
Communicating Process
Computers

INMOS Technical Note 22

David May and Roger Shepherd

February 1987
72-TCH-022-00

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4

2 Applications with special configurations 5
2.1 Algorithmic Parallelism or Dataflow Decomposition 5

2.1.1 Example: occam compiler 5
2.1.2 Example: solid modelling 7

2.2 Geometric Parallelism or Data Structure Decomposition . . . 9
2.2.1 Statistical mechanics 9

2.3 Farming out processing . 11
2.3.1 Example: Graphical representation of the Mandelbrot

Set . 11
2.3.2 Example: Ray Tracing 13
2.3.3 Some comments about the previous two examples . . 14

3 General purpose structures 14
3.1 Routing and the communication/computation trade-off 15
3.2 Comparison of Pipelines and Processor Farms 17

References 20

3

1 Introduction

This paper is concerned with the construction of computers based on com-
municating process architecture. We wish to establish that this architecture
is practical and that it is feasible to build a general purpose computer based
on this architecture. We shall start by looking briefly at the technological
background and the questions that this raises, then look at a number of real
applications, and finally we will discuss the possible structure of a general
purpose parallel computer.

At the present level of VLSI technology we can implement in the same area
of silicon the following components of a computer:

• a 10 MIPS processor
• 2 KBytes of memory
• a 10MByte/second communications system

Consequently, using the same silicon area, we can construct a single 10 MIPS
processor with 4 MBytes of memory (a conventional sequential computer) or
a 10000 MIPS computer with 2 MBytes of memory. Both machines would
require about 1000 VLSI devices, and so are quite small computers.

The problems are now to decide on the correct ratio of memory to processors
and how to construct a system with many processing elements with small
amounts of memory dispersed through the system, in such a way that it can
be applied to practical problems. Obviously, a collection of 1000 or more
processing elements must be arranged in a regular structure, and a number
of different structures have been proposed. Examples are:

• pipeline
• array (1D, 2D, 3D ...)
• hypercube
• toroidal surface
• shuffle

These structures vary in three important respects:

• ability to extend
• ability to implement on silicon (in 2 dimensions)
• cost of non-local communication

We will return to these matters when we consider the implementation of
applications on general purpose communicating process computers. But
first we will look at some applications.

4

2 Applications with special configurations

We now look at a number of applications where the concurrent implemen-
tation seems to dictate a specific processor structure. All these applications
have been developed and actually run on multi-transputer systems. The ex-
amples are divided into three groups. The first group contains applications
where the parallelism has been obtained by decomposing the algorithm into
a number of smaller, simpler components which can be executed in paral-
lel. The second group contains applications where the parallelism has been
obtained by distributing the data to be processed between a number of
processors in such a way that the geometrical structure of the data is pre-
served. The final group contains applications where a number of processors
are used to process data farmed out by a controlling processor. Of course,
these groups are not mutually exclusive, and our solid modelling application
shows aspects of both algorithmic and geometric decomposition.

2.1 Algorithmic Parallelism or Dataflow Decomposition

In the following two examples the algorithm used follows from a dataflow
analysis of the application and the parallelism arises directly from that al-
gorithm.

2.1.1 Example: occam compiler

The first example is the occam-in-occam compiler. One of the reasons for
the choice of this example is to illustrate that concurrency can arise where it
might not be expected. In order to write this compiler concurrently (deliber-
ate ambiguity!) a dataflow approach was taken; the parallel decomposition
of the algorithm then follows straightforwardly. The diagram below shows
the structure of the compiler.

From the outside, the compiler appears to be a single pass compiler. Inter-
nally, it is more like a multiple pass compiler; each process performs a simple

5

transformation on the data which flows through it. For example, the lexer
process inputs a sequence of characters and outputs a sequence of tokenised
lexemes. It is able to do this continuously; as soon as it has recognised a
sequence of characters as a lexeme it is able to output the appropriate token.

The effect of decomposing the compiler in this way was that each compo-
nent process was relatively easy to write, specify and test; this meant that
the component processes could be written concurrently! Also, as the ma-
chine dependencies were restricted to the final stages of the compiler, it was
possible to develop the compiler for different targets concurrently.

The occam program for the compiler is outlined below:

-- occam compiler
CHAN lexed.program:
CHAN parsed.program:
CHAN scoped.program:
CHAN coded.program:
PAR
-- lexer
CHAN name.text:
CHAN name.code:
PAR
... scanner
... nametable

-- parser
CHAN parsed.lines:
PAR
... line parser
... construct parser

... scoper

-- generator
CHAN generated.constructs:
CHAN generated.program:
PAR
... construct generator
... line generator
... space allocator

... code cruncher

The program, as shown, could be executed on a pipeline of processors. How-
ever, it is unlikely that it will offer an increase in speed which is proportional
the number of processors used.

There are two important reasons for this. The first is that the throughput
of a pipeline is limited by the throughput of the slowest element of the

6

pipeline. This means that in order to have the potential for maximum multi-
processor speed-up a pipeline must be ’balanced’; that is each component
of the pipeline must process data at the same rate. The compiler pipeline
is not balanced; measurements show that the code cruncher accounts for
about 40% of the processing resource used. The second reason is that the
pipeline does not contain sufficient buffering to allow each individual stage
to operate as fast as possible. For example, the line parser operates on a
line of lexemes at a time, whereas the lexer operates on only a lexeme at a
time. This means that without a buffer inserted between the lexer and the
line parser, the lexer will halt whilst the line parser transforms a line.

2.1.2 Example: solid modelling

Another example of an application for which the algorithm decomposes eas-
ily is solid modelling. This involves the generation of shaded images of
polygonal objects in real time. This has application in the areas of Com-
puter Aided Design and Computer Animation.

For each object the following steps are performed. First the object is trans-
lated into the ’world space’ (the world space defines the spatial relationships
between the objects to be modelled). The object is then transformed into
the ’image space’, this involves rotating and projecting the object so that
it will appear in proper perspective as seen by an observer at the chosen
’viewpoint’. The image of each object must be ’clipped’ to the screen and
then ’drawn’ into a Z-buffer which is used to resolve depth. The algorithm
can be extended to provide animation by allowing the objects, the world,
and the viewpoint to change for each frame.

At the top level we choose to implement the algorithm as shown in the
diagram below.

7

Here each object is passed to a transformer which passes the transformed
object to the drawing process. We use several transformers to increase the
rate at which we can draw objects. As a transformer becomes free, the
object store can send it another object to transform. In this way we obtain
a linear multiprocessor speed up; n-transformers can process data at n-times
the rate that one transformer can. This speed-up is predicated on the object
store being able to supply objects at a great enough rate and on the drawing
process being able to draw objects fast enough.

We can now turn to the implementation of the transformation process. The
sequential implementation of this process could be written as:

WHILE active
SEQ
from.object.store ? object
world(object)
viewpoint(object)
clip(object)
to.drawing.process ! object

This process can be distributed over a pipeline:

The program becoming:

CHAN world.to.viewpoint :
CHAN viewpoint.to.clip :
PAR
... world
... viewpoint
... clip

The parallel processes would all have the same general form; for example,
the viewpoint process would be:

8

WHILE active
SEQ
world.to.viewpoint ? object
viewpoint(object)
viewpoint.to.clip ! object

In practice these processes would be probably be more complex than the
program above suggests, we would want to introduce buffering so that the
whole of the transformation pipeline could be kept busy.

2.2 Geometric Parallelism or Data Structure Decomposition

In the example below use is made of the geometric structure of the data to
distribute the application onto a number of processors.

2.2.1 Statistical mechanics

Statistical mechanics is the study of mechanical systems where the behaviour
of the components is described statistically and cannot be resolved analyti-
cally. A familiar example of a statistical mechanical system is provided by
the magnetic properties of iron. For this purpose iron can be modelled as a
cubic lattice of small magnets.

The orientation of these magnets is known as a spin because the magnetism
is related to the spins of the electrons in the iron. This model is thus called
a 3-dimensional spin system.

We can simulate the behaviour of iron on heating by examining what hap-
pens to the lattices over successive time steps as it is heated. During each
time step there are two important influences on each small magnet. Firstly,
there are thermal vibrations which will tend to move the magnet away from
its current orientation. The thermal effects are described statistically, with
the distribution being dependant on the temperature of the iron. The sec-
ond influence will be the magnetic forces applied by the neighbours of the
magnet under consideration. If we start with a magnetised lattice and raise

9

the temperature the thermal effects will eventually overcome the magnetic
forces and the lattice will become disordered and thus demagnetised.

It is easy to see that a statistical mechanical system can be decomposed in
terms of its natural geometrical structure. For example, the cubic lattice
of iron could be split between a number of transputers, each dealing with a
small portion of the problem. Each transputer can then update that part
of the lattice for which it contains the data. Communication will be needed
with neighbouring transputers so as to exchange information about adjacent
lattice sites which are placed on different transputers.

We will now look at a practical example of a statistical mechanical simu-
lation. This is a simulation of a generalised planar spin model (i.e. a 2-D
spin system) with both ”Exchange” and ”Nematic” interactions [1] which
has actually been implemented on a number of transputers. The system can
be interpreted in terms of liquid crystal films; however, the major interest
in the system is theoretical in that it exhibits an unusual phase structure.

The program operates on an L x L square lattice of spins with periodic
boundary conditions. The spins are represented by angles which are discre-
tised to lower the storage requirements and to allow a table look-up for fast
cosine generation.

The original aim of the design was for the system to be implemented on an
array of transputers without any external memory. This imposed a large
constraint because the straightforward geometric decomposition of the up-
dating process gave rise to a collection of processes each of which was too
large to reside in the memory of a single transputer. The solution was to
split the updating work into two parallel processes, ’random’ and ’updata’
each of which could fit on a transputer.

10

The random process generates uniformly distributed and exponentially dis-
tributed random numbers and communicates with the controller process.
The updata process performs the rest of the updating algorithm, stores
data (512 spins) and computes correlations. Each random/updata pair of
processes implements a vertical ‘strip’ of the lattice. Horizontal communi-
cation is required for the interaction of the spins on the vertical edges of the
strips.

In practice the ’no-external memory’ requirement was relaxed. The program
was run at INMOS on 17 transputer evaluation boards (each board having
an 80 ns cycle time transputer with external memory). The extra memory
permitted the random and updata processes to be implemented on a single
transputer, the lattice to be decomposed into 16 4 x 64 strips, and the
discretisation of the spins to be increased to 128 states as the size of the
cosine table could be enlarged.

The efficiency of the simulation was:

time of program on 1 processor
17 x time for program on 17 processors

≈ 80%

The simulation, which took about 60 hours to run, would have taken about
3 months on a VAX 11/780.

2.3 Farming out processing

2.3.1 Example: Graphical representation of the Mandelbrot Set

The Mandelbrot set, M, is the set of complex numbers:

M = {c : |Mn(c)| <∞ ∀n ∈ N}

where:

M0(c) = 0

Mn+1(c) = Mn(c)2 + c

It can be shown that if ∃n : |Mn(c)| > 2 then c /∈ M.

The edges of the Mandelbrot set are intricate, and, because complex num-
bers can be represented on a two-dimensional plane, the set can be plotted

11

on a graphics screen with impressive results. In practice, the colour of each
pixel on the screen represents whether or not the corresponding point of the
complex plane is in the Mandelbrot set. If a point is not in the Mandelbrot
set then the colour plotted at that point represents the number of applica-
tions of the recurrence required to determine that it is not in the set. A
point will be considered to be in the set if the recurrence has been applied
more than a fixed number of times (for example 1000) without the modulus
becoming greater than 2.

For a given point (x, y) the following process applies the recurrence until a
colour can be chosen.

iterations := 0
z := COMPLEX(0.0, 0.0)
WHILE (iteration < 1000) AND ((MOD z) < 2)
SEQ
z := (z*z) + COMPLEX(x, y)
iteration := iteration + 1

To plot a picture of the Mandelbrot set requires that we perform the above
process for every pixel on the screen. However, as the computation for each
pixel is independent we may perform it for many pixels in parallel. The
implementation we have chosen is shown in the diagram below:

The basic idea used in this implementation is that the controller process
hands out a point to each Mandelbrot process. When a Mandelbrot process
has computed the colour to be displayed at that pixel it sends the infor-
mation to the controller which passes the pixel to the graphics engine and
hands the Mandelbrot process another pixel. This approach is very attrac-
tive because the amount of computation required varies from pixel to pixel
and this implementation automatically balances the load.

As can be seen from the previous diagram, Mandelbrot processes not only
compute the colour for a pixel but they also provide a means for the con-
troller to communicate with Mandelbrot processes to which it is not directly
connected. The structure of the Mandelbrot process is as shown below:

This implementation turns out to be quite effective. If there are N proces-
sors available to execute Mandelbrot processes then an upper bound on the
amount of communication required for each pixel will be 10 x N bytes. This

12

is not a large amount considering that the computation for each pixel may
require up to 2000 operations on floating point complex numbers.

It turns out that in order to keep the processors busy the Mandelbrot process
has to buffer an extra item of work so that when it completes the compu-
tation for a pixel it can start on its next pixel at once rather than having
to wait for the controller to send it the next item of work. In the diagram
above the extra work is buffered in the router, and when the Mandelbrot
computer process finishes its computation it sends a message to the router
requesting more work.

The algorithm sketched above can be improved upon so as to decrease the
number of interactions between the controller and the Mandelbrot processes
by handing each Mandelbrot process more than a single pixel as its item of
work. In practice we have chosen to use a quarter of a scan line as the unit
of work. We have found that the communication cost with this approach is
insignificant even with tens of processors connected in the manner shown.

2.3.2 Example: Ray Tracing

Whilst the previous example of a computer graphics application may seem
a little artificial and especially suited to parallel implementation this exam-
ple is very real. A large amount of super-computer time is spent on this
application by people such as film makers.

The application is ’ray tracing’. This is a means of producing very high
quality, life-like computer graphics. It is capable of correctly representing
reflective and refractive objects (mirrors and lenses) and light sources.

The way in which the technique works is to take a point on the screen and
to produce the ray that would arrive at that point from a pinhole sitting
between the screen and the objects to be drawn. The ray is then extended
into the object space and intersected with each object in the space. The first
object with which the ray intersects is determined. In the simplest case this

13

object will be matt and the colour of the object is plotted at that point on
the screen. If the object is reflective, the path that the ray would take after
reflection is computed and the process repeated. The same general principal
allows the pin-hole to be replaced by a lens, giving depth-of-field effects.

It may now be seen that the basic structure of the problem is essentially the
same as plotting the Mandelbrot set. For each point on the screen a colour
has to be generated. The computation for each point is independent and
computationally intensive. Ray tracing, can, therefore, be implemented on
exactly the processor structure as was used for drawing the Mandelbrot set.

2.3.3 Some comments about the previous two examples

It is quite interesting that the previous two examples are implementable on
exactly the same configuration of processors. It is also interesting that these
configurations actually seem to have nothing to do with the application in
hand.

In fact further consideration of both these algorithms will show that almost
any configuration of processors will do subject to it providing sufficient com-
munication capability. Both these applications have two distinct parts; the
first farms out work to a of number application specific processes, the sec-
ond is the application specific process. We call this type of arrangement a
processor farm.

3 General purpose structures

From the last two examples we have seen that there are applications which
are basically insensitive to the arrangement of processors on which they are

14

run. Of course, there is the proviso that the arrangement of processors must
provide sufficient communication capability. As we now have evidence that
it might be reasonable to try and construct a general purpose structure of
processors we can return the issues raised in the introduction.

Pipelines and simple (2 dimensional) arrays can be easily implemented or
extended. Arrays (and hypercubes) become progressively more difficult to
implement as the dimension increases, with much space taken by connections
which need to cross over. However 1000 or so processing elements can be
connected in this way.

One difficulty with the hypercube structure is that the number of links
provided at each node must be at least the dimension of the hypercube.
This means that a standard component (which has a fixed number of links)
cannot be used to implement an arbitrarily extensible array. An alternative
structure which avoids this problem is obtained by implementing each node
of the hypercube with a ring of transputers – this structure is known as
’cube connected cycles’. The cost of non-local communication, which arises
when two nodes need to communicate via intermediate nodes, varies widely.
A one dimensional array is obviously the worst. It is clearly desirable that
the worst case path between two points (the ’diameter’) of the network is
small in relation to the number of nodes, and several structures have this
property:

structure diameter size

hypercube ∼ n− 1 2n

cube-connected cycle ∼ (n× 5)/2 n× 2n

folded tree ∼ n n× 2n−1

If such a structure is being used, for example to implement a processor
farm, it may be necessary to implement a routing algorithm. It is quite
easy to design. a general purpose algorithm for this purpose but for many
applications an application specific router may be better.

3.1 Routing and the communication/computation trade-off

An example of a routing process is shown below

... declarations
SEQ
... initialisation
WHILE active
SEQ
ALT
ALT l = 0 FOR 4

15

link.in[l] ? message
SKIP

internal.in ? message
SKIP

dest := route.table(message(0]]
IF
dest = internal
internal.out ! message

TRUE
link.out[dest] ! message

... check for termination

The above routing process inputs a message from a link or from the process
co-resident on the transputer. The process examines the first word of the
message to determine the destination, and looks up that destination in a
route table which identifies whether it should be sent to the local process or
re-transmitted down a link.

More complex versions of the routing process would enable the transputer’s
links to operate concurrently. However, they would almost certainly im-
pose a larger overhead on the processor’s computing power, and thus might
be suitable for algorithms where the required communication bandwidth is
relatively high.

Normally the routing process in a transputer would be prioritised over other
processes. This ensures that when a message arrives at the routing process
it is inspected (and forwarded if necessary) immediately it is received. If
a high priority process were not used the message would not be examined
until the routing process was executed on the round-robin.

Although a routing process has an impact on the computing power available
at each node, once a data transfer has been initiatated the transputer’s
autonomous links will transfer the data without the further intervention of
the processor. This means that the processor resource used by a routing
process is dependent on the number of communications rather than the
quantity of data transmitted in each communication. This in turn suggests
that the correct strategy is to maximise the length of message passed at one
time.

On the other hand, where the length of time it takes for a message to reach
its destination is critical, there are advantages in breaking data into small
messages. This enables several processors to transfer the data concurrently.
This is also true where it is necessary to broadcast data throughout an array.
These matters have been investigated elsewhere in the literature [2].

For a given problem, it is usually possible to adjust the processing time
per communication by use of a combination of parallel and sequential algo-

16

rithms. At one end of the spectrum is the ’data flow’ program with many
simple processes each of which inputs a message, performs a single opera-
tion and outputs it; at the other end is a sequential program which inputs
a message, performs many operations, and outputs the result. One of the
advantages of a communicating process language is that it combines both
sequential and parallel programming techniques, and one of the uses of pro-
gram transformations is to perform this kind of optimisation.

It is possible to write programs in a manner whereby the granularity of the
computation is easy to adjust. For example, in the Mandelbrot set drawing
program it is easy to alter the granularity from a single pixel (large potential
for parallelism) to a whole screen (small amount of communication). This
is useful because the communication to computation ratio can vary as hard-
ware changes. For example, the introduction of the floating point transputer
will drastically reduce the computation load of a transputer which is draw-
ing the Mandelbrot set. As result of this, the program should be altered to
increase the number of pixels computed at a time.

Experience suggests that many numerical problems can be organised so that
communication times are dominated by computing time. For example, a
process which inputs two n × n arrays, and outputs the product involves
3× n2 communications but the multiplication involves n3 operations.

3.2 Comparison of Pipelines and Processor Farms

Given a general purpose structure. such as a 2 dimensional array, it is
obviously possible to use a number of different techniques to implement
an application. For example, a number of applications could suit either a
pipeline or processor farm implementation.

The question then arises as to which implementation is preferable. There
are a number of considerations here:

1. The throughput of a pipeline is limited by the throughput of the slow-
est part of the pipeline. This means that the processing time for an
n-stage pipeline is n×max(t(i), ..., t(n)) where t(i) is the time taken for
stage i of the pipeline, whereas the processing time for the equivalent
sequential implementation (as would be used on a farm), is

∑n
i=1 t(i),

which is smaller. In addition the pipeline implementation will use
some processor time passing messages from one stage to the next.

2. The amount of code required in each stage of the pipeline will be
smaller than the amount of code needed in each processor in a farm.
This could be important where memory capacity is limited. The

17

smaller code might also run faster due to better utilisation of the
transputer’s on-chip memory. However, the code size consideration
will only apply to heterogeneous pipelines; the code to implement all
stages of a homogeneous pipeline on a single farm processor will be
essentially the same size as the code to implement one stage of the
pipeline.

3. There may be sequential dependencies in the data which would be dif-
ficult to deal with using a processor farm. For example, in a compiler,
it is necessary to know which procedures have already been compiled
in order to enforce scope roles. This would seem to make it difficult
to transform the implementation to a farm.

We would like to give one final example of a processor farm implementation.
The application we have chosen is producing the sum of all prime numbers
less than a specified number. We calculate this by producing all prime
numbers less than the specified number and summing them. The prime
numbers are produced by successively testing the primality of odd integers.
We test the primality of an integer n by dividing by primes up to

√
n .

This problem is of interest because it contains the sequential dependency
that an number n cannot be tested for primality until we have tested all
numbers up to

√
n . We have chosen a very simple solution to this problem

for the sake of exposition.

We distribute the problem by having a number of processors running primal-
ity testers and a single controller processor. Each primality tester maintains
a list of prime numbers, supplied to it by the controller process. It uses this
list to determine the primality of candidates passed to it by the controller.
The controller ensures that when a primality tester tests a candidate n the
tester contains all primes up to

√
n .

The program for the primality tester is:

... initialisation
WHILE active
SEQ
from.controller ? object.type; object.value
IF
object.type = candidate
VAR candidate.is.prime :
SEQ
IF
IF i = 0 FOR primes.stored
(object.value \ primes[i]) = 0
candidate.is.prime := FALSE

18

TRUE
candidate.is.prime := TRUE

to.controller ! object.value; candidate.is.prime
object.type = prime
... add to list of primes

object.type = halt
active := FALSE

The program for the controller is:

... initialisation
problem ? upper.bound; root.upper.bound
... generate primes until prime > root.upper.bound

WHILE next.candidate < upper.bound
VAR nactive :
SEQ
... hand out next batch of primes
... start primality testers
nactive := ntesters
WHILE nactive > 0
ALT i = [0 FOR number.testers]
from.prime.test[i] ? resolved.candidate; is.a.prime
SEQ
... add into prime sum if is.a.prime
IF
more.candidates
... send next candidate

TRUE
nactive := nactive - 1

... terminate primality testers
result ! prime.sum

The inner WHILE loop hands out a new candidate to a tester in response
to the tester returning the result of its previous test. The loop terminates
when there are no more candidates which can be tested using only the primes
currently stored by the testers.

The outer WHILE loop will then cause another prime to be supplied to all the
testers and the testers to be restarted. This continues until all candidates
less than the upper bound have been tested.

Although this solution requires a certain number of primes to be generated
sequentially the program could be altered so that just sufficient primes were
generated to ensure that the testers could start operating; that is, in order
to sum primes up to n, primes up to

√√
n would be generated. At this

stage the testers can start working and a further concurrent process could

19

start generating the primes which become needed by the testers as testing
continue.

It is also possible to make the controller maintain an ordered list of primes
produced by the testers. The early primes produced can than be used in
the testing of larger primes.

References

[1] Simulation of statistical mechanical systems on transputer arrays, C R
Askew, D B Carpenter, J T Chaiker, A J G Hey, D A Nicole and D
S Pritchard, Physics Department, University of Southampton, To be
published

[2] Signal processing with transputer arrays, J G Harp, J B G Roberts and
J S Ward, Royal Signals and Radar Establishment, Malvern, Worces-
tershire, Computer Physics Communications, 1985.

20

	1 Introduction
	2 Applications with special configurations
	2.1 Algorithmic Parallelism or Dataflow Decomposition
	2.1.1 Example: occam compiler
	2.1.2 Example: solid modelling

	2.2 Geometric Parallelism or Data Structure Decomposition
	2.2.1 Statistical mechanics

	2.3 Farming out processing
	2.3.1 Example: Graphical representation of the Mandelbrot Set
	2.3.2 Example: Ray Tracing
	2.3.3 Some comments about the previous two examples

	3 General purpose structures
	3.1 Routing and the communication/computation trade-off
	3.2 Comparison of Pipelines and Processor Farms

	References

