
Configuring
Occam Programs

INMOS Technical Note 31

Laurie Pegrum

January 1988
72-TCH-031

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4

2 Plan of attack 5

3 The application 6

4 Stage 1: running the application as an EXE 7
4.1 The ”header.tsr” library fold 8
4.2 The ”problem.tsr” library fold 10
4.3 The ”monitor.tsr” library fold 10

4.3.1 The keyboard handler 12
4.3.2 The screen handler . 13

4.4 The EXE containing the application 14

5 Stage 2: Running the application on a target transputer 15
5.1 Creating a PROGRAM fold 16
5.2 Monitoring the target with an EXE 18
5.3 Running on two transputers 19

6 Stage 3: Running the application on a four transputer net-
work 21
6.1 A PROGRAM for four transputers 21
6.2 The transputer connected to the host 22
6.3 The transputer pipeline process 23
6.4 Configuration for four transputers 23
6.5 Running on five transputers in total 25

7 Stage 4: An arbitrary number of IMSB003s as a pipeline 25
7.1 Configuring the first IMSB003 in the pipe 27
7.2 IMSB003s in the middle of a pipeline 28
7.3 The IMSB003 at the end of the pipeline 29

8 Conclusion 30

References 31

3

Copyright notice

This document refers to the software release available from Inmos as of June 1987.
The examples take advantage of features, specifically libraries and variant protocols,
which may not be supported in earlier implementations of the TDS.
The occam text in this technical note was written by Laurie Pegrum of Inmos Ltd
1987. It is offered free of charge with no technical support.

Copyright Inmos Ltd 1987.

The recipient is authorised by Inmos to copy the occam text and modify it. Copy-
right in any modifications shall belong to the recipient.
Except for liability arising from due course of law, Inmos accepts no liabilities
whatsoever with respect to this document or its use.

1 Introduction

Since the launch of the transputer [1] in 1985 there has been and continues to
be a growth in the use of multi-processor systems. The benefits of removing
the hardware bottlenecks of a single processing element are becoming more
obvious to those now reaching the speed limitations of their current systems.

The INMOS transputer has made multiprocessor design trivially simple.
Minimal additional circuitry and radical space saving using the INMOS
serial links have made it possible to put many computing elements onto
a single board. A goad example of this is the INMOS Evaluation Board
IMSB003, described in technical note 10 [2], which is only sparsely populated
with four transputers.

The transputer is designed to be extremely efficient at running the high level
language occam [3]. occam supports constructs for precise handling of com-
munications and synchronisation, essential in multi-processor environments.

To develop software for transputer based applications INMOS supplies the
Transputer Development System. The system discussed here is the IMSD701
system for the IBM XT/AT as described in the promotional literature IN-
MOS Spectrum [4]. This system offers an occam compiler for creating oc-
cam code for individual transputers. In addition there is a configurer for the
placement and loading of code into a multi-transputer network.

Thus today there are two issues relating to the programming of transputer
networks. First the programmer must express his problem as a number
of parallel processes. To achieve his performance requirements he can then
configure his application to run on more than one transputer. It is the issues
relating to this configuration that are looked at here.

In an ideal world it would be exactly the same code running on one trans-

4

puter that one would run on a network. In reality today however, the user
must add information relating to the topology of the link connections and
on which transputer a piece of code is to be run. If the user has given
no thought to his system design in advance then he may need to add ad-
ditional occam processes for routing his application on a network. This
can be avoided by a modicum of foresight. An application that runs on x
transputers should include more than x parallel processes. In the design of
these the programmer should be aware of the number of links available on
the transputers in the network. One transputer link implements two occam
channels, one in each direction.

After configuration the programmer may wish to make changes to his code to
enhance performance. This issue is treated separately in the technical note
on performance maximisation [5]. As the programmer develops code for his
network it will change from that used for programming a single transputer.
Changes will relate to performance, issues of priorities and link usage which
are added to the original application code. Despite these changes being
made when moving from one transputer to many, the mapping of multi-
transputer code onto a single processor is often trivial. The exception to
this is when the code takes advantage of features local to specific processors.
In particular one transputer may not support enough memory to run all the
network’s code. Programs for specific transputer networks will evolve as
the programmer takes advantage of features of his network; for example,
building a transputer based machine and wanting to append another device
via a link adaptor. A change might then be required to include the new
hardware data stream into the software.

The configurer is a tool in the system designer’s armoury for having ultimate
control of all his software and how it relates to his hardware. It is not used
in isolation but as part of the design phase for a transputer system. Thus
the following example must include occam program development to show
practical usage of the configurer.

2 Plan of attack

This technical note goes through 4 stages of program development.

1. We start by running the application on the host board. This is useful
early on in the design cycle to exercise and test the algorithm to be
implemented. For many applications the majority of the code can be
evaluated in this way prior to moving onto transputer networks.

2. Using two transputers together. One for the application program itself

5

and the other as a monitor to observe the program behaviour and offer
monitoring and analysis tools.

3. Dividing the components of the algorithm over four transputers, such
as would be possible with the IMSB003 transputer evaluation board.

4. Dividing the algorithm over a long pipeline of transputers. Here we
are concerned with arranging the software so it can be simply amended
should the number of transputers be changed.

3 The application

The application used is sorting a stream of data into numerical order. The
basic algorithm is discussed in the occam tutorial [3]. This algorithm yields a
number of similar parallel processes which can be mapped straightforwardly
onto a transputer network. The code for one of these processes is listed
below.

PROC element (CHAN OF letters input, output)
INT highest, next:
BOOL going, inline:
SEQ
going := TRUE
WHILE going
input ? CASE
terminate
going = FALSE

letter; highest
SEQ
inline := TRUE
WHILE inline
input ? CASE
letter; next
IF
next > highest
SEQ
output ! letter; highest
highest := next

TRUE
output ! letter; next

end.of.letters
SEQ
inline := FALSE
output ! letter; highest

output ! end.of.letters
output ! terminate

6

:

This coded algorithm is wrapped in a fold labelled:

... element

The occam tutorial example has been adapted to have a WHILE loop instead
of a replicated sequence in order to sort variable length strings of characters.
An outer WHILE separates global program termination from terminating
the end of character sequences. Other differences involve using a variant
protocol for communicating letters between sorting elements

PROTOCOL letters
CASE
letter; INT
end.of.letters
terminate

:

4 Stage 1: running the application as an EXE

An EXE foldset identifies a user defined occam program. The occam pro-
gram takes the form of a procedure declaration with a number of fixed formal
parameters. These parameters are occam I/O channels which give an EXE
the use of the host keyboard, screen and filing system.

Within the occam program there may be other procedure declarations.
Should these contain all the information for their compilation then they
may be separately compiled in SC folds. These folds are needed for both
the creation of library routines and configuration.

The benefit of using the library mechanism is that procedures can be com-
piled in one location and then referred to by many programs. The mecha-
nism also incorporates the inclusion of constants and protocols within library
folds. The following examples use three user defined libraries.

1. ”header.tsr” contains all the constants and protocol definitions for
procedure declarations to come.

2. ”problem.tsr” contains the three separately compiled procedures that
make up the body of the application itself.

3. ”monitor.tsr” encloses a procedure used to interface between the ap-
plication program and the TDS.

7

Thus the outer level view in the TDS would look like this:

{{{ stage 1 running the application and interface as an EXE

...F header.tsr

...F problem.tsr

...F monitor.tsr

... EXE harness.tsr

}}}

The three opening and dosing curly braces denote a fold that is currently
open so that we can look inside. The three dots mark a fold that is closed
so we cannot see its contents. The F following a fold marker shows the
fold to be a file under the host operating system. All the text strings in
the above listing are comments as they are on the same lines as the fold
markers. These have no effect on the contents of the folds whatsoever. All
the occam source text is contained within the folds and thus hidden from
our current viewpoint.

The three folds marked with an F contain libraries. The last fold is an EXE
fold. This special fold attribute is put there at the users request by using
a special compiler utility called make.foldset. This is not the same as just
writing EXE in a comment as the fold attribute will not be set. The fold
attribute is required by the compiler to distinguish compilable folds from
any others.

We now look briefly into these folds to illustrate the structure therein.

4.1 The ”header.tsr” library fold

Library folds are created by using the make. foldset utility on an empty
fold. The library contents can then be placed inside the LIB fold beneath
the fold marked Library ID which contains the library version number. Valid
library contents include compiled SC fold bundles and text folds containing
PROTOCOL or constant declarations. All LIB folds require validating be-
fore they can be referenced. This is to guarantee that the version number
changes when the library is changed.

To reference a library the validated LIB fold must be put into a file. It is
not possible to file compilation foldsets such as SC, EXE or LIB. To file a
library a text fold must be made around the LIB fold and the text fold must

8

then be filed. It is the name of this file in the host operating system that is
used to reference the library.

The header.tsr file fold contains constants and protocols used in the rest of
this technical note. The most important parts of this library are the protocol
definitions for string and letter.

{{{F header.tsr
{{{ LIB
... Library ID
{{{ protocols
PROTOCOL string IS INT::[]BYTE:

PROTOCOL letters
CASE
letter; INT
end.of.letters
terminate

:
}}}
... program constants
... link numbers
}}}
}}}

As will be seen shortly, the string protocol is used for communicating be-
tween the monitor interface and the application program. These programs
are running in parallel with each other and will henceforth be referred to as
parallel processes.

The application is made up of many parallel element processes, all of which
communicate using the letters protocol. The letters protocol is a variant
protocol. This is the method by which differing types of data may be com-
municated using the same occam channel. With a variant protocol every
communication is preceded by a tag to identify the type of the data to fol-
low. These tag names are defined by the programmer. When the tag name
itself conveys the desired message then no further communication is required.
The application reads a stream of letters followed by an end.of.letters tag.
This is followed by either another stream of letters or a terminate tag.

The program constants are selected values from the grand assortment avail-
able for interfacing with the TDS. The link numbers are the occam addresses
of the INMOS serial links as defined in the relevant transputer datasheet.

9

4.2 The ”problem.tsr” library fold

The application chosen for this technical note is made up from a number
of element processes as described earlier. In addition to this are two other
procedures called inputter and outputter. These have been collectively put
into a SC (separate compilation) fold and then placed inside a library fold.

{{{F problem.tsr
{{{ LIB
... Library ID
{{{ SC application PROCs, inputter, element and outputter
{{{F application PROCs, inputter, element and outputter
#USE "header.tsr"

... PROC inputter (CHAN OF string input, CHAN OF letters output)

... PROC element (CHAN OF letters input, output)

... PROC outputter(CHAN OF letters input, CHAN OF string output)
}}}
}}}
}}}
}}}

The operation of inputter is to input a string and then to supply this as a
sequence of letters to a pipeline of element processes. The outputter proce-
dure reads the resultant stream of letters and packs them back into a string
for communication onwards. The communication protocol of string is used
as standard amongst my application programs. The string communication
is far more efficient for link communication as the link can communicate
all the data before attempting to gain more processing time. The concept
of communicating data in large arrays rather than byte-by-byte can have a
dramatic effect on performance [5].

The design of these three procedures is such that they should all be instanced
as parallel processes, communicating with one another using occam channels.

4.3 The ”monitor.tsr” library fold

The final library involved in this example is one that contains the interface
with the TDS. This is a procedure called monitor that supplies the val-
ues of keystrokes on the host keyboard to the application whilst in parallel
conveying data and result outputs to the host screen.

{{{F monitor.tsr
{{{ LIB

10

... Library ID
{{{ SC monitor.tsr
{{{F monsource.tsr
#USE "header.tsr"

PROC monitor (CHAN OF ANY keyboard, screen,
CHAN OF string app.in, app.out,
VAL BOOL using.subsystem)

... PROC keyboard.handler

... PROC screen.handler

CHAN OF INT echo:
PAR
keyboard.handler (keyboard, echo, app.in)
screen.handler (app.out, echo, screen)

:
}}}
}}}
}}}
}}}

It is worthwhile expending effort in creating a version of monitor that is
general purpose in scope. This procedure, running as a parallel process,
converts the keyboard and screen I10 from the TDS into simple strings of
bytes for the application. By using this monitor one can edit text strings in
advance of sending them to the application. This means that the applica-
tion program itself need not concern itself with erroneous strings, multiple
carriage returns or case sensitivity. All these functions can be filtered out
by the keyboard handler. The keystrokes made at the keyboard are sent
down channel echo. The screen.handler can distinguish between keys typed
by the user and strings supplied by the application. Thus the text can be
put into different windows for clarity.

The use of the screen handler process enables it to be the only parallel
process that needs to communicate using the TDS protocol. This not only
makes the writing of other processes simpler but also makes them more
portable. Should it be necessary to mount the application in a different
system environment then it would only be the monitor that would need to
be changed. This concept of modularity can be extended to allow monitor to
be used with any configuration of transputers and quite probably used with
different applications. The concept of modular blocks of reusable code is
simple to realise in occam where parallel processes run independently from
one another.

11

4.3.1 The keyboard handler

PROC keyboard.handler (CHAN OF ANY in,
CHAN OF INT out,
CHAN OF string data)

... variables
SEQ
going := TRUE
length := 0
WHILE going
SEQ
in ? char
IF
char = stopch
... terminate monitor and application if appropriate

char = return
... pass string to application if non zero in length

char = ft.del.chl
... user has typed the backspace key

TRUE
... buffer char, all letters map to lower case

:

This is a good opportunity to note how folds should be used to show the
structure of the occam text. As can be seen the keyboard handler procedure
is an IF construct repeated many times within a WHILE.

Termination of parallel programs is the duty of the programmer. The ter-
mination of the monitor process is achieved by the user entering the stopch
at the keyboard. The keyboard handler must then pass this character to
the screen handler so that it will also terminate. This is done because an
occam program can only terminate when all of its constituent parallel pro-
cesses have terminated and in the monitor process the keyboard and screen
handlers are running in parallel. One complication here is whether or not
this termination request should be passed on to the application process as
well. Referring back to the monitor process there is a parameter included
called using.subsystem. This is set to either TRUE or FALSE depending on
whether a subsystem of transputers has been connected to the host trans-
puter. The decision taken was that if this was FALSE then no subsystem is
connected and thus the application is also running on the host. In this case
the termination request is passed on to the application so that it will also
terminate when the monitor does. When running as an EXE this is essential
to be able to return cleanly to the editor after execution. If using.subsystem
is TRUE then it becomes inadvisable to pass on the termination request.
There are two reasons for this. There is a benefit in being able to termi-
nate the monitor but leave the application running. The programmer can

12

set a job running and then return to the host to continue with other work
rather than waste his time waiting. He can then return at his convenience
to discover the progress made. There is also a danger in sending a final ter-
mination request should the target system have erred. This communication
may never complete resulting in deadlock and thus rebooting the host to
reach the editor again. This delays the analysis of the network which could
then be undertaken by the host transputer. The detection of a subsystem
error is left to the screen handler.

4.3.2 The screen handler

PROC screen.handler (CHAN OF string data,
CHAN OF INT in,
CHAN OF ANY out)

... constants, procedures and variables
SEQ
... initialise
{{{ body
WHILE going.in OR ((NOT using.subsystem) AND going.data)
SEQ
clock ? waketime
waketime := waketime PLUS one.hundreth.of.a.second
ALT
going.in & in ? char
... print keyboard character on screen

going.data & data ? length::string
... print data from application on screen

monitoring & clock ? AFTER waketime
... if monitoring is TRUE, poll subsystem error pin

draw.cursor (window[1])
}}}

:

The screen handler is repeatedly searching for one of three alternatives.
Either keyboard characters are echoed, a string of data comes from the ap-
plication or a timeout happens should neither of the other two have occurred
in one hundredth of a second. Should the timeout occur then the program
tests the subsystem error bit which is connected to all the target transputer
error pins ored together. If this detects an error then a message to the user
is issued whereafter the user can then terminate the monitor and reenter the
TDS for subsequent analysis.

The ALT construct runs separate code for when data is input from the
keyboard or from the application. This makes it simple to implement a
windowing system to distinguish the two output streams in the eyes of the
user.

13

Every guard in the ALT statement is headed by a boolean flag. This is
used to allow channels to be disabled under certain conditions. For example
when the termination character is echoed from the keyboard handler then
going.in is set to FALSE as we should expect no further keyboard inputs.
Likewise when subsystem error is detected monitoring is set FALSE as there
is no point in polling now that the error is known.

If the TDS is executing on an IMSB004 transputer evaluation board then
the subsystem logic is decoded through a PAL that can be accessed by
software [6]. The subsystem reset and error are at machine address zero
in the middle of the transputer’s address space. Occam addresses start
from zero and are word aligned so we can access the subsystem by placing a
variable at #20000000. Reading this variable and finding bit zero set detects
the assertion of the subsystem error pin. Subsystem analyse can be asserted
by writing 1 to a variable placed at #20000001.

It is only worth reading the subsystem error when there is a network of
transputers connected to the subsystem port. Thus the value of monitoring
should be initialised to using.subsystem. Thus when we run the entire ap-
plication as an EXE on the IMSB004 the subsystem error pin is not polled.

4.4 The EXE containing the application

We now bring our three libraries together and instance them inside an EXE
fold. For an EXE fold the parameters keyboard and screen are now bound
to channels which communicate to the respective host hardware.

{{{ EXE harness.tsr
{{{F harness.tsr
PROC harness (CHAN OF ANY keyboard, screen)

#USE "header.tsr" -- program constants
#USE "monitor.tsr" -- EXE interface to TDS
#USE "problem.tsr" -- PROCs used in application

CHAN OF string app.in, app.out:
PAR
monitor (keyboard, screen, app.in, app.out, FALSE)
{{{ application
[string.length+1]CHAN OF letters pipe:
PAR
inputter (app.in, pipe[0])
PAR i = 0 FOR string.length
element (pipe[i], pipe[i+1])

outputter (pipe[string.length], app.out)
}}}

14

:
}}}
}}}

The program is to run the monitor in parallel with the application. The
application itself is made up of inputter, outputter and a replicated instance
of the element procedure. Thus in total we have string.length + 3 processes
running in parallel. It is recommended that whenever a PAR construct is
used a diagram should be included to explain the connectivity and direction
of data transfer. In this we model parallel processes with circles and the
data channels between them as arrows.

The code in this form can be tested and debugged on the host transputer
alone. We now begin to distribute some of these parallel processes onto
other transputers.

5 Stage 2: Running the application on a target
transputer

We now look at how the application program can be run on a second trans-
puter. This leaves the first transputer free to run the development system
and also to monitor the behaviour of the other transputer, i.e. the target
system.

To achieve this result the occam code for the application must be split apart
from that code used for monitoring. This has already been planned for by
defining the code modules in separate procedure declarations. It is now a
relatively easy matter of putting the application PROGRAM onto the target
system whilst running the monitor EXE on the host transputer.

Consideration must also be given to how the host and target transputers are
to be connected. All hardware connections made, by connecting INMOS
serial links together, must be matched by a corresponding description of
the connection in the software. Without this connectivity specification the
system would have no knowledge of which links were usable or of where they
were connected.

15

5.1 Creating a PROGRAM fold

The placement of occam code modules onto distinct processors along with
a connectivity specification forms the body of a PROGRAM fold. The
PROGRAM fold defines the behaviour of the target system of transputers;
in our current example a single transputer.

Like other fold types, a PROGRAM fold is created by using the make.foldset
utility in either the compiler or configurer toolsets. It is when PROGRAMS
start to be used that the configurer toolset is needed more frequently. There
are occasions when both the compiler and configurer toolsets may be needed
shortly after one another. For this reason there is a combined toolset that
integrates the functions of compilation and configuration when applied to
PROGRAM folds.

For a single target transputer the PROGRAM fold should contain one sep-
arately compiled procedure, or SC fold, and the configuration information
about the target hardware.

{{{ PROGRAM prog1
{{{F prog1.tsr
... SC app.tsr
... configuration
}}}
}}}

The SC contains the application code used earlier. Note that the application
code had to be in parallel with other processes in order to be able to move
the code to another processor. The fact that distributed parallel processes
are on separate processors with separate memory spaces is one reason why
occam prohibits the use of shared variables.

{{{ PROGRAM prog1
{{{F prog1.tsr
{{{ SC app.tsr
{{(F app.tsr
#USE "header.tsr"
#USE "problem.tsr"

PROC application (CHAN OF string in, out)

[string.length+1]CHAN OF letters pipe:
PAR
inputter (in, pipe[0])
PAR i = 0 FOR string.length
element (pipe[i], pipe[i+1])

16

outputter (pipe[string.length], out)
;
}}}
}}}
... configuration
}}}
}}}

The application code is unchanged although we have now added a procedure
declaration around it. The procedure is needed to provide a name, entry
point and parameters for calling this module of code. Once wrapped in an
SC fold, again by using the make.foldset utility, this occam code can be
compiled to produce corresponding transputer code.

Notice that all the information needed for the application code must be
contained inside the SC fold, including the library references. Apart from
readability, the library calls are at the start of the SC fold for the compiler
to understand the definition of string used in the SC procedure’s parameter
list.

{{{ PROGRAM prog1
{{{F prog1.tsr
... SC app.tsr
{{{ configuration

... link constants

CHAN OF ANY app.in, app.out:

PROCESSOR 0 T4
PLACE app.in AT link0in:
PLACE app.out AT link0out:
application (app.in, app.out)
}}}
}}}
}}}

The configuration is a simple placement of the SC procedure application
onto a transputer which we have given the logical number zero. We must
also state what type of transputer this is, in our case a T4, denoting a 32
bit integer transputer. The other types might have been T2 for a 16 bit
transputer or T8 for a 32 bit floating point transputer. The type of the
transputer is needed for the system to know how to initialise it at boot
time. There will also be a check to make sure that application was compiled
with the compiler parameter target.processor set to T4.

17

The instance of application has two actual channel parameters, app.in and
app.out. These instance the formal channel parameters in and out in the
procedure parameter list. Note that app.in and app.out must be specified in
the configuration detail where we meet a limitation of the current configurer.
The configurer only understands CHAN OF ANY and no other type of
protocol. To compensate for this the configurer will not match the protocol
types between different SCs in a PROGRAM. If it did this PROGRAM
would be invalid due to the mismatch between formal and actual parameter
types. It can be expected that this matching will be introduced and that
the configurer will accept other protocols in a future implementation.

The above deals with the placement of the code module called application
onto a transputer. The configuration must also include the topology of the
link connections in the system and how this relates to the communication
channels used in the software. This is achieved using the PLACE statement
to map an occam channel onto the address of the transputer’s serial link
hardware. These addresses, or link constants, can be found in the trans-
puter datasheet. For the above example the communication on app.in and
app.out has been directed onto transputer link zero, the link’s bidirectional
communication supporting two occam channels.

If we loaded this PROGRAM into the target transputer it would run until
the first communication made on app.in or app.out. It is up to the program-
mer to connect a system to this link to communicate with the application in
order for it to continue, without which it would wait forever. All occam chan-
nels support synchronisation between inputting and outputting processes on
a channel, they must both be ready to communicate for f to proceed. For
this example we must connect the monitor to link zero in order to supply
the data to start application running. The monitor process communicates
with the TDS and therefore runs on the host transputer as an EXE within
the TDS.

5.2 Monitoring the target with an EXE

{{{ EXE interface
{{{F interface
PROC harness (CHAN OF ANY keyboard, screen)
#USE "header.tsr"
#USE "monitor.tsr"

CHAN OF string app.in, app.out:
PLACE app.in AT linkout2:
PLACE app.out AT linkin2:

monitor (keyboard, screen, app.in, app.out, TRUE)

18

:
}}}
}}}
}}}
}}}

The EXE required is an instance of the library procedure monitor with its
channel parameters connected to the TDS keyboard/screen and the others
to the application. To communicate with the target transputer the com-
munications on app.in and app.out must be redirected to a link of the host
transputer in order for the two transputers to communicate. The above ex-
ample redirects communication to the host transputer link two which would
have to be connected to link zero on the target transputer for this example
to succeed.

The monitor procedure has its parameter using.subsystem set to TRUE.
This enables monitor to give the programmer an error message should for
any reason the target transputer set its error flag.

This is the recommended way of developing transputer code where on a
target system error the host EXE can correctly terminate to enable the
target system to be quickly and simply analysed. New target hardware
can be developed with small amounts of memory, not needing to house the
complete TDS. The application now has complete use of the internal RAM
available in the target transputer.

5.3 Running on two transputers

The following steps are now required, in the following order, to run the
application as described on a two transputer network

1. The occam compiler should be invoked on ... EXE interface and ...
SC app.tsr to compile the occam into transputer code.

2. The next step is to configure the PROGRAM by invoking the config-
urer on ... PROGRAM prog1.

3. Physically connect link two on the host transputer to link zero on the
target transputer. It is worth checking that the links are running at the
same link rate as many transputer boards support switches that can
change the link communications to a special speed as opposed to the
standard of 10 MHz. If the link rates are different then communication
will fail in an undetermined way.

19

4. Either physically reset the target transputer or connect reset, analyse
and error from the target transputer to the subsystem connection on
the host transputer board. Inmos transputer evaluation boards sup-
port the ability for one transputer to reset another by software via
the subsystem port. If this example is being run using an IMSB004
as the host and an IMSB003 as the target then the subsystem on the
IMSB004 should be connected to the up port on the IMSB003. The
target transputer must be reset in order to load the PROGRAM code
which will be transmitted down one of the link connections between
the host and the target. For the example above this will be down the
single link connection we have made to the one transputer we are us-
ing on the IMSB003. The BootFromROM pin on the target transputer
must be held low to enable the transputer to boot from a link. This
is always true on the IMSB003 where there are no ROMs from which
to boot.

5. Load the PROGRAM. To do this, invoke the LOAD NETWORK util-
ity on the PROGRAM fold. This will extract the code from the folds
within the SC bundle and transmit it to the network. The user is
prompted with a parameter for which host transputer link to use for
the loading. The default is link two which is why link two was cho-
sen for app.in and app.out on the host. For large PROGRAMS the
extraction may be time consuming so if the target system is to be
loaded more than once then it is better to do the extraction using the
EXTRACT utility first before using LOAD NETWORK. This creates
an additional fold in the PROGRAM fold bundle marked ... CODE
PROGRAM. This contains all the code necessary to bad and run the
PROGRAM and will be used by LOAD NETWORK automatically
when present.

6. Monitor the PROGRAM. In the above example the user should now
get the EXE monitor and run it. This establishes communication
between the two transputers so that the user can now supply data
to the running application. Note that the synchronisation on link
communication holds the PROGRAM until the EXE outputs some
data.

The example given shows the use of two transputers in a system. However
only a single target transputer is involved with doing the work involved in
the application, the host transputer being concerned with I/O and error de-
tection. It is useful to preserve this idea of the TDS host being independent
of the target system. When a transputer system designer comes to sell a
transputer based product he should not include the TDS as part of that
product (unless he enters into special listening agreement with Inmos).

20

We now go on to distribute the application itself over multiple transputers.

6 Stage 3: Running the application on a four trans-
puter network

In this section we take the code, which is currently in a single SC, for the
application and distribute it over four separate transputers. The assumption
made here is that the four transputer target network is an IMSB003 trans-
puter evaluation board [2]. The IMSB003 simplifies this system in that the
control lines for reset, analyse and error are preconnected so that the host
board can automatically reset all the transputers simultaneously when it is
connected to the subsystem. In addition every transputer on the IMSB003
has two links available on the edge connector (links 0 and 1) whilst the other
two are preconnected in a square array (links 2 and 3). The configuration
used here takes advantage of these preconnections whereas if the reader has
a different network he must make these physical connections in addition to
those mentioned in this text.

6.1 A PROGRAM for four transputers

{{{ PROGRAM prog4
{{{F prog4.tsr
... SC PROC interface
... SC PROC worker

... link constants

-- number of transputers must match value used inside SCs
VAL number.of.transputers IS 4:

... configuration
}}}
}}}

This example has two separately compiled procedures. interface connects
to the monitor as well as doing string to letter protocol conversions and
some element processes. worker is a number of element processes running
in a pipeline. The number of element processes on each transputer de-
pends on the number of transputers available hence the constant number,
of.transputers. This constant is needed at configuration level, as will be
seen later, and in every SC fold which must also contain a copy of num-
ber.of.transputers in order to be separately compiled.

21

6.2 The transputer connected to the host

#USE "header.tsr"
#USE "problem.tsr"
{{{ extra constants for configuring for 4 transputers
VAL number.of.transputers IS 4:
VAL number.of.elements IS string.length:
VAL elements.per.transputet IS number.of.elements/number.of.transputers:
VAL remaining.elements IS number.of.elements -

(elements.per.transputer * number.of.transputers):
}}}
PROC interface (CHAN OF string from.host, to.host,

CHAN OF letters to.pipe, from.pipe)
VAL elements IS elements.per.transputer + remaining.elements:
[elements]CHAN OF letters pipe:
PRI PAR
PAR -- prioritise processes using links
inputter (from.host, pipe[0])
element (pipe[elements - 1], to.pipe)
outputter (from.pipe, to.host)

PAR i = 0 FOR elements - 1
element (pipe[i], pipe[i+1])

:

The application used here has a considerable amount of parallelism. It is
the specification of problem in such a manner that enables us to now take
advantage of parallel processing.

The separately compiled procedure interface has three processes at high
priority and a number at low priority. The high priority processes are those
which communicate with the Inmos serial links whereas the others only use
internal channels. This prioritisation of link communication can enhance
the throughput of pipelined systems [5]. All the above processes, regardless
of priority, are running in parallel with each other.

22

The number of element processes in interface depends on number.of.transputers
and how many element processes all the other transputers have. The total
number of element processes in the target system must add up to num-
ber.of.elements in order to be the same application specification used pre-
viously. If the value of string.length is dividable by four then interface will
include one quarter of the required element processes.

6.3 The transputer pipeline process

#USE "header.tsr"
#USE "problem. tsr"

... extra constants for configuring for 4 transputers

PROC worker (CHAN OF letters in, out)

VAL elements IS elements.per.transputer:

[elements]CHAN OF letters pipe:
PRI PAR
PAR -- prioritise getting the links started
element (in, pipe[0])
element (pipe[elements-2], out)

PAR i = 0 FOR elements - 2
element (pipe[i], pipe[i+1])

:

The separately compiled procedure worker comprises one quarter of the
required element processes in a pipeline. We again take the opportunity of
running the two processes that have channels mapped onto links at high
priority with the remainder at low priority for performance reasons.

To keep compatibility with the previous example the link communication
between workers and interface is now of protocol letter. An optimised sys-
tem might use more inputter and outputter processes to convert to protocol
string thus increasing the amount of data transferred with every link syn-
chronisation. Such changes should be done after this example has been
debugged as validating this will validate the algorithm and configuration
specification of the system.

6.4 Configuration for four transputers

The configuration required for the IMSB003 is to map interface onto the
first transputer, first because it is the first mentioned in the program, and

23

to map worker onto all three remaining transputers.

{{{ configuration

CHAN OF ANY app.in, app.out:

[number.of.transputers]CHAN OF ANY link:

PLACED PAR
PROCESSOR 0 T4
PLACE app.in AT link0in:
PLACE app.out AT link0out:
PLACE link[0] AT link2out:
PLACE link[number.of.transputers - 1] AT link3in:

interface (app.in, app.out, link[0], link[number.of.transputers - 1])

PLACED PAR i = 1 FOR (number.of.transputers - 1)
PROCESSOR i T4
PLACE link[i - 1] AT link3in:
PLACE link[i] AT link2out:

worker (link[i - 1], link[i])
}}}

The transputers are all running in parallel hence the configuration language
expects the constructor PLACED PAR to denote PROCESSORS running
in parallel. For the three worker processes a replicator has been used with
index i having the values 1,2 and 3. All the transputers are of type T4.

The interface is connected to the host through app.in and app.out on link
zero whilst the workers are connected to each other and to interface through
the link two to link three connections provided with the IMSB003 board.

24

6.5 Running on five transputers in total

The following steps are now required, in the following order, to run the
application as described above on an IMSB003.

1. Compile ... SC PROC interface and ... SC PROC worker.

2. Configure ... PROGRAM prog4. Note that steps 1 and 2 could be
done together by selecting the COMPILE utility from the combined
toolset and invoking it on the PROGRAM fold. This will compile all
uncompiled SCs in the PROGRAM and on completion continue with
the configuration.

3. Physically connect link two on the host transputer to link zero on
the target transputer. This can be any transputer link zero on the
IMSB003 as the board has rotational symmetry.

4. Either physically reset the target transputer or connect reset, analyse
and error from the IMSB003 target system to the subsystem connec-
tion on the host transputer board.

5. Load the PROGRAM using the LOAD NETWORK utility.

6. Monitor the PROGRAM. To do this we can use exactly the same
monitor we used when the target was one transputer. It was compiled
already so it just needs to be got and run. This establishes communi-
cation between the host and the target system setting the PROGRAM
into action.

There would be no reason to change this configuration if the target was only
ever a single IMSB003. If more than one IMSB003 was used, as is available
in an Inmos ITEM, then it would be better to configure around the number
of IMSB003s used rather than the number of transputers.

7 Stage 4: An arbitrary number of IMSB003s as
a pipeline

This section takes the application code used before and looks at how this
might be configured for running on a number of IMSB003 boards. For
simplicity and compatibility with the earlier examples the algorithm is still
implemented as a pipeline of processes.

#USE "header.tsr"

25

#USE "problem.tsr"
{{{ extra constants for configuring for x transputers
VAL number.of.B003s IS 4: -- must be greater than one
VAL transputers.on.B003 IS 4:
VAL number.of.transputers IS number.of.B003s * transputers.on.B003:
VAL number.of.elements IS string.length:
VAL elements.per.transputer IS number.of.elements/number.of.transputers:
VAL remaining.elements IS number.of.elements -

(elements.per.transputer * number.of.transputers):
}}}
PROC worker (CHAN OF letters in, out)
VAL elements IS elements.per.transputer:
[elements]CHAN OF letters pipe:
PRI PAR
PAR -- prioritise getting the links started
element (in, pipe[0])
element (pipe[elements-2], out)

PAR i = 0 FOR elements - 2
element (pipe[i], pipe[i+1])

:

This is nearly the same code for the worker procedure as before. The differ-
ence is that the number of element processes is derived from the number of
IMSB003 boards that are included in the network.

The constant number.of.B003s is now the root of the algorithm. Should the
number of IMSB003s in the network be changed then a simple change of
this constant and re-compilation/configuration will change the software to
suit.

{{{ PROGRAM progx
{{{F progx.tsr
... SC PROC interface
... SC PROC worker

... link constants

-- number of B003s must be greater than 1 and match value in SCs
VAL number.of.B003s IS 4:

{{{ configuration for x B003s
[(number.of.B003s - 1) * 2]CHAN OF ANY connect:

PLACED PAR
... first board in rack
... boards in middle of rack
... last board in rack

}}}

26

}}}
}}}

The structure of the PROGRAM now has configuration detail based on
board level descriptions. The first board communicates with the host trans-
puter, the boards in the middle of the rack have the same code and similar
configuration whilst the last board must have a different configuration to
terminate the pipeline. It is assumed that at least three IMSB003s will be
involved or the configuration will have to be changed.

We can now look at the configuration used for each of these three types of
board.

7.1 Configuring the first IMSB003 in the pipe

{{{ first board in rack
VAL board IS 0:

CHAN OF ANY app.in, app.out:
[3]CHAN OF ANY on.board:

PLACED PAR

PROCESSOR 0 T4 -- connection to host transputer
PLACE app.in AT link0in:
PLACE app.out AT link0out:
PLACE on.board[0] AT link2out:
PLACE on.board[2] AT link3in:
interface (app.in, app.out, on.board[0], on.board[2])

PROCESSOR 1 T4
PLACE on.board[0] AT link3in:
PLACE connect[(board*2)+0] AT link1out:
worker (on.board[0], connect[(board*2)+0])

PROCESSOR 2 T4
PLACE connect((board*2)+1] AT link0in:
PLACE on.board[1] AT link2out:
worker (connect[(board*2)+1], on.board[1))

PROCESSOR 3 T4
PLACE on.board[1] AT link3in:
PLACE on.board[2] AT link2out:
worker (on.board[1], on.board[2])

}}}

27

This configuration is for the first IMSB003 in the rack, quite often for sim-
plicity, the one on the left hand end of a rack. The configuration is based
around this board being numbered as board 0. The first transputer specified
is the one connected to the host. This transputer must therefore run the
interface process in order to communicate correctly with the monitor. The
other three transputers on this board run the worker process. The channels
in onboard are used to connect transputers on this board alone, the connect
channels are mapped onto the links to the next board in the pipe.

7.2 IMSB003s in the middle of a pipeline

{{{ boards in middle of rack
PLACED PAR board = 1 FOR number.of.B003s - 2
[2]CHAN OF ANY on.board:
PLACED PAR

PROCESSOR (board * 4) + 0 T4
PLACE connect[(board*2)-2] AT link0in:
PLACE on.board[0] AT link2out:
worker (connect[(board*2)-2], on.board[0])

PROCESSOR (board * 4) + 1 T4
PLACE on.board[0] AT link3in:
PLACE connect[(board*2)+0] AT link1out:
worker (on.board[0], connect[(board*2)+0])

PROCESSOR (board * 4) + 2 T4
PLACE connect[(board*2)+1] AT link0in:
PLACE on.board[1] AT link2out:
worker (connect[(board*2)+1], on.board[1])

PROCESSOR (board * 4) + 3 T4
PLACE on.board[1] AT link3in:
PLACE connect[(board*2)-1] AT link1out:
worker (on.board[1], connect[(board*2)-1])

}}}

This configuration is replicated according to the number of IMSB003 boards
available, remembering that two must become the first and last in the pipe.
The same convention is used as before, the channels on.board are for con-
nections between one transputer and another preconnected on the same
IMSB003. The four connect channels connect this board with the previous
and the next in the pipe. The communication path is circular so that data
transfer is only ever in one direction on a single link.

28

7.3 The IMSB003 at the end of the pipeline

{{{ last board in rack
VAL board IS number.of.B003s - 1:
[3]CHAN OF ANY on.board:

PLACED PAR

PROCESSOR (board * 4) + 0 T4
PLACE connect[(board*2)-2] AT link0in:
PLACE on.board[0] AT link2out:
worker (connect[(board*2)-2], on.board[0])

PROCESSOR (board * 4) + 1 T4
PLACE on.board[0] AT link3in:
PLACE on.board[1] AT link2out:
worker (on.board[0], on.board[1])

PROCESSOR (board * 4) + 2 T4
PLACE on.board[1] AT link3in:
PLACE on.board[2] AT link2out:
worker (on.board[1], on.board[2])

PROCESSOR (board * 4) + 3 T4
PLACE on.board[2] AT link3in:
PLACE connect[(board*2)-1] AT link1out:
worker (on.board[2], connect[(board*2)-1])

}}}

The last board uses one extra on.board channel to provide the connection
between the outward data path and the return path as illustrated in the
diagram below. All processors are running the same code, worker, except
the one connected to the host running interface.

To run this example follow the same steps as in stage3 with the exception
of the cables required. All the connect channels require link connections
to be made from the host to the first IMSB003 and subsequently onto the
other IMSB003s. The position of the cables can be double checked using the
config info utility in the configurer toolset and the IMSB003 user manual
supplied with the board. The reset, analyse and error connections should
be made as below.

The first IMSB003 should be connected via the up port to the subsystem
port of the host board, thus enabling the bad network utility to reset the
transputers on this board before loading the code. These signals should be
carried from the first board in the pipe on to all the others. This is achieved
by connecting the down port from the first board to the up port of the second

29

board and then subsequent ups to downs until all the boards are combined
to appear as one subsystem to the host transputer. Thus when the network
is loaded all the IMSB003 boards will be reset prior to the loading of the
code for the complete target system,

8 Conclusion

1. The TDS supports the creation of code for multi-transputer systems
and the ability to load and execute that code.

2. An application for a transputer network has two main phases. The
first is the definition of the application code in a parallel form so that
it can be distributed. After the application is sufficiently implemented
there is a stage of configuration where the programmer is concerned
with the mapping of code onto processors and the effects this has on
performance.

3. Configuration is used for target systems rather than the host system
transputer which is used for initial development. Should an interface
be required between the TDS and the target then this is best written
once and used henceforward in all application development.

4. The TDS supports the idea of modularisation at many levels. The
ideas of separate compilation allow modules of code that can be used
in many different configurations of a program. In addition the con-
figuration statements can be structured in such a way as to be easily
adapted in the case of a change to the hardware available.

30

5. The example used here was for a very simple application. Even if
the application was extremely complex, so long as it was written in a
parallel way, it would have required no more configuration than is used
here. Thus, on a relative basis, the work required to distribute parallel
processes over a network of transputers is often trivial compared with
the original application code development.

References

[1] Transputer reference manual, Inmos Ltd Bristol

[2] Technical note 10: ”IMS 8003 Design of a multi-transputer board”,
Abhay Vadher and Paul Walker, Inmos Ltd Bristol

[3] A tutorial introduction to occam programming, Dick Pountain and
David May, McGraw-Hill Book Company 1987, ISBN 0-07-050606-X

[4] Inmos Spectrum, Inmos Ltd Bristol

[5] Technical note 17: ”Performance Maximisation”, Phil Atkin, Inmos Ltd
Bristol

[6] Technical note 11: ”IMSB004 IBM PC add-in board”, Stephen Ghee,
Inmos Ltd Bristol

31

	1 Introduction
	2 Plan of attack
	3 The application
	4 Stage 1: running the application as an EXE
	4.1 The "header.tsr" library fold
	4.2 The "problem.tsr" library fold
	4.3 The "monitor.tsr" library fold
	4.3.1 The keyboard handler
	4.3.2 The screen handler

	4.4 The EXE containing the application

	5 Stage 2: Running the application on a target transputer
	5.1 Creating a PROGRAM fold
	5.2 Monitoring the target with an EXE
	5.3 Running on two transputers

	6 Stage 3: Running the application on a four transputer network
	6.1 A PROGRAM for four transputers
	6.2 The transputer connected to the host
	6.3 The transputer pipeline process
	6.4 Configuration for four transputers
	6.5 Running on five transputers in total

	7 Stage 4: An arbitrary number of IMSB003s as a pipeline
	7.1 Configuring the first IMSB003 in the pipe
	7.2 IMSB003s in the middle of a pipeline
	7.3 The IMSB003 at the end of the pipeline

	8 Conclusion
	References

