The role of occam in
the design of the IMS T800

INMOS Technical Note 47

David Shepherd

September 1988
72-TCH-047

tirlanis
plujt]e[r

njelt|

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

Contents
1 Introduction

2 Occam
2.1 Occam transformations
An example transformation
2.2 The occam transformation system

3 Instruction development

4 An example instruction development

4.1 Preliminary definitions oL
4.2 The instruction specification
4.3 Refining to procedural form
4.4 Refining tooccam oo
4.5 High-level occam implementation
4.6 Transformations towards microcode

Refining the conditionals

Refining the expressionso

Introducing sequencing,
4.7 Translation to microcode
4.8 Microcode assembler source

5 Current and future work
6 Conclusions

References

10
11
11
12
13
13
14
15
16
16

17

18

18

Presented at the 20th Workshop on Microprogramming, December 1-4, 1987, Col-

orado Springs, CO. To appear in ACM SIGMICRO Newsletter, 1988.

Abstract

This paper describes how ’correct’ microcode can be produced through
the use of mathematical logic and formal design methods. The use of
these techniques to derive correct microcode for the IMS T800 floating
point transputer from a mathematical specification is discussed. This
experience on the IMS T800 has shown that this approach provides
the opportunity to produce designs with a higher certainty of correct-
ness in significantly less time as compared with ’traditional’ design
techniques. These techniques are currently being applied to the con-
struction of correct specifications at the hardware description language
level. This work is attempting to incorporate mathematical logic and
formal design methods into the INMOS CAD system so that their use
becomes the standard way of producing correct VLSI devices.

1 Introduction

Recent research has demonstrated the possibilities of producing hardware
designs that have been verified as opposed to tested. Examples of this ap-
proach include the proof of correctness of a simple microcoded processor [1]
and the verification of the design of various low-level hardware modules [2].
The tools that have been used in this work are LCF_LSM [3], VERITAS [4]
and HOL [5].

Most people would agree that it is desirable for a manufacturer’s products
to meet some form of specification. This requirement becomes vital when
the product is used in a life-critical situation - users must know what the
behaviour of the product will be. This has resulted in the emergence of
a disciplined approach to design in many engineering professions. An ar-
chitect checks that a new building will not fall down, an aircraft designer
does detailed calculations to ensure that the wings produce enough lift. At
each step of the construction process checks are made to ensure that the
components used meet their specifications in the design.

Now that computers are being used in life-critical applications, such as fly-
by-wire aircraft or complex life support systems, it is vital for the underlying
hardware to be correct. It is impossible to exhaustively test components as
simple as a 32-bit multiplier - never mind an entire processor - so different
techniques must be used to verify designs. As E.W. Dijkstra has remarked [6]

(non-exhaustive) testing can be used to show the presence of bugs
but never to show, their absence.

Starting from an agreed formal specification a correct design can be pro-
duced if the implementation is produced by a sequence of provably correct
steps. This will bring the standard of computer design to the levels ex-
pected in other branches of engineering [7]. Use of verified design methods
can produce savings in time and expenditure. The need to redesign part of
a VLSI device may cause a 2 or 3 month delay in its launch and several such
iterations can make a device obsolete before it comes to market.

This technical note details how a verified design approach was used on sec-
tions of the IMS T800 floating-point unit microcode. The formal semantics
of the occam language [8, 9] and the use of program transformations are
described. Then a simple example is used to show haw a high-level specifi-
cation can be developed into microcode using formal design methods that
guarantee the correctness of the final design.

2 Occam

The occam language [8] allows a system to be hierarchically decomposed
into a collection of concurrent processes communicating via channels. This
allows it to be used to represent the behaviour of a VLSI device in a very
natural way - the various top-level modules can be mapped on to individ-
ual processes with their interfacing handled by channel communication. In
more traditional languages the inherent parallelism of a VLSI device has to
handled by explicit programming. occam has a very efficient implementa-
tion permitting fast execution of such a behavioural description to allow for
simulation. Most importantly, for the purposes of this paper, occam has
rich formal semantics [9] which facilitate program transformation and proof.

2.1 Occam transformations

The algebraic semantics of occam given in [9] consists of a set of laws which
define the language constructs. The algebraic semantics have been shown
to be consistent with the denotational semantics establishing the validity of
these laws. These transformation laws enable a normal form for finite occam
programs to be defined.

A transformation law can be used to transform one program into another
whose observable behaviour is equivalent. Many transformation laws are
‘obviously true’ and are regularly used by programmers - for example se-
quential composition of processes is associative:

SEQ SEQ
P SEQ
SEQ = P
Q Q

R R

This is the law SEQ binassoc. Others are more complex and include pre-
conditions for validity but, with a bit of effort, can be seen to be true.

If a sequence of transformations can be found to transform one program
into another then the two programs are known to be equivalent. If, in
addition, one of these programs is known to be a correct implementation of
a specification then the correctness of the other can be inferred.

Using these techniques it is possible to demonstrate the correctness of im-
plementations by transformation - doing this by experimental testing takes
far too long for problems like floating-point arithmetic.

An example transformation

As an example consider the following program fragment:

SEQ
X :=A
Y :=Y + X

These two assignment statements can be merged into one multiple assign-
ment statement.
First the law AS id is used to add an identity assignment to each statement:

ASid T,y =e¢,

ZTi=¢€

I
M1l

giving the program:

SEQ
X,Y := AY
Y, X :=Y + X,X

Next the law AS perm is applied to the second statement:

AS perm <zili=1l.n>=<e¢li=1.n>

< Zmli =1.n >=<egli=1.n>
for any permutation 7 of {1..n}

giving:
SEQ
X,Y := A,Y
XY := X,Y + X

Finally these two statements are merged by the law SEQ comb:
SEQ comb SEQ(z:=e¢,z:= f) =z := fle/z]

giving:

X,Y := A,Y + A

2.2 The occam transformation system

To aid the process of transforming programs a simple interactive transforma-
tion system has been implemented in the language ML [10]. A program can

be parsed into this system and then manipulated by the user. All the basic
laws in [9] are implemented inside the system along with some extra ones -
the system is extensible and new laws (that have been proven correct) can
be coded and added if required. Regularly executed sequences of transfor-
mations can be coded as ML functions giving higher-level transformations.
The example transformation shown above has been coded up as the trans-
formation law combos which itself is used in more powerful transformations.
The basic transformations often have only a small localised effect but when
suitably combined they can perform significant transformations which be-
ing constructed from correct component transformations are known to be
correct.

The transformation system user can select which transformation laws to
apply and examine the effects of these transformations. The fact that the
transformation system is being used provides the verification of the equiv-
alence between the initial program and the transformed end result - but if
necessary it would be feasible to produce the list of transformations which
constitute the proof.

3 Instruction development

The instruction development process consists of specifying the operation of
the instruction in the Z specification language [11]. Since Z is a mathe-
matically based language it allows precise unambiguous statements about
operations to be made concisely and - if used in a sympathetic manner -
clearly.

Along with the specifications of the instructions there will be a set of spec-
ifications of system constants, system state and other global features of the
design. In the case of the IMS T800 floating-point unit this consists of a
formal specification of the IEEE floating-point standard - such as in [12], a
specification of the internal representation of floating-point numbers in reg-
isters, a specification of the floating-point unit state - i.e. the registers and
flags, and definitions of various constants that are used. This corresponds
to formally describing the overall architecture.

Each instruction specification is refined into a high-level occam implementa-
tion. This can involve going via a guarded command language using pre- and
post-conditions as in [13]. This high-level implementation is often the sort
of implementation that a competent programmer would produce from the
specification but the formal derivation ensures that no mistakes are made.

The occam program is then transformed inside the transformation system
into a form equivalent to the microcode assembler source. The steps in this

process are motivated by the functions available in the microcode machine.
This involves:

1. refining /F conditions into the conditions available on the microcode
machine

2. refining the expressions so that they use the alu and bus operations
available on the microcode machine

3. refining the sequential control of the program into a form that simu-
lates the microinstruction control in the microcode machine

The various stages of simple development used as an example are shown in
the next section.

4 An example instruction development

The following example demonstrates the methods that have been found to be
useful in the IMS T800 design. This example takes a high-level specification
in the Z specification language [11] and refines it in a sequence of steps into
a microcoded implementation that will run on a microcode machine similar
to the IMS T800 floating point unit. For brevity certain simplifications
have been made - notably that infinities, Not-a-Numbers and denormalised
numbers are ignored.

4.1 Preliminary definitions

Before any instructions are specified and implemented it is necessary to
make a few preliminary definitions. There is a need to specify the format
of registers, various constants and methods for interpreting data. This is a
formalisation of the top level of architectural description of the device. Only
the subset of definitions relevant to this example will be given.

The definition of the real format will contain the specification of the number
of bits in the fractional part of a floating-point number and the exponent
bias:

’ bitsin frac, bias : N

Now the floating-point register format can be specified:

Floating_Point_Register

rac,exp : N
frac, exp
sign : {—1,+1}
(exp =0A frac=0)
vV
(zbitsinfracfl < fTCLC < 2bitsinfrac)

This states that a Floating_Point_Registers has three fields. Two of which,
frac and exp, are positive integers and the third, sign, is either -1 or +1.
The predicate states that both the exponent and fraction are 0 or that frac
is between 2bitsinfrac—l gpd gbitsinfrac _ this ensures that the fraction is

normalised.

The valuation function on a floating-point register fv establishes the link
between a Floating Point_Register and the value it "holds’:

fv: Floating_Point_Register — R
Vx : Floating_Point_Register.
fo(z) = x.sign x (x.frac x 21-vitsinfracy gezp—bias

Two constants are used to represent the largest and smallest integers in the
integer format. As the IMS T800 uses 32-bit 2s complement integers these
are specified by:

MinInt, MaxInt : Z
MinInt = —231
MazxInt =231 —1

4.2 The instruction specification

The instruction under consideration here is a component of the real to integer
conversion instruction sequence. It checks that the value of Areg lies within
integer range - if it doesn’t then the error flag must be set to indicate a
conversion error.

The Z specification of this instruction is very simple:

10

Floating_Check_Integer_Range
Areg, Areg’ : Floating_Point_Register
Error_Flag, Error_Flag' : bool
fvAreg € Z
Areg’ = Areg
fvAreg € [MinInt, MaxInt] = Error_Flag' = Error_Flag
fvAreg ¢ [MinInt, MaxInt] = Error_Flag' = true

The first predicate is a precondition to this operation. If 1vAreg is not an
integer then the effect of this operation will be undefined. In this way the
precise conditions for the correct execution of an operation are stated. This
instruction is intended for use in a particular sequence of instructions and
the previous instruction will have established this precondition.

It is easy to see that this specification satisfies the requirements for the in-
struction. Once this has been agreed to be ’correct’ the development process
will ensure that the final implementation will also satisfy the requirements.

4.3 Refining to procedural form

A refinement of a specification can consist of either refining a data type
or decomposing the procedural form. As the major data type - reals -
has already been refined into its machine representation, by using Float-
ing_Point_Register and the abstraction function Iv, the specification can be
decomposed into procedural form. The specification can be easily imple-
mented by:
if
fo(Ar
fvo(Ar

g) € [MinInt, MaxInt] — skip

e
eg) ¢ [MinInt, MaxInt] — Error_Flag := true
fi

Using the pre/post-condition laws in [13] this can be shown to implement
the Z specification.

4.4 Refining to occam

This has produced a procedural implementation but the conditionals used
in the if .. fi construct are not available in occam so they need to be refined
into equivalent occam expressions.

To do this the lemmas about integer range shown below will be useful.

11

lemma 1 FVz,y : Floating_Point_Register.
(x.exp < y.expV (z.frac < y.frac A\ x.exp = y.exp))
& [fo@)| < | foly)
lemma 2 F Vx : Floating_Point_Register.
fu(z) = MinInt
& (xsign = =1 A x.frac = MSBit A xz.exp = LargestINT Exp)
lemma 3 + MaxInt = —(MinInt+ 1)
where MSBit = 2bitsinfrac—1
LargestINT Exp = 32 + bias

From lemmas 1 and 2 obtain:

FVx : Floating_Point_Register.
z.exp < LargestINT Exp
& | fo(z)] < |MinInt|

The fact that M SBit < x.frac is part of the invariant of Floating_Point_Register
is used to eliminate the disjunct where z.exp = LargestINT Exp.

Now using lemma 3 and adding an extra condition obtain:

FVx : Floating_-Point_Register.
fv(z) € Z = x.exp < LargestINT Exp
& | fo(z)] < |MaxInt|

From these obtain:

F Vx : Floating_Point_Register.
fo(z) € Z = fu(x) € [MinInt, MaxInt]
& (z.exp < LargestINTExp V fv(z) = MinInt)

4.5 High-level occam implementation

The previous section allows the high-level occam implementation below to
be derived.

IF
(Areg.Exp < LargestINTExp) OR
((Areg.Sign = 1) AND
(Areg.Exp = LargestINTExp) AND (Areg.Frac = MSBit))
SKIP
NOT ((Areg.Exp < LargestINTExp) OR
((Areg.Sign = 1) AND
(Areg.Exp = LargestINTExp) AND (Areg.Frac = MSBit)))
ErrorFlag := TRUE

Using two laws IF pri and IF or-disc:

12

IF pri IF (b Py, ...,b, Pp)
= IF(bTPl,...,b:LPn)
where bT =bi AN b1 Nb;

IF or-dist I1F(b1P,byP,C)
= IF(by V byP,C)

this can be simplified to the program:

IF

(Areg.Exp < LargestINTExp)
SKIP

(Areg.Sign = 1) AND

(Areg.Exp = LargestINTExp) AND (Areg.Frac = MSBit)

SKIP

TRUE
ErrorFlag := TRUE

which is probably the implementation of the specification that a competent
programmer would produce but the ’special’ case of Minlnt is frequently
omitted.

4.6 Transformations towards microcode

The previous sections have developed an occam program that correctly im-
plements the specification. This can now be transformed into an equivalent
form that corresponds to microcode assembler source. Full details of this
process will not be given here.

Each step consists of transforming one aspect of the program towards the
form used in the microcode machine. Ideally this occam program would
be transformed into the final program. As the transformation system is
still under development most of the laws that it contains are those that
are 'general’ - i.e. are correct in all environments. This does not allow the
required transformation to be performed in a forwards manner. Instead at
each step a proposed implementation was constructed and this was then
verified by transforming it back into the current ’correct’ implementation.

Refining the conditionals

The occam program given contains a three-way IF statement with the con-
ditionals:

1 (Areg.Exp < LargestINTExp)

13

2 (Areg.Sign = 1) AND
(Areg.Exp = LargestINTExp)
AND (Areg.Frac = MSBit)

3 TRUE

The structure of the program must be transformed to take account of the
conditional signals available on the microcode machine - i.e. that condition-
als are available to signal that the result of an ALU operation is less than 0
or that the result of an ALU subtraction is 0 etc.

This program for implementation with refined conditionals is shown below.
The various laws for IF constructs in [9] enable this to be verified:

IF
(Areg.Sign = 1)
IF
((Areg.Exp - LargestINTExp) < 0)
SKIP
NOT ((Areg.Exp - LargestINTExp) < 0)
IF
((Areg.Exp - LargestINTExp) = 0)
IF
((MSBit - Areg.Frac) = 0)
SKIP

NOT ((MSBit - Areg.Frac) = 0)
ErrorFlag := TRUE
NOT ((Areg.Exp - LargestINTExp) = 0)
ErrorFlag := TRUE
NOT (Areg.Sign = 1)
IF

((Areg.Exp - LargestINTExp) < 0)
SKIP

NOT ((Areg.Exp - LargestINTExp) < 0)
ErrorFlag := TRUE

Refining the expressions

The previous section has produced conditionals that are available in the mi-
crocode machine. The next step is to take account of how the expressions
producing these conditionals are evaluated. This stage involves introducing
variables to represent the various buses and conditional flags. The condi-
tional flags appear as the IF conditionals and are evaluated in terms of the
results of the ALU operations before the IF statement.

This program for implementation with refined expressions is shown below:
The laws for SEQ, VAR and assignment in [9] verify this step:

14

VAR AregNegative, ExpZbus, ExpZbusNeg, ExpZbusEgZ, FracZbusEgZ :
VAR FracZbus :
SEQ
AregNegative := (Areg.Sign = 1)
ExpZbus := (Areg.Exp - LargestINTExp)
ExpZbusNeg := ExpZbus < 0
IF
AregNegative
IF
ExpZbusNeg
SKIP
NOT ExpZbusNeg
SEQ
ExpZbus := (Areg.Exp - LargestINTExp)
FracZbus := (MSBit - Areg.Frac)
ExpZbusEgZ := ExpZbus = 0
IF
ExpZbusEgZ
SEQ
FracZbusEgZ := FracZbus = 0
IF
FracZbusEgZ
SKIP
NOT FracZbusEgZ
ErrorFlag := TRUE
NOT ExpZbusEgZ
ErrorFlag := TRUE
NOT AregNegative
IF
ExpZbusNeg
SKIP
NOT ExpZbusNeg
ErrorFlag := TRUE

Introducing sequencing

The program now contains expressions and conditionals that can be formed
in the microcode machine. However, the program does not define mi-
crowords. The final step is to mimic the microsequencing in the microcode
machine by use of a variable as a microprogram counter and a WHILE loop
containing an IF microinstruction selector. Each branch of the IF state-
ment contains the ’code’ for one microinstruction - i.e. it can have one
fractional ALU operation, one exponential ALU operation and defines the
next microinstruction to execute - possibly with one or two conditionals.

The laws for WHILE and IF allow this program to be 'unwound’ back into
its previous form.

15

4.7 Translation to microcode

The final program for low level occam implemenation from the previous
transformations is:

VAR NextInst :
VAR AregNegative, ExpZbusNeg, ExpZbusEgZ, FracZbusEgZ :
VAR FracZbus, ExpZbus :
SEQ
NextInst := FloatingPointCheckIntegerRange
WHILE NextInst <> NOWHERE
IF
NextInst = FloatingPointCheckIntegerRange
SEQ
AregNegative := (Areg.Sign = 1)
ExpZbus := (Areg.Exp - LargestINTExp)
ExpZbusNeg := ExpZbus < O
IF
AregNegative
IF
ExpZbusNeg
NextInst := NOWHERE
NOT ExpZbusNeg
NextInst := CheckMinInt
NOT AregNegative
IF
ExpZbusNeg
NextInst := NOWHERE
NOT ExpZbusNeg
NextInst := OutofRange
NextInst = OutofRange
SEQ
ErrorFlag := TRUE
NextInst := NOWHERE
. negative case micro instructions

This corresponds in an almost one-to-one manner with the source format for
the microcode assembler. A pattern-matching program is used to translate
the stylised occam of the above program into the source for the microcode
assembler. The microcode assembler then produces the definition of the
microcode ROM from this source.

4.8 Microcode assembler source

Finally the microcode can be derived:

16

FloatingPointCheckIntegerRange:

ExpConstantFromLargestINTExp

ExpXbusFromAreg ExpYbusFromConstant

ExpZbusFromXbusMinusYbus

GOTO CondlFromAregSign -> (CondOFromExpZbusNeg -> (NOWHERE, CheckMinInt),
CondOFromExpZbusNeg -> (NOWHERE, OutofRange))

CheckMinInt:
ExpConstantFromLargestINTExp
ExpXbusFromAreg ExpYbusFromConstant
ExpZbusFromXbusMinusYbus
FracXbusFromMSBit FracYbusFromAreg

FracZbusFromXbusMinusYbus
GOTO Cond1FromExpZbusEgZ -> (CheckMinInt2, OutofRange)

CheckMinInt2:
GOTO CondiFromFracZbusEgZ -> (NOWHERE, OutofRange)

OutofRange:
SetErrorFlag
GOTO NOWHERE

This process has ensured that the 'program’ in the microcode ROM cor-
rectly implements the initial specification. It might seem possible to do this
informally in this simple case which only produces four microwords. Other
instructions contain up to ninety microwords where informal development
can easily introduce subtle bugs. The ability to verify an implementation
using program transformations has proved invaluable.

5 Current and future work

Work on the IMS T800 has shown how correct microcode can be derived
from a high-level specification. However, this has assumed that the hard-
ware implementing the microcode machine is correct. To produce a verified
processor design it will be necessary to apply the same degree of rigour to
the design of the microcode machine. This necessitates refining the specifi-
cations of microfunctions into hardware description language (HDL) imple-
mentations. The INMOS CAD system already ensures that silicon layout is
equivalent to its HDL specification.

This correctness of design can be achieved by defining axioms for the be-
haviour of low-level modules in the HDL module library if necessary down
to transistor level. Larger modules and circuits can then be specified in
terms of compositions of these ’axiomatic’ modules. Then a logic tool, such

17

as HOL [5], can be used to derive the behaviour of the design. Checking
this against an original specification enables the correctness - or otherwise -
of the design to be established.

6 Conclusions

Work at INMOS using the transformation system and a formal design strat-
egy has been seen to be of benefit. The correctness of the microcode for the
IMS T800 floating-point unit was established in far less time than would
be needed by an ’'adequate’ amount of testing. In addition, any amount
of non-exhaustive testing leaves the possibility that certain erroneous oper-
ations have not been exercised. This has enabled INMOS to produce the
IMS T800 well ahead of schedule with a high degree of confidence in the
correctness of the microcode - this would not have been possible by other
design methods.

Work is now in progress to incorporate this formal design strategy into the
other levels of the design process to maintain the correctness of a complete
design. It seems clear that the CAD system will need to incorporate a
theorem prover and work is progressing at INMOS to ensure that this is the
case.

References

[1] Proving a computer correct, M Gordon, University of Cambridge Com-
puter Laboratory, Technical Report 42, 1983.

[2] Specification and Verification using Higher-Order Logic, F K Hanna, N
Daeche, Proceedings of the 7th International Conference on Computer
Hardware Design Languages. Tokyo, 1985.

[3] LCF-LSM, M Gordon, University of Cambridge Computer Laboratory,
Technical Report 41

[4] The VERITAS theorem Prover, F K Hanna, N Daeche, Electronics
Laboratory, University of Kent at Canturbury, 1984 onwards.

[5] HOL: A machine orientated formulation of Higher-Order Logic, M Gor-
don, University of Cambridge Computer Laboratory, Technical Report
68, 1985.

[6] Dijkstra, E.W., quote taken from 7

18

Programming is an engineering profession, C A R Hoare, Oxford Uni-
versity Computing PRO, Technical Monograph PRG-27, 1982.

The occam Programming Manual, INMOS Ltd, Prentice Hall, 1984.

The laws of occam programming, A W Roscoe, C A R Hoare. Oxford
University Computing PRG, Technical Monograph PRG-53, 1986.

Edinburgh LCF - chapter 2, M Gordon, R Milner, C Wadsworcn, LCNS
78, Springer Verlag,1979.

The Z Handbook, B A Sufrin (editor), Oxford University Computing
PRO, 1986.

Formal methods applied to a floating point nurnoer system, G Barren,
Oxford University Computing PRG, Technical Monograph, 1987.

The science of programming, D Dries, Springer-Verlag, 1981.

19

	1 Introduction
	2 Occam
	2.1 Occam transformations
	 An example transformation
	2.2 The occam transformation system

	3 Instruction development
	4 An example instruction development
	4.1 Preliminary definitions
	4.2 The instruction specification
	4.3 Refining to procedural form
	4.4 Refining to occam
	4.5 High-level occam implementation
	4.6 Transformations towards microcode
	 Refining the conditionals
	 Refining the expressions
	 Introducing sequencing
	4.7 Translation to microcode
	4.8 Microcode assembler source

	5 Current and future work
	6 Conclusions
	References

