (241)
166050.

Perihelion

Perihelion Software Ltd, The Maltings, Shepton Mallet, Somerset BA4 5QE, UK. Tel.
Shepton Mallet (0749) 344203, fax (0749) 344977.
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Protek

10 Grosvenor Place, London SWIX 7HH, UK. Tel. 071-245 6844, fax 071-235 7349.

Quintek

Southfield House, 2 Southfield Road, Westbury-on-Trym, Bristol BS9 3BH, UK. Tel. Bris­
tol (0272) 628196, fax (0272) 628717.

Sang

Sang computersysteme GmbH, Am Wiinnesberg 13, 4300 Essen-Haarzzopf, FRG. Tel.
(201) 7101191, fax (201) 710410.

Sension

Sension, Denton Drive, Northwich, Cheshire CW9 7LW, UK. Tel. Northwich (0606) 44321.

Strand

Strand Software Technologies, Greycaine Road, Watford, Herts. WD2 4JP, UK. Tel. Wat­
ford (0923) 247707, fax (0923) 247836.

Strand Software Technologies Inc., 15220 N W Greenbrier Parkway, Suite 350, Beaverton,
OR 97006, US. Tel. (503) 690-9830, fax (503) 690-9797.

T2

T2 systems Ltd, 62 Longmead Avenue, Bishopstoke, Eastleigh, Hampshire S05 6ET, UK.
Tel. Southampton (0703) 641276.

Telmat

Telmat Informatiqne, ZI rue de l'Industrie, BP 12-68360, Soultz, France. Tel. 89 76 52
20, fax 89 74 27 34.

Transtech

Transtech Devices Ltd, Unit 17, Wye Industrial Estate, London Road, High Wycombe,
Bucks. HPll lLH, UK. Tel. High Wycombe (0494) 464303.
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3L

3L Ltd, Peel House, Ladywell, Livingston, West Lothian EH4 6AG, Scotland. Tel. Liv­
ingston (0506) 415959, fax (0506) 415944.
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