
High performance graphics
with the IMS T800

INMOS Technical Note 37

Phil Atkin & Jamie Packer
Central Applications Group Bristol

March 1988
72-TCH-037-00

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 5

2 Computer graphics techniques 5
2.1 Modelling objects . 6
2.2 Transformation . 6

2.2.1 The homogenous coordinate system 7
2.2.2 Translation . 7
2.2.3 Rotation . 8
2.2.4 Concatenation . 8
2.2.5 Perspective projection 9

2.3 Scan conversion . 10
2.4 Shading . 10
2.5 Clipping . 11
2.6 Hidden surface removal . 11

3 The IMS T800 transputer 12
3.1 Serial links . 13
3.2 On-chip floating point unit 13
3.3 2-D block move instructions 13
3.4 The occam programming language 14
3.5 Meeting computer graphics requirements 14

4 3-D transformation on the IMS T800 16

5 The INMOS distributed Z-buffer 19
5.1 The Z-buffer algorithm . 19
5.2 Scan conversion . 20

5.2.1 Scan converting polygons 20
5.2.2 Scan converting spheres 20
5.2.3 Implementation details 21

Scan conversion with a DDA 21
Scan conversion on transputers 22

5.2.4 Distributing scan conversion over multiple transputers 23
5.3 Architecture . 23
5.4 Performance . 25

6 The INMOS multi-player flight simulator 26
6.1 Requirements . 26
6.2 Implementation details . 26

6.2.1 The distributed polygon shader 26
6.2.2 Geometry system . 27
6.2.3 BSP-Trees . 27

6.3 Architecture . 30

3

6.4 Performance . 31

7 Conclusions 32

References 32

Output from the INMOS distributed Z-buffer system:

A: Four intersecting cubes B: A simple molecule
6.29 fps, elapsed 0:01:58 2.96 fps, elapsed 0:21:58

C: The Starship Enterprise D: The IMS T800 package
3.15 fps, elapsed 0:11:53 1.68 fps, elapsed 0:33:35

4

1 Introduction

This technical note examines some applications of the IMS T800 floating
point transputer in high performance graphics systems. Firstly there is a
brief introduction to some of the basic techniques and terminology used in
computer graphics. This includes comments on implementation and pro-
cessing requirements.

Section 3 provides an overview of transputer, and specifically IMS T800,
architecture. This concentrates on the aspects of the device which make it
particularly suitable for using in parallel graphics systems. There is also a
brief description of the occam language, designed for programming highly
parallel systems. This part concludes with a summary of how the IMS T800
meets the requirements of a modern graphics system.

The next section describes in some detail how the computing performance of
the floating point processor is obtained. It uses, as an example, a procedure
which forms one of the key routines in all our graphics demonstrations.

Finally two particular applications are described in detail. These are the
INMOS distributed Z-buffer, a near real time multiprocessor solution to the
hidden surface problem, and the INMOS multi-player flight simulator, a real
time interactive combat simulator. Both programs have been implemented
on standard INMOS transputer evaluation boards with no custom hardware
design and written entirely in a high level programming language.

2 Computer graphics techniques

Computer generated images, and in particular interactive graphics, is one
of the fastest growing and most important application areas for high perfor-
mance computing systems. Some common applications are computer aided
design (CAD), simulation and medical imaging. These allow the user to
rapidly see the effects of, for example, a design change on the appearance
or behaviour of an object; or to view a large amount of data (for example a
three dimensional scan of a human body) in an understandable form.

There are a number of common requirements for these systems. Firstly the
system must be fast, both to generate an image and to respond to input
from the user. Secondly the displayed images must be realistic, or at least
readily comprehensible to the user. This will usually mean that objects can
be viewed with correct perspective, with natural shading and possibly shad-
owing, and that the way in which one part of the scene obscures another (the
’hidden surface problem’) is correctly represented. For interactive systems
response speed is an important factor to maintain realism and usability.

5

A brief introduction to some of the techniques and terminology used in this
paper is given below. A good introduction to interactive computer graphics
can be found in [11].

2.1 Modelling objects

In order to render or generate images of an object some way of modelling
the object in the computer is needed. A convenient primitive to use as the
basis of modelling objects is the polyhedron. By increasing the number of
faces the shape of any solid object can be approximated, although at the
cost of having more data to manipulate. An arbitrary polyhedron can be
modeled by defining its faces; each of these faces is then a polygon which
can be defined by an ordered list of vertex coordinates.

Each polygon will have other attributes associated with it, such as colour and
orientation. The orientation is represented by a line or vector perpendicular
to the surface. This is called the surface normal and can be calculated from
the coordinates of three vertices. The surface normal is closely related to
another attribute, the plane equation of the face. A plane is represented by
four numbers (a, b, c, d) so that ax+ by+ cz+ d = 0 is true only if the point
[x y z] lies in the plane. If a point does not lie in the plane then the sign of
the expression ax +by+cz+d indicates which side of the plane the point is
located on. By convention, points in front of the plane have positive values
of ax+ by + cz + d. The components of the normal vector are given by the
plane equation; the vector is [a b c]. The plane equation and normal vector
are very important for visibility and shading calculations.

2.2 Transformation

Geometric transformations play an important role in generating images of 3-
dimensional scenes. They are used (a) to express the location and orientation
of objects relative to one another and (b) to achieve the effect of different
viewing positions and directions. Finally a perspective transformation is
used to project the 3-dimensional scene onto a 2-dimensional display screen.

Transformations are implemented as matrices which are used to multiply a
set of coordinates to give the transformed coordinates. All rotations, trans-
lations and other transformations to be performed on data are combined into
a single matrix which can then be applied to each point being transformed.
Transformations may be nested, like subroutine calls, so that parts of a
model can be moved independently but still take on the global movement
of the model or the viewpoint.

6

2.2.1 The homogenous coordinate system

The coordinates of points are represented using what are known as homoge-
nous coordinates. Any point in 3-dimensional space can be mapped to a
point in 4-dimensional homogenous space. The fourth coordinate, w, is sim-
ply a scaling factor so a point with the homogenous coordinates [x y z w]
is represented in 3-space as [x/w y/w z/w]. This representation simplifies
many calculations and, in particular, means that the division required by
perspective transformation can be done after clipping when there may be
many fewer points to process.

The value of w is arbitrary as long as x, y, and z are scaled by the same
amount. Generally when converting from 3-D to homogenous coordinates
it is simplest to make w = 1 so no multiplication of x, y and z is necessary.
After being transformed the value of w may have changed so at some point
the x, y, and z coordinates must be divided by w. This can be done when
scaling to physical screen coordinates.

The transformation matrices used are 4x4 matrices for the transformation of
homogenous coordinates and are designed to have the desired effect on the
point in ordinary 3-space. When implemented on a computer, coordinates
and transforms will generally use floating point representation for maximum
accuracy and dynamic range.

2.2.2 Translation

Translation, or movement of a point in space, is simply achieved by adding
the distance to be moved in each axis to the corresponding coordinate:

x′ = x+ tx

y′ = y + ty

z′ = z + tz

Where tx, ty and tz are the distances moved in x, y and z respectively. This
can be represented as a matrix multiplication:

[
x′ y′ z′ w′] =

[
x y z w

] 
1 0 0 0
0 1 0 0
0 1 0 0
tx ty tz 1



7

2.2.3 Rotation

Three dimensional rotations can be quite complex. The simplest form is
rotating a point about an axis which passes through the origin of the coor-
dinate system, and is aligned with a coordinate axis. For example, rotation
about the z axis by an angle of θ is written as:

x′ = x cos θ + y sin θ
y′ = y cos θ − x sin θ

This can be represented as a matrix multiplication as shown:

[
x′ y′ z′ w′] =

[
x y z w

] 
cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1


To perform rotations about an arbitrary point it is necessary to translate
the point to the origin, perform the rotation and then translate the point
back to its original position. Rotations about axes which are not aligned
with the coordinate system can be performed by concatenating a number of
simpler rotations.

2.2.4 Concatenation

The successive application of any number of transforms can be achieved with
a single transformation matrix, the concatenation of the sequence. Suppose
two transformations M1 and M2 are to be applied to successively to the
point v. First v is transformed into v′ by M1, this is then transformed into
v′′ by M2:

v′ = vM1

v′′ = v′M2

Substituting Equations gives:

v′′ = (vM1)M2 = v(M1M2)

8

Therefore the concatenation of a sequence of transformations is simply the
product of the individual transform matrices. Note that, because matrix
multiplication does not commute, the order of application of the transfor-
mations must be preserved.

2.2.5 Perspective projection

The most realistic way of displaying three dimensional objects on a two
dimensional screen is the perspective projection. There is a simple transfor-
mation that distorts objects so that, when viewed with parallel projection
(orthographically), they appear in perspective. This defines a viewing vol-
ume, a truncated pyramid, within which objects are visible (see Figure 1).
This transformation preserves the flatness of planes and the straightness of
lines and simplifies the clipping process that follows. The perspective trans-
form uses three parameters: the size of the virtual screen onto which the
image is projected; the distance from the viewing position to this screen;
and the distance to the farthest visible point. The result of the perspective
transform is to normalise all coordinates so that values range between −1
and +1, the centre of the image is at point (x, y) = (0, 0). To display these
on a real device the coordinates must be scaled by the screen resolution of
the display.

Figure 1: Viewing objects in perspective

The perspective transform used in the programs discussed in this document
is based on that in Sutherland and Hodgman [15].

9

2.3 Scan conversion

Raster displays are the most commonly used output device for computer
graphics systems. They represent an image as a rectangular array of dots or
’pixels’. The image to be displayed is stored in a ’frame buffer’, an area of
memory where each location maps onto one pixel. The main advantages of
raster displays are low cost and their ability to display solid areas of colour
as easily as text and lines.

In order to display objects which are represented as a number of polygons it
is necessary to scan convert the polygons. This involves finding all the pixels
that lie inside the polygon boundaries and assigning them the appropriate
colour. A shading model is used to calculate the colour of each pixel.

A number of techniques have been developed for scan conversion. These
generally take advantage of ’coherence’; the fact that the visibility and colour
of adjacent pixels is usually very similar, there are only abrupt changes at
polygon boundaries. This allows incremental methods using only integer
arithmetic to be used.

2.4 Shading

To generate realistic images it is necessary to assign the correct colours to
the various parts of the model. This means shading the objects to represent
lighting conditions. The apparent colour of a surface is dependent on the
nature of the surface (its colour, texture etc.), the direction of the light
source and the viewing angle. A realistic shading model may require a
large amount of floating point arithmetic to multiply together the vectors
representing surface orientation (the surface normal), direction of the light
source etc.

Where objects are represented as a number of polygons, the faceted appear-
ance can be reduced by using a smooth shading model. There are two simple
and reasonably effective techniques. Gouraud shading simply interpolates
the surface colour across each polygon. This can, however, introduce a num-
ber of anomalies for example, in the shape of highlights and the way shading
changes in moving sequences. Many of these problems can be relieved by
using a technique developed by Phong but at the expense of increased calcu-
lation. Phong shading interpolates the surface normals across the polygons
and re-applies the shading model at each pixel.

10

2.5 Clipping

Clipping is necessary to remove points which lie outside the viewing volume
and to truncate lines which extend beyond the boundaries. Clipping can be
done more simply after the perspective transformation. However, clipping
in the z axis must be done before the division by depth which the full
perspective projection requires as this destroys the sign information that
determines whether a point is in front of or behind the viewer. Points with
a negative value of z are behind the viewer.

Clipping to the x and y coordinates need only be performed to screen reso-
lution. This has led to many clever, although not always simple, techniques
using fast integer arithmetic to clip lines quickly. The availability of fast
floating point hardware means that more straightforward methods can be
used.

The use of homogenous coordinates and the perspective projection simplifies
clipping. Because the points can be viewed in parallel projection x and y
values which are inside the viewing pyramid are in the range −1 to 1 and z
values are in the range 0 to 1. The use of scaled, homogenous coordinates
means that the tests that have to be applied are:

−w ≤x ≤ w

−w ≤ y ≤ w

0 ≤ z ≤ w

These limits correspond to the six bounding planes of the truncated viewing
pyramid. A fast polygon clipping algorithm is described in [15].

2.6 Hidden surface removal

In order to generate realistic images it is important to remove from an
image those parts of solid objects which are hidden. In real life these would
be obscured by the opaque material of the object. In computer graphics the
visibility of every point must be explicitly calculated.

Hidden surface algorithms are classified as either object-space or image-
space. An object-space algorithm uses the geometrical relationships be-
tween the objects to determine the visibility of the various parts and so will
normally require at least some floating point arithmetic. An image-space
method works at the resolution of the display device and determines what is
visible at each pixel. This can be done most efficiently using integer arith-
metic. The computation time of object-space techniques tends to grow with

11

the total number of objects in the scene whereas image-space computation
will tend to grow with the complexity of the displayed image.

There is also a trade-off between speed, complexity and memory usage. For
example the Z-buffer technique described in Section 5 is a very simple, rea-
sonably fast image-space algorithm but requires a large amount of working
memory. It uses an array of integers, the same size as the frame buffer, to
store the depth at each pixel.

The BSP-tree used in the INMOS flight simulator (Section 6) is an object-
space algorithm which is efficient in memory usage, but uses floating point
arithmetic to determine the ordering of polygons. Its performance depends
on the availability of a fast floating point processor. It is also not com-
pletely general: in its simplest form it can only be applied to rigid objects
constructed from non-intersecting polygons.

3 The IMS T800 transputer

Figure 2: IMS T800 block diagram

The IMS T800 is the latest member of the INMOS transputer family [1]. It
integrates a 32 bit 10 MIPS processor (CPU), 4 serial communication links,
4 Kbytes of RAM and a floating point unit (FPU) on a single chip. An
external memory interface allows access to a total memory of 4 gigabytes.

12

The transputer family has been designed for the efficient implementation of
high level language compilers. Transputers can be programmed in sequen-
tial languages such as C, PASCAL and FORTRAN (compilers for which
are available from INMOS). However the occam language (see Section 3.4)
allows the programmer to fully exploit the facilities for concurrency and
communication provided by the transputer architecture.

The on-chip memory is not a cache, but part of the transputer’s total address
space. It can be thought of as replacing the register set found on conventional
processors, operating as a very fast access data area, but can also act as
program store for small pieces of code.

3.1 Serial links

The 4 serial links on the IMS T800 allow it to communicate with other
transputers. Each serial link provides a data rate of 1.7 MBytes per second
unidirectional or 2.35 MBytes per second when operating bidirectional.

Since the links are autonomous DMA engines, the processor is free to per-
form computation concurrently with link communication. With all four
links receiving simultaneously, the maximum data rate into an IMS T800
is 6.8 Mbytes per second. This allows a graphics card based round a single
IMS T800 to act as an image sink, accepting byte wide pixels down its serial
links directly into video RAM. This is the architecture used in the INMOS
distributed Z-buffer (Section 5) and in the INMOS flight simulator (Section
6).

3.2 On-chip floating point unit

The IMS T800 FPU is a co-processor integrated on the same chip as the
CPU, and can operate concurrently with the CPU. The FPU performs float-
ing point arithmetic on single and double length (32 and 64 bit) quantities
to IEEE 754. The concurrent operation allows floating point computation
and address calculation to fully overlap, giving a realistically achievable per-
formance of 1.5 MFlops (4 million Whetstones / second)[6] on the 20 MHz
part; 2.25 MFlops (6 million Whetstones / second) at 30 Mhz.

3.3 2-D block move instructions

Among the new instructions in the IMS T800 are those for graphics support.
The IMS T800 has a set of microcoded 2-dimensional block move instruc-
tions which allows it to perform cut and paste operations on irregularly

13

shaped objects at full memory bandwidth. The three MOVE2D operations
are

MOVE2DALL which copies an entire area of memory
MOVE2DZERO which copies only zero bytes
MOVE2DNONZERO which copies only non-zero bytes

The use of these instructions is described more fully elsewhere [5].

3.4 The occam programming language

The occam language enables a system to be described as a collection of
concurrent processes which communicate with one another, and with the
outside world, via communication channels. Occam programs are built from
three primitive processes:

variable := expression assignment
channel ? variable input
channel ! expression output

Each occam channel provides a one way communication path between two
concurrent processes. Communication is synchronised and unbuffered. The
primitive processes can be combined to form constructs which are them-
selves processes and can be used as components of another construct. Con-
ventional sequential programs can be expressed by combining processes with
the sequential constructs SEQ, IF, CASE and WHILE.

Concurrent programs are expressed using the parallel construct PAR, the
alternative construct ALT and channel communication. PAR is used to run
any number of processes in parallel and these can communicate with one
another via communication channels. The alternative construct allows a
process to wait for input from any number of input channels. Input is taken
from the first of these channels to become ready and the associated process
is executed.

This note contains some short program examples, including a few written
in occam. These should be readily understandable but, if necessary, a full
definition of the occam language can be found in the occam reference man-
ual [2].

3.5 Meeting computer graphics requirements

Computer graphics has always required large amounts of computing power.
As users become more demanding in their requirements for higher resolution,
more colours and faster response from graphics based systems, more and

14

more processing speed and I/O bandwidth is required.

Graphics applications can require huge amounts of floating point maths
for performing transformations, spline curve interpolation and evaluating
complex shading models. Realistic images may contain many thousands of
primitives to be manipulated and displayed. Some of the most impressive
computer images have been produced using ray tracing, a very expensive
computer graphics technique. The implementation of a multiprocessor ray
tracing program using transputers is described in [4].

For desktop publishing, very high quality fonts are required, which must be
manipulated at high speed if the feeling of user interaction is to be main-
tained. For digital compositing and ’paintbox’ type applications, large ir-
regular shapes must be moved around on screen at high speed, without
annoying jerks and hops as the processor strains to keep up with the user.

High quality printed output may use a laser printer, a very high resolution
output device. Typical modern laser printers produce images with 300 - 400
dots per inch on A3 or A4 size paper. A bitmap at this resolution requires up
to 4 Mbytes of data. As colour laser printers become available the memory
requirements increase dramatically.

Finally, real time graphics work demands very high bandwidth to the display
device - a modest 16 frames per second an a 512 x 512 x 8 bit pixel display
requires the transfer of 4 Mbytes of data to the display each second. This is
easily met by the 4 links on a single IMS T800. As frame rates and screen
resolutions continue to increase so does the performance required from a
graphics system. Multiple IMS T800s could be connected to a common
frame store, using video RAMS, to provide even greater bandwidth to the
display. The hardware aspects of transputer based graphics systems are
discussed in some other technical notes [9].

The major requirements of the ideal graphics processor then are: high speed
floating point performance; high speed text manipulation and 2-D cut/paste
operations (actually the same operation but on different scales); fast move-
ment of large quantities of data; and high bandwidth in and out of the
processor.

Although not specifically a graphics device, the IMS T800 transputer fulfils
all the above requirements - massive compute power, a large linear address
space, high I/O bandwidth and instruction level support for pixel graphics
operations.

15

4 3-D transformation on the IMS T800

One of the main uses for a floating point processor in a computer graphics
system is for calculating 3-D transformations. This will include both gen-
erating a transformation matrix and applying this transformation to sets of
coordinates.

Here, a 4 element vector is multiplied by a 4x4 matrix, to give a 4 element
result:

[
x′ y′ z′ w′] =

[
x y z w

] 
a b c d
e f g h
i j k l
m n o p


This can be expanded as:

x′ = ax+ ey + iz +mw

y′ = bx+ fy + jz + nw

z′ = cx+ gy + kz + ow

w′ = dx+ hy + lz + pw

Hence to multiply the vector by the matrix requires 28 floating point oper-
ations (16 multiplication, 12 additions) which pipelines very efficiently on
the IMS T800. The following occam procedure multiplies the vector by the
matrix, storing the result.

PROC vectorProdMatrix ([4]REAL32 result,
VAL [4]REAL32 vec,
VAL [4][4]REAL32 matrix)

VAL X IS 0 :
VAL Y IS 1 :
VAL Z IS 2 :
VAL W IS 3 :

SEQ
result[X] := (vec[X]*matrix[0][X]) + ((vec[Y]*matrix[1][X]) +

((vec[Z]*matrix[2][X]) + ((vec[W]*matrix[3][X]))))

result[Y] := (vec[X]*matrix[0][Y]) + ((vec[Y]*matrix[1][Y]) +
((vec[Z]*matrix[2][Y]) + ((vec[W]*matrix[3][Y]))))

16

result[Z] := (vec[X]*matrix[0][Z]) + ((vec[Y]*matrix[1][Z]) +
((vec[Z]*matrix[2][Z]) + ((vec[W]*matrix[3][Z]))))

result[W] := (vec[X]*matrix[0][W]) + ((vec[Y]*matrix[1][W]) +
((vec[Z]*matrix[2][W]) + ((vec[W]*matrix[3][W]))))

:

Analysing the statement

result[X] := (vec[X]*matrix[0][X]) + ((vec[Y]*matrix[1][X]) +
((vec[Z]*matrix[2][X]) + ((vec[W]*matrix[3][X]))))

it can be seen that all vector offsets are constant and will be folded out by
the compiler into very short instruction sequences. Furthermore all floating
point operations are fully overlapped with subsequent address calculations.

The statement compiles into only 27 instructions, most of which are only a
single byte. The details of the transputer instruction set are given in [10]
and the implementation of the FPU in [3].

The instruction sequence generated by this expression is:

(1)

ldl 2 -- load local variable 2 (address of vec)
ldnlp 2 -- compute address of vec[Z]
ldl 3 -- load address of matrix
ldnlp 8 -- compute address of matrix[2][X]
fpldnlsn -- transfer matrix[2][X] to top of FPU stack

(2)

fpldnlmulsn -- transfer vec[Z] to FPU and multiply

(3)

ldl 2
ldnlp 3 -- compute address of vec[W]
ldl 3
ldnlp 12 -- compute address of matrix[3][X]

(4)

fpldnlsn -- transfer matrix[3][W] to FPU
fpldnlmulsn -- transfer vec[W] to FPU and multiply

17

fpadd -- add so top of FPU stack contains
-- (vec[Z]*matrix[2][X]) + (vec[W]*matrix[3][X])

ldl 2 -- calculate address of vec[Y]
ldnlp 1
ldl 3 -- and address of matrix[1][X]
ldnlp 4

fpldnlsn -- transfer matrix[1][X] to top of FPU stack
fpldnlmulsn -- transfer vec[Y] to top of stack and multiply
fpadd -- add product to previous intermediate result

ldl 2 -- calculate address of vec[X]
ldl 3 -- and address of matrix[0][X]

fpldnlsn -- transfer matrix[0][X] to FPU
fpldnimulsn -- transfer vec[X] to FPU and multiply
fpadd -- final accumulate, followed by
ldl 1 -- final store to
fpstnlsn -- result[X]

Most FPU operations pop the top two values off the stack to use as operands
and then push the result back onto the stack. The stack consists of three
registers inside the FPU and nearly all expressions can be compiled so that
no temporary memory variables are needed.

The code between (1) and (2) calculates the address of the first two operands
and transfers matrix[2][X] to the top of the FPU stack. The code between
points (2) and (3) loads vec[Z] onto the FPU stack and initiates a float-
ing point multiply. The CPU then executes the code between (3) and (4)
which calculates the addresses of the next pair of operands. Meanwhile the
FPU continues with its multiplication. Finally the floating point load non
local instruction at point (4) is executed and a hardware interlock causes the
CPU and FPU to synchronise. In this way, the computation of the operand
addresses is entirely overlapped with the floating point multiplication. In
the remainder of the expression the FPU is kept busy, never having to wait
far the CPU to perform an address calculation, and so achieving its quoted
1.5 MFLOP rating. The entire vector matrix multiplication operation, in-
cluding the call to the procedure, takes less than 19 µs on the IMS T800-20,
allowing a single transputer to perform 3-D transformation on over 50000
points per second. This is important - the example is not a bizarre and
meaningless benchmark designed to make the IMS T800 look as fast as pos-
sible. It is a genuine piece of application code, and the inner loop of all 3-D
transformations.

The efficiency of this piece of code does not depend on it being written in
occam. An efficient compiler for any other language can easily obtain sim-

18

ilar performance. Neither does the performance depend on constant array
subscripts as in this example. The transputer’s fast product instruction can
be used to calculate the address of an array element and this will still be
fully overlapped with the FPU operation. This is true even for two dimen-
sional arrays with code for range checking the array subscripts. The loops
were expanded out in this example to remove jump instructions, which are
relatively slow and prevent full overlapping of FPU and CPU operations.

5 The INMOS distributed Z-buffer

The Z-buffer is a general solution to the computer graphics hidden surface
problem. When presented with the primitives which constitute a scene, the
Z-buffer will output the scene as viewed by the observer, with hidden or
partially hidden surfaces correctly obscured.

The core of the Z-buffer program is the distributed scan converter, which
allows the processes of scan conversion and Z-buffering to be distributed
over a number of transputers.

5.1 The Z-buffer algorithm

For each pixel on the screen a record is kept, in a depth- or Z-buffer, of the
depth of the object at that pixel which lies closest to the observer and the
colour of that pixel is kept in a separate frame buffer. As each new object is
scan converted the depth of each pixel generated is compared with the value
currently in the Z-buffer; if this pixel is closer than the previous one at that
position then the depth and frame buffers are updated with the values for
the pixel.

When all polygons (and other primitives) have been scan converted into the
Z-buffer, the frame buffer contains the correct visible surface solution.

In pseudo code the Z-buffer algorithm is essentially

for each polygon
{
for each (x,y) on the screen covered by this polygon
{
compute z and colour at this (x,y)
if z < zbuffer[x,y] then
{
framebuffer[x,y] := colour
zbuffer[x,y] := z
}

19

}
}

So for each polygon, the z value and the colour must be computed at each
screen position covered by that polygon. For maximum speed the value of
z and colour for each pixel is usually computed using only simple integer
arithmetic at each step.

5.2 Scan conversion

The scan converter discussed here is restricted to convex polygons (polygons
with no acute angles and no holes) and spheres.

5.2.1 Scan converting polygons

The scan converter traverses each polygon from bottom to top, maintaining
data for a pair of ’active edges’. These active edges delimit the horizontal
extent of the polygon, and this horizontal extent is scanned, to give depth
and colour for each pixel covered by the polygon. As it scans up the polygon
values of x, z and colour are maintained along a left active edge and a right
active edge. When the scan converter encounters a vertex in one of the
active edges, the appropriate set of edge data is updated.

Each active edge has associated slope values, dx
dy , dz

dy and dcolour
dy . The scan

converter computes x, z and colour for the next scanline (i.e. at y + 1) by
adding on these slope values to the current values of z and colour. The
scan converter computes dz

dx and dcolour
dx for each horizontal extent, to allow

horizontal interpolation of z and colour for full Z-buffering. Linear inter-
polation of colour gives Gouraud shading, a simple and effective smooth
shading approximation (compare photgraphs A and C at the front of the
note).

5.2.2 Scan converting spheres

Polygons can be scanned easily since they are planar, and z can be inter-
polated linearly over planar surfaces. Spheres are not so simple. There are
two problems: first, scan converting the sphere involves determining the
projected circular outline of the sphere on the screen; secondly, scanning
the region inside the outline to compute z and colour at each pixel cov-
ered by the sphere. In fact a sphere in perspective does not always project
exactly into a circle, but in general this is a close enough approximation.
The spheres code was written to allow complex molecules to be rendered.

20

When displaying molecules, the individual atoms are generally small in re-
lation to the complete image, so the distortion due to circular projection is
acceptable.

The projected radius of the sphere is obtained from the perspective calcu-
lations. Bresenham’s circle algorithm [12] is then used to scan the outline
of the projected circle, and is also used at each scanline to scan the sphere
in z (Figure 3). Exact spherical shading is complex (and therefore slow),
requiring lots of maths at each pixel (including square roots), so an approxi-
mate shading technique is used as described by Fuchs et al. [14]. The visible
hemisphere is shaded as though it were a paraboloid. The resulting shading
is smooth and very hard to distinguish from correct spherical shading.

Figure 3: Scan conversion of spheres via Bresenham’s algorithm

5.2.3 Implementation details

Scan conversion with a DDA

Scan-converters are generally implemented using a digital differential anal-
yser (DDA), or a variant of Bresenham’s line-drawing algorithm [11, ?]. The
reasoning behind this is that divisions can be avoided, and all addition op-
erations are on integers, improving performance. Tracking an edge with a
DDA involves maintaining two items of information about the edge: the
current position and the current error term. A step is taken along the ’driv-
ing axis’, the axis of greatest step. A fixed value is unconditionally added to
the error term. When the error term overflows (generally this means when
the error becomes positive), a step is taken along the ’driven axis’, and a
different fixed value is subtracted from the error term.

Here is an example of drawing a line using Bresenham’s algorithm - it is

21

assumed the deltaX is greater than deltaY, so x is the driving axis:

e = (2 * deltaY) - deltaX;
for (i = 1; i == deltaX; i++)
{
plot (x, y);
e = e + (2 * deltaY);
if (e > 0)
{
y = y + 1;
e = e - (2 * deltax);
}

x = x + 1;
}

Note that a decision must be made at each pixel, the if statement means
that the processor will execute a conditional jump instruction. The break in
instruction pipelining (and subsequent forced instruction fetch) this causes
will consume valuable processor cycles.

Scan conversion on transputers

There is an alternative solution for the transputer. Bresenham’s algorithm
removed division operations because historically this was a prohibitively
slow operation. The division was removed at the expense of generality - the
slope of the line must be between zero and one. This means that a scan
converter, which must have y as the driving axis, still requires at least one
division operation and also requires greater complexity in the inner loop.

As a division is now necessary, an alternative approach was looked for. The
transputer’s designers were sufficiently far-sighted to include fast extended
arithmetic operations in the instruction set. Instead of maintaining an error
term (which is scaled in terms of deltaX and deltaY, rather than machine
precision) we simply put a 32 bit fraction on the end of the 32 bit integer,
and use iongadd instructions to step along the slope.

The value slope := deltaX / deltaY is computed as a signed 64 bit value
(32 integer plus 32 fraction bits), and the if at every pixel is avoided. Com-
puting the slope to 64 bits consumes about 100 processor cycles (5 mus) per
edge, but simplifying the code in the inner loop makes the fractional version
run some 40% faster than the Bresenham version. The code also becomes
more readable, as shown in the simplified example below:

y := y + slope -- slope is 64 bits (integer + fraction)

22

is more obvious than

SEQ
y := y + dyBydx -- dyBydx is the integer part of the slope
e := e + (2 * deltaY)
IF
e > 0 -- take care of fractional part of slope
SEQ
y := y + 1
e := e - (2 * deltaX)

TRUE
SKIP

This becomes even more apparent when several variables are being inter-
polated (i.e. x, z and colour). Note that for x and colour, a 32 bit value
for the slope (16 bits integer and 16 bits fraction) would provide sufficient
resolution and be faster to compute. However, the advantages of this are
outweighed by having to extract the upper 16 bits of the word which contain
the desired x and colour values.

The scan conversion of spheres is also done using long arithmetic.

5.2.4 Distributing scan conversion over multiple transputers

A standard scan converter traverses each polygon one scanline at a time. The
distributed scan converter running on N transputers traverses each polygon
N lines at a time. Each scan converter starts scanning at a different scanline,
i.e. at the lowest y-coordinate enclosed by the polygon which can contribute
to its subsection of the image.

In effect, each scan converter reconstructs a slightly different ’squashed’,
but interleaved, copy of the scene. When merged these sub-images create
the final picture, so the net effect is that the polygon is fully shaded and
Z-buffered (Figure 4).

This requires careful coding (and a little more computation) to initiate the
scan conversion process and to follow corners correctly, but the scan con-
verter distributed on N machines runs (very nearly) N times as fast as on
one machine.

5.3 Architecture

The architecture of the Z-buffer system is simple, but is flexible and eas-
ily extended, see Figure 5. An INMOS IMS B004 board (a) is used as a

23

Figure 4: Distributed scan conversion

database, file interface and user interface. It sends transformation matrices,
polygons and spheres to the geometry system.

Figure 5: Distributed Z-buffer architecture

The geometry system consists of four transputers on a single IMS B003-2
transputer evaluation board, which has been modified by replacing one of the
IMS T414-20s with an IMS T800-20. This transputer (b) performs all the
floating point computation, performing 3-D transformation, z clipping and
conversion to screen coordinates. Two IMS T414s (c and d) then perform
x and y clipping. A final IMS T414 (e) preprocesses (’cooks’) polygons and
spheres into a form suitable for the scan converters: polygon vertex format
is converted to edge format and edge slopes are computed; coefficients are
calculated for the sphere shading equation.

The ’cooker’ outputs its processed polygons and spheres to the Z-buffer
array (f through m). Note the link usage - polygons are passed through the
emboldened vertical links, independently of the horizontal links which pass
pixels to the graphics card (n). This separation of polygon flow and pixel flow

24

allows a finished frame to be passed to the graphics card while the next frame
is being computed, pipelining work efficiently for animated sequences. This
organisation also takes maximum advantage of the autonomous link engines
on each transputer. The graphics card used is an IMS B007 evaluation board
which has 2 banks of video memory allowing the next frame to be read in
without disturbing the currently displayed image. When the complete frame
has been received the two memory banks are swapped by writing to a control
register. This must be synchronised with the frame flyback of the display
to avoid distracting visual artefacts.

5.4 Performance

The Z-buffer is fully interactive, and on our existing models image generation
speeds range from over 10 frames per second down to around 1 frame per
second.

Performance of the system is sensitive to the number of polygons and to
screen coverage per polygon. With small numbers of large polygons, scan
conversion time dominates, so a larger number of scan converters gives a
linear performance improvement.

The IMS T800 in the geometry system is crucial for images with large num-
bers of small polygons. In this case screen coverage and hence scan conver-
sion time (per polygon) is low, and transformation time can dominate unless
a lot of floating point performance is available. If the IMS T800 is replaced
by an IMS T414, refresh rates can drop by a factor of 15 for a complex
model such as that of the IMS T800 package.

Some screen photographs of the output generated by this system are included
at the front of this note. The bevelled cubes consist of 112 polygons, 128
points, and were computed at 8.4 frames per second using 8 scan convert-
ers. The molecule (54 spheres, 108 points) achieves 6.3 frames per second,
but this drops dramatically if the screen coverage is increased, since the
computation per pixel is higher for spheres than for polygons. Note that
the individual atoms intersect correctly, and that the lighting conditions are
locally modelled - the highlight is in different positions on different atoms.
The Starship Enterprise (596 polygons, 943 points) is displayed at 2.8 frames
per second; no surface normal information is yet available for this model,
so it is flat shaded. The IMS T800 package (1254 polygons, 1584 points)
refreshes at between 1.8 and 1.4 frames per second.

25

6 The INMOS multi-player flight simulator

The INMOS flight simulator came from the need to demonstrate the real
time graphics capabilities of the transputer family. Although the Z-buffer is
much faster than any other yet implemented on microprocessors (rather than
custom hardware), it is still not fast enough to implement the vision system
of a flight simulator, even when running with thirty two scan converters.
This is due to the per pixel calculation involved in Z-buffering - a ’greater
than’ comparison is required at every pixel covered by each polygon. An
alternative hidden surface algorithm without this overhead is required for
the flight simulator.

6.1 Requirements

The primary requirement of the flight simulator was that it be fast. It
should be able to sustain 17 frames per second, the bandwidth limit into the
IMS B007 graphics card, when shading a reasonable number of polygons -
say 200 to 300. It should have low latency, i.e. the time from user input
to visual feedback should be no more than three, preferably only two frame
times. It should also use only a small number of transputers to implement
a four player system.

6.2 Implementation details

6.2.1 The distributed polygon shader

The core of the flight simulator is a distributed polygon shader, similar in
design to the scan converter in the Z-buffer. It is optimised for flat shading
of polygons and does not include the Z-buffer. This reduces the amount

26

of computation and means that a fast block move operation can be used to
shade the horizontal regions between polygon edges. It can be arranged that
the block move copies the value defining the colour from on-chip memory
so a 32 bit word can be copied (in other words, four pixels can be shaded)
every n+1 machine cycles, where n is the number of machine cycles required
to access off-chip memory.

When coded in this way, a 20MHz transputer with single wait-state (4 cycle)
external memory can shade polygons at a rate of 16 million 8 bit pixels
per second, or 62.5 nanoseconds per pixel. Four transputers can therefore
shade at up to 64 million pixels per second, only 15.6 nanoseconds per
pixel. With this high polygon shading speed it becomes possible to display
a reasonable number (over 200 ’average size’) polygons at 17 frames per
second, a very high number for a software implementation with no custom
hardware. Using four transputers allowed the use of the INMOS IMS B003-2
transputer evaluation board, so no new hardware design was necessary.

6.2.2 Geometry system

From the previous figures quoted for transformation time, the IMS T800 has
processing power to spare; it can transform 200 quadrilaterals (800 points)
in less than one sixtieth of a second. Three more transputers are used in
the geometry system - another IMS T800 for z clipping (often called hither
and yon clipping) and conversion to screen coordinates, and two IMS T414s
for clipping in x and y. Clipping in x and y are performed in screen space,
so integer maths is sufficient. The geometry system now consists of four
transputers, so again an IMS B003-2 is used, but this time slightly modified
(two IMS T414s replaced with IMS T800s).

At this stage the importance of pin compatibility between the IMS T414
and IMS T800 cannot be over emphasised - it allows high floating point
performance to be injected into a multiprocessor system just where it is
required, allowing performance tuning simply by removing one transputer
from a socket and plugging in another.

This is a very fast polygon shader and geometry system; all that is required
is a hidden surface algorithm which outputs its solution in polygon form to
implement the entire vision system of the flight simulator.

6.2.3 BSP-Trees

The BSP-tree [13] is a recursive data structure which implicitly holds all
possible hidden surface solutions for the object it represents. Each node of
the BSP-tree contains a polygon and pointers to front and back subtrees.

27

The front subtree contains all polygons in front of the node polygon, the back
subtree contains those behind the node polygon. The notion of ’in front-
ness’ is determined by substitution of the current viewing position into the
plane equation of the polygon.

By traversing the BSP1ree in an order determined solely by the viewing
position, the polygons are passed to the distributed polygon shades in reverse
z order, so that nearer surfaces are painted after (and hence obscure) more
distant surfaces, giving the correct hidden surface solution.

The following algorithm is used to perform BSP-tree traversal:

traverseTree (tree)
{
if (tree is empty)
return

else
{
if (view point in front of rootPolygon)
{
traverseTree (tree->back);
displayPolygon (tree->rootPolygon);
traverseTree (tree->front);

}
else
{
traverseTree (tree->front);
displayPolygon (tree->rootPolygon);
traverseTree (tree->back);

}
}

}

In some applications this procedure can be optimised by not painting back-
facing polygons. This is useful if there are only closed objects in the model,
for example a cube has six faces but only three of these are visible at any
time. In the flight simulator each polygon has a flag to indicate whether it
should be painted when the viewpoint is behind it. This allows rotor blades,
for example, to be implemented as a single polygon while allowing back face
elimination on the body of the helicopter.

This process is recursive our traverses is implemented in occam which does
not allow recursive procedure definitions, so a state machine is constructed.
Further details of implementing recursive data structures and procedures in
occam programs can be found in another INMOS technical note [8]. The
state machine maintains two variables, the current node in the tree, and
the current action being performed. These nodes and actions are explicitly

28

stacked as the tree is traversed. Here is an outline of the state machine in
occam:

SEQ
-- initialise
push (NIL, a.terminate)
action := a.testPosition
node := rootNode
WHILE action <> a.terminate
CASE action

a.testposition
-- test whether we are in front of
-- or behind the current polygon
IF
node = NIL
-- end of subtree
pop (node, action)

inFront (node, viewPoint)
-- in front of current polygon
SEQ
push (node, a.traverseFront)
node := tree[node + backSubTree]

TRUE
-- behind current polygon
SEQ
push (node, a.traverseBack)
node := tree[node + frontSubTree]

a.traverseFront
-- output current polygon
-- then traverse front subtree
SEQ
outputPoly (node)
action := a.testPosition
node := tree[node + frontSubTree]

a.traverseBack
-- output current polygon
-- then traverse back subtree
SEQ
outputPoly (node)
action := a.testPosition
node := tree[node + backSubTree]

Only half a dozen floating point instructions are required to determine which
subtree to traverse first at any node, so the BSP-tree traverses was incorpo-
rated into the same transputer as the 3-D transformation, leaving run time

29

still dominated by polygon painting time. BSP-trees are used to determine
polygon visibility within each object in the simulator (e.g. aeroplanes, heli-
copters, teapots, buildings), and a simple bounding box test in z is used to
determine the relative z ordering of objects. This means that the system will
not correctly render objects when they intersect. However, if this condition
occurs in the flight simulator it implies that the objects have collided.

6.3 Architecture

The vision system of the flight simulator is as illustrated below (Figure 6).
A geometry system consisting of four transputers performs: (a) BSP-tree
traversal and 3-D transformation; (b) z clipping and conversion to screen
coordinates; (c) y clipping; and (d) x clipping.

Figure 6: Flight simulator vision system

Four transputers (d, e, f and g) perform distributed polygon shading and a
graphics card operates as a pixel sink (h). The processor in the graphics card
would normally be idle, the transputer simply waiting for images to appear
down its links. This is a waste of a good processor, so more functionality
is added. The graphics card now implements a head up display showing an
artificial horizon, air speed, altitude, bearing, radar with enemy positions
and missile fuel readings. All of these make extensive use of the IMS T800’s
2-D move instructions.

The simulator itself runs on a single transputer with the vision system con-
nected to one link, and has been designed to allow many simulators to be
connected in a ring (Figure 7). This allows a number of players to take part
in a combat simulation, each player seeing the others through his simulated
cockpit window.

30

Figure 7: Full four player simulator

At SIGGRAPH ’87 members of the INMOS Late Night Rendering Crew
demonstrated a four player combat simulator, and members of the public
were invited to try and shoot down INMOS application engineers. The
whole system (i.e. four entire flight simulators) was housed in a pair of
INMOS card cages; taking up only 13 double extended eurocard slots and
less than five cubic feet. In the course of a 10 hour combat session more
than a terabyte of data (i.e, over a thousand gigabytes) will flow through a
four player simulator.

The implementation of the flight simulator is described in greater detail in
another INMOS technical note [7].

6.4 Performance

The flight simulator performs as well as anticipated - it consistently achieves
a refresh rate of 17 frames per second. The main limiting factor is the need to
synchronise the updates to the graphics display with frame flyback. Frame
rates approaching the theoretical maximum of 27 frames per second could
be achieved by having more buffering in the graphics display hardware. This
would allow image data to be received asynchronously with frame flyback.
If desired even higher frame rates can be obtained by using more than one
transputer in the display system.

Included at the front of this note are some stills from the flight simulator.
These images only come to life when animated at 17 frames per second. The
impression of flight is uncanny, despite the simplistic polyhedral design of
the aircraft.

A final word on the flight simulator - the distributed scan converter and the

31

BSP-tree traverses had been written for previous example programs, but
the rest of the system was written, debugged and functioning in only two
weeks. In fact, since the author of the rest of the simulator is an INMOS
Field Applications Engineer, all his work was done in evening and weekend
stints, as he is on the road most weekdays. We believe this is a record.

7 Conclusions

The IMS T800 offers all the features required for high performance computer
graphics. It is a very high per formance microprocessor capable of being used
in large numbers to form extremely powerful multiprocessor computers, with
a few well chosen instructions for computer graphics support.

The IMS T800s 2-D block manipulation instructions make it an ideal candi-
date for the next generation of high resolution full colour workstations, and
for future generations of colour laser printer controllers.

The IMS T800 has sufficient floating point performance for any application.
If more than 1.5 MFlops are required then use more transputers. Thirty
two IMS T800-20s offer the computational equivalent of current vector su-
percomputers (48 consistently achievable MFLOPS), take up only 56 square
inches of PCB area (i.e. they will fit on an IBM PC plug in card), and at
current prices (January 1988) cost less than £20,000.

References

[1] Transputer reference manual, INMOS Limited, Prentice Hall ISBN 0-
13-929001-X

[2] Occam reference manual, INMOS Limited, Prentice Hall ISBN 0-13-
629312-3

[3] IMS T800 architecture, Technical Note 6, INMOS Limited

[4] Exploiting concurrency: a ray tracing example, Technical Note 7, IN-
MOS Limited

[5] Notes on graphics support and performance improvements on the
IMS T800, Technical Note 26, INMOS Limited

[6] Lies, damned lies and benchmarks, Technical Note 27, INMOS Limited

[7] The INMOS flight simulator, Technical Note 36, INMOS Limited

32

[8] Data structures and recursion in occam, Technical Note 38, INMOS
Limited

[9] A transputer based distributed graphics display, Technical Note 46,
INMOS Limited

[10] The transputer instruction set: a compiler writers guide, INMOS Lim-
ited

[11] Principles of interactive computer graphics, William M. Newman &
Robert F. Sproull, McGraw Hill

[12] A linear algorithm for incremental digital display of circular arcs, J.E.
Bresenham, CALM 20(2):100-106, February 1977

[13] Near real-time shaded display of rigid objects, Fuchs, Abram & Grant,
Computer Graphics 17(3), July 1983 (Proc. SIGGRAPH 83)

[14] Fast spheres, shadows, textures, transparencies and image enhance-
ments in Pixel-Planes, Fuchs, Goldfeather, Hultquist, Spach, Austin,
Brooks, Eyles and Poulton, Computer Graphics 19(3), July 1985 (Proc.
SIGGRAPH 85)

[15] Reentrant polygon clipping, Ivan E. Sutherland & Gary W. Hodgman,
CALM 17(1), January 1974

33

	1 Introduction
	2 Computer graphics techniques
	2.1 Modelling objects
	2.2 Transformation
	2.2.1 The homogenous coordinate system
	2.2.2 Translation
	2.2.3 Rotation
	2.2.4 Concatenation
	2.2.5 Perspective projection

	2.3 Scan conversion
	2.4 Shading
	2.5 Clipping
	2.6 Hidden surface removal

	3 The IMS T800 transputer
	3.1 Serial links
	3.2 On-chip floating point unit
	3.3 2-D block move instructions
	3.4 The occam programming language
	3.5 Meeting computer graphics requirements

	4 3-D transformation on the IMS T800
	5 The INMOS distributed Z-buffer
	5.1 The Z-buffer algorithm
	5.2 Scan conversion
	5.2.1 Scan converting polygons
	5.2.2 Scan converting spheres
	5.2.3 Implementation details
	 Scan conversion with a DDA
	 Scan conversion on transputers
	5.2.4 Distributing scan conversion over multiple transputers

	5.3 Architecture
	5.4 Performance

	6 The INMOS multi-player flight simulator
	6.1 Requirements
	6.2 Implementation details
	6.2.1 The distributed polygon shader
	6.2.2 Geometry system
	6.2.3 BSP-Trees

	6.3 Architecture
	6.4 Performance

	7 Conclusions
	References

