Loading
transputer networks

INMOS Technical Note 34

INMOS Limited

72-TCH-034

tirlanis
plujt]e[r

njelt|

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

Contents

1 Introduction 4
1.1 Development 5
1.2 Characteristics 6

2 The TDS Extractor 7

3 Bootstrap and Loaders 11
3.1 Thebootstrap. L L 11
3.2 Thebootloader 13
3.3 Theloader. 14

4 The loading message structure 15
4.1 Command structure 15

Bits 7.6 16
Bits 5.0 16
4.2 Loader action 16
MESSAGE 17
NUMBER 17
FUNCTION, 17
Single transputer 18
Multiple load oo 19
4.3 RS232 20
Startup sequence 20
Data encoding oL 21

5 Bootstrap code 21

6 Bootloader code 24

7 Loader occam 26

References 29

1 Introduction

The Transputer Development System is a software package which is used
for developing occam applications for execution on transputers. The TDS
contains facilities for loading and running code on the host computer (which
may be a transputer) or on a network of transputers connected to the host.
This technical note describes the loading mechanism employed by the TDS
to load code onto a network rather than onto the host.

Occam contains constructs which are used to specify the allocation of code to
different processors in the network. The TDS compiler implements a subset
of these allocation facilities which allows users to allocate occam compilation
units to different processors. This specification is called the configuration.
Two other utilities are used in the process of sending code to a network
of transputers, these are the utility and the]LOAD NETWORK\
utility, both of which are described below.

The following example configuration specifies a network of two processors
which are connected by channel datalink placed on both processors at trans-
puter link zero. The content of the compilation unit root is to be loaded
onto the processor attached to the host computer and the content of the
compilation unit node is to be loaded onto the other processor in the net-
work. The textually first processor in a network is assumed to be connected
to the host computer by a transputer link or serial tine for loading and is
referred to as the root processor.

{{{ PROGRAM using two processors
{{{F
SC root (in)
SC node (out)
CHAN OF BYTE datalink
PLACED PAR
PROCESSOR 1 T4
PLACE datalink AT 4 -- Link O in
root (datalink)
PROCESSOR 2 T4
PLACE datalink AT O -- Link O out
node (datalink)
i 33
i 33

The compiler checks that the configuration described by the user is valid
and that every processor is loadable from the root processor. The compiler
also checks that the code to be loaded to each processor is available and
is compiled for the correct processor type. The compiler produces a fold
containing a description of the configuration specified by the user. This

description is used by the extraction and loading utilities to control the
distribution of code to the network. The extraction utility brings together
all the different blocks of code to be sent to the network. At the same time
bootstraps and routing and loading information is included with the code to
initialise the processors and direct the code to the intended locations in the
memory of the target processors. The loading utility sends the extracted
code to the network, controlling any interaction with the root processor and
reporting any failure to the user.

The TDS is designed to enable users to develop their network software easily
and quickly. This environment calls for a network loading mechanism which
is simple, reliable and reasonably efficient. It is expected that applications
which require special performance from the loading software, such as loading
every processor in a network with identical code but not, perhaps, know-
ing the topology of the network, would have a specific loading mechanism
designed.

1.1 Development

The loading strategy used by the TDS was specifically developed to satisfy
the requirements of the TDS, it is not the only way of distributing code to a
network of transputers and may not be the best mechanism for many envi-
ronments. The decisions behind the scheme can be more easily understood
if the requirements are stated. These are:

1. Any code to be sent to the network should only be transmitted from
the host to the network once, even if it is to be loaded at different
addresses on different processors.

2. Blocks of code may be loaded in any order to any location on any
processor.

3. The loading mechanism should not permanently occupy space in the
target processor’s memory.

4. The loading strategy should be reasonably efficient for the number of
transputers likely to be used with the TDS - say 500.

5. The loader should be small enough to fit in internal memory so that a
processor with large amounts of memory can be loaded via a processor
with no external memory.

6. Each type of transputer must be supported.

To load code into every processor, it is necessary for a loader to be resident on
each processor. This loader must be able to load code into the local memory
and also pass code on for other processors. Requirement 1 and requirement 3
above are antagonistic for the design of the loader. Requirement 1 demands
a loader which is capable of loading code to other processors when it has
finished loading code into the local memory, while requirement 3 demands
that space occupied by the loader code can be re-used for code being loaded
into the local memory.

The sixth requirement, that all types of transputers be supported, had quite
a different effect upon the loading scheme. The TDS had to support trans-
puter types which did not boot into the same state and whose external links
were at different addresses. This demanded that the bootstrap and loader
for each processor in the network be directed to that processor alone.

1.2 Characteristics

The requirements placed upon the design of the loading scheme resulted in
the characteristics described below.

Each processor is pre-loaded with a bootstrap and loaders which perform
initialisation and loading tasks. The first program, the bootstrap, initialises
the registers, the link and event process words and the queue pointers of
the transputer and then loads the second program, the bootloader. The
bootloader is a simple loader capable of loading code to contiguous blocks
of memory, it is used to load the third program, the loader, and later in the
load sequence, additional blocks of code not loaded by the loader. The loader
performs the tasks of loading code into local memory as well as distributing
code and information to other processors in the network. The bootstrap
and loaders are grouped together as a set of message packets which are sent
to each processor by the host before any other loading information.

The development system on the host computer, the TDS, maintains all
knowledge of the structure of the network. This allows the loader on each
processor in the network to be simple. At each stage it is told exactly what
to do by the communications received from the host.

The bootstrap and loaders for each processor in the network are transmitted
from the host to the processor being booted, they do not propagate from
one processor to the next. To all processors, apart from the processor being
booted, the bootstrap and loader code is indistinguishable from any other
code.

Loading code to the network proceeds in distinct phases. Firstly, the boot-
strap and loaders for each processor are transmitted from the host in a man-

ner which ensures that a processor which lie on the route to the recipient
processor has itself already received its own bootstrap and loader. Secondly,
the code to be loaded is transmitted from the host and propagated to all re-
cipient processors. Thirdly, code to call the loaded code is transmitted from
the host in a sequence which ensures that a processor which has received its
calling sequence will not receive any more loading information from the host
and may therefore run this call code. The bootstrap and loaders are loaded
onto a processor in the lowest available addresses (nearest to MOSTNEG
INT). The code to be run on a processor is loaded so that the most nega-
tive addresses will be workspace. Normally, therefore, the loader resides in
memory which will become the workspace of the application being loaded.
If, however, there is a requirement to load code into the space occupied by
the loader, then the loader can be overwritten by blocks of code loaded by
the bootloader after the loader has terminated.

The loading messages are collections of single bytes and packets of bytes.
The single bytes are commands which control the routing and loading of
information. The packets of bytes contain transputer code to be loaded
into the memory of a transputer. The packets of bytes are 60 bytes or less.
The value 60 was chosen for a variety of reasons. Firstly, it is necessary to
provide a buffer in the loader for passing code on to other processors and the
larger this is the more space the loader uses. Secondly, a message protocol
could be devised which simplified the loader if the message length was never
greater than 63. Thirdly, the buffer had to be large enough to contain the
bootstrap, which is 53 bytes in length, as a single packet.

2 The TDS Extractor

The extraction and loading utilities, provided as part of the TDS, control
the loading mechanism. The extract utility determines the order in which
processors are loaded and the location of code loaded on every processor and
selects the specific bootstrap and loader for each processor in the network.
The loading utility sends the code to the network, controlling any interaction
with the root processor and reporting any load failures. The functions of the
extraction and loading utilities can be performed as one action within the
TDS; the descriptions given in this section will be phrased as if this is the
mode of operation being described and the term ’extractor’ will be used for
the combined function. This section gives a brief overview of the extractor
and the order in which code is transmitted to the network with particular
reference to an example. The bootstrap and loaders are described in more
detail in later sections.

From link connection information and processor load data provided by the

compiler, the extractor builds a graph representing the network to be loaded.
From this data structure the order in which the processors in the network
receive the bootstrap and loader code is determined.

To determine the order, the graph of the network is first pruned to a strict
tree structure with only the shortest paths from the host to all the processors
remaining. The order is then determined from the tree by the following
algorithm.

Boot the root processor (the processor connected to the host). Then for links
0,1,2,3 in turn of the root processor, boot the network attached to the link.
If the link is connected to a processor, boot the processor connected to the
link, and boot the networks connected to links 0,1,2,3 of the newly booted
processor. Note that the links are not necessarily used in the direction
defined within the occam configuration.

This can be illustrated with reference to the following example configuration.

SC process.1
SC process.2
SC process.3
definitions and declarations
PLACED PAR
PROCESSOR 0 T4
PLACE L1 AT 1ink3.in
PLACE LO AT linkl.out :
PLACE L6 AT link2.in
process.1 (L1, LO, L6)
PROCESSOR 1 T4
PLACE L2 AT linkl.in
PLACE L6 AT 1linkO.out :
PLACE L7 AT link2.in
process.2 (L2, L6, L7)
PROCESSOR 2 T4
PLACE LO AT 1inkO.in
PLACE L2 AT link3.out :
PLACE L4 AT link2.in
process.3 (LO, L2, L4)
PROCESSOR 3 T4
PLACE L3 AT 1link3.in
PLACE L1 AT 1inkO.out :
PLACE L5 AT link2.out :
process.1 (L3, L1, L5)
PROCESSOR 4 T4
PLACE L5 AT 1ink3.in
PLACE L7 AT 1linkO.out :
PLACE L4 AT linkl.out :
process.3 (L5, L4, L7)

The above occam configuration can be represented by the following diagram:

i Host !
O e 3
‘0
L1 3 0 1 LO
process.1
L1 2 Lo
L6
0 0 0
L3 3 3 1 3 1 1 L2 3 2 1
process.1 process.2 process.3
2 2 2
L7
L5 0 L4
L5 3 4 1 L4
process.3

2
Figure 1: Example network

This example configuration generates the following boot path:

processor O from host

processor 2 from processor O link 1
processor 4 from processor 2 link 2
processor 1 from processor O link 2
processor 3 from processor O link 3

After all of the processors in a network have been booted (loaded with the
bootstrap and loaders), the compiled code is transmitted to the network.
The code of the procedures to be transmitted to the network is sent in the
order in which the procedures are declared in the PROGRAM fold. The
loading order is the same as the boot order, each processor taking a copy or
not of a code packet, then passing it to zero or more output links.

The SC code loaded to the network shown in figure 1 will be sent in the
following order:

process.1

0 load 3 load
process.2

0 pass 1 load
process.3

0 pass 2 load 4 load

The compiler generates a small amount of code to call the procedure which
has been loaded onto each processor, this is referred to as the main program.
The main program contains code which initialises the parameters to the
application code, the call of that code and, following the code, an instruction
which will stop the processor if the application program terminates and
returns to the main program. The main program code is loaded so that it
is contiguous with the previously loaded application code and is at more
negative addresses. The layout of the loaded code and workspace on a
transputer is shown in the following diagram:

Application
code

main
program
Load position

Application
workspace

MemStart

Reserved
locations

MOSTNEG INT

Figure 2: Application code and workspace

The main program code is sent to the network by traversing the pruned tree
representing the network in the following ’depth first” manner: For links
0,1,2,3 in turn of the root processor, load the network attached to the link.
If the link is connected to a 'mew’ processor, load the networks connected
to links 0,1,2,3 of the new processor, followed by the new processor. Finally
load the root processor. A new processor is one which has not previously
been encountered during this phase of the loading.

The main body code loaded to the network described above will be sent in
the following order:

processor
processor
processor
processor
processor

O W N B

10

The loading position of the code in any processor is determined by the
workspace requirement of the code to be loaded to that processor. The
load address is calculated by adding the size of the workspace and a base
workspace address. If this load address is less than a minimum value, then
the minimum value is used as the load address. The minimum value is
the lowest address to which code can be loaded onto a processor without
overwriting the workspace of the code doing the loading (the bootloader).

The workspace requirement on a processor may be small and consequently
the calculated load address may overlap the space occupied by the loader
program, which resides in low memory addresses (nearest to MOSTNEG
INT) as described in the next sections. Rather than adjust the loading
address to avoid the loader, the code which overlaps the loader is held back
in an internal buffer within the extractor. When the distributing phase of
the network load has finished, the saved code is sent to the network with
the main body code for each processor. The main bodies are loaded remote
processor first, so that a processor receiving a main body will not receive
any further load path information. The loader can, therefore, return to the
bootloader, which can load contiguous code packets which do not require
any load directives. This allows the saved code to be loaded to the space
previously occupied by the loader.

The bootstrap, bootloader and loader for each processor type are contained
within the extractor occam as a table of bytes organised as a sequence of
length bytes followed by the specified number of bytes. The table is gener-
ated by a program provided with the TDS. This program contains within it a
mechanism for inserting transputer instructions directly into the table, and
for reading the code of a compiled occam program and adding the intents
to the table. The bootstrap and the bootloader are coded directly into the
table, the loader is written in occam. The extractor transmits the contents
of the table to the network as length byte, code packet pairs.

3 Bootstrap and Loaders

3.1 The bootstrap

After power-on or reset, a transputer waits until it receives a communication
on any one of its links. If the value of the first byte of this communication is
2 or greater, then that number of bytes is input from the link into the mem-
ory starting at MemStart and the processor starts executing at MemStart.
The TDS extractor sends the bootstrap to each processor as a length byte
followed by the bootstrap code.

11

The bootstrap, the first packet of the bootstrap and loader sequence, is
a short program which initialises the processor and memory. Section 5
"Bootstrap code’ gives the full listing of the bootstrap which is written in
transputer assembler instructions. The sequence of actions performed by
the bootstrap is as follows:

1. Allocate workspace for bootstrap and loader variables.
2. Reset high and low priority process queues.

3. Clear or set the halt on error flag.

4. Clear error.

5. Initialise all link and event process words to NotProcess.
6. Initialise some of the loader parameters.

7. Load the bootloader.

The bootstrap is loaded by the transputer at MemStart. When the initial-
isation is complete, the bootstrap loads the bootloader at MemStart and
then jumps to MemStart to enter the bootloader. Because the bootstrap
loads the bootloader at the same location as itself, the bootstrap is at least
two bytes longer than the bootloader (so that the instruction by which con-
trol is passed to the bootloader is not overwritten by the bootloader code
being loaded). The bootstrap for the T4 transputer is 53 bytes in length
and the corresponding bootloader is 51 bytes.

The memory layout for a T4 transputer while the bootstrap is running is
given in the following diagram.

#800000D4
Bootstrap
and loader
workspace
#80000080
Bootstrap
code
#80000048 MemStart
Reserved
locations
#80000000 MOSTNEG INT

Figure 3: T4 Bootstrap memory usage

12

Addresses for the T2 and T8 which correspond with those given in the above
diagram for the T4 are given in the following table.

Transputer T2 T4 T8
MOSTNEG INT #8000 #80000000 #80000000
MemStart #8024 #80000048 #80000070

Bootstrap top #8050 #80000080 #800000A8
Workspace top #808C #800000D4 #B8000OOFC

3.2 The bootloader

The bootloader, which is the second packet of the bootstrap and loader
sequence, is a short program capable of loading contiguous blocks of code
into memory. The code of the bootloader, which is written in transputer
assembler instructions, is listed in section 6 ’Bootloader code’. It loads
two different sets of code packets. Firstly, it is used to load the loader
and secondly, after the loader has finished, the bootloader loads the main
program code packets prior to starting the loaded code. The bootloader
performs the following functions:

1. Initialise remaining parameters for loader.

2. Load code from boot link until terminator.

3. Initialise workspace pointer and call code just loaded.
4. Start clock.

5. Prepare to load more code.

6. Go to step 2. The main program code loaded does not return, so this
loop is only obeyed twice.

The bootloader is loaded by the bootstrap at MemStart. The bootloader
creates the loader buffer starting at the address of the variable with the
greatest offset in the workspace reserved by the bootstrap. The loader is
then loaded at the first free location after the buffer. The bootloader loads
the second set of code packets at an address returned by the loader. The
messages input by the bootloader are a sequence of length byte and data
packet pairs.

The code position and workspace layout while the bootloader is loading the
loader is given in part (a) of figure 4 and the memory layout while the
bootloader is loading the final code packets is given in part (b) of figure 4.

13

#800000D4
Space available
for loadin
Bootloader #80000098 9
and loader
workspace Bootloader
workspace
#80000080 #80000080
Bootloader Bootloader
code code
#80000048 #80000048 MemStart
Reserved Reserved
locations locations
#80000000 #80000000 MOSTNEG INT

(a) (b)

Figure 4: Bootloader memory usage

3.3 The loader

The third component of the bootstrap and loader sequence loaded onto each
processor is the loader. The loader is a short occam program which loads
and distributes code. It obeys a sequence of commands received from the
host which direct it to perform the following functions:

Load a code packet to the current load address and increment the
current load address.

Output a code packet to a link.

Set a new current load address.

e Pass commands to a link.

The command structure is described in detail in the next section. The in-
formation received by the loader from the host is a stream of single byte
commands and packets of code. The commands are nested within brack-
eting command bytes so that each processor can interpret commands for
itself, remove one level of bracketing and pass on commands intended for
other processors later in the load path. The commands received change the
value of variables within the loader. When packets of code are received by
the loader, the value of the variables previously affected by the commands
determines the destination of the code. The occam source text of the loader
is listed in section 7 'Loader occam’.

The memory layout while the loader is running is as follows.

14

Space available
for loading
#800001E4
Loader
code
#80000110
Loader
buffer
#800000D4
Bootloader
and loader
workspace
#80000080
Bootloader
code
#80000048 MemStart
Reserved
locations
#80000000 MOSTNEG INT

Figure 5: Loader memory usage
4 The loading message structure

4.1 Command structure

Load commands and data transmitted to and through a transputer consist
of a word length independent mixture of single bytes and packets of bytes.
The single bytes are commands to be interpreted by the loader to control
the routing and loading of information, the packets of bytes contain trans-
puter code to be loaded into the memory of a transputer. The bootstrap
packets conform to the protocol and thus a processor, which is passing a
bootstrap to another processor, cannot detect that bootstrap packets are
being transferred.

The commands are applied using an operand word as a parameter to the
command. The value in the operand word is created by OR’ing in the
bottom six bits of information from the command byte into the bottom six
bits of the operand word. One of the four command values allows this to
be repeated by shifting the value in the operand word six places ready to
receive another six bits. The command bytes are thus encoded from two
components:

15

Bits 7..6

These two bits define the command which should be applied to the current
value contained in the operand word after the data part of the command byte
has been OR’d into it. The operand word is always cleared after obeying a
command other than PREFIX.

0 : MESSAGE The operand word contains the size of the message which
follows this command byte. The next ’operand’ bytes is the message.
The protocol is implemented so that all messages will not exceed 60
bytes in length and thus, not require PREFIXES.

1 : NUMBER The operand word contains a single number.

2 : FUNCTION The operand word contains a value that is to be obeyed
as an independent command which is not applied to the operand word.

3 : PREFIX The current operand word is shifted left by six places. This
allows arbitrary length values to be built.

Bits 5..0

These six bits provide the data (operand) part of the received character.
This data is always OR’d into the bottom of the operand word which is
used according to the command ode in the top two bits of the received byte.

command data

[3,] S
I S ——
[X) S
Nf-=-m===d

7 6
Figure 6: Command byte format

The packets of bytes always follow a MESSAGE command. By making the
value of MESSAGE 0 (zero), a MESSAGE command will be interpreted
by an unbooted transputer as a length byte and, consequently, bootstrap
sequences conform to the command structure. All message packet transfers
are sent and received on transputer links as single communications.

4.2 Loader action
The loader is an occam program which responds to input commands by

altering the value of one or more local variables. These local variables main-
tain a current load address, a current output link, the set of active output

16

links and whether or not any code received is to be loaded at the current load
address. The variable which controls whether code is loaded into memory
is initialised to FALSE (FALSE means don’t load, TRUE means load).

The loader actions in response to input commands are described in more
detail in the following sections.

MESSAGE

After receiving a message command the message packet is input from the
boot link. If the transputer is currently loading, the message is input to the
current load address and the current load address is incremented by the size
of the message. If the transputer is not currently loading, the message is
input into a buffer.

The message command and message packet are copied in turn to all the
links which are in the set of active output links.

NUMBER

The current output link is set to the value of the data part of the number
command. The value is also remembered as one of the set of active output
links to which code should be copied. The number will not contain prefixes.
NUMBERS can also occur following an address function, where they are
interpreted as a new loading address as described below.

FUNCTION

There are six functions as follows:

0 : LOAD sets the state of the variable which controls whether code is
loaded into memory to TRUE. Any future code packets received will
be input at the current load address as described for MESSAGE above.
The set of active links is reset to none.

1 : PASS sets the state of the variable which controls whether code is
loaded into memory to FALSE. Any future code packets received will
be input into a buffer as described for MESSAGE above. The set of
active links is reset to none.

2 : OPEN indicates that all command bytes received up to but not in-
cluding a matching CLOSE function should be copied without inter-
pretation to the current link. All commands other than MESSAGE

17

can occur between an OPEN and the matching CLOSE command,
including paired OPEN and CLOSE commands.

: CLOSE brackets a nested command sequence, matching a previous

OPEN function.

: ADDRESS indicates that the NUMBER which follows should be used

as the current load address for future code packets. The address used
for loading is an offset in bytes from MOSTNEG INT, rather than
the transputer byte address, because access to the memory of the
transputer is to an occam array parameter of the loader placed at
MOSTNEG INT. ADDRESS is always followed by a NUMBER, the
NUMBER may have prefixes. The value of the last address received
by the loader is returned to the bootloader and is used as the entry
point/initial workspace address of the loaded code.

: TERMINATE indicates that the distributed phase of the load is fin-

ished and the loader returns to the bootloader. TERMINATE will
always be preceded by the final load address.

The examples which follow show how simple and more complex loading
information is encoded and directed, to the recipient transputers for the
configuration described in section 2 'The TDS Extractor’. The symbols
used in the examples have the following meaning.

{bootstrap} -- a message containing bootstrap code

{code} -- a message containing some code

{3 -- a message of length O used as a terminator
0 -- a number used as to set up the current link
#300 -- a number used as the current load address
L -- the function Load

P -- the function Pass

(-- the function Open

) -- the function Close

A -- the function Address

T -- the function Terminate

-- sequence of preceding item

Single transputer

The sequence to load only processor 0 is given in the following lines.

{bootstrap} ... {}

L
L
L

A #300 {code} {code} ...
A #500 {code} {code} ...
A #230 T {code} {}

18

This load sequence begins with the bootstrap and loaders, these are followed
by the first set of code packets which are loaded starting at offset #300 from
the most negative address, the next set of code packets are loaded starting
at offset #500 from the most negative address and the final set of code
packets is loaded starting at offset #230 from the most negative address.
The first group of messages and the last group of messages are loaded by
the bootloader which terminates on receipt of a message length of 0. The
other two groups of messages are loaded by the loader which examines each
command to determine the next action and thus does not require a message
sequence terminator.

Alter the receipt of the terminate operation, the loader is exited and control
is returned to the bootloader which has the ability to load sequences of code
packets at consecutive addresses. The final parts of the loaded program can
overwrite the loader program if necessary. The entry point of the loaded
code is always the last address received by the loader. This is also the initial
value of the work space pointer.

Multiple load

Load instructions for transputers not directly connected to the host are
bracketed between an Open and a Close function. Each transputer removes
the first and last brackets and passes the contents byte by byte to the current
output link. If the load items for processor 0 are not included, the sequence
to load processor 2 is given in the following lines.

P 1 {bootstrap} ... {}
P 1 (L A #300) {code} {code} ...
P1 (L A #230 T) {code} {}

The first line loads processor 2’s bootstrap and bootloader. The Pass com-
mand resets the set of active output links and indicates that any future code
received should be copied to the set of active output links via the buffer. The
next command, the number 1, adds link 1 to the set of active output links
and sets link 1 as the current output link. This is followed by the command
Open (the open bracket) which causes all items up to but not including the
matching Close to be copied to the current output link.

Copying the same piece of code to more than one processor is achieved by
having a load path for each recipient of the code. This is demonstrated with
the following sequence to load processor 4 and processor 3 with the same
piece of code, at address #400 on processor 4 and at #500 on processor 3
(note that the example configuration does not allocate the same code to
processors 1 and 3).

19

P1 (P2 (L A #400)) 2 (L A #500)) {Code} ...

Taking a copy of a code packet and passing it to another processor is achieved
by using the load rather than the pass function as is shown by the following
sequence to load processor 2 and processor 4 with the same piece of code,
at address #900 on both processors.

P 1 (L A #900 2 (L A #900)) {code} ...

4.3 RS232

A transputer connected to a host computer by means other than a trans-
puter link must be set to boot from ROM. The ROM code must then re-
ceive bootstrap and loading information from the communication medium
and perform the load accordingly. Inmos transputer evaluation boards are
designed so that a board which is booted from ROM will receive its load
commands from an RS232 serial port. Normally only the root processor (i.e.
the processor connected to the host) is set to boot from ROM.

The Inmos evaluation boards communicate with the host using a standard
protocol which is described below.

Startup sequence

The first three bytes received from the host are used to determine the baud
rate of the transmission, the communication mode and the operating func-
tion required. Each correct wakeup character read is acknowledged by trans-
mitting an acknowledge (ACK) code to the host computer, an incorrect
character is acknowledged with a not acknowledge (NAK) code. The three
wakeup sequence bytes are described in more detail below.

>?? An initial wake up code (which can be used by the receiving processor
to determine the transmission speed of the serial line).

"H’ or B’ If 'B’ is received then all subsequent data is transmitted as full
eight bit binary data. If the 'H’ character is received then all subse-
quent data from the host is to be read in encoded form.

’L’ or A’ This command is used to determine the operating function that
the ROM is to perform. 'L’ indicates that a load sequence will fol-
low, A’ indicates that an analyse sequence will follow. The analyse
sequence is used when the host is interrogating the network to re-
trieve details of the previous program loaded. Analysing is described

20

in more detail in an accompanying technical note. This function will
be received as two ASCII chars if the previous command was an "H’.

Data encoding

In order to avoid transmitting 8-bit binary values to a host computer all
values transmitted to the host are printable ASCII characters. The following
standard definitions are used:

VAL ACK IS ’0°
VAL NAK I3 °’3’
VAL HEX IS "569ABDGHKMNPSVYZ" :

The 16 values of the HEX table above are used instead of the hexadecimal
digits 0,1...E,F. The values are used to encode all binary numbers that have
to be transmitted to the host as well as to encode all input from the host if
the startup sequence include the "H’ code to indicate encoded transmission.
Encoded binary data is thus transmitted as two ASCII characters that can
be used to create a single byte value. For example:

#00 is received as ’5’ followed by ’5’
#42 is received as 9’ followed by 'B’
#FC is received as 'S’ followed by ’Z’

The ASCII characters have been chosen so that they are all at least two bits
different from each other, and each one has an even number of bits set (even
parity with a zero parity bit).

Every message packet is followed by another byte value; i.e. messages from
the host have one more byte than the number given in the operand word.
This extra byte is a checksum value: the checksum is correct if the exclu-
sive or of all the bytes in the message and the checksum itself yields a zero
value. If the checksum is correct then the board responds with an ACK to
the host; otherwise the board responds with NAK to the host. Checksums
and handshaking are not used when communication is via transputer links.

5 Bootstrap code

This section lists the local workspace used by the bootstrap and the boot-
loader, which should be read with reference to this workspace layout. The
workspace used by the bootstrap is organised so that the 6 words used by
the bootstrap and bootloader for directing the loading are at the lowest off-

21

sets. These six words are overwritten by the loader and then repositioned
to the lowest available addresses for the second call of the bootloader

VAL base IS 1 : -- loop index

VAL count IS 2 : -- loop count

VAL load.start IS 0 : -- start of loader

VAL load.length IS 1 : —-- loader block length

VAL next.address IS 2 : -- start of next block to load

VAL bootlink IS 3: —-- link booted from

VAL next.wptr IS 4 : -- work space of loaded code

VAL return.address IS 5 : -- return address from loader

VAL temp.workspace IS return.address -- workspace used by both
-- preamble and loader

VAL NotProcess IS 6 : —-— copy of MinInt

VAL links IS NotProcess : -- 1st param to loader (MinInt)

VAL bootlink.param IS 7 : -- 2nd parameter to loader

VAL memory IS 8 : -- 3rd parameter to loader

VAL buffer.start IS 9 : —-- 4th parameter to loader

VAL entry.point IS 10 : —-— 5th parameter to loader

VAL entry.address IS 11 : —-— referenced from entry point

VAL MemStart IS 12 : -- start of boot part 2

The initial workspace requirement is found by reading the workspace re-
quirement from the loader occam and subtracting the size of the workspace
used by both the loader and the bootstrap (temp.workspace). This value
is incremented by 4 to accommodate the workspace adjustment by the call
instruction used to preserve the processor registers.

initial.adjustment := (loader.workspace + 4) - temp.workspace
-- occam work space, + 4 for call to save registers, - adjustment
-- made when entering occam. Must be at least 4
IF
initial.adjustment < 4
initial.adjustment := 4
TRUE
SKIP

The bootstrap is listed in a transputer assembler format. It was, however,
actually developed by using an occam program to encode defined values into
a table ready for insertion into the TDS extractor.

-- set up work space, save registers,
—-- save MemStart and NotProcess
start:
ajw initial.adjustment -- see above

22

call O -- save registers

ldc start - addr0 -- distance to start byte

1dpi -- address of start
addrO:

stl MemStart -- save for later use

mint

stl NotProcess —-- save for later use

-— initialise process queues and clear error
1dl NotProcess
stlf -- reset low priority queue

1dl NotProcess
sthf -- reset high priority queue

-- use clrhalterr here to create bootstrap for REDUCED application
sethalterr -- set halt on error

testerr —-- read and clear error bit

—-- initialise T8 error and rounding
fpu.clearerr -- floating clear error instruction

—-- initialise link and event words

ldc 0
stl base —-— index to words to initialise
ldc 11 -- no. words to initialise
stl count -- count of words left
startloop:
141 NotProcess
1d1 base -— index
1d1 NotProcess
wsub —-- point to next address
stnl O -- put NotProcess into addressed word
1dlp Dbase -- address of loop control info
ldc endloop - startloop —-- return jump
lend -- go back if more
endloop :

-- set up some loader parameters. See the parameter
—-- structure of the loader

ldlp entry.address -- address of entry word

stl entry .point -- store in param 5

1ldlp MemStart -- address start of buffer

1d1 NotProcess -- bottom of memory

diff —-— convert address to memory offset
stl buffer.start -- buffer offset in param 4

23

141 NotProcess -- bottom of memory

stl memory -- store in param 3
1d1 bootlink —-- copy of bootlink
stl bootlink.param -- store in param 2

-- load bootloader over bootstrap
-- code must be 2 bytes shorter than bootstrap

1dlp load.lengh -- packet size word

141 bootlink -- address of link

ldc 1 -- bytes to load

in -- input length byte

141 MemStart -- area to load bootloader
1d1 bootlink —-— address of link

141 load.length -- message length

in —-- input bootloader

-- enter code just loaded
141 MemStart -- start of loaded code
gcall -- enter bootloader

6 Bootloader code

The bootloader is produced by the same mechanism which produces the
bootstrap. Both programs become single message packets preceded by a
length byte (which is also a loader MESSAGE command) and are transmit-
ted from the TDS extractor through the network as MESSAGE communi-
cations.

-- initialise bootloader workspace

ldc packet.length -- buffer size

ldlp MemStart -- buffer start address

bsub -- end of buffer address

stl next.address -- start of area to load loader

1ldlp temp.workspace -- pointer to loader’s work space zero

stl next.wptr -- work space pointer of loaded code
restart:

141 next.address -- adddress to load loader

stl load.start -— current load point

—- load code until terminator
startload:

24

1ldlp load.length -- packet length

1dl bootlink -- address of link

ldc 1 -- bytes to load

in -- input length byte

141 load.length -- message length

cj endload -- quit if O bytes

141 next.address -- start of area to load loader

141 bootlink -- address of link

141 load.length -- message length

in —-- input code block

141 load.length -- message length

141 next.address -- area to load

bsub -- new area to load

stl next.address -— save area to load

J startload -- go back for next block
endload:

—-- initialise return address and enter loaded code

ldc return - addrl -- offset to return address
1dpi -- return address
addril:
stl return.address -- save in WO
1d1 next.wptr -- wspace of loaded code
gajw -- set up his work space
ldnl load.start —-- address of first load packet
gcall -- enter loaded code
return:
ajw -(temp.workspace + 4) -- reset work space after return

-- start clock
1ldc 0
sttimer

-- initialise reduced workspace for loading main body code
141 bootlink.param -- new copy of bootlink

141 entry.address -- loaded code entry offset

141 NotProcess -—- convert to entry address

bsub -- address of work space/entry point
ldc 0 -- reset load length byte

ajw 4 - (initial.adjustment - 4)
-- reset workspace to start + 4 for call
-- this means that while the last few blocks are being loaded
-- the below work space requirement overlaps these last few
—-- instructions which are never used again.
call 0 -- store in new workspace

25

141 next.address -- loaded code work space pointer
stl next.wptr -- work space pointer for entry

J restart -- go back for remaining blocks

7 Loader occam

This section lists the occam source of the loader. It is included as part
of the extractor table by the program which ’assembles’ the bootstrap and
bootloader, as a sequence of MESSAGE command message packet pairs.

The overall layout of the procedure is:

PROC loader ([4]CHAN OF ANY links,
CHAN OF ANY bootlink,

[4]1BYTE memory,

VAL INT buffer.address,

INT entry.point)
constants

BYTE command :

INT links.to.load, output.link :
INT last.address :

BOOL loading :

SEQ
bootlink ? command
WHILE command <> function.terminate
INT tag, operand :
SEQ
tag := (INT command) >> data.field.bits
operand := (INT command) /\ data.field
IF
tag = message
tag = function
tag = number
bootlink 7 command

The command and function constant definitions are

VAL data.field IS #3F :
VAL data.field.bits IS 6 :
VAL tag.field IS #CO :
VAL tag.field.bits IS 2

26

VAL message IS 0 :

VAL number IS 1:

VAL function IS 2 :

VAL tag.function IS function << data.field.bits :
VAL prefix IS 3 :

VAL tag.prefix IS prefix << data.field.bits :
VAL load IS 0 :

VAL pass IS 1

VAL open IS 2 :

VAL function.open IS BYTE (tag.function \/ open)
VAL close IS 3 :

VAL function.close IS BYTE (tag.function \/ close)
VAL address IS 4 :

VAL terminate IS 5 :

VAL function.terminate IS BYTE (tag.function \/ execute)

The component processes of the outer level IF are expanded in the following
sections.

If the command was message

tag = message
INT load.address :

SEQ
IF
loading
SEQ
load.address := last.address
last.address := load.address PLUS operand
TRUE
load.address := buffer.address
IF

operand <> 0

bootlink ? [memory FROM load.address FOR operand]
TRUE

SKIP

SEQ i = O FOR 4

IF
(links.to.load /\ (1 << 1)) <> 0
SEQ
links[i] ! command
IF

operand <> 0

links[i] ! [memory FROM load.address FOR operand]
TRUE

SKIP

27

TRUE
SKIP

If the command was number

TRUE -- tag = number (last component of IF)
SEQ
output.link := operand
links.to.load := links.to.load \/ (1 << output.link)

If the command was function

tag = function
IF
operand = load
SEQ
loading := TRUE
links.to.load := 0
operand = pass
SEQ
loading := FALSE
links.to.load := 0
operand = open

INT depth :
SEQ
depth :=1
WHILE depth <> 0
SEQ
bootlink ? command
IF

command = function.open
depth := depth + 1

command = function.close
depth := depth - 1

TRUE
SKIP
IF
depth <> 0
links[output.link] ! command
TRUE
SKIP
operand = address
SEQ
BOOL more :
SEQ

last.address := 0
more := TRUE

28

WHILE more
SEQ
last.address := last.address << data.field.bits
bootlink ? command
last.address := last.address PLUS
((INT command) /\ data.field)

more := (INT command) >= tag.prefix
entry.point := last.address

References
[1] ”Transputer Development System”
Prentice Hall, London 1988

[2] ”Transputer Reference Manual”
Prentice Hall, London 1988

[3] ”The Transputer Instruction Set - A Compiler Writers’ Guide”
INMOS Ltd, Bristol

[4] ”Exploring multiple transputer arrays”, Technical note 24
INMOS Ltd, Bristol

[5] ”Analysing transputer networks”, Technical note 33
INMOS Ltd, Bristol

29

	1 Introduction
	1.1 Development
	1.2 Characteristics

	2 The TDS Extractor
	3 Bootstrap and Loaders
	3.1 The bootstrap
	3.2 The bootloader
	3.3 The loader

	4 The loading message structure
	4.1 Command structure
	 Bits 7..6
	 Bits 5..0

	4.2 Loader action
	 MESSAGE
	 NUMBER
	 FUNCTION
	 Single transputer
	 Multiple load

	4.3 RS232
	 Startup sequence
	 Data encoding

	5 Bootstrap code
	6 Bootloader code
	7 Loader occam
	References

