
Implementing data
structures and

recursion in occam

INMOS Technical Note 38

Sara Redfern
Central Applications Group Bristol

February 1988
72-TCH-038-00

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 5

2 Data structures 5
2.1 The occam programming language 5
2.2 Records . 6

2.2.1 A common example 6
2.2.2 Using arrays of INTS and RETYPES 6
2.2.3 Protocols . 8
2.2.4 Arrays for each field 8
2.2.5 Avoiding alignment 9

2.3 Stacks . 11
2.3.1 The stack data structure with associated operations . 11
2.3.2 Occam implementation 11

2.4 Queues . 12
2.4.1 The queue data structure with associated operations . 12
2.4.2 Occam Implementation 13

2.5 Linked lists . 14
2.5.1 Linear lists . 14
2.5.2 Inserting a node at the start of a list 15

2.6 Trees . 16
2.6.1 The tree data structure with associated operations . . 16
2.6.2 Occam implementation 18

3 Recursion 19
3.1 Recursive functions in mathematics 19
3.2 Recursive functions and procedures in computer programming 19

4 Transforming recursion to iteration 20
4.1 Monadic tail recursive definitions 20
4.2 An example . 22
4.3 Dyadic and non-tall recursive definitions 22

5 Two approaches to recursion in occam 23
5.1 The pipeline method . 23
5.2 The stack method . 26

6 Two recursion examples 27
6.1 Recursive tree traversal . 28

6.1.1 The recursive algorithm 28
6.1.2 The stack implementation 28
6.1.3 The pipeline implementation 30

6.2 A recursive quicksort . 32
6.2.1 The quicksort algorithm 32

3

6.2.2 The stack implementation 33
6.2.3 The pipeline implementation 34

References 36

4

1 Introduction

The occam programming language [1] was developed by INMOS to express
concurrent algorithms and their implementation on a network of transput-
ers [2]. Data allocation in occam is static [3] so the exact data space re-
quirement of a program is known after compilation, allowing the run time
overhead of the parallel construct to be very small [4]. Recursion needs dy-
namic storage allocation so it is not directly implemented in occam. Also,
occam does not directly support data structures such as trees, stacks and
lists.

This technical note is designed to introduce some suggestions to occam pro-
grammers handling recursion and data structures. It will describe some
common data structures and gives guides for implementing them in occam.
It will discuss recursion and methods of transforming recursive algorithms
to iterative ones. It will explore two methods of implementing recursion in
occam and will give two simple examples to illustrate these methods.

Note that all occam examples compile on the occam 2 product compiler.

2 Data structures

Data structures are used to allow easy representation of the storage, re-
trieval and manipulation of information. The following sections give a brief
introduction to the occam programming language then describe how some
of the familiar structures may be implemented in occam. More information
on data structures can be found in reference [11].

2.1 The occam programming language

The occam language enables a system to be described as a collection of
concurrent processes which communicate with one another, and with the
outside world, via communication channels. Occam programs are built from
three primitive processes:

variable := expression assignment
channel ? variable input
channel ! expression output

Each occam channel provides a one way communication path between two
concurrent processes. Communication is synchronised and unbuffered. The
primitive processes can be combined to form constructs which are them-
selves processes and can be used as components of another construct. Con-

5

ventional sequential programs can be expressed by combining processes with
the sequential constructs SEQ, IF, CASE and WHILE.

Concurrent programs are expressed using the parallel construct PAR, the
alternative construct ALT and channel communication. PAR is used to run
any number of processes in parallel and these can communicate with one
another via communication channels. The alternative construct allows a
process to wait for input from any number of input channels. Input is taken
from the first of these channels to become ready and the associated process
is executed.

2.2 Records

2.2.1 A common example

Records are collections of one or more data items, possibly of different types,
grouped together for ease of handling. The traditional example of a record
is that of an employee who is described by a set of attributes such as name,
date of birth, salary etc. The attributes of a record are called the fields
or members of the record. Occam allows clarity and easy manipulation
of records and fields of records by using abbreviations and RETYPES, see
reference [6].

2.2.2 Using arrays of INTS and RETYPES

Records may be implemented in occam by declaring an array to be the area
of store for the record. By using abbreviation and the RETYPE instruc-
tion we can access the fields of the record. An implementation of occam
will represent variables using a number of bytes in memory. The RETYPE
instruction allows us to interpret this representation as a variable of a dif-
ferent type. This allows us to use a string of bytes as an integer, a real or
a boolean value. RETYPES simply change the way in which a data item is
viewed by the compiler.

RETYPES to REALs or to INTs must be word aligned, indeed, it is good
practice to word align all RETYPES. This means that the area of store
should be declared as an array of INTs, not BYTES, to ensure that the
base of the array is correctly aligned, that the records should be padded
out to ensure that the fields are correctly aligned and that each record
should be a whole number of words. The product compiler checks that a
retyped variable is correctly word aligned. Using RETYPES allows us more
explicit control over memory allocation than in many languages (e.g Pascal),
where automatic word alignment may mean bytes are wasted without the

6

programmer realising.

For example, we could declare an array of 150 employee records, each record
using 8 words of memory, and pass the first of those records to procedure
UseRecord as follows:

VAL INT NumberOfRecords IS 150:
VAL INT RecordWordSize IS 8:
VAL INT BytesInWord IS 4:

[NumberOfRecords][RecordWordSize]INT32 Employee:
SEQ
...
UseRecord(Employee[0])
...

The procedure UseRecord could access the fields of the record using the RE-
TYPES and abbreviations below. Occam implements formal parameters as
abbreviations for actual parameters [1]. Thus the parameter to the proce-
dure abbreviates the particular record in current use, say Employee[0]. Such
an abbreviation helps to make the action of the procedure clear. Abbrevi-
ations should also be used for the number of bytes each field requires and
for the location in the array where each field starts; all, excepting NameSize
and NameBase, have been omitted below for clarity.

PROC UseRecord([RecordWordSize]INT32 record)

[RecordWordSize * BytesInWord]BYTE record.b RETYPES record:

VAL INT NameSize IS 20:
VAL INT NameBase IS 0:

[NameSize]BYTE Surname IS [record.b FROM NameBase FOR NameSize]:
INT16 BirthYear RETYPES [record.b FROM 20 FOR 2]:
BYTE BirthMonth IS record.b[22]:
BYTE BirthDay IS record.b[23]:
REAL32 Salary RETYPES [record.b FROM 24 FOR 4]:
BOOL Married RETYPES [record.b FROM 28 FOR 1]:
--FILLER [record.b FROM 29 FOR 3]:

SEQ
...

The fields may then be used in the same way as variables, as illustrated in the
initialisations below. The usage checker ensures no assignment or input is
made to record directly because record was used to define the abbreviations
and RETYPES.

7

Surname := "Smith "
BirthYear := 1962 (INT16)
BirthMonth := BYTE 05
BirthDay := BYTE 22
Salary := 820.85 (REAL32)
Married := TRUE

In the example above the RETYPES to REALs and INTs have been word
aligned. The first five words are used for the employees name, the first two
bytes of the sixth word are the INT year and the last word is the REAL
salary.

The costs incurred by a RETYPE are the initial overhead of setting up an
abbreviation and, for those that might not be correctly aligned, the cost of
an alignment check. Also, access to a retyped (or abbreviated) variable may
be more expensive than access to a local scalar variable.

2.2.3 Protocols

Named protocols provide an easy way to pass records between concurrent
processes. Referring to the example above, the whole record or the date of
birth fields only may be passed using the following protocols.

PROTOCOL Record IS [RecordSize]BYTE:

PROTOCOL DateOfBirth IS BYTE; BYTE; INT16:

2.2.4 Arrays for each field

Another method of implementing a collection of records is to use a different
array for each field of the record. Thus the example given above would be
implemented as follows:

[NumberOfRecords][NameSize] BYTE Employee.Surname:
[NumberOfRecords] BYTE Employee.BirthDay:
[NumberOfRecords] BYTE Employee.BirthMonth:
[NumberOfRecords] INT16 Employee.BirthYaar:
[NumberOfRecords] BOOL Employee.Married:
[NumberOfRecords] REAL32 Employee.Salary:

Or, as a mixture of the two methods:

VAL INT DateSize IS 4:

8

[NumberOfRecords][NameSize] BYTE Employee.Surname:
[NumberOfRecords][DateSize] BYTE Employee.BirthDate:
[NumberOfRecords]BOOL Employee.Married:
[NumberOfRecords]REAL32 Employee.Salary:

Using the RETYPES and abbreviations described below to access the dif-
ferent parts of the date of birth. This example uses the first record.

BirthDate.b IS Employee.BirthDate[0]:

INT16 BirthYear RETYPES [BirthDate.b FROM 2 FOR 2]:
BirthMonth IS BirthDate.b[1]:
BirthDay IS BirthDate.b[0]:

This will remove retype alignment problems but it will make protocols for
communicating entire records a little more complex.

2.2.5 Avoiding alignment

Another way to overcome the problems of alignment is to use copying to
achieve re-alignment of data. This involves providing a number of construc-
tion, destruction, enquiry and updating routines. This has the effect of
’hiding’ details of the record manipulation as much as possible. In some
applications, where only a few fields are being examined, this method may
be more efficient than locally abbreviating the fields wanted. Indeed, if the
main data structure is stored in off-chip memory and the local variables
being copied to are in on-chip memory, then access to the fields would be
considerably faster.

The following routines require no alignment of data within the record, avoid-
ing many possible pitfalls and minimising memory usage. A few examples
are given (With thanks to Roger Shepherd), the construction of the rest should
be obvious. The procedure Name.of.Person has not been implemented as a
function because the rules of occam 2 only allow functions to return results
of primitive data types, not array types. If your compiler release does not
support functions then BirthYear.of.Person and other enquiry routines may
be implemented as procedures in a similar manner to Name.of.Person.

VAL INT NumberOfRecords IS 150:
VAL INT PersonSize IS 29:

VAL INT NameBase IS 0:
VAL INT NameSize IS 20:

9

VAL INT BirthYearBase IS 20:
VAL INT BirthYearSize IS 2:
VAL INT BirthMonthBase IS 22:
VAL tNT BirthDayBase IS 23:
VAL INT SalaryBase IS 24:
VAL INT SalarySize IS 4:
VAL INT MarriedBase IS 28:

INT16 FUNCTION BirthYear.of.Person(VAL [PersonSize]BYTE Person)
INT16 BirthYear:
VALOF
[BirthYearSize] BYTE BirthYear.b RETYPES BirthYear:
BirthYear.b := [Person FROM BirthYearBase FOR BirthYearSize]
RESULT BirthYear

:

PROC Name.of.Person(VAL [PersonSize]BYTE Person,
[NameSize]BYTE Surname)

Surname := [Person FROM NameBase FOR NameSize]
:

PROC Update.BirthYear.of.Person([PersonSize]BYTE Person,
VAL INT16 BirthYear)

VAL [BirthYearSize]BYTE BirthYear.b RETYPES BirthYear:
[Person FROM BirthYearBase FOR BirthYearSize] := BirthYear.b

:

PROC Create.Person([PersonSize]BYTE Person,
VAL [NameSize]BYTE Surname,
VAL INT16 BirthYear,
VAL BYTE BirthMonth,
VAL BYTE BirthDay,
VAL REAL32 Salary,
VAL BOOL Married)

SEQ
[Person FROM NameBase FOR NameSize] := Surname

VAL [BirthYearSize]BYTE BirthYear.b RETYPES BirthYear:
[Person FROM BirthYearBase FOR BirthYearSize] := BirthYear.b

Person [BirthMonthBase] := BirthMonth
Person [BirthDayBase] := BirthDay

VAL (SalarySize]BYTE Salary.b RETYPES Salary:
[Person FROM SalaryBase FOR SalarySize] := Salary.b

VAL BYTE Married.b RETYPES Married:
Person [MarriedBase] := Married.b

:

10

2.3 Stacks

2.3.1 The stack data structure with associated operations

A stack can be visualised as a pile of objects. The top of the stack is the
only place accessible, that is, objects are always taken from or put onto the
top of the stack. A stack has three procedures and two boolean functions
associated with it:

InitStack(): sets the stack empty by pointing the stack pointer sp, a free
variable, to NIL.

pop(d): assigns the value of the top element to d and removes it from the
stack.

push(d): places the value d onto the top of the stack.

StackEmpty(): returns TRUE if the stack is empty, FALSE otherwise.

StackFull(): returns TRUE if the stack is full, FALSE otherwise.

Figure 1 demonstrates these procedures.

Figure 1: Stack operations

2.3.2 Occam implementation

A stack may be implemented in occam by using an array to store the data
items. The stack pointer is implemented by using an integer index to the
array. For example, a stack to store a maximum of 100 integers, 1 integer
at a time, could use the following code:

VAL INT StackStep IS 1:
VAL INT NIL IS -StackStep:
VAL INT StackSize IS (100 * StackStep):

[StackSize] INT Stack:

11

INT sp:

BOOL FUNCTION StackEmpty() IS sp = NIL:

BOOL FUNCTION StackFull() IS sp = (StackSize - StackStep):

PROC InitStack()
sp := NIL

:

PROC pop(INT d)
SEQ
d := Stack[sp]
sp := sp - StackStep

:

PROC push(VAL INT d)
SEQ
sp := sp + StackStep
Stack[sp] := d

:

A particular program may use many different stacks, for instance one to
hold parameters and another to hold results. The same subroutines may be
used for the operations on different stacks by passing the stack pointer as
a parameter to the subroutines. A stack can store more than one item, of
any type, each time data is pushed on, indeed a stack can store records as
described above. Similarly, more than one item can be popped off a stack
at one time and two or more popping procedures could be used, say, one to
pop two items off and another to pop three. Stacks may be made to grow
from the top down instead of from the bottom up.

2.4 Queues

2.4.1 The queue data structure with associated operations

A queue is a list that may have items taken from the head of the queue or
items added to the tail of the queue. Thus, the first item to be placed on the
queue is the first to be taken off. It has three procedures and two boolean
functions associated with it:

init.q(): empties the queue.

on.q(d): puts the data item d at the tail of the queue.

off.q(d): takes a data item off the head of the queue.

12

q.is.full(): returns TRUE if the queue is full, FALSE otherwise.

q.is.empty(): returns TRUE if the queue is empty, FALSE otherwise.

2.4.2 Occam Implementation

A queue may be implemented in occam by using an array to store the data.
The two pointers to the head and tail of the queue are implemented by using
integer indexes to the array. The array is treated as a circular store, that is,
if we use an array of size q.size and we wish to store an item in queue[q.size]
we would store it in queue[0]. Thus, when the tail is equal to the head, the
queue is either empty or full. To distinguish between these two cases we will
always leave a blank entry in the array. This means that when the head and
tail are equal the queue is empty and when the head is one behind the tail
the queue is full.

For example, a queue to store a maximum of 99 integers could use the
following code:

VAL INT q.size IS (100 * 1):

[q.size]INT queue:
INT head, tail:

PROC init.q()
SEQ
head := 0
tail := 0

:

PROC on.q(VAL INT d)
SEQ
IF
tail < (q.size - 1)
tail := tail + 1

tail = (q.size - 1)
tail = 0

queue[tail] := d
:

PROC off.q(INT d)
SEQ
IF
head < (q.size - 1)
head := head + 1

head = (q.size - 1)
head := 0

13

d := queue[head]
:

BOOL FUNCTION q.is.full() IS (head = (tail + 1)) OR
((head = 0) AND (tail = (q.size - 1))):

BOOL FUNCTION q.is.empty() IS head = tail:

Queues may, of course, be implemented to store and retrieve more than one
data item at a time.

2.5 Linked lists

2.5.1 Linear lists

Linked lists provide a way of grouping information together and ordering
information. A linear or sequential list is the simplest form of such a struc-
ture. Associated with each data item is a pointer to the next data item in
the list, see figure 2. The data items are known as nodes of the list. We can
implement the list by using an array of records with an extra field in each
record to store the pointer to the next record. The pointers are implemented
as integer indexes to the array of records.

Figure 2: A linked list

Figure 3: An implementation example

A simple example is illustrated in figure 3. Each record consists of a char-
acter and a pointer to the next node. Some of the records are not currently
being used, these could be kept on a ’free list’ allowing easy location of spare
space. The free records should be chained together using their pointer fields

14

and an integer variable used to store a pointer to the first record in the
chain. Abbreviations can be freely used to improve clarity throughout the
code.

2.5.2 Inserting a node at the start of a list

The following procedure illustrates adding a node to the beginning of a linear
linked list. It uses the structures and abbreviations declared above it.

VAL INT ListSize IS 100:
VAL INT NodeSize IS 2:
VAL INT NIL IS -1:
VAL INT ListValue IS 0:
VAL INT ListPointer IS 1:

[ListSize][NodeSize]INT List:
INT FreeStart: -- pointer to the start of the free list
INT ListStart: -- pointer to the start of the list

PROC insert (VAL BYTE data)
INT NewFreeStart:
SEQ
node IS List[FreeStart]:
SEQ
node[ListValue] := INT data
NewFreeStart := node[ListPointer]
node[ListPointer] := ListStart

ListStart := FreeStart
FreeStart := NewFreeStart

:

The effect of this procedure is illustrated in figure 4. Please note the scooping
of the node abbreviation. Any variable used to define the abbreviation (that
is, on the right hand side of the abbreviation) may not be assigned to or input
to within the scope of that abbreviation [6][1]. This allows the abbreviation
to be implemented as a pointer, rather than as a copy of the variable.

Many different structures can be built up using linked lists with one or more
pointers per node. A commonly used structure is a doubly linked sequential
list. These have two pointers per node, one to the next node in the list and
the other to the previous node. This allows removal and addition of nodes
to be performed more efficiently. Non linear structures may also be built,
as an example of one I shall consider trees.

15

Figure 4: Adding a node to the start of a linked list

2.6 Trees

2.6.1 The tree data structure with associated operations

A tree is a form of directed graph, it is a natural data structure for objects
that stand in a hierarchical relationship to each other. Using a tree retains
the relationships between the objects and allows efficient data retrieval. As
an example, figure 5 shows a biblical family tree taken from [13].

Figure 5: A family tree

A binary tree has the following properties.

• A binary tree consists of a collection of linked nodes.

• Each node has at most two pointers.

• If two nodes are connected by a pointer from one to the other there is
a ’branch’ between them.

16

• A tree has a node known as a root which is drawn at the top of the
tree.

• Nodes may have at most two branches leading from them, nodes with
no branches are called leaves.

• Each node, other than the root, must be pointed to by exactly one
other node, this ensures no cycles are formed and that all nodes are
connected.

• Any node, other than the root, along with all nodes and branches
below it is called a subtree.

A binary tree is a natural data structure for expressing arithmetic expres-
sions. The tree structure in figure 6 represents the expression a + b ∗ c.

Figure 6: A binary tree

A binary search tree is empty or consists of a root with two binary search
trees called the left and right subtrees. Each node contains a value known
as it’s key. All the keys in the left subtree must be less than the key in the
root. All the keys in the right subtree must be greater than or equal to the
key in the root.

To locate a particular key start at the root and proceed to the left or right
subtree by inspecting the node’s key. Trees may be forced to grow in a
balanced fashion such that n elements may be stored in a tree with height
as little as log n. Therefore a search among n objects can take as few as
log n comparisons.

Figure 7: A binary search tree

Figure 7 shows an example of a search tree. The number displayed at each
node is an integer key. In the example the node with key value 12 needs two
branches to reach it. In an ordered linked list it would require five branches,

17

Figure 8: An ordered linked list

see figure 8. It takes an average of log2 n branches to reach a required node,
as opposed to n/2 in a sequential linear list, where n is the number of nodes.

2.6.2 Occam implementation

As an example, I include a procedure to search a tree. The procedure uses
the tree definitions listed.

VAL INT tree.left IS 0:
VAL INT tree.right IS 1:
VAL INT tree.value IS 2:
VAL INT node.size IS 3:
VAL INT tree.size IS 40:
VAL INT NIL IS -1:
VAL INT tree.root IS 0:

[tree.size][node.size]INT tree:

PROC find(VAL INT req.value,
BOOL found,
VAL [tree.size][node.size]INT tree)

BOOL done:
[node.size]INT node:
SEQ
done := FALSE
node := tree[tree.root]
WHILE NOT done
IF
node[tree.value] = req.value
SEQ
found := TRUE
done := TRUE

-- Search Left Subtree
(req.value < node[tree.value]) AND (node[tree.left] <> NIL)
node := tree[node[tree.left]]

-- Search Right Subtree
(req.value >= node[tree.value]) AND (node[tree.right] <> NIL)
node := tree[node[tree.right]]

-- req.value not in node
TRUE
SEQ
found := FALSE

18

done := TRUE
:

The data structures discussed consist of an area of store along with associ-
ated variables such as stack pointers, pointers to the head and tail of a queue,
and pointers to the start of lists and roots of trees. These variables could be
stored in the array used for the data structure they reference. For instance,
the first element of an array implementing a stack could be reserved for the
stack pointer, the associated subroutines would access this element rather
than a free variable. This would simplify passing data structures between
concurrent processes.

3 Recursion

3.1 Recursive functions in mathematics

A recursive function in mathematics is a function defined for every case n,
such that the case for n = 1 is given and it is shown how any case after
the first is obtained from the preceding one. A monadic recursive function
contains only one recursive call on the function itself, a dyadic recursive
function contains two such calls.

For example,

n! ≡ f(n) where f(0) = 1
and f(n) = n ∗ f(n− 1) for n > 0

3.2 Recursive functions and procedures in computer pro-
gramming

In computer programming, a recursive function or procedure uses itself as
a function or procedure respectively. Recursion makes some programs more
readable and many complex algorithms can be written extremely elegantly
using recursion. To implement recursion directly needs dynamic allocation
of space and so many programming languages do not allow a subroutine to
be defined in terms of itself, e.g. in Fortran. The problem that recursion
involves is the storage and retrieval of the variables in the subroutine. If
the subroutine is called again the new values of the variables will over-write
the values in the last call. Therefore, recursive subroutines must store the
values that will need to be retrieved.

For example consider the following factorial function written in C.

19

int factorial(n)
int n;
{

if (n <= 1)
return (1);

else
return (n * factorial(n-1));

}

Recursive subroutines can be written in any language by explicitly program-
ming the saving and restoring of variables.

4 Transforming recursion to iteration

4.1 Monadic tail recursive definitions

The problem that faces us is how to transform a recursive definition to an
iterative program. Many recursive algorithms map neatly and efficiently to
simple iterative programs, not necessarily using a stack. The type I shall
briefly consider here are expressible as monadic recursive definitions of the
following type [5]:

f(x) ≡ IF c(x) THEN a(x) ELSE f(b(x)) ∗ d(x)

Where a(x), b(x) and d(x) are directly computable functions of x, c(x) is a
directly computable function of x with a boolean value, and ∗ represents a
binary operation.

These recursive definitions are known as tail recursive because the recursive
call occurs as the last statement in the definition. This group of algorithms
map trivially to iteration. The equivalent iterative program for the definition
above is described in the following section of pseudo code.

SEQ
InitStack()
nextx := x
WHILE NOT c(nextx)
SEQ
Push(nextx)
nextx := b(nextx)

subresult := a(nextx)
WHILE NOT StackEmpty()
SEQ

20

Pop(nextx)
subresult := subresult * d(nextx)

result := subresult

Where StackEmpty() is a function that returns TRUE if the stack is empty,
FALSE otherwise. This code uses a stack and has two WHILE loops. The
first loop calculates successive values of x until the base condition is reached.
The second loop uses those values to generate the result. Two temporary
variables, nextx and subresult, have been introduced.

If the function b(x) has an inverse, h = b−1(x), then we do not need to
use a stack as the successive values of x may be calculated from the base
condition:

SEQ
nextx := x
WHILE NOT c(nextx)
nextx : = b(nextx)

subresult := a(nextx)
WHILE (nextx <> x)
SEQ
nextx := h(nextx)
subresult := subresult * d(nextx)

result := subresult

This produces more concise code but may incur performance loss. See [3]
for discussion of performance maximisation in occam.

If c(x) is equivalent to x = x0, with x0 a constant, then the recursive defi-
nition will be of the following form:

f(x) ≡ IF (x = x0) THEN a ELSE f(b(x)) ∗ d(x)

where a is a constant, the value of a(x0), and h = b−1(x). This can be
expressed as an iterative program using no stack and only one WHILE loop.

SEQ
nextx := x0
subresult := a
WHILE (nextx <> x)
SEQ
nextx := h(nextx)
subresult := subresult * d(nextx)

result := subresult

21

4.2 An example

As a trivial example, consider the factorial procedure mentioned above. The
equivalent recursive definition is:

f(x) ≡ IF (x = 0) THEN 1 ELSE f(x− 1) ∗ x

and the equivalent iterative pseudo code is:

SEQ
nextx := 0
subresult := 1
WHILE (nextx <> x)
SEQ
nextx := nextx + 1
subresult := subresult * nextx

result := subresult

which can be reduced by replacing subresult by result:

SEQ
nextx := 0
result := 1
WHILE (nextx <> x)
SEQ
nextx := nextx + 1
result := result * nextx

4.3 Dyadic and non-tall recursive definitions

Dyadic and non-tail recursive definitions are, in general, not trivial to trans-
form to iterative programs. J. Arsac has done some interesting work in this
area [5][7]; his method is summarized below.

First change any local variables and formal parameters into global variables.
Next divide up the recursive program into a set of processes. Each process
must be named and may include calls to processes. One or more of these
processes will be recursive.

The processes are then ’regularized’ by ensuring that each process terminates
with a call to a process, that each process is described only once, except the
halting process which need not be described, and that every call to a process
occurs in a terminal position.

These processes are then combined into an iterative procedure, simplifying
at each stage. The three rules that govern the combining are as follows.

22

Substitution A call to a process may be replaced by the body of that
process.

Identification If two processes X and Y differ only by the occurrences of
the names X and Y then replace Y by X everywhere and remove the
process Y.

Recursion Removal The occurrences of recursion will be tail recursive be-
cause we are dealing with regular processes - every call to a process
occurs in a terminal position. If the process is of the form X=f(X,Y),
that is X depends only on X and Y, then the process may be replaced
by a new non recursive process, by enclosing the recursive definition
in a WHILE loop, replacing X by a null statement and Y by an exit
statement, and putting Y after the loop.

5 Two approaches to recursion in occam

Unfortunately, many recursive definitions do not fall into the form described
in the previous section. Other algorithms must therefore be developed,
the form that they take will depend upon the nature of the problem being
transformed. I shall now discuss two such methods.

5.1 The pipeline method

This method implements recursion using a pipeline of communicating pro-
cesses. The pipeline consists of a Feed procedure to feed the initial pa-
rameters to the pipe, the nodes of the pipe which are identical processes
implementing the recursive definition, and a Bleed procedure to receive re-
sults from the pipeline, see figure 9.

Figure 9: A pipeline

This is implemented in occam using a replicated PAR structure. The repli-
cator index is used to index arrays of channels thus providing communication
between the nodes of the pipe. The base and count defining the bounds of
the replicator index must be compile time constants. The following example
shows a bi-directional pipeline.

[PipeSize] CHAN OF data DownPipe:
[PipeSize] CHAN OF results UpPipe:

23

PAR
Feed(DownPipe[0], UpPipe[0])
PAR i = 0 FOR PipeSize
pipe (DownPipe[i], DownPipe[i+1], UpPipe[i], UpPipe[i+1])

Bleed(DownPipe[PipeSize], UpPipe[PipeSize])

Each time a recursive call is encountered another node in the pipeline is
’activated’ by being passed parameters to process. When the recursive pro-
cedure is initially called the parameters are passed to the first node in the
pipeline.

Figure 10: Pipe node with one router

The nodes of the pipeline will take one of three forms, the application only
(i.e the recursive definition), the application with one router (see figure 10),
or the application with two routers, see figure 11.

Figure 11: Pipe node with two routers

On the transputer, routers should be run at high priority with the applica-
tion at low priority [3]. Thus, when data is received to be routed to a waiting
node, the routing process doesn’t need to wait for the application process
to finish before passing on the data. The routers would receive data from
further up the pipe, and send the data either to the application process, if it
is waiting for data, or to the next node in the pipeline. Routers would also
pass results back up the pipe to Feed or on down the pipe to Bleed. Using
two routers allows data to be passed along the pipe via the shortest route.

Dyadic recursive definitions would send parameters to be processed down
the pipe until an available node is reached. Thus, each router would keep

24

a boolean variable to show whether its respective application process was
busy, indeed any number of recursive calls in the definition could be catered
for using this method. Monadic recursive definitions will always use the next
node in the pipeline and so they may not need a router. If the application
does not need to wait for the results to be returned from the recursive call
before continuing to process, a router allows the communication to continue
in parallel with the computation.

Consider the two mutually recursive procedures below.

PROC X() PROC Y()
SEQ SEQ
... ...
Y() X()
... ...

: :

Each of the procedures calls the other, i.e X calls Y which calls X which calls
Y... This could be implemented by using a pipeline with nodes consisting
of the procedures alternating with each other, see figure 12.

Figure 12: Pipeline implementing mutual recursion

Suitable routers and tagged protocols to control parameter passing should be
used for variations on this theme, for instance, mutual recursion combined
with self recursion.

The number of nodes in the pipeline must cater for the worst case. This
may involve a large amount of redundancy. An alternative would be to have
less then the worst case of nodes in the pipeline and use farming methods
to ensure no overflow occurs. A process to control the flow of data into
the pipe would be used to implement the farming, buffering the data to
be processed and only sending data as nodes become available [1][8]. All
nodes must, of course, be made to terminate, not just those that were used
for the computation. The usual method of termination is to propagate a
termination signal down the length of the pipeline. This can be implemented
by using a tagged protocol.

A suitable application for the pipeline approach would be highly computa-
tionally intensive with a relatively small amount of communication between
the processes.

25

5.2 The stack method

This method implements recursion by explicitly storing variables on a stack.
The variables that need to be stored are any local variables and any param-
eters for each recursive call. These should be changed into global variables
for the iterative procedure, effectively removing parameters to the proce-
dure. The basic method to transform the recursive algorithm to an iterative
program is as follows.

Push the relevant variables onto the stack before each recursive call and Pop
them off again on return from that call. For example, a recursive call to F
of the form F (g (x)) will be changed to:

push(x)
x := g(x)
F
pop(x)

If the function g has an inverse, h, the parameter need not be stored on the
stack as the old value of x can be recomputed on return from the recursive
call.

x := g(x)
F
x := h(x)

If we are now to remove the recursive calls and surround the procedure with
a WHILE loop which terminates when the stack is empty we will need to
ensure that we continue processing at the correct point after each re-entry
of the loop. The definition should now be of the following form.

F ≡ IF bool a; ELSE b; F; c; ... F; d;

Where a, b, c and d are sequences of statements and bool is a boolean
expression.

Thus after the first recursive call processing should continue with c, after
the last call it should continue with d and on initial entry processing should
start with b. The correct flow of control is implemented by storing an action
field on the stack and selecting the correct sequence of statements in the
following way,

VAL INT done.action IS 0:

26

VAL INT a.action IS 1:
VAL INT b.action IS 2:
SEQ
initstack
push(done.action)
action := b.action
WHILE action <> done.action
IF
bool
SEQ
a
pop(action)

action = b.action
SEQ
b
push(c.action)

action = c.action
SEQ
c

.

.

.
action = d.action
SEQ
d
push (b.action)

Usually, the push/pop operations for the action and the variables that need
to be stored would be combined. Obviously, meaningful names should be
used for the action specifiers.

6 Two recursion examples

In order to demonstrate implementation of recursion in occam I will work
through two examples using both the stack and the pipeline approaches.
The examples chosen are two ’classic’ uses of recursion, traversing a sorted
tree and the sorting algorithm known as quicksort [9][10].

Neither of these examples are particularly suitable to the pipeline approach,
they have been chosen for the sake of simplicity.

27

6.1 Recursive tree traversal

6.1.1 The recursive algorithm

The procedure traverses a tree implementing recursion using a stack. The
equivalent recursive algorithm is show below.

TreeTraverse(pointer)
{
if (pointer <> NIL)
{
TreeTraverse (pointer->left);
PutChar (pointer->value);
TreeTraverse (pointer->right);

}
}

6.1.2 The stack implementation

The recursive definition has no local variables and the recursive call has
only one parameter, a pointer to the current node of the tree. Therefore,
each record in the stack consists of two fields, an action field and a pointer
field. The pointer contains an index to the array that implements the tree
structure, it points to a particular node in the tree. The action takes one of
three forms: DownLeft, DownRight and Done. These signify that the left
or right subtree of the node pointed to should be traversed or that the tree
has been fully traversed and processing should terminate.

The following pseudo code describes the algorithm used.

PROC TreeTraverse()
SEQ
...initialise
WHILE action <> Done
IF
pointer = NIL
... At end of subtree so back up a level

action = DownLeft
SEQ
-- Remember to descend to the right from this level
push(pointer, DownRight)
... Descend a level to the left

action = DownRight
SEQ
... Print value in node then descend to the right
-- Start descending to the left again at the new level

28

action := DownLeft
:

Thus, each node traversed causes a record to be pushed on to the stack, im-
plementing the recursive call to traverse the right subtree. The tail recursive
call to traverse the left subtree is implemented by the while loop.

The tree is implemented in occam with an array of the following form:

VAL INT tree.left IS 0:
VAL INT tree.right IS 1:
VAL INT node.size IS 3:
VAL INT tree.size IS 500:
VAL INT NIL IS -1:
VAL INT tree.root IS 0:

[tree.size][node.size]INT tree

The stack and its operations are implemented in the following way:

VAL INT Done IS 0:
VAL INT DownLeft IS 1:
VAL INT DownRight IS 2:
VAL INT record size IS 2:
VAL INT record.pointer IS 0:
VAL INT record.action IS 1:

[tree.size][record.size]INT stack :
INT stack.pointer :

PROC push (VAL INT pointer, action)
SEQ
stack[stack.pointer][record.pointer] := pointer
stack[stack.pointer][record.action] := action
stack.pointer := stack.pointer + 1

:

PROC pop (INT pointer, action)
SEQ
stack.pointer := stack.pointer - 1
pointer := stack[stack.pointer][record.pointer]
action := stack[stack.pointer][record.action]

:

And, finally, the code for the procedure is given below.

29

PROC TreeTraverse()
INT action, pointer :
SEQ
stack.pointer := 0
pointer := tree.root
action := DownLeft
push (NIL,Done)
WHILE action <> Done
IF
pointer = NIL
pop (pointer, action)

action = DownLeft
SEQ
push (pointer, DownRight)
pointer := tree[pointer][tree.left]

action = DownRight
SEQ
print (screen, tree[pointer][tree.value])
pointer := tree[pointer][tree.right]
action := DownLeft

:

6.1.3 The pipeline implementation

The procedure traverses a sorted tree using a pipeline of communicating par-
allel processes to implement recursion. The equivalent recursive algorithm
is shown in section 6.1.1.

Each node in the pipeline is passed a pointer to a subtree of the global tree.
Each level in the tree corresponds to a level of recursion in the algorithm
shown above. Thus each node in the pipeline performs the same actions on
a different level of the tree. The maximum number of levels in the tree must
be known before hand, the pipeline will need that many nodes.

Figure 13: A tree traversal example

The first node in the pipeline receives a pointer to the root of the tree and
passes the root’s left subtree to the next node in the pipeline. When that

30

subtree has been processed it prints the value at the root of the tree and
then passes it’s right subtree to the next node in the pipeline. See figure 13
for an example.

Figure 14 shows the processes that make up the traversal and the commu-
nication channels between them. The processes run in parallel, with the
order of the characters maintained by communication interlock between the
processes.

Figure 14: Tree traversal process

Feed: Sends the root of the tree to the head of the pipeline and passes data
for printing to the displayer.

Bleed: Deals with the last level in the tree, which consists of NILs.

down pipe: Passes subtrees deeper into the pipe.

up pipe: Passes data for printing back to root and notifies higher levels
when subtrees have been processed.

The following code shows the structure used in occam to initiate bleed, feed,
display and the pipeline. The pipeline is created using a replicated PAR with
the channels indexed by the replicator index.

PAR
Feed(down.pipe[0], up.pipe[0])
PAR i = 0 FOR SIZE(tree)
pipe(down.pipe[i], down.pipe[i+1], up.pipe[i], up.pipe[i+1])

Bleed(down.pipe[SIZE(tree)], up.pipe[SIZE(tree)])
displayer()

Figure 15 shows the channels that each node in the pipe has access to, and
the pseudo code below describes the algorithm used to implement each node.

SEQ

31

Figure 15: A node in the pipeline

going := TRUE
WHILE going
down.pipe[i] ? CASE
subtree; pointer
... received pointer to a root of a subtree
IF
pointer <> NIL
SEQ
... pass left subtree down pipe
... pass up data values until a NIL is received
... pass up data value at root of current subtree
... pass right subtree down pipe
... pass up data values until a NIL is received
... pass up a NIL

pointer = NIL
... pass up a NIL

... received termination signal
SEQ
going := FALSE
... pass down termination signal

When Feed receives a NIL from the first node in the pipeline the whole tree
has been traversed. Feed then sends a termination signal to the displayer
and to PIPE[0] which propagates down the rest of the pipe. Finally, the last
node in the pipeline passes the termination signal to Bleed.

6.2 A recursive quicksort

6.2.1 The quicksort algorithm

The quicksort, or partition exchange, algorithm sorts a string. It finds the
correct position of the first element in the string. This element is called
the pivot. It places the pivot after all elements less than or equal to it
and before all elements greater than it. This partitions the string into the
positioned pivot and the substrings before and after the pivot, which are
then quicksorted recursively.

The following example demonstrates the method.

32

[17 16 2 10 21 12 5 19]
[12 16 2 10 5] 17 [21 19]
[10 5 2] 12 [16] [19] 21
[2 5] 10
2 5

Where square brackets represent substrings still to be sorted. Thus the sort
replaces the sorting of n items with sorting two lists of less than n items.
Figure 16 gives a Nassi-Shneiderman diagram [12] of the algorithm which
sorts the contents of the array A[L..R], where A[R+1] >= any A[L..R] .

Figure 16: The quicksort algorithm

6.2.2 The stack implementation

The recursive definition has two tail recursive calls with substrings as pa-
rameters. These can be stored on the stack as two integers, left and right
pointers to delimit the substring within the initial string to be sorted. As
both the calls are tail recursive, they have the same entry point and so only
two actions are needed - Done and Sort. The records of the stack therefore
consist of two integer pointers to the array holding the string and an integer
action field. The following pseudo code describes the algorithm used.

SEQ
...initialise
Push(0, 0, Done)
Push(0, (SIZE(list) - 1), Sort)
action = Sort
WHILE action <> Done
SEQ

33

Pop(L, R, action)
IF
action = Sort
SEQ
... Sort current segment
Push(L, j-1, Sort)
Push(i, R, Sort)

action = Done
SKIP

6.2.3 The pipeline implementation

The quicksort algorithm is described in section 6.2.1 above. Each node of
the pipe will consist of the sorting procedure along with two routers, see
figure 11. The recursive definition has two tail recursive calls, one of which
may easily be converted to iteration by changing the left and right limits of
the current substring and enclosing the procedure in a WHILE loop. Thus
any left hand partitions are sorted by the same node and any right hand
partitions are passed down the pipeline to the next non-busy node.

When the position of a pivot is found, it and an integer pointer to it’s
position in the original string are passed down to the Feed procedure. When
all the characters have been positioned Feed sends a termination signal down
the pipeline. This is propagated down to Bleed then back up to Feed again.

The pipeline is implemented as for the bi-directional pipeline in section 5.1.
The nodes of the pipe are described in the pseudo code below. See figure 17
for a diagram of the nodes.

Figure 17: Data passing in the quicksort pipeline

PROC node()

PROC up.router()

34

SEQ
... initialise
WHILE going = TRUE
ALT
from-sort ? pivot; position
to.last.node ! pivot; position

from. next. node ? CASE
pivot; position
to.last.node ! pivot; position

terminate
SEQ
going := FALSE
to.last.node ! terminate

:

PROC down.router()
SEQ
... initialise
WHILE going
from.last.node ? CASE
segment
IF
node.busy
to.next.node ! segment

NOT node.busy
SEQ
to.sort ! segment
node.busy := TRUE

terminate
SEQ
IF
node.busy
to.next.node ! terminate

NOT node.busy
SEQ
to.next.node ! terminate
to.sort ! terminate

going := FALSE
:

PROC sort()
from.down.router ? CASE
segment
WHILE SIZE(segment) > 0
SEQ
... sort segment
to.up.router ! pivot; position
to.down.router ! right.hand.segment
segment := left.hand.segment

35

terminate
SKIP

:

PRI PAR
PAR
up.router()
down.router ()

sort()
:

The Feed and Bleed procedures are described by the following pseudo code.

PROC Feed()
SEQ
segment := list
to.pipe ! segment
WHILE going
from.pipe ? CASE
pivot; position
SEQ
... place pivot in correct position
IF
SIZE(list) = number positioned
to.pipe ! terminate

terminate
going := FALSE

:

PROC Bleed()
from.pipe ? CASE
terminate
to.pipe ! terminate

:

References

[1] occam 2 Reference Manual, INMOS Ltd, Prentice Hall, 1987

[2] Transputer Reference Manual, INMOS Ltd, Bristol

[3] ”Performance Maximisation”, INMOS Technical Note 17, INMOS Ltd,
Bristol

[4] ”Communicating Processes and occam”, INMOS Technical Note 20,
INMOS Ltd, Bristol.

36

[5] ”Foundations of Programming”, Jacques Arsac, Academic Press, 1985.

[6] occam 2 language definition, David May, INMOS Ltd, Bristol

[7] ”The Transformation of Recursive Definitions to Iterative Ones”,
Jacques Arsac, in ’Tools and Notions for Program Construction”, 1982,
ISBN OS21248019

[8] ”Exploiting Concurrency; A Ray Tracing Example”, INMOS Technical
Note 7, INMOS Ltd, Bristol.

[9] ”Proof of a Recursive Program: Quicksort”, C.A.R. Hoare, Comp. J.,
14, No.4 (1971), 391-395.

[10] ”Quicksort”, C.A.R. Hoare, Comp. J., 5, No.1 (1962), 10-15.

[11] ”Algorithms + Data Structures = Programs”, Niklaus Wirth, Prentice
Hall, 1976, ISBN 0-13-022418-9.

[12] ”Flowchart Techniques for Structured Programming”, Ben Shneider-
man and Isaac Nassi, SIG PLAN Notices 8, No. 8: pp12-26, August
1973.

[13] ”The Art of Computer Programming 1” 2nd edition, D.E. Knuth,
Addison-Wesley, 1973.

37

	1 Introduction
	2 Data structures
	2.1 The occam programming language
	2.2 Records
	2.2.1 A common example
	2.2.2 Using arrays of INTS and RETYPES
	2.2.3 Protocols
	2.2.4 Arrays for each field
	2.2.5 Avoiding alignment

	2.3 Stacks
	2.3.1 The stack data structure with associated operations
	2.3.2 Occam implementation

	2.4 Queues
	2.4.1 The queue data structure with associated operations
	2.4.2 Occam Implementation

	2.5 Linked lists
	2.5.1 Linear lists
	2.5.2 Inserting a node at the start of a list

	2.6 Trees
	2.6.1 The tree data structure with associated operations
	2.6.2 Occam implementation

	3 Recursion
	3.1 Recursive functions in mathematics
	3.2 Recursive functions and procedures in computer programming

	4 Transforming recursion to iteration
	4.1 Monadic tail recursive definitions
	4.2 An example
	4.3 Dyadic and non-tall recursive definitions

	5 Two approaches to recursion in occam
	5.1 The pipeline method
	5.2 The stack method

	6 Two recursion examples
	6.1 Recursive tree traversal
	6.1.1 The recursive algorithm
	6.1.2 The stack implementation
	6.1.3 The pipeline implementation

	6.2 A recursive quicksort
	6.2.1 The quicksort algorithm
	6.2.2 The stack implementation
	6.2.3 The pipeline implementation

	References

