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Abstract

There are many approaches for improving the performance and reliability of

secondary storage. The RAID (Redundant Arrays of Inexpensive Disks) is an

example, but it still has a reduced performance for reconstructing data and using

a large number of disks due to a bottleneck in the bus.

We proposed DR-nets (Data-Reconstruction networks) to remove this bottle-

neck. In DR-nets, each node is connected by an interconnection network instead

of the bus. Due to this interconnection network, the communication among nodes

keeps locality in reconstructing data and the scalability can be increased. DR-net

can also reconstruct data using parity information.

We implemented an experimental system using Transputers. It contains 26

inmos T805s and 25 Quantum hard disk drives. The control software on each

node is written in Occam. The processes for routing packets and controlling disk

accesses are executed in parallel.

We describe the hardware and software con�gurations of the system, and

report some experimental results.
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1 Introduction

There is a strong demand for high performance and reliability in computer systems.

Secondary storage may prevent from reaching these demands. There are some problems

of lowering system performance by secondary storage, known as Amdahl's Law, and of

low-reliability caused by mechanical movements on disks. Solving these problems are

essential to the growth of computer systems.

A Redundant Arrays of Inexpensive Disks (RAID) was proposed by D.A.Patterson

et al. of UC Berkeley [PGK88] to solve the above-mentioned problems using data-

striping and redundant information. It stores data and redundant information into

multiple disks, and it is classi�ed into �ve levels corresponding to the method of storing

the redundant information:

level 1 Mirrored disks. It duplicates all data as redundant information.
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Figure 1: An Ordinary RAID System

level 2 It stores disks with Hamming coded data in bits.

level 3 It uses parity codes instead of Hamming codes for correcting errors

since disk controllers can detect damaged disks. Data is also interleaved

in bits.

level 4 Data is interleaved in sectors instead of bits. It makes each disk

access independent. Parity information is stored in a single disk in a

group.

level 5 It spreads parity information into all disks in a group.

Figure 1 shows an ordinary level 5 RAID system.

In level 4 and 5 RAID, we can calculate new parity codes as follows [PGK88]:

new parity = (old data xor new data) xor old parity (1)

Two disks, a data disk and the parity disk, are accessed to modify the parity codes.

RAID needs to calculate the expression (1) in every access of write data. Also it is

necessary to apply the xor among the parity codes and data in a group to reconstruct

the data under failure. Thus, the bus becomes the bottleneck because all disks in the

group are accessed for reconstruction.

In Section 2, we �rst give an outline of the DR-net which can alleviate the bus bot-

tleneck by using an interconnection network and improve the reliability of the system.



We introduce an experimental system for the DR-net in Section 3. We describe the

hardware con�guration and then the software implementation. Section 4 reports some

results.

2 The DR-net

2.1 Applying RAID on an Interconnection Network

RAID has been proposed for improving access speed and reliability of secondary storage.

As mentioned above, however, performance is reduced due to the bus. The clustered

RAID [ML90][MY92] or the RAID system connected by a network [LCH

+

92] have been

proposed, but both are not an optimized to this bottleneck.

We propose DR-nets (Data-Reconstruction networks) to solve these problems [Yok93b]

[Yok93a]. In the DR-net, disks are connected to each node of an interconnection network

and data is scattered with parity information to each node.

A parity group is composed of neighboring nodes interconnected around a central

node. For example, the parity group is composed of �ve nodes in the shape of a

cross if we adopt a two-dimensional torus network as network topology. It is possible

to make �ve parity groups on the 5 � 5 torus network (Figure 2). If we have non-

overlapped parity groups like Figure 2, there will be no collision on the links for the

case of modifying parity codes and/or reconstructing data. As such, we are able to

resolve the bus bottleneck using an interconnection network and keep locality to access

data.

We will go into details on the operation of the nodes in Section 3.2.3.
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2.2 Improving Reliability

To a certain extent, we can achieve higher reliability using an interconnection network

and non-overlapped parity groups. A simple calculation shows that the system can

repair all data in the presence of on average 3.9 faults for 25 disks without repair

[Yok93b][Yok93a]. It has the same reliability as for RAID, but it is just an average

measure, and data can be lost by only two faults in the same group under the worst

case conditions.

Now we consider improving system reliability to allow multiple faults. We have to

introduce an increase in redundancy for improving reliability. The system performance

will be reduced by this additional redundancy, but care must be taken not to allow over-

lapping of parity groups and/or link collisions. Here we adopt a method of constructing

second parity groups (SPGs) on the same interconnection network of �rst parity groups

(FPGs) described in the previous section. Figure 3 illustrates the SPGs that have no

overlapping and no link collision among parity groups on the 5� 5 torus network. The

communication among nodes forms swastikas or reverse swastikas. Figure 4 illustrates

an example of recovering faults with FPGs and SPGs. Initially, two SPGs reconstruct

data in node(22) and node(33), then FPG reconstructs data in node(31).

It becomes possible to recover data by introducing SPGs even if any two disks are

damaged in a system using 25 nodes [Yok93c][Yok93a], data is recovered 95% for four

damaged disks.
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Figure 4: Recovering Faults with FPGs and SPGs

3 An Experimental System

In this section, we describe an experimental system of DR-net using Transputers. First,

we describe brie
y the hardware con�guration, then explain the software implementa-

tion.



3.1 Hardware Overview

The experimental system is shaped as a tower including �ve VME subracks (Figure 5).

There are also �ve plug-in-units in each VME subrack. The plug-in-unit consists of the

following components:

� A CORAL HPT04 SCSI-2 TRAM (SCSI controller) using an inmos

T805 (25MHz)

� An IMS B014 VMEbus board with C004 link switch chips

� A Quantum Go�Drive 120S (2.5" 120MB SCSI hard disk drive)

� A power supply

� A case

In front of each plug-in-unit, there are a disk access indicator and a power switch of

a disk (which simulates the disk failure). Since each plug-in-unit is removable, we can

easily replace any damaged disks.

The Quantum hard disk drive supports an average seek of 17ms, an average rota-

tional latency of 8.3ms, and a maximum transfer rate of 4MB/s.

Each T805 is connected to neighboring nodes by links. It is impossible to make the

5 � 5 torus system communicate to the outside only by 25 T805s because a T805 has

only four hardware links. We use an extra T805 besides SCSI TRAM as a root node.

The root node is used for host communication. Thus, we use 26 Transputers to form

the 5� 5 torus network. We use the system via Ethernet using an IMS B300 TCPlink

hardware. Figure 6 illustrates the network construction of the experimental system.

Since we use only one root Transputer for host communication, the tra�c to-

ward/from the root node may be heavier. We can add more Transputers for host

communication into the torus connections to alleviate this bottleneck.

The speci�cation of communication bandwidth among nodes is 20Mbits/s. We

measured it with an IMS C004 link switch chips on the VMEbus boards and we obtained

1.1MBytes/s (8.8Mbits/s) for one direction.

3.2 Software Con�guration

In the DR-net, a �le is divided into some fragments, then sent to each node as packets

and stored. In this section, we describe the generation of the packets, the construction

of routing/executing processes, the behavior of the executing process under/without

failure, and a method for storing data. All programs are written in Occam.

3.2.1 Protocol among Nodes

Each node has its own address in the interconnection network. Packets are transmitted

from a source node to a destination node using the address. The packet datagram

delivered among nodes is as follows:

source

addr

relay

addr

destination

addr

fragment

#

operation

page #

in disk

data

The address of the source and destination nodes is used for sending and/or receiving

(i.e. sending back). The address of a relay node is used for avoiding link collisions. By
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specifying the relay node, this makes it possible to deliver packets with no link collision

when the packets are transferred in the SPGs. The path from the source node to the

relay node or from the relay node to the destination node is optimized.

It is, moreover, possible to avoid link failure using a dynamic routing method which

dynamically re-speci�es the relay node. Figure 7 illustrates an example of avoiding link

failures. The S, R and D in this �gure correspond to a source node, a relay node and

a destination node respectively. A packet can avoid some link failures using the relay

node when it is sent to the eight neighboring nodes.

The �eld of the fragment number in the packet is used for reassembling the �le. The

�le allocation policy is described in Section 3.2.4, and its operation in Section 3.2.3.

3.2.2 Processes and Channels

Each node must deliver packets to their destination nodes independent of the as-

signed tasks. Figure 8 illustrates the processes and the channels in each node. Four

senders/receivers to/from each direction and executors run in parallel.
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Figure 8: Processes and Channels

The Occam program in each node is outlined below:

... declare procedures

... declare channels

PAR

-- senders

snd.to.north(to.north, n.to.n, s.to.n, e.to.n, w.to.n, ep.to.n)

snd.to.south(to.south, n.to.s, s.to.s, e.to.s, w.to.s, ep.to.s)

snd.to.east( to.east, n.to.e, s.to.e, e.to.e, w.to.e, ep.to.e)

snd.to.west( to.west, n.to.w, s.to.w, e.to.w, w.to.w, ep.to.w)

-- receivers

rcv.from.north(from.north, n.to.n, n.to.s, n.to.e, n.to.w, n.to.ep)

rcv.from.south(from.south, s.to.n, s.to.s, s.to.e, s.to.w, s.to.ep)

rcv.from.east( from.east, e.to.n, e.to.s, e.to.e, e.to.w, e.to.ep)

rcv.from.west( from.west, w.to.n, w.to.s, w.to.e, w.to.w, w.to.ep)

-- executors

executor.pool(ep.to.n, ep.to.s, ep.to.e, ep.to.w,

n.to.ep, s.to.ep, e.to.ep, w.to.ep)
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At �rst, a receiver receives a packet and checks the address of the destination node.

If the destination address is not same as its own address, then a sender sends the packet

so that it follows an optimum route to give priority to the horizontal direction through

a channel between the receiver and the sender.

If the destination is equal to its own address, then the packet is sent to the executor

pool. In the executor pool, the packet is allocated to an executor by the controller and

sent to the executor. The executor allocated to the packet reads or writes data from/to

disk, and sends the result to the appropriate node via a sender (Figure 9).

3.2.3 Operations in Executors

There are �ve types of operations in executors which correspond to the behaviors of

each node. Figure 10 illustrates the behaviors and movements of packets.

a. Read without disk failure An executor reads a page from the disk and sends

back a packet to an appropriate node given by the source address �eld of the request

packet.

After sending it back, the executor is released.
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b. Write without disk failure A write operation contains four disk accesses.

1. An executor reads the old data from the disk.

2. The executor writes the new data to the disk.

And the executor simultaneously applies xor to the old and new data,

then sends the xor-ed data to the parity node.

3. An executor which receives the packet in the parity node reads the old

parity data from the parity disk.

4. The executor in the parity node applies the xor to the received data

and old parity data, then it writes the new parity data to the parity

disk.

The executor in the object node is in charge of the �rst two steps, while the executor

in the parity node is in charge of the last two steps. The write operation in Step 2 and

the read operation in Step 3 are executed in parallel.

After sending the packet to the parity node, the executor in the object node is

released.

c. Read under disk failure When an object disk is damaged and is impossible to

read data from the disk, then the executors behave as follows:

1. An executor in the object node sends a read request to the parity node.

2. An executor which receives the request in the parity node reads the

parity data from the parity disk.

The executor in the parity node sends read requests to the remaining

nodes of the parity group.

3. The executor in the parity node applies xor to the parity data and

packets as soon as it receives from the remaining nodes.

After applying xor to all packets from the three remaining nodes, the

executor in the parity node sends back the result to the object node.

4. The executor in the object node sends back the packet to the node

which issued the read request.

The executor in the object node is in charge of Steps 1 and 4, and the executor in

the parity node is in charge of Steps 2 and 3. After executing its normal processing,

the executors in each node are released.



d. Write under disk failure When an object disk is damaged and it is impossible

to write data to the disk, then the executor in the object node issues a write request

to the parity node. The executor receiving the request in the parity node sends a read

request to the remaining nodes of the parity group. Also, the executor in the parity

node applies xor to the packets from the remaining nodes in succession.

After applying xor to all packets, the executor in the parity node writes the new

parity data to the parity disk.

The executors in each node are then released.

e. Data reconstruction for a new replaced disk This operation is similar to

(c.). An executor in an object node writes the reconstructed data to a new replaced

disk instead of sending it back to the node which issued the read request.

We assume that there is no intermittent disk failure. If an intermittent failure

occur, and an executor does not detect or check it, then the consistency of data will

be lost. In other words, the data is lost if an executor accesses data which must be

reconstructed after replacing a disk. This is the reason why a disk once damaged may

have inconsistent data.

3.2.4 File allocation

We now propose a method for storing �le allocation tables. It is useful if the �le

allocation tables are scattered and multiplexed as there is no hot spot of access nor the

impossibility of access due to loss of tables by disk failures. The following shows how

to store �les:

1. The root node divides a �le into some fragments.

The node generates a table containing the �le name, �le size, date and

time, and the number of the fragments.

2. The root node sends the fragments to a parity group as packets.

By round robin it is determined to which parity group the packets are

sent.

3. The parity group receiving the packets stores it into the disk of the

data nodes in arrival order using a round robin.

The node generates a table containing the location of storing data, the

location of a node and the page number in the disk, and informs the

root node of the location of this table. The root node stores this data

with the above information.

4. The parity group sends the remaining data to another parity group

when the group �nished storing around to all data nodes in the group.

5. Another parity group which receives the remaining data also stores

them to the data nodes in round robin in arrival order. Also it informs

the location of the table to the source parity group.

The source parity group also stores this data with the above informa-

tion.

6. The steps mentioned above are repeated till all of the packets are

stored.



4 Access Speed

Figure 11 illustrates the time table for writing a page and modifying the parity. For the

measurements using the experimental system, random access to maximize seek time

and an average of ten measurements were speci�ed. 512bytes is used as an access size

of a page.

The time for reading a page is 25ms, while writing takes 6ms. Writing data and

modifying parity take 57ms. The 6ms, for writing, is not an actual time for writing a

page to a disk, but the time for writing it to a bu�er of a disk controller. As at present,

we now do not have a good way of measuring the absolute time for writing.

We have not measured the time for the xor or send/receive because they are very

small. Incidentally, the transfer rate of the send/receive process is 1.1MBytes/sec and

the time to set it up is about 3�sec. For transferring a page of data, for example, it

takes about 0.5ms.

The time for writing a page and modifying parity is about three times (25ms vs.

57ms) as much as for writing a page provided it takes as much time as for reading a

page. This result is correct because writing in the data node and reading in the parity

node must be overlapped. We can overlap both read and write operations of data and

parity. However, since another synchronization mechanism between executors in both

nodes is required, we have not adopted this method yet.

The time tables for reading and writing a page under the presence of a failure are

shown in Figure 12 and 13. The time for detecting disk errors is 237ms, 274ms for the

reading process and 284ms for the writing process. Since errors are detected by a device

timeout in our experiment, it can take a lot of time. The real time for reconstructing

data except detecting errors is 37ms and 47ms for reading and writing, respectively.

We take these results to be correct too.

Data using both FPGs and SPGs has not been gathered, but we expect that these

results are the same as using FPGs only. Data transfer takes less time compared with a

disk access, and each access to the disk in the FPGs and SPGs are executed in parallel.

5 Concluding Remarks

We have described the implementation and some results for an experimental system

using the DR-net. DR-net was proposed to improve the performance and reliability of

secondary storage based on RAID. DR-net can reconstruct data using local communi-

cation of parity groups in sub-networks of an interconnection network. DR-net has two

types of parity groups, FPGs and SPGs. It can achieve higher reliability by increasing

the level of redundancy.

We have developed an experimental system using Transputers and its control soft-

ware in Occam. We have adopted a method for �le fragmentation and a composition

of packets for transmission among nodes, and detailed them in this paper. The packets

with not only destination but relay addresses are delivered with no collision among

nodes.

In each node, the routing and the disk controlling processes are executed in parallel.

A node can accept multiple requests. Also we have proposed a method for storing �le

allocation tables to retain the information under disk failures.

We have completed the implementation of the FPGs, and measured the behavior of

disk accesses and the access time to the disk of the system. We are now implementing
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the SPGs and the �le system, and plan to examine the performance of the DR-net

under multiple disk access requests. The performance under many accesses to the disks

and/or multiple faults in disks will be investigated.

We are planning to implement the DR-net for other topologies such as the three-

dimensional torus or hypercube. We will also consider parallel database operations on

the DR-net.
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