
Express Fortran

User's Guide

Version 3.0

© ParaSoftCorporation, 1988, 1989, 1990

All brand and product names are trademarks·or registered trademarks.of
their respective holders.

Copyright © 1988, 1989, 1990
ParaSoft Corporation
2500, E.Foothill Blvd.
Pasadena~ CA 91107

Printed in the U.S.A

Table of Contents

LL L L

Chapter 1: Overview
What is Express and what kind of systems can be built with it?

o t bb t bU to L b JOb bb b d

2

1
2

3

4
5
6

Overview
What Express is NOT. .

2.1 An Operating System .
2.2 A Language.
2.3 The Ultimate Solution. .

What is Express? . . . 0

3.1 An "Operating System". .
3.2 A Parallel Processing Toolkit

How to Run Parallel Programs. .
Where can I use Express? .
Conclusions

q 01

.3
· 3
· 3

· . . 6
· . . 6
· . . 6

.7
· 8
.9
14
16

Chapter 2: An Express tutorial
An introduction to parallel processing with Express

1 0 0 PP

18

1
2

3

4
5

Introduction
Overview ..

2.1 Hardware.
2.2 Software .
2.3 Message Passing. .
2.4 Express Programming Models..

An Introduction to Express. . . .
3.1 A note about FORTRAN I/O. .
3.2 The Exercises. . .
3.3 Summary.....

Advanced Applications.
For more infonnation. .

q ,

19
. 20

20
. . 22

. 23
. . 25

. 27
· 27
· 28
· 57

· 58
· 69

Chapter 3: Express 74
A portable, efficient communication system for parallel computers
... and much more

1
2

Introduction
Express Fundamentals.

2.1 System Configuration; Booting Express .
2.2 Programming models.

· 75
· 77
· 77
· 78

i

, 80
81
82

· 87
88
89

· 94
· . . 100

.100
· 105
.112
.114
· 117
.121
o 121

• • • • 0 • 129

2.3 Software Initialization; Languages..
Processor Allocation and Program Loading.

3.1 Processor Allocation
Node Addressed Interprocessor Communication.

4.1 Messages, Nodes and.Types
4.2 Blocking Communication Functions.
4.3 Non-blocking Communication Functions.

Topology Independent Communication
5.1 Automatic Decomposition and Run-Time Configuration.
5.2 Using the Automated Decomposition Tools.
5.3 Utility Functions.'.

UO and Cubix.
Hardware Dependent Communication. .
Complete Example Programs .

8.1 The '~RING"Program.
8.2 Other Examples

5

6
7
8

4

3

Chapter 4: Cubix
Programming parallel computers without programming hosts

132

1
2
3

4
5
6
7
8
9

In'troduction
A Different Perspective . .
The Catch - I/O modes. . . .

3.1 Synchronous flO Modes.
3.2 Asynchronous Mode.
3.3 Multiple hosts, Distributed file.systems~ etc.

Debugging: A Last Resort
Executing Cubix.
Examples
Specifying Cubix file I/O modes 0

Common Errors.
Conclusions

0133
· . . 134

. 135
• • 0 • 136

· .. 142
· 145

· . . 145
· . .147

· 148
· . . 148

· 149
o • • 150

Chapter 5: Multitasking
Executing multiple processes on individualprocessors

152

1
2
3
4
5

Introduction
Asynchronous Processing - KXHAND • • • •. . .
Mutual Exclusion - Semaphores
Executing alternate node programs" under Cubix. .
Portable use of KXHAND • . • • • • • • • . • • •

· . . 153
.155

· . . 163
· . . 168

.169

ii

Chapter 6: Parallel Graphics
A simple, portable, parallel graphics system: Plotix

170

· . 171
· . 172
· . 177
· . 180

. 181
· . 183
· . 184

• • • 0 • • • 186
· . 186
· . 188
· . 188
· . 191

. . . 191
· . 191

· 192
· 193

· . 194
· 194

· . 194

1
2
3
4
5
6
7
8

Introduction
Coordinate systems
Starting, Stopping and Flushing
Graphical Input.
High Level Functionality - Contouring, Clipping, etc..
Colors .
Hardware Dependencies
Example Programs

8.1 The Interaction between Plotix and the KXGRID tools. . . . 0 •

8.2 Other example programs.
9 The Low Level Contouring System.
10 Output Device Characteristics.

10.1 mM PC and compatibles, Borland Graphics Interface - "-Tbgi" . .
10.2 ffiM Enhanced Graphics Adapter - "-Tega" .
10.3 SUN system, suntools environment - "-Tsun". . .
10.4 SUN system, Xwindows - "-TX"
10.5 PostScript - "-Tps"
10.6 AXIS NCUBE systems - "-Trt", and "-Tnat". .
10.7 Macintosh systems - no switch.

Chapter 7: Perfonnance Analysis
PM: A profiling system for parallel programs

, n n n p n n

196

1
2

3

4

Introduction
Execution Proftling

2.1 General Profiling Commands. .
2.2 Details for Cubix Programs . .
2.3 Details for Host-Node Programs.
2.4 Analyzing the Execution Profile - xtool. .

Communication Profiling.
3.1 General Profiling Commands.
3.2 Details for Cubix Programs
3.3 Details for Host-Node programs.
3.4 Analyzing the Communication Profile - ctool

Event Driven ProfIling.
4.1 General Profiling Commands.
4.2 Measuring time intervals with "Toggles" . .
4.3 Details for Cubix Programs
4.4 Details for Host-Node programs. . .
4.5 Analyzing the Event Profile - etool

.197
· . 199

.199
· .201

0203
.204
.206

· .. 206
.207
.207
.209

· . .218
.219
.222

. .223
· .. 224

.224

iii

5
4.6 Analyzing the "Toggle"data- etool -t

Example programs 0 • •

5.1 Cubix program
5.2 Host-Node Program, "Host" code..
5.3 Host-Node program, "Node" code..

nrll 1.· 11

. 232

. 233
· .. 234
.. 238

· .. 240

Chapter 8: Network Configuration 244
Using Cnftool to build multi- transputer networks for Express

1 1

1
2
3

4
5
6
7
8

Introduction
Topologies and Routing Strategies . 0 •

Configuring Simple Networks.
3.1 Machines with mechanical links. . . .
3.2 Electrically Configured Machines.
3.3 Minimal use of cnftool.

Configuring a Multi Host System.
Cosmetic Improvements
Displaying Routing Information .
cnftool without graphics
Transputer Variants of Standard Topologies

.245
· .. 245
· . 0248

.248
· . .253

.258
· . .259
· . .262

.262
· . . 263
· .. 266

Chapter 9: Customizing Express 268
Modifying the installation, size and perfonnanceof Express with
Excustom

btL. t ···.1 n.u •. b . dtU U t d .d.l

1
2
3
4
5
6
7
8

Cu.stomizingExpress.. . . .
The Express "Customization" file
Modifying System Parameters withexcustom .
Express buffers
Express and the Transputer Memory Map.
Express on UNIX machines
Listing of Express customization variables .
Default locations for Expresscustomization files.. .

8.1 MS-DOS.....
8.2 Unix and look-alikes
8.3 Macintosh
8.4 VMS......

IF

.269
· .. 269
· . .270
· . . 271
· .. 274

.277

.278
· .. 282

.282

.282

.282

.2·83

Appendix A: In.dex. 284
General index to Express and the examples from the text

• J L m

iv

© ParaSoftCorporation, 1988, 1989, 1990

1

Overview

What is Express and what kind of systems
can be built with it?

~]JI;J 1 Overview

M A major barrier to the effective use of parallel machines is the bewildering array of
hardware and software configurations. Every machine is different from all the others - often
radically so. There is an enormous proliferation of new computer languages, programming
methodologies and operating systems with no accepted standards.

One of the great difficulties for most people in making the transition from sequential to
parallel computing is the enormous initial time investment in learning the basics and getting
the fIrst program running. It is often found that once this hurdle has been overcome parallel
processing can become easy and even, dare one say it, satisfying.

What comprises the initial barrier which makes the entry into parallel processing so hard?
While each parallel machine makes it's own claims to be just like something else; "UNIX
like operating system", "VAX like architecture", "Compatible with MS-DOS", the
cumulative effect of all the small (and sometimes not so small) variations in operating
systems, programming models, development tools, etc. makes an overwhelming
difference.

Into this chaotic, stumbling environment we introduce Express.

What can it do?

How can it help?

What makes it different or better than anything else?

The purpose of this document is to explain some of the things that make Express different
from other approaches to parallel computing. Before going into specific details, however,
one might distinguish Express from other systems by saying that it is solely concerned
with parallel processing. It has nothing to say about operating systems or languages or
hardware at all. It is a system that evolved directly from the experiences of people who
wrote parallel programs and while advanced concepts of software engineers are included
in the system, no abstruse theory motivated its design; merely the desire to produce
applications which effectively harness the power of parallel processors.

Because of its concrete (some might say limited) goals Express is very simple to learn and
use. Getting started under Express is very straightforward - hopefully this will enable more
people to get involved in parallel processing which, in tum, will result in the availability of
more and better software. Eventually it might even be possible to re~ize the goals set years
ago when parallel processing was fIrst held up as the programming paradigm of the future.E2 2 What Express is NOT

In order to understand how Express differs from other parallel processing "solutions" it is
probably most important to understand what Express doesn't do. In a later section we can
then explain just what is available in a much less confusing way.

2.1 An Operating System

The most disheartening thing that can possibly happen to a newcomer to parallel processing
is to open the manual and read

3

Why is Express
different?

Simple to learn

Leaves existing
operating system
intact

Express adds to
the existing
commands set of
the host

"Boot the new, parallel operating system MAGIC_OS"

There you are., seated at your familiar terminal, with your nicely personalized environment
under your fingertips and you are told to throw it all away. The manual probably contains
some phrase in it which claims that MAGIe_OS is "just like UNIX" or similar but you
would be wise not to be fooled. At this point you may be faced with learning a whole new
set of commands, a new editor, new backup procedures HUO the list is endless. Furthennore
you probably have particular software that ran on your old system that you won't be able
to use now without some time consuming switching around of operating systems. You are
probably going to end up in an environment with no "tools" in which you are expected to
generate the world's fastest, and mo~t parallel piece of software.

This is not to decry the effons·ofmany people who are developing extremely powerful and
new operating systems for bothoonventional and parallel processors. On the contrary, such
effort is to be encouraged since it will certainly pave the way to better solutions, one day.
On the other hand it is extremely painful for the user 'to have to make the transition to a new
operating system at the same time as the transition to parallel programming.

Express avoids this situation by making absolutely no statements about operating systems.
All that is provided are the basic tools to access the parallel processing system at handfrom
the native operating system that you started with.

This point may seem rather subtle at fIrst but may be clarified by considering the evolution
ofa simple PC based computer, shown schematically in Figure 1. Originally one starts with
a normal PC running, for the sake of argument, MS-DOS. Such users are notorious
"collectors" of software and tools. Each DOS system has, its own little quirks designed to
make life easier for its user. Software· for many different purposes is probably involved;
data-base, spreadsheet, games etc.... all the trappings that make programming pleasant.

In order to achieve greater speeds we now purchase a piece of parallel hardware such as a
transputer board. Typically, little software is supplied with such systems so we are now left
with a potentially very powerful computer but few tools to actually obtain real speedups.

To progress further one has to bring in software. One option is to acquire MAGIC_OS and
run it on both the host and the parallel processing hardware. After loading up the new
software you are tbrown into a situation like that in the bottom right ofFigure 1. MS-DOS,
with all its familiar commands has disappeared and been replaced by MAGIC OS which
also resides on the parallel machine. Themyste.riou.s parallel computer has become slightly
more usable - iteanat least communicate with programs running on the host,'although it
may be :difficultto tell that this is S,O since the host is now a completely different machine
from the PC it began as.

The alternative option is Express, shown in the lower left part ofFigure 1. In this case the
host environment remains just as it was. If you like to use VED I T under MS-DOS then you
still can. You develop all Express programs within the native environment of the host
machin:e to which a few commands are added to control, debug and analyze programs
run.ning in parallel. Only when the parallel codes ron do you g~t involved with the parallel
machine. Even then the degree to which you are affected is under yourcontrol- if you wish
to have half your program ron under DOS on the PC while the other half computes in
parallel, Expre$Swilldoit for you. Finally the new hardwareisrevealedasthepow,erful

PC
+

MS-DOS

Purchase Hardware

PC
+

MS-DOS
+

Bare hard
ware, no soft
ware (useless)

PC
+

MS-DOS+

Purchase Software

Familiar computing environ
ment with access to powerful
computing machine.

New environment for both
user and computer completely
replaces existing software.

Figure 1. The evolution of a personal computer into a parallel
computer

resource it was supposed to be.

Note that this discussion is not specific to MS-DOS. Users of UNIX, VMS and Macintosh
are just as loth to leave their customized environments.

5

Dusty decks

"Parallel"
languages

2.2 A Language

One of the other areas which has undergone much study in recent years is the search for the
"perfect" language which will make parallel programming totally transp.arent to everybody.
This search rivals that for the Golden Fleece or the Holy Grail in tenns ofits immense value
to the world at large; were.such a language found life would indeed be easy. Unfortunately,
however, similar comments apply in this case as in the last. Since no perfect parallel
programming language seems to be available yet why not continue lOuse old-fashioned
languages. After all, vast amounts ofcode have been written inC and Fortran - why not use
it as the basis·for development?

It is surely unreasonable to expect someone with 350,000 lines of code written in Fortran
66 to convert it into some extremely clever parallel language which must be debugged
afresh.

Again itbeco,mes aquestion of how much transition one wants to go through in order to get
involved in parallel programming. Just as it is much easier to work in a familiar operating
system/environment it is most often best to start from an existing sequential program. In
this way the changes necessary to achieve parallelism can be monitored more easily and
comparisons are much simpler.

In respon.se to· the question of languages Express again replies with a stubborn "No
comment"; language compilers are indeed provided with Express and some of them do in
fact have "parallel" extensions but the extent to which these are used is entirely up to the
user. If you have a program in Fortran 66 then Express will quite happily allow you to
parallelize and execute it. If you like OCCAM or concurrent Prolog (and a compiler is
available) Express will let you use that too!

2.3 The Ultimate Solution

As has already been hinted several times, Express is not going to make parallel
programming completely automatic. It will not take an existing piece of code and run it N
times faster on N processors. On the other hand it DOES provide the tools which allow you
a good shot at this sort ofperfonnance. By allowing users the freedom to work within their
own personal environments with whatever languages are ,appropriate, the number of"new"
features which must be understood before parallel processing..can begin is minimized. As
a consequence, result8.are much easier to attain and understand.

Express includes On the other hand,· Express ishappy·to·"inc'orporate" features from advanced operating
advanced systems and languages w·herever possible.. This allows advanced users· more scope in
technology and achievingbener.performanceandalso provides a solid basis for future research. Express
research

also evolves as hardware changes. The system ronson a wide variety of architectures and
will continue to expand. It's goal, however, is always to allow maximum performance with
the minimum of interference.E23 What is Express?
The previous section explained at some length some of the thing:s which Express does not
do. In this section we will discuss some of the basic concepts underlying what Express
actually does.

3.1 An ''Operating System"

Earlier it was pointed out that Express was not an operating system in the conventional
sense since the user was able to pursue the quest for perfonnance with all the tools of their
native environment be that MS-DOS, UNIX, VMS, Macintosh or any other. In a stricter
sense, however, Express must be called an operating system since it provides the basic
operational functionality for the creation of parallel programs. In an early chapter of the
Express manuals you will indeed find an instruction to

"Load the Express operating system"

The important point to note, however, is that this has absolutely no impact on your familiar
working environment. Consistent with Express' philosophy it concerns only the parallel
processor itself. The Express kernel merely provides the basic functionality needed by
parallel programs - the ability to communicate, share data, read files, do graphics, get
debugged, analyze perfonnance etc. Furthermore, it does so in a totally transparent manner.

Many other systems use the word 'transparent' in their documentation and this has come to
mean something quite specific - in parallel processing it generally means that no special
precautions need to be taken by the parallel program other than those implicit in the system
in use. In the Express context, however, we mean something more - the facilities offered
to the parallel program look just like they would to a program running on the host You
don't have to be concerned with a "new operating" system on the parallel machine just as
it was ofno concern on the host machine. Indeed a programmer familiar with, say, the VMS
way of doing things can use the mind-set that the p'arallel program is running in a VMS
environment. It can then access files and use the operating system just as a VMS program
might.

This, therefore, is the reason for the quotes in the statement that Express is an "operating
system". In the strictest sense of the phrase it is indeed a distributed operating system for a
parallel computer. However it is extremely unobtrusive and has the ability to adapt itself to
the requirements of the users of whatever target operating system seems best.

Notice in all of the above that we keep talking about parallel programs wing the services
of the operating system. This is another area in which confusion has arisen. The phrase
"operating system" has connotations quite outside the original scope of the phrase. Often
included in the concept of what an operating system does is the ability to handle tenninals,
list directories, print files etc. In the Express world these things are all dealt with by
whatever operating system is already available. If you are in a UNIX environment then
typing '1s' at your tenninal lists files and 'pr int ' will print them out in both VMS and
MS-DOS. Express provides none of these facilities - it merely lets you use whatever was
originally there.

Express provides services that are needed to ron applications on the parallel computer and
as a result can often quite happily co-exist with other "operating systems". Obvious cases
are such distributed operating systems as Mach or Helios. Both are complete in the sense
that they allow the user to log in directly to a node of a parallel machine, list and print files
etc. In such an environment a user of Express would see the basic utilities of the
underlying Mach or Helios while simultaneously being able to take advantage of the
parallel processing features and tools provided by Express.

7

Express uses
conventional
compilersfrom
other companies

The Express
lcernel and its
functions

Making the
parallel computer
behave as though it
were its host

Co-existence with
uparalleloperating
systems"

A parallel
processing
lltoolkit"

3.2 A Parallel Processing Toolkit

In the previous section we explained how Express must, strictly speaking be classed as an
"Operating System" albeit a highly non-obtrusive one. At the level seen by the user
Express is best classified as a set. of tools and utilities designed for parallel processing.
Basically the tools that make ·up the system are

10 Low level communication primitives for sending messages between
processors, peripherals and other system components. This level provides
for simple node addressed message passing with a 'sophisticated "typing"
mechanism to differentiate between incoming messages.

2. High level message passing routine which perfonna wide variety of
common parallel processing tasks including broadcasts, global averaging,
global min/max~data redistribution, etc.

3. An automatic "domain decomposition" library which can map problems
from the physical domain in which they are naturally expressed to the
underlying topology of the parallel computer hardware. This software
allows programs to be completely independent of the hardware on which
they ron and also allows trivial scaling from one to many hundreds of
processors by the modification of a run-time parameter.

4. A transparent I/O system. This allows any node in the machine access to the
operating system facilities which would nonnally be available to the host
processor. Several "modes" of operation tailored to the particular problem
at· hand

S.A parallel grapltics system. Device independent, run-time configurable
graphics is available to all.processors. Both low level vector graphics
primitives and higher level packages (contouring, 3-D) are.available· for a
variety of output devices.

6. A totally integrated multitasking system which allows both local and remote
task generation through the message system.

7. NOB - a source level debugger for parallel programs. Similar syntax to the
popular SUN utility, dbx. Allows direct interactive.access to program
execution on the parallel machine. Breakpoints, stack tracing, printing
variables etc. Powerful additions to standard utilities explicitly for.parallel
processing.

8. PM .. A graphical system for evaluating and enhancing thepetformanceof
parallel programs. Three styles of profiling are possible covering the entire
range of potential bottlenecks. This system allows you to analyze such
things as subroutine usage, communication overheads, load balancing,
interprocessor timing differences etc., etc.

While this list serves to enumerate the various utilities included in the Express package it
gives little insight into the functionality and simplicity of the system. The tools have
evolved over five years of research into parallel applications and represent the wishes!
requirements .ofa large user community. One particular example might serve to illustrate

8

Automatic
I'domain"
decomposition

A simple problem
and its Express
solution

the point.

Consider a fairly simple problem: calculating the average intensity of the pixels which
make up a large X-ray image, in parallel. An obvious approach to this problem is to divide
up the image into lots of small areas and allot one to each processor in the system. Each
processor then adds up the pixels in its region, combines its results with the other nodes and
prints out the result

Although this seems to be quite a simple problem, getting it right can be quite tricky. You
have to figure out how much of the picture is to be given to each node, get the data there
and then collect and sum up the results. Furthennore, it would be nice if the code could be
structured in such a way that it evolved with the hardware - if you buy four times as many
nodes it would be good if the code could run immediately on the larger number of
processors.

Express provides facilities for perfonning all these tasks.

1. A utility that generates runtime parameters allowing programs to adapt, at
runtime to their environment; number of nodes etc.

2. A tool that automatically maps the large image into smaller pieces suitable
for distributing to the individual processors. Automatically calculates the
size of each piece and its position in the "bigger" picture.

3. An interface to the I/O system that lets the parallel program read the image
data directly from a disk file anywhere in the system, with each node getting
the correct piece of the input data.

4. A "combine" function that makes the global accumulation of data such as
the average intensity quite trivial.

Each of these tools is built upon lower level utilities that are also available to the
programmer. Where Express differs from other systems, however, is that it does not stop
at providing only the low level tools with the disclaimer that "All higher utilities can be
generated by the user". While this may be technically correct, Express goes all the way by
actually providing the extra functionality.

While we typically find that significant applications can be parallelized with only a few Only afew routines
subroutine calls the Express library is itself quite large. In order to help users find good requiredfor real
starting places from which they can build Express is supplied with a library of example applications
codes which demonstrate various parallel processing techniques and the utilities needed to
make them run efficiently on a distributed machine.lE2 4 How to Run Parallel Programs

The fundamental goal of parallel processing is to achieve computing perfonnance greater
than that currently available. The procedure by which this is to be accomplished, however,
is not well specified. Express, however, allows you maximum flexibility in designing and
implementing parallel applications. Before even addressing the problems of "parallel
computing" itself we should illustrate the means by which one can attack the problem. In
order to demonstrate a couple of the possibilities consider a simple application sketched out
in Figure 2.

9

Sample Application

I/O and User Interface

10-20% of total time

Main "number-crunch
ing"

80·90% of total time

Programming
models

Figure 2. Schematic of typical application code.

There are two major components of the program. On the left is the "user interface"
consisting of the I/O and graphics-bound pieces of the system. In a data base system this

10

might be the parser that deals with user inquiries and the tenninal control system for data
entry while in a mechanical engineering problem one might have to read the details of a
large structure from a disk file. To the right is the compute-bound phase of the code. To use
the two examples from above one might need to search, sort and collect statistics from a
large data-base, or calculate the stress-strain relationships of a large bridge. While these
examples carry little detail they serve to illustrate two important categories of computing
activity in an application.

The most common approach to solving a problem such as these is shown in Figure 3 - the

D
111111111

Figure 3. Solution of problem on a single processor

entire program runs on a single computer. This is "sequential" computing and is limited by
the speed of the particular computer system in use. Its advantages, on the other hand, are
manifest;

1. You do all your programming in a convenient environment with easy access
to a wide variety of prograriuning tools developed over many years.

2. The program is easy to debug using whatever high level tools are available
on the host computer

3. Program flow is simple to understand resulting in easy diagnosis of
bottlenecks.

4. When finally debugged the resulting code is probably reasonably portable
and can be executed on a wide variety of uni-processor systems with various
cost/performance payoffs.

Let us now move into the misty world of parallel computing. Suppose that one has
purchased some parallel processing system. How best to take advantage of its power? A
simple scenario is presented in Figure 4.

Using the conventional system tools available to us in the previous scenario we identify the
slowest parts of our application which would, therefore, benefit most from parallelization.
With this infonnation in hand we divide up the program into two pieces, one for the host
machine and one for the parallel processor. The host deals with the "once-only" aspects of
the code such as initialization, cleaning up and any other non-time critical tasks while the
hard work is "fanned out" to the parallel processor.

11

Sequential
computing

IIHost-Node"
programming
model

Data

Results

Figure 4. Problem decomposition for host and nodes

What does this scenario have to ofter'!

1. Significant parts of the original code remain intact and need not even be
recompiled since they will ronan the host machine. This enables a
developer to maintain a complex product but still offer a parallel processing
version for enhanced perfonnance.

2. The compute intensive parts of the problem have been given to the
"subroutine engine" - the parallel processor. The code to be executed there
can beoptimize~d for the parallel processor configuration in use,
independent of the program ronningon the host.

This picture is identical in concept to the idea of "floating point co-processors" such as
those found in most high perfonnance systems today. While the host perfonns whatever
work it is best capable of doing, the really hard stuff is sent off to another processor better
matched to its requirements. Both processors continue at their own pace and get together to
exchange data and results whenever necessary.

In Express we refer to this style of computation as "host-node" since both types ·of
computer are. involved. One of the most importantproblems.·with ·this style is that one
typically has to maintain two programs, one for the host and another for the nodes. These
are usually to be compiled in totally different manners and may be quite hard to "glue"<back
together whenevertbe programis to be run onaconventionaisequentialcomputer. In many
cases the requirement to maintain two versions ofthe same code for parallel and sequential
use is too great for many developers.

This style of programming is well suited to a wide class of applications. In particular it
provides an easy way to get going on the parallel system by minimizing the amount of
material which must be re-worked for the new machine. On the other hand it mayh:ave
certain disadvantages in the I/O area - each invocation of the subroutine farm may require
that large amounts of data.be transmitted· to the parallel.machine. which could, in fact, have

12

been generated internally.

Another programming style supported by Express, therefore, is shown in Figure 5. In this

D
111111111

Program

I/O

The Cubix
programming
model

Figure 5. Program decomposed for nodes only

model the entire application is executed on the parallel system. A set of generic server
processes are available to handle the I/O, system and graphical needs of the program. An
important feature of this style is that the entire application is maintained the same way - you
don't have to keep two compilers in mind etc.

Under Express this programming style is referred to as the Cubix model after the generic
server which executes on the host

Obviously the three figures represent various degrees of the same thing, from purely
sequential programming to a style where the entire application runs on the parallel machine.
The important point to note is that Express enforces no particular style but rather lets you
adapt your strategy to the requirements of an application. Among the points which may
influence the decision are

• Does the application require too much memory to run entirely on the parallel
machine?

• How tightly coupled to the host computer does the application need to be - are
there particular I/O devices that need rapid response?

• How much machine specific code resides in the application? Ifone has devoted
significant effort in, for example,machine coding particular parts of the
application then these might best still run on the host while other parts of the
program run in parallel.

• How important is ease of maintenance?

A very important feature of both styles ofprogramming is that Express does not affect the
environment of the host machine. This is (obviously) the feature that allows parts of your
code to run intact, but is also important since it allows you to develop the code with familiar

13

Express supports
all programming
models

Hardware
configurations

Space-sharing:
multiple users

tools•. Editors, disks etc. are all available in the usual manner. Furthermore· Express
provides you with the advanced debugging and perfonnance monitoring facilities that
allow you to actually DO effective parallel processing. '

An important feature of parallel ,programs written in Express is their machine
independence. This leads to two very important conclusions.

Parallel programs written in Express can run on machines of any size without software
changes. This means, for example, that a code developed on a development· system with
only one or two processors will execute transparently on 200 nodes with no modifications.
The only difference to the user is the hundredfold increase in speed!

Further, parallel programs written in Express are independent of the topology of the
underlying hardware system. This allows Express applications to run on a wide variety of
machines; transputer networks, hypercubes, shared memory·architectmes etc. ItaIso opens
the way to "network optimization" - on transputer systems, for example.~ one can adapt the
interprocessor network to the particular program ,being executed. The advantage of
Express in this regard is that this optimization can be done after the program is running.
Normally one would implement and debug the algorithm on some general topology and
then, using the perfonnance evaluation software contained in Express, modify the network
to achieve the best perfonnance. It is not necessary to make the network design decision in
advance.

f:! S Where can I use Express?
In the previous sections we discussed a few of the features of Express as they pertain to
developing parallel programming strategies and getting started with parallel programming.
Another important area ·is that ·of system .design - actually putting together a parallel
processing system for your application.

The simplest types of system are similar to that shown in Figure 4. One has a single
workstation attached to some sort of parallel processing system. This "entry level" system
is ideal .for dedicated programmers or embedded systems. At the next higher level,
however, are bigger systems designed for use by multiple users. After all, parallel
programming resources are not so inexpensive that theyneedn'the shared.

In a timesharing operating system environment such as UNIX or VMS, for example, a
simple solution to this. problem is shown in Figure 6. Several tenni-oals or workstations can
beconneeted .to a single hostmachine. which is itself connected to the parallel computer
sy'stem. Under Express this type of environment can be managed quite simply - users are
allocated processors according to the needs of their applications.. Each c"anrunin·whatever
mode is appropriate and the system allocates resources dynamically.

This system provides simple multi-user access to the power of the parallel computer by
taking advantage· of the operating system available on the host computer. This is entirely
consistent with the Express concept under which one uses the capabilities of the host

Many hosts • one computer rather than replacing them with another totally disjoint operating system.
pa~allelcomputer

Under single user systems such as MS-DOS or Macintosh one cannot, however, operate a
sharing system in this manner. Instead Express supports the "w'orkbench"concept shown
in·Figure7.. Several user systems are connected to the parallelcomputing resource directly

14

UNIX or VMS

Local area net.

MS-DOS terminal

Figure 6. Multi-user access under timesharing operating system

Disk Farm
~I

Figure 7. Express Workbench

rather than through any single host machine. Again Express controls access to the resource
in a dynamic manner allocating nodes as requested. Such a system might, for example, be
used in large data-base project; one machine might control overall system functions such
as backing up and starting the system while others are used as data-entry and inquiry sites.
Alternatively each could be responsible for an entirely different application.

An· important variation of this theme is also indicated in this figure - the possibility of
adding additional peripheral devices to the system. In the data-base case just mentioned one Disk/arms
might very well require additional disk space. Such devices may be attached anywhere
within the system; Express is able to locate such peripherals on the basis of system
configuration information. Furthermore one of the modes of operation of the various

IS

~

servers allows programs running on the nodes to access infonnation and/or system
resources located anywhere within the network. This means, for example, that a program
might read input .from one file system, send output to another and direct graphical
infonnation to special purpose hardware.

MS-DOS
workstation

MS-DOS
workstation

UNIX Network

~I
Disk Farm

VMS
VAXstation

VMS
VAXstation

Figure 8. Heterogen,eous parallel processing net

The·network need not be homog;eneous. In figure 8 several types of computer are attached
to a centralized parallel processing system. Many types of processor are included which
each have access lothe parallel computing resources as well as the associated peripherals.

81' Conclusions
Express is a system designed solely to facilitate the process of building and executing
parallel programs. Its features include

• Cooperates with existing operating systems to allow users the facility to
develop, debug and offer applications mnning in familiar, highly developed
environments.

• Supports a wide variety of programming paradigms; applications may run
completely ontheparallelmachi~e,orpiecesmaycontinue toexeeuteon the

16

host computer. Much of the original code can be left intact.

• The detemrlnistic nature of the parallel processing model allows us to
use intuition gained on sequential computers while writing and debugging
parallel programs.

• Able to take advantage of hardware/software developments and evolve as new
technologies appear.

• Large set of "primitive" operations allow both high-level and low-level use.
Designed by users to meet their own needs.

• Semi-automatic decomposition system allows many applications to be
parallelized with little effort.

• Guarantees scalability - No recoding necessary to take advantage of more
processors. .

• Offers the developer the assurance of portability - programs developed under
can be executed on many different parallel computer systems.

• High degree of reconfigurability allows multiple users to simultaneously take
advantage of parallel processing facilities..

• Support for multiple peripheral devices allows for the construction of
specialized networks tailored to application requirements.

• Supports both static and dynamic load balancing ofdata decomposed problems.

17

An Express tutorial

An introduction to parallel processing
with Express

/"-""]Jf;J 1 Introduction

M Parallel computing is the technique of using more than one processor at a time to solve a
computational problem. This can be anything from controlling a robot ann to updating a
spread-sheet or calculating the aerodynamic properties of a new automotive design.

In general we can imagine three reasons for doing parallel processing:

• Speed
This usually the most important motivation. The original concept of parallel
processing was to increase the execution speed of existing and new programs
by executing parts of them on different processors. If for some reason the
parallel code does not execute faster than its sequential counterpart the whole
process of parallelization can be considered a failure.

• Memory requirements.
The problems being tackled today in both scientific and business sectors are
characterized by their large size. One important limit often reached on
conventional supercomputers is the amount of physical memory available.
Large scale parallel computers offer the advantage of virtually unlimited
memory resources allowing us to attempt problems which would ordinarily be
beyond the scope of sequential machines.

• Cost effectiveness.
The developments of the last decade in VLSI and other technologies have
resulted in dramatic improvements in both the cost and perfonnance low-priced
microprocessors. The so-called "cost-performance ratio" of high-end systems
has not improved nearly as much. The result is that purely on the basis of
computing power per dollar, CPU's like the Inmos T800 Transputer, the Intel
80x86 and i860 and the NCUBE processors are markedly superior in this regard
to current mainframes and supercomputers. The crucial question is how to turn
the superior cost-perfonnance ratio into sheer perfonnance by simultaneously
utilizing multiple processors. This is the goal of parallel computing.

An assortment of computer hardware manufacturers have taken up the challenge of
building parallel hardware, ranging in size from two to several thousand processors.
University and government research groups have demonstrated that these systems can be
used to solve real problems in science and engineering in a cost-effective and efficient
manner. ParaSoftCorporation supplies a software environment for many of these systems
which is unifonn and easy to use.

The purpose of this chapter is to clarify some of the basic issues in parallel computing, and
to de-mystify some of its secrets. It is also a tutorial on the use of Express. It is divided
into two parts. The first is a low level introductory tutorial which introduces some of the
basic concepts in programs which have no real substance. The second part covers more
sophisticated examples of Express programs which each provide a basis for real
applications in both scientific and business fields.

19

Why parallel
computing?

The needfor speed

Big problems
require more
memory than is
available on
current
supercomputers

Parallel
computers use
cheaper
components than
supercomputers

A definition ofa
parallel computer

Hardwareand
software issues

Shared memory
systems

tJst:r 2 OverviewM. As is generally. the case in computer engineering, parallel computing can be divided into
two parts: hardware and software. Hardware designers are concerned, above and beyond
their usual concerns, with how to connect the processors to one another and to memory.
System software designers generally try to hide the hardware decisions from application
developers, with the least possible performance penalty, while application software
designers are concerned with splitting problems into pieces, decomposition, to make
effective use of the parallel· processor. In the following sections we will ·consider some
general features of parallel hardware, and how an application developer can use the
ParaSoft data-parallel programming environment, Express, to develop his own parallel
programs.

2.1 Hardware

Parallelprocessing Parallel hardware comprises, by definition, more than one central processing unit or CPU.
hardware On the other han~ there is more to a piece of parallel hardware than ac,ollection of CPUs.

Otherwise any home with a microwave oven and a programmable VCR might be
considered a parallel computer. The extra ingredient, that allows the processors to work
together ona single problem, is a communication medium through which data, such as
intennediate results, can be communicated.

In some systems the processors share a single bank ofmemory, as in Figure 1. This type of
architecture has the appealing property of allowing almost unlimited communication
between processors, but this generality. is not without its price. It is all too easy to devise
incorrect and unreliable communication strategies using such a general mechanism. In
addition, it is difficult (and expensive) to design the memory so it is fast enough to keep up
with the demands ofa large number of processors. Despite these issues ParaSoft's
Express··caneasily run on such shared memory systems.

Shared Memory

Figure 1. A shared memory architecture.

Another general class .of·parallel architectures, is shown in FigUre 2.This architecture is

known as a "distributed memory" system because each processor has its own private
memory store, which cannot be accessed directly by any other processor. Only one
processor has direct access to any given piece of memory. For the processors to coordinate
their efforts in this type of system they must communicate directly by actively sending and
receiving information across "links".

Designs of this type are often distinguished by the topology of the interconnection system,
e.g., hypercube, two-dimensional torus, etc. These tenns refer to the way the individual
processors are connected up with one another. It is impractical, with any more than a
handful of processors, to connect each and every processor directly to all of the others.
Instead, hardware designers provide a few direct connections (typically four to eleven) on
each processor, and the ensembles are hooked up in some regular fashion, e.g. as an n
dimensional hypercube.

Figure 2. A distributed memory architecture

Distributed
memory machines

The types of machines so far described are denoted MIMD (Multiple Instruction Multiple MIMD machines
Data) architectures since each processor executes its own instructions and operates on its
own data independently of the other nodes. This is not to say, ofcourse, that any given node
mayor may not have to cooperate with others in the network but this is algorithm dependent
rather than being imposed by any hardware model.

The last class of parallel computers are the SIMD (Single Instruction Multiple Data) SIMD machines
machines. This architecture uses of many processors which execute exactly the same
instruction (or no instruction at all) at the same time with each processor operating on its
own data. Currently Express does not run on this type of machine.

For the rest of this tutorial we will restrict our attention to MIMD machines on many of
which Express currently rons.

21

rhe role ofthe host
1rocessor

Locking and
semaphores for
shared memory

Advanced
languagesfor
S/MD machines

The flexibility of
distributedmemory
M/MD machines

Express a simple
alternative

Hiding the details
ofthe parallel
computer's
hardware

An important feature ·of typical hardware designs· is theso-ealled "hostn.This processor
provides the environment seen by programmers and users of the system., i.e., the operating
systems, editors, graphics devices,· printers, disks, network services and other features that
make up a modem computer system. The host computer is usually a personal computer,
workstation, or a mini-comp:uter..The environment is that provided by DOS, ·Unix,
Macintosh, VMS, or whatever operating system is appropriate for the particular host, with
a few low-level extensions to allow access to the parallel processor. The nature of these
extensions determines the software support fora given parallel computer system and also,
to some extent, what types of programs may be written on that machine.

2.2 Software

While parallel computer. hardware is available in a large number of fonns the associated
software is much more v.aried.

Shared memory architectures offer sophisticated "locking" and "semaphore" operations
and are currently supporting compilers which automatically parallelize certain program
features.

Programming SIMD machines typically involves either new languages designed for very
fine-grain parallelism or else modifications of existing languages such as *Lisp or C* used
on the Connection Machine.

Distributed memory MIMD machines, as might be deduced from their extreme flexibility,
support nearly all programming models. This is one of the reasons that they are believed to
promise the most in tenns ofultimate system perfonnance. Unfortunately it also means that
the potential user must choose between a wide variety of software systems.

Fortunately, the Express system provides a simple choice.

When programming with Express one uses a system comprised of

• A set of compilers for conventional high level languages such as C and
FORTRAN

• A· library of system calls which provide parallel processing primitives at all
levels of sophistication from low level message passing to automatic
decomposition and parallelization tools.

• A set of sophisticated support tools including parallel debugging and
performance analysis systems and an.automaticparallelization tool.

Tbegoal of Express is to make programming a parallel computer as much like
programming a ·nonnal sequential computer as·· possible. This allows one to .use all the
knowledge developed over years of programming in a new environment, minimizing the
amount of material and/or technique that must be learned from scratch.

One way in which this is done is to hide the details of the parallel computer in use. If you
are more than a little confused by the discussion of the previous section which showed
some of the types of parallel computer you need not worry since the Express model of a
parallel computer is that shown in Figure 3. The host and all the nodes are connected to one
another through the Express system..At the user level no account need betaken of the
clever and/or complex ways in which the hardware has been constructed - using the

Express model we can program as though every node were connected to every other.

Express

Figure 3. A parallel computer system viewed through Express

Express also offers an enonnous range ofparallel processing routines in its runtime library
in the hope that whatever operation you may wish to perfonn has already been supplied.
This obviously reduces the amount of"parallel" code that you have to write. Unfortunately,
it also increases the apparent complexity of the Express system by making the manuals
very thick! One of the purposes of this tutorial, therefore, is to point out some of the most
commonly used routines and to point you to the manual pages which you will need most.

We should obviously note that there are many other parallel processing models and
software systems than Express. Each offers its own type of parallelism and encourages
different programming styles and thought patterns.We believe, however, that Express
offers the simplest approach to parallel processing without compromising performance.

2.3 Message Passing

The above section might have made left you with the impression that Express
encompassed all parallel processing paradigms. This is partially true - you can write almost
every kind ofparallel algorithm using the tools provided by Express. The one concept that
unifies all of the Express system, however, is that of "message passing".

To understand what message passing is all about let us consider a simple model of a bank.
The are several tellers at their stations and a single line of customers waiting to be served.
Each teller is currently working on a transaction for a client.

This is a good example ofparallel processing. Each teller works on transactions for a single
client independently of the other tellers. Consider, however, what happens when the teller
is done with his customer. Several possibilities exist:

• The teller can' do nothing.

The Express run
time library

A Umessage
passing"
programming
model

No communication
usually means that
1W useful work gets
done

The shared
memory approach
leads to bottlenecks
and wasted work

A llmessage
passing" approach

The physical
structure ofa
message

Comparing the
efficiency of
possible parallel
solutions

• The teller ·can run round the counter, attract the attention ·of the.next customer
andescoIt them to their station to begin a new transaction.

• Either by voice or some other sign the teller can infonnthe next customer in line
that they are free. The customer walks up to the teller's window and beings his
transaction.

The fIrSt possibility represents the situation in a parallel processing system when none of
the nodes communicates with any of the others - nothing gets done. Eventually, ofcourse,
the bank's manager may come round to check on his tellers and, noting that one .or more
are idle, arrange service for some new customers. This, of course, means that he will have
to communicate with both the tellers and the customers. In general we can observe that it
is a· rare parallel program that can function with absolutely no communication between
processors.

The second and third possibilities (and any others that eventually serve all the customers)
exhibit a standard feature of parallel processing • how to infonn the system that more work
can be done by a certain processing unit - in this case the teller wanting another customere

The second solution, above, is characteristic of the solution adopted on shared memory
machines - i.e., those with an architecture similar to that shown in Figure 1. We assume that
the queue of customers is placed in the shared memory and each teller is represented by a
node of the machine. As soon as a teller completes a task he goes to the queue in shared
memory and fetches the next unit of work, removing it from the queue.

The third solution in the above list is typical of that used on distributed memory machines
like that shown in Figure 2. We store the queue ofcustomers in one of the nodes (or even
the host) and let the nodes dotbe·teller's work. When a teller is fmished he communicates
this fact with the machine that contains the queue ofcustomers. The node holding the queue
removes the flfst in line from his list and sends it back tome free teller..

The communication occurring in this last example is what "message passing" is all about.
The situation with the two nodes representing the teller and the processor maintaining the
customer list is shown in Figure 4. The node on the right sends out ·a message containing
the infonnation "I'm free" to the node managing the customer list. Similarly the managing
node sends back a piece of information describing the next customer in line, what
transactions he wishes to perfonn, etc.

Physically a message is a stream of bytes·copied from one.processor's memory.The teller,
for example, could create a character string in memory containing the text "I'm free"and
then send this .to the managing processor. Similarly the customer queue is probably
maintained as some sort of linked data structure. The managing node calculates which part
of this structure is required by the teller node and sends it back, re-organizing its internal
data structures as necessary to reflect the new "rust customer".

In the above discussion of possible solutions to the problem of assigning the next piece of
work it may be observed that the "message p.assing" solution is the one that gets the job
done fastest by minimizing the amount of overhead imposed on the teller in getting the
attention of the next customer. This is not coincidental.

The overheads in nsingsharedmemory machines tend to be hidden somewhat by the fact

Node a)
Manages Customer list

........

Node b)
A Teller

~

........

......
~

Figure 4. Messages in the banking system

that a piece ofcode that references memory may, in fact, involve many operations including
locking and unlocking semaphores and resolving conflicts with other processors that wish
to use the same memory. The problems are made worse by the availability of high-speed
caches on advanced architecture machines which means that further decisions have to be
made as to whether the shared data can be cached or not.

The distributed memory algorithm, however, is remarkably simple and has the benefit that
its overheads can be easily assessed by evaluating the inter node communication speed.

It is primarily for this reason that Express adopts the message passing style of parallel
processing. A further reason is that we can easily implement the message passing
programming style on shared memory architectures while the converse is very difficult.

It is important to note that, as discussed above, parallel algorithms in Express can be
evaluated by considering the size and frequency of the internode message traffic. This
allows us to make good a priori predictions of the performance of our algorithms and also
to choose effectively between several possible implementations of the same program.

2.4 Express Programming Models.

The fIrst question that crosses the mind of some,one contemplating programming a parallel
computer is "How do you keep track of which processor is doing what?" Although it is
possible to devise more complicated scenarios, the simplest, and most common,
organization of Express programs is for each and every processor to ron exactly the same
program. This is not to say that they have the same data, or even that they are executing the
same instructions, but only that the compiled program is identical in each processor. Once
the program is loaded, the individual processors can, and almost always do, distinguish
themselves and start working on different aspects of the problem. For example, in the
banking program discussed above one node would probably be distinguished by managing
the customer queue.

2S

Despite itsmessage
passing structure,
Express can
execute on all types
o/parallel
processors

Bow many
programs should I
write?

Who does the lID?

Running sequential
programs on
parallel computers

The programming
model used in this
tutorial

Another possibility is that different processors execute completely .different programs or
multiple tasks. This programming model is also supported by Express, but because it is
more complicated we will not use it in this tutorial. If you wish to learn more about this
style of programming' you should read about the KXPLOA function in the Express
Reference Manual and about the '-f' switch in the Cubix section of the manual.

Similarly we will concentrate most on the Cubix programming model· in whic.h we only
write code to ron on the nodes of the parallel computer. The host processor is taken care of
by a "universal host program" which just does what the nodes tell it. This style of
programming is the easiest to use and all but one of the examples will be written this way.
The sole exception is used to show the trade-offs between this model of computation and
that in which we write code for both hast and node processors and have the two
communicate using the Express functions. .

The whole idea behind this style of Express programming is to write o.oe sequential code
which can then execute in parallel. In this programming model only one program is needed
for the parallel machine. Furthennore this same program will usually run on any number of
processors and even on different types of parallel processors! This programming model is
probably the only one that makes any sense when we imagine programming machines with
thousands of nodes. If we had to build a separate program for each one we would rapidly
lose our ability to control such a large project.

In this model the advantage obtained from the p.arallelism occurs when different sets ofdata
are loaded into different processors. Because the data is distributed, each processor has less
work to do and the whole program runs faster. In an ideal world the program would run N
times faster when running on N processors. In reality this speedup is rarely obtained since
the processors usually need to communicate with each other (as in the banking example)
and may ,need to interact with the outside world. Both of these activities reduce the "speed
up'~ obtained.

The programming model we will be describing in this tutorial, therefore, takes the
following fonn:

- A single program is written and compiled.

- This program is loaded into one or more parallel computer nodes.

-Theprogram begins to execute in each node. ·For the most part the nodes operate
independently on their own data.

- Whenever a node requires more·data or whe~everits data needs to be updated
in.some way messages are sent.

The most important benefit of this programming model is that the underlying code is
basically the same as would be the case if it were executing on a conventional sequential
computer. We can use all our normal intuition about programs when writing, developing
and debugging the code. For this reason we can offer the following general piece of advice
when writing parallel programs with Express:

26

If you don't know what to do in a particular situation, do
what you would do in a sequential program.

It normally works!

l2 3 An Introduction to Express
As far as using the Express tools and utilities the situation is basically as shown in
Figure 5.. The system consists of a host with the parallel machine attached. The host is used

Figure 5. Express world

for program development and is where the various compilers, editors, debuggers etc. are
run. This machine executes one of the standard operating systems mentioned before: DOS,
UNIX, VMS, Macintosh, etc.The nodes of the parallel machine run the Express kernel.
An extremely important command, therefore, is the one which loads the Express kernel
into the parallel computer. This command is exinit.

This command has to be executed correctly before accessing the parallel machine. Before
exinit can be executed, however, Express must be installed and configured to run on
your particular hardware. For information on how to install and configure Express refer to
the Introductory Guide to Express for your system.

Once Express has been installed and configured you should load the system by executing
the command

exinit

Nonnally you do this by typing the above name at the command prompt. In some versions
of Express, particularly those that run in windowing environments such as MicroSoft
Windows or the Macintosh other approaches may be necessary. See the Introductory Guide
for more details.

Everything should now be ready for you to write and execute Express programs.

3.1 A note about FORTRAN I/O

Although FORTRAN programs have been consistently defying the claim of the computer

27

The operating
system ofthe host is
unchanged when
using Express

Make sure that
your hardware is
installed and
configured
correctly before
starting this
tutorial

The exercises

Use your
IntroductoryGuide
for more
information

scientist that "FORTRAN is un-portable" there is one particular area in which problems do
repeatedly arise - I/O. The various FORTRAN "'standards" all treat this somewhat
differently and the parallel I/O system contained within Express is, unfortunately, no
different. In· most cases it is possible to program as w,ould typically be done in
FORTRAN 77 - units 5 and 6 are attached to the teonina! for reading and writing
respectively and files can be opened by name with the FILE=' xxxxx' notation in the
OPEN statemenL

The one area where differences arise, even among Express implementations in is the area
of "multi"-mode input. Don't worry if this phrase means little to you at present - we
haven't, after all, started the real tutorial yet. The implications; however, are felt in the
following pages so we point out now that the exercises shown here are presented on the
assumption that "multi" -mode input is not available in your version of Express. This
meanstbat some oflbe exercises have a slightly "clumsy" feel when reading values from
the terminal that are meant to be different in each node.

We are currently attempting to correct this situation and provide a unifonn I/O layer. In the
meantime it is an instructive exercise for the interested reader to modify the text shown here
in those cases where "multi"-mode input is available.

3.2 The Exercises

The rest of this section is written in the following style. Each exercise is introduced by the
following symbol

The general fonnat of the exercises is that the purpose is explained together with the
techniques which are being exhibited. This is followed by a description of the technical
things that the program should do together with an indicationaf the manual pages
containing the necessary infonnation. This material should suffice for you to write the
indicated program yourself. In any case the text of a working program is shown which can,
if you wish, be copied onto you machine. We also discuss the execution of the program and
any specialfeamres of its operation..

The comments about the compilation are deliberately vague in this· text. All but one of the
examples is a simple Cubix program and you should be able to find out the details of the
compilation process by reading the section "Compiling a·· fIrSt· program" of your
Introductory Guide. Similarly we will not mention the initialization process again. If your
programs have bugs, however, you may need to re-initialize the Express kernel with the
exinit command. This can be done at any time.

Exe'rcise·l. Hello World.

The objective of this exercise is to write a program to print the immortal string "He110

Wor1d" from the nodes ofthe p'arallel processor. This program will execute on any number

ofnodes and will exhibit some of the features of the parallel I/O system built into Express.

In order to write this program we can use our intuition about sequential programs as
suggested in the preceding comments and just write the code as we nonnally would for a
sequential computer.The one additional "catch" is that we have to include a call that
initializes Express. To do this make the fIrst line in the program a call to the Express
library subroutine KXINIT. As far as this program is concerned this function call doesn't
really do very much and it has no observable side effects, other than the important one - the
program won't run without it! In a later exercise we will have cause to use the common
block which is actually set up by this call - read the manual page for mode details.

The following is probably similar to the code you should use.

PROGRAM EXl
c
C-- Start up Express
C

CALL KXINIT
C

WRITE(6,*) 'Hello World'
STOP
END

Program 1. Code which prints the immortal text "Hello world".

To make things a little more concrete let's assume that you have written this program in a
file called exl • f with some standard editor or word processor. To compile this code for
use on the parallel system we have to execute one of the compilers. Furthermore we must
tell the system that the program being compiled is to be used in the Cubix programming
model and should be linked with the appropriate libraries.

While the command to do this varies from system to system a typical version would be

tfc -0 exl exl.c -lcubix

To execute this program we should again consult our introductory guide - the section called
"Running Programs: Cubix or Not?" contains instructions on how to run Cubix programs.
I~ general, however, we can execute this program on a single node by typing a command
similar to

cubix -nl exl

In this command cubix is the name of Express I/O selVer which will load the program
into the parallel machine start it running. It also perfonns the I/O and system seIVices
requested by the nodes. The '-nl' switch indicates how many nodes should be used.

If you run this program you should see, printed on the screen, the text

Hello world.

Try running the program on different numbers ofprocessors by changing the value after the
'-n' switch in the above command. Notice how the string "Hello world" appears only

29

Always remember
to call KXINIT in
Express programs

Some rough notes
about compiling
and linking this
program

.. and afew about
running it

Only one line of
output, even when
run on 200 nodes

Runningsequential
programs in
parallel

Why there is only
one line ofoutput
the Express lID
modes

once however many nodes .we use.

While this program hasn't demonstrated any great parallelism so far it has illustrated some
very important points about Express and the parallel I/O model.

One of the most powerful features of Express is that this program, and virtually any other
sequential program that would run· on the host processor, can be ron on the parallel
processor even though it contains system calls that operate on the file system and tenninals
attached to the host processor. Express allows you to execute all of the system calls of the
host operating system directly from a parallel program. These features p~vide an
environment for the parallel program that is an extension of the programming environment
on the host processor.

While this is an extremely important observation the exl program actually shows·more ..
the parallel features of the Express I/O system.

If you ran the ex1 program on multiple processors then you probably noticed that the
output of the program did not depend on the number of processors which took part in
executing the program. One of the most important features of the Express I/O system is
that units are always in one of three "modes'"': single, multiple or asynchronous.

These I/O modes are tailored to the general observation that the parallel computer system
generally has several computing nodes but only one or two hosts. As a result we encounter
three common situations.

Single mode

Multiplemode

Asynchronous
mode

38

1.

2.

3.

Each processor prints the same message to the host at the same time. This
is very common when a program starts and asks for parameters. In this case
each program will usually want the same parameters and there is no reason
to see the same prompt·from all processors. In this case Express prints the
message from· the ftrst proces.sor, synchronizes all other processors and
checks that the message is really the same in.aU processors. (It aborts if not)
This means that a WRITE statement in this mode is a barrier. It is executed
in a "loosely synchronous" fashion - each processor waits until all other
processors execute this call. This is called "single" mode and is the default
mode for all units when Express programs start This is why only one line
of output is generated from the exl example irrespective of the number of
nodes used

Each processor. wants· to send .·different·data .but·all processors wish to
contribute. In this case. each processor puts data in its internal buffer which
is not output until a KFLUSH call is executed.This call forces the·processors
to empty their I/O buffers in order of increasing processor number. This
means that data from processor number 0 appears fIrSt followed by data
from node 1, node 2, etc. Again the KFLUSH system call is a barrier
requiring a "loosely sy.nchronous" call. On the other hand individual
"writes" to a unit in this mode can be made at will. This mode is called
"multiple" and is generally used to dump data to units or displays in an
orderly fashion.

Each processor sends data totally independently. In this mOOe I/O
statements can be .executed on different processors at any titneand cause

output to be sent to the outside world whenever executed. This mode is
called llasynchronous" and is mostly used for reporting errors. It is difficult
to use for backing up/restoring data because the unpredictable order in
which data is placed in a unit makes it difficult to restore.

As we mentioned before every unit in Express is in one of these modes.While the above
discussion has been mostly concerned with output the modes also apply to input and
general system calls. For example single mode input means that the data read on the host
will be automatically broadcast to all processors. It is important to note, however, that the
I/O mode is associated with each unit, rather than the system as a whole. This means that
you can have one unit in "mult,:" mode while the others are still in "single" mode.

I/O modes can also be changed after a unit is open. While the default is to open a unit in
"single" mode the following system calls can be used to modify its behavior

KSINGL (UNIT) sets the indicated unit to "single" mode.

KMULTI (UNIT) sets the indicated unit to "multiple" mode.

KASYNC (UNIT) sets the indicated unit to "asynchronous" mode.

Exercise 2. A Parallel Hello World.

If you make no effort to request some kind of parallel behavior, the result of running a
program under Express will be indistinguishable from running the same program on the
host. This leads us to our next example, in which we begin to explore parallel programming.

The objective of the next program is to master the Express I/O modes and learn how
processors can distinguish each other.

If you wish to write this program yourself it should do the following:

• Call KXINIT.

• Read a value from unit 5 in and print it in "single" mode.

• Find the unique "processor number" assigned to each node and print it and the
result of multiplying it by the number entered in step 1, in "multi" mode.

To complete this exercise you will need to understand the various I/O modes discussed in
connection with the previous exercise. More details can be found in the manuals pages for
KMULTI, KSINGL and KASYNC.

To fmd out how processors can identify themselves we need the KXPARA system call
described on the manual page of the same name. This routine requires a single argument
which is an array of four INTEGERs. It assigns values to various elements in the array of
which the most interesting are the first two. The fIrst is the "processor number" of the node
making the call and is used to number the nodes 0, 1, 2, etc. The second is the total number
of nodes taking part in the current execution of the program.

Sample code for this exercise is shown below.

PROGRAM EX2

31

Getting runtime
information about
the system
KXPARA

Learning more
about the 110
system by omitting
parts ofthis code

c
INTEGER ENV(4)

c
C-- Start up EXPRESS
C

CALL KXINIT
c
c--- Get runtime parameters
C

CALL KXPARA (ENV)
C
C-- Read a value
C

WRITE(6,*) 'Enter a value'
READ(S,*) IVAL

C
C-- Now have each processor identify itself and do
C-- some simple arithmetic
C

CALL KUMLTI (6)

WRITE(6,lO) ENV(l), ENV(l), I VAL , ENV(l)*IVAL
10 FORMAT (lX, 'I am node',I4,' and ',I4,' times',

$ I4,' equals ',I4)
CALL KFLUSH(6)

c
STOP
END

Program 2. Code which reads and prints numbers from different
processors.

If you compile.and run this program in the same manner as described for the frrst exercise
you will notice an important difference - the "multi" mode I/O requests operate in a
different way in each node.

If you wish there are several iInportant things that 'can be done with this code to exhibit
important features of the I/O modes.

• Try leaving out the ·cal1 to KMULTI(6J. before· printing the last message.
cubixwill abolt with a message that you have violated the "loosely
synchronous" constraint. This is because you would have attempted to print out
non-identical strings in "single" mode. This is a very common error.

• Try leaving out the call to KFLUSH (6) at the end of the program. Notice how
it still runs correctly. This is because the STOP statement at the end of the code
implicitly flushes all open units. Verify that some fonn of "flush" is necessary
by replacing the call to STOP with another READ. Now the program stop:s and
waits for. your •input before printing the .identifying infonnation from .. the

32

previous WRI TE which is still buffered inside the nodes.

This example illustrates a very important point - we can run sequential programs on parallel
computers but need to make small modifications in order to extract the parallel behavior.
One of the advantages of Express is that the library of utilities available to the programmer
is sufficiently large as to make the task fairly straightforward.

Exercise 3. Matrix by Vector Multiplication.

Although it may seem that little has been learned about parallel processing so far the I/O
modes in Express are powerful enough to allow us to implement a simple matrix-vector
multiplication routine.

We will multiply a matrix with N rows and M columns by a vector with M entries. This
program will operate on vectors of any size, M, and runs on N processors. For now this is
a real restriction - we cannot use this code to multiply matrixes oforder 100 unless we have
100 nodes. Nonetheless this code is quite instructive and when we have learned about the
semi-automatic decomposing tools in a later exercise it will be a simple matter to relax the
restrictions of this code.

To solve this problem we need to have some idea of how the data will be distributed among
the processors. The process of assigning values to nodes is known as "decomposition" and
is of central importance in designing and implementing a parallel algorithm. So important
is this issue, in fact, that Express provides a library of routines for perfonning commonly
occurring decompositions automatically.

In this case we will distribute the matrix and vector data so that each processor has one row
of the matrix and all the vector entries. The resulting decomposition is shown in Figure 5.

Using the I/O
system to distribute
data among
processors

-

-

Processor 1

Processor 2

Processor 3

Processor 4

-

-

- - Vector.
Mentries,
contained
in every
node.

Matrix.
NxM entries,
Distributed, one row per node. .. -

Figure 5. Data distribution for matrix vector multiplication

33

The important question in this exercise is how to actually achieve· this data distribution
i.e.., how can we get the data to the node which is supposed to read it?

The simplest way is by using different I/O modes.

Becau'se the vector is lObe duplicated in every. node we can read it in "single" mode. The
matrix, however, need to be distributed cyclically, the fIrst to node 0, the next to node 1,
etc. This is exactly the way we would naturally get the data if read in "multi" modee As we
mentioned in the inttoduction to this section, .however, "multi"...mode .input may not be
available in your version of Express. In this case the entries can be read in "single"-mode
and stored cyclically by looking at the node's processor number.

Once the data is in place we can perfonn local operations to calculate individual entries in
the matrix-vector product which can then be printed in "multi" mode.

The basic program outline is, therefore:

• Call KXINIT.

• Find how many processors are in use and use this value as N, the number of
rows in the matrix.

• Prompt for the value, M, the length of the vector.

• Read the vector from unit 5 in single mode, automatically generating a copy in
each node.

• Read the matrix elements from unit 5 in "multi" mode, if available. H not, read
the values in "single" mode and store them.in the local array by comparing the
loop index with the processor number.

• Perform the local matrix-vector multiplication and send the results to unit 6 in
"multi" mode.

Since this code uses only those features of Express which we have already learned no new
manual pages need be consulted to write this code.

Sample code is shown below.

PROGRAM MATVEC
c
c-- This·· value is the maximum size matrix/vector this
c-- code can deal with. It can be any value.
C

PARAMETER,(MAXVEC=20·)
INTEGERENV(4)
REAL VECTOR (MAXVEC), MATRIX (MAXVEC), VALUE

c
C-- Start Express
C

CALL KXINIT
c
C--- Getenviroment

34

C

CALL KXPARA(ENV)
C
C-- First get size of the vector
C

WRITE(6,*) 'Enter size of vector, please'
READ(S,*) ISIZE
IF(ISIZE .GT. MAXVEC) THEN

WRITE(6,*) 'Vector too big, max is', MAXVEC
STOP

ENDIF
C
C-- Ask for vector and read it in single mode.
C

WRITE(6,*) 'Please enter vector entries'
C

c-- Read vector
C

READ(S,*) (VECTOR(I), I=l,ISIZE)
C
C-- Ask for matrix.
C

WRITE(6,10) ENV(2)*IS1ZE
10 FORMAT (IX, 'Please enter', 16, 'matrix elements')

C

C-- If your system has multi-mode input use it here.
C-- If not store the elements cyclically.
C

MYLOC = 1
DO 20 I=1,ENV(2)*ISIZE

READ(S,*) VALUE
IF(MOD(I, ENV(2» .EQ. (ENV(l)+l» THEN

MATRIX (MYLOC) = VALUE
MYLOC = MYLOC + 1

ENDIF
20 CONTINUE

C
C-- Now data is in processors. Perform
c-- multiplication.
C

VALUE = 0.0
DO 30 1=1, ISIZE

VALUE = VALUE + MATRIX(I)*VECTOR(I)
30 CONTINUE

C
C-- Switch output to multi-mode and print value and

35

llGlobal"
operations greatly
simplify common
programming tasks

c~- processor ide
C

CALL KMULTI (6)
WRITE(6,40) ENV(l), VALUE

40 FORMAT (lX, 'I am node " I4, , with result ., FIO.4)
C
C-- Do not forget to flush
C

CALL KFLUSH(6)
C

STOP
END

Program 3. Code which multiplies matrix by vector, in parallel.

The above code demonstrates an important pan of Express parallel programming model:
the same sequential program is executed by all processors and parallelism is achieved by
distributing data and having each node work on a fraction of the whole problem.

The only messy part of the code is that surrounding the "20" loop in which we have to
perform a little "modulo" arithmetic to store values into our local arrays. This can be
avoided altogether if your version of Express supports "multi" mode input.

Exercise 4. A Parallel Sum.

When writing programs that use the data distribution techniques, just shown, we need to
extract some property of a set of data that is distributed across a number of processors. A
good example might be 'an average or maximum of a set of values. Since this type of
operation is so common Express has a function in its runtime library which generalizes
this concept for parallel processors.

This function, KXCOMB, is just one of a set of "global" functions which apply commonly
occurring parallel operations to data sets distributed among processors. You might be
interested in reading the manual pages for KXCOMB, KXCONC, KXBROD and KXCHAN in
the Reference Manual for more details·· and examples of their use.

In this exercise we will demonstrate the use of the KXCOMB function be assuming that we
need to calculate the global sum of a set of values distributed among the processors.

The basic steps required by the program are

• Read in a data set and distribute it among the nodes.

• Execute KXCOMB to make the sum global.

• Print the results.

This function is thefU"St explicit "message passing" routine that we will use. In the previous
exercises we managed to create parallel programs merely by exploiting the capabilitie,s of
the I/O system. Now we must use the actual routines that implement "messag,e passing".

36

The KXCOMB function has seven arguments:

• A pointer to a buffer containing data to be "combined". In our case this will be
the local sum which we wish to make global. KXCOMB will overwrite the data
pointed to by this argument by the global value obtained by combining with the
other nodes.

• A pointer to a function which combines individual data items. This function
should be written by the user and is called internally by Express to combine
elements of the array pointed to by the first argument. In our case this function
will add values together. Note that it is essential that this routine be typed
EXTERNAL in the FORTRAN routine which calls KXCOMB. If this is not done
the FORTRAN compiler will make up a variable with the indicated name which
will not do anything useful and will probably cause your program to crash
horribly.

• The size of an individual data item.

• The number of items to be combined. KXCOMB allows many values to be
operated on in a single function call. In our case we wish to combine only our
local sums, a single item.

• The number of processors contributing to the global operation. In our case we
wish all the nodes to combine their sums so we use the special value IALNOD
defined in the XPRESS common block which is set up by the initial call to
KXINIT.

• A list of processors. This argument is only used if we wish to combine results
from less than all the nodes, In our case we can safely make this argument O.

• A message type. All Express messages carry types and all the message passing
functions require this parameter. In general this argument is used to prevent
confusion between overlapping messages but since our program will only be
sending a single message its value is irrelevant. We could choose any value
between 0 and 16383 (inclusive).

The function pointed to by the second argument to KXCOMB is very important since it
indicates exactly what operation will be perfonned when KXCOMB is called.

This function, which must be supplied by the user, will be called with three arguments. The
frrst two are "items" in the same sense as passed to the original call to KXCOMB. These can
be anything from simple integers to complex structures or arrays. The user function must
apply some combining operation to these two items, overwriting that pointed to by the fIrst
argument. The third argument supplied to the user routine is the "size" value passed as the
third argument to KXCOMB.

A final important detail concerns the value which should be returned by the user routine -
. if this value is different from 0 the system assumes that some sort of error has occurred and
aborts the KXCOMB operation.

In the above argument list some mention was made of a common block called XPRE SS. As
promised when discussing the KXINIT subroutine in the frrst exercise this is the important

37

The arguments to
KXCOMB

The user supplied
function is the key
to the operation of
KXCOMB

TheXPRESS

common block is
set up by the call to
KXINIT

function of the KXINIT function call. The common block has tbefollowing declaration

COMMON!XPRESS!NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
INTEGER NOCARE, NORDER, NONODE, IHOST, IALNOD, IALPRC

The various entries in this structure are discussed in the Express chapter of the User's
Guide and also in the introduction to the runtime library in the Reference manual. In this
exercise we are only interested in the special value IALNOD which is a "magic" value
which indicates to Express that the combining operation we are doing should be applied
to alltbe nodes running the program.

This discussion has probably made the use ofKXCOMB seem very complicated. In practice,
however, it is very straightforward as the code for this exercise shows.

PROGRAM COMBINE
INTEGER ENV(4), TYPE, ADD
EXTERNAL ADD
INTEGER MYVAL, VALUES (l28)

C
COMMON/XPRESS/NOCARE,NORDER,NONODE,

$ IHOST,IALNOD,IALPRC
C

DATA TYPE/lOO/
C

C-- Start up EXPRESS and initialize common block.
C

CALL KXINIT
C
C-- Get runtime parameters
C

CALL KXPARA(ENV)
C
C-- Ask for input values. If you have multi-mode input
c-- use it here. If not read everything and pick out
c-- a value for "this" node.
C

WRITE(6, *) 'Please enter', ENV(2), 'values'
READ(5,*) (VALUES (I) , I=1,ENV(2»
MYVAL = VALUES (ENV (1) + 1)

c
C-- Switch to multi mode so that each processor can
C-- print the value it has selected. Don't forget to
C-- flush the output.
C

CALL KMULTI (6)

WRITE (6, *) 'Node' ENV(l), 'selects " MYVAL
CALL KFLUSH(6)

C
C-- Now add up everybody's number with KXCOMB
C

ISTAT = KXCOMB(MYVAL, ADD, 4, 1, IALNOD, 0, TYPE)
C
C-- Switch back to single mode and print the result
C

CALL KSINGL(6)
WRITE(6,*) 'The sum is', MYVAL
STOP
END

C
C-- This is the funciton that will be called internally
c-- by KXCOMB. Note it overwrites the first argument and
C-- returns O.
C

INTEGER FUNCTION ADD(I1, I2, SIZE)
INTEGER II, 12, SIZE

C
II = II + 12
ADD = 0
RETURN
END

Program 4. Parallel sum

Note that we only combine a single value from each node in this example. If we had an
array of values we could fmd the sum of the entries in each "slot" by increasing the number
of "items" in the call to KXCOMB.

An extremely important fact about this program is that no reference has been made to the
underlying hardware topology. As a result this program runs on any type of parallel
computer with any hardware configuration. This behavior is typical of the high level
utilities supplied with Express - most common parallel processing operations have
corresponding routines in the runtime library making life much simpler for the developer
of parallel programs.

Exercise S. A Host • Node Program.

up to now all the programs presented have used the Express I/O setver Cubix. As can be
seen this type of prognunming is quite straightforward but it has some restrictions. The
most serious of these is that it only provides basic operating system facilities to the node
programs - it cannot and does not support all the different types of graphics libraries or
every type ofdata-base interface. Further, by placing all the code for your parallel programs
in the nodes of the machine you lose direct control of the host If your program needs to
have direct, low level, access to peripheral devices, for example, another programming
model may be more appropriate.

39

This program runs
on any parallel
architecture and
any number of
processors

The restrictions of
the Cubix
programming
model

The alternative
(Ihost-node"
programming
model

Allocating and de
allocating nodes~·

loading programs

Express provides for these cases by allowing you to use the "host-node" programming
model. In this type of program you extract the compute-intensive aspects of your
application and execute them on the parallel computer nodes. The interface or control
portions of your code remain on the host computer. The interrace between these two
program is provided by Express function calls which allow data to be transferred between
host and nodes as though the host computer were just an additional node in the parallel
computer network. In this way an existing piece of code can be maintained almost
completely intact - only a small portion is extracted and parallelized.

In this exercise we will construct a "host-node" version of Exercise 4. This will show us
some of the features of this programming model and will also illustrate some of the draw
backs associated with this model.

The basic idea of the system is that the host program will allocate a number of nodes in the
paraDel machine and download the separatelycompUednooe program. It then reads the
values to be summed and sends them to the nodes. Finally the host reads back the sum and
prints it out. The node program merely waits for values to appear from the·host, adds them
up and sends back the sum. All communication between host and nodes and among the
nodes is done with Express system calls.

The basic outline for the host program is, therefore

• Call KXINIT

• Prompt the user to enter the number of nodes to use.

• Allocate this many nodes.

• Download the node program.

• Read ,data values from the tenninal and send one to each node with the Express
KXWRI T routine.

• Read the sum from the nodes with KXREAD and print it.

• De-allocate the nodes.

The new routines whose manual pages you may wish to examine at this point are KXOPEN
and KXLOAD which are responsible for the second and third items above - allocating node.s
and loading programs respectively. The routine KXCLOS. performs the node de-allocation
procedure and has.its own manual page. The·· basic node· to node communication routines
are described in the manual pages for KXREAD and KXWRIT and the issue of sending
messages to host processors is discussed in the Express section of the User's Guide.

The node program must penonrlthe·following steps

• eaU'KXINIT

• Identify processor numbers by calling KXPARA •

• Read values from the host with KXREAD.

• Calculate the global sum with K.XCOMB.

• Node 0 sends back the sum with KXWRI T.

Notice that in the last step only node 0 sends back the reply. This is a typical technique
when using the "global" communication functions in this way - if every node were to send
the sum back to the host we would have to read many superfluous messages all containing
the same infonnation. To prevent this we merely pick out one node to send the message.

The new communication routines in this exercise, KXREAD and KXWRI T both expect four
arguments:

• An array containing the data to be sent (KXWRI T) or into which the incoming
data should be placed (KXREAD).

• The number of bytes to be transmitted (KXWRI T) or the maximum number of
bytes to be placed in memory (KXREAD).

• An integer variable containing the processor number of the node to which
communication is being perfonned. To communicate with the host processor
we use the special variable IHOST defined in the XPRESS common block.

• A pointer to an integer variable containing the "message type" to be used for this
communication. This value can be any positive number less than 16384 and is
used to differentiate between overlapping communication requests. Since this
exercise has no such communication we need not worry. Nevertheless we
follow the general practice of assigning one message type to the input phase of
the program and another to the output messages.

You now have all the basic information required about the communication routines
required to program this exercise. Unfortunately there is a hidden "catch".

The most tricky problem arising from the "host-node" computation model concerns the fact
that the I)ost processor and the node CPU's are rarely the same type of microprocessor.
Consider, for example, a transputer system (INMOS) with a Sun workstation or Macintosh
host (Motorola), or an NCUBE machine (proprietary chip) with a Sun workstation host. In
these cases we have to be concerned with the bit-structure of the quantities that we
communicate between the host and node processors.

The simplest issue to deal with is that of "word length". An INTEGER on the host, for
example, is sometimes 16-bits while the nodes most commonly use 32-bit integers. This
problem is simply dealt with by choosing data types ofmatching lengths. Typically floating
point numbers already match so the only issue is to use "INTEGER* 4" variables for

. communicating integer values since these are nonnally 32-bits on all machines.

The second issue concerns the order of the bytes within a word. Machines such as PC's
store. the least significant byte of a word at the lowest memory address while Motorola
microprocessors such as are found in Sun workstations store the most significant byte at the
lowest address. The consequence of this is that "byte-swapping" must be perfonned when
communicating data between microprocessors with opposite byte ordering. To help in this
task Express provides a set of library routines (KXSWAB, KXSWAW, KXSWAD) to perfonn
these functions in both host and node processors. Note that "byte-swapping" twice results
in the same result as not swapping at all so if you are working on a system that requires byte
swapping be careful to do it either in the host or in the nodes but not both!

Up to now Cubix has taken care of all these problems for us because we have been careful

41

The most basic
communication
routines: KXREAD
andKXWRIT

Communicating
with a host

The problems of
"host-node"
programming

Different numbers
o/bytes/or
variable types such
as INTEGER

Byte ordering
within variables

Cubix has similar
problems ifwe use
binary 110 rather
than ASCII

lID from node
programs

to use "fonnatted" (i.e., ASCll) I/O. In this case all the internal transfonnations, are
performed automatically by Express. If we had opted to use binary I/O in any of the
examples we would have had to face this problem because Express does not attempt to
"byte-swap" binary data.

A last but VERY IMPORTANT point about the "host-node" programming model is that
the node program should not do any 110. This means that system calls such as OPEN,
CLOSE, READ, WRITE should be restricted to the host program. All I/O to the nodes should
actually be performed in the host and the data sent, as messages, to the node program. This
restriction is caused by the fact that the cubix I/O process which we previously used to
run ourprograms will not nonnally be running when we execute our "host-node" program
and I/O requests cannot be serviced. If your host has a real "multi-tasking" operating
system such as UNIX it is actually possible to have both thecubix I/O process and your
user "bost" program run at once. In this case youeall have the best ofboth worlds - parallel
I/O from every node and the host program. The technique involved in setting up such a
system is described on the manual page for KXSHAR and is also discussed in the chapter
"Multi-host systems" in the User's Guide.

At this point you have all the infonnation necessary to write the "host-node" programe
Unfortunately the complications do not end here. The procedures necessary to compile and
link this code are also different from those so far encountered.

Compiling the node For the node program the process is quite similar to that already used and you should be
part of Clhost- . able to find the details in the Introductory Guide. Basically the only change is to omit the
node" programs switch which previously linked in theCubix libraries. Thus a command which was

previously

tfc -0 foo foo.c -lcubix

Compiling the host
part of·t~host·
node" programs

would probably become

tfc -0 foo foo.c

in which no "library" switches are given. This is a very important point .. ifyou accidentally
link in the Cubix libraries you will generate a program that won't run.

Compiling the host program is fairly straightforward. Essentially you use the conventional
compilerllinker that.would be used to generate any other program running on the host but
link in special'.libraries.,containing .. the· Express interface routines. The Introductory Guide
has all the details.

Finally we execute the host program just as we would any other program running on the
host computer.

In this section we actually have two program pieces to present since the host and node parts
of the prognun will be compiled and linked separately. Since the node program is quite
similar to those already presented we show it fust.

c
C-- NODE PROGRAM for global addition of a set of values
c-- sent from the host processor.

42

c
PROGRAM NODE
COMMON /XPRESS/ NOCARE, NORDER, NONODE,

$ IHOST, IALNOD, IALPRC
INTEGER ENV(4), ADD, TYPE, SRC, DEST
INTEGER*4 MYVAL
EXTERNAL ADD

c
c-- Initialize XPRESS common block.
C

CALL KXINIT
e
e-- Get enviroment information - processor ide
e

CALL KXPARA(ENV)
c
e-- Read data from the host. Use IHOST as message
C-- source, from XPRESS common block.
C

TYPE = 101
SRC = IHOST
ISTAT = KXREAD(MYVAL, 4, SRC, TYPE)

C
c-- Call KXCOMB to perform summation.
C

TYPE = 100
ISTAT = KXCOMB(MYVAL, ADD, 4, 1, IALNOD, 0, TYPE)

C

c-- Send result to the host if node 0
C

IF(ENV(l) .EQ. 0) THEN
DEST = IHOST
TYPE = 102
ISTAT = KXWRIT(MYVAL, 4, DEST, TYPE)

ENDIF
C

STOP
END

C
C-- Function used for addition, inside KXCOMB
C

INTEGER FUNCTION ADD(I1, I2, SIZE)
INTEGER I1, I2, SIZE

c
I1 = I1 + I2
ADDF = 0

43

Replacing 110
statements with
communication
calls .. a common
scheme in l~host ..
node" programs

RETURN
END

Program 5. Node program for parallel sum

Most of this code should look fairly familiar. The new features are the cans to KXREAD and
KXWRI T which replace the calls to READ and WRITE in the Cubix version of this code.
They are now responsible for getting the data to be combined from the host and sending
back the sum.

The other interesting point is the explicit use of INTEGER* 4 as the type of the MYVAL
parameterinvolved in communication between host and nodes. As indicated previously we
must carefully match the length of the data objects used in the two processors and so we
choose the INTEGER* 4 type for this exercise.

A fmal point to notice is that the first argument to both KXREAD and KXWRI T is a single
variable (MYVAL) in this code despite the fact that our previous notes said that this
argument should be an array. This is due to the fact that FORTRAN passes arguments to
functions in the same manner whether they are simple variables or arrays - you can use
either.

The code for the host program has a fair amount of superficial complexity associated with
the (de)allocation of the processors which will perfonn the calculations for us. It is shown
below.

C
C-- HOST PROGRAM for calculating the sum of a set of
C-- values by sending them to the nodes.
C

PROGRA HOST
COMMON /XPRES/ NOCARE, NORDER, NONODE,

$ IHOST, IALNOD, IALPRC
INTEGER ENV(4), PGIND, SRC, TYPE
INTEGER*4 MYVAL
CHARACTER*80 PRGNAM, DEVICE
PARAMETER(PRGNAME='node',DEVICE=='!dev!transputer')

c
C-- Initialize EXPRESS and common block.
C

CALL KXINIT
C
C-- Get number of processors of" nodes to use.
C

WRITE(6,*) 'How many node do you want to use?'
READ(5,*) NPROCS

C

C-- Get access to parallel amchine
C

44

PGIND = KXOPEN(DEVICE, NPROCS, NOCARE)
IF(PGIND .LT. 0) THEN

WRITE(6,*) 'Failed to access', NPROCS, 'nodes'
STOP

ENDIF
c
c-- Load node program to parallel machine
C

ISTAT = KXLOAD(PGIND, PRGNAM)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'Failed to load node program',PRGNAM
STOP

ENDIF
c
C-- Ask for different number for each processor
C-- and send to processors
C

WRITE(6,*) 'Enter " NPROCS, 'values'
DO 10 I=1, NPROCS

READ(5,*) MYVAL
C
C-- Swap bytes if necessary. (Asume INTEGER*4 is 4 bytes>
C-- and then send to the appropriate node.
C

CALL KXSWAW(MYVAL, MYVAL, 4)
TYPE = 101
ISTAT = KXWRIT(MYVAL, 4, I, TYPE)

10 CONTINUE
C
C-- Read result from processor 0
C

TYPE = 102
SRC = 0
ISTAT = KXREAD(MYVAL, 4, SRC, TYPE)

C
C-- Swap bytes if necessary.
C

CALL KXSWAW(MYVAL, MYVAL, 4)
C
C-- Print the result
C

WRITE(6,*) 'The result is', MYVAL
C
C-- Do not forget to release nodes
C

ISTAT = KXCLOS(PGIND)

45

Specifying the
name ofthe
hardware device to
use

Byte swapping

A more complex
strategy for byte
swapping

C
C-- exit
C

STOP
END

Program 6. Host program for parallel sum

Important features of the host program are the ·allocation of the processors with the
KXOPEN system call and the loading of the node program with KXLOAD. The first
argument to KXOPEN indicates the name of the parallel computer device which you wish ,
tc)' use. This name depends on what sort of hardware you have available - the manual page
for KXOPEN contains a list of currently supported devices and their names.The second
argument to KXLOAD is the name of the node program and must correspond to that used
when compiling the node code. In this case we have assumed that the program to be loaded
has been called "node".

Notice that we again use INTEGER*4 to ensure that data objects communicated between
processors will have equal length.

The other important feature of the host program is contained in the lines

CALL KXSWAW(MYVAL, MYVAL, 4)

As promised earlier these lines contain "byte-swapping" function calls to transfonn the
data representation of the host to that of the nodes. If your hardware does not require "byte
swapping" you can omit these lines.

A slightly trickier alternative which is to arrange for the host and node programs to
exchange a 32-bit value with a predetennined bit pattern when the code starts up. (The
hexadecimal value Ox12345678 is a good candidate) From this. one can often deduce
whether or not "byte-swapping" is necessary allowing decisions to be made at run-time.
The advantage of this scenario is that you don't have to think about adding or deleting calls
to the "byte swapping" routines when compiling for a new machine.

An informative exercise results from omitting the byte swapping in one of the cases where
it is necessary -the resulting "garbage" printed at the end of the program is quite
characteristic· and you will quite readily recognize it in future occurrences.

This exercise has probably convinced you that "host-node" programming is too difficult for
real work and you should stick to the ·Cubix model. In common with many contrived
examples,however,this exercise has demonstrated almost every feature and complexity of
the "host--node" programming style without adding any real substance in the fonnof a real
program that accomplished some real task. Furthennore the additional lines of code which
allocate, load and de-allocate the parallel computer nodes are virtually identical in every
"host-node" application and can be simply copied from one to another. As a result we
believe that the "host~node" computation model can easily be used in real applications and
often offers substantial benefits in tenns of the amount of code that canbe·reused - often
without even recompiling it.

In the next exercise we return totheCubix model ofcomputation to<demonstrate the semi-

automatic decomposition system contained within Express. These tools provide the basis
of a huge number of successful parallel codes and their study is an important part of
learning about Express.

Exercise 6. The "Ring" program. Automatic decomposing tools.

So far in this tutorial we have written parallel programs that used the fundamental I/O
modes and the "global" communication routine KXCOMB to achieve parallelism. While we
have already written quite important parallel algorithms we must, sooner or later, address
the issue of interprocessor communication.

Specifying
processor numbers
when using
Express routines

A problem with a
Illogical topology"

A idealizedparallel
algorithm which
doesn't worry
about the hardware

The basic message passing routines KXREAD and KXWRI T that were introduced in the last
section had, as their third argument, an integer value containing the processor number of
the node with which we wished to communicate. In the "host-node" program just presented
the situation was really rather simple - the nodes only communicated with the "host"
processor while the host dealt with each node in turn. The assignment of the node argument
was quite straightforward, and could furthennore be made in a manner that did not depend
on the topology of the parallel hardware in use.

The reader might be wondering how, in general, we are going to continue this practice as
the underlying problem becomes more complex.

In this section we will begin to resolve this issue by considering the following problem:

Each node is required to take a simple message and circulate it, in the most efficient manner
possible, through each of the other processors in our network. The result should be that
every node has seen the message originating in every other node.

Lest the reader think that this is a frivolous exercise we might point out that this algorithm
is the basis for a large fraction of the interesting physical simulations - gravity, melting, etc.
are all processes controlled by the need for such an algorithm.

A particularly elegant solution to this problem requires thinking of arranging the
processors, logically, in a "ring" as shown in Figure 6. Each processor is assigned a
"forward" and "backward" neighbor with whom it communicates. The basic algorithm,
therefore, is the following

• Send the message originating from this node to our "forward" neighbor.

• Repeat N-l times the process of reading the message from our "backward"
neighbor and forwarding it to our "forward" neighbor.

A minute's thought should be enough to convince the reader that this process does, in fact,
result in every node seeing the messages originating in every other node as required by the
problem statement. Note, however, that the nodes do not necessarily have to be connected
in the ring pattern by me hardware - we only imagine them to be so for the construction of
our algorithm.

Assigning
The question, therefore, is the assignment of the "forward" and "backward" processor processor number
numbers which will be required in the Express system calls required to send and forward for the tiring"
messages. One simple solution is to use the numbers assigned by the KXPARA function - if topology

47

---BIII88~". Messages sent to NEXTNO.

----~.. Messages sent to BACKND.

-,.._.-.:.:'Iaa--,,'
Figure 6. Commun,ication ar'ound a ring of processors

· Comparing/he
outcome on
different types of
hardware

Forwarding
between nodes
takes longer than
direct
communication

we are assigned processor number P we can then have P+1 as our Utorward" neighbor and
P-1 as the "backward" node. (Modulo the number of nodes, of course - processor Oeannot
have node -1 as its "backward" neighbor!) This technique also removes any topology
dependence from the algorithm - as long as the processors are numbered consecutively
from 0 everything will work correctly.

An important issue, however, concerns the efficiency of this approach. To evaluate this we
really must address the- issue of hardware connectivity althoug.h our eventual solution will
not depend on it The method described above works reasonably well on a hardware system
that is fully connected as shown in Figure 6. In this type of network· every. node can
communicate directly with all others and the .mapping we have envisaged will succeed.

A rather different outeomewould be seen, however, if we were to ron our program on a
network of the fonn shown in Figure 6. This network is a square array connecting e,ach
node to only two others. It is very common in practical hardware implementations. The
problem with the mapping described above is that no direct connection exists between
node 3 and its "forward" neighbor, node O. Similarly node 2 is unconnected to its
"backward" neighbor, node 1. In practice this means that messages will travel much more
slowly between the uncoonectednodes than the connected ones since Express has much

o

2

1

3

Figure 7. A fully connected parallel processing network

o

2

1

3

Figure 8. A partially connected parallel processing network

more work to do in forwarding messages. As a result the uring" communication program
will execute more slowly on the "square" network than the fully connected one. One some
types of hardware it might execute as much as twice more slowly.

The solution to this problem is, however, quite straightforward. On the "square" network
we should re-assign the "forward" and "backward" node numbers to take advantage of the
topology of the hardware. In particular the assignments

Node 0 Forward 1, backward 2

Node 1 Forward 3, backward 0

Node 2 Forward 0, backward 3

Node 3 Forward 2, backward 1

49

Making the
program smart
enough to
reconfigure itself

Selling up
Illogical"
topologies with
KXGDIN

Assigning
processors to
logical dimensions

Assigning
processor numbers
in a portable,
efficient manner

lead to a communication pattern in which nodes only communicate with other nodes to
which they have direct hardware connections. As a result the program runs just as fast as it
did on the fully connected network.

The important issue, of course, is how our programs should deal with this without having
to hard-wire processor numbers into the source code.

The solution is to use Express' KXGRID utility.

This is a set of tools designed to map problems such as the one we have described onto the
underlying hardware topology in an efficient, portable manner. In circumstances such as
we have been describing in this section its use can save us from complex coding to perform
optimal "mappings" and many hours of "debugging" when one person alters the
interprocessorconnections without telling other workers. It also helps with mapping multi
dimensional problems as we will see in the next section.

The function which is used to initialize the decomposition tools is KXGD IN. (This and other
functions are described on the KXGRID page in the Reference manual- you may want to
read this for more infonnation.) The arguments passed to KXGD IN tell the system the
"dimensionality" of the logical system being used and the number of processors to assign
to each "logical" dimension.

The use of the word "logical" in the above discussion may cause confusion. In fact it is
usually obvious in any practical system what the appropriate dimension should be. In an
image analysis problem, for example, the dimension will be 2 and we need to tell KXGD IN
how many processors to assign to the horizontal and vertical axes of our images. In a
structural analysis system the dimensionality will be either 2 or 3 depending on how many
real-world dimensions the system can handle. Again KXGD IN will expect to be told how
many node to assign to each physical dimension. In our current example we are interested
in arranging the processors in a "ring" which is one dimensional. We also tell KXGD IN to
use all the processors in the ring scheme.

Note that it is sometimes difficult to decide how many processors should be assigned to a
given dimension, especially if you wish to run your program on many differently sized
machines. For this reason a function KXGDSP is provided to perfonn the assignment for
you. This function can be used to generate the parameters that will be passed to KXGDIN.

Once KXGD IN has been called the mapping between hardware and the user's "logical"
topology isdefinecl.Tofindout the processor numbers which should be passed to the
communication routines we now use the KXGDNO routine. This expects three arguments as
follows

• The processor number at which we originate the message. This will normally be
the value returned in the first element of the array filled in by KXPAM.

• The dimension of the "logical" mapping along which we wish to send the
message.

• The "distance" along this axis measured in units of "nodes". Positive and
negative values cause travel in opposite directions.

To illustrate the simplicity of this method we can assign the "forward" and "backward"

processor numbers with the statements

BACKND = KXGDBO(PROCNO, 0, -1)
NEXTND = KXGDNO(PROCNO, 0, 1)

Le., we travel one processor in the positive and negative directions along "dimension 0" of
our ring.

The beauty of this system is that we can maintain the independence of the program from
the topology or architecture of the hardware while keeping its perfonnance as high as
possible. Furthennore we never need to know any of the processor numbers involved in
message transactions - we just take the values returned by KXGDNO and pass them to the
communication routines without ever having to interpret their exact values.

Most of the hard work in building the "ring" program can now be done automatically. A
further optimization, however, can be made if we consider the way in which messages are
passed around the ring. It is a matter of little concern whether the message being sent to the
"forward" node goes before or after that being received from the "backward" node - the two
messages can go simultaneously as far as our algorithm is concerned. This allows us to
replace the calls to KXWRI T and KXREAD which we might have imagined using with a
single call to KXCHAN. This routine essentially perfonns the combined actions of a read!
write pair but allows possible hardware optimizations for increased efficiency. It also
allows us to simplify the modifications to the code required for parallel processing.

The arguments to this function, which is described on the KXCHAN manual page are
essentially the four arguments to KXREAD followed by the four arguments to KXWRIT. It
is important to note, however, that the sensible interpretations of conflicting arguments are
made - if the data to be sent has the same address as that being received then KXCHAN
makes sure that the transmitted message has sent the old data before any new infonnation
overwrites it.

The outline of our "ring" program should, therefore, be

• Call KXINIT

• Use KXPARA to find out how many processors are in use and which processor
number is assigned to each node.

• Call KXGD I N to initialize the "ring" topology.

• Call KXGDNO twice to find our "forward" and "backward" neighbors.

• Loop over the number of processors using KXCHAN to both send and receive
messages.

• Print a message to show the transit of the messages around the "ring".

The ring code can be compiled and run as a standard Cubix program as described in the
previous sections.

Sample code for this exercise is shown below

PROGRAM RING
COMMON /XPRESS/ NOCARE, NORDER, NONODE,

51

Sending and
receiving messages
simultaneously
with KXCHAN

52

$ IHOST, IALNOD, IALPRC
INTEGER ENV(4), VAL, TYPE, NEXTND, BACKND, I
DATA TYPE!100!

c
C-- Start up Express
C

CALL KXINIT
c
C-- First get enviroment information - processor ide
e

CALL KXPARA(ENV)
VAL = ENV(l)

c
C-- Call KXGDIN to initialise topology
C

ISTAT = KXGDIN(l, ENV(2»
c
C-- Call KXGDNO to find where to send and from
C-- to read
C

NEXTND= KXGDNO(ENV(l), a 1)
BACKND= KXGDNO(ENV(l), 0 -1)

C
C-- Switch output to multi to print value as it
C-- moves around the ring.
C

CALL KMULT I (6)

c
C-- Begin the ring loop.
C

DO 10 1= I, ENV(2)
C
c-- Call KXCHAN to send
C

ISTAT = KXCHAN(VAL, 4, BACKND, TYPE,
$ VAL, 4, NEXT,ND, TYPE)

C

c-- Print the value and processor number
C

WRITE(6,*) 'Node', ENV(l), 'has value', VAL
c
C-- Do not forget to flush
C

CALL KFLUSH(6)
10 CONTINUE

C

c-- exit
C

STOP
END

Program 7. Ring program

The beauty of this program is that it runs on any number of nodes regardless of the way in
which the underlying hardware is connected. Furthennore the user is never concerned with
the actual values returned by the KXGDNO routine - all programming is done in the "logical"
configuration assigned by KXGRID.

In this case the whole concept of interprocessor communication has been replaced by
communication between "data domains" - the algorithm requires that a processor access a
value contained in a data region other than its own. As a result it uses the KXGRID utilities
to return a "magic token" which enables that processor to acquire the data it requires. No
knowledge of "processors" ever enters into this thinking - only the data domain as
decomposed by KXGRID is relevant.

While this exercise has presented the KXGRID functions in a simple, and somewhat
abstract, one dimensional example the next exercise should provide more "feel" for the
tools by mapping a two dimensional problem and adding graphics.

Exercise 7. Two dimensional decomposition with graphics

In the previous exercise we learned how to apply the automatic decomposing tools to a one
dimensional problem. In this exercise we will use the same tools for a two dimensional
topology typical of that used in computer graphics, image analysis, electromagnetism, fluid
flow, cellular automata, expert systems and a whole host of other applications. To bring out
the important features of this type of decomposition we will use the Express parallel
graphics system, Plotix.

The goal of this program is to decompose a two-dimensional data set among the processors
and display, on our monitor, a two-dimensional array of colored regions. Each region will
represent the portion of the initial data set assigned to an individual processor and will be
assigned a unique color.

All the parallel processing elements of this program are already to hand. Following the
discussion of the previous exercise we will use the KXGRID tools to assign processors to
the two dimensional topology. Since we may want to run this program on odd numbers of
nodes we will use the KXGDSP function to assign processors to the two-dimensions of the
problem. The actual division of the input array between the processors is perfonned by the
KXGDS I function. This requires, as input, a processor number and the global size of the
data set to be decomposed. It returns to us the starting index and local size of the piece of
the data set which should be distributed to the indicated processor.

To display the colored regions on the screen we will use the features of the parallel graphics
library, Plotix. For our purposes only a few routines are required and their manual pages
should be consulted for details

53

Think of
communication in
Express as
between data
domains rather
than individual
nodes

Extending to two
dimensions

Elementary
graphics

Buffering in the
graphics system

The mapping
between flushing
modes in Cubix
and Plotix

Coordinatesystems
in Plotix

KOPENP Initializes the display device and assigns a buffer for use with
graphical objects.

KVPORT Assigns a region of the display surface to a node.

KBOX Draws a rectangular region ina given color.

KCLOSP Deactivates the display device and returns to nonna! modes.

KUSEND Flushes the grap.hical objects to the display device.

Each of these functions, except the last, might have been expected on the grounds of
previous experience with graphical systems. The last function is required because Plotix,
in common with Cubix, involves the concept of internal "buffering" for the sake of
efficiency. If we drew every object on the display as soon as a node created it Plotix would
be an extremely slow system because it would have to send a small message to the host
processor for every single graphical item. Instead it uses the buffer allocated when KOPENP
is called to store up infonnation for later display when one of the KSENDP routines is used.
In this case many short messages are combined into one large one as the system is
extremely efficient.

As may be apparent, this concept is identical to that used in Cubix and, as might be
expected there are three flushing commands corresponding to the three Cubix I/O modes

KSENDP Assumes that all nodes wish to draw the same objects. Forces a
synchronization and sends data from the graphics buffer on node O.
This corresponds to the Cubix "single" modeD

KUSEND Each node sends data to the display, in order of increasing processor
number. This call matches the idea of the Cubix"multi" mode in that
all processors are forced to synchronize

KASEND Any node may flush its data independently to the host with this call.
No internode synchronization is required and data may appear in an
unpredictable order. Corresponds to the "async" mode of Cubix.

Note that one important difference between the Plotix flushing modes and those of Cubix
is that the latter occasionally flushes buffers automatically, for example, when they are full
and in "single" mode. Plotix never flushes automatically - if the graphics buffer fills up data
at the beginning is overwritten by new data - the buffer is treated in a "circular" fashion.

This discussion would allow us to write a simple program that draws squares on the display
but we need to address the issue of coordinate systems in order to pass the correct values to
the KBOX routine.

After the call to KOPENP the whole display surface is mapped to the range 0.0 to 1.0 in each
direction. Together with the information returned from the call to KXGD SI we could now
display the regions. on the display. Instead we opt to use the KVPORT function to re-map
the surface of the display device which each processor is allowed to use. By default each
node can address the entire view surface. The arguments to the KVPORT function define a
rectangular region,asa fraction of the whole, into which the calling node can draw. Using
the data returned by the KXGD S I call we can, therefore, redefine the active portions of the
display and then have each node draw a "unit box" in itsviewp,ort.

S4

The outline of the program is, therefore, as follows:

• Call KXINIT.

• Call KXPARA to identify processor numbers and the number of nodes
participating.

• Partition the nodes by calling KXGDSP.

• Initialize the two dimensional mapping with KXGD IN.

• Decompose the two-dimensional array with KXGDSI.

• Start the graphics by calling KOPENP

• Use the data returned by KXGDSI to call KVPORT.

• Call KBOX to draw a colored rectangular region on the display.

• Call KUSEND to flush a different sub-image from each node.

Since the resulting program will need to be linked with the Plotix libraries as well as the
usual Cubix library we will need to modify slightly the procedure used when compiling!
linking this code. Nonnally this is just a matter of changing the -lcubix or -kcubix
flags to -lplotix or -kplotix respectively. The manual page for the appropriate
compiler and the Introductory Guides also offer suggestions.

To run this program you will also have to modify the nonnal procedure. In most cases you
have to indicate a display type for graphical output by specifying a '-T' switch to the
cubix command. To execute on an IBM compatible PC, for example, you need the switch
'-Tbgi' while Sun workstations use '-Tsun' for Sunview and '-TX' for Xwindows. The
Plotix chapter of the User's Guide contains details of the switches for the supported
graphics devices.

The following is sample code for this exercise.

c
c-- Code demonstrating the two dimensional decomposition
C-- of an array usingothe exgrid primitives and PLOTIX.
C

PROGRAM PLOT2D
COMMON /XPRESS/ NOCARE, NORDER, NONODE,

$ IHOST, IALNOD, IALPRC
C
C-- Graphics buffer and size
C

INTEGER GBUFFR(2048), GBSIZE
DATA /GBSIZE/8192

C
C-- Size of array to be decomposed
C

PARAMETER (ISIZE=100)
C

5S

Modifying the
compilation
process to link the
Plotix library

Running with a
graphics device

C-- Local and global sizes, starting offsets, etc.
C

INTEGER GLOBAL(2), START(2), SIZE(2), PROeS(2)
DATA !GLOBAL/ISIZE, ISIZE

C
INTEGER ENV(4)
REAL XO, Xl, YO, Y1

C
e-- Initialize Express
C

CALL KXINIT
C
C-- Get enviroment information - processor id, etc.
C

CALL KXPARA(ENV)
e
e-- Call KXGDSP & KXGDIN to initialise topology
C

ISTAT = KXGDSP(ENV(2), 2, PROeS)
ISTAT = KXGDIN(2, PROCS)

C
c-- Call KXGDSI to organize data distribution
C

ISTAT = KXGDSI(ENV(l), GLOBAL, SIZE, START)
C
c-- Calculate the corners of this processor's
C-- window, as fractions of the whole display.
C

XO = REAL(START(l»/SSIZE
YO = REAL(START(2»!SSIZE
Xl = XO + REAL(SIZE(l»/SSIZE
Y1 = Y1 + REAL(SIZE(2»/SSIZE

C
C-- Open graphics device. If fails, exi~ cleanly
C

ISTAT=KOPENP(GBUFFR, GBSIZE)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'Failed to open graphics device)
STOP

ENDIF
C

C-- Call vport map each processor's piece of the
c-- decomposed data to the display surface.
C

CALL KVPORT(XO, YO, Xl, Yl)
c

C-- Draw the box using a color based on our processor
C-- number and flush it to the display
C

CALL KBOX (0 ., 0., 1., 1., 2+ENV (1), 1)
CALL KUSEND

C
C-- Close graphics device and exit.
C

ISTAT = KCLOSP
STOP
END

Program 8. The Box Program

It is infonnative to execute this program on a variety of numbers of nodes and watch the
various decompositions automatically appear on the display. Even though we didn't
actually do anything with the data we decomposed it should by now be apparent that basic
operations are trivially built into the system by using routines such as KXGDNO.

One other, very important point is that we can easily modify important parameters
associated with this decomposition. If, for example, we wished to examine the possibilities
of one dimensional decompositions for a certain algorithm we merely change the 2 in the
calls to KXGDSP and KXGDIN to 1 and Express does all the rest. We could similarly
extend this decomposition to three dimensions, although the graphics would then need
some attention.

3.3 Summary

At this point the basic introduction to Express is complete. The information so far
presented should be enough to build a wide variety of real applications despite the fact that
the codes we have looked at so far have been mere "toys". The next few sections of this
document extend the ideas presented up to this point by showing more complete and/or
familiar algorithms which may be useful as the basis for complete programs.

At this point it is probably useful to summarize the Express system calls that have been
used in constructing the programs developed so far. Despite the large number of routines
in the runtime library we have so far built 7 quite useful programs which each exhibits
useful features using only the following routines:

KSINGL, KMULTI
Switches a unit between "single" and "multi" modes for I/O.

KFLUSH
"Flushes" data from internal system buffers to the logical unit indicated.
Used to make sure that "multi" mode I/O has been displayed properly.

KXPARA
Used to find crucial runtime parameters such as processor number and the
number of nodes working on the same problem

KXCOMB

57

Modifying the
decomposition
scheme using
KXGRID

A list ofthe most
commonly used
Express routines

Used to "globalize" distributed data - i.e., generate a single result from a set
of data which has been decomposed among processors.

KXGRID
A library of routines which collectively allow sophisticated decomposition
strategies without user intervention and which allows the programmer to be
completely free of the underlying parallel computer's architecture and
topology.

KXCHAN
A routine which allows us to "simultaneously" send and receive data.

KXREAD,KXWRIT
Basic message passing. functions which allow us to send and receive
messages from other processors..

KXOPEN,KXLOAD,KXCLOS
Control operations perfonned only by "host" programs to allocate, load and
deallocate groups of nodes in the parallel computer.

KXSWAW

Using only afew
Express routines
gets us a long way

A byte swapping routine used only when the host and nodes of the
architecture in use have different byte ordering properties.

Everything else we have used has been purely sequential cod,e as might be found in any
sequential programming system! This is one of the reasons that we believe that
programming in Express is just like programming sequential computers - you use all your
old code and merely add a few calls to the runtime library to exploit the parallel computer.

It is probably true that well over half of all parallel programs can be built using only these
functions and we encourage you to study their manual pages when building your own
programs.

~ 4 Advanced Applications

Now that we h,ave seen some of the basic operations of Express in a variety of applications
we can start to build "real" programs. We use the tenn real in quotes here because it is
obviously impossible to give the text of any commercial· quality application in this
document. On the other hand the program in this section have the feature that they form at
least the major part of complete·aIgorithms.

Using the .existittg The techniques used, however, are no different ,from those already seen in the previous
techniques to build exercises - we already written the bulk of the extra code that must be added to an application
Ureal" programs to make it run in parallel under Express.

This section begins by showing the Express solution to the Mandelbrot Set. This is not a
particularly interesting problem in its own right but it shows the steps necessary to take an
existing sequential program and run it in parallel. You might use this as a guideline to your
own parallelization strategies.

58

Exercise 8. Porting existing codes: A MandeIbrot program

So far we have written all our example codes from scratch using, as a guide, the instructions
laid out in each exercise. In this case we will fIrst construct a purely sequential program and
then examine the techniques used to parallelize it under Express.

The particular example which will be used is that of a program to generate and display a
portion of the ubiquitous Mandelbrot set. For those unfamiliar with this topic the following
is a brief discussion of the algorithm. More advanced discussions can be found in the
numerous articles and books on the subject.

Briefly, each point of the complex plane, c, is assigned an integer value by considering the
sequence of values:

Zo = 0

The integer value assigned to the point c is the smallest value of n for which I Z n I is greater
than some arbitrary constant.

To display the Mandelbrot set on a computer screen, a portion of the complex plane is
identified with the screen. Hence, each pixel in the screen corresponds to a different value
of c. The color of the pixel is chosen from a "palette" according to the value of n. Exactly
how the palette is constructed is a matter of artistic, rather than mathematical, judgment.

To render an image of the Mandelbrot set, one must specify the region of the complex plane
that is desired. A very simple sequential program to display a portion of the set is shown in
Program 9.

First the user is asked to indicate the desired region of the complex plane. It then opens the
graphical output device using the Plotix subroutine KOPENP, and detennines the resolution
of the device with the subroutine KASPEC. Once the resolution is known, it checks that the
image fits into the array SCREEN and calls the subroutine MBF I LL to detennine I1c for each
pixel on the screen. Finally, it calls MBD I SP which uses the Plotix KMARKE and KCOLOR
functions to display individual pixels. As we shall see, when we use Express to parallelize
this program, the subroutines MBF I LL and MBD I SP will not have to change. The only
changes necessary are a few additional subroutine calls within the main program to
automatically decompose the data.

PROGRAM MANSEQ
C

REAL CENTRX, CENTRY, CMPWID, RATIO
C

PARAMETER (IGBSIZ = 2048)
INTEGER GBUFFR(IGBSIZ)

C

PARAMETER (ISCSIZ = 32768)
INTEGER SCREEN (ISCSIZ), WD, HT
REAL HTF, WDF

59

A brief
introduction to the
Mandelbrot set

Use of Plotix in a
sequential
Mandelbrot code

c
WRITE (6, *)

$ 'Enter the coordinates of the screen center: '
READ(S,*) CENTRX, CENTRY
WRITE(6,*) 'Enter the horiz. size of the display: '
READ(5,*)CMPWID

C
C-- Open the graphical device and determine it's
C-- resolution.
C

ISTAT = KOPENP(GBUFFR, IGBSIZ)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'Failed to initialize graphics'
STOP

ENDIF
CALL KASPEC(WDF, HTF)
CMPHT = CMPWID * HTF / WDF

C

C-- Check that our SCREEN array is big enough.
C

HT = INT(HTF)
WD = INT(WDF)
IF(HT*WD .GT. ISCSIZ) THEN

WRITE(6,*) 'SCREEN array is not big enough'
STOP

ENDIF
C
C-- Call MBFILL to actually figure out the pixel values
C-- for the SCREEN array. Pass the coordinates of the
C-- corners and the sizes too.
C

CALL MBFILL(SCREEN, WD, HT, CENTRX, CENTRY,
$ CMPWID, CMPHT}

C
C-- Now set up the display area on the screen to
C-- correspond to the pixels being shown, and then
c-- display the picture.
C

CALL KSPACE(O., 0., WDF, HTF)
CALL MBDISP(SCREEN, WD, HT)

C
C-- Close down the graphics device and exit the program.
C

CALL KCLOSP
STOP

END

Program 9. Main routine of a sequential program to display the
Mandelbrot set

Now that a sequential program to render the Mandlebrot set is in hand, we can consider how
to parallelize it.

As we have already seen Express provides a number of routines, collectively called the
KXGRID library, which are very useful for a decomposition such as this. The idea is to
simply assign approximately equal subsets of the pixels to each processor. By following the
generally encouraged practice of writing the program in a "modular" style, we find that all
we need to change are some of the arguments to the subroutines, MBFILL and MBDISP.
The subroutines themselves, and hence the bulk of the actual program remain completely
unchanged by parallelization. In fact, the changes we are about to make are essentially
ignorant of the fact that we are dealing with a program to render the Mandlebrot set. Any
program with a similar two-dimensional structure can be treated in exactly the same way.

To begin we initialize the KXGRID library by calling KXGDIN. The function KXGDSI can
be used to tell us how much of the array representing the screen should be calculated in each
processor. This function fills two auxiliary arrays with values that describe the
decomposition of the array SCREEN. These values, which are not necessarily the same in
all processors, are kept in the variables YSTART, XSTART, HTLCL and WDLCL. The
starting values in x and y, and the extent of ~he local array in width and height allow us to
calculate the comers of the limited "local" region of the complex plane for which each node
is responsible. The values that are returned by KXGD S I are different in each processor, and
the regions assigned to each processor form a non-overlapping array that covers the entire
screen, as in Figure 9.

Next we observe that the arguments to MBFILL specify the coordinates and dimensions of
interest in the complex plane. To ensure that each processor evaluates only pixels within its
region, all we need to do is change these arguments to correspond to the coordinates and
dimensions of the processor's region, rather than the entire screen. This is the purpose of
the ten or so lines of arithmetic that appears before the call to MBFILL in Program 10..
Finally, the Plotix function KVPORT can be used to map the graphical output from each
processor onto the exact portion of the graphical device that corresponds to the region
computed in MBFILL. By using KVPORT we eliminate the need to change the MBDI'SP

subroutine in any way.

Notice how we are using almost exactly the same techniques in this program as were used
in Exercise 7. This is typical of Express programs - the overall structure is quite similar
from one program to the next. The parallel version of the Mandelbrot program is shown
below

PROGRAM MANPAR
C

REAL CENTRX, CENTRY, CMPWID, CMPHT

REAL CNTXLC, CNTYLC, HTFRAC, WDFRAC

Parallelizing
Mandelbrot
automatically

Domain
decomposition with
KXGRID

WD

HT (CNTXLC, CNTYLC)

62

/
LCSTRT

HTLCL

WDLCL

Figure 9. A domain decomposition for the screen for displaying the
Mandlebrot set, as used in Program 10.

REAL XSTRTF, YSTRTF
INTEGER XSTART, YSTART

C
PARAMETER (ISCSIZ=32768, IGBSIZ=2048)
INTEGER SCREEN (ISCSIZ), GBUFFR(IGBSIZ)

c
REAL HTF, WDP
INTEGER HT, WD, HTLCL, WDLCL
INTEGER NDDATA(4) , PROCNO, NPROC
INTEGER GLOBAL(2), LCSTRT(2), LCSIZE(2), NPROCS(2)

C
C-- Set up Express and its common block.
C

CALL KXINIT
C

WRITE (6, *) , Enter the coords of the screen center: '
READ(5,*) CENTRX, CENTRY
WRITE(6,*) 'Please enter the horiz. screen size: '
READ(5,*) CMPWID

c
C-- Open the graphics device and determine its
C-- resolution.
C

ISTAT = KOPENP(GBUFFR, IGBSIZ)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'Failed to initialize graphics'
STOP

ENDIF
CALL KASPEC(WDF, HTF)
CMPHT = CMPWID * RTF / WDF
HT = INT(HTF)
WD = INT(WDF)

C
C-- Call KXPARA to get the runtime parameters and then
C-- the KXGRID routines to determine the optimum problem
C-- decomposition.
C

CALL KXPARA(NDDATA)
PROCNO = NDDATA(l)
NPROC = NDDATA(2)
ISTAT = KXGDSP(NPROC, 2, NPROCS)
ISTAT = KXGDIN(2, NPROCS)
GLOBAL (1) = HT
GLOBAL (2) = WD
ISTAT = KXGDSI(PROCNO, GLOBAL, LCSIZE, LCSTRT)

C
C-- Now we know how big our "local" piece of the screen
C-- needs to be so we can check that our SCREEN array is
C-- big enough.
C

HTLCL = LCSIZE(l)
WDLCL = LCSIZE(2)
IF(HTLCL*WDLCL .GT. ISCSIZ) THEN

WRITE(6,*) 'Local SCREEN size too small'
STOP

ENDIF
C
C-- Figure out the center of the region controlled by
c-- this processor.
C

YSTART = LCSTRT(l)

63

•_•..:..~..•..••..'.•..'>'.'....••..•'.."...

'"
Matrix
transposition

XSTART = LCSTRT(2)
HTFRAC = FLOAT(HTLCL)/HTF
WDFRAC = FLOAT(WDLCL)/WDF
XSRTRF = FLOAT(XSTART)/WDF
YSTRTF = FLOAT(YSTART)/HTF
CNTXLC = 'CENTRX +

$ CMPWID* (XSTRTF + (WDFRAC -1.0) /2.0)
CNTYLC = CENTRY +

$ CMPHT * (YSTRTF + (HTFRAC -1.0)/2.0)
C
C-- Use the old MBFILL routine to fill in the screen
C-- pixels.
C

CALL MBFILL(SCREEN, WDLCL, HTLCL,CNTXLC, CNTYLC,
$ CMPWID*WDFRAC, CMPHT*HTFRAC)

C
C-- Set up a graphics window with the pixels mapped
C-- one-to-one and position it on the view surface in the
C-- appropriate position for this node's contribution.
C

CALL KSPACE(O., 0., FLOAT (WDLCL), FLOAT(HTLCL»
CALL KVPORT(XSTRTF, YSTRTF,

$ XSTRTF+WDFRAC, YSTRTF+HTFRAC)
C

CALL MBDISP(SCREEN, WDLCL, HTLCL)
CALL KCLOSP
STOP
END

Program 10. A parallel version of the program to display a
representation of the Mandlebrot set using Plotix•

Exercise 9. Matrix transposition

The example we will consider in this section is the transpositionofa matrix. We assume
that thematrix·has been decomposed among the processors in a manner similar to that used
for the array SCREEN in the Mandelbrot example, and that the individual elements have
been filled in, perhaps by repeated calls to READ, as in the "sum"example. Furthennore,
for simplicity, we assume that the matrix is square, that the number of processors is a
perfect square and that the m,atrix fits "evenly" into the processors. Relaxing one or more
of these restrictions is an instructive exercise for the reader. The matrix is decomposed in
exactly tne same way as was the screen in Figure 9. As a result the code to p,erfonn this
decomposition would look very similar to that of Program 10.

The subroutine TRANSP is shown in Program 11. It is called with arguments specifying the
input and the output arrays and the number of rows (an:d columns) that are stored locally

within each processor.

The program frrst places the transpose of the local input array into the output array. Then,
it identifies the processor in which these values belong. This is done with the KXGDCO and
KXGDPR functions, which convert a processor number into indices into an array of
processors, and vice versa. Note that the eventual home of the values is coincidentally the
source of the values which belong in the current processor, so the source and the destination
arguments to KXCHAN are identical. Finally, the communication function KXCHAN is
called to send the data to its destination and receive the data from the source.

C
C-- A subroutine to transpose the data from the array
C-- IDATA into ODATA. Assumes that each block is square
C-- and that there are NROWLC rows of the matrix per
C-- processor.
C

SUBROUTINE TRANSP(IDATA, ODATA, NROWLC)
REAL IDATA(*), ODATA(*)
INTEGER NROWLC

C
INTEGER ME(2), HIM(2), NDDATA(4) , TYPE, HISPNO, LEN
DATA TYPE/1234/

c
C-- Get runtime parameters. Assume that we have called
C-- KXINIT elsewhere in the code.
C

CALL KXPARA(NDDATA)
c
C-- First we transpose the part of the matrix on this
C-- processor.
C

DO 10 I=l,NROWLC
DO 10 J=1,NROWLC

ODATA(J + (I-1)*NROWLC) =
$ IDATA(I + (J-1)*NROWLC)

10 CONTINUE
C

C-- Now this node has to figure out where it lies within
c-- the overall picture of the decomposition. Again we
C-- assume that some other piece of code has called
C-- KXGDIN.
C

ISTAT = KXGDIN(NDDATA(l) , ME)
C
C-- Now exchange my horizontal and vertical coordinates
c-- to determine where my transposed processor is in the

6S

Porting an existing
system - th.e options

Modifying this
strategy is an easy
exercise.

c-- overall decomposition.
C

HIM (1) = ME (2)
HIM(2) = ME(l)

c
c-- Finally figure out his processor number and call
C-- KXCHAN. Notice that the LEN is in bytes, not REALs.
C

HISPNO = KXGDPR(HIM)
LEN = NROWLC * NROWLC * 4

ISTAT==KXCHAN(ODATA, LEN,HISPNO, TYPE,
$ ODATA,LEN,HISPNO,TYPE)

C
RETURN
END

Program 11. Asubroutine to transpose a matrix that is decomposed by
the KXGRID library.

Exercise 10. A Spread-sheet Program

The final example of a parallel program we will consider is a spread-sheet program similar
to any of the popular ones that run on personal computers. Again, the domain
decomposition is as in Figure 9. Each processor assumes responsibility for a portion of the
entire spread-sheet. Obviously, a spread-sheet program is much too complicated to
consider in .all its detail. Most commercial spread-sheets include fea~ures like highly
sophisticated input languages and graphical interfaces. In regard to these features, we
simply point out that a parallel computer is no harder to program than a sequential one.
With the Cubix system, any spread-sheet program written in a high-level language that runs
on the host can be recompiled (if the source code is available) and run on the parallel
processor. Alternatively the host interface can be left intact and the computationally
difficult updates can be passed to the parallel computer by using the "host-node"
programming model.

The time-consuming piece of a spread-sheet program is the update phase, when potentially
thousands of cells must be modified to reflect new information. Fortunately, this is the
piece that is amenable to parallel computation by domain decomposition.

To simplify memory allocation we program the decomposition as a 4x4 array (16
processors) directly into the code. Furthennore, we assume that a given cell can depend
only on other cells in the same row. The extension to intra-column dependencies is
essentially accomplished by replacing "row" by "col" and vice versa in Program 13..

c
C-- Fix the decomposition so it has 16 processors in a

66

C-- 4x4 array. This could be computed at run-time based
C-- on the number of processors available, at the expense
C-- of a designing some sort of dynamic memory allocation
C-- strategy for FORTRAN! !
C

SUBROUTINE DECOMP(SHEET, SHTSIZ, NROWS, NCOLS)
REAL SHEET(*)
INTEGER SHTSIZ, NROWS, NCOLS

C
C-- NROWS and NCOLS are the global sizes of the
C-- spreadsheet. We will decompose this number among our
C-- 16 processors and then figure out which other
C-- processors we will have to interact with in our row.
C-- We save all this info in the SPREAD common block
C-- for use in updating the cells. The array SHEET is of
C-- size SHTSIZ on this processor and is to be used for
C-- the cells.
C

INTEGER NPROCS(2)
COMMON /SPREAD/ NROWLC, NCOLLC, OURROW
INTEGER NROWLC, NCOLLC, OURROW(4)

C

INTEGER SZGLOB(2) , SZLOCL(2) , START (2)
INTEGER ME(2), HIM(2)
INTEGER NDDATA(4)

C

C-- Find out our processor number.
C

CALL KXPARA(NDDATA)
NPROCS(l) = 4
NPROCS(2) = 4
CALL KXGDIN(2, NPROCS)

c
C-- Find out how much of the global spreadsheet is in
C-- this processor and check that our array is big
C-- enough.
C

SZGLOB(l) = NCOLS
SZGLOB(2) = NROWS
ISTAT = KXGDSI(NDDATA(l) , SZGLOB, SZLOCL, START)
NCOLLC = SZLOCL{l)
NROWLC = SZLOCL(2)

C
IF(NROWLC*NCOLLC .GT. ISHSIZ) THEN

WRITE(6,*) 'Sorry, local spreadsheet too big'
STOP

67

KXCONCisanother
of the uglobal"
communication
routines

ENDIF
c
C-- Now figur~ out which nodes lie in the same row of the
C-- spreadsheet as us and save their processor numbers
c-- in OURROW.
C

ISTAT = KXGDCO(NDDATA(1) , ME)
DO 10 leOL=l, 4

HIM(l) = ICOL
HIM(2) = ME(2)
OURROW(ICOL) = EXGDPR(HIM)

10 CONTINUE
RETURN
END

Program 12. A routine to set up some external variables for use in a
spread-sheet.

We set up a decomposition of the spread-sheet cells that is essentially identical to that in
Figure 9. The parameters, both "local" and "global", are stored in external variables~where
they can be accessed by other subroutines. In addition to setting the number of rows and
columns of cells, processors,etc., an array is set up,OURROW, which stores the processor
numbers of all the other nodes in the given processor's row. This infonnation is obtained
with the KXGDPR function, just as in Program 11..

The UPROWS routine uses the external variables set up in DECOMP to collect entire rows,
one row at a time, into each and every processor. With this data, the subroutine UPCELL is
expected to perfonn any necessary modifications to the values in SHEET. The
communication subroutine used in this program is KXCONC, which concatenates data sent
by a collection of nodes. The collection is specified by the array OURROW which was filled
by Program 12..

C

c-- This subroutine updates the spreadsheet by gathering
C-- together a row at a time and calling UPCELL to update
C-- each cell according to the information accumulated in
C-- this node from the others in its row.
C

SU.BROUTINE UPROWS(SHEET, SHTSIZ)
REAL SHEET(*)

INTEGER SHTSIZ
c

INTEGER ROW, COL, TYPE
REAL ONEROW(8192)

c
COMMON /SPREAD/ NROWLC, NCOLLC, OURROW
INTEGERNROWLC, NCOLLC, OURROW(4)

c
DATA TYPE/100/

c
DO 10 ROW=l,NROWLC

ISTAT = KXCONC(SHEET((ROW-1)*NCOLLC), NCOLLC*4,
ONEROW, 8192*4, 0, 4, OURROW, TYPE)

DO 20 COL=l, NCOLLC
CALL UPCELL(SHEET, ROW, COL, ONEROW)

20 CONTINUE
10 CONTINUE

RETURN
"END

Program 13. A subroutine to perform all intra-row updates.

~ 5 For more information.
This tutorial has only scratched the suIface of parallel computing and the features of the
Express system. To begin with, there is no substitute for leaming-by-doing. With the
infonnation in this tutorial, you should be able to write some simple programs of your own.

Unless you are a very rare and special individual, your frrst few attempts at writing your
own parallel programs will contain bugs. Along with writing your first parallel program,
you should read the chapter describing "ndb: A Source Level Debugger for Parallel
Computers", and use ndb to help you find the bugs.

Once your program is running, you may wish to measure its perfonnance. ParaSoft's
profiling system allows you to measure execution times, communication and "system"
overheads and to trace detailed "events" within a running program. It is equipped with a
graphical interlace to facilitate interpretation of the large amount of data that is generated
when profiling a parallel system. For complete documentation on the system, refer to "PM:
A Profiling System for Parallel Computers."

To find out more about ParaSoft's general purpose I/O system, refer to "Cubix:
Programming Parallel Computers Without Programming Hosts."

To find out about the extensive parallel graphics package, Plotix, refer to "Plotix: A
Graphical System for Parallel Computers." Plotixis a 2-D graphics system containing input
as well as output primitives.

The extensive communication library in Express is described in "Express: A
Communication Environment for Parallel Computers". This includes information on how
to write your own host program (only necessary if Cubix does not satisfy your needs),
mechanisms for loading different programs into different processors, asynchronous
programming styles and many other topics.

Considerable work has taken place in the last five years identifying problems in science and
engineering that are amenable to parallel computation. The book "Solving Problems on

69

Other Express
tools: NDB, PM,
etc.

Concurrent Processors" by G. Fox, et. al., published by Prentice-Hall surveys some of this
work. It is an excellent place to look for analysis of a wide variety of problems and
decompositions.

10

71

71.

73

Express

A portable, efficient communication sys
tem for parallel computers ... and much
more

W 1 Introduction ·

M When coding an application on a conventional sequential computer one is often faced with
a choice between several different implementation techniques based on the wide range of
tools available. In typical parallel environments this has not been the· case since the
facilities offered to the application developer have either been limited in scope or
completely non-existent. Express is a communication environment or Operating System
designed to offer a wide range of implementation strategies to both system and application
designers. In particular it has been motivated by application requirements rather than any
intrinsic operating system concepts which is one of the reasons it is usually referred to as
an "environment" rather than an operating system.

As already stated a goal of Express is to meet the needs of application codes by offering
utilities at all levels of complexity from low level message passing primitives to automatic
data-level decomposers and a corresponding communication interface that is totally
independent of the underlying hardware connectivity. Which system is appropriate for a
particular application can only be decided by considering the needs of that application.

Among the questions that might be important are

• Do I need completely non-blocking message passing or do my problems exhibit
some sort of synchronization that can usefully be oriented to the communication
structure?

• Does my application require totally asynchronous message processing, e.g. an
interrupt handling capability?

• Can I usefully use techniques such as "double-buffering" to enhance my I/O
bandwidth?

• What are the I/O requirements of my algorithms?

• Do I need to write a program for the host computer or can I just have a program
running in the parallel machine?

Note that most of these questions contain references to applications. This is an obvious
point - the nature of the application should determine the software model to be used. Until
fairly recently, however, the answers to many of these questions were decided by the
hardware - different implementations weren't flexible enough to support the different
possibilities. The more recent machines, coupled with advancing software systems have
allowed developers to once again relate these fundamental decisions to their algorithms
rather than someone else's idea of an "operating system".

Express is a software package designed to meet the needs of applications. Its fundamental
design is rather different from more conventional "operating systems". Rather than starting
from the hardware and building a communication system etc. Express began with
applications, considered their requirements and built up a system to fulfill them.

Express is conceptually a multi-layered system. At the lowest level is support for
allocating processors, loading programs and asynchronous message passing. These
facilities are available to the user, or can be ignored totally as befits a particular application.
At a higher level, and logically distinct, are the utilities designed to automatically

7S

Sequential
computing tools

Helping develop
commercial
applications

Issues in deciding
on parallelization
strategies

DON'T PANICI

decompose problems with regular structure. These routines fonn the basis for an extremely
elegant model of computation in which the underlying topology of the hardware can be
completely ignored. Along with this level are routines that interface programs running on
the host computer, if any, to the programs running in parallel. At the highest level is a
complete I/O system allowing parallel programs unifonn access to the operating system
facilities of the host This level makes for the easiest computing ... the user simply adds
communication calls to a working sequential program in order to parallelize it and writes
no program for the host computer. The I/O system operates in several modes allowing
either synchronous or asynchronous operation according to the needs of the application.

Each of the levels described above is logically distinct building only on those below it. As
a result we are able to port the system to a wide variety ofhardware/software systems taking
a "top-down" approach in which the higher levels are built upon existing lower layers
whether they be implemented in bardware, software, within Express or some other native
operating system.

The structure of this chapter is as follows. Section 2 describes some fundamental issues
including booting the Express kernel, programming models and initializing software in
various high level languages. Section 3 describes the fundamental processes of allocating
nodes and downloading programs from the host system. Section 4 describes the message
passing support provided by the Express kernel and is divided into sections discussing the
blocking and non-blocking subsystems separately. Also discussed in this section are the
concepts and restrictions which surround the "processor number" and '~type" concepts
which are central to Express. Section 5 introduces the concepts of automatic
decomposition and the utilities that take advantage of them and section 6 describes the I/O
subsystem for file/tenninal I/O and other operating system functions.Section 7 discusses
the topic of"hardware dependent" communication - a layer of Express routines which take
maximum advantage of hardware characteristics at the expense of portability. Finally,
section 8 discusses the various example codes supplied with the system.

This chapter is arranged such that low level concepts are introduced first building to more
sophisticated systems. This has the advantage of being quite logical but the disadvantage
of perhaps giving too much information. One of the advantages of the multi-layered nature
of Express is that one can use the upper layers with no knowledge of the lower ones. As a
result programmers may choose to adopt a programming style in which certain sections of
this chapter are completely irrelevant. Good examples include most scientific programs.
These codes can usually be developed using only the techniques described in sections 2, 5
and 6 - the material of sections 3 and 4 is unnecessary. Since one typically needs to
understand the whole picture before deciding which· programming style to adopt we
suggest that the reader at least skim through sections 2 and 3 even if the decision has been
made to program at a higher level.

This document may seem a little daunting at first. There are many routines and lots of
arguments. However users with particular problems may need to use only a small portion
of the system described here. In particular we have found that many scientific applications
can be parallelized with only a couple of the calls described in Section 5 and the 110 system
of Section 6. Furthennore, the I/O system is essentially self-explanatory in most cases
making the manual rather superfluous. One of the services that ParaSoft is happy to offer

76

Starting Express

... andexinit to boot
Express

Using cnftoolto
configure the
hardware...

its customers is consultation in the needs of various applications. Please feel free to call us
with any enquiries about the facilities contained within Express. We would also like to
hear your suggestions/comments about the system. In particular, we would like to enhance
the system at the user application level by providing whatever tools for automatic
parallelization can be invented. Please send us your suggestions!E2 2 Express Fundamentals

Before you can make any progress with Express there are certain fundamental tasks which Before you read
must be perfonned; system configuration and software initialization. The fonner task can this...

be quite tricky so most of the details are left to another document. The latter process
depends rather heavily on the language in which your application is being written.

2.1 System Configuration; Booting Express

We can divide parallel processing systems up into two types; configurable and noo
configurable. In the latter category are included machines with fixed hardware
interconnects such as hypercubes and mesh machines. These systems need no
configuration by the user - Express can be booted as described in the next paragraph and
all is done. Among configurable systems, on the other hand, are the various Transputer
networks. In these systems the actual hardware connectivity can be changed by either
programming electrical switches or by moving ribbon cables. In these cases Express has
to be configured for the underlying hardware topology.

Fortunately this is not as daunting a prospect as it sounds; Express contains a graphical
configuration tool cnftool which guides you through the configuration procedure in a
fairly simple manner. This tool is actually rather sophisticated allowing many different
combinations of host computers and transputer nodes. For further information consult the
companion document "Configuring Express".

Once your system is correctly configured for Express it is necessary to start it running.
This procedure is actually simplicity itself - the single command

exinit

serves to download the kernel and start it operating. Hopefully the self contained
diagnostics will suffice to enable corrective action to be taken if problems are found. The
most common sources of error with Transputer systems are incorrectly placed hardware
links - i.e., those which do not correspond to the information supplied to cnftool. If you
consistently have trouble booting the system give us a call. Note that you may have to use
the exreset call as well as exini t if you have multiple transputer boards or are
connecting several machines together. The cnftool manual contains the details.

One other program that will probably get heavy use is exstat which simply provides a
summary of current system usage. The simple command

exstat

prints out a simple statement such as

4 nodes in use out of a total of 16

The two numbers indicated here show how many nodes are currently in use and the total

77

Finding out what
otherprogramsare
running

The Cubix
programming
model

The flilost -Node"
programming
model

Deciding which
programming
model to use

number that the kemelbelieves to exist. The fonner is useful - before resetting the system
with exinit it is probably prudent to check that nobody else is running jobs. The latter
number should reflect the total number of nodes available in your hardware· configuration.
There are two situations in which this is not the case

• If the host machine has been rebooted and no call to exinit made then
exstat will show 0 total nodes.

• If hardware failures have occurred the cnftoolutilitycan be used to "fake"
the system into using fewer nodes - omitting the defective ones. In this case the
reduced number of nodes should appear.

• In certain circumstances Express may claim to be unable to allocate, say, 8
processors even when there seem to be eight available. In this case one might
use the command "exstat -1" to obtain more infonnation about the
allocated processors - it will usually be the case that the allocated nodes fall in
positions which block the allocation of the remaining processors in a single
block.

2.2 Programming models

Express actually contains two completely disjoint programming models tailored to the
needs of application developers. While these are discussed at some length in the companion
document: "'Express: An Overview" it seems wise to repeat some of that discussion here
since it is extremely important that one understands the relative merits of the two systems
and understands how to switch between them.

The Cubix model is conceptually the simplest. One takes a piece ofcode and executes it on
the parallel computer nodes by invoking the cubix command. In this model of
computation the parallel program may calIon most operating system services as though it
were running on the host computer itself - an obvious example is I/O. In C one is able to
call the various fun·ctions to be found in the runtime library - printf, scanf, fopen,
etc.... while Fortran support is provided for READ, WRITE, OPEN, etc. Graphics is also
available through the Plotix subroutine library which offers a simple but fully functional
device independent graphics capability to parallel programs.

The alternative model, called "Host-Node" in these manuals, entails writing a program to
run on the native host computer which communicates with the parallel computer nodes
using basic Express· system calls. In this.model the host program can use· any of the host
selVices that were previously available to it plus the addition-alones provided by Express
to communicate and control th·eparallel computer. On the other hand the programs running
in the nodes may only make use of the facilities naturally available to the nodes processors
- this usually means that any I/O must be handled by the host program and then sent in
messages to the nodes.

The two models have their own advantages and disadvantages and it is important to decide
which is more appropriate for your application. While in many cases it is possible to switch
back and forth between the two styles as development progresses it is usually a good idea
to have in mind one style for any finished project.

Among the features to be considered are the following:

78

• How large is my application? In the Cubixmodel EVERYTHING must go into
the parallel computer, I/O, graphics, user interface, etc... This requirement may
necessitate more memory than is available on the nodes of the parallel
computer. In the "Host-Node" model some parts of the code may be kept on the
host.

• How much machine specific code do I have? If many man-years have been
spent developing a complex graphical user interface, for example, it may be
wasteful to attempt porting it to the parallel computer environment under Cubix
and Plotix when it may run intact on the host machine.

• What I/O bandwidth do I need? This is a much more complicated issue. Some
vendors supply hardware which directly connects the parallel computer to I/O
services such as disks. In this case the Cubix model is able to take advantage of
such hardware and provide fast, parallel, I/O directly to the nodes. If such
hardware is not available one must consider the relative merits of having the
host do I/O and send data to the nodes in messages (Host-Node) or having the
nodes do it themselves (Cubix). In this case the appropriate issues include the
availability ofoverlapped or non-blocking I/O facilities on the host. If available
the "Host-Node" approach is probably faster. Otherwise both are about the
same.

• Debugging. In the "Host-Node" model the nodes are unable to perfonn their
own I/O without coordination with the host. If, therefore, one wishes to debug
in the old style with print statements one has to change both host and node
codes, recompile both and hope that the communication calls were inserted in
the correct places. This is actually harder to do than it sounds and can be an
annoying source of minor bugs - it can take as long to get the output to work as
it does to find the bug itself! In the Cubix model one simply inserts the print
statements into the node code and recompiles. (Of course one could also use
ParaSoft's source level debugger, ndb.)

• Prototyping. Trying out new pieces of code in the "Host-Node" model can be
quite time consuming for essentially the same reasons as mentioned in the last
point - compiling, coordinating and debugging two pieces of code for the host
and nodes can take time. Under Cubix, on the other hand, one can take
sequential codes and run them intact on a single node of the parallel machine.
In many cases this is sufficient to evaluate development strategies.

• Portability and maintenance. UnderCubix one only has a single piece of code
that runs in the parallel computer nodes. It can often be maintained in the same
source files as the sequential version of the code - especially since dummy
Express libraries can be supplied for most machines. If the "Host-Node"
approach is adopted the source code, at the very least, has to be divided between
that which runs on the host and that which runs on the nodes. In most cases a
certain amount of common interface between the two has also to be maintained.
A further problem arises when the host and node machines are different CPU
types - e.g. Motorola host and INTEL nodes. In this case the byte orderings of
the two machines are different as can be their word lengths. This makes the

79

What languages
are supported by
Express?

7~he nature of
Express- a
subroutine library

Writing C
programs

express.h

Skeleton C
program

Writing
FORTRAN
programs

interface between nodes fairly complex- byte swapping and casting all over the
place!

• Redevelopment cost. Many large applications have their origins in the dim and
distant past ... their may be few people who actually understand the whole codes.
In this case it might make sense to adopt the "Host-Node" model and attempt to
parallelize only a small portion of the code while leaving the rest untouched.

As can be seen there are many issues involved in making the decision as to which
programming model is bet suited to your application. One of the virtues of Express is that
both are available to the user within a single package.

In this and other manuals many references will be made to either the "Host-Node" or Cubix
programming models since the Express interfaces to the two systems are often subtly
different. It is important to bear in mind which system you will be using when re.ading this
documentation..

2.3 Software Initialization; Languages

Before the programs you write can use Express functions certain important data structures
have to be initialized. This brings up the question of the different high level software
languages that support, or are supported by, Express.

Express is a subroutine library. This means that it can be added to ANY existing high level
language for which your parallel machine has a compiler. In particular, this means that
Express is available to both C and FORTRAN programmers. As other languages gain
support and their compilers become available Express will be supported in these too.

Each different language, however, has its own characteristics which affect the
implementation of Express.

C, for example, already requires a fair amount of system support and as a result the user is
presented with a fairly simple interface. Most constants/variables needed by the user are
defined in the header file express . h which should be included in all Express programs.
On most systems you can use the standard angle bracket notation for this file and the
compiler will know how to find it Similarly Express is initialized before the user main
routine is called so that no extra system calls are necessary to setup Express. A typical
Express program written inC, therefore, has the skeletal fonn

#include "express .h lt

/* Define system constants/macros */

main(argc,argv)
int argc;
char *argv[]j
{

............. /* User Program */

FORTRAN, on the other hand, is less oriented to system support and as a result more is

required of the user. The "include" mechanism is very non-standard in FORTRAN
which precludes making system variables. available in a header file. Instead Express has a
named common block which contains the FORTRAN equivalents of the C include file.
This common block has the following structure

COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
INTEGER NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC

KXINIT and the
XPRESS common
block

where all parameters are of type INTEGER. Each of these system parameters has a
corresponding value in the C implementation which is explained more fully in the manual
page for th~ KXINIT function. This latter function is the one which serves to setup
Express and initialize the above common block. It must be called in every program that
uses Express on both host and nodes. The prototype FORTRAN Express program has the Skeleton
following fonn FORTRAN

program

PROGRAM MYPROG
c

COMMON/XPRESS/NOCARE, NORDER, NONODE,
$ IHOST,IALNOD,IALPRC

c
C Start up Express.
C

CALL KXINIT
C
C Proceed with user program
C

Note that the user is not restricted to one or the other language. It is quite possible, for
example, to write a FORTRAN "host" program which interfaces with a C "node" program,
or vice versa. Similarly one can mix languages within the same program although Express
has no explicit mechanism for this purpose - standard compiler implemented techniques
must be used.

~ 3 " Processor Allocation and Program Loading

The most fundamental operation required before running a parallel application is to allocate
a bunch of processors and somehow load a program into them. There are several levels at
which this can be achieved and/or is necessary depending on the programming model you
have adopted. In the Cubix style all of these procedures are taken care of by the cubix
program and you have no need to read this section. If you have adopted the "Host-Node"
style, on the other hand there are many important variations which might be usefully
considered and which are discussed in this section.

1. Complete ignorance; The user application has no interest in the details of
this procedure and has no interest running on the host processor.

2. Host control; The application, for whatever reason, needs to have a process

81

Allocating nodes
and loading
programs can only
be done from the
host

Different loading
configurations

Basic allocation
routines

Loading programs

or proc.esses running on the host computer which controls the allocation of
processing elements and the flow ofdata to/from them.

3. Full control; The application wishes to control all aspects of the allocation
and loading of the parallel program including which physical processors to
use and what 'to use them for.

The frrst level will not be described in this section - since the user requested no information
none will be given. The mechanisms required to run parallel applications in tbis fashion are
described in section 5. The other two categories will be described in this section. Not all the
routines available 'to perform loading will be described here. For more details the reader is
urged to peruse the reference manual. Also, no information is supplied as to the method of
actually generating a program to run on the parallel machine. These details are relegated to
the various introductory guides supplied with Express.

3.1 Processor Allocation

Express provides a large set of tools for loading applications into groups of processors. As
well as sending a single application for all processors one can also load individual nodes
with their own applications. These utilities are provided independently for each user of the
parallel machine - it is quite possible to have two users simultaneously access two
independent sets of nodes although this is not the only model supported. In particular we
allow for the possibility of single host programs accessing multiple groups of nodes in the
parallel computer, as well as the possibility of multiple host processes sharing access to a
single group of nodes.

The central concept in discussing low-level processor allocation etc. is that of the processor
group and the associated processor group index. A processor group is a collection of nodes
allocated with a single call to the routine KXOPEN. The processor group index is the value
returned by a successful call to KXOPEN and which is used to subsequently indicate the
particular set of nodes to which an operation should be applied.

The routine which allocates processor groups is invoked as

PGIND = KXOPEN(DEVICE, NNODES, WHERE)

where the frrst argument indicates the fundamental device from which nodes are to be
allocated, the second is the number of processors required and the last optionally indicates
exactly which processors are required. The purpose of the last argument is so that
applicationsbuiltaroundcuslom networks can physically place' certain applications on
certain nodes. The special value NOCARE may also be ,given in the last position to indicate
no interest, in the 'physical placement of the program. (This value is 'to be found in the
XPRESS common block set up by the call to KXINIT.)

KXOPEN returns a value which, if negative, indicates an error. Obvious sources of error
include specifying an illegal device or asking for more nodes than are currently available
through use by other users. Otherwise the value returned is the processor group index by
which this particular set of nodes should be identified in future calls to Express control
utilities.

Having allocated a set of processors one must load an application. The simplest way to do

82

this is with the KXLOAD and KXP LOA system calls. The fonner loads the same program
into all nodes of the processor group while the latter loads a single node with an application
and is used in cases where different programs must be loaded into different nodes within
the same processor group. As an example consider the following code segment

PROGRAM FIRST
C

INTEGER PGIND
CHARACTER*80 DEVICE, PRGNAM
PARAMETER(DEVICE='/dev/transputer',PRGNAM='noddy')

C

COMMON/XPRESS/NOCARE,NORDER,NONODE,
$ IHOST,IALNOD,IALPRC

C
C-- Setup Express and its common block.
C

CALL KXINIT
C

C-- Allocate nodes for program.
C

PGIND = KXOPEN(DEVICE, 4, NOCARE)
IF(PGIND .LT. 0) THEN

WRITE(6,*) 'Error: Failed to allocate 4 nodes'
STOP

ENDIF
C

C-- Now load "noddy" program into nodes.
C

ISTAT = KXLOAD(PGIND, PRGNAM)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'Failed to load application'
STOP

ENDIF

The single application "noddy" will be loaded into all 4 processors and will immediately
begin execution. Sometimes this isn't exactly what we wanted. An important case occurs
when we use the debugger, ndb. In this case we want to load the application "stopped" so Debugging
that we have time to leisurely fIfe up the debugger and take control of things. We do not
want the node program to go screaming off into the wild blue yonder before we get a change
to debug it! This behavior can be achieved with the KXPAUS function call. If we call this
function before loading program then they will be loaded with a breakpoint set at the
nonnal entry point. It is often convenient to make this behavior conditional upon some
variable so that the program can be run in either mode without recompiling; while things
are going well one just loads the node program and blasts away but when problems arise
one can immediately switch back to debugging mode without time consuming
recompilation. Simple code which makes use of this feature is shown below.

83

Loading different
programs into
different nodes

PROGRAM SECOND
C

INTEGER PGIND
CHARACTER*80 DEVICE, PRGNAM
PARAMETER(DEVICE='/dev/transputer' ,PRGNAM='noddy')

C
COMMON/XPRESS/NOCARE,NORDER,NONODE,

$ IHOST,IALNOD,IALPRC
C
C-- 'Setup Express and its common block.
C

CALL KXINIT
C
C-- Prompt for number of nodes to use. If negative load
c-- application stopped for debugging.
C

WRITE(6,*) 'How many nodes? « 0 ==> stopped)'
READ{S,*) NNODES
IF(NNODES .LT. 0) THEN

NNODES = -NNODES
CALL KXPAUS

ENDIF
PGIND = KXOPEN(DEVICE, 4, NOCARE)
IF(PGIND .LT. 0) THEN

WRITE(6,*) 'Error: Failed to allocate 4 nodes'
STOP

ENDIF
C
C-- Now load "noddy" program into nodes.
C

ISTAT = KXLOAD(PGIND, PRGNAM)
IF(ISTAT .LT. 0) THEN

WRITE(6,*} 'Failed to load application'
STOP

ENDIF

Note that the call to KXPAUS is· made conditional upon the number of runtime nodes
requested. This is useful since one can either debug or not, choosing at runtime instead of
having to recompile.

If we needed to load different applications into different nodes this could be accomplished
by changing KXLOAD to KXPLOA. The following code segment loads "noddy" into nodes
0, 1 and 2 but "mycode" into node 3.

PROGRAM THIRD

C

INTEGER PGIND, SO, Sl, S2, S3
CHARACTER*80 DEVICE, PROGl, PROG2
PARAMETER (DEVICE='/dev/transputer')
PARAMETER (PROG1='noddy', PROG2='mycode')

C
COMMON/XPRESS/NOCARE, NORDER, NONODE,

$ IHOST,IALNOD,IALPRC
C

C-- Setup and intialize Express.
C

CALL KXINIT
C

C-- Allocate nodes for program.
C

PGIND = KXOPEN(DEVICE, 4, NOCARE)
IF(PGIND .LT. 0) THEN

WRITE(6,*) 'Error: Failed to allocate 4 nodes'
STOP

ENDIF
C

so = KXPLOA(pgind, PROGl, 0)
Sl = KXPLOA(pgind, PROGl, 1)
S2 = KXPLOA(pgind, PROGl, 2)
S3 = KXPLOA(pgind, PROG2, 3)
IF(SO.LT.0.OR.Sl.LT.O.OR.S2.LT.O.OR.S3.LT.O) THEN

WRITE(6,*) 'Failed to load applications'
STOP

ENDIF
C
C-- Loaded programs, start them all running.
C

CALL KXSTAR(PGIND, IALNOD)

This code contains several new features. Each call to KXP LOA loads an application into the
indicated node. After checking for failures there is a call to KXSTAR. The fIrst argument
here is the processor group index as before and the second is a processor number. This
routine serves to tell the nodes that program loading is complete and we should get ready
to load arguments. The special value IALNOD means "everybody". Since, in this example,
we don't want to go off and load any more nodes we can immediately start up the user
program. At this point the loading process is complete and the node programs will begin to
execute unless, of course, a call to KXPAUS has been made.

The extra complication involved in this last example (i.e., the KXSTAR call) is necessitated
by the fact that the loading primitives provided by Express are very general. You can load
different programs into each node, and also different arguments and environment variables

8S

Generalized
loading primitives

Number of nodes allocated, po
sition in machine and process
ID.

Size of program - not including
uninitialized data

A single 'b' character for each
1024 byte block loaded, and an
'E' for the last one,

Message confmning successful
load and indicating the start of
the user code.

Figure 1. Downloading a user application

Allocated 4 nodes starting at 8, process ID 3

Loading 34522 bytes

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbE
Loaded, starting

Diagnostics

Sharing groups of
nodes between
multiple host
processes

Express process
IDs

into each node in those languages that support such operations. Discussion of the means by
which this is achieved is postponed to the appropriate manual pages.

In order to confinn that everything is going well the system keeps you informed of the
loading status of the machine. In response to the KXLOAD command, for example, a display
such as that of Figure 1 will appear.

If this information appears incorrect, no 'b' characters appear, or no 'E' then the kernel is
probably out of action and one might-consider resetting everything with exinit.

Finally,among the loading and allocation options, we must discuss another possibility;
processor group sharing. Occasionally it will be convenient for multiple host processes to
share access to the same group of nodes. A simple example might be a host file server and
a graphical interface, or. a regular application and the debugger. This facility is available
through the KXSHAR fun·ction. To share a processor group with another process it is
sufficient to know its process-ID number and make the call

PGIND = KXSHAR(DEVICE, PlD, NNODES)

The frrstargument is the name of the device containing the nodes .. and is used in the same
manner as in the KXOPEN call. The second argument is the process-ID and the last isa
variable in which will be returned the number of processors in the shared group. The value
PGINDtreated identically to that returned by KXOPEN. If negative it indicates that the
attempt to share nodes failed for some reason. A positive value returned from KXSHAR is
the processor group index to be used in subsequent references to the shared nodes.

A tricky point in this regard is the specification of the process ID with which you wish to
share nodes. The only totally reliable way to find this is to remember what KXOPEN told
you when the processors were originally allocated. This number is always valid. A second,
less reliable mechanism on UNIX-like machines is the KXPID system call..The single
argument to this function is the UNIX process ID of the process which originally allocated
the nodes. The returned value if that which KXSHAR will understand. On non-UNIX

86

systems the same information may be available by using the exs tat -1 command which
also indicates the necessary process-IDe

An important point to make in connection with sharing processors is that the user is
responsible for avoiding potential clashes between requests. When reading messages, for
example, the user must be aware of the fact that the two, or more, host processes are
"racing" against one another and that the order in which their requests are satisfied cannot
be guaranteed unless some precautions are taken at the user level. The next section
discusses this problem in some detail and offers routines to manage these difficulties.

Many routines have been introduced in this section. Fortunately most applications need
only two of them; KXOPEN and KXLOAD. It is even easy to write a simple subroutine which
combines -both! The extra sophistication available in Express is provided for those
applications which do not fit simply into a "homogeneous" mould and where it is crucial to
be able to do "different things" in "different nodes". After all, this is merely another way
of expressing parallelism.

~ 4 Node Addressed Interprocessor Communication

The lowest level of the Express system is based on an asynchronous, point-to-point
message passing system. This means that messages may be sent from any node in the
system to any other node (including any attached host processor) at any time and the kernel
is responsible for intennediate buffering and routing of the messages. This level of
operation is available to user applications as well as the kernel and may be freely
interchanged with the system described in the section 5.

A system such as this is typically tenned "asynchronous". This is rather a misnomer - in
most implementations the "read" function call blocks until a message has arrived and been
read; not very asynchronous behavior. A better tenn would probably be "long range"
describing the fact that messages may be sent to arbitrary destinations with the intennediate
routing being handled by the Express kernel.

In fact Express does offer both synchronous and asynchronous functionality and several
intermediate flavors too. For simplicity we will divide this section and describe the two
modes separately since they ~ypically occur in different types of applications. Before diving
into specific details of the message passing primitives a few basic principles which hold
throughout these discussions will be discussed.

The communication system is built around the concept of a "message". Of the several
interpretations of this tenn the one adopted by Express is that a message is the result of a
single call to one of the "write" functions. It contains a number of bytes but is otherwise
without structure. Each message will be consumed by a single call to one of the "read"
functions .. if the receiving node wanted fewer bytes than were sent the extra are discarded
and if less were sent than were required then the read function takes what it sees and returns
a status value to its caller indicating that not enough data were sent.

This picture is rather different from a "pipe" style where any extra bytes in a message would
remain to be picked up by a subsequent read operation and if too few bytes were sent a
"read" would wait for more to arrive before returning. This approach is quite tricky to
program - the message approach makes bookkeeping easy since a single "read" should go

87

Race conditions
between multiple
host programs

The underlying
model of
communication

Terminology:
Uasynchronous" or
ublocking"

What is a message?

Contrast with
UNIX pipes

Message utypes"

Differentiating
,between incoming
messages

Ignoring message
types

The structure ola
message

Message
destinalions

with each "write".

As well as the obvious attributes of a message (length, data, source and destination)
Express also associates a "type" with each. This value is used to allow various types of
decision to be made on the receiving node about exactly which message is to be read. In a
multi~tasking environment, for example, different message types can be used to specify that
certain messages are intended for one task rather than another. Alternatively in a real-time
environment one might set aside certain message types for immediate processing while
assigning the others somewhat lower priority.

In order to select between messages when executing a "read" function one has an
"acceptance criterion". Each send operation associates a positive type value with the
message. When a messag'e is to be read the receiver specifies which node to read from and
which type of message to read. If several mes·sages satisfy the acceptance criterion tben the
one wbicharrived first is rea.d. Varying degrees of NOCARE or "wildcard,t behavior can
be specified to allow great flexibility in selecting between possible messages. It is also
possible to specify that certain message types should be processed by a second process
rather than being delivered to the user application.

While the "type" concept is central to the Express communication system it is always an
"option". In fact many applications don't ever need to deal with these features - all
messages can be of a single type and every read operation has a well defined source to read
from. Again, however, the extra functionality is required by some applications.

4.1 Messages, Nodes and Types

Before describing the functions used for interprocessor communication a few basics
concerning the Express implementation should be explained.

A message is a stream of bytes with no structure. The user is free to send any data to any
node at any time. Express does not attempt to interpret the message in any manner. As a
result you are free to send integers, floating point values, strings, structures, whatever you
like as long as your code supplies all the necessary knowledge about the data. If the receiver
needs to know what sort of data is coming then it can either be encoded in some user-level
protocol or the message type.

Every Express message is addressed to a "node" - a specific processor either within the
parallel processor network itself or attached as a "host". This latter category is somewhat
vague; a "host" is a processor, att3;ched to the parallel processor network which is
conceptually capable of providing system services such as graphics, disks or just
downloading user applications. One particular host is distinguishedfor.every application
tbat is loaded·into the machine. It has the special node number IHOST and·isthe machine
which actually started up your application. Since this machine is the ,obvious target for your
I/O and operating system selVice requests it has a special identifier. (In all respect it is just
like another node in the network - you send and receive messages to it in the same way.)
The magic number IHOST is to be found in the XPRESS common block set up by the
original call to KXINIT.

Express also supports the idea of multiple hosts. This means that your parallel processing
system may have several different types of host providing the sort of sy,stem services

described in the previous paragraph. To send a message to one of these hosts (other than
THE I HOS T, of course) you need to know its Express processor number. To find this it is
probably simplest to consult the information provided by the system configuration tool,
cnftool. It can provide you with a picture of the interconnections between nodes and
hosts and also with a small integer for each host. To translate this number into a processor
number for Express you merely "turn on bit 15"! While this sounds at frrst like the worst
kind of black magic it is actually quite simple in practice; the value 0 becomes 0x 8000
(hexadecimal l) or 32768 decimal, the value 1 becomes Ox8001 or 32769 etc..

The use of 16 bit values is of some concern here. One must always be aware of the
differences between host and node processors. It is most common in the current parallel
computer systems for the nodes to be 32 bit machines while the hosts are only 16 bit.

The final restriction is in the message type argument. Certain types of messages are treated
specially by Express and cannot be used in applications. As a result user message types
must lie in the range 0 - 16383 - i.e., they cannot have either of the two highest bits set.

While it is generally true that one can ignore the issues discussed in this section it is
probably wise to keep these points somewhere to hand since they are an irritating source of
minor problems. The minor differences between host and nodes is often unnecessarily
unpleasant - in the worst case one might find that a perfectly acceptable value in one place
is total garbage in the other because the byte ordering of the two machines is different. This
is ·one of the major strengths of the Cubix programming model - since you only write a
program for the nodes it never has to deal directly with any hosts. This system is discussed
briefly in section 6 and at greater length in the document "Programming Parallel Computers
Without Programming Hosts".

4.2 Blocking Communication Functions

In this section we discuss the simple "blocking" primitives. Once again this adjective is
rather a misnomer - the write function, for example, never blocks. However the concept
implies something at the level of the application programming model and so it remains.

The basis of the system are the three routines KXREAD, KXWRIT and KXTEST which are
available both on the host computer and within the nodes themselves. Messages are sent
with the system call

ISTAT = KXWRIT(BUFFER, LENGTH, DEST, TYPE)

in which BUFFER is an array ofdata to be sent and LENGTH is the number of bytes of data.
No restrictions are placed on the message length - any length from zero to the maximum
integer are allowed. It is often the case, for example, that zero length messages can be used
to some effect - interprocessor synchronization, for example. The DES T argument specifies
the processor to which the message is to be sent and the TYPE argument specifies a
"message type" for the data. These "types" provide the mechanism used by readers to
differentiate between various messages and also to allow multiple readers on a processor to
access different message streams.

1. FORTRAN has no standard notation for hexadecimal values so we show the C syntax to show the
method involved which may not be obvious from the equivalent decimal values.

89

Sending messages
to hosts

16 vs. 32 bits - a
potential problem

Restrictions on
message types

The basic
communication
system

The U acceptance
criterion" allows
readers to pick
between incoming
messages

Using the
NOCARE value

A slightly less obvious point concerns the use' of the wildcard system for processor numbers
and message types. As we will see shortly a program may request a message to be read from
any processor or with any type by using the special values NOCARE in its calls to KXREAD.
Analogously one might expect to be able to send a message whose type is irrelevant. Sadly
this is not so. If you attempt to send a message whose type or destination is NOCARE
Express will return an error.

Messages are re~eivedwith the system call KXREAD which has the calling sequence

ISTAT = KXREAD(BUFFER, LENGTH, SRC, TYPE)

The important fact about this function is that it blocks until an acceptable message has been
read - i.e. the process making the KXREAD call stops executing until it has received a
message.

Furthennore theSRC and TYPE fields potentially make the KXREAD call very particular
about which messages can be read. The method ofoperation is as fo,llows: all messages that
have. arrived at this processor are examined in tum and the fIrst one that meets the
requirements specified in the SRC and TYPE fields is selected for reading. Then a
maximum of LENGTH bytes are transferred to the user supplied BUFFER and any extra are
discarded. The number of bytes read is returned to the user as I STAT - if the message read
'is actually shorter than LENGTH then this smaller value will be returned. If any type of hard
error occurs ISTAT will have the special value ... 1. If more than one message on this node
meets the selection criterion then the one that arrived frrst is accepted.

The method for choosing acceptable messages is to examine the SRC and TYPE variables.
Both are considered, in tum, and both must match for a messag'e to· be accepted. The
matching procedure is the same for both SRC and TYPE fields (The TYPE field is actually
subject to one extra level of processing - see the calls KXEXCTand KXINCT.) and depends
upon the values initially supplied in the call to KXREAD

• If the supplied value is NOCARE (Defined in the XPRESS common block) then
any value is considered a match AND the accepted value is written over the
supplied parameter.

• If the supplied value is any positive value then only an exact match is allowed.

A couple of ex:ample program fragments should make this process clearer. We assume that
two integer variables MSGSRC and MSGTYP have been declared elsewhere and that
BUFFER is a region of memory sufficient to hold up to 512 bytes.

C
C-- Program fragment to explain wildcard behavior when
C-- reading Express messages.
C

MSGSRC = NOCARE
MSGTYP = NOCARE
ISTAT = KXREAD(BUFFER, 512, MSGSRC, MSGTYP)

Since both source and type fields are NOCARE then any message on this node will be

accepted for reading. Up to 512 bytes of the frrst message to arrive at this processor will be
read into the user buffer.

C
C-- Program fragment to explain wildcard behavior when
C-- reading Express messages.
C

MSGSRC = NOCARE
MSGTYP = 3
ISTAT = KXREAD(BUFFER, 512, MSGSRC, MSGTYP)

In this example the source field has the wildcard value NOCARE so a message will be
accepted from any node. The type field is explicitly set to 3 so that only messages of this
type will be read. Upon the completion of this call the MSGSRC variable will contain the
processor identification of the node which sent the message that was read.

WARNING: Do not insert the NOCARE value directly into
an argument list since it will be overwritten by the message
type or source eventually selected for reading. In this case
you would have pennanently changed the value of NOCARE
which would prohibit its further use in your program.

Using combinations of these parameters it is possible to control exactly the messages that
will be read by any process executing the KXREAD call. Note that the special value IHOST
is available in to indicate the host computer as either a message source or destination.

As stated earlier the call KXREAD blocks until a suitable message has been read. This
behavior is not suited to all applications so an extra call KXTEST is available to facilitate
non-blocking read processes. The syntax is

ISTAT = KXTEST(SRC, TYPE)

where the SRC and TYPE are interpreted exactly as in the KXREAD system call- i.e., they
are used to distinguish between various messages on a node. The difference between this
function and KXREAD is that KXTEST returns immediately. The returned value, ISTAT,
indicates whether or not a message was found that matches the supplied SRC and TYPE
parameters. A negative value indicates that no suitable message is currently available (and
hence that a corresponding call to KXREAD would block) while any other value is the length
of the message that would be read with an immediate call to KXREAD with the same
parameters. Note that the wildcard value NOCARE is interpreted in just the same way as in
KXREAD and that it will be replaced with the actual source or type in the call to KXTEST.

While the wildcard values offer useful possibilities to programmers a problem exists when
one considers multiple processes on a node both attempting to read messages. This is
exemplified by he following piece of code

Process 1.
MSGSRC = NOCARE
MSGTYP = NOCARE

91

Testingfor an
incoming message

Possible llbugs"
when using
wildcards

Restricting the
range of
acceptable
message types

ISTAT = KXREAD(BUFFER, 512, MSGSRC, MSGTYP)

Process 2.
MSGSRC = 3
MSGTYP = 145
ISTAT = KXREAD(BUFFER, 512, MSGSRC, MSGTYP)

Note that the programmer has been quite careful - only one of the processes uses the
NOCARE value while the other specifies exactly what source/type combination is
acceptable - and yet the code still fails intennittently. The problem is that the way this c·ode
works is time dependent When the message from node 3 with type 145 arrives it can still
go to either process because it is acceptable to both. Obviously if a message of type 144
arrivesftrSt then all is well because process 1 will read it allowing process 2 the second
message. Howeverf if the two messages arrive in the wrong order then process 1 will
happily read the type 145 message leaving process 2 high and dry waiting for its message
and ignoring the message of type 144.

The problem here is that the wildcard mechanism is TOO wild! In order to correct this
situation Express offers two functions to alter the functionality offered by the wildcard
values in the "type" field; KEXECT and KXINCT. Both functions have the same fonnat

SUBROUTINE KXINCT(LOTYPE, HITYPE)

SUBROUTINE KXEXCT(LOTYPE, HITYPE)

The arguments to this function specify an inclusive range of message types to be either
considered or rejected in matching wildcard values.

The way these functions work is slightly different. After a call to KXINCT only the given
type range will be considered in matching NOCARE arguments in KXREAD and KXTEST
calls. All other types will be ignored. On the other hand KXEXCT specifies a range of types
that will be ignored when matching wildcards - all other types will remain acceptable.

Using these functions it is possible to set up multiple processes on a single node both
reading with wildcards but without interfering with each other. In particular the previous
code segment can be fix~ in several ways, for example

Process 1.
CALL KXEXCT(145, 145)
MSGSRC = NOCARE
MSGTYP = NOCARE
ISTAT = KXREAD(BUFFER, 512, MSGSRC, MSGTYP)

Process 2.
MSGSRC = 3
MSGTYP = ~145

ISTAT = KXREAD(BUFFER, 512, MSGSRC, MSGTYPE)

One might note that if process 1 were to later on want to read a message of type 145 then
the call

CALL KXEXCT(DONTCARE, DONTCARE);

92

would indicate to the kernel that it should henceforth consider all types in matching
wildcard arguments.

Obviously this mechanism requires some sort of coordination between the processes
executing on a processor. Typically, however, this is not difficult to arrange and the benefit
to be accrued from the continued availability of the wildcard values is a very useful feature.

The function calls described so far in this section provide the basis for all interprocessor
communication facilities. However, whereas most systems stop at this point Express
continues to add extra functionality to the system designed to meet the requirements of
typical user applications. It is obviously true that the routines described can already form
the basis for almost arbitrary communication strategies but these often require some care in
their implementation so Express offers several additional functions.

KXBROD Perfonn a broadcast operation to some or all the nodes.

KXCHAN Combine the send and receive operations into a single function.

KXCOMB Gather messages from some or all the nodes and apply some
"combining" function to the data - useful for calculating global
averages, maximum and minimum etc.

llGlobal"
communication
functions

llDeadlock"

The advantage of
llblocking"
communication

Gather messages from some or all nodes into a single buffer.

Synchronize all processors.

KXCONC

KXSYNC

KXVCHA

KXVREA

KXVWRI Similar to KXCHAN, KXREAD and KXWRIT but non-continuous
memory blocks can be sent in a single message - useful for dealing
with rows and columns of matrices.

Together these functions provide a user interface which should be sufficient for the vast
majority of user applications. The KXCHAN routines are particularly powerful - in section
5 we develop an example program in its entirety using this function and the automatic
decomposition tools.

These functions provide the basis for the communication system under Express. As
mentioned earlier the Express kernel is responsible for routing messages between any pair
of processors. A crucial issue in this regard is "deadlock". This occurs whenever the
internal kernel buffers overflow or whenever some particularly strange combination ofread
and write requests leads to a situation where no single processor can proceed. In this case
there is usually no recourse but to reset the machine with exinit and try to figure out the
problem area. Fortunately there are known, deadlock-free, routing strategies for certain
processor interconnects: the hypercube and two-dimensional mesh. Both of these options
are supported within the Express kernel. Correct, problem free routing cannot be
guaranteed on other topologies.

The routines described in this section form the basis of all inter processor communication
facilities. the strategy they implement, however, is "blocking" in the sense that a "read"
function will hang if there has been no "write" function to send it data. This programming
style is actually very powerful - bugs appear repeatably and without time-dependencies

93

Real-time systems
and double
buffering

exhandle and
interrupt
processing

Speed of
processing
messages

Communication
U interrupts"

leading to simple diagnosis, especially with a debugger such as ParaSoft's ndb.

4.3 Non-blocking Communication Functions

Occasio~ally an application will arise that has particular requirements not easily met by the
functions described in the previous section. Important examples are the fields of real...time
control, in which it is important to react quickly and flexibly to input data and "pipelined"
operations in which one may wish to process one set of data while waiting for another to
arrive. Both of these applications are characterized by the requirement ofa non-blocking
read function.

In real-time systems one would like to setup a setvice,or services, which will accept
messages and process them without program intervention while another part of the
application continues to process data from other sources.

In the pipeline case one wants to set up a read request that does not block the calling
program which is free to continue processing currently available data. Eventually new data
will have arrived and can be processed while possibly waiting for still more messages.

Express provides functions for both these applications.

KXHAND provides a mechanism for "handling" messages as soon as they arrive at a
processor. The calling sequence

INTEGER TYPE, SRC, FUNC
EXTERNAL FUNC

c
TYPE = 123
SRC = NOCARE
ISTAT = KXHAND(FUNC, SRC, TYPE)

indicates that every message of type 123 is to be processed by the user specified function
FUNC. From this point on Express will respond to any message of type 123 with a call such
as. the following

KSRC = 12
KTYPE= 123
FUNC(KPTR, LENGTH, KSRC, KTYPE)

Notice that this has the same calling sequence as the KXREAD function described in the
previous section •with some important differences. The· pojnter supplied .. as the fIrst
argument is the address in Express memory where the. message is to be found - no time
has been spent·copying the data to a user memory area. The KSRCand KTYPE fields denote
the source and type of the message respectively and LENGTH is its size.

Note that the user "sees" the message with the absolute minimum of delay - it is essentially
passed to a user level routine for processing as soon as it has arrived, interrupting nonna!
program flow. Notice that this means that the user routine must take special precautions if
it wishes to retain the message - otherwise the kernel will discard it after the application
level call completes.

This style ofprocessing is often referred to as "interrupt time" since many implementations
generate a "hardware interrupt" when· a message atrives that causes some action to be

taken. Usually the action taken is for the kernel to arrange to buffer or forward the message
but KXHAND allows the user the fust "crack" at the data.

Notice that the wildcard processing applied to KXREAD, KXTEST, etc. also applies here
ITYPE = NOCARE and suitable calls to either KXINCT or KXEXCT are often useful.

This function actually fonns the basis of an extremely elegant multi-tasking programming
style under Express. In an abstract sense it can be said to provide a mapping from the space
of message types into the set of functions/subroutines within a program. This mapping
essentially allows us the freedom to execute,!rom another processor, any function in the
program and to simultaneously pass it the data it needs.

In connection with this style of programming one should mention that asynchronous
programming is rather tricky. One has to indulge in protection ofcritical code sections with
semaphores and the like and must be careful with global variables, etc. Bugs tend to occur
in a haphazard and unreproducible fashion which makes debugging much harder than it
might otherwise be.

A simple example of this sort of processing is the construction of a "load balancing"
supervisor. Consider a parallel system in which work is being generated by some
phenomenon - for example, turbulence is developing over some body necessitating extra
processing. This additional workload is to be distributed among the parallel processors by
some "task creation" scheme. In order to load-balance such a strategy one might wish to
provide some means of gathering statistics. The following code segment treats all messages
of type 99 as requests for load infonnation and returns a message to the inquiring node
about the total workload in this node.

PROGRAM BALANC
PARAMETER (LDREQ=99, LDACK=100)

C
COMMON /SYSTEM/ LODVEC
REAL LODVEC (18)

C
INTEGER TYPE, SRC, LODAVG
EXTERNAL LODAVG

c
COMMON/XPRESS/NOCARE,NORDER,NONODE,

$ IHOST,IALNOD,IALPRC
C
C-- Start up Express and its common block.
C

CALL KXINIT
C
C-- Set up message handler to service requests for load
information.
C

TYPE = LDREQ
SRC = NOCARE

9S

The problems with
asynchronous
programs

Load balancing

An tricky {tbug" in
writing exhandle
routines

ISTAT = KXHAND(LODAVG, SRC, TYPE)
IF(ISTAT .LT. 0) THEN

STOP
ENDIF

c
C-- A good idea is to "sync" the processors after
C-- installing a handler so that no-one sends off
C-- messages to a node that isn't ready yet.
C

CALL KXSYNC
C
C-- Proceed with simulation .•.......
C

INTEGER FUNCTION LODAVG(PTR, LENGTH, SRC, TYPE)
INTEGER PTR(*), LENGTH, SRC, TYPE

C
PARAMETER (LDREQ=99, LDACK=100)
COMMON !SYSTEM! LODVEC
REAL LODVEC(18)

C
INTEGER RTYPE

C
RTYPE = LDACK

c
ISTAT = KXWRITE(LODVEC, 4*18, SRC, RTYPE)
LODAVG = 0
RETURN
END

Notice that the handler is very simple in this case - it merely returns the LODVEC array to
the requesting node in a message of a different type as the request Obviously much more
complicated structures could be constructed. It is very important that the returned message
be ofadifferent type to that received. If we returned the results in a message of type LDREQ
it would get picked up by the message handler on the requesting node which would, in turn,
bounce it back to the other node and soon, ad infinitum. This is typical of the strange bugs
one can generate with asynchronous message handlers.

Invoking the message handler is similarly simple

SUBROUTINE GETLOD(NODE, BUFFER)
INTEGER NODE
REAL BUFFER (18)

C
PARAMETER (LDREQ=99, LDACK=lOO)

C

INTEGER STYPE, RTYPE, DUMMY
C

STYPE = LDREQ
RTYPE = LDACK
ISTAT = KXWRIT(DUMMY, 0, NODE, STYPE)
ISTAT = KXREAD(BUFFER, 4*18, NODE, RTYPE)
RETURN
END

Notice that we send a zero length message to the node whose load data we wish to get
after all the data in the message is going to be ignored on receipt anyway. We then read the
results back from the same node into a local buffer. Notice that there are no constraints on
the use of this function - we can even use it to enquire about our own loading. (Some
precautions may have to be taken to ensure that a message is not sent to a node before it has
started up its handling routine - hence the call to KXSYNC in the previous example).

A final note in connection with the KXHAND routine is that the connection between
messages and the handler need not be permanent - in fact it is tenninated whenever the
handling routine returns a negative value to the kernel. This facility can be used to install
once only handlers or those that function only until some specific condition applies.

The second style of asynchronous processing is that of a non-blocking read. This is
implemented with the call

ISTAT = KXRECV(BUFFER, LENGTH, SRC, TYPE, STATUS)
INTEGER BUFFER(*), LENGTH, SRC, TYPE, STATUS

The fIrst four arguments to this call are treated exactly as in the corresponding call to
KXREAD. The difference, however, is that this function returns immediately to its caller
irrespective of whether or not a message has been read allowing processing to continue. If
no message is available at the time of the call then the value -1 is written into the STATUS
variable and the SRC and TYPE arguments are left unchanged. When a message finally
arrives the STATUS value is updated to reflect the length of the message read and SRC and
TYPE fields are also modified to denote the actual message parameters.

This function is of use in many types of application. Since I/O bandwidth is often low on
parallel processors, especially when compared to brute CPU power, "double-buffering" is
a good strategy - one buffer is written to disk whjle another is being read through the
communication system. Similarly graphics applications benefit from such treatment.

In the following example we assume that the parallel machine is being used in a signal
processing "pipeline" - each node perfonns a particular processing phase and passes its
result on to the next "black box" in the chain. In this case it is important to keep data
flowing smoothly through the pipe. For simplicity we assume that incoming data buffers
are of length 1024 bytes and must be processed by the SIGPRC function before being
passed on to the next node. We use two message types: PRCESS for most buffers and
FINI SH for the last buffer. This is again rather artificial but serves to illustrate one of the
trickier points of the "double-buffering" technique - stopping it when it's done!.

97

Zero length
messages are OK

Using exhandle to
as a II'remote
procedure call"
mechanism

exreceive - a llnon
blocking" read
function

"Double
buffering"

Signal processing

SUBROUTINE PIPLIN(INODE, ONODE)
INTEGER INODE, ONODE

C
INTEGER PRCESS, FINISH
PARAMETER (PRCESS=23, FINISH=24)

C
C-- Assume that this has been set up somewhere else.
C

COMMON/XPRESS/NOCARE, NORDER, NONODE,
$ IHOST, IALNOD, IALPRC

C
INTEGER BUFFER(256, 2)
INTEGER DONE, TYPE(2), THIS, NEXT, STAT (2)

C
C-- These varibles are used to indicate slots in the two
c-- dimensional arrays used for the two buffers.
C

DONE = 0

THIS = 1
NEXT = 2

CONTINUE
IF (TYPE (THIS) .NE. FINISH) THEN

TYPE (NEXT) = NOCARE
CALL KXRECV(BUFFER(l,NEXT) , 1024, INODE,

TYPE(NEXT), STAT (NEXT»$

c
C-- Get first buffer, blocking read this tirne.n
C

TYPE (THIS) = NOCARE
STAT (THIS) = KXREAD(BUFFER(1,THIS),1024,

$ INODE, TYPE(THIS»
c
C-- While we've not got the FINISH message keep on
c-- processing the incoming data.
C
10

ELSE
DONE = 1

ENDIF
c
c-- Process the oldest buffer and send the result to the
C-- next node with the same type as we received.
C

CALL SIGPRC(BUFFER(l,THIS}, STAT(THIS»
ISTAT = KXWRIT(BUFFER(l,THIS) , STAT(THIS),

$ ONODE, TYPE(THIS})

98

C
c-- If we're not done wait for next buffer
C

IF(DONE .EQ .0) THEN
20 IF (STAT (NEXT) .EQ. -1) GOTO 20

NEXT = MOD (NEXT, 2) + 1
THIS = MOD (THIS, 2) + 1
GOTO 10

ENDIF
RETURN
END

Notice that we have saved the incoming message length for passing to the processing
function. This is superfluous in cases such as signal processing where all buffers are
(presumably) of the same length but again serves to illustrate a more general case. Also
important is the duplication of all status and type infonnation. This has to be preserved
since the value of the STAT and TYPE variables get ovelWritten whenever a new message
arrives - an asynchronous event.

In common with the KXHAND call all the standard interpretations for the SRC and TYPE
arguments are valid as is processing by the KXINCT and KXEXCT functions.

The previous paragraphs describe and motivate two non-blocking read· functions that have
particular applications in application areas. These functions are part of the Express library
because they supply necessary programming paradigms. One additional non-blocking
function is supplied solely for reasons of speed, KXSEND. This function is analogous to the
KXWRI T function in that it sends a message to another processor. The difference is that
whereas KXWRI T waits until the message has been sent before returning to its caller
exsend returns immediately. The calling sequence for this function

ISTAT = KXSEND(BUFFER, LENGTH, DEST, TYPE, STATUS)

can be seen to directly match that of the KXRECV routine and, in fact, the use of the
additional STATUS argument is identical- its value is initialized to -1 by the system and is
changed to the length of the transmitted message as soon as the data has been sent.

This function is actually very useful and while its motivation appears to be solely on
grounds of speed it can be used in most cases where KXWRI T would nonnally be used. The
only real difference between the two routines is that since the data has not necessarily been
sent when the call to KXSEND returns one should be careful not to modify the data
contained in the message BUFFER until the STATUS variable indicates that it is safe to do
so. It may, of course, be possible to imagine applications in which it is safe to modify the
data even before it has been sent, but we have been unable to do so!

As a final note we might point out that a call to the standard KXWRI T function is
functionally equivalent to the sequence

ISTAT = KXSEND(BUFFER, LENGTH, DEST, TYPE, STATUS)
10 CONTINUE

99

Another potential
bug with
asynchronous
processing

Topology
independent
communication

IF(STATUS .LT. 0) GOTO 10

12 5 Topology Independent Communication

The previous section described a communication system that directly addresses the
processors in the parallel computer by sending and receiving messages addressed according

The relation to their processor numbers. This strategy typically involves a certain degree of user
between hardware intervention in the placement and distribution of data to make best use of the parallel
and software machine - for instance it makes sense to have data decomposed in such a way that
topologies

processors that need to communicate frequently are neighbors in the hardware topology.

While this layer is useful (and in fact necess.ary) for some application.s another level can be
provided in which no knowledge of the underlying topology is required. We have found
this level to be extremely important in the regular problems common in scientific
applications since some degree of automatic decomposition is possible which hides most
details of the parallel machine from the user. Hiding machine dependencies in this way also
enhances the portability of the resulting code - since it is independent of the underlying
processor topology the code can be implemented on a wide variety of architectures
including both shared and distributed memory machines and also sequential computers.
This latter point is often unreasonably neglected. Since software development is typically
extremely expensive it is very unfortunate if a program that has been successfully
parallelized cannot be run (and maintained) on a regular sequential computer.

flow many
processors are we
using?

5.1 Automatic Decomposition and Run-Time Configuration

One of the most important features of parallel processors is reconfigurability. When
running on a sequential machine one has limited options - the program runs and that's it. A
parallel processor has many more dynamic features; panicularly the availability ofdifferent
numbers of nodes. It is particul~ly important for.a parallel program to know the· details of
its run-time environment; how many processors are available, how to communicate with
the host computer, etc. Within Express this infonnation is made available with the call
KXPARA which fills in four entries in an array supplied as arguments:

ARRAY (1) Processor number within the group.

ARRAY (2) Number of processors within the group.

ARRAY (3) Identification code for the group.

ARRAY (4) Identifier for calling task.

The elements in this array are used to specify the runtime environment within which a
process finds itself. The frrstand second fields specify how many processors are currently
active and uniquely identify each processor within a processor group.

This infonnation. is obtained at run time by executing the KXPARA system call whose
argument is a four element array of integers that will be filled in by Express. The following
is a sketch of the appropriate code

INTEGER NDDATA(4)
c

100

CALL KXPARA(NDDATA)
c

The automatic decomposition mentioned in the heading of this section is implemented in a
set of function calls collectively known as KXGRID. Their purpose is to take a user
specification of a problem domain and perfonn a mapping to the underlying processor
topology. The system then makes available any "node numbers" that may be required for
use in communication calls. In this way the user never has to understand the exact location
of the processes in the application or which nodes they have to communicate with - all this
is handled transparently.

The "incantation" that makes this magic happen is for the user to specify the way that data
is to be distributed over the processors. Extracting parallelism this way is often known as
"data parallelism" and is very common in a wide range of application areas. Basically the
user infonns the system of the way that the application level data is distributed and
Express contrives to hand back the parameters that cause the correct communication to be
perfonned. Note that this is just the opposite of the conventional approach in which the user
is presented with a given topology by the system and has to make the best possible use of it.

To expand these ideas a little consider the following example; a model of road traffic in a
major city. For simplicity we shall assume that the net of roads is evenly spaced in both
directions and that we will ignore load balancing concerns or other abstruse properties of
parallel machines.

Our problem is shown diagrammatically in the upper part of Figure 2.

The road network is shown by the solid lines and a set ofeight processors are delineated by
the dashed lines. The basic idea is that each processor in the system will be responsible for
a subregion of the total road network, moving cars around and generally controlling things.
An example subregion is shown in the center of the same figure. As any car reaches the
edge of the area controlled bya particular processor we assume that it has to get sent to the
processor who controls the neighboring roads.

Essentially the question becomes one of assigning the subregions to the processors and
working out how to communicate with neighboring areas; this is the purpose of "exgrid".

To set up the problem we have to inform the system of the dimensionality of the user
problem and how many processors should be assigned to each of these dimensions. Note
that these quantities are specified in the space in which the users problem lies rather than
the abstract space defined by the topology of the parallel processor network. In the case of
road traffic the problem has dimension two - at least if we don't have overpasses, tunnels
etc.! In order to assign the number of processors in each direction we can either hard code
some values or else use the KXPARA and KXGD SP system calls to distribute the number of
available processors at runtime. For the sake of simplicity we adopt the convention that
dimension 0 will denote North-South and dimension 1 East-West. Then we initialize the
system by making a call to KXGDIN as follows

INTEGER NS, EW
PARAMETER (NS=O, EW=l)

101

Automatic
decomposition
routines - exgrid

Protecting the user
from the hardware

llData
parallelism"

Automatic
decomposition - an
example

A traffic-flow
problem

The
IIdimensionality"
ofthe physical
system

Street Map

Distributed among eight processors

I
I

A single processor

Intersection ij i = 2, j = 0

\
\

Figure 2. Decomposition of road network problem for eight nodes

103

C
INTEGER NPROCS(2), DIM

C
C-- Our physical domain has two dimensions, E->W and N-S
C

DIM = 2
NPROCS(NS+l) = 2
NPROCS(EW+l) = 4

C
ISTAT = KXGDIN(DIM, NPROCS)
IF(ISTAT .LT. 0) THEN

STOP
ENDIF

Notice that we took the easy way out here andjust hardwired the fact that there will be eight Assigning
processors working on the problem decomposed as a two by four mesh. We could do better processors to the
by making a call to KXPARA and dividing up the NPROCS field to make the mesh as nearly physical domain

square as possible. The code to do this has the form

INTEGER NS, EW
PARAMETER (NS=O, EW=l)

C
INTEGER NDDATA(4), DIM, NPROCS(2)

C
CALL KXPARA(NDDATA)
DIM = 2
ISTAT = KXGDSP(NDDATA(2) , DIM, NPROCS)

The KXGDSP function takes as arguments the total number of processors and the number
of dimensions to decompose over and returns, in the array pointed to by the last argument,
a "square" decomposition of this many processors. For example a two dimensional
decomposition of 8 processors would yield a 4 x 2 decomposition while 9 nodes would give
3 x 3. No account is made for "silly" input values - eleven processors would yield an 11 x
1 decomposition which is probably less efficient than only using ten processors!

Express now understands that we are modeling a two dimensional real-world situation and
that we have some number of processors in each direction. Next we can go ahead and find
other parameters of our decomposition. One we might need to know is the coordinates of a
particular processor in the physical grid. For instance we might know that several roads are
closed in the most South-Westerly region and the processor controlling that area has to be
able to make decisions relating to this fact. To do this we use the KXGDCO function which
takes as arguments a processor number and returns the coordinates of that node in the grid.
So, for example, the following code might be used to pick out the processor with all the
closed roads. (Assume the same PARAMETERS are defined as before)

INTEGER RECNUM(2)

103

Express and the
real physical
problem

Finding out which
processor is where

Communication
without processor
numbers

c
c-- Code to setup and call exgridinit and exparam,as
C-- before.
C

c
C-- Find global coordinates and treat closed streets.
C

ISTAT = KXGDCO(NDDATA(l), RECNUM)
IF (RECNUM(NS+1) .EQ.0.AND.RECNUM(EW+1) .EQ. 0) THEN

c
C-- Code to deal with the blocked streets.
C

ELSE
C
C-- Normal case, no streets blocked.
C

ENDIF

Note that the user detennined coordinate system has intersection (0,0) at the South-Western
comer of the mesh and hence the code in the above IF statement.

As well as.allowing access to this sort of infonnation defined .totally within the user
problem domain a fundamental purpose of the KXGRID tools is to facilitate
communication between processors. The utility which allows this is KXGDNO which
calculates the "destination" parameters associated with communication to any of the
processors in the physical domain. The use of this routine is easily explained by example.
Suppose that a processor needs to communicate with its neighbor to the East. Then the
following call calculates the appropriate destination.

INTEGER· NS, EW
PARAMETER (NS=O, EW=l)
INTEGERNDDATA(4), DEST

c
CALL KXPARA(NDDATA)
DEST = KXGDNO(NDDATA(l)~ EW, 1)

The fIrSt argument specifies which processor to start from and the next two give the
direction in which we wish to go; the second argument names the basic direction - North!
South or East/West and the last says how many "hops" we want to make - positive values
indicate motion along the positive axis and negative values along the negative axis. In our

104

case we wanted the next processor along to the "East" which is along the positive direction.
To find the node for the "West" direction we simply change the final argument to -1.

Notice that we have skipped over the question of "boundary conditions" in this discussion
- i.e., what processor is directly to the East of the most Easterly and so on. We will return
to such matters in the next section where we will also discuss what is actually done with
values calculated by KXGRID. Before doing so it must be emphasized that the KXGRID
utility is actually very general. You can adopt ring type structures in which the physical
decomposition is basically one dimensional (An example might be freeway traffic) or
multi-dimensional decompositions such as might be suited to modeling other real-world
phenomena. In each case the procedure is basically the same. Also one is not restricted to
inquiring about conditions and neighbors of your own processor - one can discover the
environment of any processor in the decomposition.

5.2 Using the Automated Decomposition Tools

In the previous section we discussed how the KXGRID utility can be used to generate
"topology independent decompositions" - i.e., ones in which the decomposition is carried
out in the domain of the application rather than the underlying connectivity of the parallel
computer. In this section we will show how these tools are used in conjunction with the
communication primitives discussed in section 4.

In order to do so we will add a little more detail to the previous example. We will make a
drastic simplification and assume that traffic is only allowed to proceed from West to East
and from South to North - i.e. in the positive direction along each axis. Furthennore
vehicles are not allowed to make turns. We can now represent the state of the traffic flow
by having two dimensional arrays whose elements are the number of cars at a particular
intersection in each processors area of responsibility. For example STON (1, 1) will
contain the number of cars traveling North from the South-West intersection of each
processors region, STON (2, 1) denotes the number of cars in the next block to the East
and so 00. A second array (called WTOE) represents the flow in the West-East direction.
The naming conventions for these arrays is shown in the lower part of Figure 2.

Now our basic problem is to update the traffic flows as time progresses. We will make
further sweeping assumptions that all vehicles travel at the same speed and all blocks are
the same length. Thus the update cycle merely consists of moving each element in the
WTOE array one element to the "East" and each element in the STON array one element to
the "North". Schematically this code looks like the following, for the cars moving South
North, on a sequential computer.

c-- Do cars moving S->N: SEQUENTIAL
C

DO 10 I=1,BLOCKS(EW+1)
DO 20 J=BLOCKS(NS+1), 2, -1

STON(I,J) = STON(I,J-l)
20 CONTINUE

STON(I,l) = RANDOM
10 CONTINUE

lOS

Boundary
conditions

The traffic flow
model

Updating the
traffic flow in a
sequential program

Fictitious
boundary
.conditions

Running the code
on a parallel
computer

The parallel
computer
uboundary
conditions"

lnterprocessor
communication

A common bug

where BLOCKS is an .array containing the number of street blocks in the two directions.

Note that we have introduced another fictitious object - cars appear randomly "out of the
South" at each step, and disappear forever off the "North" edge of our city. These
conditions are the so-called "boundary conditions" which should be familiar to most
scientists and engineers. The proper specification of these effects is crucial to the model
being constructed.

Now let us attempt to roD. this code on a .parallel computer. Fora fIrSt attempt consider
running the above piece of code in each processor. We introduce a new array, BLOX which
has a similar meaning to the BLOCKS array in the· above code except that it tells us the
number of blocks in each processor after partitioning the data across the nodes.

The code which is correct fora sequential computer is wrong for a parallel machine because
of the "boundary conditions" at the junctions between the processors. If we run the above
code in multiple parallel processing nodes new cars aregenentted randomly along the
South edge of each processor's sub-region while cars going off the Northern edge
disappear forever rather than appearing in the next area to the North. Not very realistic.

The problem can be solved in parallel by adding some simple communication calls to the
above example. Essentially what we have to do is to have each processor send to its
Northerly neighbor the number of cars in each of its Northmost blocks. This data is then
read by the adjacent processor and used to fill. in its data for the Southmost blocks. A
suitably modified version is the following (Assume all arrays/variables are suitably
declared elsewhere)

C-- Do cars moving S->N with boundaries:
c-- FIRST PARALLEL EFFORT -- WRONG.
C

NNODE = KXGDNO(NDDATA(l), NS, 1}
SNODE = KXGDNO(NDDATA(l), NS, -1)
ISTAT = KXGDSI(NDDATA(1), BLOCKS, BLOX, START)

C

TYPE = TRAFIC
C

DO 10 I=1,BLOX(EW+1)
ISTAT = KXREAD(TEMP, 4, SNODE, TYPE)
ISTAT =:> KXWRIT (STON(l, BLOX(·NS+l)), 4,

$ NNODE, TYPE)
DO 20 J=BLOX{NS+l), 2, -1

STON(I,J} =STON(I,J~l)

20 CONTINUE
STON(I,l) = TEMP

10 CONTINUE

In this piece ofcode we assume that the NDDATA array is ·defmed and setup elsewhere with
a call to KXPARA. Notice that we use KXGDNO to give us the magic "nodes" for the
processors to our South and North, and KXGDSI to actually tell us how many blocks lie in

106

our processor. Further we use a temporary variable, TEMP, to store the information coming
from our neighbors.

So where is the bug in the above code?

The problem is with the order of the KXREAD and KXWRI T functions. Since we are using
the blocking "read" function each processor will come to its KXREAD and stop waiting for
a suitable message to arrive. Since every processor is now waiting and none of them are
writing data the machine is now "hung".

A trivial fix is to reverse the order of the KXREAD and KXWRI TE calls. Now each processor
sends its boundary value and then looks for an incoming message with new data. This
method works - we have parallelized our program!

However, the best solution is not yet found. Three questions can be asked about the current
solution

• Can I avoid having to remember to write before reading - especially when there
may be real cases in which the other order is appropriate?

• Is this solution the most efficient?

• Is this method guaranteed - even when the messages being sent are very large?

The frrst question may seem trivial but is actually quite important. With the proper tools
errors such as this are easy to find but they still require a fair amount of recoding and
rethinking which is wasted effort. The second question is the central topic of parallel
processing and obviously important. The last point is rather subtle and concerns the internal
buffering which is happening inside the Express kernel.

Fortunately there is a solution which satisfies all three questions - KXCHAN. The problem
at hand required one processor to both send and receive data. Instead of having separate
"read" and "write" operations the KXCHAN function combines them both into a single
function call. Conceptually the read and write operations are made simultaneously (which
is really what we need in our example) and the implementation allows us to take advantage
of hardware capabilities for maximum speed. Further we can take precautions internally to
avoid possible buffering problems completely.

A better version of the above algorithm is, therefore

C
C-- Do cars moving S->N with boundaries:
C-- CORRECT and BETTER in PARALLEL
C

SNODE = KXGDNO(NDDATA(l), NS, 1)
NNODE = KXGDNO(NDDATA(l), NS, -1)
ISTAT = KXGDSI(NDDATA(l), BLOCKS, BLOX, START)

C

DO 10 I=1,BLOX(EW+1»
c

ISTAT = KXCHAN(TEMP,4,SNODE,TYPE,

107

Optimizing the
traffic flow
program

Periodic and non
periodic boundary
conditions

Running Express
programs on
sequential
computers

$ STON(BLOX(I,NS+1», 4, NNODE, TYPE)
DO 20 J = BLOX(NS+1), 2, -1

STON(I,J) = STON(I,J-1)
20 CONTINUE

STON(I,1) = TEMP
10 CONTINUE

One point to note is that we have apparently lost touch·with the "boundary conditions" that
made up part of the specification of the original (sequential) problem. Cars are supposedly
generated randomly on the West edge of the system and disappear off the Eastern edge. The
ftrStcondition can be easily fixed with a call to KXGDCO which will tell us if we are on the
Western edge of the city and hence need to generate random cars. The other part of the
problem is a little trickier.

By default KXGDNO assumes that the user domain is "periodic". This means that the left
and right hand edges are connected as are the top and bottom. The simple consequence of
this fact is that when the Southmost processors ask for a node to the South they are given
the node number of the Northmost processor. This is actually very useful in typical
scientific applications where the "periodic" assumption is often encountered but is
obviously incorrect in our example. What we would like to happen is for no data to get sent
off the Northmostedgeof the city and, likewise, no data to get read on the Southmost edge.

Fortunately this is very easily achieved with the KXGDBC call which overrides the defaults
and makes KXGDNO behave the way we want it to. When we ask for a processor number
which is "off the edge of the city" KXGDNO will return the magic value NONODE which,
when passed to KXCHAN, will denote that no communication should actually be attempted.
This mechanism is very general - all the Express functions understand the NONODE
argument and use it to indicate that no attempt should be made to communicate. We use
this feature to run codes on sequential computers. In this case KXGDNO will only everretum
NONODE values since there is only one processor - there are no other nodes to send
messages to.

With the addition of a suitable call to KXGDBC the code becomes

C
C-- Do cars moving S~>Nwith CORRECT boundaries:
C-- CORRECT and SMART in PARALLEL
C

INTEGER PERBC(2)
c
C-- Override default boundary conditions.
C

PERBC(1) = 0
PERBC(2) = 0
ISTAT = KXGDBC(PERBC)

c
NNODE = KXGDNO (NDDATA (1), NS, 1)

108

SNODE - KXGDNO(NDDATA(1) , NS, -1)
ISTAT = KXGDSI(NDDATA(l), BLOCKS, BLOX, START)

C
ISTAT = KXGDCO(NDDATA(!), RECNUM)

C
DO 10 I=1,BLOX(EW+l)

C
ISTAT = KXCHAN(TEMP, 4, SNODE, TYPE,

$ STON(I, BLOX(NS+l», 4, NNODE, TYPE)
C

DO 20 J=BLOX(NS+1), 2, -1
STON(I,J) = STON(I,J-1)

20 CONTINUE
C

IF (RECNUM(NS+l) .EQ. 0) THEN
STON(I,l) = TEMP

ELSE
STON(I,l) = RANDOM

ENDIF
10 CONTINUE

RETURN
END

This piece of code now deals correctly with all the cases and is fully parallel. We can
duplicate it trivially for the case of cars traveling E-W and everything is done. Note that the
structure is'still quite like the original program and the user had to have no knowledge of
the underlying topology of the parallel machine - KXGRID and Express did all the work.

Note that there are no strange looking parallel processing "incantations" of any kind in this
code - it consists ofa set of standard C statements and calls to a runtime library. In this sense
it is still a sequential program and can be thought of, developed and debugged in that way.
Everything that happens in the program is fully detenninistic and totally under the control
of the programmer. As a result it is easy to understand every factor while both designing
and analyzing the algorithm. This is the reason that we advocate this programming style so
strongly - one can use ones nonnal intuition about programming sequential computers to
understand how this parallel program works!

One might at this point worry about the efficiency of the above approach. Inside the loop
over I we are making a call to the communication system and hence the kernel with all the
overhead that this entails. A much more efficient method would be to do all the
communication in one swoop. We can do this by making the TEMP variable into an array
and trivially modifying the program ,

C
C-- Do cars moving S->N with CORRECT boundaries:
C-- CORRECT and SMART in PARALLEL
C

109

Parallel
programming with
exgrid is just like
sequential
programming

Reducing Express
overheads

Communicating
arrays: exvread,
exvwrite,
exvchange

INTEGER PERBC(2)
c
c-- Override default boundary conditions.
C

PERBC(l) == 0
PERBC(2) = 0
ISTAT = KXGDBC(PERBC)

c
NNODE = KXGDNO(NDDATA(1), NS, 1)
SNODE - KXGDNO(NDDATA(1), NS, -1)
ISTAT = KXGDSI(NDDATA(l), BLOCKS, BLOX, START)

c
ISTAT = KXGDCO (NDDATA (!), RECNUM)

c
ISTAT = KXCHAN(TEMP, 4*BLOX(EW+1), SNODE, TYPE,

$ STON(1, BLOX(NS+1», 4*BLOX(EW+l), NNODE, TYPE)
C

DO 10 I=1,BLOX(EW+l)
C

DO 20 J=BLOX(NS+l), 2, -1
STON(I,J) = STON(I,J-l)

20 CONTINUE
C

IF (RECNUM(NS+l) .EQ. 0) THEN
STON(I,1) = TEMP (I)

ELSE
STON(I,1) = RANDOM

ENDIF
10 CONTINUE

RETURN
END

Note that we've used an important property of the Fortran language here which is that
arrays are stored in the order which makes the frrst index increase fastest. So, when we use
KXCHAN we will actually transmit the data along the correct column of the array_

Having made this important optimization one might wonder what happens to the traffic in
the East-West direction. If we make the same optimization there then the data that we want
to send off the Eastern edge .doesn't lie in adjacent memory .locations, at least in .Fortran.
Even in languages where the East-West array works right the South-North one wouldn't
you can't have it both ways! This is the reason for the existence of the "v" routines:
KXVREA, KXVWRI, and KXVCHA. These routines, as well as the conventional pointer,
length, node and type arguments have two extra: item size and skip distance. So, for
instance, the actual syntax of the KXVWRI call is

ISTAT = KXVWRI(DATA, SIZE, SKIP, NITEMS, NODE, TYPE)

110

The DATA, NODE and TYPE arguments are exactly as before. However the actual data sent
consists of NITEMS of size SIZE each separated by SKIP bytes. Note that we do not
specify the total length of the data to be sent in bytes as with KXWRI T but rather give the
number of items and the size of each.

As an example of this call suppose that we wish to send every third element of a simple
array of 32 bit integers. In total there will be 23 items to be sent and the array they come
from is called MYBUF. Then the appropriate call to KXVWRI is

ISTAT = KXVWRI(MYBUF, 4, 12, 23, NODE, TYPE)

The variations KXVREA and KXVCHA are implemented in a similar way. To see how one
might use these calls in our traffic flow problem it is easiest to just present the code that
deals with the East-West flow. Note that we only have to call KXGDBC once to set up the
boundary conditions properly for both West-East and South-North flow.

C
c-- Do cars moving W->E with CORRECT boundaries:
C-- CORRECT and SMARTEST
C

ENODE = KXGDNO(NDDATA(1), EW, 1)
WNODE = KXGDNO(NDDATA(1), EW, -1)

C
ISTAT = KXGDSI(NDDATA(1), BLOCKS, BLOX, START)

C
KXGDCO(NDDATA(1), RECNUM)

C

BLKS = BLOCKS (NS)
C

IBLK = BLOX(EW+1)
ISTAT = KXVCHA(TEMP, 4, 4*IBLK, IBLK, WNODE, TYPE,

$ ETOW(IBLK,1), 4, 4*IBLK, IBLK, ENODE, TYPE)
c

DO 20 J=1, BLOX(NS+1)
DO 10 I=BLOX(EW+1), 2, -1

ETOW(I,J) = ETOW(I-1, J)
10 CONTINUE

IF (RECNUM(EW+1) .NE. 0) THEN
ETOW(1,J) = TEMP(J)

ELSE
ETOW(l,J) = RANDOM

ENDIF
20 CONTINUE

RETURN
END

This code now has exactly the same fonn as that for the South-North flow but with a call

111

When you don't
need to use
message types

Don't send
messages with type
DONTCARE

A real case of
traffic flow
cellular automata

Global
communication
functions carry out
common
operations
automatically

to KXVCHA replacing the call to KXCHAN. Obviously the call to KXCHAN in the earlier code
could actually be replaced with a suitably "hacked" call to KXVCHA making the codes look
even more alike.

A final point to note is that the variable TYPE shows upa lot but doesn't get much attention.
Very early on we set its value to the value TRAF I C and have since ignored it. This is typical
of these "synchronous" simulations - the type parameter is superfluous since every node
knows who to send data to·and when - no extra level of classification is necessary.

WARNING: It is tempting to try to the use standard value NOCARE for
the message type in this type of problem since you really don't care!
Unfortunately there is no way for Express to send a message with this
type~and attempting it will cause weird and mysterious problems

While trivial in principal this example has hopefully served to show bow the KXGRID
system and its associated function calls can be used to generate codes that look extremely
similar to their sequential counterparts and which require no knowledge on the part of the
programmer of the underlying topology of the parallel computer. Obviously this system
will not be appropriate in certain circumstances where algorithms have complicated
constraints - for example it is not always possible to make do with the synchronized
communication system used here. Even in cases less synchronous than that considered here
the use of the exgrid mechanism is not precluded and is still a very powerful tool.
Another point to note is that the problem and solution presented here fonn most of the code
needed to model fluid mechanics via the "cellular automata" approach - it is not such a
trivial model after all.

At present the KXGRID system is designed for dealing with regular meshes and their many
dimensional derivatives. We are interested in extending this model to other common types
ofdata structure such as trees and would encourage users to make their requirements known
to us.

S.3 Utility Functions

As well as providing the basic node to node communication facilities described in the
previous sections Express offers other utility functions that are commonly used: KXCOMB,

KXBROD and KXCONC.

The KXCOMB function is used to apply a user specified function to data distributed among
the processors of the machine.•. The basic calling sequence is

ISTAT = KXCOMB(DATA, FUNC, SIZE, NITEMS, NNODES,
NODEL, TYPE}

where the combining function, FUNC, is applied to NI TEMS data items, each of size SIZE.

The function provided must satisfy certain constraints in order to be effective; namely
associativity and commutativity. (Basically this means that the result of applying the
function to items A and B is the same irrespective of the order of application. Addition and
multiplication are good examples and subtraction is not. The last arguments specify which
set of nodes to apply the function to; NNODES is the number of nodes listed in the array
N'ODEL.• If NNODES takes the special value IALNOD then the KXCOMB will be done on all

112

processors. Finally the TYPE parameter serves to assign a "type" to the combine function.

As an example of the use of this function consider another extension to the traffic problem
discussed previously. Assume that after each iteration we want to find out how many
vehicles are left in the system. A simple way to achieve this in a sequential program is the
following code

c
C-- Count traffic totals:
C-- SEQUENTIAL
C

TOTAL = 0
DO 10 1=1, BLOCKS (EW+1)
DO 10 J=1, BLOCKS (NS+l)

TOTAL = TOTAL + WTOE(I,J) + STON(I,J)
10 CONTINUE

To modify this code for a parallel processor we just add a call to KXCOMB as follows

COMMON/XPRESS/NOCARE,NORDER,NONODE,
$ IHOST,IALNOD,IALPRC

C
INTEGER ADDNOD, TYPE
EXTERNAL ADDNOD

C
TYPE = 123
TOTAL = 0

C
1STAT = KXGDSI(NDDATA(l) , BLOCKS, BLOX)

C

DO 10 1=1, BLOX(EW+l)
DO 10 J=1, BLOX(NS+1)

TOTAL = TOTAL + STON(I,J) + WTOE(I,J)
10 CONTINUE
C

ISTAT = KXCOMB{TOTAL,ADDNOD,4,1,IALNOD,0,TYPE)

where the function ADDNOD is defined elsewhere as

INTEGER FUNCTION ADDNOD(1l, 12, SIZE)
INTEGER 11, 12, SIZE

C
11 = 11 + 12
ADDNOD = 0
RETURN

113

Counting the cars
a global sum over
all processors

Counting the cars
sequentially..

.. and in parallel

END

Converting
distributed datll to
global data

Broadcasting a
single processor's
data to others

This code is actually quite straightforward. For each of the NITEMS mentioned in the call
to KXCOMB the combining function is called with,as arguments, two items of the length
give.n by the user. The combining function should then overwrite the frrst argument with
the result of combining the two elements and return a zero value to its caller. (Returning
other values cause KXCOMB to fail and/or perfonnother tasks - see the reference manual
for details). The .final result of the call to KXCOMB is just what was wanted - the value
TOTAL is now the total number of cars summed over all the processors in the system.
Furthennore, every processor that participated in the call to KXCOMB has this result

The other two functions serve similarly useful purposes.

KXCONC takes data items from each processor and makes a single long buffer in each node
by concatenating the individual contributions from each node. A feature of the way this is
done guarantees that each node ends up with the same result. The KXBROD function, as its
name implies, perfonns a broadcast operation to a set of nodes in the system. Any node may
be the originator of the broadcast and the message may be restricted to a subset of the
processors.

Notice that these functions also have "type" parameters. This is so that one can distinguish
between several overlapping function calls. Without such a parameter, for·example, the
following course of actions would be illegal and probably cause the machine to "hang"
since the KXCOMB in node 1 will pick up the message sent with the KXWRI T in node O.

Processor o.
KXWRIT to processor 1.
KXCOMB.

Processor 1.
KXCOMB
KXREAD from processor o.

Even if the machine doesn't "deadlock" the results will be gibberish. With the "type" field,
however, it can be arranged that the "KXCOMB" and "KXREAD /KXWRI T" operations have
different types. In this case Express will sort out which message goes with what and all
will be well. Of course, if you give the same TYPE argument to both then chaos will still
result.

Fortunately errors such as this are extremely easily detected using an interactive debugger
such as ParaSoft's ndb.t:!· 6 I/O and CUbix

up to this point all the high level communication primitives described have been intended
primarily for node-lo-node communication within the parallel machine. No reference has
been made to the host computer.

One of the major decisions which must be taken by an application developer is whether or
not any of the code must ron on the host processor or whether the entire application can run

Avoiding
udeadlock" by
using the message
types

114

in the distributed machine as was discussed extensively in an earlier section. In this section
we will discuss some of the elementary features of Cubix which make it so easy to use.

Having advertised some reasons for using this model of computation its basis is in an
Express subsystem known as Cubix. Cubix is a full-function I/O and operating system
server that enables distributed applications full access to the operating system resources
available on the host computer. Multiple host processors can be supported and also
distributed "disk fanns" for file access. The interface to the host operating system is
sufficiently sophisticated that one of the functions you can perform is to start up and run a
host program to which you can communicate in a natural way. This allows you to actually
run a user written host program from within the Cubix programming model. Essentially
you can have the best of both worlds - full ftIe system access from within the nodes and all
the advantages of a sequential host program.

At the lowest level file access is available through the standard functions READ, WRITE,

OPEN, REWIND etc. At a higher level it involves a complete model of distributed I/O
involving three totally distinct modes.

Synchronous mode:
II processors make requests together and each receives the same response.
This situation occurs a lot in interactions with the user - for example, issuing
prompts and reading values for global variables.

Multiple mode:
All processors make requests together and each receives a different
response. This mode is used most often for reading and writing the bulk of
data generated or required by a parallel code. It's feature is that it is possible
to construct a solid model for the various I/O functions allowing
deterministic and repeatable behavior.

Asynchronous mode:
Any processor may make a request at any time and each is serviced
independently. This mode is rather hard to control since asynchronous and
unrepeatable behavior results but is central to certain applications and
situations.

The coexistence of these three distinct I/O modes and the ability to switch between them
makes Cubix an extremely versatile system. In principle any function that the host could
perform is available to the node processors - including such things as spawning new
processes on the host and controlling external devices. The details of programming in this
style are to be found in the accompanying document "Programming Parallel Computers
Without Programming Hosts" which is the major reference for this system. Meanwhile a
couple of examples might serve to illustrate some of the functionality

A particularly simple piece of Fortran code is the following

PROGRAM SIMPLE
c
c-- Set up Express.
C

liS

Parallel file 110
under Cubix

110 modes

The uHello world"
program

tlHello world" in
_parallel.
Multi mode 110

CALL KXINIT
c
C-- Introduce ourselves
C

WRITE(6,*) 'Hello world'
STOP
END

which generates the immortal line

Hello world

Actually writing the program that does this in the nodes is quite hard if a user written host
program has to be used since messages must be coordinated between host and nodes. If,
however, one uses theCubixmodel then the above code, when executed with the command

cubix -n 1 noddy

would also generate the same output. (Note that we assumed that the program resulting
from compiling the previous code fragment has been called noddy. Details of the
compilation procedures are given in the introductory guides to Express and are specific to
particular hardware systems.) Even if run on more than a single processor the output would
appear the same because by default all files appear in "single" mode in which only a single
node actually generates any output. The trivial modification of the program to

PROGRAM PARLEL

INTEGER NDDATA(4)
c
C-- Set up Express.
C

CALL KXINIT
c
C-- Introduce ourselves in parallel.
C

CALL KXPARA(NDDATA)
CALL KMULTI(6)
WRITE(6,*) 'Hello world from processor " NDDATA(l)
STOP
END

produces the output

Hello world from processor 0
Hello world from processor 1
Hello world from processor 2
Hello world from processor 3

when executed on four processors. The trivial addition of the KMULTI call switches the II

116

o mode for unit 6 so that output appears in order of increasing processor number. Note that
no other files are affected - the I/O mode is specified for each stream independently.
Additional function calls are available to fully specify the order in which input or output
.are perfonned while a file is in multi mode. This facility is extremely useful in conjunction
with the KXGRID system allowing users to perfonn I/O specification on the basis of the
application data domain rather than the underlying processor topology.

Taking the previous program and switching the KMULTI call to KASYNC enables the
asynchronous mode. In this case the output from the various processors will appear in
arbitrary order and may even change from one trial to the next. This is one of the penalties
of using the asynchronous I/O mode - especially with buffered I/O functions which are
usually used for 'FORMATTED' files. Use of 'UNFORMAT.TED' files is recommended when
using the asynchronous mode - further details are presented in the companion document
describing Cubix.

The Cubix model of parallel computation is extremely powerful and yet very
straightforward. Many applications can either run intact or require very minor
modifications to use this system and its use is strongly recommended in all cases that can
take advantage of it.

~ 7 Hardware Dependent Communication

Much of this chapter has been devoted to a discussion of the issues which make parallel
programs portable and/or easy to develop. One significant point which has seemingly gone
overlooked, however, is perfonnance.

The issues of parallel program perfonnance is extremely complex. Not least of the
problems is the fact that parallel processing hardware is developing quite quickly and so
what are "good" techniques this year may be hopelessly old fashioned a couple of years
hence. It is for this reason that we have concentrated so heavily on portability and
standardization since this automatically leads to a situation where an application can take
advantage of developing technology.

There are many applications, however, which can make good use of current technology if
only its perfonnance could be improved a little. For this reason Express supports a layer
of communication primitives that directly address the hardware present in the parallel
computer in use. These routines are optimized for one thing only - speed. The interface that
they present to the user is extremely simple and cannot be guaranteed to exist, or even
function in the same manner from one machine to the next. The decision on whether or not
to use these routines must lie with the developer and should be based on a reasonably
detailed study of the issues at hand. The use of the profiling system to be described in a later
chapter is strongly advised before embarking on a revision of the code to use these routines.

The basic idea embodied in this system is that of "nearest neighbor communication" - Le.,
communication only between processors which are directly connected by the underlying
hardware. To describe such a connection Express uses the tenninology of a "channel".
This is an integer quantity that describes the connections between one node and some set
of other nodes. In a hypercube topology, for example, the concept of a communication
channel is well defined by the bits that make up the processor numbers. Similarly a
transputer machine has nodes that each have four "links" which again can be mapped onto

117

Asynchronous110
the advantages and
disadvantages

Optimizing
performance
instead of
portability

Hardware
dependent
communication is
faster but un
standardized

Communication
between hardware
connected
Uneighbors"

Hypercube

Transputers

The Express
interface

IIWild and
dangerous"
routines - no
checking

Mapping .Express
channels to the
hardware concepts

Blocking
communication ... in
the strongest sense

A IIdeadlock"
situation

the integers 0, 1., 2 and 3.

Given this mapping from the hardware description to a set of small positive integers
Express provides four routines to implement communication: KXCHON, KXCHOF,
KXCHRD and KXCHWT.

KXCHON and KXCHOFare the functions that control the use to which aparticular channel
is put. KXCHOF disables the nonnalprocessing of a hardware channel by Express and sets
it in a mode where the low level communication functions can operate. KXCHON performs
the complementary task, re-enabling Express on a previously disabled channel.

Neither of these routines perfonns any checking on the validity of a particular operation.
As such it is the responsibility of the user to ensure that no messages are still in the system
which will need to be forwarded on a particular channel which is to be disabled. Typically
this means that some sort of synchronization is required before disabling channels.
Similarly it is the responsibility of the user to make sure that no regular Express
communication is attempted which uses a channel which is still disabled.

Once a channel has been successfully disabled the KXCHRD and KXCHWTfunctions can be
used to pass data along a channel. The calling sequences are extremely simple:

KXCHRD(CHAN, BUFFER, NBYTES)

KXCHWT(CHAN, BUFFER, NBYTES)

As can be seen no NODE or TYPE arguments are present in these lists - the functionality is
merely to transmit NBYTES bytes of data from the indicated BUFFER into or out of the
named channel.The actual node with which these routines communicate depends solely on
the hardware interpretation of the CHAN parameter. For the two simplest types of hardware
this association is as follows

Channel CHAN connects the processor whose node. number is ND
with that whose processor number is given by

ND .XOR. (2 ** CHAN)

i.e., by switching bit "CHAN" of the processor number.

Channel 0 corresponds to hardware link 0 - i.e., LinkO I,n in a call
to KXCHRD or LinkOOut in a call to KXCHWT.

These routines are completely "blocking" in the strong sense that the call to KXCHWT in one
node will not return until a corresponding call to KXCHRDhas been made in the receiving
node. Furthennore the message lengths, indicated by the respective NBYTES arguments
must match exactly.

Note that this means that the following sequence of calls, which would be valid if made
with KXREAD and KXWRI T will lead to "deadlock" when made with the lower level
functions.

(We assume that nodes A and B are connected on channel 0.)

118

c
C Node A

c
C Node B

C C
CALL KXCHWT(O, BUF, 12)
CALL KXCHRD(O, BUF, 12)

CALL KXCHWT(O, BUF, 12)
CALL KXCHRD(O, BUF, 12)

The problem in this case is that both nodes call KXCHWT together. As a result both wait for
a call to KXCHRD to consume their data. As a result neither can proceed and the outcome
is "deadlock". To alleviate this problem one commonly introduces the concept of "parity"
in which nodes on opposite ends of a communication channel are assigned opposite values.
The code above could then be re-written as follows:

C
C Nodes A and B
C Assume that the PARITY variable is initialized
C elsewhere.
C

INTEGER PARITY
C

IF(PARITY .EQ. 0) THEN
CALL KXCHWT(O, BUF, 12)
CALL KXCHRD(O., BUF, 12)

ELSE
CALL KXCHRD(O, BUF, 12)
CALL KXCHWT(O, BUF, 12)

ENDIF

Note, however, that the assignment of parity to processors is not necessarily trivial. For a
hypercube connected machine one can always assign parity to the processors based on the
number of "bits" set in their processor numbers. For a more general interconnection
strategy such as is possible with a transputer system, however, it may be impossible to
perfonn this assignment. Consider, for example, the simple net shown in Figure 3.

If we assign parity 0 to node 0 then node 1 will need to have parity 1. But since node 2 is
connected to both nodes 0 and 1 it cannot have either parity assignment. Programming with
the low level channel communication primitives is still possible in such a case but extreme
care must be taken to ensure that the calls to KXCHRD and KXCHWT match correctly.

Having gone, at great length, into the difficulties present in using these routines it should
be stated that they can significantly improve the perfonnance of a great many parallel
processing algorithms. A good reference for the types ofproblem which can be successfully
tackled in this way is the book "Solving Problems on Concurrent Processors" by G.C.Fox
et ale published by Prentice-Hall (1988). This book deals with a broad range of scientific
problems solved by the research group at Caltech using a communication system based
exclusively on nearest neighbor interactions.

An important feature of Express in connection with these routines is that can be gradually
merged into a working code when perfonnance analysis indicates that some gain can be

119

Avoiding
IIdeadlock" by
assigning parities

Successful
applications ofa
llnearest
neighbor"
programming
model

HOST - 0 2 3.,

1

Before proceeding,
make sure that it
will be worth while

Minimizing the
pain associated
with the fast
routines

Using cnftool to
build Uhybrid"
networks

Figure 3. Processorinteroonnect with no possible parity assignment

made. We strongly advocate the use of the profiling systems to be described in a later
chapter before embarking ona major code revision which takes advantage of these routines
- it is important to understand just how much one stands to gain from such labor.
Funhennore the step to using these calls should not be taken too early in the development
of a parallel project since their use inhibits the functioning of such powerful development
tools as the debugger and perfonnance monitor - while a channel is disabled it cannot be
used to forward system messages such as those used by the debugging tools.

Several strategies are available to lessen this barrier

• Construct ,a working program, fully benchmarked and debugged and then turn
on the fast communication. Hope that nothing bad happens.

• Since most applications go through cycles in which the faster perfonnance of
the KXCHAN routines is sometimes unnecessary one can restrict ones debugging
attention to the phases where Express has been re-enabled.

• Use a communication strategy in which Express can be left enabled on a set of
channels that "spans" the hardware topology. In this case the debugging tools
can be used at all times.

Thefrrst method is basically sound but suffers from the defect that certain program bugs
may only manifest when the faster communication is used since this affects the relative
timing ofdifferent activities on different nodes. One cannot be sure, therefore, that enabling
the faster communication will not engender new bugs of its own.

The middle option is reasonably· wo"rk:able. Most applications, particularly those in
scientific and technical domains have periodic structures in which Express can be
alternately off and on. With care one eM then use the development tools during the times
that Express is enabled.

The last strategy is probably the easiest to use but requires some preparation in setting up
and also more connectivity from the underlying hardware than may be available. The basic
idea is to reserve a set of channels for use by the fast communication routines and then use
the full. Express system on the others. The simplest way to achieve this is 10 simply delete

120

the corresponding channels using the system configuration tool, cnftool. (This is only
available if the system in use supports such reconfiguration.) Links which do not appear in
the network description generated by cnftool will., by default, have Express disabled
just as though a call to exchanoff had been made at the beginning of the program. These
links can then be used for fast communication.

Note that it is not necessarily sufficient to merely disable certain channels at the beginning
of the user application.since Express may have already decided to use these channels for
its own message routing. Deleting channels with cnftool avoids this problem since the
internal routing is built upon the infonnation supplied by cnftool.·l2 8 Complete Example Programs

This section contains complete examples of the use of the Express in both Cubix and
Host-Node applications.

8.1 The "RING" Program

The program is shown schematically in Figure 4.

-lIIIIlIllIDJ-IllIIlllIlI~~ Messages sent to fwdnode.

-----~... Messages sent to bcknode.

A one-dimensional
decomposition

•

Figure 4. Communication around a ring of processors

121

exgridmalces the
decomposition
straightforward

A Irmodei"
program

The two
programming
models

The KXGRID tools are used to set up a one-dimensional processor decomposition - i.e. a
ring and then.we use KXGDNO to obtain the processor numbers to be used in communicating
with the next and previous node around the ring. Each processor then sends data to it
successor using the FWDNOD and reads from its predecessor using BCKNOD as shown in the
figure. Repeating this op.eration as many times as there are nodes in the ring has the result
of sending each processor's message to every other node.

At the end·ofeach cycle we use the KXCOMB function to gather up some data either to be
printed (in the Cubix version) or sent to the host. This latter operation has nothing to do
with sending messages around a ring but is added to give a little more variety to the
program.

While this program looks just as silly as some of the other examples used it is actually quite
a common programming model- many parallel applications take the form·where an inner
loop performs calculations and internode communication which ends with some data being
gathered together for later analysis or display.

Two distinct versions of this program are presented: a Cubix version and another split into
host and node programs. We present the latter last since it is more complex and will serve
to advertise the Cubix modeL It may be surprising to readers that the Cubix
implementation is actually a parallel program - it looks just like a sequential program.

8.1.1 CubixProgram

This program would be compiled with the Cubix libraries by specifying some machine
dependent compiler options - see the introductory guide to your version of Express for
more details. Once compiled we can execute it on four processors with a command similar
to

cubix -n4 cbxdemo

where we have assumed that the program has been called "cbxdemo".

c***
C
C EXPRESS Demonstration program.
C -------
C Parasoft Corporation, 1988. CUBIX program
C

*
*
*
*

*
C***~***********

c
PROGRAM CBXTST
INTEGER IDATA(256) , ODATA(256)
INTEGER CHKSUM(2) , CHECK, NTIMES, K, TYPE
INTEGER NPROCS(l) , NSHIFT, FWDNOD, BCKNOD, FADD
INTEGER NDDATA(4)

C
EXTERNAL FADD

c

122

COMMON/XPRESS/NOCARE,NORDER,NONODE,
$ IHOST,IALNOD,IALPRC

C
DATA TYPE/123/

C
C-- Start up Express and initialize its common block.
C

CALL KXINIT
C
C-- Get system parameters and construct a checksum.
C

CALL KXPARA(NDDATA)
CHECK = °
DO 10 K=1,NDDATA(2)

CHECK = CHECK + (K-1)
10 CONTINUE
C
C-- Now set up the channels to use in the ring. Map a one
C-- dimensional chain of processors onto the underlying
C-- processor grid with NPROCS processors in it.
C

NPROCS(l) = NDDATA(2)
ISTAT = KXGDIN(l, NPROCS)

C
FWDNOD = KXGDNO(NDDATA(l), 0, 1)
BCKNOD = KXGDNO(NDDATA(1) , 0, -1)

C
C-- Now prompt for the number of times to pass the
C-- message around a ring.
C

WRITE(6,*) 'How many times around the ring? ')
READ(S,*) NTIMES

C
C-- Now let's go !!!!! Send a 512 byte message around the
C-- processor. For each 100 successful round trips print
C-- out a cheery message and issue diagnostics if
C-- something seems wrong.
C

DO 20 K=l, NTIMES
C
C-- Shift data around the ring we just set up - note that
C-- we have to do "nprocs" shifts to get it round the
c-- ring once.
C

DO 30 NSHIFT=l, NDDATA(2)
ISTAT = KXCHAN(IDATA, 512, BCKNOD, TYPE,

123

Dividing the
uRING" program
into two piecesfor
Uhost-node"
execution

$ ODATA, 512, FWDNOD, TYPE)
30 CONTINUE
C
C-- Now do the checksum business -- with KXCOMB.
C

CHKSUM(l) = 1
CHKSUM(2) = NDDATA(l)
ISTAT = KXCOMB(CHKSUM, FADD, 4, 2, IALNOD,

$ 0, TYPE)
C

IF (CHKSUM(l) .NE. NDDATA(2) .OR.
$ CHKSUM(2) .NE. CHECK) THEN

WRITE(6,*) 'Error in node communication'
WRITE(6,*) 'Expecting:' NDDATA(2), CHECK
WRITE(6,*) 'Received:' CHKSUM(l),

$ CHKSUM(2)
STOP

ELSE
IF(MOD(K, 100) .EQ. O} THEN

WRITE(6,*) 'Finished loop I, K
ENDIF

ENDIF
20 CONTINUE

C
WRITE(6,*) 'Finished'
STOP
END

C
C-- This function will called by the KXCOMB routine.
C

INTEGER FADD(I,J,SIZE)
INTEGER I,J,SIZE

c
I = I + J
FADD = 0
RETURN
END

8.1.2 Host-Node Program, "Host"code.

This version of the "RIN·G" program is in two pieces, one which would execute on the host
processor of your machine and another for the nodes of the attached parallel computer. The
fonner is presented first and raises several important issues which are noted at the end of
the program text

To ron this code one would compile it with some C compiler for the host processor in use
but with the addition of the'Express library. More infonnation '. about this process can be

124

Debugging llhost

node" programs

obtained from the introductory guide to Express on your system.

To run the program on four nodes we would execute a command similar to

host 4

where we have assumed that the program resulting from the compilation of this code has
been called "host". If you have named it something else, or your machine requires a
different syntax to execute programs then the above command line will have to be modified
accordingly.

Note that make provision in this code for debugging by the specification of any second
argument. This forces the host program to execute a call to the KXPAUS routine which
loads the node program at a breakpoint so that the debugger can be invoked. To take
advantage of this feature one might use the command line

host 4 dummy_for_debugging

with suitable modification for your own operating system.

C***
C *
C EXPRESS Demonstration program. *
C ******* *
C ParaSoft Corporation, 1988. HOST program. *
C *
c***
C

PROGRAM EXSAMP
COMMON/XPRESS/NOCARE, NORDER, NONODE,

$ IHOST, IALNOD, IALPRC
INTEGER FROMND(2), NTIMES
INTEGER~ CHECK, K, STATUS
INTEGER PGIND, NODES
INTEGER SRC, TYPE
INTEGER ENV(4)
CHARACTER*80 DEVICE, PRGNAM
PARAMETER (DEVICE='/dev/ncube', PRGNAM='node')
DATA TYPE /123/

c
C-- Start up EXPRESS. This MUST be the first EXPRESS
C-- system call used.
C

CALL KXINIT
c
C-- Read the number of nodes. Also find out whether or
C-- not to stop theC- program upon loading. This is
C-- useful for debugging. We do this by having a negative
C-- number of nodes mean "stop".

125

126

c
WRITE(6,*) 'Number of nodes?'
READ(5,*) NODES
IF(NODES .LT. 0) THEN

NODES == -NODES
CALL KXPAUS

ENDIF
PGIND == KXOPEN(DEVICE, NODES, NOCARE)
IF(PGIND .LT. 0) STOP 'Failed to allocate nodes'.
STATUS = KXLOAD(PGIND, PRGNAM)

C
c-- Get system parameters and construct a checksum to
C-- compare with the values r'eturned fr:om the nodes.
C

STATUS = KXPARA(ENV)
CHECK = 0
DO 10 K = 1,ENV(2)

CHECK = CHECK + (K - 1)
10 CONTINUE

C-- Now prompt for the number of times to pass the
C-- message around a ring.
C

WRITE(6,*) 'How many times should the message go
$ around the ring?'

READ(5,*) NTIMES
c
C-- Send the count to the cube and then read back a
C-- message for each cycle. Note that this is rather
C-- tricky on machines with reversed byte orders. We have
C-- to swap the bytes, send them to the nodes, and then
C-- swap them back again to use on the host.
e

CALL KXSWAW(NTIMES, NTIMES, 4)
STATUS = KXBROD(NTIMES, IHOST, 4, IALNOD,

$ DUMMY, TYPE)
CALL KXSWAW(NTIMES, NTIMES, 4)

DO 20 K= 1,NTIMES
SRC = 0
STATUS = KXREAD(FROMND, 8, SRC, TYPE)
CALL KXSWAW(FROMND, FROMND, 8)
IF (FROMND (1) .NE. ENV(2) .OR.

$ FROMND(2) .NE. CHECK) THEN
WRITE (6, *) , Error in node communication'O
WRITE(6,*) 'Expecting ',ENV(2), CHECK

WRITE(6,*) 'Received', FROMND(l),
$ FROMND(2)

ELSE
IF (MOD (K, 100) .EQ. 0) THEN
WRITE(6,*) 'Done " K

ENDIF
ENDIF

20 CONTINUE

WRITE(6,*) 'Finished'
STOP
END

NOTE 2.

NOTE 1.

Problem: Data
types not
compatible
between host and
node processors

We call the KXINIT routine in the program to set up the XPRESS
common block which contains system parameters.

We use INTEGER* 4 variables for all communication between host
and nodes. This avoids any problems which might arise if the more
natural INTEGER type were of different length on host and node
processors. We include an explicit call to the byte swapping routine
KXSWAW in the host code. If the host and node processors share the
same byte ordering properties then this call can be omitted.

8.1.3 Host-Node Program, "Node" code.

Building U node"
programsfrom
sequential code

The name ofthe
node program

The following code makes up the "node" half of the "Host-Node" version of the "RING"
program. The most interesting things to note is its similarity to the entire Cubix version of
the code. This is often the case - in practice one obtains node programs by copying the
entire sequential version of the code and deleting the initial and final 110 relating to
parameter input and result output. In many cases where structured programming practices
have been adopted the node program can often be made up quite simply by calling the main
processing routines of the original sequential program.

The compilation of this code is quite straightforward but one must be careful NOT to use
the switches that invoke the Cubix libraries. While this would apparently succeed, at the
compilellink stage, the resulting program would not run properly because it would contain
Cubix-specific code which requires that the host be executing the cubix program rather
than the one we showed in the·previous section.

A final important issue involves the naming of this program. While any name can, in
principle, be chosen it must match that used in the call to KXLOAD in the host program. In
this case we should name the resulting program: node.

*
*

*

C***

*c
C EXPRESS Demonstration program.
C *******
C ParaSoft Corporation, 1988. NODE program

127

c *

128

c***
C

PROGRAM EXSAMP
COMMON/XPRESS/NOCARE, NORDER, NONODE,

$ IHOST, IALNOD, IALPRC
INTEGER INDAT(256), OUTDAT(256)
INTEGER TOHOST(2), NTIMES
INTEGER ENV(5)
INTEGER K, NSHIFT, STATUS, DUMMY
INTEGER FWDNOD, BCKNOD
INTEGER TYPE, DEST, NPROCS(l)
INTEGER FADD
EXTERNAL FADD

c
DATA TYPE/123/

C
C-- Start up EXPRESS. This MUST be the first EXPRESS
C-- system call used.
C

CALL KXINIT
C
C-- Read system parameters, number of nodes etc .
C

STATUS = KXPARA(ENV)
C
C-- Now set up the channels to use in the ring. Map a one
C-- dimensional chain of processors onto the number of
C-- nodes allocated.
C

NPROCS(I} = ENV(2}
STATUS = KXGDIN(I, NPROCS)

c
FWDNOD = KXGDNO(ENV(l), 0, 1)
BCKNOD = KXGDNO(ENV(l), 0, -1)

C
C-- Now read the number of iterations from the host
C-- note that the number of forwarding operations is this
c-- parameter times the length of the ring.
C

STATUS = KXBROD(NTIMES, IHOST, 4, IALNOD,
$ DUMMY, TYPE)

c
DO 10 K = 1,NTIMES

c
C-- Shift data around the ring we just set up.

C
DO 20 NSHIFT=l, ENV(2)

STATUS = KXCHAN(INDAT, 512, BCKNOD, TYPE,
$ OUTDAT, 512, FWDNOD, TYPE)

C
C-- Now send a silly messge to the host. Add up a bunch
C-- of ones and also our processor numbers.
C

TOHOST(l) = 1
TOHOST(2) = ENV(l)
STATUS = KXCOMB(TOHOST, FADD, 4, 2, IALNOD,

$ DUMMY, TYPE)
IF(ENV(l) .EQ. 0) THEN

STATUS = KXWRIT(TOHOST, 8, IHOST, TYPE)
ENDIF

20 CONTINUE
10 CONTINUE

STOP
END

INTEGER FUNCTION FADD(I, J, SIZE)
INTEGER I, J, SIZE

C
I = I + J
FADD = 1
RETURN
END

8.2 Other Examples

All versions of Express are shipped with an extensive set ofexample programs. The exact
location of these files depends on the particular system but most often they can be found in
a subdirectory called "examples" of the main Express installation. This directory will
itself contain several other subdirectories, each exhibiting a particular feature of the system.
Of particular interest are the express and cubix directories which contain further
examples of the two programming models and the elementary use of the basic Express
functions.

129

130

131

Cubix

Programming parallel computers without
programming hosts

i=-cf 1 Introduction
M Historically, application programs for parallel computers consist of two parts, a master

process running on the host and a server running in the parallel machine

Cubix adopts a different viewpoint. Once a program is loaded into the nodes, that program
assumes control of the machine. The host process only serves requests for operating system
services. Since it is no more than a file server, the host program is universal; it is unchanged
from one application to the next.

This programming model has some important advantages.

• Program development is easier because it is not necessary to write a separate
program for the host.

• Parallel programs are easier to develop and debug because they can use standard
I/O routines, rather than machine dependent system calls.

• Parallel programs can often be run on sequential machines with minimal
modification.

• The programming model extends in a natural way to distributed I/O, systems
such as disk farms, attached directly to the parallel machine.

The currently implemented versions of Cubix supports both synchronous and
asynchronous I/O modes for maximum flexibility and portability of the resulting parallel
codes. In addition certain versions of the system incorporate support for distributed disk
systems and multiple host computers.

Cubix was created to make programming parallel computers easier. Its goal is to eliminate
significant duplication of effort on the part of programmers, and to make the environment
in the parallel machine appear much more familiar to application programmers. It is also
intended to make programs more easily portable to sequential machines as well as between
different brands of parallel computers.

The motivation for Cubix can probably best be understood by sitting down with one's
favorite distributed machine and trying to get each of the nodes to perfonn a trivial task
involving input and output to the tenninal. For example, have each processor identify itself,
and multiply its processor number by a number entered on the console, printing an
infonnative message like:

I am processor 17 and 3 times 17 is 51

in response to the number 3 being entered. This is an extraordinarily difficult exercise
because the nodes of the parallel machine do not have direct access to the operating system
facilities available on the host. One can not, for instance, execute a READ in the nodes to
obtain data from the console. Instead, the h.ost must allocate a buffer, read data from the
console into i~ pass the contents of the buffer to the nodes, read a message for each node
containing the results of that node's calculation, fonnat those messages and print the
results. Programming this exercise requires two programs, one for the host and one for the
nodes of the machine; often compiled with different compilers and different compiler
options. One must also worry about the sizes of the various data types on the host and in
the nodes and, in extreme cases, the byte ordering within the types.

133

Which processor is
in charge?

I/O modes, disk
farms

The IIhello world"
problem

The Cubix
programming
model

This example is obviously frivolous, but it illustrates an important shortcoming in parallel
Important issues-
debugging and programming environments. Maintaining and debugging "real" programs is unnecessarily
maintenance difficult for exactly the same reason as in the exercise: it is too hard to use the host's

operating system. Debugging is extremely difficult because programs cannot be easily
modified to produ:ce output tracing the flow of control. Additionally, when a program is
modified, it often requires separate but coordinated changes to both the node program and
the host program. The necessary coordination is a rich source of minor bugs.

A further deficiency in parallel computing environments is the duplication of .effort
involved in this programming style. Each programmer is forced to re-invent a host-node
protocol which resembles, functionally at least, the protocols that have been written
hundreds, if not thousands, of times already. After writing a few protocols, each
programmer tends to develop a characteristic signature. Programmers quickly learn to
reuse their 'main' routines, but by then, their time has already been wasted.

Keeping a Finally, after expending the effort to develop a parallel application, the programmer finds
sequential version that the program will not run on a sequential machine. The I/O protocol designed for the

host-node link is completely foreign to the sequential machine. Even though the bulk of the
application would operate correctly by linking with a very simple library of dummy
communication routines, the host program and node program must be "glued" back
together. Maintaining an evolving code intended to run on both sequential and parallel
machines is quite difficult for this reason. (Note that the program, once glued, no longer
rons in parallel!).

All these deficiencies can be traced to a single source. Parallel computers are often viewed
as high-speed·p'eripherals attached to a host computer which controls their operation. As
peripherals go, they are extremely flexible and programmable, but control, nevertheless,
resides in the host. The host loads programs and data into the nodes which then compute
and eventually return results which are ex.pected, in number and length, by the host. In more
sophisticated applications, the n·o(}.es analyze various to'kens passed by the host and may
perfonn different computations based on their values.

~ 2 A Different Perspective

The basic id,ea behindCubix is that the program running in parallel should control the
operation of the associated program running on the host. This is exactly opposite to the
common style of programming discussed above. In CUbix, tokens are passed from the
nodes to the· host requesting,activities.like.opening and closing files, ·reading. the time-of
day clock, reading and writing the file system, etc. The host program does nothing more
than read requests, act on them and return appropriate responses. All such requests are
generated by·subroutine calls in the parallel processor. The host program which serves the
requests is universal; it is unchanged from one application to the next, and the programmer
need not be concerned with its internal operation.

It is convenient to give the node subroutines the same names and calling conventions as the
system calls they generate on the host. This relieves the programmer of the laskofl~arning
a new lexicon of system calls. Any operation he· would have perfonned in a host program
can be encoded in a syntactically identical way in the cube. It is of no consequence that the
subroutine called in the cube might. actually translate. the request into Swahili before

134

sending it to the host. All the programmer sees is a call to, e.g. WRI TE (1, *) .

High level utilities are often written in tenns of a set of standard system calls. Since the
Cubix system calls have the usual names and calling sequences, system utilities designed
for the sequential host computer can be readily ported to the hypercube. The standard I/O
functions are available, for example, providing various fonns of fonnatted and unformatted
buffered I/O. (See the introduction to the reference manual for a complete list) Under
Cubix, the exercise of Section 1 would be programmed as:

PROGRAM CBXTST
C

INTEGER ENTRY, PROCNO, NDDATA(4)
C

C-- Set up Express.
C

CALL KXINIT
C

CALL KXPARA(NDDATA)
PROCNO = NDDATA(1)

C

WRITE(6,*) 'En~er a value'
READ(S,*) ENTRY

C
C-- Allow separate III from each node.
C

CALL KMULTI(6)
WRITE(6,10) PROCNO, ENTRY, PROCNO, PROCNO*ENTRY

10 FORMAT (lX, 'I am processor' ,I4,',
$ and',I4,'times' ,I4,'is',I4)

C
STOP
END

~ 3 The Catch • I/O modes

. It is highly optimistic to think that a set of system calls designed for a sequential computer
can be sufficient for use in a parallel environment without modifications or additions. In
fact, the requirements of the parallel environment do force one to restrict the use of some
routines and also to add a few additional ones. The issue to be addressed is:

How does one resolve the problem that different processors
may need to do different things - maybe at different times?

To address this question we will classify applications into two types.

Synchronous programs are characterized by unifonnity from processor to processor and
structured communication and calculation stages. In particular each node computes for a
while and then all processors communicate data among themselves before engaging in

135

Two types of
program:
synchronous and
asynchronous

another round of computation. The significant point in this model is that the interprocessor
communication channels are essentially free while computation is being'done.

The second category might be termed asynchronous. They are characterizeidby having
completely individual behavior in each processor and no regularciommunication
calculation cycles. In these applications there is no way of knowing when all
communication channels' will be idle other than by explicitly synchronizing the processors.

These two styles are supported indifferent ways by both the Express communication
facilities and th,eCubixI/O model. The differences are explained in the next sections. Note
that the distinction may not be as clear cut as stated above. In particular asynchronous
programs often have internal points of synchronization and may well proceed in this
manner for lengthy periods of their operation. Similarly, synchronous programs may
occasionally benefit from the ability to use asynchronous function calls - a good example
is the processing of a run time error. Often these appear in data....dependent ways that mean
that an error condition in one processor might not be duplicated in all the others. Then it is
of benefit to the ailing processor to be able to take its own corrective or diagnostic action
independent of the other processors.

Since a large majority of applications in science and engineering fall into this category we
will discuss the synchronous I/O mode. frrst. The sample code of the previous section is a
good example of this style. If we had run it on four processors the output would look like

single and multi
modes

3.1 Synchronous I/O Modes

I am processor 0, and 3 times 0 is 0
I am processor 1, and 3 times 1 is 3
I am processor 2, and 3 times 2 is 6
I am processor 3, and 3 times 3 is 9

in response to the number "3" being input. There are several points to notice in regard to
this example, simple as it is. Only a single value was entered at the console yet all
processors received the value 3 as input On the other hand only a single WRI TE call was
made but four lines of output resulted. This is an example of the difference between the
"single" and "multi" modes of Cubix.

In single mode a single function call has the same effect in every processor whereas in multi
mode a single function call has.aunique effect in every processor. The call that makces all
the difference in the example is CALL KMULT I (6) which switches the standard output
stream over from single to multi mode. Thereafter the call to WRITE produces a unique
output string from each processor. To makelhis even more obvious consider the following
simple example

PROGRAM MTEST
INTEGER NDDATA(4)

C
C-- Setup Express
C

CALL KXINIT
C

CALL KXPARA(NDDATA)
WRITE(6,*) 'Hello world'

c
CALL KMULTI (6)
WRITE(6,*) 'I am processor ',NDDATA(l)

C
CALL KSINGL(6)

C
WRI TE (6, *) ,

STOP
END

and that is that!!'

If this were run on four nodes then the output would be

Hello world
I am processor 0
I am processor 1
I am processor 2
I am processor 3

and that is that !!

In this example we start off in single mode (The default for all I/O units) and utter the
immortal phrase "Hello world" which appears once. We then switch over to multi
mode and print out a unique string from each processor. Finally we switch back to single
mode and print out another string that only appears once.

The singular and multiple modes are not restricted to output operations. Consider, for
example, the next code fragment, where we assume that a variable NPROC has been set to
the number of processors we have allocated.

WRITE(6,*) 'Please enter a value: '
READ(5,*) N

C
WRITE(6,*) 'Please enter' NPROC, 'values'

C
CALL KMULTI(S)
READ (5, *) I

C
CALL KMULTI(6)
WRITE(6,10) N, I, PROCNO

10 FORMAT(lX,'You gave' ,I3,' and',I3,' to proc ',I3)
C

When run on eight processors with input

137

singl and multi
mode input

123
8, 7, 6, 5, 4, 3, 2, 1

this will produce the output

You gave 123 and 8 to proc 0
You gave 123 and 7 to proc 1
You gave 123 and 6 to proc 2
You gave 123 and 5 to proc 3
You gave 123 and 4 to proc 4
You gave 123 and 3 to proc 5
You gave 123 and 2 to proc 6
You gave 123 and 1 t~ proc 7

Again the important point to notice is that while unit 5 was in single mode a single value
typed at the console is sufficient to satisfy the call to READ in all eight processors while
eight values must be input to satisfy a similar request when unit 5 has been switched to
multi-mode.

Also note that we can freely mix single and multi modes whenever convenient. The
fonner is obviously useful whenever entering values for global variables that are constant
in each processor while the latter allows for independent data in each node. Additionally

Changing theorder we can alter the order of the output from, or input to, a multi mode file through the KORDER
afmulti mode 110 system call. By d·efault all I/O is ordered by increasing processor number (as should be

readily apparent). The following code segment reverses this order for output;

CALL KXPARA(NDDATA)
C

CALL KORDER(6, NDDATA(2) -NDDATA(l) -1)
CALL KMULTI(6)

C
WRITE(6,*) 'Hello, this is node " NDDATA(1)
CALL KFLUSH(6)
STOP
END

Run on four.processors this produces the output

Hello, this is processor 3
Hello, this is processor 2
Hello, this is processor 1
Hello, this is processor 0

The interaction
with exgrid

This option is particularly useful in conjunction with the KXGRID utilities. It is a simple
matter to reorder I/O so that processors read data blocks in an order detennined by the
decomposition of the physical data rather than some arbitrary ordering according to the
underlying topC?logy of the machine. As an example consider the following code fragment;

133

PROGRAM RING
C

INTEGER NDDATA(2), MYVAL, NPROCS(l), RECNUM(l)
C
C-- Start up Express.
C

CALL KXPARA(NDDATA)
C

NPROCS(l) = NDDATA(l)
ISTAT = KXGDIN(l, NPROCS)

C
C-- Now reorder the input stream to correspond to the
C-- processor location around the ring.
C

ISTAT = KXGDCO(NDDATA(l), RECNUM)
CALL KORDER(S, RECNUM(l))

C
C-- Now read in parameters
C

CALL KMULTI(S)
READ(S,*) MYVAL

The processors are assigned to a ring topology by the KXGD I Ncall - i.e., they are logically
assigned to a one dimensional chain. Then the KXGDCO routine is used to discover which
slot in this decomposition is occupied by a processor and this value is used to re-order the
input stream, unit 5. This has the end result that run on four processors and presented with
the input '

100 101 102 103

Image processing
two dimensional
problems

Applying common
sense principles to

At this point the power and simplicity of the Cubix I/O picture should be apparent. In the parallel 110
single and multi modes we have a system that actually makes sense - when the same value
is required in each node you only have to enter it once while different output can easily be

the frrst value, 100, would be read by the processor first in the logical chain, 101 by the
second processor, 102 by the· third and 103 by the fourth completely independent of the
underlying topology of the parallel computer. Such independence of the hardware
configuration is the key element in making programs portable between parallel computers.

Another example of the use of this technology is image processing - using KXGRID
routines and the KORDER function it is possible to arrange to read the image data according
to rows and columns of the image. Without this utility tricky "unscrambling" routines have
to be written to distribute the incoming data among the parallel processors.

Finally note that the mode and ordering of flies are totally independent - it is quite possible
to have unit 5 configured to read data in multi mode ordered according to a three
dimensional model of some structure while unit 6 remains in single mode to issue prompts
to the user.

139

Buffering modes
andflushingfiles

KFLUSH

obtained from individual nodes. With the exception of the KMULT I and KS INGL function
calls everything looks just as it would in a sequential program. Cubix is more than just a
file serving protocol, .however. As well as allowing file I/O functions such as READ and
WRITE all other facilities usually available on the host are available to the programmer,
including full file I/O using OPEN, CLOSE,etc.

Having extolled the virtues and simplicity of the Cubix model one should und,erstand some
of the detailed ways that KMULT I extends the seque~ntial computer I/O model. Consider the
following code fragment.

CALL KMULTI(6)
WRITE(6,*) 'hello'
CALL KFLUSH(6)
WRITE(6,*) 'goodbye'
CALL KFLUSH(6)
WRITE(6,*) 'CUBIX '
WRITE(6,*) 'is flexible'
CALL KFLUSH(6)

If executed on a parallel machine this would produce the following output

hello
hello

hello
goodbye
goodbye

goodbye
CUBIX
is flexible
CUBIX
is flexible

CUBIX
is flexible

The important point to notice is contained in the last block of output. Notice that the lines
CUBIX and is flexible appeared adjacent from each processor despite having been
written in two WRITE statements. This is, in fact, an often overlooked feature of any
sequential 110 library -output is "buffered". Instead of each character appearing·on your
tenninal individually the system saves up some number and then spits them out at once
this .improves efficiency. The actual flushing of the data to the terminal can also be
controlled by the user via the KFLUSH system call.

In the light of this discussion we can examine the previous example more carefully. Note
that the calls to KFLUSH are each responsible for certain lines in the output. Furthennore
there is no such. call between the two WRITE calls that make up the last two lines. What

148

happened in this last case is that the two calls merely stored up characters in an internal
buffer. After two calls had been made the buffer on each node contained the strings CUBIX
and is flexible which then appeared all at once when the KFLUSH call was made.

At this point the user may well be somewhat confused by the buffering that seems to be
going on allover the place and what they can and cannot expect to happen. Fortunately this
is rarely a problem given the fundamental rule:

Multi mode files never flush automatically. The only way to
get at the data in such a file is to call KFLUSH explicitly.

If this rule is followed then everything will be as expected. In single mode output appears
on the tenninal under well-defined conditions; whenever a carriage return in seen,
whenever the internal system buffer gets full, the user calls KFLUSH or when input is
requested on any stream. In multi mode nothing ever appears until KFLSUH is called.

One of the more common errors using Cubix is the failure to flush buffers when files are
in "multi"-mode. We list, in Section 8, some of the other common errors.

At this point one has to address the "synchronous" nature of these calls. So far the examples
have been characterized by one thing - whenever one node made a system call the others
did so too. Admittedly, given the simple nature of our examples, it is actually quite tricky
to do otherwise. However, this is a fundamental requirement of the single and multi I/O
modes.

The central concept in this discussion is that of "loosely synchronous" behavior. The
adjective "loosely" is applied here because no real program is ever completely synchronous
since this would have to imply that EVERY processor was executing the same instruction
as all the others ALL the time. This situation arises rarely - even in SIMD machines!

"Loose synchronization" is the concept behind the alternation of compute and
communicate cycles discussed earlier in this section. Essentially an action is loosely
synchronous if it occurs when all communication channels are known to be free. This need
not actually be restricted to the so-called compute phases - in between two communication
calls will also satisfy the constraint as long as all processors make the call together. To
(hopefully) clarify this picture a little consider the following example for two processors

Processor o.

Send message to processor 1.
WRITE(6,*) , ... ' -- NOT loosely synchronous.
Receive message from processor 1.

Processor 1.

WRITE(6,*) , ... ' -- NOT loosely synchronous.'
Receive message from processor O.
Send message to processor O.

141

Line-buffering, the
defaultfor terminal
devices

I'Loose
synchronization"

Catching run-time
errors - an easy
error to make

In this example the call to WRITE is not loosely synchronous because the communication
channel between processors 0 and 1 is blocked by the message that node 0 has sent but node
1 has not read. If we modify the actions to the following

Processor O.
Send message to processor 1.
WRITE(6,*) , ... ' -- Loosely synchronous.
Receive message from processor 1.

Processor 1.

Receive message from processor O.
WRITE(6,*) , ••• ' -- Loosely synchronous.
Send message to processor O.

then the call to WRITE is loosely synchronous. Note that we have assumed that the system
only contains these two processors. If there are actually eight in the system then the
behavior of the others is also important - the concept he!e is a global one in that all
processors must satisfy the conditions before an action can be said to be loosely
synchronous.

An alternate explanation of this concept is that of a barrier to program execution - no
processor will be allowed to return from a "loosely synchronous" function call until every
processor has made the same call with the same arguments.

Having defined and (hopefully) explained what the tenn means we now make the statement
that "synchronous mode" Cubix requires that all system calls be made loosely
synchronously. This requirement is, in fact, an overstatement of the true facts which is what
makes the multi mode so useful. The requirement of "loose synchronicity" is actually only
required for system calls that interact with the host computer. Obviously commands that
merely buffer up data on a node do not interact with the host and so do not have the
requirement. A good example is WRI TE in multi-mode. Since no flushing is ever done until
explicitly requested by the user, calls to WRITE may be made completely asynchronously
to multi-mode files. Only the eventual call to KFLUSH must be loosely synchronous.

The details and restrictions on· the various system calls interact in a fairly complex manner
with. the "mode" of the associated· units. This results in some· rather inelegant tricks
connected with opening units other than the standard 5 and 6. Essentially we have to tell
Cubix in advance what is to· be· expected. of the .file unit weare accessing. Section 7
attempts to explain the appropriate details, but·basically the trickis to add extra characters
to the name of any file that we open to indicate which I/O modes will be used and what sort
of file is entailed.

3.2 Asynchronous Mode

Occasionally circumstances arise in otherwise synchronous programs that require
asynchronous behavior. A particularly good example is error detection and recovery.
Unfortunately the regular Cubix code segment that one might naively use is wrong

142

C
C-- Asynchronous diagnostics INCORRECT
C

IF(... ERROR ...) THEN
WRITE(6,*) 'We have big problems .•.. sorry'
STOP

ENDIF

because there is no guarantee that the error will occur in all nodes at the same time. A fix
along the lines of

C
C-- Asynchronous diagnostics PARTIALLY CORRECT
C

CALL KMULTI(6)
IF (... ERROR) THEN

WRITE(6,*) 'We have big problems ... sorry'
ENDIF
CALL KFLUSH(6)

is partially correct. Now you see an error message from any node that got the error.
However multi mode still has the loose synchronicity requirement for the KFLUSH
operation so that the above piece of code won't work unless all processors are actually
going to be doing this together. While this may often be the case one can easily imagine
cases where only some of the nodes are even in this piece of code. Then there is no chance
of the KFLUSH being successful and even worse the machine will hang. An error that was
caused by some anticipated problem has now caused the program to "hang" and may be
misdiagnosed as a communication problem.

The solution to this problem is an asynchronous I/O mode. Code that can be guaranteed to Asynchronous I/O
work is as follows

c
C-- Asynchronous diagnostics -- CORRECT
C

CALL KASYNC(6)
IF(... ERROR ...) THEN

WRITE(6,*) 'We have big problems ... sorry'
CALL KFLUSH(6)
CALL KABORT(13)

ENDIF

The call to KASYNC is the key. This switches on the asynchronous mode for unit 6 and
allows any processor to individually make system calls and requests.

Having introduced this concept one might wonder why not make it the default in all cases

143

Why notalwaysuse
async mode?

singl, multi and
asyncmodes
operate
independently

Asynchronous
system calls

Making everything
asynchronous with
syncmode

- indeed why bother having the synchronous modes at all? Several important reasons can
be distinguished

• Asynchronous output introduces a randomness to the behavior of a program.
Different runs will produce different output making it hard to reproduce bugs.

• Asynchronous input is very hard to maintain. Which data goes to which
processor is very hard to control since the requests to "read" data arrive in some
random order..

One approach commonly taken for the second point is to introduce a windowing
environment and allocate one window for each processor. You can now do more sensible
input by typing in each window. At least this ensures that you really can direct data to the
processor you wanted to get it. The downside of this scenario is that you have to continually
move from one window to the next - this is p.articularly bad if you really wanted to give the
same value to all theprocessors,or if there are 512 processors - the windows will be awfully
small. A scheme like this also has problems with concepts like redirecting standard I/O and
pipes.

In the light of these problems it makes sense to use the synchronous I/O modes described
in the previous section to perfonn most I/O functions. Some applications, however, are just
asynchronous by nature and for these Cubix does provide an asynchronous mode.

Note that this mode is orthogonal to the single and multi modes described in the
previous section ... you can't have asynchronous multi mode, for example.

Having described how to asynchronously READ and WRI TE to I/O units one might ask
another question ... "Do I have to OPEN all my units synchronously and then switch them to
asynchronous mode?". Fortunately the answer to this question is "NO". Using techniques
spelled out more fully in Section 7 it is possible to make even t~he OPEN call asynchronous
allowing ,different nodes to open different files or perhaps none at ail.

Having acquired asynchronous access to files in this way the user is pretty much free. The
functions READ and WRI TE work together to maintain, on each processor, a record of that
processor's location in the file. Each request that is sent to the host contains with it
infonnation that repositions the file correctly before the appropriate operation, i.e., reading
or writing.

Asynchronous mode· I/O is at best a rather hazardous exercise. Apart from any other
considerations it may introduce non...repeatability into your code. A program may be
running. "correctly" in asynchronous mode and produce different looking output given
identical input. Despite these difficulties the asynchronous mode does provide useful
functionality to parallel programmers if used carefully.

This section'has dealt ex'clusively with asynchronous I/O. Cubix, however is more than just
a file server - it is a complete interface to the operating system of the host computer. In order
to complete the set of synchronous/asynchronous modes a further subroutine KCBXSY is
provided. Be default all system calls to the host are made loosely synchronously: if you
execute the TIME command then all nodes must do so together and·the command is only
executed once. Giving a zero-argument to the KCBXSY command, however, enables
system calls to be made totally asynchronously.

144

Note that ordinary I/O operations are also affected by this switch so that files which were
originally opened in synchronous mode can be addressed asynchronously after this call.
There is, however, a significant different between the two modes.

• A file opened for asynchronous operations is read repeatedly on each node - Le.,
each node's fIrst READ from the file results in reading the frrst data.

• A file opened for synchronous operations, but read with KCBXSY set to zero
allows "frrst come, fIrst served" access - the fIrst node to make its request will
get the frrst data from the file, the second will get the second etc.

While this may occasionally be just what you want it tends to introduce a time dependency
into your code which makes it hard to reproduce behavior and hence find bugs. In most
cases we have observed it to be better to use the "real" asynchronous mode.

3.3 Multiple hosts, Distributed filesystems, etc.

A particularly common feature of advanced workstations is the support for distributed
filesystems. In order to take advantage of such a system Cubix may be configured for
multiple hosts with their own attached file systems. By default all system calls, including
requests to open files are sent to the Cubix console - nonnally the tenninal from which you
submitted the cubix job. You can, however, specify alternate destinations in two ways.

The system call KCONND is provided to override the default choice for system calls. The
argument required is the processor number of the new "console" and results in the direction
of all further system calls to the node indicated. These calls may be made at any time and
do not have to be the same in all nodes. In particular, one might use the KCBXSY function
described earlier in conjunction with KCONND to partition a system into sets of nodes which
each, independently, interacts with its own "host" finding files and making system requests
to that particular target. The details of this procedure are contained in the manual "Using
Express on systems with multiple hosts". .

An alternate, and somewhat lower level, system is implemented just using the naming
convention for files. A request for the file 800 1 : fred. dat will be sent to the node with
the name "Hl" in cnftool's naming convention. All further references to this file will
also be sent to this node Note that the exact mechanism required to indicate a special "host"
when looking for files is operating system dependent.t:3: 4 Debugging: A Last Resort

Debugging is a problem dear to every programmer's heart. One of the major successes of
Cubix is that it makes debugging on a parallel processor almost as straightforward as on a
conventional machine which lacks a source level debugger. The standard method of "print
it and see" is quite applicable now that we have made the I/O system transparent. Of course
you could also use the debugger ndb designed explicitly for debugging parallel
applications and described elsewhere for this sort of job. An advantage of the debugger is
that it still works in some cases where the "print" method fails - namely when there is a
communication problem that blocks some channel and hence the intended output. Of
course some people just like to use debuggers just as some people hate them. The choice is
yours.

145

The difference
between
asynchronous
modefor afile and
asynchronous
mode for Cubix

Distributed
filesystems

Redirecting Cubix
system calls

Debugging Cubix
programs

Overwriting
critical memory
regions

RAM files

RAM files require
no communication

Debugging
asynchronous
programs

exdump

There is one category of bug, however, that neither of the. above methods can catch and that
is what would normally be classified as a "memory fault" on a conventional machine • the
code attempts to scribble on some piece of memory that doesn't really belong to it. This is
especially easy to do with EQUIVALENCE statements and overlapping COMMON blocks!
Unfortunately the consequence of doing this sort of thing on current parallel computers is
that you wipe out crucial kernel data leaving the machine completely dead in the water. At
this point no I/O is going to occur at all so one is wasting one's time with normal WRITE

statements.

For this reasonCubix has an extra file type just for debugging this sort of failure - RAM
files. These are units OPENed just like regular files but in a special mode in which data is
NEVER flushed to the host but remains in the node memory at a known memory address.
The [tie is equipped with a '~circular" buffer which means that after you write a certain
amount oidata any new stuff just starts overwriting earlier data. In this way the actual
amount of memory dedicated to this stream is constant. This type of construct is often
called a RAM file - essentially it has the same characteristics as a file - you can read it, write
it, seek on it, even close it if you wish, but the data, rather than living on a disk just sits in
memory somewhere.

The trick to the RAM file, and the reason that it's major use is in debugging when the kernel
crashes is that the data in the file can be retrieved, even after the machine has been reset by
a call to exinit, with the exdump utility. Also, since no communication is involved in
writing data to this stream it can be used totally asynchronously and will continue to
function even after all communication channels have ceased to function.

This system also has a significant advantage when debugging totally asynchronous codes.
These latter are characterized by an annoying habit of showing unrepeatable behavior
what shows up as a bug in one place might appear somewhere else entirely on the next run.
In particular one is often unable to use conventional debuggerssince they impose
synchronicity on the program by their very nature - even a good typist can't' type in
debugger commands at the speed of the underlying program. Often one can't use the usual
"print" style of debugging alluded to earlier because the usual printing style on parallel
machines involves communication which, in turn, involves other processors due to
message routing. It is often the case that the insertion of a single WRI TE call can drastically
change the appearance of a bug by interfering with the timing relationship between two
processors. The RAM file alleviates this problem somewhat - writing to it involves no
communication so no other processors"are affected. The only effect is' to slow down
somewh,at the processor doing .the writing. Even· this effect is under the control of the
programmer since· you can choose how much ·I/O you want to do or even which mode
unfonnatted I/O is much·quicker than formatted.

The use of the exdump utility is straightforward. If the program you want to dump data
from is still running then you can say

exdump -p pid

where the process ID of the process has been specified. The second case is where the
machine is completely hung and nothing seems to work any more. In this case one must use
the sequence

146

exinit -m XXXXXX
exdump -n nodes -b Ox80069000

where we have specified the number of nodes from which we wish to display the RAM data
and the string "xxxxxx" should be replaced by a physical address in node memory which
will not clash with the data in the RAM file being retrieved. (See the Reference manual
page describing exinit for details.). Note that the data in the RAM file can be preserved
even across the reboot procedure, exinit, if we use the '-m' switch. This can be
invaluable. In passing one might note that many other options are available for use with the
exdump command to specify which nodes to read data from, whether to read ASCII or
binary data, where in memory to look etc. These are discussed in the attached reference
manual.

Having given out the good news, however, there are some idiosyncrasies to be aware of
when using these methods. Basically, the RAM file consumes memory and hence can
engender new bugs of its own. A common situation is to position the RAM file in high
memory leaving a predetennined space above for the program stack. However, since the
program stack grows downward, and the RAM file grows upward, this is not completely
robust and it is possible for the two to collide with dire and unpredictable results. This
problem can be avoided with some care. It is possible to arrange for the RAM fue to live in
low memory. This is obviously slightly more robust but you have to tell the linker, dumper
and run-time environment exactly where the RAM file should be located. Telling the
compiler where to go is often as simple as creating an array for the RAM file to work into
and using its name and size in the call to ramfopen. Unfortunately we now have to fmd
the address of this object so that we can pass it to exdump when we wish to recover the
data. This can usually be achieved either from "map" files produced by the various
compilerllinker combinations or through the judicious use of the debugger, ndb.12 5 Executing Cubix
Having expounded at some length about the plentiful virtues of Cubix it remains only to
explain how one goes about using it. This section contains only the most elementary usage
of the system and more details are given in the accompanying reference manual.

The fIrst task is to compile the parallel program that will be executed. The procedure for
doing this varies from machine to machine and the details can be found in the appropriate
introductory guide to Express. For the present we will assume that a program called
noddy has been successfully compiled and linked and is ready to be run.

The next step is to execute the program. This is done by running the cubix utility, which
typically has a fonn like

cubix -n 4 noddy <test.dat

This executes the previously compiled program (noddy) on four processors.

The cubix utility has several other options to control its behavior including options to run
different programs in different processors and load programs in a stopped state suitable for
use with the debugger. These options are described more fully in the reference manual.

147

Preserving RAM
files even after
calling exinit

The problems with
RAM files

Executing the cubix
command -passing
arguments to the
nodes

t-j' , Examples

M Cubixis supplied with two example programs in the examples I cubix subdirectory of
the main installation.

Traditional
FORTRAN 1/0 is
not exactly
amenable to
parallel processing

148

a

A

f

File will be used in "asynchronous" mode.

File should be opened asynchronously.

File will be used for fonnatted I/O.

m

R

s

u

File will be used in "multi" mode.

File is a RAM file rather than on disk.

File will be used in "single" mode.

File will be used for unformatted I/O.

Note that 'a' is different from 'A' - specifying 'A' means a relaxation of the loosely
synchronous constraint on the OPEN statement itself - each node may open its own file or
none at all. Contrast this with the 'a' option which merely tells the system to expect
asynchronous READ and WRI TE operations - the OPEN statement would still need to be
"loosely synchronous".

Similarly the 'R' option may also be used in totally asynchronous calls to OPEN since RAM
files are resident in memory on the node making the call.

Most of these code letters may be combined at will with the exception of both 'u' and 'f'.

Note that the list of characters does NOT imply the mode in which the file is to be found
immediately after the OPEN call completes but is rather a list of the options to be used on
the file during the course of program execution. To open an file and address it in async
mode requires BOTH the commands

OPEN (UNIT=l, FILE=' !a!fred.dat')
CALL KASYNC(l)

since the fIrSt just tells the system to expect "async" mode requests at some unspecified
fonner time - it actually does nothing actively.

8 Common Errors

The important
difference between
asynchronous
OPENandopening
a file for
asynchronous 110

'Abusing the
1l1oosely
synchronous"
constraint

In this short section we list a few of the more common errors encountered in using Cubix.
No doubt this list is not exhaustive and users are encouraged to complain about their
individual mishaps.

The most irritating occurrence when running Cubix programs is the "abort, status OOorl(-1)
-1" which occurs with annoying regularity. This basically means that you have either
placed a call similar to

CALL KABORT (-1)

in your program, or you have violated the "loosely synchronous" constraint. Since the latter
is by far the most common this section describes some of the most common problems.

Most simple errors are connected with the abuse of the concept of loose synchronicity.
Probably the most common error is to attempt to print out different strings while in singular
mode. For example

WRITE(6,*) 'Hello'there, this is processor ',PROCNO

is an error in singular mode because the strings to be output are not identical.

A similar error is to try to detect catastrophes in code with

149

Cubix is very
simple to use

The bad news
about Cubix
programs

IF (ERROR) THEN
WRITE (6, *) , Death !!'

ELSE

ENDIF

which fails unless it can be guaranteed that the error occurs in all nodes if it occurs in any.
A somewhat longer but better way to do the above example is

CALL KMULTI(6)
IF (ERROR) THEN

WRITE(6,*) 'Death in processor " PROCNO
ELSE

ENDIF
CALL KFLUSH(6)

which uses multiple mode. (Obviously asynchronous mode could also be used). Note the
explicit call to KFLUSH which is necessary in multiple mode. This is actually another
common error - forgetting to flush mu1t i-files. A somewhat obscure flavor of this is the
failure to call STOP whenever t~e program is to stop. Without this files may not be closed
properly or flushed and data might appear to be getting lost.

~ 9 Conclusions

A version of Cubix has been running at Caltech since early 1986. Since its introduction,
Cubixhas become· quite popular~ and the system has been implemented on a range of
parallel processors. The prevailing attitude among users is that use of Cubix is vastly
simpler than the old host-node protocols (even among persons not in the author's
immediate family). Many programs have been written for which the same code can be
compiled and run on a sequential·machine, as well asa parallel machine mnning \Cubix/I
Express

Cubix's most significant drawback seems to be the increased code size in node programs.
All computation that would have been done onthe host is now done in the nodes. Although
it is not any slower to perform inherently· sequential .tasks simultaneously in many
processors, a copy of the cod,e must reside in each processor. It is important to realize that
both Standard I/O routines like WRITE, which ·usually does not appear in non-Cubix
programs, and application dependent sequential· code which would have appeared in the
host program must now be included in the code that runs in every node. The size of this
code can be significant, and reduces the amount of space available for data. The code and
data linked by a call to WRI TE, for example, requires about 10 Kbytes on each node in our

Deficiencies in the implementation.
Cubixmodel

While Cubix offers the developer access to a wide variety of operating system functions it
cannot be all things to all men. In particular it has a fairly strong bent towards UNIX
supporting most of the elementary operating system calls. On .the other hand as software

158

techniques evolve and diversify Cubix is unlikely to be able to support them all. A good
example is provided by the sophisticated windowing systems in use on modern systems.
Not only is each individual system huge, there are as many different "standards" as there
are implementations - far too many for Cubix to support. As a result we believe that there
comes a point in the development of a major software project when Cubix will be unable
to fulftll all of the software needs of the application.

One possibility is to use Cubix as an I/O server and fITe up alternate host processes with
calls such as popen. These host processes can then communicate with the node process
through a standard pipe mechanism. We have not found much need"for this type of interface
although it is available. (This facility is only available on systems that support multiple host
processes. It is not supported under DOS, for example.)

An alternative strategy which uses the facilities of Express directly rather than UNIX
pipes is to have a second host process "share" access to the nodes allocated by the Cubix
program with the exshare system call. This method has the advantage that it imposes no
structure on the communication mechanism between the user interface in the second host
program and the nodes of the parallel computer - they are free to communicate at will
through the standard Express runtime library.

A third possibility is to "link" user functions directly into the Cubix server process. This
can be done with some care but represents a rather inflexible solution which has little room
for real growth. It can, however, serve the explicit demands of some custom applications.

Adopting the viewpoint that the program running in the nodes of the parallel machine
should control the behavior of the host has some extremely desirable consequences.

• It is possible to write a universal host progriun which accepts commands
generated by subroutine calls in the nodes.

• Given a universal host program, programmers only write one program (the one
for the nodes) for any application, eliminating considerable labor and an
annoying source of bugs.

• All details of the host-node interface are hidden from the application
programmer. Operating system services are obtained by system calls identical
to those used on the host.

• Since applications require only one program to operate in parallel, it is usually
a simple matter to run them on a sequential machine as a special case or to port
them to new parallel machines which support the Cubix I/O model.

• Since operating system interaction is, for the most part, the same as in sequential
programs, there is considerably less to learn before one can begin writing
significant hypercube programs.

lSI

Merging Cubix
programs with host
programs

Putting the nodes
in control of the
parallel computer

Multitasking

Executing multiple processes.on individual
processors

j:JI:j 1 Introduction

M Conventional computer programs, like the conventional computers on which they execute,
are sequential. This means that they execute a single line of code at a time in a predefined
sequence. This programming style is very straightforward since everything is predictable
beforehand. Even the bugs are predictable since the same thing happens every time - with
sufficient willpower we could trace the execution of every line of code on a piece of paper
in order to find our problems. The successes of this programming method are quite obvious
- nearly all scientific calculations are done this way and most "canned" applications are like
this.

The most obvious example of a task which cannot be perfonned in this way is the operating
system of a large multi-user machine. The oPerating system has to be able to cope with
(more or less) random requests for services by its users and be able to satisfy one of these
while simultaneously processing many other programs. This is a classic example ofa multi
tasking environment. The users and the operating system together make up a "pool" of
tasks each of which makes as much progress as it can on its own and then requests and
optionally waits for services provided by other tasks. Systems like this are significantly
harder to debug since their behavior is extremely time-dependent What may crash the
machine one time may be completely benign the next due to some user in a completely
disconnected part of the system doing something slightly different.

When we consider parallel processing similar distinctions can be drawn. Most scientific
and indeed many other algorithms have a regular structure based on the data being
manipulated. This often maps in a very straightforward manner to the nodes of the parallel
machine. Furthermore the structure of the algorithm is also regular with processors
regularly synchronizing by exchanging results necessary for further computation. This
programming model has been called "loosely synchronous" the processors proceed in an
ordered fashion. Each processor is free to execute its own code on its own data but the
overall picture is one of alternate periods of calculation and communication.

This style of programming is quite straightforward under Express. Tools are provided to
automatically compute the optimal distribution of data between nodes and also to facilitate
the communication necessary at each stage. Furthennore bugs are reasonably easy to find
since they occur repeatably - every time a program is run in this mode the same problem
should arise. Anned with a sophisticated debugger like ParaSoft's ndb programming in
this mode can be almost as simple as programming a sequential computer.

There exist, however, applications which do not fit into this "loosely synchronous" mode.
Several reasons may be advanced for this. Some have poor load balance when decomposed
in this way - it may be difficult to arrange for all the processors to work equally hard. If this
happens in the synchronous model the whole machine slows down to the speed of the
slowest node due to the synchronization points. A Classic case of this is when the workload
cannot be evaluated ahead of time. One application we have seen in which this is true is
computer chess. The basic problem to arise in this application is tree-searching. Each move
must be evaluated and then the possible consequences of that move and then their
consequences and so on. Unfortunately, to evaluate all possible moves would be
prohibitive so clever methods are used to "prune" the search tree. As a result the load
resulting from the evaluation of a particular branch is difficult to predict leading to the load

153

The needfor
multitasking
systems

The structure of
parallel programs

llLoosely
synchronous"
programs

Totally
asynchronous
programs

An example:
computer chess

UMaster-Slave"
solutions

Data-base and
transaction
processing

Multitasking under
Express

Problems with
asynchronous
multitasking

imbalance problems described above.

A viable solution to this sort of problem is the'"master-slave" approach. Various nodes in
the tree (and corresponding nodes in the parallel processor) are designated "masters" in that
they will be responsible for allocating work to the "slave" nodes. These slaves then process
whatev,erdata they are supplied by their master until a given processing task is complete.
Typically the number of slaves is made smaller than the number of tasks to be performed
so that load-balance can be achieved in a statistical sense ... if one node receives a large task
it will process it slowly but in the meantime the other slaves can be processing several
smaller tasks each. As a result the entire problem is sped up. .

Note that we can implement this style of programming without multi-tasking on each node
of the parallel machine·by allocating one piece of work to each slave node. On the' other
hand it may ·be·more natural to just distribute all the subtasks at once to the slave nodes
which in tum execute the various pieces in parallel ,on each .node. This increases the amount
of parallelism at the expense of some complexity.

Other fields in which the "synchronous" style is not appropriate include data-base searches
and transaction processing. These cases are characterized by distributed data which needs
to be searched in an inhomogeneous manner. If we consider a large transaction processing
machine we can imagine many requests appearing at once. Each will be dispatched to the
part of the machine responsible for this sort of task which will, in turn, generate more
requests in other nodes. The particular pattern of requests to be made in each processor is
totally unpredictable in advance so a synchronous programming style is very poor - it
would be disastrous to have some key node waiting for a complex result to be calculated
holding up several other quite simple requests.

In these cases we wish to have some ability to asynchronously process events on a
particular node and create .arbitrary tasks on. different nodeso Expressp'tovides these
facilities.

The multitasking extensions of Express fonn a particularly elegant solution to the above
problemse In many other systems (The UNIX operating system is the classic example) the
multitasking and interprocess communication features seem to be part of disjoint systems
"tacked together" at the last minute to present a usable interface for programmers. Since
Express is basically a system designed around the inter·processor message passing system
we .use these utilities in the implemen-tationof the multitasking .system. As a result .the
overall picture for the application designer is extremely clean and simple.

The basic principle involved is that messages become tasks when they· reach their
des,tination processor. As a result we can transparently create tasks locally, by sending
messages to our own node, or remotely by sending messages to other nodes. In either case
we can also send data to the created tasks in the message which created it

Having said that the Express system provides an elegant solution to the multi-tasking
problem we must, however, make the caveat that this style of programming is significantly
more complex than the "loosely synchronous" model described earlier. The behavior of the
system is extremely difficult to follow analytically if programmed in this w.ay which makes
the detection of errors much more complex. In particular powerful source leveldebuggers
become a much reduced resource in many cases since they operate at interactive, human,

154

speeds rather than the computer clock rate. As a result, the time it takes to type in a
debugger command upsets the timing properties of the program being debugged so much
that often the bug does not appear. Real time debugging tools are a complex and little
developed issue. Express provides one utility - the RAM file, which has proved useful but
the problem remains.

We must also note that the availability of the Express multitasking features is extremely
hardware dependent. At present we are only able to offer the full system on transputer based
architectures. There is, however, a level at which the Express functions described in this
document can be used portably across all machines. The techniques involved are discussed
in a later section of this chapter.

This manual is structured as follows. In Section 2 we describe the function which
implements the majority of the multitasking interface under Express. Some simple
examples are shown to exhibit the features of the system. In Section 3 we discuss the central
issue of "semaphores" which are needed to prevent multiple tasks from corrupting one
another. In the absence of memory protection hardware this is a very important issue. We
then present a fairly sophisticated example of the use of the multi-tasking functions. In
Section 4 is discussed a simple mechanism similar to the UNIX exec in which a node
program can be swapped out of memory and replaced by another on demand. Section 5
discusses the portable use of the asynchronous functions described here.l2 2 Asynchronous Processing • KXHAND

The function which implements the heart of Express' multitasking facility is KXHAND. If
you consult the Express documentation you will find this function described among the
communication functions rather than in its own section for multiprocessing. This is because
multi-tasking under Express is a function of the communication system rather than a
separate set of function calls. This is what makes the interface so clean and simple - since
a user of Express is already accustomed to the basic message passing principles we merely
extend them a little to provide multitasking support.

The syntax of the KXHAND function call is

INTEGER FUNCTION KXHAND(FUNC, SOURCE, TYPE)
INTEGER FUNC, SOURCE, TYPE
EXTERNAL FUNC

What is achieved by this call is to associate the named function, FUNC, with messages
from the given SOURCE which have the specified TYPE. Subsequent to this call every time
a message arrives at a node which matches the SOURCE/TYPE combination results in
FUNC being invoked with the message parameters as arguments.

To clarify this procedure let us consider a trivial example. We assume that node 0 will
repeatedly make some request from node 1, at unpredictable intervals. Further, node 1 is
expected to respond to each request with a counter value which, for the sake of simplicity,
we will assume is being calculated by the nonnal, sequential program, executed on the
processor. The Express code (assumed to be running under Cubix) to achieve this is

ISS

Hardware
dependencies

exhandle - a
communication
function

Associating a
message with a
function

A contrived
example

156

C
C-- Node O.
C

PROGRAM NODEO
c

PARAMTER (IREAD=123, lRESP=124)
c

INTEGER COUNT, DEST,TYPE, DUMMY
C
C-- Set up Express.
C

CALL KXINIT
c
C-- Set up the I/O system in asynchronous mode and then
C-- sync all nodes to prevent race conditions.
C

CALL KASYNC(6)
CALL KXSYNC

C
COUNT = 0
DEST = 1

C
C-- Repeat the following loop until node 1 tells us to
C-- quit by sending back a zero value.
C

10 TYPE = IREAD
ISTAT = KXWRIT(DUMMY, 0, DEST, TYPE)

C
TYPE = IRESP
ISTAT = KXREAD(COUNT, 4, DEST, TYPE)

C
WRITE(6,*) 'Counter value is now', COUNT
CALL KFLUSH(6)

C
IF(COUNT .NE. 0) GOTO 10

C
WRITE(6,*) 'Node 1 told me to stop, bye
STOP
END

c
C-- Node 1.
e

PROGRAM NODEI
C

PARAMETER (IREAD=123, IRESP=124)
INTEGER COUNT
INTEGER TYPE, SRC, SENDC
EXTERNAL SENDC

C
COMMON /SYSTEM/ COUNT
COMMON/XPRESS/NOCARE,NORDER,NONODE,

$ IHOST,IALNOD,IALPRC
C
C-- Set up Express and initialize its common block.
C

CALL KXINIT
C

COUNT = 54321
C

C-- Set up Express and its common block and then enable
C-- asynchronous I/O on unit 6.
C

CALL KXINIT
CALL KASYNC(6)

C
C-- Set up our message handler and then "sync" with
C-- node O.
C

TYPE = IREAD
SRC = NOCARE
ISTAT = KXHAND(SENDC, SRC,.TYPE)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'Failed to setup message handler.'
STOP

ENDIF
C

CALL KXSYNC
C

10 CALL RECALC(COUNT)
GOTO 10

C
STOP
END

C
C-- This function will be called whenever the message of
C-- type IREAD is sent to this node.
C

INTEGER FUNCTION SENDC(BUF, LENGTH, SRC, TYPE)
INTEGER BUF(*), LENGTH, SRC, TYPE

157

Useasynchronous
I/O is
asynchronous
programs

Avoiding race
conditions and
tricky bugs

Activating the
handler function

Important
properties ofthe
handlingfunction

PARAMETER (IREAD=123, IRESP=124)
C

COMMON /SYSTEM/ COUNT
INTEGER COUNT

c
INTEGER RTYPE = IRESP

C
ISTAT = KXWRIT(COUNT, 4, SRC, RTYPE}
SENDC = 1
RETURN
END

Let us examine this code step by step.

The fmt action performed by node 0 is to execute KAS YNC for the standard output stream
unit 6. This enables node 0 to print things independently of the other nodes in the
machine.

At the same time node 1 is setting up its message handler with the call to KXHANDo Note
that we specify a particular message type but the wildcard NOCARE value for the message
source. This allows the processor to automatically respond to requests for the COUNT value
from any node including the hosts or the node itself. Note that we check the return code
from KXHAND and abort cleanly if something bad has happened. This is good practice since
a limited number of message handlers may be registered.

The second action perfonned in both nodes is a call to KXSYNC. This is very important.
Without this call we generate a potential bug because node 0 could send off its request for
data before node 1 is ready to receive it. In this case Express would be forced to treat the
message as nonnal interprocessor communication. In this case~ node 1 makes no calls to
KXREAD and so would never see the message. Finally node 0 would never get a response
to its request so it would hang forever in KXREAD. By making the nodes synchronize after
the setting up of the message handler we guarantee that no node sends off a request that is
unexpected.

After setting up its message handler node 1 proceeds to calculate successive values of
COUNT via some procedure not shown here.

Node o~ however~ sits in a loop sending requests to nodel for the current value. Note that
these are merely dummy messages of zero length but with the correct type. When each of
these messages arrives in node 1 the SENDC function is called with the arguments shown.
In our case the message buffer and length are superfluoussincenoinfonnation was sent by
node o. The SRC field tells us which node sent the request for data ,- in our case it is known
to be node 0 but if more than two nodes were involved this field would enable us to identify
a node to which data should be sent. Finally the TYPE field is again superfluous in this
example but we could have specified NOCARE in the original call to KXHAND in which case
the SENDC function would be invoked for every message arriving on node 1. In this case
the last field serves to discriminate between types.

Two other important features of the SENDC function are its return code and the message

158

type it uses for its response.

The return code is used to decide whether or not to terminate the association between
message handler and message types. If the SENDC function had returned -1 then Express
would have treated all subsequent messages of type lREAD as nonnal interprocessor
communication rather than calling the handler function. Returning 1 maintains the
association.

The message type used in the response of the message handler must also be considered
carefully. The simplest solution is to merely return the results in a message of the same type
that we received. After all, it is supplied to us as one of the arguments. In the case shown
here this will work properly. In a more general case, howeve~, each node would be
calculating values and would have its own message handler installed to trap messages of
type I READ. If we now return the results in a message of this type the handler on the
originating node would treat it as a request for a value and would send something else back.
This would lead to an infinite sequence of requests and acknowledgments which would
grind the machine to a standstill.

Note that the code shown above might run forever - node 0 will repeatedly request the
COUNT value from node 1 stopping only when the value 0 is received. It is obviously up to
node 1, in this scenario, to decide when things have gone far enough and stop. This is
actually one of the trickier aspects of this style of processing - knowing when and how to
stop cleanly.

This example has shown the most basic usage of the message handling system. What may
have slipped by unnoticed, however, is that we have actually been multitasking here. While
the main loop in node 1 is repeatedly calculating new values of COUNT a second task has
been answering enquiries from node 0 about the current status.

We can extend this model more if we realize that each message which arrives on node 1 is
actually creating a new task there which runs in parallel with the other tasks on that
node.(This is only literally true on machines which actually support multitasking such as
transputers. An alternative (portable) interpretation is given in a later section.) To examine
this feature more consider a signal processing application.

Signal processing applications involve the interconnection of numerous "black boxes"
representing the individual system components. Each of these black boxes receives, as
input, a piece of the signal which it processes and then passes on to the next black box in
the chain. The feature of this system which most recommends a multi-tasking solution is
that the number of components is very variable as are their computational requirements.
Simple components may require small amounts of CPU power while FFT's can themselves
benefit from additional parallelism. We might thus implement them as multiple processors.

An additional problem is that the prototyping process typically involves repeated minor
modifications of the circuit. This is most easily implemented by merely generating a new
task for each extra system component which we can then position on some under-loaded
processor.

The basic scenario is shown below. Each node sets up handlers for the various modules it
may be called upon to execute. Several shown include simple FFT's, linear ruters and
seveml varieties of other "black box". Each of these handlers is set up to receive requests

159

Avoiding infinite
chains ofrequestl
ack messages

Stopping
asynchronous
programs

Extension to signal
processing

from any node and is triggered by the receipt of a particular message type.

PROGRAM SIGNAL
INTEGER FFT, LINFIL, BBOX1, BBOX2, STOPlT
EXTERNAL FFT, LINFIL, BBOX1, BBOX2, STOPlT

c
INTEGER DONE
INTEGER SRC, TYPE

C
DONE == 0
SRC = NOCARE

C

TYPE = FFTREQ
ISTAT = KXHAND(FFT, SRC, TYPE)

C
TYPE == LINREQ
ISTAT = KXHAND(LINFIL, SRC, TYPE)

C
TYPE = BXlREQ
ISTAT = KXHAND(BBOXl, SRC, TYPE)

C

TYPE = BX2REQ
ISTAT = KXHAND(BBOX2, SRC, TYPE)

c
TYPE == STOP
ISTAT = KXHAND(STOPIT, SRC, TYPE)

C
C-- Now synchronize all processors to prevent race
C-- conditions.
C

Now sit in a "very" tight loop and just let the
message handlers do their stuff.

c
C-
C-
C
C-
C
10

CALL KXSYNC

THIS CODE IS ACTUALLY INCORRECT

IF(DONE .EQ. 0) GOTO 10
STOP
END

READ ON!

160

C

INTEGER FUNCTION STOPIT(BUF, LENGTH, SRC,TYPE)
INTEGER BUF(*), LENGTH, SRC, TYPE

DONE == 1
STOPIT == 0

RETURN
END

There are several interesting features of this code. First each node sets up handlers for each
of the functions and then calls KXSYNC to prevent race conditions as described in the
previous example. We also set up a fairly primitive but effective mechanism for stopping
the program - one of the message handlers is for the STOP message which sets a flag to let
us drop out of the main loop. The most striking thing about this code is the main loop itself
which is empty!

We assume that a master processor somewhere knows the details of the signal net to be
tested and will create processing units on processors by sending the appropriate message
types.

This scenario has a number of important advantages.

• Overall control is exercised from some central location which minimizes the
total amount of data which must be transmitted to the individual nodes.

• Any node in the machine (including the hosts) can create a task by sending an
appropriately typed message to any node. This means that we can adopt some
sophisticated dynamic load balancing strategy - as nodes become too busy we
can create processes elsewhere.

• Individual modules may themselves operate in parallel. The FFf routine, for
example, might use four or more nodes to perform the FFf in parallel. Within
this subset of the machine it can take advantage of a "loosely synchronous"
programming style with all its advantages.

• Any necessary multitasking is completely transparent. If the number of modules
we need to create is requires fewer nodes than are available then each node can
be given one process. If more are required then we can create more simply by
sending messages.

• Each fundamental process can be debugged in isolation and then "plugged" into
the larger system.

• Prototyping is very straightforward since the master process merely has to order
the creation of extra modules by sending the necessary messages. Networks can
be created with a graphical interface and then implemented trivially through this
mechanism.

Having looked at the overall structure of the main routine each of the modules would
probably have the overall structure shown below.

INTEGER FUNCTION BBOXl(DATA, LENGTH, SRC, TYPE)
REAL DATA(*)
INTEGER LENGTH, SRC, TYPE

c
INTEGER NEXTND, NEXTTP

c

161

A solution to the
Ustopping"
problem

Independent tasks
makefortheeasiest
processing

Avoid ltbusy"
waiting

C-~ We got some data sent to us in the instantiating
C-- message. If this is not enough then we can read more
C-- from the node which started us up.
C

ISTAT = KXREAD(BUFFER, LENGTH, SRC, MSGTYP)
ISTAT = KXREAD(BUFFER, LENGTH, SRC, MSGTYP)

c
C-- Process the data we've just received
C

C
c-- Find out who to pass the results on to and then send
c-- the message. We also have to decide exactly what
c-- message types to use since some will create tasks
C-- while others will merely interface to existing ones.
C

NEXTND =
NEXTTP =

C
ISTAT = KXWRIT(RESUL, LENGTH, NEXTND, NEXTTP)

C

BBOXI = 0
RETURN
END

Some of the .data to be transformed is sent within the triggering message itself. This is an
important optimization in simple cases but may not be sufficient KXHAND is only able to
deal with messages of lengths up to 1024 bytes. If the data to be transformed were larger
extra messages could be sent and read .directly by the message handler as shown above.
These would be normal Express messages, sent with KXREAD.

SO far all the examples have been quite straightforward. Tasks have been totally
independent. In this case few·precautions have to be taken. In general, however, this will
not be· the· case - several tasks on a particular node must·coordinate their·actions· so that
neither voids the operation of the other. We discuss this issue in the next section.

Also discussed in. the next section are .lechniques for "waiting" in a multitasking
environment. When a nonnal sequential process cannot proceed any further it typically
"blocks" - i.e., waits in some sort of loop for an event to occur which will restart it. In a
multitasking system this is not good since a task which waits in this manner never yields
the CPU to another task which could potentially do useful work. In the worst case one task
might "busy wait" for another task on the same node which will result in deadlock since the
task that could potentially free up the situation will never get access ·to the CPU. For this
reason a task under Express should never wait in a loop. If it becomes necess.ary to wait
for some event then a "sleep" function is provided which will yield the CPU to any other

162

pending process. This is the bug mentioned in the listing of the above main procedure and
techniques for avoiding it are described in the next section.

f2 3 Mutual Exclusion - Semaphores

A "critical section" is a piece of code that can only be executed by one process at once. A
simple example is provided by the oft-quoted bank-teller model. Consider service at a bank.
We assume that two transactions need to be perfonned which both have to be recorded in
your account. If only one teller is available all is well since the two transactions will be
processed separately and recorded correctly. If two tellers happeon to decide to help you
together, however, problems can arise. Let us assume that the frrst rushes ahead and gets
half way through recording your transaction when some interruption occurs which allows
the second teller to catch up. When it comes to recording the results chaos will result since
the second teller is modifying data that is only partially correct.

This is the classic case of a critical section. Some mechanism must be provided which
prevents one teller modifying data unless it is in a sensible state. Many mechanisms are
available for this of which Express adopts the semaphore technique.

A semaphore is a variable which controls access to certain pieces ofcode. A simplified case
is shown below

C
C-- Simple semaphore code. This code is illustrative but
C-- not sufficient for real use.
C

SUBROUTINE TELLER (ACCT, CREDIT)
INTEGER ACCT, CREDIT

C
COMMON /SEMFOR/ SEM
INTEGER SEM

C
10 IF(SEM .NE. 0) GOTO 10

SEM = 1
C

ACCT = ACCT + CREDIT
C

SEM = 0
RETURN
END

This example is a simple model of the teller's problem. The routine TELLER has two
arguments: the current account standing and an amount to credit to this account. In order to
prevent several tellers modifying things incorrectly we invent the extra variable, SEM.
While the value of this flag is zero any teller is allowed to carry out the transaction but
whenever one of them does so the value is immediately changed to 1. This prevents any
other tellers inadvertently messing things up. Whenever a modification is complete the

163

A model ofa
tlbanking"
operation

Semaphores

~

Problem l ..r uBusy"
waiting

Problem 2: atomic
semaphore
operations

The Express
semaphore
functions

"semaphore" is set back to zero allowing another teller to modify the balance.

This example is rather trivial and the code shown above is actually insufficient for correct
operation in the Express multitasking environment but it· serves to illustrate the purpose of
the semaphores. This type of operation occurs whenever some data structure on a node will
be shared and modified by several tasks. If only one task is allowed to alter the balance and
the others only read it all will be welL We could, for example, make use of the two tellers
in the example by having one do the calculations and the other modify the balance. There
will then be no conflicts and no semaphore is necessary.

Where are the problems in the above solution?

The fJISt problem is that tasks which get to the semaphore test while SEM = 1 will "busy
wait". This phrase was introduced at the end of the previous section and refers to the
situation where one task continually uses the CPU. In this case the IF loop could execute
forever preventing the task which is· actually perfomring the transa~tion from finishing - it
may actually be just on the verge of resetting SEM to zero and thus freeing the waiting task.
It may be unable to do so since it cannot get to the CPU.

The second problem is with the semaphore itself. The assignment

SEM = 1

is not attached to "the end of the IF loop in any concrete fashion. We could thus be
pessimistic and consider the possibility that one task, having decided to modify the balance
wants to set the semaphore preventing others from doing the same. Unfortunately, just as
this decision is made another task comes along and makes the same decision since the fITst
hasn't had chance to lock the semaphore. The result is that both tasks proceed equally
convinced that everything is OK. Both will eventually set the SEM variable and unset it
correctly while the account that we set out to protect is vulnerable.

In order to prevent this from happening the semaphore modification process must be made
"atomic" - once the decision has been made to lock the gate it must be able to do so without
interference from other tasks which may potentially make the same decision.

To implement this strategy Express provides several semaphore functions:

KXSEMI, KXSEMW, KXSEMS, KXSLEE

The basic variable type for these routines is an array oftwo integers. KXSEMI takes such
an array and initializes it properly as a semaphore. The KXSEMS and KXSEMW functions
perform the two assignment operations of the previous example. A correct Express
version of the above code is

c
c-- Simple semaph.ore code. Uses EXPRESS functions to
c-- prevent deadlock.
C

PROGRAM BANKER
c

INTEGER ACCSEM(2) , TYPE, SRC, TELHND

164

~..

COMMON /BANKS/ ACCSEM
EXTERNAL TELHND
PARAMETER (ICREDT = 400)

C
COMMON/XPRESS/NOCARE, NORDER, NONODE,

$ IHOST,IALNOD,IALPRC
C
C-- Set up Express and initialize its common block.
C

CALL KXINIT
C
C-- Initialize the semaphore needed to protect the TELLER
C-- routine.
C

CALL KXSEMI(ACCSEM)
C

TYPE = ICREDT
SRC = NOCARE
ISTAT = KXHAND(TELHND, SRC, TYPE)

C
C-- Synchronize all nodes to prevent race conditions.
C

CALL KXSYNC
C
C-- Off we go with the real code
C

C
C-- We pass data to this routine in an INTEGER array
C-- using the elements as follows ...
C

INTEGER FUNCTION TELHND(ACCDAT, LENGTH, SRC, TYPE)
INTEGER ACCDAT(4) , LENGTH, SRC, TYPE

C
CALL TELLER (ACCDAT (1) , ACCDAT(2))
TELHND = 1
RETURN
END

SUBROUTINE TELLER (ACCT, CREDIT)
COMMON /BANKS/ ACCSEM

C
CALL KXSEMW(ACCSEM)
ACCT = ACCT + CREDIT
CALL KXSEMS(ACCSE~)

165

A simple
transaction
processing system

RETURN
END

There is quite a lot of code here since we actually built a working program. The only
changes to the TELLER function are trivial. We call KXSEMW before the critical section and
KXSEMS after it.

The former call encapsulates the waiting loop and semaphore assignment of the original
example. It arranges that any task which is prevented from proceeding by the lock
semaphore waits in such a way as to allow other tasks to use the CPU. It further arranges
that the semaphore locking procedure is atomic preventing more than one task from getting
into. the critical section.

The KXSEMScal1 releases the locked semaphore thus allowing any waiting processes to
proceed into the critical section.

The rest of this code is shown to illustrate how simply we can build a prototype transaction
processing engine from the Express functions. In the main routine we create a semaphore
for the account procedures by calling KXSEMI. We then set up a handler so that we can
easily create tasks to modify accounts by simply sending the appropriate messages.
Together with the message that creates a task will be sent the data necessary for the
modification. The task then calls the TELLER procedure which is now correctly protected
by semaphores.

To complete the picture of this system let us assume that every node has executed the above
code to create the appropriate tasks. We can now have a transaction processing task which
decides which account to modify and then does so by sending a simple Express message
as follows

SUBROUTINE FlXACT(ACCT, CREDIT)
INTEGER ACeT, CREDIT
PARAMETER (ICREDT = 400)
INTEGER ACTION (2)
INTEGER NODE, LCLACC, TYPE

c
C-- Calculate which node the actual account data is
C-- stored on and which local account number corresponds
C-- to the global one we've been given.
C

NODE =
LCLA,CC =

c
C-- Now send the transaction request to the appropriate
C-- node. The invocation message contains all the data
C-- necessary for the operation to be completed.
C

ACTION (1) = LCLACC
ACTION (2) = CREDIT

TYPE = ICREDT
c

ISTAT = KXWRIT(ACTION, 8, NODE, TYPE)
RETURN
END

In this code we assume that we have been passed an account number which must be located
within the parallel machine. The code to deal with this could involve some "name-selVer"
or other technology easily constructed with the Express functions. Having decided where
the account is kept we can just send that node a simple message to have it update its records.
Note that this system is very robust - the semaphore protection prevents multiple
transactions from simultaneously modifying the accounts. Note also that the above system
works even if the account to be modified is on the same node as the task which sends the
message! This is nice since it provides neat modularity to the code. One might otherwise
be tempted to "cheat" by having the local node modify its accounts directly. This would be
an easy way to make a mistake since the semaphore would have to protect both the
TELLER function for remote access and whatever code were used to deal with local cases.

So far we have discussed all the semaphore function except KXSLEE. This function has a
rather messy use - it is required whenever a task needs to wait but will not be waiting on a
semaphore. One possible use would be at the end of our signal processing example from
the previous section. This code set up several potential tasks with the KXHAND call and then
waited for a signal to tenninate with the code

c
c-- Wait for messages to start up multitasking system.
C-- INCORRECT
C

PROGRAM SIGNAL
INTEGER DONE

C
DONE = 0

C

C
10 IF(DONE .EQ. 0) GOTO 10

STOP
END

The problem here is that mentioned several times already - the node is "busy waiting". This
can potentially hang the system since no other process can gain access to the CPU. The fix
to this bug is quite simple

c
c-- Wait for messages to start up multitasking system.
C-- CORRECT

167

Solving the ubusy"
wait problem with
exsleep

c
PROGRAM SIGNAL
INTEGER DONE

C

C-- Start up Express.
C

CALL KXINIT
C

DONE = 0
c

C
10 IF(DONE .EQ. 0) THEN

CALL KXSLEE(lO)
GOTO 10

ENDIF
STOP
END

Note that we now "sleep" in the loop waiting for messages. This allows other tasks to use
the CPU and prevents deadlock. The argument to this function is a time in milliseconds for
which the process should sleep. In this particular application the actual value is rather
unimportant - only the effect is crucial.

This section has described in detail the methods which can be used to "secure" a
multitasking environment. The example, though easily, coded shows the simple manner in
which Express is able to cope with a typical multitasking problem. It has also pointed out
several common sources of error. We only wish that detecting errors in this type of code
were as simple as describing them!l3 4 Executing alternate node programs, under Cubix

The previous sections have described a traditional multitasking system in which processes
are created, perfonn their actions and disappear. A simpler fonn of multitasking is to

An I'exec" modelof simply replace one node program with another, en masse. While this is not a particularly
multiprocessing subtle or elegant solution it can occasionally have its uses. One might, for example, design

a system which is too big to fit. into the memory·of a single processing node.. In this case it
might be useful to partition the application into large "phases" which are loaded one after
another to accomplish some processing task.

The basic function which achieves this is KEXEC. In its most basic fonnone node program
can call

CALL KEXEC('PHASE2')

which replaces the current node program with one called phase2.

This system call operates "loosely synchronously" in that it must be made in all nodes and
results in the replacement of all node programs. Single nodes may start up new program

with the KAEXEC system call which has identical arguments to that shown above but
operates independently in each node.

An important possibility with this function is that program can share data if done carefully.
When Express loads a new program into the machine it only zeros the memory explicitly
used by the new code. It is possible, therefore, by judicial use ofphysical memory addresses
to have successive phases ofan application share data through the KEXEC mechanism. This
practice must be used carefully since program sizes and memory allocation strategies are
rather machine dependent but might prove invaluable on occasion.

f:3: 5 Portable use of KXHAND

The multitasking system described in Sections 2 and 3 provides significant flexibility in the
generation and manipulation of tasks. KXHAND can, however, be used in two modes, one
portable between different Express implementations, the other not.

At its simplest KXHAND can be considered to setup an "event" triggered by the arrival of a
message. This event executes the user supplied function and eventually tenninates
returning control to the main user program. As we have seen, however, we can implement
systems using KXHAND which have essentially no "main" program. They merely create
tasks at the request of the message system which then execute forever in parallel.

On machines such as the transputer which support multi-tasking all features of Express
will be implemented and either style of programming will be available. In the absence of
such facilities, however, KXHAND events will be dealt with as nonnal hardware interrupts
would be - nonnal program execution is suspended while the interrupt handling routine is
selViced.

If used only in this mode Express programs will be portable between all machines that use
KXHAND. Certain restrictions apply, however, due to t~e fact that the user supplied function
will essentially be invoked at interrupt time.

The most fundamental of these constraints is that the user routine must never "wait" for
anything. In particular it should never call KXREAD, KXSLEE or KXSEMW. It can, however,
call KXWRIT.

While this might seem a large restriction it turns out to be less so in practice. If we consider
the banking example of Section 3 we could modify the function' which performs
transactions so that it merely failed whenever a conflict might arise between the interrupt
handler and the normal code. In this case a message would be sent back to the caller
indicating this and a retry could be issued. While not as efficient as the other solution it
offers enhanced portability.

169

Interpreling
exhandle as an
interrupt handler

Parallel Graphics

A simple, portable, parallel graphics
system: Plotix

j;;sI:j 1 Introduction

M Graphical presentation is rapidly becoming one of the major concerns of all types of
programmers. At one end are sophisticated menu-driven applications offering an enormous
degree of interaction and freedom while at the other end might be the simple graph
displaying the final result ofmany hours of CPU power. Both examples are really questions
of data-reduction; the menu interface reduces what might otherwise be an extremely
complex input syntax to a simple "point and click" model while the graph takes thousands
of data points and presents them in a form that can be readily understood.

Parallel computers pose the same problems to a larger extent. If the sequential computer
could produce a thousand data points then the parallel machine might generate a hundred
thousand. Similarly, if one wishes to get any "feel" for what is happening inside a parallel
machine, one rapidly has to resort to graphical displays since the human mind cannot
comprehend what would otherwise be pages of randomly sorted data.

Plotix is a graphical system designed for parallel machines. In keeping with the rest of the
Express philosophy, an important goal is the portability of the resulting parallel program
and Plotix is thus implemented in both sequential and parallel forms. We have found that
quite complicated systems can easily be developed that really enhance parallel applications
- finite element systems that display, "on the fly", images of bending plates as well as
documenting (and incidentally aiding the debugging of) the internal data structures of the
code. Menu-driven applications have also been developed - the ParaSoft pelformance
monitor is a good example.

Plotix programs produce device independent output in the sense that the same parallel
program can produce output on a variety of different devices merely by altering a run-time
switch in the cubix command that executes the program. This allows one, for example, to
generate hardcopy output without having to recompile a known working program.

Due to its inherent simplicity we have been able to port the system to a wide variety of
devices. Currently supported are the 4010 and 4105 series Tektronix terminals, the HP475
series of pen plotters from Hewlett-Packard, the IBM EGA under both XENIX and MS
DOS, PostScript, COl (on systems such as the SUN), and HALO graphics systems of all
kinds. Further devices are added as the need arises.

While the simplest Plotix model involves a single output device, usually attached to the
system console alternative schemes are supported. It is possible, for example, to redirect
graphical output to special purpose devices attached to the parallel processing network in
fairly arbitrary ways. It is even possible for different nodes to send their output to distinct
displays. All of this support is provided at runtime through simple function calls.

The rest of this document is arranged as follows. In Section 2 are notes concerning the
coordinate system used by Plotix. Section 3 discusses the calls required to initialize and
shutdown the plotting system and the output modes available in Plotix which actually put
images up on your display sulface. Section 4 describes the input routines available under
Plotix and Section 5 the contouring package. Section 6 describes the tricky topic of"color"
and describes how Plotix handles color and monochrome monitors. Section 7 discusses the
issues of device-dependencies and the Plotix routines which address this issue. Section 8
discusses the example programs that are supplied with Plotix as well a giving a complete

171

Why graphical
presentation is so
important

The philosophy of
Plotix

Achieving device
independence at
runtime

Output models

listing of the Plotixprogram used to create one of the figures in the text. Section 9 describes
the lowest level of the contouring package - useful for contouring other than rectangular
domains and Section 10 covers the features unique to each of the supported output devices.

'Examples are scattered widely throughout the text and each of the manual pages in the
accompanying reference manual also contains an example of the use of each function.

f:i 2 Coordinate systems
In most systems the user is bombarded from the outset with a bewildering collection of
coordinate systems which must be understood before plotting can commence. Plotixcan in
the simplest case have a single coordinate system covering the view-surface, or by
appropriate function calls build up to sets ,of 'windows' or 'viewports' each with its own
coordinates.

All problems have their ownnaturaI scale, for instance meters, kilograms, minutes or slug
furlongs. Plotixprovides the KSPACE function call that allows you to set things up so that
you can move around and draw lines in this coordinate system rather than having to rescale
to an internal coordinate system.

By default Plotix assumes that the values you want to plot lie in the range from zero to one
in both x and y directions and it sets up its coordinate transfonnations so that this range
covers the entire screen. To see the effect of this consider the following simple code extract

An extremely
simple coordinate
system

CALL KMOVE(O.O, 0.0)
CALL KCONT(l.O, 1.0)

which draws a diagonal line from one comer of the display to ,the other as shown in
Figure 1.

Figure 1. Default Coordinate Range

If your data happen to lie in the range from zero to one all is obviously well but experience
shows that this happens rarely. In this case you call KSPACE to set up your own coordinate
range. The arguments to this function are the lower left and upper right comer of, the
rectangle that encloses your data, in your units. So, for example, if you have to plot salary
against month of the year you might want to have the x-scale range from 0 to 12 and the y-

172

scale from 10,000 to 100,000 ("Dream on?"); this would be accomplished with the call

CALL KSPACE(O.O, 10000., 12., 100000.)

As a concrete example of the effect of this call modify the above example code segment by
the addition of a call to KSPACE.

CALL KSPACE(O.O, 0.0, 2.0, 2.0)
CALL KMOVE(O.O, 0.0)
CALL KCONT(1.0, 1.0)

The effect of this is shown in Figure 2. As can be seen the KSPACE call has doubled the
scales of the axes so that the unit diagonal now stretches only half way across the screen.

Figure 2. User Supplied Coordinate Range • KSPACE

There is another flavor of the KSPACE function called KORTHO which ensures that when
a square is drawn it appears on the display as a square rather than a rectangle.

JUSTIFY = 0
CALL KORTHO(O.O, 0.0, 2.0, 2.0, JUSTIFY)
CALL KMOVE(O.O, 0.0)
CALL KCONT(1.0, 1.0)

The effect of this is shown in Figure 3. Now the diagonal line is actually at 45 degrees to
the horizontal. KORTHO finds the largest rectangular region of the display which has the
aspect ratio specified by its arguments and maps the frrst pair of user-coordinates to the
lower left comer of the rectangle and the second pair to the upper right comer. Notice the
last argument to KORTHO, which specifies where this largest rectangle should be placed on
the display surface. If JUSTIFY is -1, the rectangle is placed as far left (or down) as
possible, if 1 it is as far right (or up) as possible, if 0 then it is centered in the left-right (or
up-down) direction.

Now that one is able to rescale the image to a particular set of units the next question is how
to place it on the display surface. Again, by default, Plotix fills up the entire view surface
with its output and makes available the KVPORT call to override this choice. The arguments
to this function are again the lower left and upper right corners of the display surface upon

173

Modifying the
default coordinate
system

Making llsquares"
square

Positioning the
output on the
display - viewports

Figure 3. User Supplied Coordinate Range • KORTHO

which you wish to draw your picture., expressed as fractions of the whole. This means that
the default situation corresponds to the call

CALL KVPORT(O.O, 0.0, 1.0, 1.0)

while the call

CALL KVPORT(O.5, 0.5, 1.0, 1.0)

places your image in the upper right quadrant of the screen. As a specific example consider
the code fragment

CALL KVPORT(O.5, 0.5, 1.0, 1.0)
CALL KMOVE(O.O, 0.0)
CALL KCONT(l.O, 1.0)

whose effect is shown in Figure 4. The call to KVPORT places the entire image so that the
diagonal line is now in the upper right hand comer of the screen.

Figure 4. Modifying the Display Area

174

Calls to KSPACE and KVPORT may be combined. So, for instance, we can take the screen
and divide it up into regions controlled by individual processors of a multi-processor
system and then assign within each processor its own coordinate mappin·g system. An
application where this is of use, for example, is image processing where each processor has
a sub-image of the whole picture. It make sense to divide up the display surface so that each
processor has an area of the screen corresponding to its own sub-image. Then one can map
~e individual subsections of the screen so that actual plotting commands can be made on
the basis of array indices within a processor.

There may be multiple viewports in Plotix, so that for example we" can show a menu in one,
and plan and elevation views of an object in two other viewports. First we divide up the
screen into pieces:

INTEGER MENUPT, PLANPT, ELEVPT
MENUPT = KVPORT(O.O, 0.0, 0.2, 1.0)
EVELPT = KVPORT(O.2, 0.0, 1.0, 0.5)
PLANPT = KVPORT(0.2, 0.5, 1.0, 1.0)

which puts the menu in a strip at the left, and splits the rest of the screen horizontally for
the plan and elevation. Now we can set up coordinates for each of the viewports:

CALL KSETVP(MENUPT)
CALL KSPACE(O.O, 0.0, 10.0, 1.0)
CALL KSETVP(ELEVPT)
CALL KORTHO (0 .0, O. 0 , 1. 0 , 1. 0 , 0)
CALL KSETVP(PLANPT)
CALL KORTHO(O.O, 0.0, 1.0, 1.0, 0)

which makes the vertical coordinates in the menu viewport range from 0 to 10, and provides
a unit square for the coordinates in the plan and eleva~ionviewports. Notice that these last
two will not be distorted. Finally we can draw:

CALL KSETVP(ELEVPT)
...drawelevation ...

CALL KSETVP(PLANPT)
... draw plan ...

Notice the order in which these functions were called. Several calls to KVPORT preceded
the calls to KSPACE which were, in turn, each preceded by a call to KSETVP. The reason
for this sequence is that each call to KSPACE affects only the currently selected KVPORT.
Furthennore a viewport is selected either by its creation with the KVPORT function or its
explicit selection with KSETVP. Output which might be generated from this code is shown
in Figure 5.

In parallel, each processor may make a different (set of) viewport(s). As a final example of
this sort of procedure let's consider a case of four processors arranged in a 2 x 2 square.
Furthennore, assume that each processor has already figured out it's coordinates within this
square pattern and stored them in the variables XCOORD and YCOORD (This is trivially
done through the KXGRID system supplied as part of Express - see section 7.) Then the
following code segment

175

Independent calls
to space and vport
allow the nodes to
create special
effects

Multiple viewports
are a substitute for
tlwindows"

Figure 5. Multiple viewports

REAL XCOORD, YCOORD
c'
C-- Insert code here to calculate XCOORD and YCOORD, see
C-- Section foobarjunk for more details.
C

CALL KVPORT(XCOORD*.5, YCOORD*.5,
$ (XCOORD+l.) *.5, (YCOORD+1.) *.5)

CALL KSPACE(O.O, 0.0, 2.0, 2.0)
C

CALL KMOVE(O.O, 0.0)
CALL KCONT(l.O, 1.0)

produces the output shown in Figure 6.

Figure 6. Combined vport and space transformations

116

The complete code showing the use of the KXGRI D software to perform the decomposition
calculations is shown in Section 7. Further examples of the use of these calls are discussed
in Section 6.l2 3 Starting, Stopping and Flushing

One of the advantages of the simple graphical model provided by Plotix is that there is only
a single function call required to setup the system (KOPENP) and a single call (KCLOSP)
to shut it down. There are, however, some complications due to the parallel nature of the
system.

The routine that starts plotting, KOPENP, has two arguments, a buffer and a size. Graphical
commands are placed in this buffer until flushed by the user application. This makes
parallel graphics more efficient by bundling up several calls and issuing them at once rather
than sending many small messages for each graphical command as it comes. On the other
hand it introduces "flushing" commands that are rather unfamiliar and unnatural in the
sequential computing world. These commands are described in some detail later in this
section.

After processing the arguments given to it KOPENP returns a status value which indicates
how well the system has coped. Positive values mean that plotting can now continue while
negative values indicate some catastrophic error such as being unable to access a particular
device. is a good idea to always check the value returned and STOP if something is amiss.

After plotting is completed the single call KCLOSP suffices to tum off any plotting systems.
Note that this command only turns off the graphics device - it makes no output appear. The
user is responsible for making sure that all graphical objects have been flushed to the
display surface before calling KCLOSP.

The following two routines are shown in the following example. Note that the return status
from KOPENP is checked and processing stops if something is wrong. This code is a good
prototype for anything dealing with the Plotix devices.

C
C-- Simple PLOTIX code showing overall program
C-- structure.
C

PROGRAM PLXTST
INTEGER GBUFFR(2048)

C
C-- Setup Express.
C

CALL KXINIT
C
C-- Initialize graphics using 8 Kbyte buffer.
C

ISTAT = KOPENP(GBUFFR, 8192)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'ERROR: Failed to start up graphics'

177

The arguments to
openpl

A skeleton Plotix
program

Buffering modes
and graphical
output

Why is output
buffered?

The relation
between the
buffering modes of
Cubix and Plotix

STOP
ENDIF

c
c-- Application code using any graphics primitives
c-- and flushing data to display at appropriate times.
C

c
C-- Application completed; call closepl to turn off
C-- device.
C

CALL KCLOSP
STOP
END

Having opened up the graphical system one may now use any of the Plotix functions. There
is, however, a significant departure from conventional graphics on a sequential computer
in that output is "buffered"" This means that as you draw objects nothing actually appears
on the display surface until one of the three "flush" commands is executed. This is done for
reasons of efficiency. Parallel computers typically have fairly low I/O rates - especially
when compared with their large computing power and so it is a waste to send out graphics
commands a few at a time - instead they are stored up in an internal buffer and then emitted
when the user decides.

The three "flush" commands follow closely the I/O modes of Cubix about which details
are given in the accompanying manual - "Programming Parallel Computers Without
Programming Hosts". This document should be consulted as the major reference for the
following discussion.

The three modes correspond roughly to the following situations

1. Each node has been drawing the same image - either a menu or an outline
which is most easily done by all the nodes together. Only one copy of the
resulting picture should actually be drawn on the display.

2. Each. processor has been working on its own piece of the image and some
natural synchronization point occurs at which it is convenient to update·the
display surface.

3. Each processor is working completely independently and needs to update
tbedisplay at unpredictable times.

These· three modes are called "single-mode", "multi-mode" and "asynchronous mode"
respectively after the corresponding concepts in Cubix I/O and each has its own "flush"
command with its own constraints.

1. KSENDP - Called in all processors at once this takes a single copy of the
output image and flushes it to the display surface.

2. KUSEND - Called in all processors at once this takes the graphical buffer

178

from each node in tum and flushes it to the display surface. The individual
nodes' images appear in order of increasing processor number.

3. KASEND - Called at any time in any processor this command flushes the
graphics buffer from a particular node to the output device.

Notice the correspondence between the three function calls and their usage as defined in
the previous paragraph. The frrst two calls must be made "loosely synchronously" (Defined
in the Cubix manual previously mentioned.) while the last can occur whenever required.

The three routines just described empty the internal graphics buffer on the nodes and make
the display surface "current" in computer graphics jargon - i.e., it reflects exactly what you
told it to.

In addition to the asynchronous flushing command, KASEND, other commands are
available which have no synchronization constraints; KAOPEN, KACLOS, KAERAS and
KAGIN. The frrst three of these perform the same functions as their similarly named
counterparts - Le., opening, closing and erasing the display system respectively. The last
performs graphical input and will be described in the next section.

A question that remains is the size of the graphics buffer. We have found 8 Kbytes to be
sufficient for most purposes. Occasionally this will be insufficient in cases where it is either
inconvenient or impossible to call one of the flushing commands frequently enough.
Alternatively the user may be able to call these commands sufficiently often that an 8 Kbyte
buffer is wasteful and the size should be reduced. In order to diagnose these cases the
function KPLOTH is provided. Called with no arguments this function merely returns the
"high water mark" from the graphics buffer - i.e., the maximum usage to have occurred
between any pair of flushing commands. Using this function the user is able to "tune" the
size of the graphics buffer to an appropriate size.

For compatibility with the parallel implementation the calls KSENDP, KUSEND, KASEND

and KPLOTH are available in the sequential Plotix libraries although they are merely stubs;
the three flushing functions are identical and KPLOTH returns O. (NOTE: It is still
recommended that users make periodic calls to the flushing functions since this both
simplifies the transition between sequential and parallel codes and also ensures that
flushing is carried out on devices which need it even at the sequential level- X-Windows
is a good example!)

While discussing the commands which actually draw things on the display one should
discuss the support provided for different output devices within the Plotix model. By
default all graphical data is sent to the "console" device for processing and display. This
device is nonnally the one at which you executed the original cubix command that loaded
and executed your program. In certain cases, however, is may be beneficial to have an
alternate scheme; special hardware systems or multiple output devices are good reasons.

In Plotix this is supported through the KD I SND subroutine. At any time one may alter the
destination of further graphical output by selecting a new processor number in a call to
KDISND. Further output will be sent to this device which is assumed to be running a
suitable server process. The details of this procedure are contained in the manual "Using
Express on systems with multiple hosts".

179

Synchronization
constraints

Totally
asynchronous
operation

The size ofthe
graphics buffer

The needfor
sendplot in
sequential
programs

Using alternate
display devices

It is important to note that different nodes are quite at liberty to flush their output to
different places although they must do so with the KASEND function to prevent deadlock.
This enables a further degree ofparallel processing useful when one considers the typically
small bandwidth ofmost machines in talking to the "real world". It is quite possible to build
a system with multiple graphical devices to enhance throughput of displayed dataG

l2 4 Graphical Input
The area of graphical input is one of great complexity in most systems. Plotixcircumvents
this difficulty by providing only two input functions KGIN an KAGIN. Both correspond to
what most systems call locator input - i.e.. , you get a cross hair cursor to move around and
eventually you click on somebutton/key and the call completes, returning appropriate
infonnation to you.

To see that the practice is as simple as tbeaboveJdescription consider the following sample
code.

The PJotix input
model ... gin

c
C-- Sample code illustrating the "KGIN" function.
C

ISTAT = KGIN(KEY, X, Y)
IF(ISTAT .LT.) THEN

WRITE(6,*) 'No input device available'
STOP

ENDIF
c
C-- Process X and Y coordinates.
C

Using the gin
fun.ction to identify
processors

The three parameters to KGIN are values which are returned ·by the call. The frrst is an
indication of which key or mouse button was pressed to terminate the call. It's exact
interpretation depends upon the particular device in use and details can be found in
Section 9. The second and third parameters will contain the x and y coordinates of the
selected point in the user coordinate system - Le., the one set up by the most recent call to
KSPACE. The return value from. KGIN is rather important. If the graphics device in use
cannotperfonn input functions (e.g., PostScript or other hardcopy devices) then -1 is
return,ed.. Otherwise the return value is 0 or 1 depending on whether the selected point is
within the window of.· the processor making the call. Consider the situation depicted in
Figure 5 where each processor was responsible for·a quanerofthe screen and·assume the
user selects the point shown in Figure 7.

Then the return value from the call to KGIN would be zero in all but the processor which
has the top left region which would find the value I. This feature is .extremely useful in
highly interactive situations where individual processors need to be indicated by the user.

A final point in connection with input is that the KGIN function must be called loosely
synchronously in all nodes. This is really a benefit rather than a restriction since

180

Cursor
Position

Figure 7. Effect of Processor Decomposition on Input

asynchronous calls to an input function are difficult to handle - it is tricky to keep track of
which processor wants you to do what, and when! (If the need for an asynchronous input
request really exists the KAGIN function is available - it is called just the same way as
KGIN and returns the same results, but without any synchronization constraints.)

~ 5 High Level Functionality • Contouring, Clipping, etc.

One of the higher level packages that have currently been added to the Plotix system is a
contouring package. This system operates at two levels; a simple user interface that allows
contouring of arbitrary functions on rectangular regions and a low level interface that
allows contouring on arbitrary shaped regions. The latter interface is useful, for example,
in contouring functions on spheres and is described in detail in Section 8.

The simple contouring package is accessed through the system call KCNTOR which has the
calling sequence

CALL KCNTOR(FUNC,GX,GY, LEVMIN,LEVMAX, NLEVEL, PANELS)
REAL FUNC, LEVMIN, LEVMAX
INTEGER GX, GY, NLEVEL, PANELS
EXTERNAL FUNC

The [rrst argument is a pointer to a function that actually returns the values to be contoured.
It will be called for each pair of integers I, J in the region O<I~GX and O<J~GY - i.e. on
a rectangular region of size GX by GY. This interface differs from others in common use
in that the user supplies a function to the contouring program rather than merely an array
of values. This option seems more flexible though at the cost of extra CPU time.

Overall NLEVEL contours will be drawn at equally spaced intervals. The arguments
LEVMIN and LEVMAX denote the minimum and maximum contouring levels to be used. (H
the user supplies both LEVMIN and LEVMAX as zero then sensible values will be selected
automatically.) Finally the flag PANELS indicates how to draw the actual contours. If a
non-zero value is chosen then the contour map will be in the fonn of filled regions ofcolor.
Otherwise only the lines separating the contours will be drawn.

181

Contouring a
function on a
rectangular
domain

Clipping

This package is extremely simple. In order to maintain flexibility in all cases it perfonns
NO internode communication. At the boundaries of the processor regions a simple linear
fit is perfonned to approximate the contours as they cross into another processor. Also, for
convenience and generality the contouring function assumes that the user coordinate range
is set to the system default region from zero to one. If this is not the case then the routines
described in Section 8 can be used instead.

Finally note that since this routine uses the multi-mode flushing commands (See section 3.)
it must be called loosely synchronously.

Also available is a two dimensional clipping system. The function KSETCL defines a
rectangular window relative to the user coordinate system against which all line, point,
marker and polygon primitives will be clipped. As an example of this system consider the
following code segment

CALL KSPACE(O.,O.,4., 4.)
CALL KSETCL(l., 1., 3., 3.)

CALL KBOX (0 ., 2., 4., 4., 1 , 1)

CAKK KSENDP

Without the call to KSETCL this code would draw a diamond-shaped polygon across the
screen. After clipping is enabled the result is as shown in Figure 8. The corners of the

Figure 8. Two dimensional clipping

diamond which lie outside the clipping window have been removed leaving an 'octagonal'
shaped region.

Note that all clipping operations are perfonned in parallel resulting in a system which has
rather less overhead than traditional clipping systems.

Currently under development is a three-dimensional modeling package for parallel
applications. Hidden line removal is done by means of the Painter's algorithm. We expect
to make this system available with a future release of Plotix.

182

Plotix and colors

Extending the basic
color map

t-;1 6 Colors
M Plotixruns on many different devices with different capabilities, so difficult questions arise

when, for example, a monochrome device is asked to draw a red line. We have tried to
address this problem as follows. Each device is either color or monochrome. When Plotix
is started a color map is in place which is different for lines and for filled polygons. For a
monochrome device there are two line colors, black and white, and 8 shades of grey, which
are implemented by half-toning. For a color device there are 8 line colors which are the
same as the 8 fill colors, these being white, black, red, green, blue, cyan, magenta and
yellow. Color numbers outside this range are interpreted modulo 8.

Two functions are supplied to modify this simple color map; KGREYS and KRAINB. An
example of their use is:

CALL KGREYS(9, 40)
CALL KRAINB(41, 104)

which has the following effect

Color Device Color indices from 0 to 8 are as before; the eight standard colors.
Indices from 9 to 40 now create a smoothly varying greyscale from
white (9) to black (40). Colors in the range from 41 to 104 produce
smoothly varying hue with full saturation and full value. The
KRAINB effect is periodic, starting with red, through magenta, blue,
yellow, green, cyan, and back to red.

Mono Device Color indices from 0 to 8 are as before and the KGREYS call
functions exactly as in the color case. The call to KRAINB is treated
as another call to KGREYS.

These functions change both the line colors and fill colors in the same way.

In addition to these 'nonnal' colors, Plotix provides several hatch patterns, which can be Cross-hatching
accessed by using negative color indices. These appear the same on both color and
monochrome devices.

The following code is part of that required to draw shaded three dimensional objects. (We
assume that several externally declared objects are available containing arrays of
coordinates, etc.

SUBROUTINE RENDER (NPOLYS, NVERTS, XS, YS)
INTEGER NPOLYS, NVERTS(*)
REAL XS (6, 100), YS (6,100)

c
PARAMETER (IGSTRT=9, IGEND=40)

c
REAL SHADE
INTEGER POLYGON, VERTEX

c
CALL KGREYS(IGSTRT, IGEND)

c

183

llardware
dependent
"properties" canbe
manipulatedvt
Plotixcommands

DO 10 POLYGON=l,NPOLYS
c
c-- Use shading model to calculate shade
c-- between 0 and 1
C

SHADE = ••••••••••
c
C-- Draw the polygon in the correct shade of grey. */
C

rCOL = SHADE * (IGEND-IGSTRT) + IGSTRT
CALL KINITP(ICOL, 0)
DO 20 VERTEX=l,NVERTS(POLYGON)

X = XS(VERTEX, POLYGON)
Y = YS(VERTEX, POLYGON)
CALL KPANLP(X, Y)

20 CONTINUE
CALL KENDPA

10 CONTINUE

l2 7 Hardware Dependencies

No graphics package can offer truly "device independent" output because the capabilities
of output devices vary so much. The .simple graphical model provided by Plotix is an
advantage in this regard since its capabilities can usually be implemented in full on most

Simple systems are devices. Despite this, however, there will be times when the programmer wishes to know
easy to implement what sort of device is in use or wishes to take advantage of a known hardware feature in a

non-portable way.

To facillitate this kind of behavior Plotix provides two functions: KPXGOP and KPXSOP
whose behavior depends entirely on thehardwarecurently in use.

For each potential output device Plotix identifies a set of properties which can be
manipulated with these two routines. These properties are identified by name through a
character string passed to the routine. If the name is recongized for the particular device in
use a parameter is. either set orretumed to the user and the routine returns O.If.the name is
not one associated with the current output device nothing is changed and. the the routine
ret-urns -1.

To make this a little more definite let us consider the elementary problem of drawing
"distinct" lines. On a color display we might try.to do this by using the KCOLORroutine to
switch between one of several colors. On a monochrome display, or a color display with
too few colors for our purpose, we might instead use the KLINMD routine to display the
lines in a different linestyle. One solution to this problem would be to "hardwire" into the

Drawing distinct application which devices are to be used and set some appropriate switches. An alternative
lines is shown below:

SUBROUTINE INIGPH(PBUF, PSIZ, NCOLOR)

184

INTEGER PBUF(*), PSIZ, NCOLOR
CHARACTER*80 NeOLS
PARAMETER(NCOLS='nlcolors')

C
ISTAT = KOPENP(PBUF, PSIZ)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'Failed to start graphics'
RETURN

ENDIF
C

ISTAT = KPXGOP(NCOLS, NCOLOR)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'No data, assumimng monochrome'
NCOLOR = 2

ENDIF
RETURN
END

This code might be used to start up Plotix. As well as calling the normal KOPENP function
it attempts to find the number of supported line colors using the nlcolors property. Note
that we take care to deal correctly with the case when this property is not defined for our
current device by making the defensive assumption that we are dealing with a monochrome
device. If the property is defined the variable NeOLS will be set to the number of supported
line colors which can later be used to make a decision about calling KCOLOR or KLINMD.

It is important to note that the call to KPXGOP comes after the call to KOPENP. This is
because many output devices must be initialized before detennining the number of
supported colors.

In a similar way KPXSOP may be used to set certain operational parameters. One
particularly important issue in modem "windowing" systems concerns the repainting of the
window when resized or uncovered by the user. These types of system typically require a
re-paint procedure. If your application can supply such a thing you can tell certain Plotix
implementations to use it by calling KPXSOP with the redraw property as shown in the
next example.

SUBROUTINE INIGPH(PBUF, PSIZ)
INTEGER PBUF(*), PSIZ
EXTERNAL IPAINT
CHARACTER*80 REDRAW
PARAMETER (REDRAW='redraw')

c
ISTAT = KPXSOP(REDRAW, IPAINT)
ISTAT = KOPENP(PBUF, PSIZ)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'Failed to start graphics'
RETURN

185

Normally
getplxopt
follows openpl

Re-painting in
windowing
systems.

Using KXGRJD
wilh Plotix

ENDIF
RETURN
END

Normally Note that this case differs from the previous one in that we call KPXSOP before KOPENP 0

setplxopt This is again typical - the parameters we are setting may have some effect on the way in
precedes openpl which the Plotixdevice is initialized. This represents the only exception to the role which

says that the flrst call to any P/otix function should be a call to KOPENP.

It is important to note that the type of the variable passed to the KPXGOP and KPXSOP
Variable types routines varies according to its use. In the fIrSt example we passed an INTEGER to
passed to KPXGOPwhile the second passed a pointer to a function to,KPXSOP. Other properties may
getplxopt and require othercombinations. The list of recognzied properties and the types of the associated
setplx,opt parameters are shown in Section 10 wberedevice dependencies are discussed for each

output device in turn.

i.:JI1 8 Example Programs

M 8.1 The Interaction between Plotix and the KXGRID tools

As 'an example of code typically ·found in Plotix programs we present the source code
which generates the output shown in Figure 6. To make the· code flexible we make use of
the KXGRID tools from Express to automatically decompose the actual number of
processors to our two-dimensional display surface. This allows us to run the program on
any number of processors without the need to recompile.

c
C-- ParaSoft Corporation: PLOTIX demonstration code.
C

C-- Demonstrate simple usage of PLOTIX primitives and the
c-- interaction with the data decomposition tools
c-- available in EXPRESS.
C

PROGRAM PLXTST
c

INTEGER GBUFFR(2048)
INTEGERNDDATA(4)
INTEGER NPROCS(2)
INTEGER RECNUM(2)
REAL XC, YO, Xl, Yl

c
C-- Set up Express
C

CALL KXINIT
c
C-- Attempt to initialize the graphics system.
C

186

ISTAT = KOPENP(GBUFFR, 8192)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'Failed to initialize graphics'
STOP

ENDIF
c
C-- Get the run-time information about the number of
C-- processors that we're using.
C

CALL KXPARA(NDDATA)
C

C-- Divide up the processors more or less evenly between
C-- the X and Y directions.
C

CALL KXGDSP(NDDATA(2) , 2, NPROCS)
C
C-- Now use the exgrid routines to decompose a two
C-- imensional mesh of nprocs[O] by nprocs[lJ nodes onto
c-- the underlying processor topology.
C

CALL KXGDIN(2, NPROCS)
CALL KXGDCO(NDDATA(l) , RECNUM)

C

C-- Now we know which processor we are in the two-D
C-- decomposition get the corresponding region of the
C-- screen for ourselves.
C

XO = RECNUM(l) / FLOAT(NPROCS(l»
YO = RECNUM(2) / FLOAT(NPROCS(2»
Xl = XO + 1.0/FLOAT(NPROCS(1»
Yl = YO + 1.0/FLOAT(NPROCS(2»
CALL KVPORT(XO, YO, Xl, Yl)
CALL KSPACE(O.O, 0.0, 2.0, 2.0)

C
C-- Finally draw some lines on the page this
C-- picture is supposed to end up looking like figure 6.
C

CALL KMOVE(O.O, 0.0)
CALL KCONT(1.0, 1.0)
CALL KUSEND

C
C-- NOTE: each node sends a different bit of picture.
C

CALL KCLOSP
STOP

~7

END

To run this code we select an output device and use the cubix command as follows

cubix -n4 -Tega noddy

This command executes the program noddy on 4 nodes sending graphics to the IBM
Enhanced Graphics Adapter.

8.2 Other example programs.

Plotixis supplied with a set ofexample programs for which thee source is available. These
are distributed in the plotix subdirectory of the main Express examples directory. In
this directory you should be able to find makefiles or similar which will enable you to
compile and run these demonstrations. Each is designed to illustrate a particular feature of
the Plotix system and you are welcome to use them as the basis for your own software
systems. Instructions for running the programs can be found on·line in the README files in
the same·directory.

The codes are

coord Demonstrates the use of the KVPORT, KSPACE and KASPEC
commands as well as the text and symbol drawing routines.

contour Demonstrates the use of the elementary contouring package.

laplace A large example which solves a partial differential equation
(Laplace's equation) and then displays the result as a contour plot.
As well as demonstrating the power of Plotix this program is a good
example of Cubix. Laplace was written by Roy Williams ofCaltech.

~.9 The Low Level Contouring System

The contouring package described in sectionS is actually a simple instance of a much more
sophisticated contouring subsystem. In general the high level function KeNTOR should be
sufficient for most applications. Occasionally, however, one wishes to contour functions

Contouring in defined on other than rectangular regions - a good example is the contouring of a function
alternative defined in polar coordinates;. one might define an array, VALUES (r I theta) , in which
coordinate systems the r and theta indices correspond to radius and angle. Then the standard function,

KCNTOR, would contour and display this function in a rectangular coordinate system
whereas we actually want to display it in the real polar coordinate system. This can be done
with the functions KINITL and KGETPT.

The KGETPT function is the heart of the contouring system. Called repeatedly it returns the
next point along the current contour. Note that this is not su'ch a trivial operation - various
messy cases arise

• The contour lines of a given height might not be in one piece. There might, for
example, be ten contour lines for height 150.0 which have to be drawn
independently.

• What should be done on the boundary of the region to be contoured. In some

188

STAT = 2

STAT = 1

cases it is sufficient to merely generate a line from the top of the display to the
bottom (for example) but this will not do if we are really interested in plotting
in polar coordinates since we should draw a circle instead.

In general, the method of use of these low level functions is to call KINITL to start off a
new contour and then call KGETPT repeatedly, plotting the points returned, until an
indication is given that there are no more points to draw at this contour level.

The calls to KGETPT all take the fonn

STAT = KGETPT(X, Y)

in which X and Yare returned as the (X, Y) coordinates of the next point along the contour.
The return value is extremely important and indicates the following conditions

STAT = 0 There are no more points to plot along this contour level. Ignore the
values of X and Y.

The point (X, Y) is a new point on the current contour line.

The particular piece of the contour map for this level is fmished.
Ignore the values (X, Y) just found and call KGETPT again. If the
next call returns 1 then it is the frrst point of another disjoint piece of
the contour for this level. Otherwise it will return 0 and there are no
more points in this contour level.

The KINITL function is responsible for initializing each level to be contoured

SUBORUTINE KINITL(FUNC, NX, NY, LEVEL, PANELS)

The arguments are similar to those of the KCNTOR function. The first is a pointer to a
function that returns a double. It is the function that will be contoured. The next two
arguments give the range of values for which the function will be called. The LEVEL
argument specifies the height at which this contour is to be calculated. The PANELS
argument is somewhat different from that used in KCNTOR because of the various types of
output which might be used. The three allowed values have the following meanings.

PANELS = 0 Designed for simple line plotting. All interior points are returned and
the surrounding box is treated as a real rectangle and only its corner
points are returned.

PANELS 1 Designed for polygonal flliing. The plot is cut into strips which are
contoured separately. The strips are calculated so that the resulting
polygonal regions are simply connected allowing hardware polygon
fill algorithms to be applied. The bounding box is still assumed to be
rectangular and only its vertices are returned.

PANELS = 2 Designed for cases where the underlying surface is not rectangular.
While basically the same as in case 1 the bounding box is also
discretized and points are returned all along its edge. This allows the
box surrounding the array (which is logically a rectangle) to be
mapped into a circle if we are dealing with polar coordinates.

In order to demonstrate the use of these routines we present a sketch of a code that would

189

Contouring in
polar coordinates

actually contour an array of polar coordinates. We assume that the array
POLARS (10 , 90) contains values of a function defined in the first quadrant of a polar
coordinate system. The first index refers to the radial coordinate and the second to the
angular variable .. we define the function at every degree in this quadrant. For simplicity we
only show code to draw the contour corresponding. to the function value 3. Other contours
can be added to the image with a simple loop. Finally we assume that we wish to contour
the function with filled polygons.

C
C-- Example use of low level contouring functions to
c-- display data defined in polar coordinates ...• sketch
C-- code only
C

SUBROUTINE RADIAL
C

REAL ZFUNC, LEVEL
REAL R, THETA, X, Y
INTEGER PANELS, RRANGE, ARANGE
INTEGER STATUS, START
EXTERNAL ZFUNC
DATA LEVEL/3.D/
DATA PANELS/2/, RRANGE/IO/, ARANGE/901, START/11

C

CALL KINITL(ZFUNC, RRANGE, ARANGE, LEVEL, PANELS)
C

10 STATUS = KGETPT(R, THETA)
IF(STATUS .NE. 0) THEN

c
C-- Check to see if the nerw point is on the old countour.
C

IF{STATUS .EQ. 1) THEN
IF (STA.RT) THEN

CALL KINITP(COLOR, 1)
START = 0

ENDIF
X = R*SIN·(3.1·4*THETA/IBO.)
Y = R*COS(3.14*THETA/180.)
CALL KPANLP(X,Y)

C
C-- Terminate current contour piece and set flag to start
C-- again.
C

ELSE IF(STATUS .EQ. 2) THEN
CALL KENDPA
START = 1

ENDIF

190

GOTO 10
ENDIF
RETURN
END

Note that the only part of this code relevant to polar coordinates is the place where the
"warping" takes place and we convert the value returned by KGETPT, which actually lies
in the (r, 9) coordinate system into an (x,y) point suitable for use in KPANLP.

~ 10 Output Device Characteristics

This section describes the particular idiosyncracies of the various output devices supported
under Plotix as well as the appropriate switch to give in the cubix command line to send Specifying output
graphics to the requested device. These switches are all of the fonn "-Tname" where the devices at runtime
"name" is some mnemonic for the required device. Thus, for instance, if we have a program
that would nonnally be executed with the command line

cubix -n4 program

then one can have it perform graphics on an IBM EGA with the command

cubix -n4 -Tega program

Each section that follows includes an indication of the appropriate cubix switch to invoke
the necessary graphics server.

10.1 mM PC and compatibles, Borland Graphics Interface - "-Tbgi"

This version of the system is built around the standard device drivers supplied in the
Borland graphics package supplied with the various Turbo languages. It supports a wide
variety ofPe class systems and graphics cards in a reasonably device-independent manner.
All of the features of Plotix are supported although we have occasionally observed failures
to auto-detect non MicroSoft mouse systems. If you seem to be having problems in this area Problems with the
unload the mouse driver and use the keyboard interface as explained in the previous section mouse
on the EGA monitor.

Properties -Tbgi

Name get/set type Description

nlcolors 9 INTEGER*4 number of supported
line colors

nlstyles 9 INTEGER*4 number of supported
linestyles

10.2 mM Enhanced Graphics Adapter - "-Tega"

This device is supported under XENIX and is obtained by specifying '-Tega' on the
cubix command line. Thus to execute the program toyland on 4 nodes with graphical
output going to the EGA one might use

191

Using the gin
commandwithouta
mouse

Resetlingthe
screen. ofter
plotting

cubix -n4 -Tega toyland

After loading the node program the screen should be blanked and graphical output should
appear on the display. Tenninal I/O to units 5 and 6 (unless redirected to ftIes on the
command line) will appear ina special four line window at the bottom of the screen.

When input is requested with the KGIN command the cursor should appear in the upper left
comer ·of the screen. If you have a mouse then it can be used to move the cursor around.
Clicking on any of the mouse buttons terminates the KGIN operation. In the absence of a
mouse the cursor can be moved with the arrow keys on the right of the keyboard. Two
speeds are available and one toggles between fast and slow cursor motion by hitting the
'~Home" key. Striking any key other than "Home" and the arrow keys tenninates the input
request .. the key used is returned as the frrst argument to the KG IN call.

Whenplotting is completed or the application finishes the screen should revert to its normal
appearance - if you called KCLOSP. In certaincircumstaDces,however, this may not be the
case. Under XENIX one types

norm

Notice that no characters will appear on the screen while you are typing these commands
you have to keep on trying until you finally get it right and the screen goes back to its
nonna! state. The XENIX command has the unfOl1unate side effect of unsetting several
tenninalcharacteristics - in particular the delete and CfRL-C keys. As a last resort logging
off and on again will clear all problems.

Properties

Name

nlcolors

nlstyles

get/set type

9 INTEGER*4

9 INTEGER*4

-Tega

Description

number of supported
line colors

number of supported
linestyles

Selecting color or
monochrome
output

10.3 SUN system, suntools environment • "-Tsun"

This system is built upon the SUN implementation of the proposed COl standard.. Each call
to openpl creates a new windowundersuntools in which graphical operations are
performed. The selection of color or monochrome output is made on the basis of the
MONITOR variable in the Expresscustomization file. See the chapteronexcustom for
more details

On monochrome displays only two colors are supported by default although eight grey
scales are available through the KGREYS function. Eight hatch patterns are available with
indices -1 thru -8.

On color displays the basic eight colors are supported by default and the full range of colors
can be accessed with the KGREYS and KRAINB functions. Note that remapping the higher

192

color indices has a strange effects on the basic suntools background.

Properties -Tsun

Name get/set type Description

nlcolors 9 INTEGER*4 number of supported
line colors

nlstyles 9 INTEGER*4 number of supported
linestyles

redraw S pointer to function Function called to re-
paint the window when
re-sized by user.

width s INTEGER*4 Window width

height S INTEGER*4 Window height

10.4 SUN system, X\vindo\vs • "-TX"

This version of Plotix is built upon the SUN implementation of MIT's XWindows. Each
call to openpl creates a new window in which graphical operations are perfonned.

On monochrome displays only two colors are supported by default although eight grey
scales are available through the KGREYS function. Eight hatch patterns are available with
indices -1 thru -8.

On color displays the basic eight colors are supported by default and the full range ofcolors
can be accessed with the KGREYS and KRAINB functions.

Properties -TX

Name get/set type Description

nlcolors 9 INTEGER*4 number of supported
line colors

nlstyles 9 INTEGER*4 number of supported
linestyles

redraw S pointer to function Function called to re-
paint the window when
re-sized by user.

width S INTEGER*4 Window width

height S INTEGER*4 Window height

193

10.5 PostScript -"-Tps"

This option generates standard PostScript suitable for printing on laser printers and similar.
Each invocation of the program creates a single ASCII file called plot. ps which contains
the image. It is important to note that this means that you must be careful to rename files
between runs or successive pro-grams will overwrite earlier files.

The color model used is similar to that described in the SUN sections above - 256 colors
are supported with the standard calls. On simple monochrome laser printers these will
appear in various shades of grey.

The input function "KG I N" returns -1 whenever invoked.

Properties

Name get/set type

nlcolors 9 INTEGER*4

nlstyles 9 INTEGER*4

landscape S none

-Tps
Description

number of supported
line colors

number of supported
linestyles

Request "landscape"
paper orientation.

10.6 AXIS NCUBE systems - "-Trt", and "-Tnat"

These systems are provided for NCUBE machines. -Trt selects the "Real Time Graphics"
device • the parallel graphics interface to the NCUBE/IO systems and -Tnat the PC
NCUBE graphics system.

In each case the implementation of Plotix is complete and supports the full color model.
Only one text size is available~ however, and it has the disadvantage of overwriting the
underlying graphics.

Properties

Name

nlcolors

nlstyles

geuset type

9 INTEGER*4

9 INTEGER*4

·Trt,·Tnat
Description

number of supported
line colors

number of supported
linestyles

10.7 Macintosh systems - no switch

Since all Macintosh machines are equipped with graphical displays and "mice" no special
switches are required to use them under Plotix. All features are supported both
monochrome or black and white monitors except that the KG IN function can only be

194

triggered from the mouse - no keyboard triggers are enabled. As a result the value returned
in the "button" parameter is meaningless.

Properties "Macintosh"
Name get/set type Description

nlcolors 9 INTEGER*4 number of supported
line colors

nlstyles 9 INTEGER*4 number of supported
linestyles

195

Performance Analysis

PM: A profiling. system for parallel programs

W 1 Introduction

M The most obvious goal of parallel computing is the acceleration of algorithms that execute
too slowly on conventional machines. While other goals, such as fault tolerance, are also
important most applications are ported to parallel machines with one aim in mind - running
rings around expensive supercomputers.

Since this goal holds such a central position in the realm of parallel processing it is
important that users be able to rapidly and effectively analyze their algorithms'
perfonnance. Even in cases where absolute speed is not the most important factor it is
crucial to a thorough understanding of an algorithm to see the strengths and weaknesses of
particular parallelization scheme. In this way it may be possible to see where bottlenecks
occur and to devise alternative algorithms to avoid such problems.

Profiling parallel programs is, however, not so straightforward as on sequential computers.
In the latter case the only really inlportant piece of infonnation is "How long am I spending
in routine XXX ?" and "Which routines should I speed up in order to accelerate the code
most 1". The style of profiling most often used in this context is a simple printout ofelapsed
times in each routine and, possibly, the number of times each was called and by whom.
Anned with this infonnation one can attempt to speed-up certain areas of the algorithm
which are known to be heavily used. Alternatively, of course, one might be able to see that
there are no real bottlenecks and that, therefore, the code is running as fast as it possibly
can on the given hardware.

Parallel programs are trickier because more factors arise which affect their perfonnance.
The most obvious, for a message-passing architecture, is the amount of time spent sending
and receiving messages. One of the most quoted parameters of such machines is the
"Efficiency" or "Overhead" which basically expresses how many times faster N processors
are than 1. Once the parameter is known one might want to break it down further into times
during which I/O is occurring, times when intennediate results are being accumulated
globally and times when processors are communicating boundary values, for example.

A final factor which maybe extremely important in parallel algorithm development is "load
balance". This sort of problenl can take many fonns but is most clearly characterized by
differences in execution speed of the different nodes in the parallel machine. Sometimes
this can be caused because the workload is not evenly distributed between processors
resulting in one node working exceptionally hard and correspondingly slowly. Many times
this will slow down the other processors who are waiting to communicate with the slow
node degrading the performance of the machine as a whole. Other problems may be more
algorithmic in nature - a particular scheme for parallelizing a program may have some
inherent defects which make some processors run more slowly than others. Detecting and
correcting this sort of problem requires an ability to observe activities in several processors
simultaneously at many levels of detail.

The ParaSoftprofiling utilities are designed with just these goals in mind. The three tools
each serve one of the categories described above.

• The "execution profiler" monitors time spent in individual routines.

• The "communication profiler" assesses time spent in communication and 110.

197

The importance of
performance
analysis in parallel
processing

Sequential vs.
parallel profiling

Factors affecting
parallel program
performance

The profiling tools

Problems with
profiling in real
time

The effect of
programming
modelsonprofiling
systems

• The "event profiler" shows the interactions between processors and allows user
specified "events" to be monitored.

Each is kept separate so that the user is free to concentrate on particular problems as they
arise and can be selective in the amount of infonnation available - it is one thing to provide
detailed analysis tools but quite another to present the user with 200 Megabytes of data to
analyze in order ·to understand the problems. As a result the majority of the tools have
graphical interfaces. Menu driven utilities allow the presentation of accumulated data in
simple graphical form under the complete control of the user. Optionally data can be
presented in both hardcopy graphical and tabular fonn for more detailed analysis.

As mentioned in the previous paragraph one has to be rather selective in the data acquired
for analysis. One of the more pressing needs for this. ability is the fact that perfonnance
tools which significantly alter the execution of the target program are of little use.
Essentially one ends up analyzing the profiling system rather than the user application! For
this reason the tools described in this manual are of the "post mortem" type - that is, data is
accumulated during the execution of the user program and then analyzed off-line, after
execution has completed. This is done for two reasons

• I/O in parallel computing systems in notoriously slow - especially when
conlpared to the high computing power of typical machines. Even worse, I/O in
one processor causes other processors to be affected in routing messages to the
outside world. As a result even limited amounts of real-time I/O can cause
significant modifications in program execution which completely invalidate the
profiling procedure.

• Displaying profiling data "real-time" looks quite attractive but rapidly
overwhelms the human mind - particularly when more than a handful of
processors are involved. Due to the constraints mentioned above it is difficult to
present enough context to render a wildly varying display meaningfuL
Furthermore, saving the data on some physical medium for later use introduces
a sequential bottleneck affecting all processors.

The profiler is built around ParaSoft's interactive graphical system Plotixand hence
supports all the same devices as that system. Among those included are; Tektronix 4010
and 4105, IBM EGA, SunCGI and the various graphical systems offered by NCUBE.
Hardcopy is supported in either Postscript or Hewlett...Packard fonn.

Some mention is made of the Cubix I/O system. This is a feature of ParaSoft's Express
operating system which makes porting sequential codes to parallel computers particularly
easy. For the present purposes, however, the only imponant question is whether :or not your
application is usingCubix. This should be straightforward but if you have any queries
please call us. Having resolved this question different sections of the text and manuals will
apply to your application - the profiler interface is subtly different in the two cases. In this
manual applications which do not use Cubix facilities will be denoted as "Host-Node"
programs.

The rest of this document is arranged as follows; Section 2 discusses the "Execution
Profiler" which perfonns the function of common profiling tools on sequential computer
systems- monitoring of subroutine usage. Section 3 describes the "Communication

198

Profiler", a utility designed to analyze and quantify the time spent communicating,
calculating and performing I/O functions. Section 4 is concerned with the "Event Driven
Profiler". This is a tool which allows the analysis of user specified "events" with particular
emphasis on the interactions between multiple processors and which provides the most
dynamic view of program execution. Each section is divided into several parts which
discuss the instrumentation of user programs, the control of the profiling systems and the
usage of the analysis tools. Section 5 contains a detailed set of example codes
demonstrating the use of the profiling systems.

t2 2 Execution Profiling

This section describes what might alternatively be called "sequential profIling" since the
utilities described are those most familiar in the context of sequential programming. The
goal is to analyze the time spent in the various subroutines and functions that make up an
application. This allows the user to immediately focus attention on the most time
consuming areas which would benefit most by improvement.

The data accumulated enable the user, on a node by node basis, to evaluate the time spent
in each function and also that spent "idle" waiting on some external condition such as
communication with another processor.

2.1 General Profiling Commands

This system works on a statistical principle. Every few milliseconds a system routine runs
which looks at the current instruction being executed in the user application and increments
a counter noting that this particular memory address was in use. In this way one builds up
a histogram of the frequencies of hits in various areas of the program and hence the amount
of time spent in particular routines.

Obviously the technique is not foolproof but if the application executes for a sufficiently
long time to collect a reasonable number of samples then one can be fairly confident that
the results are representative of the true behavior of the algorithm. (If the code only takes a
few milliseconds to run, who cares anyway?). Among the obvious defects in this approach
are possibly sick behavior if the program cycles at a similar rate to the routine which logs
events. In this case one might always catch the program in a routine that actually doesn't
take very long leading to incorrect conclusions - not very likely but possible. A more
irritating problem is that it requires a lot of memory to make up the program histogram.

Despite these deficiencies this style of profiling is standard in most sequential computing
environments and is part of the ParaSoft profiling system. It has the advantage that it's
operation is mostly automatic - little or no change need be made to an existing program in
order to "profile" it. An alternative system, the event driven profiler, is discussed in section
4 which requires more of the user but is probably more reliable in delicate situations.

The two most elementary profiling functions are KXPON and KXPOFF which are used to
enable and disable the profiling system, respectively. This allows the user to maintain fine
control over the regions of the application that are actually analyzed - for example it may
be sensible to turn off the profiler if one section of code is known to be much more heavily
used than any other since one would otherwise be swamped by a vast amount of
infonnation about something already understood.

199

Statistical profiling

Possible pitfalls in
statistical profiling

Setting up the
execution profiler

The heart of the profiling system is provided by the KPROF I function. This tool is based
on the standard UNIX pro f i 1 utility and shares the same arguments

KPROFI(BUFFER, BUFLEN, START,SCALE)

The frrst argument is a pointer to a buffer into which the profiling data will be dumped; the
length of this buffer is the second argument The START argument specifies the lowest
address to be considered in profiling the program. This is most easily discovered by
searching through the "program map" files that are often produced by compilers.

The final argument, SCALE, has a rather obvious meaning but a rather bizarre
interpretation. It is used to specify how many memory addresses to "bin" together. In order
to conserve memory when profiling the system actually builds a histogram of memory
locations and this argument specifies·ho'w wide the histogram bins should be. The method
in which this is done, however, is quite obscure. The simplest way to explain this value is
just to demonstrate how various values work, and then let your imagination take over;

SCALE = 65536 Maps individual addresses into separate bins.

SCALE = 327 68 Maps each pair of instructions together into the data buffer.

SCALE = 1 6384 Maps four instructions together into a single profiling bin.

and so on.

This function does not actually tum the profiling system on; to do this one must use the
KXPON function. A sample code to use this profiling subsystem, therefore, is

C
C-- Sample program demonstrating the setup of the
c-- execution profiling system
C

PROGRAM XPTEST
PARAMTER (ISCALE = 8192)
INTEGER PRBUF(2048)

C
C-- The following is the base address used for profiling.
C-- It should be the name of some function that lives in
C-- low memory and can usuaLly be found from the Linker
C-- m.ap.
C

EXTERNAL F MAIN
C
C-- Set up Express.
C

CALL KXINIT
C

C-- Enable profiling system, and turn it on.
e

CALL KPROFI(PRBUF, 8192, F_MAIN, I SCALE)

100

CALL KXPON
C
C-- Algorithm phase 1., profiler running
C

C
C-- Algorithm phase 2., turn profiler off
C

CALL KXPOFF
C

In this example we choose to profile at aresolution of eight bytes, selected by the value of
the I SCALE macro with an 8 Kbyte buffer. Since the individual bins are 4 bytes this means
that we have a range of 16 Kbytes in total (2048 bins, each with a resolution of 8 memory
addresses). The starting point is selected as the beginning of the function F_MAIN. Since
16 Kbytes is not an awful lot of space for a large application we might expect some misses
- at times the profiler will detect that the program is executing at addresses outside the range
we have covered. These cases do not, however, crash the system but rather get logged into
a special histogram bin with the label "misses". When analyzing the proftle later the
number of"misses" will be reported allowing a good guide to how badly the profiling range
was selected. (For an example see Figure 1)

This interface is not especially clean since it requires either good guesswork in picking the
profiling range or else some time spent looking through a memory map generated by the
compiler or linker. At some future date the system will interact directly with the user
application to figure out a sensible range and call the KPROFI routine automatically.

2.2 Details for Cubix Programs

In addition to the general routines discussed in the previous section users of the Cubix
system have access to additional routines to facilitate the profiling process.

The KXP INQ function may be called to inquire about the runtime status of the -m switch
on the cubix command line. Consider an application which is normally executed with the
cubix command

cubix -n 4 noddy <app.in

In this case the function KXP INQ will return 0 indicating that no appropriate runtime switch
had been set. Modifying this command to

cubix -n 4 -rnx noddy <app.in

causes KXP INQ to return 1. This allows one to have the node application tum the profiling
system on or off according to the setting of a runtime switch - no recompilation or special
input is required. Note that the -m switch comes in several flavors. The 'x' character in the
above invocation is used to specify the "eXecution proftler" - the values'c' and 'e' are also
allowed and perform similar functions for the other two profiling subsystems. Note that the
various options can be combined so that the switch -mxec will also generate a positive

201

llMissing" the
profiling buffer

Enabling the
profiler at runtime

response from KXPINQ since it contains the 'x' character.

The second Gubix function is KXPEND. Called with no arguments this function is
responsible for turning off the profiler, resetting its state and dumping out the profIle data
that has been accumulated to a disk file on the host computer. It must be called
synchronously in all nodes and is typically used at the end of an application in code that
might take the following fonn

c
C-- Interface to execution profiling system -- CUBIX
c-- program.
C

PROGRAM CBXTST
PARAMETER (ISCALE = 8192)
INTEGER PRBUF(2048)

c
C-- The following is the base address used for profiling.
C-- It should be the name of some function that lives in
C-- low memory and can usually be found from the linker
c-- map_
C

EXTERNAL F MAIN
C
c-- Initialize Expre~s.

C
CALL KXINIT

c
C-- Enable profiling system, and turn it on IF -mx
C-- switch given.
C

ISTAT := KXPINQ
IF(ISTAT .NE. 0) THEN

CALL KPROFI(PRBUF, 8192, F_MAIN, ISCALE)
CALL KXPON

ENDIF
c
c-- Application code.
C

c
C-- Application code done. Dump out profile if requested.
C

IF(ISTAT .NE. 0) THEN
CALL KXPEND

ENDIF
STOP

202

END

The KXPEND function creates a file called" xprof. out" in the current directory. This
name is chosen since it is the default for the profiling analysis tool discussed in section 2.4.

2.3 Details for Host-Node Programs

Applications which have user written programs running on the host computer have a
slightly different interface to the mechanics of dumping out data files to the host disk. In
this case two functions are provided; KXPCP for the host computer and KXPELT for the
nodes. The host routine has no arguments and merely serves to read in data from the nodes
and output them in a suitable format to a disk file for later analysis. The node routine,
KXPELT has a single argument which is the name of the file in which data should be placed.

Typical code to use these routines has the following fonn.

1. Host Program

C
C-- Dumping execution profile data to disk file.
C-- Host program.
C

PROGRAM XPHOST
C
C-- Initialize Express, allocate nodes, load programs ...
C

CALL KXINIT

C
C-- Execute application.
C

C
c-- Application finished, dump profile data.
C

CALL KXPCP
STOP
END

2. Node Program

C

C-- Dumping execution profile data to disk
C-- Node program.
C

PROGRAM XPNODE
C

203

Dumping the
profiling data

Dumping the
profiling datafor
analysis

CALL KPROFI(...)
CALL KXPON

c
C-- Node application code.
C

C

C-- Node application 'over, dump profile data.
C

CALL KXPELT(~xprof.out')

STOP
END

Notice that the name chosen for the profile data is the same as in the Cubix case. This is
merely a convenience measure since it allows one to miss out an argument when using the
analysis tool - if the file containing the profile data is "xprof . out" then you don't need
to give it's name!

A final important point is that the KXPCP and KXPELT routines may be called repeatedly
in a single application. The only constraint is that for each call to KXPELT in the nodes
there must be a call to KXPCP in the host computer. Also important is the fact that each call
to KXPELT resets the internal state of the execution profiler and turns it off.

2.4 Analyzing the Execution Profile· xtool

After a file containing profiling data has been collected it is analyzed with the xtool
command. Two arguments must be supplied; the name of the program which is to be
profiled and the nan1e of the file containing the written data. If this latter is" xpro f . out"
then, as advertised in the previous section, you can omit this last argument. A typical
invocation, therefore, is

xtool noddy

The output from this process will consist of several tables similar to that shown in Figure 1.

The infonnation provided by this utility is described below. The index letters refer to the
figure.

A Node identifier. A separate table is presented for thedatafrom>eachnode
and is identified by its processor number.

B Node Utilization. The information hereindicates active and idle time in the
CPU and also the'proportion of "misses" in the profiling histogram. "Idle"
time consists of periods when the CPU is actually idle - such events only
occur when a node is blocked waiting for communication to complete. The
misses quantity provides some means of assessing the success or failure
of the profiling range selected. If a large percentage of the profiling events
missed the selected range then the tabulated data may be a poor
representation of the application perfonnance.

C Subroutine analysis. For each node a table is presented of the twenty

A
Node 0

Computation
Idle
Profiler misses

5675 events
134 events
459 events

(61283.82 milliseconds)
(1450.63 milliseconds)
(4956.70 milliseconds)

Routine

mult
cg
qqonvec
qonvec
sysloop

*** misses ***
cif
cfi
pranf
update
measure
rotmeas

*** idle ***
qqmeas
IpstImak:
rotstrmak:
qqstrmak
observ
nonn
setpar
matpass

Events

1120 +/- 30
790 +/- 12
603 +/- 30

526 +/- 6
500 +/- 2

459 +/- 12
392 +/- 2

390 +/- 12
330 +/- 2

309 +/- 10
300 +/- 2
140 +/- 2
134 +/- 1
102 +/- 5
40 +/-0
34 +/- 0
33 +/- 0
25 +/- 0
23 +/- 0

4 +/- 0
4 +/- 0

Fraction

.179

.126

.096

.084

.080

.073

.063

.062

.053

.049

.048

.022

.021

.016

.006

.005

.005

.004

.004

.001

.001

c

Figure 1. Sample Output from the Execution Profiler

"'busiest" routines based on the number of protilinghits" in that function.
Together with the *** misses *** entry this information selVes to
indicate routines which might benefit from fine-tuning operations.
Occasionally this information might also show up explicit defects in the
parallelization scheme selected.

Depending on compiler support there may also be a field indicating the number of calls to
each function and the mean time of execution for each. If present this data will also be
displayed in the area denoted C in the figure.

205

The
communication
profiler collects
data about
interprocessor
communication

As well as keeping track of the above statistics for each node the following data are
maintained in each node on a function-by-function basis for every entry point into the
communication system

• Number of calls to each individual function.

• Number of errors incurred in each function.

• Distribution of return values from each function. Each function in the
communication system returns a value indicative of the nature of the
communication performed; message length written, message length read,
number of objects broadcast etc.. This allows the user to evaluate the
communication policy of an algorithm - in particular it may be more effective
to bundle up short messages into longer communication packets rather than
sending data piecemeal in short messages.

3.1 General Profiling Commands

The communication profiler is almost completely automated requiring little interaction
from the user. Two routines KCPON and KCPOFF are provided to control the profiler. They
turn the system on and off respectively. This allows complete selectivity as to exactly what
portions of the code are profiled. This can be very important - when using the event-driven
profiler of section 4 it may be important to suppress the recording ofcommunication events
to conserve memory. More will be said about this point in the appropriate section.

206

3.2 Details for Cubix Programs

Applications running under Cubix have a particularly clean interface to the communication
profiler. At run-time one can turn the system on or off using the -m switch on the eubix
command line. This switch is a general purpose facility for controlling the profiling systems
and the particular value of concern in this section is the 'e' subswitch. Consider, for
example, a typical Cubix application which is executed with the command

eubix -d 4 noddy 1.2 6 20 20

If this line is modified to

eubix -me -d 4 noddy 1.2 6 20 20

then the communication profiler is enabled and collection of statistics will be perfonned.
Note that this switch is a simple variant of the -rnx switch introduced in the previous
section for "execution profiling". In fact the two may be combined as -mex to enable both
systems. If the application were executed in the above manner then a [lie eprof. out
would be written in the current directory at completion which contains the profile data.

The above construct is actually implemented in tenns of two functions which are also
available to the user; KCP INQ and KCPEND. The fonner merely queries the host file server
to see if the -me switch were specified on the command line while the second is used to
write out the final communication profile to disk. Either function may be used at any time
from within an application with the caveat that each invocation of KCPEND writes a file
with the name "eprof . out". If it is to be executed multiple times then each version of
the output file should probably be saved under a different name. Note that KCPEND also
turns off the profiler and resets its internal state. This allows further data collection to begin
with a "clean slate".

In the simplest case no modifications need to be made to an existing Cubix program in
order to use the communication profiler. The only change is the addition of the -me switch
at runtime which fires up the system and writes out the data; the other functions are merely
provided for extra control should it be needed.

3.3 Details for Host-Node programs

The interface to the communication profiler for applications that have programs to run on
the host computer is very sinlple. The only difference from the Cubix implementation is
that the user has to coordinate the writing out of the profile to disk using the KCPCP and
KCPELT functions. At any point one can write out the current profile by calling KCPCP in
the host computer and KCPELT in the nodes. KCPCP has no arguments while KCPELT
has one: the name of the file to which data is to be dumped. Note that this is slightly
different from the Cubix implenlentation which always used the same [lie name for the
profile output. Also the profiling system must be explicitly turned on with a call to KCPON.
Note that the KCPELT function turns off the profiler and also resets its data so that further
profiling starts from zero. The prototype code for an application running with a user host
program is as follows;

207

Enabling the
profiler at runtime

1. Host Program

C
C-- Demonstration of host-node interface to routines
c-- which dump out communication profile data.
C-- Host program.
C

PROGRAMCPHOST
INTEGER PGIND
COMMON/XPRESS/NOCARE,NORDER,NONODE,

$ IHOST,IALNOD,IALPRC
CHARACTER*80 DEVICE
PARAMETER (DEVICE='/dev/transputer')

c
c-- Initialize Express, allocate nodes, load programs.
C

CALL KXINIT
PGIND = KXOPEN(DEVICE, 4, NOCARE)
IF(PGIND .LT. 0) THEN

WRITE(6,*) 'Failed to allocate nodes'
STOP

ENDIF
c
C-- Load and execute application.
C

C
C-- Application finished, dump profile data.
C

CALL KCPCP
STOP
END

2. Node Program

c
C-- Demonstration of host-nodeinte~faceto routines for
c---- dumping out communication profile data.
C-- Node program
C

PROGRAM CPNODE
c
C-- Start Express.
C

CALL KXINIT

208

C

C-- Turn on communication profiler.
C

CALL KCPON
c
C-- Node application code.
C

C
C-- Node application over, dump profile data.
C

CALL KCPELT('cprof.out')
STOP
END

Notice that the node code explicitly enables the profiler and has to dump out the [mal data.
We chose the name "cprof . out" for later convenience since this is the default name for
the analysis tools - any other name would be allowed. Also notice that one is completely at
liberty to call KCPELT many times within a node application to dump out profiles from
different parts of the code. The only constraint is that there must be a corresponding call to
KCPCP in the host program for each KCPELT in the nodes.

3.4 Analyzing the Communication Profile • ctool

After program execution has completed one or more files should be left containing the
communication profiles for the application. These are analyzed with the ctool utility. For
the moment we will neglect the graphical interface and simply present a tabular version of
the profile. This is achieved with the command

ctool -p

which expects to find the communication profile in a file called "cprof. out". If the file
was renamed for some reason then one might instead use

ctool -p phasel.dat

to read profiling information fronl a file called "phasel. dat". The result of this
command is a table of the form of Figure 2.

The various fields in this display are summarized as follows

A. A separate section of the table is provided for each node, and is identified
by its processor number.

B. A brief summary of the total times spent calculating, performing I/O and
communicating between processors is provided with times in milliseconds.
Note that basic communication with the host using primitives such as
KXREAD, KXWRIT, etc. is counted as interprocessor communication; only
standard I/O functions such as READ, WRITE, etc. are classed in the I/O
category.

209

The
communication
profiler's data file

Tabular output
with no graphics

A

Node 0
Internode Communication:
I/O communication
Calculation

13855.00
1450.63

240356.04

milliseconds
milliseconds
milliseconds

B

Routine Calls Time Errs 0 1 2 4

exbroadcast 45 371.29 0 0 0 0 0
excombine 2 4.57 0 0 0 0 2
exconcat 2 10.29 0 0 0 0 2
exread 19 5544.57 0 0 0 0 19
exchange 33 44.53 0 0 0 2 0
exwrite 421 219.57 0 12 0 0 3

8 16 32 64

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
29 0 0 0
375 0 8 10

Analyzing the
communication
profile graphically

Figure 2. Sample Communication Profile

c. For each node there is a breakdown of the calls to each of the basic
communication functions. For each function that was called at least once the
number of calls, the total time in that function, and the number of errors
returned by that function are shown. Times are again in" milliseconds.

o The final panel of the display shows a brief analysis of the way in which the
various functions were called. The tabulated values show the frequency of
retumvalues from a function, binned in logarithmic< steps. Thus, the' fIrst
column indicates the number of times that the given function returned 0 to
its caller, the first column the number of times 1 was returned etc. In figure
2, for exanlple, we see that Node 0 called KXWRI T 421 times and the return
value was between 8 and 15 375 times. The exact interpretation of this
infonnation obviously depends somewhat on the function being called but,
in almost all cases, is related to the message length being dealt with.

The infonnation tabulated by this command allows a rather detailed study of the
algorithmic communication patterns to be made. Alternatively a graphical interface is
available for displaying th'e data. This is accessed even more simply by omitting the -p
switch from thectool command - in most cases one simply executes

210

D

c

ctool

although occasionally one may have to give the name of the file containing the proftle data.
After a couple of seconds of initialization a diagram similar to Figure 3 should appear.

Quit

Func. vs. time

Func.vs.calls

Time vs. node

Calls vs. node

Usage vs. node

Erase

Figure 3. Initial ctool Menu and Display

Various pieces of the display are used for special functions

Menu Area One selects from the various options available by positioning the
cursor over one of the boxes in this area and "clicking". The text in
each box should help you make the appropriate selection. (If your
system has a mouse you should be able to make selections in the
usual "point-and-click" manner. If not use the arrow keys on the
numeric keypad to move the cursor and strike any alphanumeric key
to make a selection. The "HOME" key toggles between fast and slow

211

Display Area

Analyzing· two
degrees offreedom
at a time

Dealing with large
numbers of
processors

cursor motion)

This area of the display is used to present graphical data. Various
types of graphs are available to show different aspects of the
communication profile.

Legend Area While data is being displayed graphically this box should contain a
"legend" indicating the meaning ·of the various items shown.

The selections in the main menu which should now be visible represent various ways of
showing profile data. There are essentially three variables involved in each case; the
particular function, a node and an "interesting" quantity which in this case is either "time"
or the number of "calls" to a particular function. Since graphs are really designed to show
only two variables - one on each axis, there are several ways of showing the data.

The first display to select should be Function.vs.Calls. This presents a horizontal bar
chart showing the number of times each function has been called in each processor. An
example is shown in Figure 4

Notice that the various processors have been displayed by individual (color-coded, if you
have a color device) bars and that a key appears in the "Legend Area" showing which
processor is which. In the example shown we assumed that only four processors were being
profiled which fit quite nicely on the display. If you have 512 nodes then the bars are going
to be awfully thin! In this case ctoolleaves out all but the first 16 encountered. However,
you can control which bars you see by using the menu which should also have appeared
(See Figure 4). Two of the options should be Add Nodes and Remove Nodes which
allow you to either add or delete nodes from the display.

212

Calls to Communication Routines

LegendD Node 0 ~Node 1 1m Node 2 ~ Node 3

nwrite

nread

vwrite

vchange

vread

exwrite

exrecv

exread

loadelt

dumpelt

exchange

cread

cwrite

concat

combine

broadcast

"' "., A

""""""'"
I I I I

Back

Add Nodes

Remove Nodes

Add Funes

Remove Funes

Hardcopy

o 100 200

Number of calls

300 400

Figure 4. Function vs. Calls" display

213

ILegendONodeO ~Node 1 mlNode2 ~ Node3

Calls to Communication Routines

Done

o
1

~

I I I I

nwrite

nread

vwrite

vchange

vread

exwrite

exrecv

exread

loadelt

dumpelt

exchange

cread

cwrite

concat

combine

broadcast

o 100 200

Number of calls

300 400

2

3

AU nodes

Even parity

Odd parity

Neighbors of

-thru-

n.ext page

prey page

Figure 5. Node Selection Menu

Selecting either of these options yields yet another menu which looks like Figure 5.

Selecting nodes/or This menu is typical of the lower menus. It has a Done entry at the top which t~esyou

display back to the previous selection and then a whole bunch of other options. In order to select
some nodes for either addition or removal you can

• Selectindividual nodes by clicking on their numbers. As you do this they should
change pattern to let you know that they have been selected.

• Select all nodes by clicking on the All Nodes box.

• Page through the nodes, if there are too many to fit on the menu all at once.
Page Forward and Page Back move through the set of nodes.

• Select a rang,eof nodes by clicking on the frrstnumber, then the Thru box and
then the second number. You can switch pages in the middle of this operation

214

if the range spans multiple pages.

• Select the neighbors of a particular node. One interesting property of parallel
machines is the way in which one node's behavior can affect those connected to
it. To select this option click in the Neighbors of box and then the node whose
neighbors you want to pick.

• Select nodes according to their "parity". This concept corresponds to the
familiar "red-black" coloring often used in parallel processing. Node 0 is
defined to have even parity and its neighbors to have odd parity. This then
extends naturally so that no even parity node is adjacent to another even parity
node, and similarly for the odd parity processors.

After selecting one (or more) of the options from this menu, clicking Done takes you back
to the previous menu level and you will see the consequence of your selection on the
"Display Area". If, for instance, you decided to add all 512 nodes to the display you are
probably waiting quite a while for the very tiny graphs to get drawn!

This technique is one way of getting additional node displays onto the screen. Another Droppingjunctions
method is to "lose interest" in particular functions. By default every function has a trace from the display

even though it may never have been used. To remove some functions from the display
select the Remove Funes option. The menu that appears looks a little like the node
selection menu - it has Done at the top and then a list ofcomunication functions. You click
away at the names (which should change background when selected) until the uninteresting
ones have been deleted and then select Done. This returns to the previous level and updates
the "Display Area" with less functions, and correspondingly more space for node displays.
Another thing to notice is that the horizontal axis rescales whenever functions are added!
deleted so it is occasionally useful to remove functions whose usage dwarfs the others to
force a magnification of the horizontal axis showing more detail. The deleted functions can
always be restored later if required.

The final option on this, and the other display menus, is Hardcopy. Clicking on this box
saves a copy of the current display (Without the attached menus) in a fonn suitable for
printing. Either PostScript or Hewlett-Packard devices are supported.

Once all intersting information has been extracted from this display one can click on the
Back box to return to the main selection menu. The box Function vs. Time presents the
same style of graph but with the horizontal axis displaying the time spent in each function
rather than the number of times it \vas called as in the previous case. The two boxes Time
vs. Node and Calls vs. Node present alternative views of the profile data.

These options present typical graphs of either the time spent in a routine or the number of
calls to a routine against the processor number on the horizontal axis. Individual cUlVes are
drawn for each function selected by the user. Clicking on the Time vs. Node box, for
example, should produce the display shown in Figure 6.

By default no curves are drawn on these graphs which makes them rather dull to look at.
However, the menu selection Add Funes should display a list of functions for which
curves can be added to the "Display Area". The selection technique is just as before - click
away until enough curves have been selected and then Done takes you back to the previous
level and displays the results. Also notice that the "Legend Area" is updated to reflect the

215

Time in Communication Routines

I_L.....e.....9_e_nd.....: -------.....I. Back

Add Nodes

Remove Nodes

Add Funes

Remove Funes

Hardcopy

o 1 2
Processor Number

3

Looking at
program
tlefficiencies"

Figure 6. Basic display for ".•• vs.Node"Graphs

new style of·graph. Selecting KXREAD, KXWRIT and KXCHAN, for example, might lead to
a display like that of Figure 7.

This type of display is .. obviously better suited t~ showing data.froma lot·of··processors.
Even so it occasionally beconles too crowded and· the Add Nodes and Remove Nodes
menu selections are available as before. Note, however, that it doesn't make too much sense
to pick out weird node combinations for this type ofdisplay and, in fac~ctoolwill ignore
you if you. try. While displaying data in this fashion only the highest and lowest processor
numbers are considered and everything in between is also plotted.

The [mal graphical tool available is obtained by selecting Back from this menu level and

216

4000

ILegend: exread - exwrite - exchange

3000

Time

(millisec)

2000

1000

o

Time in Communication Routines

,.
"

""""",
... ,/. "..... "

'. "
""" "

-- "-'I, "
"~'I "

"~'I "
"" ""~'I "

""" ,/
"

Baek

Add Nodes

Remove Nodes

Add Funes

Remove Funes

Hardcopy

o 1 2
Processor Number

3

Figure 7. Time vs. Node" display for several functions

217

L· eg··.·e·nd·O..... Calculationwrn.iiiHt Node~Node -..... YO ~... Idle- - ~
Node Utilization

1.0

Back

Add Nodes

0.75

Remove Nodes

Add Funes

Remove Funes

Hardcopy

0.5

0.25

0.0

o 1 2
Processor Number

3

Figure 8. Node Usage Display

usage from the main menu. rrhe result will look something like FigureH.

Along ... the· horizontal axis are the processors just as in the previous displays. For each
processor a stacked. bar chart is presented showing the division of time between the three
fundamental tasks; calculation, interprocessor communication and I/O.

Tenninationof the profiler is achieved by selecting Done from the main display menu.

~ 4 Event Driven Profiling

Contents of The two profiling techniques discussed so far have been tailored to examining the behavior
Uevents" of nodes in isolation. The event driven profiler is provided to allow more detailed

examination of the interaction between various nodes as time progresses through the
application. An "event" is a user-spe:cified point in the eXecution of an application which
will be recorded in an internal log for later analysis. Together with the fact of th.eevent's

218

Techniques for
identifying events
during analysis

occurrence one can also record

• The time at which the event occurred.

• An "index" value indicating the nature of the event.

• A program variable whose value at the time of the event will be recorded. This
will help in later identifying events during analysis.

As well as the above data items which are recorded every time an event occurs the
following can optionally be supplied

• A "title" which identifies ~ll events with a given "index" value.

• A C language "printf"-style fonnat string which will be used when printing
the value of the program variable stored at the time of the event.

These last two items are intended to facilitate identification of program events in the
analysis phase. They may be omitted if desired.

It is important that a user program containing event specifications does not have to incur
the overhead of the profiling systenl. As with the communication profiler discussed in the
previous section one is free to turn the event profiler on or off at will, completely
independently of the other profiling systems.

Also in common with the communication profiler some of the details of the user interface
differ slightly depending on whether the application is running under the Cubix system or
with a user written host program. These details are discussed later in this section after a
discussion of the features which are common to all applications.

4.1 General Profiling Commands

The most obvious of the event profiling commands are KEPON and KEPOFF_off. Called
with no arguments these functions serve to turn on and off (respectively) the event profiling
system. This allows fine control over the areas which will be profiled and also lets
completed applications run intact without removing the profiling commands.

The most important function in this section is KEPADD which causes an "event" entry to Registering user
be added to the log-file. Its usage is events at runtime

CALL KEPADD(INDEX, DATUM)

The first argument is an identifier for the "type" of event being recorded which allows one
level of identification when analyzing the trace. One example of its use might be to flag all
calls to a particular routine with INDEX = 1 while calls to another routine might have
INDEX = 2. The second value is another means of identifying events.

The following code illustrates one use of these functions

c
C-- Sample program demonstrating the use of the event
C-- profiler.
C

PROGRAM EPTEST

219

Initializing the
event system

c
INTEGER ITER, LABBUF(256) , LOGBUF(2048)
REAL VALUE, CRUNCH

c
C-- Set up Express.
C

CALL KXINIT
c
c-- Initialize profiling system to defaults, and
c-- turn it on.
e

CALL KEPINI(LABBUF, 1024, LOGBUF, 8192)
CALL KEPON

c
C-- Set up algorithm, loop several times - each time
C-- record an event of type 1 and also record the loop
C-- index.
C

DO 10 ITER = 1,100
CALL KEPADD(l, ITER)

c
C- Now record a type 2 event for the completion of
C-- the CRUNCH function and also save the value it
C-- returned.
C

VALUE = CRUNCH (ITER)
CALL KEPADD(2, INT(VALUE))

C

CALL ENDITER(VALUE)
10 CONTINUE
C

C-- Dump out the profiling results to the host.
e

e
STOP
END

Notice the call to KEP I NI in the previous example. This is important. Each call to KEPADD
stores additional infonnation in an internal log-file using up memory on each node. The
amount of memory set aside for event logging is detennined by the call to KEP INI which
must occur before attempting to turn on the profiler, or use any of the event profiler
functions. This routine takes four arguments

KEPINI(LABBUF, LABSIZ, LOGBUF, LOGSIZ)

in whic_h the first pair specifies how much space to set aside for recording "'event titles" and

1%0

the second pair the space for event log entries. If an attempt is made to write more log-file
entries than specified in this call the extra are discarded and a warning is issued whenever
the data is analyzed. In each case the first of the pair of arguments is the name of a user
supplied array to be used to hold the profiling data. The size of this array (in bytes) is given
as the second argument. One important fact about this routine is that it is used to
synchronize the clocks on the various processors and must, therefore, be called "loosely
synchronously" in each processor. A strict definition of this tenn can be found in the Cubix
documentation but briefly it means that the call must be made at a point where each node
is free to communicate with all the others - Le., there must be no pending communication
calls, unread messages etc..

Having described how the system is initialized and how events are entered into the log one
must consider the steps taken to aid in analyzing the profile data. The etool utility
presents "time-lines" for the individual processors upon which are superimposed the user
specified events. Each event is identified in this display with its "index" argument from the
KEPADD call responsible for its existence. One problem with this style ofdisplay, however,
is that it is often quite tricky to figure out the correspondence between the time lines and
what the actual application is trying to do. This problem is somewhat alleviated by
intelligent choices of the "INDEX" parameters. Since each event is labelled with this value
one gets a rough guide.

The connection can be strengthened by specifying a title field for each "index" value with
the KEPLAB call. This is called with three arguments

CALL KEPLAB(INDEX, TITLE, FORMAT)

We will return to the last argument later but the "T I TLE" is merely a character string that
will appear in a "legend" on the display of the time-lines. Each "INDEX" can have a unique
"TITLE" assigned to it in this manner allowing reasonable identification of the various
event types. In the previous example one might add the calls

CALL KEPLAB(l,'Top of major iteration loop',
, Iteration %d')

CALL KEPLAB(2, 'After crunching',
'crunch returns %f')

Note how the title strings identify the purpose of the two types of events. In addition to
displaying the user events on the time-lines etool also allows access to a second layer of
infonnation - that supplied in the second argument to KEPADD. This infonnation is
available upon request and interacts with the last argument to KEPLAB. Whenever the next
layer of detail is requested the user datum corresponding to the selected event is passed,
together with the last argument to KEPLAB to be printed out. Thus, for example, one might
inquire about the details for a particular event and be told

1. T = 246.23 ms, "Iteration 39"

The information contained here is the "INDEX" number, the time at which the event
occurred and the user data item formatted in conjunction with the format string given to
KEPLAB. Notice how this infonnation can be used to exactly locate a position on the time
line according to which iteration of the major loop it signifies. Even program bugs might
be detected this way since clicking on a type 2 event might yield

221

Analyzing the event
data

Adding labels to
events makes them
easier to find

Logging
interprocessor
communication as
trsystem" events

Measuring
statistics at the
level ofgroups of
source lines

2. T = 253.60 ms, "crunch returns -246.31"

which, in conjunction with the previous output, might be enough to detect that the program
is going crazy at iteration 39 since the value returned by the CRUNCH function is negative.

Careful use of the labelling facility is the key to using the event profiler. Without it one
often has to resort to guesswork in order to relate the events shown on the time lines to the
program's behavior. If the labelling is performed carefully, especially the spe.cificatl0n of
the second piece of infonnation, the "DATUM argument toKEPADD, the event profiler
will be a rich source of information about the perfonnance (and maybe even bugs) of an
application.

The event profiling tools described here can also be used to record important "system"
events. A particularly important class of interesting events are comunicationc.alls between
processors. If the event-driven and communica.tion profilers are both enabled (i.e., KEPON
and KCPON) then each communication call also makes entries in the log file. As well as
recording which function was called and the value it returned to its caller one can also
detennine exactly how long "each communication call takes. This is inv·aluable, for instance,
in detennining the affects of poor load-balance - typically one processor will wait for an
excessive amount of time in communicating with an overworked node.

This latter is actually another method of performing communication profiling. Even if no
user events are specified the system can still be used to log "communication events"
allowing a detailed analysis of the internode communication patterns to be perfonned.

4.2 Measuring time intervals with "Toggles"

The event profiler also provides a mechanism for measuring important statistics in relation
to section of program code. While the "execution profiler"described in section 2 is useful
for collecting information at the level of individual subroutines it is often important to be
able to analyze code at a finer level, or to gather statistics about the frequency with which
a given program segment is being used.

To facilitate the gathering of such statistics the event profiler uses the "toggle" concept. A
"toggle" is a structure which gathers infonnation about the time spent within a particular
program segment and the number of times this code is executed. A simple example of its
use is shown in the following code

PROGRAM TOGTST
INTEGER LPTOG(16) , GDTOG(16)
REAL ENERGY
INTEGER ITER, I

c
c-- Initialize the toggle data structures
C

CALL KEPTGI(LPTOG, 'Main iteration loop')
CALL KEPTGI(GDTOG, 'Calls to GRIND')

C
C-- Start application code, then go into main loop.

C

DO 10 ITER=1,100
CALL KEPTOG(LPTOG)

C
C-
C

c

Other processing going on here

DO 20 I=1,4
CALL KEPTOG(GDTOG)
CALL GRIND (ENERGY, I)
CALL KEPTOG(GDTOG)

20 CONTINUE
CALL KEPTOG(LPTOG)

10 CONTINUE
C

STOP
END

We set up two "toggle" variables using the ETOGGLE type defined in the express. h
header file. We then surround interesting pieces of code with identical calls to the
eprof_toggle function which alternately starts and then stops recording information
about the code section. (This is why the tool is known as a "toggle" - successive calls
alternate between turning it on and off.)

The statistics gathered include the time taken to execute the enclosed call and the number
of calls to this code fragment.

Each toggle structure must be initialized with a call to eprof_toginit as shown at the
top of the previous example. This notifies the system of the use of the particular variable
and also allows the user to associate a title string with the indicated "toggle". This makes it
easier to analyze the resulting data since the string will be displayed along with the
associated data.

4.3 Details for Cubix Programs

The Cubix interface to the profiling system is extremely simple. The most elegant way to
use the event profiler under Cubix is to make use of the KEP INQ function to check the
behavior of the runtime '-m' switch on the cubix command line. This is similar to the
mechanism discussed in the communication profiling section except that the magic
character is 'e' (event-driven) rather than 'c' (communication). If the usual cubix
command is

cubix -n 4 noddy 1.2 1024 1024

one just uses

cubix -n 4 -me noddy 1.2 1024 102

TheETOGGLE
data type

Initializing
IItoggles"

Enabling the
profiler at runtime

Graphical analysis
of Uevents"

which will make the KEP INQ function return 1. This can then be used to conditionally
setup and start the event profiler. Note that the various options of the -m switch can be
combined so that, for example, to enable both communication and event driven profilers
one uses the -mec switch.

The KEPON and KEPOFF_off functions may be used freely to control the periods during
which profile data is being accumulated.

4.4 Details for Host-Node programs

If a user application is being executed on the host processor then the times at which
profiling data are dumped must be specified by tbe user. In order to do this two functions
are provided; KEPCP for the host andKEPELT for the nodes. The fonner has no arguments
and merely serves to receive the data transmitted by the ·KEPELT call whose single
argument is the nam:e of the file to which data is to be dumped. Note that these functions
must be called opposite one another - i.e. the host and nodes must execute their respective
functions together. The usage of these calls is identical to that of KCPCP /KCPELT and the
pseudo-code of section 3.3 can be used after suitable changing of function and file names.

The user is responsible for ensuring that KEP INI is properly called before using the event
profiler and that KEPON is used to enable it.

4.5 Analyzing the Event Profile - etool

As has already been alluded the event profile is analyzed with theetool utility. To
execute this command one types

etool log_file_name

where the last argument is the name of the file containing the event log. If this has the
default name "eprof.out" then it can be omitted leaving the extremely simple command line

etool

This command should result in a display that looks rather like Figure·9.

The different areas of the display are used for various purposes in manipulating and
interpreting the event log:

Menu Area This is usually the area in which user selections are made which
cause various operations to be carried :out in the event log display.

Display Area This region contains the "time-lines" for the various processors. A
simple horizontal line indicates "computing" activity while various
types of coloured and shaded boxes indicate user and system events.

Legend Area This area is used to indicate the meanings of the various objects
shown in the "Display Area". It usually contains an index to the
various event types defined in a particular node, although it can also
be used to display a "key" to theencodings of system events.

Dialog Area This region is used to interact with the user. Prompts for user actions
are displayed here as well as information concerning ev'ents
displayed on the screen.

224

Quit

Add Nodes

Remove Nodes

Add Object

Remove Object

Scroll T forward

Scroll T back

Bigger T range

Smaller T ranee

Select T range

Overview

Move trace

Display type

Show detail

New legend

Find start

Hardcopy

321

Node 3

Legend: (Based on Information from node 0)
1. Send data to slave.
2. Receive data from master.
3. Finished processing data.

Node 2

Node 1

Elapsed time (milliseconds)

Figure 9. Basic Event Profile display

To manipulate and analyze the display one selects from the options in the uMenu Area" on
the right using the cursor. (The various types of mouse and their use is discused in a
previous paragraph.) Some of the more obvious selections concern the amount of "time"
displayed on the horizontal axis. By default etool begins by showing approximately 3
milliseconds of elapsed time. Often there will be no interesting events in this range as
typified by the dull display of Figure 9. The most naive things to do to correct this situation
are the various "T-range" commands

Scroll T forward Scrolls the time-lines forward by half the cUlTentwidth. Thus, if
the current display goes from 3 to 4 milliseconds then scrolling

Manipulating the
time lines

225

Scroll T back

Select T range

Bigger T range

Smaller Trange

would alter the range to 3.5 < T < 4.5.

Scrolls the time-lines backward by half the current width.

Doubles the range along the horizontal axis while keeping the
start point fixed. If the originally display were from 3 to 4
milliseconds then this command would yield the range 3 <T < 50

Zooms in on the time axis by halving the current range· while
keeping the start point fixed.

This option allows you to pick out an intersting range from the
current display with the cursor. Immediately after selecting this
option the message

Select lower time limit

will appear in the Dialog Area. You should then move the cursor
into the Display Area and click when it is at the lower limit of
some interesting range. At this point the prompt in the dialog
area changes, asking you to select an upper limit and the
process is repeated for an upper limit.. When this has been
selected the time-lines will be redrawn with the horizontal axis
displaying the selected range of time values. Note that the range
selection takes place inside the Display Area and not on the time
axis itself. This allows you to pick out interesting objects from
the display as the guide to an interesting time range rather than
having to trace down to the horizontal axis to make the selection.

These options may be used at any time and merely manipulate the data on the display. They
are useful when either too much or too little detail is being displayed and one needs to either
"zoom in" or "zoom out" a little in order to make sense of the events being shown.

Overview

Getting the whole
picture

Of course these options might not help much if your events are widely spread or start after
a lengthy period of program execution. To cover these possibilities two further options are
provided

Find Start As its name implies this option is used to "get going". After selecting
it you will be prompted in the Dialog Area to

Select a node

To do this move the cursor into the Display Area and click over one
of the traces on the screen. This "selects" that node and, in the
current context, looks for the frrst enabled event in that processor
and resets the horizontal range so that this event is displayed.

This option draws all the time-lines in the selected processors from
start to finish. User specified events are indicated by .vertical bars
rather than their full symbols to conserve space. (See Figure 10 for
an example of the output produced by this command). This is often
a useful option to select flfSt followed bySelectT Ra~ge to pick
out interesting areas for finer scrutiny.

Node 0
I I I
I I I

I I I
0 1500 3000 4500

Legend: (Based on Information from node 0)
1. Send data to slave.
2. Receive data from master.
3. Finished processing data.

Node 3

Node 2

Node 1
I
I

I
I

I
I

I
I

I
I

I
I

Quit

Add Nodes

Remove Nodes

Add Object

Remove Object

Scroll T forward

Scroll T back

Bigger T range

Smaller T range

Select T range

Overview

Move trace

Display type

Show detail

New legend

Find start

Hardcopy

Elapsed time (milliseconds)

Figure 10. Sample output from the "OverView" command

These commands are provided to display various regions of interest. .Another necessary
ability is that of adding more processor time-lines to the display and possibly removing
ones already present. By default etool displays the traces of the first eight processors
encountered in the log-file. This situation can be altered with the Add Nodes and
Remove Nodes commands. Both present a node selection menu which has the same form
as that discussed in connection with the ctool system. One can select nodes either
individually, in ranges, according to their neighbors, according to their "parity", or all at
once. Having selected some nodes the Done option takes you back to the main display
menu and perfonns the requested action with the selected nodes. If this was Add Nodes
then additional time-lines will be added to the display for each selected node, while the

227

Dealing with large
numbers oj
processors

Selecting objects to
watch

Adding system
events to the
display

opposite Remove Nodes option will remove traces for selected nodes.

The option Mo.veTrace is available to re-order the time-lines along the vertical axis. By
default this ordering is in order of increasing processor number or selection. Occasionally,
however, it is convenient to put together certain traces to better understand the relationships
between .processors. To do this select the Move Trace option when you will be prompted
in the Dialog Area to

Select a trace to move

To do this move the cursor into the Display Area and click over a processor time-line. the
prompt then changes to

Select a position to move it to

at which point you should click in the gap between two processor traces. The display area
will be update'd with the selected node trace positioned between the two indicated
processors.

As well as altering the various quantities displayed along the axes of the Display Area one
can also modify the appearance of the time-lines themselves with the following options

Remove Object This option allows one to selectively disable various types of
"events". To disable an object click on Remove Object and you
will be asked to click over the object you wish to delete. Move the
cursor into the Display Area and click over any displayed object.
Henceforth objects of this type will no longer be displayed or
eligible for "detailing". When you have finished removing objects
click on Done to return to the main menu.

Add Object This option reverses the effect of the previous choice. Upon
selection a menu will be displayed containing the objects which
have been disabled. Click over the items you wish to enable and then
on Done to return to the main menu and update the displayo

These options allow piecemeal addition and deletion of specific events from the display.
The Display Type option, however, allows sweeping alterations to be made to the time
line display. By default only user defined events are shown - i.e., those which were
explicitly logged with the eprof_add system call in the application code. These events
are represented by numbered boxes on the display lines, the .numbers indicating the event
"index" as given in the epro f _add call. However, the system is also potentially logging
events, particularly communication calls. This option allows the "display type' to be
modified to one of three styles

User Only This is the default and shows only explicitly defined user events.

Comm. Only This option disables all display of user events and instead shows
communication calls in each processor.

Everything This choice enables all events.

The effect of choosing the Everything option is shown in Figure 11. As can be seen the
comunication events are indicated by long narrow bars which are coded according to the

228

particular function called.

Quit

Add Nodes

Remove Nodes

Add Object

Remove Object

Scroll T forward

Scroll T back

Bigger T range

Smaller T range

Select T range

Overview

Move trace

Display type

Show detail

New legend

Find start

Hardcopy

to---..... 3 Bt�_----

t--------f 3~-------

~~~~ 2 ~-----------t

Legend: (Based on Information from node 0)
1. Send data to slave.
2. Receive data from master.
3. Finished processing data.

Node 3

Node 2

Node 1

Node 0

o 1500 3000 4500

Elapsed time (milliseconds)

Figure 11. Sample display showing both system and user events

Having added extra data to the Display Area one might be interested in figuring out what
they represent. To do this one invokes the New Legend option. By default the Legend
Area shows the "titles" that were assigned to user events in node 0 with the
epro f _1 abe1 system call. This infonnation is often enough to understand all user events
- their index numbers appear in the boxes on the time-lines and the associated titles appear
in the Legend Area. Sometimes, however, the same event number might mean different
things in different processors. While this might be classed as bad coding practice it may be

229



unavoidable in real applications and so theN~w Legend option allows you to switch to a
different node's set of titles. To do this click on New Legend and at the prompt

Select a node or click outside the Display Area

move the cursor into the Display Area and click over a processor's time-line. This will
immediately switch the Legend Area over to that taken from the indicated node. An
alternative possibility is to click outside the Display Area completely. In this case a legend
is drawn indicating the coding of the system defined communication events. A sample of
the "system leg.end" is shown in Figure 12.

Legend: (Express} Quit
.~ exread
lBIexwrite
c:J exchange
~exrecv

~ exconcat .~ cread I:::::::\:::::' vcbange
h::::;;::~::1 excombine 1:;::::::::::::Jcwrite l1li vwrite
E5ia exbroadcastmmII exchange·~ vread
_ exparam .. dumpelt _ I/O

Add Nodes

Remove .Nodes

Add Object

Node 3

Remove Object

Scroll T forward

Scroll T back

Node 2

Bigger T range

Smaller T range

Select T range

Overview

Move trace
Node 1 t-----...... 3m;'I-------- Display type

Show detail

New legend
Node 0 Find start

Hardcopy

o 1500 3000 4500

Displaying the
second leveiof
information

Elapsed time (milliseconds)

Figure 12. Legend identifying system communication events

This last command allowed more information to be displayed about the events shown in the

230



Display Area. Usually this will be enough to get a reasonable feel for the part of the
application being shown. In order to access the next level of information one uses the
Show Detail option. Having selected this the menu changes to a single Done entry and
one is free to poke around in the display area with the cursor. Every time that one clicks on
an event in the Display Area extra detail concerning that event appears in the Dialog Area.

For user defined events the infonnation shown includes the index number, the exact time
at which the event occurred and the user data value which was supplied to the eprof_add
call. The index number is provided to give confmnation that the correct event was actually
selected with the cursor - this can get quite tricky in a crowded display although the
commands to modify the horizontal axis can, in principle, be used to alleviate a dense time
line. The time of the event is shown to allow monitoring. of execution times - for example
if you have an event both at the beginning and end of a function then you can use this option
to find out how long it took to execute. The final value is presented to either correlate the
displayed data with a point in the application or to understand the way the program is
behaving. The supplied data item is processed with the fonnat string optionally supplied in
a call to eprof_label and the result appears in the Dialog Area. In the fIrSt example of
this section, for example, we defined labels containing "Iteration %d" and
"crunch returns %f". Ifwe click on an event of the first type for which the supplied
data value is 39 then the following might appear in the Dialog Area

1. T = 246.23 ms, "Iteration 39"

Note that it is not essential to supply a label for an event type in order for this option to
succeed. If no format string has been associated with an event then the result of the Show
Detail click will just be

2. T = 57.23 ms, value = -357832

in which the first two fields indicate the same infonnation as previously and the last is the
value of the user-supplied data item interpreted as an integer. Obviously this is not quite as
infonnative as would be the case if a label were supplied, especially if the user data value
is not an integer but a floating point value, but occasionally the space saving might be
relevant.

Using the Show Detail function it becomes a simple matter to relate the events displayed
on the time-lines to the underlying application algorithm which is the key to successful use
of the event profiler. This type of information might also be used to understand the times
indica~ed in the event profile. For exanlple, one might supply a data item which represented
the work-load in a processor. This nlight then be related to the event display by passing it
to epro f _add and later picking it out with the Show Detail command.

While in this mode one can also click on system events. This should produce a message in
the Dialog Area which looks like

exread, T = 357.68ms, elapsed 127.54 ms, returned 580

The infonnation supplied here is; the name of the communication function invoked (which
should correspond to the system event legend if that is displayed), the time at which the
communication began, the time taken for the communication to complete and the value
returned to the caller. The interpretation of this last piece of infonnation depends upon the

231



Using the event
profiler effectively

particular communication routine invoked but is typically related to the length of the
message being transmitted.

The last two options available on the main menu are, hopefully, self-explanatory. Quit
tenninates the etool program and returns you to the command line prompt. Hardcopy
makes a file which, when suitably processed, will show the .current state of the graphics
screen, less the menus.

Having now discussed all the options available to users of etool the question remains:
"What can I do with it ?". Among the various possibilities are

• Analysis of time taken in particular routines or pieces ofcode. Logging "events"
around important code sections and subroutine calls allows one to·evaluate the
time spent in various portions of code.

• Relation of time spent to data conditions. Careful specification of crucial data
items as the auxiliary value in epro f _ add calls allows the connection to be
made between program perfonnance and data dependencies that arise on the
nodes.

• Analysis of complex communication patterns and their effect on perfonnance.
Enabling the communication profiler while the event profiler is running logs
extra infonnation about internode communication.

• Analysis of interprocessor effects such as load imbalance and communication
"skewing". It becomes immediately apparent if one node is working much
harder than the others, or if a particularly crucial communication cycle is being
delayed by another processor.

• Analysis of algorithms. In non-detenninistic algorithms it may be useful to
understand exactly what functions are called and in what order. This can be
achieved with suitable event placement This type of infonnation may be
important in understanding the advantages or deficiencies of a particular
parallel algorithnl.

• Analysis of algorithmic behavior. In certain algorithms it may be important to
understand the sequence of events leading to some strange behavior. A good
example might be an ill-conditioned matrix problem in which the time taken for
an algorithm to operate might depend on some parameter which can. be logged
and later related to the algorithmperfonnance.

4.6 Analyzing the ~'Toggle"data - etool -t

Looking at the The event profiling analysis tool, eprof, is also used to examine the data collected by the
toggle data without "toggle" system. To do this we execute the command
graphics

etool -p -t

in which the switches indicate that no graphics should be used ('-p') and that toggle data
should be analyzed (' -t '). The resulting display will appear similar to that shown in
Figure 13

For each "toggle'~ is presented the total time spent within that section of code, the number

232



Node 0

Description

Main iteration loop
Calls to grind_away

Node 1

Description

Main iteration loop
Calls to grind_away

Total

478.32
363.96

Total

478.32
363.96

#Calls

100
400

#Calls

100
400

Avge.

4.78
0.91

Avge.

4.78
0.91

Var .

. 28

.03

Var.

.28

.03

Figure 13. Sample output from the "toggle" utilities

of times executed and mean and variance data. Also shown is the title given to the Utoggle"
in the call to eprof_toginit.

Using this system it is possible to build up extremely accurate pictures of program
execution.

t2 5 Example programs

The profiling system is supplied with an extensive collection of complete examples whose
source code can be found on the distribution disk(s) in the PM subdirectory of the main
Express examples directory. All the examples are based around the same piece of code
which implements a basic "master-slave" approach to parallel processing, shown
schematically in Figure 14.

In this programming style we nominate one processor as the "master" who is responsible
for distributing work to a group of "slave" nodes. Each in tum receives a message
describing a particular operation or operations to be perfonned from the master. It then
performs all necessary calculations and returns the results to the master task. In. the example
program to be demonstrated here the specific details are quite trivial; the master creates a
buffer containing a random number of random numbers and sends it to a slave node. The
slave then computes the sum of the exponentials of the values in the buffer and returns this
total to the master.

While this program is rather trivial it is actually quite a common programming model 
many parallel applications take this form. Obviously an efficient implementation of this
strategy would necessitate a larger workload per message; for example the current program
could be sped up by having the slave nodes generate the random numbers themselves.
However, it serves to illustrate several important areas where the profiling tools can be of
help in detecting load imbalance and communication overheads.

233

ltMaster-Slave"
programming on a
parallel computer



SLAVE

I MASTER I

SLAVE SLAVE

MASTER:
Assigns tasks, prepares
data, receives and collates
results.

SLAVE:
Reads work description
from master, processes
and returns results.

Adding profiling
constructs to an
existing program

Figure 14. Master-slave computation in parallel

To this simple program we add the following profiling constructs:

• Enable the execution profiler.

• Enable the communication profiler for the entire course of the program.

• Initialize the event profiler with the default settings and turn it on.

• Add an event in the "master" task just before sending data to each slave. The
additional data value indicates the node number of the slave to which data is
being transmitted.

• Add an event in each "slave" to indicate the receipt ofdata from the master. The
subsidiary data value indicates the amount of work received.

• Ad,d an event in each "slave" to indicate that its work has been completed. The
subsidiary item indicates the value returned to the master.

• Assign labels for the three events just described so that we will be able to find
out just what was happening when the profIle data is later analyzed.

Two distinct versions of this programare,presented:aCUbix version and another split into
host and node programs. We present the \Cubixversion first since it is simpler. It may be
surprising to readers that the Cubix code is actually a fully parallel program since it looks
so much like sequential code.

5.1Cubix program

c**********
C master * ParaSoft Corporation. 1988
c**********
c
C-- Master/slave program showing off the profiler.

234



C-- Should exhibit some good "skewing" behavior.
C

PROGRAM MASTER
C

C-- This next variables are for the execution profiler.
C

INTEGER XPRBUF(2048) , PRFSCL
PARAMETER (PRFSCL = 8192)
EXTERNAL F MAIN

C
C-- The next buffers are used by the event profiler.
C

INTEGER LABBUF(256) , LOGBUF(2048)
C

REAL PRANF
PARAMETER (NMAX = 2048)
REAL MSGBUF(NMAX)

C
INTEGER SEED, NDDATA(4) , NODE, N, I
REAL TOTAL
INTEGER DATTYP, ACKTYP
DATA DATTYP/2/, ACKTYP/3/

C

C-- Initialize Express
C

CALL KXINIT
C

C-- Set up the event profiler and initialize it if
C-- requested.
C

CALL KEPINI(LABBUF, LABSIZ, LOGBUF, LOGSIZ)
CALL KEPLAB(l, 'Sending data to node', 'Node %d')
CALL KEPLAB(2, 'Received data from master',

$ '%d items')
CALL KEPLAB(3, 'Finished processing', 'Result %d')
ISTAT = KEPINQ
IF(ISTAT .NE. 0) THEN

CALL KEPON
ENDIF

C
C-- Set up the execution profiler.
C

ISTAT = KXPINQ
IF(ISTAT .NE. 0) THEN
CALL KPROFI(XPRBUF, 8192, F_MAIN, PRFSCL)

CALL KXPON

23S



ENDIF
c
C-- Get runtime parameters, processor number etc ....
C

CALL KXPARA(NDDATA)
c
C-- Start up the random number generator.
C

SEED = 12345
CALL RANSET(SEED)

C
C-- Node zero will send up to NMAX floating point numbers
C-- to each other node and then process them by
C-- calculating their exponentials.
C

WRITE(6,*) 'Here we go '
CALL KASYNC(6)
IF (NDDATA(l) .EQ. 0) THEN

DO 10 NODE=I, NDDATA(2)-1
CALL KEPADD(I, NODE)
N = INT (PRANF () *FLOAT (NMAX) )
WRITE(6,*) 'Sending " N,

$ , values to node " NODE
CALL KFLUSH(6)

DO 20 1=1, N
MSGBUF(I) = 2.0*PRANF()

CONTINUE
ISTAT = KXWRIT(MSGBUF, 4*N, NODE, DATTYP)

CONTINUE

20

10
C

c-- Wait for the acknowledgement to come back from the
C-- nodes that have finished.
C

DO 30 NODE=I, NDDATA(2)-1
ISTAT = KXREAD(TOTAL, 4, NODE, ACKTYP)
WRITE(6,*) 'Node', NODE,

'finished w~th result: " TOTAL
CONTINUE

$

30
C
C-- End of IF clause for node O.
C

ELSE
c
C-- Code for "slave" nodes.
C

236



NODE = 0
N = EXREAD(MSGBUF, 4*NMAX, NODE, DATTYP)/4
CALL KEPADD(2, N)
TOTAL = 0
DO 40 I=l,N

TOTAL = TOTAL + EXP(MSGBUF(I))
40 CONTINUE

CALL KEPADD(3, INT(TOTAL))
ISTAT = KXWRIT(TOTAL, 4, NODE, ACKTYP)

ENDIF
C
C-- End of code for slave nodes ..
C
C-- Program finished - dump profiling data to host. Note
C-- that Express automatically dumps the communication
C-- profile data.
C

ISTAT = KEPINQ
IF(ISTAT .NE. 0) THEN

CALL KEPEND
ENDIF

C

ISTAT = KXPINQ
IF(ISTAT .NE. 0) THEN

CALL KXPEND
ENDIF

C
STOP
END

NOTE 1.

NOTE 2.

NOTE 3.

The node program does not explicitly initialize or enable the
communication profiler. This is taken care of by the ~xpress kernel
interpreting the runtime flags on the cubix command line. The
execution profiler is enabled conditional on the runtime switches by
explicit calls to KEP INQ.

No calls are required to dump out communication profiling data.
This action is performed automatically by the system. Note that no
dump will be produced if the profiling system is not enabled - this is
a much more flexible situation than in the host-node case since the
user is free to choose at runtime between having and not having a
profile produced. The event profiler is enabled and dumps out its
results conditional on the runtime flags given to the cubix
command.

We assign node 0 the master role and relegate the others to slave
positions. Note that we expect to find events of type 1 only in node O.

237



NOTE 4. The code for the·random number·generator is not shown.

5.2 Host-Node Program, "Host" code.

c*****************************************************
c
C EXPRESS Demonstration program.
C -------
C ParaSoft Corporation, 1988
C

*

*
*
*
*

C*****************************************************
C

c-~ Master/slave program demonstrating the use of the
c-- profiling systems. This code should exhibit some
C-- fairly dec'ent "skewing" behavior and also load
C-- imbalance.
C

PROGRAM MASTER
C

COMMON/XPRESS/NOCARE, NORDER, NONODE,
$ IHOST,IALNOD,IALPRC

REAL*4 PRANF, MSGBUF(2048) , TOTAL
INTEGER*4 SEED
INTEGER ENV(4), NNODES, NODE, N, I, STATUS
INTEGER PGIND
INTEGER DATTYP, ACKTYP
CHARACTER*80 DEVICE, PRGNAM
PARAMETER (DEVICE=' /dev/ncube', PRGNAM='node')

C

DATA DATTYP/2/, ACKTYP/3/
C

C-- Start up EXPRESS. This MUST be the first EXPRESS
C-- system call used.
C

CALL KXINIT
C

C-- Prompt the user for a number of nodes and allocate
C-- them. If the number given is negative use this as a
c-- signal to load the node program "stopped'· for use
c-- wi th "ndb".
C

WRITE(6,*) 'How many nodes?'
READ(5,*) NNODES
IF(NNODES .LT. 0) THEN

NNODES = -NNODES
CALL KXPAUS



ENDIF
PGIND = KXOPEN(DEVICE, NNODES, NOCARE)
IF(PGIND .LT. 0) STOP 'Failed to allocate nodes'
STATUS = KXLOAD(PGIND, NODE)

C
C-- Get runtime parameters, processor number etc ...
C

STATUS = KXPARA(ENV)
c
C-- Start up the random number generator.
C

SEED = 12345
CALL RANSET(SEED)

c
C-- The host will send up to NMAX floating point numbers
C-- to each node and then process them by calcula·ting
C-- their exponentials.
C

DO 10 NODE = 0, ·ENV(2)-1
N = 2048.0*PRANF()
WRITE(6,*) 'Sending ',N, , values to node ',NODE
DO 20 I=l,N

MSGBUF{I) = 2.0*PRANF()
CONTINUE
CALL KXSWAW(MSGBUF, MSGBUF, 4*N)
STATUS = KXWRIT(MSGBUF, 4*N, NODE, DATTYP)

CONTINUE

20

10
C
C-- Wait for the acknowledgement to come back from the
C-- nodes that have finished.
C

DO 30 NODE = 0, ENV(2)-1
STATUS = KXREAD(TOTAL, 4, NODE, ACKTYP)
CALL KXSWAW{TOTAL, TOTAL, 4)
WRITE(6,*) 'Node ',NODE,

$ , finished with result: " TOTAL
30 CONTINUE

C

C-- Now we receive the profiler results sent up from the
C-- nodes
C

CALL KCPCP
CALL KEPCP
STOP
END

239



NOTE 1.

NOTE 5.

NOTE 2.

NOTE 3.

NOTE 6.

NOTE 7.

NOTE 4.

The host program is only slightly modified for profiling. At the
end are added calls to the KEPCP and KCPCP functions which will
read the profile data dumped by the node program. We have not
instrumented this program for the execution profiler although that
would be quite straightforward.

The node program explicitly initializes the event profiler
(KEP INI) and enables the event and communication profllers
(KEPON and KCPON).

The node program ends with calls to KEPELT and KCPELT which
dump out data to the host Notice that they must be in the same
order in both host and node programs to avoid deadlock.

The profiler is always enabledwh'en this code rons. An extra
feature which could probably be usefully added is to prompt the
user for a value indicating whether or not the proftling systems
should be enabled. These flags could then be passed down to the
node program and used in "IF" statements.

The host processor plays the "master" role and the nodes are
"slaves". This is a natural division of labor and avoids the long IF
loop in the Cubix implementation.

The code for the random number generator is not showno

Notice that the host potentially has to swap byte ordering when
sending data to the nodes; a problem not encountered in the Cubix
version of the code. Another related problem which might arise is
the difference in length between data types on the host and in the
nodes. In this case the latter problem does not arise and we control
the byte ordering code with a preprocessor macro SWAP.

5.3 Host-Node program, "Node" cod:e.

*
*
*
*

C
C EXPRESS Demonstration program.
C -------

C ParaSoft Corporation, 1988
C

C******************************************************
*

c******************************************************
C
C-- Master/slave program demonstrating the use of the
C-- profiling systems. This code should exhibit some
C-- fairly decent "skewing" behavior and also load
C-- imbalance.
C

PROGRAM SLAVE

240



C
COMMON/XPRESS/NOCARE, NORDER, NONODE,

$ IHOST,IALNOD,IALPRC
REAL*4 MSGBUF(2048)
INTEGER ENV(4)
INTEGER NODE, N, I, STATUS
REAL*4 TOTAL
INTEGER DATTYP, ACKTYP

C
C-- Reserve some space for the Event profiler to use as
C-- workspace
C

INTEGER LABBUF(256) , LOGBUF(1024)
C

DATA DATTYP/2/, ACKTYP/3/
C
C-- Start up EXPRESS. This MUST be the first EXPRESS
C-- system call used.
C

CALL KXINIT
C
C-- Set up the event profiler.
C

CALL KEPINI(LABBUF, 4*256, LOGBUF, 4*1024)
CALL KEPLAB(l, 'Sending data to node', 'Node %d')
CALL KEPLAB{2, 'Received data from master',

$ '%d items')
CALL KEPLAB(3, 'Finished processing', 'Result %d')

C
C-- Get runtime parameters, processor number etc ....
C

STATUS = KXPARA{ENV)
C

C-- The host will send up to NMAX floating point numbers
C-- to each node and then process them by calculating
C-- their exponentials.
C

NODE = rHOST
N = KXREAD{MSGBUF, 4*2048, NODE, DATTYP)/4
CALL KEPADD{2, N)

C
TOTAL = 0.0
DO 10 1=1, N

TOTAL = TOTAL + EXP(MSGBUF(1»
10 CONTINUE

CALL KEPADD{3, INT{TOTAL»

~l



242

C
STATUS = KXWRIT(TOTAL, 4, NODE, ACKTYP)

C

C-- Now send back the profiling data to the host. We use
C-- the filenames that are assumed defaults in the
C-- analysis tools.
C

CALL KCPELT('cprof.out')
CALL KEPELT('eprof.out'}
STOP
END



243



Network Configuration

Using Cnftool to build multi- transputer
networks for Express



j:ra11 Introduction

M A significant feature of transputer based systems is the reconfigurability of the transputer
links. Hardware systems may be "hooked up" in a variety of different ways and optimized
for a particular problem. Express, by providing automatic message forwarding hides most
of the details of the hardware interconnect from the user. On the other hand Express needs
to know about the underlying hardware topology in order to perform correctly.

There are typically two times when the hardware configuration issues need to be ad~essed:

setting up an initial system and optimizing a configuration for a particular application.
cnftool is a ParaSoftutility designed to help in these areas.

We can divide transputer hardware into two disjoint classes. In some systems (Defmicon,
Inmos, Microway, etc.) the links are implemented with mechanical cables which must be
attached by the user. In this case cnftool provides tools to automatically explore a
network and display the interconnections. It then allows you to modify parameters of the
network at the software level. Any alterations made must be accompanied by similar
reconnection of the link cables. The second type of hardware has electrically configured
link switches which can be progranlmed to link the network in various ways. In this case
cnftool provides a "graphical editor" for the network. You can indicate configuration
changes which are then carried out by subsequent system initialization commands.

A second important use of cnftool is in conjunction with the ParaSoft performance
analysis tools. The basic procedure would be to develop and debug an algorithm on some
general topology and then to analyze its perfonnance. On the basis of infonnation gained
one can reconfigure the underlying hardware network to minimize communication
overheads. This procedure is completely transparent to the user since Express
automatically takes care of nlessage forwarding whatever the underlying machine
connectivity.

This manual is structured as follows: In section 2 we describe the issue of "topologies" and
their effect on the overall routing behavior. Section 3 is an extended example of the use of
cnftool in the construction of a typical network with a single host computer. Section 4
builds this example into a multi-host system suitable for use as a multi-user resource.
Section 5 describes some cosmetic touches which may be useful if extensive use of
cnftool is planned. Section 6 describes some of the additional utilities which are
included within cnftool and Section 7 presents a line-oriented interface to cnftool for
those users without graphics. Finally, Section 8 describes the construction of standard
networks from transputers and the underlying restrictions due to the limited number of links
on each.E2 2 Topologies and Routing Strategies

While Express will run applications of any topology there are certain issues which should
be considered when building transputer networks. The most important of these is the issue
of "deadlock-free" routing. A simple example of "deadlock" is created when every
processor sends out messages and no-one reads them. This will continue until all the
"buffer" memory on the transputer is used up and then the network will "hang" - no more
messages will be able to get in or out.

24S

Topology changes

When to use en/tool

Two types of
transputer
hardware

Performance
enhancement

tlDeadlock"



Choosing
topologies

This is obviously a rather extreme case. "Usererrors'~ of this type are unavoidable -no
system can hope to continue indefinitely under such circumstances. The problem to be
avoided, however, is that in which the network "hangs" in regular use due to inadequacies
of the underlying forwarding strategy. In this regard there are "good" and "bad'; network
topologies. Certain networks have well-knowndeadlock...free routing strategies which
guarantee that only user errors can cause problems. Express understands three such
topologies: hypercubes, two-dimensional meshes (torus), and trees.

The choice of topology is still a matter of taste. Certain algorithms may be able to take
advantage of particular configurations. We have found that, even in the most obscure
configurations, deadlock occurs infrequently. On the other hand it is quite difficult to detect
an<;l one can often waste considerable development time while searching for a non-existent
bug.

For small size machines which will be used by single users the choice of topology is not
very important. Most applications will run under Express without any problems. For
bigger machines the choice of topology becomes critical since excessive forwarding can
degrade algorithm performance significantly. It is even more important for machines which
will be shared between several simultaneous users. In this case safe routing is necessary so
that problems in one users' code do not affect other users.

A simple goal which enhances perfonnance is to maximize network interconneetivity0

HOST ...

1''''';:''''''''''''''''''''''''''"'''''''1

Figure 1. Dimension 4 hypercube with 17 transputers

From this point of view the most satisfactory network for small numbers of transputers is

246



the hypercube. Since current transputers have only four links it is impossible to build large
hypercubes - the maximum is the 17-node "hypercube" of dimension four shown in Figure
1. Note that we have to have an extra node so that the hypercube proper can communicate
with the outside world. This topology provides extremely good connectivity and significant
algorithm development has been performed on such machines.

o

HOST

1 2

6

10

Figure 2. Torus Configuration

3

7

11

4

8

The second guaranteed safe topology is the two-dimensional mesh. A simple example is
shown in Figure 2. Note that again we have a spare transputer to connect the mesh to the
host. This network has the advantage of being completely extensible. Whereas the largest
hypercube we can construct has 17 nodes a mesh can be constructed with an unlimited
number of transputers.

The tree topology, shown in Figure 3, does not provide particularly high connectivity. It is,
however, suited to certain applications and shares with the mesh the property of
extensibility.

These are the networks on which Express is able to guarantee safe routing. If one of these
can be tailored to your problem then all is well. cnftool will construct the necessary

247



HOST .-# 0 2 3-

1

Resetting any
U additional"
hardware

Figure 3. Tree Topology

configuration intonnation quite simply. If, on the other hand, your network does not fit into
any of these categories then cnftool will still be able to deal with it and Express will
run applications but with the proviso that the underlying routing is not secure: programs
which are logically correct may still exhibit "deadlock".l:! 3 Configuring Simple Networks

As described previously cnftool is a graphical utility that allows the user to build or
Mechanical vs. make modifications to a transputer network. For systems with mechanical link connectors
electrical. cnftool will be able to figure out the hardware connections in place and present them to
cofiguratlon you in an editable fonn. You can assign processor numbers, add extra host machines etc. If

your system is electrically configured you can describe any network with cnftool which
will perfonn the appropriate actions to initialize the hardware.

In this section we will discuss, in turn, the two types of hardware. To simplify the
discussion we will consider the network shown in Figure 4. In this figure we have shown
the processor numbers and also the links which should be attached. Note that no link
number is given for the host - we assume that only one connection is available.

3.1 Machines with mechanical links.

Certain hardware manufacturers (e.g., Inmos, Microway, Definicon etc.) implement the
transputer links with mechanical cables. In this case the first step inusingcnftool is to
attach the cables in some configuration. It doesn't matter at this stage if the configuration
is.optimal for your needs since· Express will be able to use it anyway but.you might want
to connect up one of the topologies that guarantee safe routing.

After this is done we must usecnftool to build the information necessary to Express.
Before starting cnftool, however, it is necessary that all transputers, other than those on
the frrst processor board be in the reset state.

To make this more solid consider again the network shown in Figure 4. If the hardware is
a single Definicon or Microway board then nothing needs to be done prior to the execution
of cnftool. The "worm" program will reset the entire network and detect all the nodes.
If, however, the network is composed of, say, an Inmos BOO4 board in one machine and a
Definiconor some other board in another then you will have to execute the single command

248



2

1

o o 3
1

1

o11:1----3
...-4

........_....
o o

1

1

Figure 4. Sample Transputer Network

exreset

on each host other than the first. This procedure sounds somewhat complex but is quite
simple in practice. Failing to reset some part of the system prior to executing cnftool is
not fatal but will result in only part of the network being detected.

In connection with this point we note that with some hardware (Definicon, Microway) it is
possible to chain the reset connections between boards so that each resets the next. If this
has been done then no special commands have to be executed before cnftool

When started, the first thing that en ft 001 does is to check for the existence of certain Running enftool
system files. The names and locations of these files depend on both your hardware/
operating system and also the way in which Express was installed on your system. The full
pathnames of the relevant files can be discovered by looking up the values of the following
customization variables:

NIFFILE This file contains a description of the interconnection between
nodes. Infomlation is also given about the way in which the various
"reset" lines are connected.

CONFILE

PLOTFIL

File containing the forwarding infonnation that Express will use to
send messages between nodes.

Describes the most recent image of the network as displayed by
cnftool.

Note that ParaSoft reserves the right to alter the contents or names of these files in any
future release of Express.

If these are detected the user will be asked whether to continue with the existing
configuration or start again from scratch. If you are merely adding features to an existing

249



The u worm"
program

network then you should elect to continue with the existing configuration.

If you elect to start again from scratch cnftool starts up its "wonn" program which will
explore the transputer links and report, on the screen~ a picture of all the nodes and links
found. The first thing to do is to check that all nodes and links have been discovered. If this
is not the case it probably indicates some problems with the associated hardware. If an
entire board is missing it is probably because it wasn't reset - you should either reread the
earlier paragraph about chaining reset signals together or else check cabling. Note one very
important point in this respect; if you elect to chain together several reset lines you should
ensure that all boards share a common earth. Otherwise the signal may not be recognized
as a proper "reset" by some nodes. At this pointthe screen should contain an image such as
that shown in Figure 5. (Note that we omit the transputer network from this figure for
clarity.)

Channel 1

Channel 3

Quit

Scroll Up

Figure 5. Basic cnftool display

Scroll Down

Scroll Left

Scroll Right

Plot Old Config.

Create Config.

Show Detail

Modify

Show System

Save

Erase

Using enftool
without a mouse The top part of the display contains a legend which describes the color coding of the

different links. We adopt the convention that the links are numbered from 0 to 3. The right
hand side of the display has a menu containing commands which are executed by
"clicking~'.If you do not have a mouse then the cursor can be ,moved with the keypad arrow

%50



keys; two speeds of motion can be toggled with the "home" key. In the main display area
the transputers are represented by squares with color coded edges. (On monochrome
monitors it may be impossible to distinguish the various links - in this case one can observe
that the "bottom" line corresponds to link 0 and the numbers increase in a clockwise
direction.) Each edge represents one of the transputer links. "Hosts" are represented as red
square with processor numbers which begin with the letter 'H'. Connections between
processors are shown as white lines. The "Dialogue Area" shown in the Figure is used to
indicate instructions and other informative details to the user. While manipulating networks
with enft 001 this area will contains details of how to perfonn certain operations.

After checking that all nodes and links are correctly shown it is necessary to create a
"forwarding table" for Express. To do this select Show System in the main menu. (On
a machine with a mouse move the cursor to the box marked Show System and press any
button on the mouse. If you have no mouse move the cursor to the same box and press any
key on the keyboard.) The screen should change to that shown in Figure 6. Selecting
Forwarding Table in the system menu will produce the menu of Figure 7.

Channel 1

Channel 3

Back

Make Reset Tree

Show Reset Tree

Forwarding Table

Show Message

Redraw

Erase

1

Figure 6. System Function Menu

At this point you have to decide whether or not your machine has one of the topologies that
Express will be able to route safely. If so you indicate this fact by selecting the appropriate

251

Selecting a
topology



Channel 1

Channel 3

Back

Make Hypercube

Make Torus

Make General

-

3
...., '"" ,~ ....'X,,'"''"''"''

2 11::::1-------4::::1--

Figure 7. Hardware topology menu

item from the menu. (l'he tree topology is included in the General case.) As you do this
the word WORKING should appear in the "Dialogue area" just below the legend. When the
system has completed its configuration WORKING will change to DONE. At this point
selecting Back from the menu will return to the previous level. Notice that you can always
select the Make General topology. This will cause Express to use a minimum distance
path when communicating between processors.· Careful examination ofFigure 7 shows that
our demonstration network is actually connected as an 4-node hypercube so we could select
Make Hypercube in order to guarantee safe routing.

The next thing which needs to be created is the "reset tree" - a path through the nodes over
which the reset signal will propagate. cnftool can create this automatically by selecting
Make Reset Tree from the menu. Again you should see DOING and DONE messages in
the dialogue area.

The reset tree which has been generated will always be correct for both Definicon and
Microway hardware but may not be correct for Inmos systems. The best solution in this
case is to defer the connection of the hardware resets until after cnftool has created its
path. At this point you can complete the connections according to the image generated by

252



selecting the Show Reset Tree item from the menu. In this display the red lines indicate
the path followed by the system reset while the blue lines show the subsystem reset (Note
that you can safely connect the reset lines while the machine is operating: cnftool will
not attempt to interact with the transputers.)

After generating the reset tree and connecting the reset connections, the configuration
infonnation should be saved. To do this click on the Back icon and go to main menu. In
this menu select on Save. cnftool will save relevant infonnation in system files such
that further invocations of cnftool will be able to begin with everything set up correctly.

If your machine has only one host you may quit at this point by clicking on Quit and
initialize Express with the command

exinit

Even if you eventually intend to connect multiple hosts to your system it is a good idea at
this point to check that everything is working correctly and that the machine can be
initialized. When you are happy with the current configuration proceed to Section 4.

3.2 Electrically Configured Machines

If your hardware has electrically configured links (Levco, Meiko, etc.) then a wonn
program should not be used to detect the current hardware configuration. Instead we can
use cnftool as a graphical editor to construct custom hardware configurations. Even if
your hardware has mechanical links it might be wise to read the description of this section
since it covers several of the manipulations that occur frequently while using cnftool.

Having started up cnftool you may be asked whether to continue from some previously
saved configuration or start afresh. In this section we will assume that we are starting from
scratch.

The network description we will create consists of three elements: transputers, hosts and
channels or links. The transputers represent the nodes of your machine and each has a
unique processor number. Hosts represent computers like MS-DOS or UNIX pes, SUN
workstations, VMS machines, Macintoshes, disk servers and graphics servers, AID
converters etc. Links or channels represent the physical connections between transputers
and hosts. OUf convention is that a transputer is presented as a green square with colored
edges and an identifying processor number. Hosts are represented by red .squares
containing the letter 'H' followed by the number identifying the host. Links are represented
by white lines. The colored edges of the transputers represent the different links as shown
in the legend. A host can have a link connected to any edge, but it can have only one link
connected to it.

To begin creating your new configuration select the Modify icon which will display the
menu shown in Figure 8. There are three primary entries: Modify Hosts allows you to
add, delete and move host processors in the configuration while Modify Transputers
allows similar operations to be perfonned on transputer nodes. Modify Channels allows
you to create and edit links between transputers and hosts.

To create the topology shown in Figure 4 we will begin by creating the host. Click on
Modify Hosts and then Add Host on the subsequent menu. In the dialogue box will

253

Saving the
configuration data

Loading Express

Designing
topologies on
machines with
electrical
connectors - COO4s

Creating a new
configuration



I'

Channel 1

Channel 3

-
Back

Modify Transputer

Modify Host

Modify Channel

Grid OnlOff

Redraw

Erase

Figure 8. "Modify" menu for network creation and editing

appear the instruction to

Indicate where the host should be placed

If we select, by clicking, a position such as that used in Figure 4 then the display should
look like that shown in Figure 9.

Now we select Back to return us to the main menu.

The next operation should be the creation of the individual transputer nodes. SelectModify
Tran~putersandthenAdd TraI)s;Quter. The dialogue box will instruct you to position
the first transputer which will be assigned the processor number ,0. By default this node will
be reset by "Host 0". To add successive nodes repeatedly select Add Transputer, placing
them as shown in Figure·lO.

While adding the transputers a new feature will become evident After positioning each
node on the display you will be asked to

Please click on the transputer which resets this one

Inmost cases this can safely be ignored and any processor can be indicated. In certain cases,
however, where the reset tree is explicitly connected at the hardware level you must be
certain to indicate the correct node in the reset tree.

254



II

Figure 9. Adding a host to a transputer network

m-:: 2
.,•........ :.:•....:.: .

r:tLid

~~

Figure 10. Adding transputers to a network

After creating all four transputers you should select Back to return to the main modi fy
menu, Figure 8.

To complete our description of the system we need to connect the transputer links. To add
links select Modify Links and then Add Channel. The fIrst channel we will add is that
between the host and transputer O. After selecting Add channel the dialogue area will
instruct you to

25S



Click on transputer or host to start link

You may choose to click on either the host or transputer 0 to create this link. If you select
the host the instructions will change to

Please click on channel to start link

. Click on the right edge of the host square. Next you will be asked to

Click on transputer to end link

Click on transputerO. Finally you will be asked to

Click on channel where to end link

Click on channel zero of transputer 0; th,e red edge. If you did everything correctly the
picture will appear as in Figure 11.

11111100--·13

Accuracy with the
mouse

enftool's
numbering
algorithm

Figure 11. Adding a Host-Node link to a network

If for any reason the phrase

Please press right button to exit

should appear in the dialogue area it indicates that you did not click near enough to
something; try again.

Having made a link between the host and the fIrst node we can proceed similarly to make
the other connections. If we continue to add the link between nodes oand 1, however, a
slightly strange things happens. Notice that we have to be very careful in selecting the
correct links according to the color coded legend at the top of the screen. After connecting
link 0 of node 0 to link 0 of node 1 we see the display of Figure 12.

We notice that this doesn't look quite like the corresponding link in Figure 4 because the
two nodes appear to be oriented incorrectly - link 0 is at the bottom .of both transp.uters

256



Figure 12. Adding a Node-Node link to a network

rather than on the uinside" where we want it to be. This is a fairly co~on problem 
nothing is actually wrong with Figure 12 as it stands, but it looks messy. To tidy things up
select Switch Channels from the menu. You will be prompted to indicate the transputer
on which you wish to operate and then on the pair of channels that you wish to exchange.
Swapping channels 0 and 3 on node 0 will make the picture shown in Figure 13.

m··r 2
•. / ~ .

II

Figure 13. Swapping channels on a single transputer

257



The minimal
cnftool procedure

Notice that we are now partway to Figure 4. Swapping links 3 and 1 on node 0 and links 0
and 1 on node 1 will produce the "nicer" picture.

Repeating the previous steps for the other links in the network should finally lead to a
picture similar to that of Figure 4. We have now finished creating network components and
can now construct various system structures such as the "forwarding table" and "reset tree".
To do this keep selecting Back until you reach the main menu and then select Show
System. The instructions of Section 3.1 should guide you through the relevant operations
up to, and including, the exinit command which should start up Express in your newly
configured hardware.

3.3 Minimal use of cnftool

Since using cnftool is rather important and the effects of mistakes are sometimes quite
difficult to understand this section lists the minimal set of operations which are necessary
for the successful operation of the system.

The easiest use of the system is obtained by giving the command

cnftool -p

which avoids the mouse interface entirely. You are still prompted as to whether you should
start afresh or continue with the existing data but the "wonn" program should find all the
nodes and the only remaining question will concern the overall network topology.

If you wish to make use of the graphical interface the problems you may fmd will be
connected with omitting some part of the cnftool procedure. The following list of
commands should, therefore, be executed whenever you wish to terminate a session with
the tool to ensure that the correct disk files are created· and that all system infonnation
actually reflects the system you have been modifying on the screen.

Show System

Create Reset Tree

Create Forwarding Table

Make General

Back

Back

Save

If you follow this procedure whenever leaving cnftool you should never leave
inconsistent system files. Occasionally, however, problems.· may·· arise which do leave the
system in an inconsistent state. The most common problem concerns the "wonn" which
may not work properly on all types of hardware. In this case the image on the display may
not be correct because the plotting file has not been created properly. (This file has the name
given by the PLOTIL customization variable - see the documentation for excustom for
more details.) A simple solution in this case is to merely delete the plotting file and restart
cnftool. This forces the recreation of an image which corresponds directly to the
infonnation currently stored in the other system configuration files.

258



i:JlIc1 4 Configuring a Multi Host System

M Express has a very general definition of a "host". Essentially any machine or board that is
capable of talking to the main transputer array can be a host. In most cases this will be a
workstation or personal computer running one of a variety of operating systems: MS-DOS,
UNIX, XENIX, VMS, Macintosh, etc. This type of host provides fundamental operating
system resources to the transputers such as tenninal access, editing, printing, file systems
and others. A second type of host is a "server" connected to the transputer network. These
machines typically offer either disk or graphical sexvices or external data streams such as
from signal processing or AID convertors and may, again, be almost any type ofcomputer,
including transputer based systems themselves.

In the case of a multi-host machine one must be selected as the "master console". This will
be the place from which the whole network will be initialized. The sole restriction on this
choice is that it must be running a native operating system rather than a "server" process 
it must be capable of executing the command which resets and reloads Express. By default
this host will have the number 0 as indicated in the previous figures.

As an example of as multi-host system consider that shown in Figure 14. We assume that
we have two MS-DOS PCs each with a four node transputer system. While the two systems
could be used independently Express offers the capability to connect the systems together
and share the parallel computing resource. To do this we have to add two additional
connections as shown: a common ground and an additional transputer link. If there is no
common ground the reset signal cannot be guaranteed to propagate from one machine to
the other. The extra transputer link is the medium which will be used to communicate
between the two halves of the system. Note that we could connect more than one additional
link between the transputer boards thus increasing the communication bandwidth.

Before connecting links on transputer products from different vendors it is important to be
sure that the same link standards are being used. Most transputer manufacturers use
standard TIL links. A few, such as LEVCO, for example, use RS434 links which cannot
be connected directly to TTL types. Before connecting different vendor's hardware,
therefore, it is a good idea to check that similar standards are in use and whether or not
suitable converters are available.

For the sake of the next discussion we will assume that PC-I has been nominated "master
console".

To set up this system we can use cnftool to detect the hardware configuration with its
"worm" program. Before doing this however we must consider the "reset problem" alluded
to several times. In the simplest scenario we make no attempt to connect the reset lines on
the two boards. We have to execute the

exreset

command on PC-2 to reset its nodes. We then start up cnftool from PC-I. If, on the other
hand, the reset signals have been linked together we need not do anything on PC-2 and can
go ahead with cnftool on PC-I.

As usual cnftool will look for an old configuration and, if found, ask you whether to
proceed with it or start afresh. To make use of the "wonn" you should choose to start again.

259

The client-server
model of
processing

Hardware issues in
connecting
multiple
transputer boards



Common
Ground

11111111

II II II 11---.-...

Figure 14. System with multiple hosts

Transputer
Link

After a couple of seconds your screen should display something similar to Figure 15.

~'"",,-" ""<

i 7 u
,....

3

Troubleshooting
systems with
multiple
transputer boards

Figure IS. Multi-Host system as described by the ''worm''

Ifyou do not see all the transputers connected to your network this may mean one ofseveral
things:

• Boards from different vendors may have incompatible link standards.

• The link connecting the two (or more) boards together is not connected
correctly. In this case several transputers may be missing.

• The reset signal did not make it to some board. In this case an entire part of the

%60



network will be missing.

• Some of the transputers are defective. Sometimes individual nodes are missing
which probably indicates defective hardware. Occasionally mismatched link
speeds also cause this problem. (We nearly always generate configurations with
all links set to 10 Mbit/sec. When the network is working correctly the speeds
are carefully upgraded.)

You should make sure that all links are correctly connected and that the above mentioned
precautions have been taken with the "reset" lines.

Note that Figure 15 does not contain the second host, PC-2. We have to add this manually
by the procedure described in the previous section: select Modify, Modify Hosts and
Add Host and then follow the instructions from the Dialogue Area. Be careful that you
connect the host to the correct transputer and link! It is quite easy to make mistakes in this
area since the "wonn" program may not have numbered the processors in the same manner
as you expect ... particularly if you are connecting two systems that used to be used
separately.

After adding all necessary hostllinks/nodes by hand you must construct forwarding tables
and a reset tree in the manner described in Section 3.1 It is probable that your network
topology selection is now Make General - even if you began with two four node
hypercubes it is unlikely that the combined system has the correct configuration for an 8
node hypercube. (You can, of course, construct this network by hand if you need safe
routing.) One thing which may be useful is the Show Reset Tree option. If you began
working by manually resetting the various boards with the exreset command then you
can have cnftool build and show you a "reset tree" that you can then hook up with the
appropriate cables. Then you will be able to reset the system from the "master console"
without having to exreset the other hosts.

After completing all the necessary book-keeping tasks you should return to the main menu
and Save the current configuration. Now you can exit from cnftool and try to initialize
your machine from the console by typing

exinit

If your network refuses to load Express properly the most common source of error, we
have found, is with the reset signals. This is, unfortunately, a rather tricky area and varies
quite a lot with the particular hardware you are using. If your problems persist give us a call.

The last step of the configuration procedure is to check that the second host understands the Adding and
network. To check this try typing debugging the

connection ofa
exstat second host

from the console of PC-2. It will report the number of nodes and hosts in the system. In our
case we should see

Total nodes: 8, Allocated 0,
Number of hosts in the system: 2.

If all is well your system is now running Express on all 8 nodes with two hosts. The
benefits for user programs include:

261



• Twice as many nodes to pick from: we can run on up to 8 nodes at once or
merely share space with another user on the other console. If 6 nodes are already
allocated, for example, we can use the other 2.

• Transparent access to the file systems on either host through the cubix
commands and servers. We can redirect operating system requests to either host
.. even if it is executing an entirely different operating system!

• Use ofeither machine as a graphics server. We can run from one PC and redirect
our graphical output to the other.

• Debugging from either console. If we have an application that, for example,
mak~s use of the Plotix system for graphics it will be difficult to debug with
ndb on one PC since it will overwrite the display with pictures. We could,
however, run the debugger from the other host leaving the graphics alone.

E:3: 5 Cosmetic Improvements

While logically correct the network shown in Figure 15 is quite hard to understand - several
links track horizontally across the picture and it is not clear where one finishes and the other

Making cnftool begins. cnftoo 1 contains facilities for improving the legibility of the image. Each of the
clean up its image individual "Modify" menus has already been used to create new network components. You

may have noticed, however, that each also contains commands to "move" or "delete"
objects. The former command ask you to select an object to move and then lets you select
new positions for it in the Display Area. No configuration chan.ges are made. The Udelete"
options, however, do cause configuration changes in that links to removed nodes/hosts are
discarded.

As well as moving hosts and nodes around there is another facility for altering the
appearance of the links. The most common problem has already been addressed -you can
"swap links" as shown in Figures 12 and 13 to improve the display. Another common
problem which is not as easily solved is that shown in Figure 15 - some of the links lie
across the nodes making it unclear who is connected to what. To alleviate this problem you
can make "nodes" in the links - i.e., bends in the lines. You can then make the links move
away from their straight line paths allowing easier understanding of the network. Simple
combinations of these two procedures yielded Figure 16 from which the u,nderlying
network is much clearer.

Note that you should .Save the enhanced picture in the main menu before exiting
enftool so that you can add more' features to the network by starting from the cleaner
image.

~r6 Displaying Routing Information

Since enft 001 knows all the details of the routing strategy on a particular network it can
be used to show the paths taken by messages through the machine. This can be both auseful
debugging tool and also a guide to enhancing perfonnance by alleviating obvious message
bottlenecks. The normal procedure in such a case would be to develop an algorithm on

Examining routing some simple network and then use the ParaSoftprofiling tools to examine possible sources
data

of inefficiency. If the network topology is considered inadequate thencnftool can be

262



7
•..~.m••..•"""."=,~..•. ·,:

o

5 4

3

Figure 16. Multi-Host network after cosmetic improvement

used to display the message forwarding strategy as follows:

1. Start up cnftool. Choose to work with the current configuration files
rather than beginning anew.

2. Select Show System from the main menu and then Show Message
from the subsequent menu.

3. In response to the prompt in the Dialogue Area indicate two nodes between
which you wish to communicate. cnftool will indicate the forwarding
path from the sender to the receiver.

Notice that the path is shown assuming that the first node selected originates the message
which is to be received by the second. This is potentially important on networks where
different paths are used between two nodes depending on which of them sends the message.

Another potentially important structure is the "tree" through which messages are broadcast
by the exbroadcast system call. The path taken by a broadcast originating at any node
can also be examined from the Show System menu by selecting the Show Broadcast
option. Again the user is asked to indicate the node which originates the broadcast and the
corresponding path is indicated.

l:3: 7 cnftool without graphics

The simplest use of cnftool is obtained through the graphical interface described in the
previous sections. If, however, you do not have a supported graphics device or are unable
to use it for some reason a simple line interface is available - essentially one types in
manually the required infonnation about processors and links. This procedure is,
unfortunately, somewhat tedious but may be necessary in some cases.

In order to present a concrete example of the configuration procedure let us consider the
"tree" configuration shown in Figure 17.

In this diagram the transputers themselves are indicated by the numbered boxes with the
interprocessor links shown by the solid lines. At each end of a "link" is indicated the
channel number to which it will be connected on the appropriate transputer. Notice. that

263

Designing a
network without
pictures



HOST ..... 0 0 2 0 2 1 0 3......

1

0

1

Constraints on
what you can build

Figure 17. Sample configuration for manual entry

there is no requirement for this number to be identical at both ends of a link. Also note that
we have indicated a link which is connected to the "HOST'. This is the machine which will
be responsible for loading the Express system and your applications and which will be the
default system for resolving file names and producing graphical output You will find it
much easier to configure the system if you have such a picture of the network you wish to
design in front of you. We will only connect this single host in this example ... more can
easily be added. Also notice that the transputers are numbered consecutively, from O. This
is one of the constraints implicit in the system - more details are contained in Section 8.

To configure Express for this topology and execute the command

cnftool -p

As in the graphical case you may be asked whether you want to proceed from an existing
configuration or begin again. It is nonnally simplest, in the absence of graphics, to start
afresh.

Initially you will be asked to indicate the number of transputers in your network. Respond
with a number and a Return, e.g.,

4 Return

for the example shown in Figure 17. Note that we do notco-unt the host.

Next you will be pronlpted (0 enter specific infonnation for each transputer in the network.

The first question for each node is its "logical number". This is the number indicated in the
boxes of Figure 17. Again, for the sake of argument we will begin entering the data for node
Oso we would enter

o Return

The next question requests both the number of the parent node (that which resets and
"boots" the current transputer), and an indication about whether the "system" or "sub
system" output of the parent controls the reset for this transputer. This is the trickiest part

%64



of the configuration process because of the "system" and "sub-system" concept and the
rules governing the actual loading process. Basically the rules can be summarized by saying
that we have to be able to draw a binary tree through the transputer network - i.e., there can
be at most two legs coming out of any node. One leg represents the "system" reset and the
other the "subsystem". If only one leg comes out of any node it must be the "system" reset.
A sample tree which we will use in our example is shown in Figure 18.

HOST~~--O....
~

o

1

2 0

~
2 1 0 3

1

o
~ System Reset

Figure 18. Net\vork with superimposed reset tree

On some types of hardware the "reset" controls being described here are actually part of the
hardware itself while in others all the reset signals are connected together with cables. In
the fonner case the reset network being described must match that of the hardware while in
the second the infonnation is only required to load the network with the operating system.

cnftool asks two questions about the reset system at each node. The first requests the
identity of the parent node and the second whether we are connected to its "system" or
"subsystem" reset. In our example we would enter

-2 Return

1 Return

in which the first answer indicates that node 0 is to be reset by the host processor (with the
"magical" node number -2) through its "system" reset. (In this case we have little choice
since the host has only one link to the transputer net.)

The last information requested about the transputer concerns (surprise, surprise) the nodes
to which it is to be connected. Since each node must have a direct link with the node which
boots it one link entry must have the same node number as the parent field given earlier.

cnftool asks, in turn, about each of the transputer links. If that link is connected to
another node we enter the node number of the connected processor. If no transputer is

26S

The ithost" as
processor number 
2, in cnftool ONLY



connected enter "-1". The answers we would give for node 1 ofour network, therefore, are

-2 Return
1 Return
2 Return

-1 Return

(Link 0)
(Link 1)
(Link 2)
(Link 3)

i.e., link 0 goes to the host, link 1 to node 1, link 2 to node 2 and link 3 is unconnected.

We have now described everything necessary about node I. Other parameters, such as the
particular transputer type or the size of its local memory will be determined automatically
by the system.

cnftool will now prompt you to enter similar data about the other transputers in the
network. Rather than go through the laborious details of explaining. the various responses
we merely present the correct answers. Hopefully their meaning will be clear.

Node 2: 1 0 1 0 -1 -1 -1

Node 3: 2 0 1 0 3 -1 -1

Node 4: 3 2 1 2 -1 -1 -1

After finishing the final transputer entry cnftool asks for a suggestion as to what type of
topology you have described. The allowed possibilities are: torus, hypercube and
general. Obviously the last alternative is the "fall-through" - any network which doesn't
fall into the fIrst two categories fits here. In order to answer this question correctly one has
to be slightly flexible about ones definition of tenns since the transputer has a limited
number of links. The details are given in Section 8.

/lDeadlock" free If your network confonns to one of the two special configurations then you should indicate
routing so in your response to cnftool. If not then indicate a general topology. The important

difference between the classes is that Express GUARANTEES deadlock free routing on
both torus and hypercube meshes - your program can send messages to whatever nodes it
wishes (up to the limit on kernel buffer space) with no possibility of"hangingn the machine.
The general topologies, however, cannot be guaranteed in this manner. (One common
exception to this are the "tree" structures like that of Figure 17 which also have safe
routing.)

This completes the configuration procedure. From the·· information just entered· Express
generates two files called run. nif and confile which describe the network and
forwarding strategy to be used on it. At this point you can go ahead and re-Ioad the system
with the exini t command and proceed as before.l:!.·8 Transputer Variants of Standard Topologies .

The transputer has only four links. As a consequence certain common computer networks
have to be modified slightly before they can be implemented on transputers. In this section

The transputer we will discuss the construction and restrictions on the "hypercube" and "torus" topologies
Utorus" topology on which Express guarantees safe routing.

The transputer variant of the 'torus' topology has already been shown in Figure 2. It is a
generalization of the usual torus; edges are connected periodically with. the exception of the



General

"spare" transputer between the host and the 'torus' proper. This extra node is required to
overcome the problems inherent in having only four links. This topology is very good for
simulations in two physical dimensions or for general use.

The second special network is the hypercube such as that shown in Figure 1. Again notice
that we have inserted a "spare" node between nodes 0' and 1 so that the outside world can
communicate with the main array. Note that we can actually construct lower dimension
hypercubes without cheating in this way: dimension 0, 1,2 and 3 hypercubes will have their
usual elements and numbering schemes - only the dimension four case causes problems.
Dimension 5 and higher hypercubes cannot be built from current transputers. (Unless, of
course, you consider a "node" to have more than one transputer.)

For reasons too hideous to discuss in this document there are certain restrictions on the
numbering scheme you may use in describing your transputer network. One which may
already be apparent is that the numbers you specify in describing the network are not
simply related to the node numbers you use in conjunction with the Express system calls
exread, exwr i te etc. The most obvious reason for this discrepancy is that Express
allows several users to share the nodes in the array. Each user gets an independent set of
nodes which are numbered logically from zero. In this case there is no relationship between
the numbers given cnftool and those used by the user, nor should there be. In the more
elementary case where one user has all the nodes the mapping is simple; the number given
cnftool is the same as that used in exread. (The exception to this rule is the host which
has the magic value HOST).

As well as these oddities the individual topologies themselves also have certain numbering
restrictions associated with the "bootstrapping" procedure. These are as follows:

Torus The node connected to the host is numbered 0 and then processor numbers
increase row-wise as indicated in Figure 2. There must be an equal number
of nodes in each row and in each column (although, of course, the overall
network need not be square). The exception to this rule is the [lISt row which
contains the "spare" node. Link 3 of the spare node should be connected to
the host.

Hypercube The node numbers of the actual hypercube nooes must satisfy the usual
numbering pattern. The "spare" node on the four dimensional hypercube
will be numbered 16 and must be connected between nodes 0 and 1. On low
dimensional systems link 3 of node 0 should be connected to the "master
console". On the four dimensional system link 3 of node 16 should be
connected to the host.

Node 0 must be connected to the host.

267

The transputer
I#hypercube"
topology

Numbering
problems with the
IIstandard"
topologies



Customizing Express

Modifying the installation, size andper~

formance of Express with Excustom



i:JIj 1 Customizing Express

M When Express systems are shipped they contain default infonnation which has been found
to be appropriate for a wide variety of applications. This infonnation relates to the setup of
the Express system on the target host, the operation of the "tools" used while creating and
evaluating Express programs, and the runtime behavior of Express applications.

The customization system allows for explicit modification of most important Express
system parameters with the explicit goal in mind of gaining maximum perfonnance from a
given parallel processing system. A secondary goal of this system is to allow users the
ability to install Express in any place on their machines and for third-party software
developers to build Express into their applications without the need for a complete
Express installation.

This chapter is divided as follows. Section 2 describes the customization file which is the
central component of the customization system. Section 3 discusses the excustorn tool
which is used to modify the information contained in the customization file. Section 4
describes the Express buffer management policy and the impact of changing the buffer
sizes/allocations. Section 5 discusses the important issue of Express' usage of the
transputer's memory. This infonnation is crucial to anyone wishing to gain a better
understanding of their program's performance or trying to use the advanced debugging
tools present in Express. Section 6 lists the various customization parameters and their
exact meaning. This is the major reference for those users whose needs are not adequately
setved by the simple excustom tool provided to modify high level system parameters.
Finally, Section 7 describes the mechanisms used to locate the default system configuration
under various operating systems.E2 2 The Express "Customization" file

An Express system is characterized by a set of variables which describe how the various
tools, subroutines and even the Express kernel operate. These values are maintained in a
database known as the Express customization file. Every installation of Express must
have one of these files whose contents vary widely with the type of the underlying system.

The customization file is a line oriented ASCII file which contains definitions of important
system variables, one to a line. Lines beginning with either' ; , or ' #' characters are treated
as comments. Other lines take either of the symbolic forms

NAME=text
MACRO:=text

As is suggested by the above notation the former type are merely assignments to Express
system parameters while the second define macros that may be further used in the
customization file to simplify definitions of multiple related objects. A good example might
be the default start-up infonnation required by the debugger, ndb. As part of its
configuration information it needs to know the location of the on-line help facility and also
the system start-up file which contains the definitions of system commands. Since these are
often in the same or related directories one might imagine two entries in the customization
file of the type

269

Obtaining
maximum
performance

The operation of
Express

The customization
file

Macros make
installation
changes easy



Modifying
Express
parameters

NDB_HELPDIR=c:\parasoft\help
NDB_STARTUP=c:\parasoft\lib

These entries could, however, be replaced by the lines

PARASOFT:=c:\parasoft
NDB_HELPDIR={PARASOFT}\help
NDB_STARTUP={PARASOFT}\lib

While three lines may seem more complex than the original two the use of the PARASOFT
macro means that the Express system can be moved from one directory to another by
simply changing the macro rather than each line of the customization file.

As has been implied by the above discussion the operating parameters of Express can be
simply modified with a text-editor or word processor by locating the system default
configuration file, modifying the appropriate parameters and reloading Express. This
process is indeed all that is required although it mandates an explicit knowledge of the
meanings of the variable names. These are discussed in Section 6.

Finding the The most tricky aspect of this entire discussion is the location of the customization file
customizalionfile itself. While Express provides a simple function call that programs can use to direct

attention to a particular file every system contains a default configuration whose name must
either be known in advance to Express or which can be indicated at runtime. The exact
mechanism is somewhat complex and is discussed in detail in Section 7.l2 3 Modifying System Parameters with excustom

As was previously indicated a simple, though inelegant, method for modifying the
configuration information of Express is to use Section 7 to locate the default configuration
file and then the definitions of Section 6 to find out which values are used for which
purposes. One can then edit the configuration file with some text-editor or word processor,
reload Express and continue.

Since this process is somewhat tedious, especially for those users who do not need to
configure individual entries, an Express tool is available which automates this process:
excustoffi.

excuslom

The exact operation of this tool is dependent upon the exact hardware in your system and
the operating system running on the host so it is possible that some~,ofthe details discussed
here will be irrelevant on your system.·Theaccompanying discussion sho·uld,however,be
enough to indicate· the general principles.

The. basic idea of excustom is to offer you the chance to modify the most important of
the Express variables along with defaultsbasedeith,eron the current system values or
some "sensible" defaults. If you are operating Express from a simple tenninal with a
conventional "line oriented" interface you can invoke the system with the command

excustom

Y·ou will be prompted to modify the values of the various system parameters individually.
If you don't wish to change any particular value just use the "Return" or "Enter" keys at the
prompt without entering any text.

%10



An example dialog, taken from MS-DOS, might be as follows:

What kind of machine are you uS'ing? [STD_LINK]
Where is your compiler located? [c:\logc]
Where is ParaSoft's home directory? [c:\parasoft]
How many buffers per transputer node? [100]
How many buffers on the host? [20]
What size buffers? [1024].
Where is the Express kernel be loaded? [ffffffff]
Do you want to modify link adaptor parameters? [y,n]
Do you wish to use DMA? [y,n]
Do you wish to use a "block move" interface? [y,n]
Do you wish to enable accounting? [y,n]

In each case we can see that the user input, which would nonnally follow the ' : ' character
is empty indicating that the default action should be taken. In most cases this is indicated
by the value in brackets although it defaults to "no" for the simple questions.

Notice that the number of questions asked is somewhat less than the number of entries in
the customization file. This is because of the macro facility described in Section 2. Instead
of asking questions related to everyone of the file related Express options we merely ask
about the root of the Express and compiler installations and derive the other information
with macros. If you wish to change individual file entries the customization fue must be
edited by hand.

The default values offered in the above customization example would be obtained by
reading the current customization file. This allows incremental modification of a
developing system. If you wish to restore your system to its "factory settings" then you can
invoke'the tool with the command

excustom -r

which tells the system to "reset" its default values when prompting you. Finally you can
modify files .other than the default system configuration by naming them on the command
line

excustom mycustom

would modify the contents of the customization file called mycustom. In this way
applications or individual users can maintain their own customization files independent of
all others.

In windowing environments such as MicroSoft Windows, SunView or the Macintosh
excustom presents a "dialog box" interface in which the various customization options
are offered simultaneously for editing. Various buttons are provided to maintain the
functionality of the line-oriented interface - a "reset" button is usually available which
makes all parameters assume their default values.

l:3: 4 Express buffers

Three of the most important questions asked in the customization process are related to the
manner in which Express uses buffers.

271

An example:
MS DOS

Default values



Expressis
ltpacket switched"

Overheads and
how to avoid them

Controlling buffer
allocation

Running out of
memory

llDeadLock"

Express is a packet oriented communication system. What this· means is that when you
send a message between processors Express breaks it up into fixed size pieces and
transmits each individually. While the exact reasons for this are somewhat complex it can
be shown that such "packetizing" systems are more reliable under heavy mess.age traffic
than those which send all messages as single blocks.

Obviously the process of breaking up a message into, for example, 1024-byte chunks,
sending each full block and then sending any remaining bytes' takes some time. (Note that
a 1025 byte message, in this example, would be sent asa.l024-byte packet followed by a
single byte, not as two l024-byte packets.) In order to optimize the behavior of your
applications the buffer size to be used can be changed through thecustomization system.
If, for example, you know that the maximum sized message that your code will ever send
is 3000 bytes then it makes some sense to tell Express to· use buffers at least this big.
Notice, however, that you can go too far. If you tell Express to use 64 Kbyte buffers all
the time you are getting close to the position of telling it to ALWAYSsend messages in one
chunk, however large. This technique can fail in heavy traffic if insufficient memory is
available to send/receive messages.

In connection with this buffer size parameter one can also indicate the number of buffers to
be allocated in both the transputer nodes and the host processor. The fonner is to allow you
the freedom to use the node's memory as effectively as possible. By default, for example,
Express allocates 100 buffers of size 1024 bytes. 100 Kbytesofmemory is therefore used
on each transputer node for the Express communication system. If your program is short
of node memory you might want to reduce the number of buffers in each node. In particular,
if you wish to increase the size of the individual buffers you might want to make fewer of
them in order to not use up too much node memory.

IMPORTANT: The size and number· of Express buffers
does not affect the ability of the system to send large
messages since every message larger than a single packet
will be automatically broken down into smaller ones.

An important issue connected with buffer management is the question of what happens
when Express ronsout of buffers.

In the most senseless case one can imagine a configuration in which there are, for example
20 node buffers each of size 1024 bytes fora total.of 20 Kbytes. Now let us assume that
every node attempts to send a 10 Kbytes message to node 0, and no attempt is made by node
o to read any of the messages. If we have four nodes then this will result in 30 Kbytesof
data arriving at node 0 which has capacity ·to handle only 20· Kbytes. At this point the
machine will almost certainly "hang"· - no further communication is possible. What has
happened in this case is that each node starts sending out 1024 byte packets to node O.
Eventually node 0 will run out of space to store th,ese packets and so the nodes attempting
to transmit and/or forward messages to node 0 will have to stop. At this point no further
message traffic is possible which has to be routed through node O. This "deadlock" situation
will then backtrack out towards the other nodes in the system and each in tum will have to
stop and wait for the blockage at node 0 to disappear.

If we modify this scenario slightly by having node 0 try to read the incoming messages



with, for example, the wildcard DONTCARE value for the message source, then things will
(probably) work out much better. Now the nodes dispose of their data by sending it out
towards node 0 which is actually consuming packets as they arrive. Now there will be
enough space to buffer the incoming messages and the machine will not "deadlock". Notice
that everything works out correctly even though the capacity of node 0 to handle its
incoming data is still smaller than the amount of data being transmitted. If the buffers
temporarily become full in node 0 some other node may have to suspend its operation while
space is made available on node 0 but it will then continue automatically.

Notice that it is still possible to create impossible situations. Let us suppose that node 0
decides to read the incoming messages in some specific order: node 3, node 2 and then node
1. Furthermore let us assume that due to some timing situation inherent in the program all
ten buffers from node 1 arrive before all ten from node 2 which, in turn, arrive befo~e any
from node 3. Again we have a "deadlock" situation since the capacity of node 0 is
exhausted by the messages from nodes 1 and 2 but the message requested for reading i~

from node 3. Since node 3 cannot find space on node 0 to store any of its packets it will stop
and wait, forever. In this case we can trivially remove the deadlock by allocating 21 buffers
on node O. In this case we are guaranteed that node 0 will have at least one space available
for the incoming message from node ~ and so the system can proceed.

If this discussion has only persuaded you that buffer allocation is too difficult a problem for
the human mind you may be correct. The question of exactly how many buffers to allocate
is an extremely complex one depending on the algorithmic demands of the application the
operating characteristics of the hardware in use and the topology in which the network is
connected. Simply because of this difficulty Express provides the user with the ability to
choose the various operating parameters because they do playa role in optimizing program
performance but cannot be predicted beforehand.

One area of central importance in this field concerns the host interface. On most current
transputer systems the host-node link is much slower than the node-node links. As a result
the host reads messages much more slowly than the nodes. While this would probably
suggest that a large number of buffers should be allocated on the host one is often limited
by the amount of memory available. To attempt to allocate 100 Kbytes on a DOS machine,
for example, would meet with certain failure. To cope with' this situation, on the host
processor only, Express writes extraneous messages to disk if they cannot be processed
immediately. This is an extremely slow process which can slow down the program to a
crawl. (One way of seeing this happen is if your program slows to a virtual halt and the disk
activity light starts flashing continuously.)

A simple way to optimize in this case is to make sure that the messages arriving at the host
can be processed immediately. While this requires some discipline on the part of the user
program it is often quite easy to achieve. Note that it is not enough to simply read all
messages on the host with the wildcard DONTCARE value for the message source and type.
To see this consider the case where the Express packet size has been set to 512 bytes and
the incoming messages are of length 1024 bytes - i.e., two packets each. Since it is not
possible to guarantee the order that packets arrive from different nodes we can now make
the worst case assumption that the first packet of the message from node 0 is immediately
followed by all the other packets being sent from the other nodes, and then finally by the

273

The Uhost" and its
special problems

Optimizing the host
interface



The default
memory map

Why use faster
metnory?

second packet from nodeO. On receipt of thefrrst packet from, node 0 the host becomes
committed to reading the rest of that message before accepting any others so the next few
packets will be buffered in host memory and th·en will begin spilling over to the disk.
Finally the host will see the last packet from node 0 which will complete its message but it
will now be forced to examine the disk ,overflow area for subsequent messages with the
resulting loss in speed.

Note that the scenario in which the host always reads with wildcard values AND the packet
size is set to be greater or· equal' to the length of the largest message to be sent DOES
guarantee that no disk activity will occur.tS S Express and the Transputer Memory Map

Because of the nature of the transputer's hardware a particularly important optimization is
the use of the node's fast on·chip memory. In order to understand the mechanisms which

Optimal use ofthe are useful in this respect we must first examine the way that Express is positioned in
hardware; fast memory and how it loads user programs.
on-chip memory

On the left of Figure 1 is shown the default location of the important system components
when Express has been loaded and a user program is running. At the top of memory lie
the Express buffers, occupying the space required by the parameters set in the
customization file. Just below this lies the Express kernel itself. At the bottom of memory
lie the crucial parts of the transputer hardware, the link registers, the scheduling queues, etc.
Immediately above this region (at a location which depends upon the exact type of
transputer in use) is the fast on-chip memory. This extends either 2 or 4 Kbytes up from the
bottom of the memory space, again depending upon the type of transputer in use. The upper
limit is indicated by the solid grey line in the figure.

When the user requests that a program be loaded into the machine it is, by default,
positioned directly above the break between fast on-chip memory and the slower memory
which makes up the bulk of the system. Furthermore the program's stack, which contains
all "local" variables and is used to pass arguments to functions and subroutines, is
positioned immediately below the Express kernel. Finally the space between the top ofthe
user program and the bottom of the stack is used for dynamic memory allocation.

No on-chip memory is used at all.

To make.useof the faster memory we first note that it is really only effective for stack based
variables. Due to the nature of the' transputer it requires' a single instruction to access a stack
based variable but at least two to access a global variable. Asa result the memory speed has
most impact on local variables where the faster memory makes the instruction two or three
times quicker than the same instruction accessing the slow memory. In the global variable
case the best we can expect is to speed up one of the two (or more) instructions needed to
access the data resulting in a smaller overall improvement.

What we can deduce from this is that the best use of the hardware is made by having lots
Taking advantage of local variables and then placing them in the fast on-chip memory. If we must use global
offaster memory variables such as large arrays they are best accessed through a locally declared pointer

variable.

With this picture in mind we can then take advantage of the faster memory by using the

274



Prog ram stack

Express message
buffers

Express kernel

Program heap
.4 ~

Program heap

Depends on trans
puter type:

T800:0x80001000
T400:0x8()()()()800

User program
and data

New load

Boundary of on-
chip RAM

User program
and data

.::.
::.

.

~ ~

Program stack

Ox80000000

Default loading pattern

Hardware regis
ters, links

Loading pattern modified by
compiler switches

Figure 1. Transputer memory map with Express loaded

275



Code caching

Placement ofthe
Express kernel

'-B' option of the various compiler commands; t ccand t f c. This switch requires a single
argument which specifies the base of the user program AND ~e top ,of the stack. To see

, the effect let us consider the case where a value has been given which is slightly above the
break between fast and slow memory. The resulting program layout is shown on the right
side of Figure- 1.

As indicated, the user program has been moved slightly upward and, the important feature,
the stack now grows down from the bottom of the user program, toward the faster memory.

The effects of this are two-fold. Firstly the stack will eventually enter the fast memory
making local variable accesses faster and secondly the program is more prone to crash
catastrophically. While the fonner is just what we wanted the latter is rather nasty. The
basic problem concerns the use of the lowest memory locations for crucial transputer
registers. If your program uses enough stack space to overwrite the low memory addresses
the system will die... dramatically. This is the reason that the exact positioning of the stack
is allowed with the' - B' option. The game to play here is to "guess" how much stack space
you might need· and then position the base of your program far enough above the transputer
critical region so that disasters never occur. This is typically quite straightforward. If you
are using the debugger, ndb, you should be able to read the value of the workspace register
at various places in your code - this tells you the current base of the stack. In other cases
you might try printing out the address of a local variable.

In the worst case you can find out the correct place by trial and error - the symptoms of the
disease are so easy to recognize that one can quite quickly tell where the correct location
might be, although this method requires multiple compilations.

In many cases programs do not have great stack requirements and they can be positioned
immediately below the break between fast and slow memory. In this case the entire
program stack will be placed in the fast memory. (Note that you can't assign the exact
address of. the break between slow and fast memory since that is used to indicate the
alternative configuration in which the stack is placed in high memory. Also, the address
given should be word-aligned for best perfonnance - i.e., a multiple of four.)

A question often asked is whether or not it is beneficial to place code in the fast memory.
(With the '-B' switch you could obtain this effect by giving an address below the break
between fast and slow memory and then linking the program's object files in some special
order.) The transputer's CPU includes a small instruction cache which supposedly means
that Donnal sequential instruction operation is unaffected by the speed of the memory in
use. If your program branches a lot, however, the CPU will miss the instruction cache a lot.
In this latter case some improvement could be·· expected by running with the code
"on-chip". In practice, however, we have seen little benefit from sucba strategy.

A last point to note in connection with the memory layout is concern,ed with another of the
system configuration variables: the kernel load address. Nonnally this takes the default
value -1 (Oxffffffff hex) which indicates that Express should attempt to figure out
the amount of memory in each node and then position the kernel as high as possible. This
is the scenario shown on the left of Figure 1. Th,e exact mechanism by which Express
achieves this is to write and then read the entire contents of the node's memory. (That this
is sometimes quite time consuming is indicated by the delay during exinit.) During this



process each memory location is initialized to its address.

While this is perfectly good for most problems it necessarily destroys the contents of the
node's memory. Upon occasion, especially when using the RAM files and the exdump
debugging tool one would wish that the contents of the node memory were p~eservedacross
calls to exinit. To achieve this merely change the default kernel load address in the
customization file to some physical address. In this case Express will place the kernel
exactly where indicated without checking the node memory or destroying any of its
contents, other than those overwritten by the kernel itself. Note that a small part of the node
memory is destroyed in this manner but since you can control explicitly which portions are
lost it is easy to avoid locations containing RAM files.(You can also achieve this effect by
using the '-m' option to exinit, see the Reference manual page for more details.)

f2 6 Express on UNIX machines

One of the significant benefits of complex operating systems such as UNIX is the
protection afforded individual users by the separation of operating system or "kernel"
activities from those of applications. The price one pays for this, however, is that every
system call has to pass through the protection layer into the kernel - a time consuming
operation. For parallel computer systems the most obvious effect of this is to slow down
communication between the host and the nodes. Unfortunately this link is usually the
slowest even before adding the price of UNIX system calls and, as such, may be too heavy
a burden for real applications to bear.

Because of this Express allows the hardware to be used without any protection from the
UNIX kernel. This option is selected when executing the excustom program by
answering 'y' to the question·

Do you wish to run without the kernel? [yin]:

While running without the UNIX kernel Express programs will communicate more
quickly with the host. Certain restrictions do, however, apply.

The most significant of these restrictions is that the machine can no longer be used in
multi-user mode. Since the UNIX kernel is no longe"r available to make decisions regarding
the destinations of the various messages that come from the nodes we must restrict access
to a single user at anyone time. While this may be too stringent a restriction for
development purposes it is eminently reasonable for "canned" applications which use the
parallel computer only for its speed.

The second problem when running without the kernel is that one has to take care when
using the debugger, ndb. The reasons behind this are essentially the same as in the previous
paragraph - the debugger is a second process which must run and share access with another
program. As a result there is potentially conflict between messages coming from the nodes
for the debugger and the user program. While one would nonnally, therefore, advise that
debugging be done with the UNIX kernel enabled one can, with some care, debug without
it by ensuring that no conflicts arise. In practice this means that one should only query the
node program with the debugger when it is "stopped" at a breakpoint. While in this state
the user program will not try to read messages destined for the debugger and all should be
well.

1:17

Interaction with
RAMfiles

Preventingmemory
initialization

The overheads of
using UNIX

Using Express
without the UNIX
kernel

Restrictions on
multi-user access
when running
without the kernel

Difficulties
debugging without
the kernel's
protection ... r\



Supported
transputer
hardware

~ 7 Listing of Express customization variables

M The following is an exhaustive list of the various custoniization variables which are
nonnally to be found in a default customization file. Not all variables are present on all
systems.

In each case we show the name of the variable together with any default which would
normally be present. In most cases this will be a derivation ofa file name from some macro.

Note that the following list shows pathnames derived from their respective ROOT's with
the syntax used under MS-DOS. Other operating system use different syntax for their
directory hierarchies which should be easy to derive from those shown here.

MACHINE
The type of hardware in use. The currently recognized transputer systems are

B004 lomos BOO4 and compatibles.
DEFlNICON Definicon systems Inc.
MICROWAY Microway.
QUN Quintek.
SUN BO 11 Inmos BOll with Sun Microsystems host
SUN B014 lnmos BOl4 with Sun Microsystems host
SUN KOBE Kobe Steel board with Sun host.
SUN Tapa Topologix Inc.
LEVCO Levco Inc.
SUN MElKO Meiko Ltd.
SUN MK20 0 Meiko "In-Sun" computing surface.

It should be noted that this list is growing all the time. The most complete source of
infonnation regarding the currently supponed list of machines can be obtained by running
the excustom tool.

PARASOFT:

This macro is used as the basis for finding the various subdirectories of the Express
installation. It is usually assigned through excustom.

KERNEL {PARASOFT}\bin\express.tld

The name ofthe Express kernel.

NIFFILE {PARASOFT}\bin\run.nif

The name of the network information file which describes the- interconnection between
transputers. Usually built by cnftool.

CONFILE {PARASOFT}\bin\confile

The name -of the file which describes the routing for messages. Usually set up by
cnftool.

PLOTFILE {PARASOFT}\bin\plotfil

The name of the file containing the most recent pictorial representation of the transputer
network. Used and created by cnftool.

218



WORMLD {PARASOFT}\bin\worm.exe

The name of the program responsible for executing the "worm" which figures out the
interconnection of the hardware. Used by cnftool.

WORM {PARASOFT}\bin\worm.run

The name of the program loaded into the nodes to detect their interconnection. Used in
conjunction with the WORMLD value by cnftool.

TMPNIF {PARASOFT}\bin\_run.nif

A temporary configuration file built by the "wonn" utilities and used by cnftool.

PARABIN {PARASOFT}\bin

The location of the Express executables. Used by many of the tools.

TMP {PARASOFT}\tmp

A temporary directory used to hold various intennediate files and the overflow area for
messages coming to the host which cannot be buffered in the host's memory.

PARAINC {PARASOFT}\include

The location of the "include" files used by C programs compiled to run on the transputers.
Used by the compilers.

PARALIB {PARASOFT}\lib

A general repository for program libraries and other binary files which are essential to the
system but which are not executable. Used by most of the tools.

NODE DEV

The default device for all calls to exopen, exshare and exaccess made by the
system.

RESETFILE

The name of the file containing infonnation used by the exreset program when
initializing multiple transputer boards in multi-host systems.

T212
This is the name of a special program loaded into TIl2 transputers controlling link
switches.

The "worm"
program

NNBUF

The number of Express message buffers to be allocated in each transputer node.

1 0 0 Controlling buffer
sizes and their
allocation

NHBUF 20

The number of Express message buffers to be allocated in the host. After this number is
exceeded all further messages will be placed in an overflow area on the disk. No messages
will be lost by choosing a small number although perfonnance will be significantly
degraded.

NBSIZE 1024

The size of each Express message buffer, in bytes. Messages longer that this will be cut

279



Kernel start
address

into smaller pieces (by Express) and sent in packets.

LOAD START Oxffffffff

The address in transputer memory at which the Express kernel should be loaded. The
default value indicates that the transputer memory should be scanned to find the amount on
each node and then the Express kernel is placed as high in memory as possible. Since the
scanning process destroys the contents of memory it should not be used in cases where, for
example, RAM files need to be preserved. In these cases a non-default value of
LOAD START should be used.

PROCNUM 10

The maximum number of simultaneous processes on any given node. If you do not use the
exhandle system calls this valueis irrelevant.

Link adaptors RESET
ANAL
LINK RD
LINK RD STAT
LINK WT
LINK WT STAT

Ox160
Ox161
Ox150
Ox152
Ox1S1
Ox152

Host interfaces

These six I/O addresses are used to specify the standard "Boo4" style link adapter interface
to the board. Any number may be individually modified for special hardware.

DMA 0

Use to indicate the type of interface available between the host and the transputer board.
The following values are recognized

o Standard "B004" style link-adaptor.

1 DMA style interface as on MicroWay hardware or INMOS BOOS.

2 "Block move" interface on advanced Definicon boards.

3 Memory mapped interface on Sun, runs without UNIX kernel.

System accounting ACD I R

The name of the directory into which accounting information is to be logged. A NULL
value (Le.. , ACDIR=) disablesth,e accounting system.. ,

Logical,'Systems·C
compiler

LOGC:

This macro is used as the "root" of the tree containing the Logical.Systems C compiler~

LOGCINC {LOGC}\include

The directory containing the Logical C include files. Used by tee.

LOGCLIB {LOGC}\library

The directory containing the Logical C standard libraries. Used by tee.

LOGCPP

The name of the Logical Systems C preprocessor. Used by tee.

230

{LOGC}\bin\pp



{LOGC}\bin\tcxLOGCTCX

The name of the Logical Systems C compiler. Used by tee.

LOGCTASM {LOGC}\bin\tasm

The name of the Logical Systems transputer assembler. Used by tee.

LOGCTLNK {LOGC}\bin\tlnk

The name of the Logical Systems linker. Used by tee.

PS_HEADERS {PARASOFT}\lib

, The location of the header files used by the Express PostScript libraries and the -Tps
option to eubix.

BGI_DRlVERS {PARASOFT}\lib

The location of the Borland Graphics Interface device drivers used to perfonn graphical
output on a variety of DOS-based systems. Used by all tools and the -Tbgi option to
eubix.

c:\tc2vO

e: \ te2vO 3L Ccompiler

e: \ tf2vO 3L Fortran
compilers

3LC

The installation directory for the 3L C compiler. Used by tee.

3LFORTRAN

The installation directory for the 3L FORTRAN compiler. Used by tfe.

3LINCLUDE

The directory containing the 3L C include files. Used by tee.

AFSERVER

The path name of the directory containing the "afserver" program used to download and
communicate with such things as the 3L C and Fortran compilers. Used by tee and tfe
on non MS-DOS systems.

CUBIX PLOTS

Supported graphics options under cubix. These are the values allowed in the '-T' switch.

MONITOR 0

Specifies whether the default graphics device is color (MONITOR=O) or monochrome
(MONITOR=l).

DVDIR e:\dv

The directory containing the DesqView system used for with the debugger under DOS.
Used by ndb.

NDB LINEFILE ndbXXXXXX

The name of the file used to store source code line numbers by ndb. This template is used
in conjunction with the TMP variable in a call to mktemp.

NDB HELPDIR

The directory containing the debugger's on-line help.

{PARASOFT}\help

281



..,.,...... $LL

ndb's·start-upfile
NDB STARTFILE

The name of the start-up file read by ndb. Any rue with this name in the current directory
(i.e., the one in which ndb starts) will be processed before ndb begins. This name is also
used in conjunction with the NDB_STARTDIRvariable to locate the system startup file
which is almost crucial to the useful use of the debugger.

NDB_STARTDIR {PARASOFT}\lib

The directory containing the ndb system startup file. The actual.filename to be used is
contained in the NDB STARTFILE variable.

excustom -?

WINBIN

The directory containing the "window" versions of the Express tools. Used to setup the
"server" program for easy access to the Express toolset.

~ 8 Default locations for Express customization files

One of the trickier aspects of the Express configuration system is actually finding the
default systemcustomization file. While this is not usually necessary (excustom should
know how to do it automatically) it is occasionally necessary for detailed modifications.

The simplest method for detennining the name of the default file is to execute the commandDefault
customizationfiles

If you wish to override this name or otherwise specify a default the following sections
indicate the appropriate mechanisms under the various host operating system supported by
Express.

8.1 MS-DOS

Upon starting the environment variable EXPRESS is consulted for the name ofa
customization file. If none is found the default

c:\parasoft\bin\express.cst

is used. Note that this is sufficient if you have installed Express in the default location on
your hard disk. If you have installed Express in some other directory then the default
system configuration file will be found in theparasoft \bin subdirectory with the name
express.cst.

8.•2 Unix and look-alikes

Upon starting the environment variable EXPRESS is consulted for the· name of a
customizauon file. If none is found the default

lexpress.cst

is used. A standard configuration file is typically to be found in the bin subdirectory of the
Express installation with the name express .·cst.

8.3 ~acintosh

The default location of the Express customization file is in the System folder on the
default boot disk. It should have the nameExpress. cst. While the Express system can



~."~'·m=ill' .

itself be loaded anywhere on your system the configuration file must be placed in the
system folder.

8.4 VMS

Upon starting the logical name translation tables are consulted for a variable with the name
EXPRESS which should be set to the name of a customization file. There is no default and
the system will abort if no such variable is found.

283



",
....... ·,...~·""~_.,._",oJ.".··.·_ ~.~,.. •..~r."'·f9 •• fo4"r._.......~ ..'...,(~...... m •• Cloo""~ " ••

., Index

.,

f .
I

General·•. index to Expressandithe;elC....········,
amples fiom'the text



General Index

General Index

This index is the general reference for all the topics discussed in this manual. It lists not only the
vari~us functions/routines but also the examples and other points of note.

A
accounting 280
allocating nodes 81
architectures

distributed memory 20
shared memory 20

aspect ratio, correcting the 173
asynchronous I/O 117, 144
async-mode 142-145, 178
automatic decomposition 100-114
automatic network detection 253

B
binary I/O 42
booting

Express?7
boundary conditions 105, 108
broadcast 114
buffer management 271

host interface 273
parameters 279
running out of buffers 245·

buffer sizes
optimizing 272

buffer, size of graphics 179
buffering 140

graphics 177, 178-179
busy waiting, avoiding 167
byte swapping, 41, 46, 127

c
Caltech, research at 119
cellular automata 112
clipping 182
color 183
color vs. monochrome 184
communication

"raw" channel 118
basic 24
between data domains 53
blocking 93, 118
collective 112-114
counting errors 206
hardware dependent 117
high level 93
in the problem domain 104
nearest neighbor 117
non-blocking 94
parity 119
vectors, arrays 110

concatenation 114
configuration

files 278
contouring 181 ~.~.! ."

in polar coordinates 1-89 .~.; ..l.
in strange domains 188

coordinate systems 172
critical sections 95
customization 269

variables 269, 278-282

28S



• . tit·

E

;.

J~..~~) :~:".

editing configurations 253-2;)8 "
errors· in execution profile 206
event pr~ftling 218
examples .

"busy"~wai6ng'16i; f .. ,

'~Hello world~:~, .araIltl135 .~;. ~.~; .'..~
"hOS("'PIti~~44. '" ?: ;'k, }':" ., 'I "r;.

"loose synclu;o~izari~n~'~' .141 '
"node" .prograin~4:2>~ . '~<O.,~. ~" ,'('

asynchronous brigs r14~ ..
asy~chronou~ liP 1~3 .
b'y!e·'swappirlg~ 44. ' '"
clipp.in.g 182 ~:, .:' '. , ' ,

- - . t ~~~. ;~ •.

communicatiQn~ :.profiUttg in "'liost:.node"
. ~ 'pi"tbm-.am.'.';.,.,.~:r~07,:' .' ~ c .t" ~, ~. ,.;

~~. ~ i . •~~ • 1-

contouring iri'~olar¢Ootdinates 190
Cubix errors 149, 151 " .' ~ .
customization macros 269' . ~".

customizati()n variaolts' 269' ',! t . ~: ~/:' ;,~.

domafuJiecon1poSiti6ii' .-st'66, i91~112,
'Ow; "121" ·;,;J·Y~: . .'V~<~·:: "\';'. .~C~:"j~ .• '

domain\'dec~ttipositio.:r:and·Plotix 186
domain'~' decomposition in two dimensions

5.5.,. ".
dOllble~:btifferi·pg·97

exc,ombin~?38'

exe¢ution ... profiling ·in "host..n~6+~~~
203. ,. '" :.'" . ,

exeetltion<profilin.gunder~Vbii:202· .~- ,
'51' . <;.,'. ::;,-' ...."exgrJ..d '.-:'.:'~.. , '.. ~.~~.

file buffering modes 140· ~. "," *~.. : I,

file I/O m04es 1~6 ~. t._

finding processor numbers 104
global sum 38
global sumniation 113
graphical input 180
grap~llios'55

':\" .',

routing.infotItt8:tion· 262
distributed ftl~~yst~ms" 145 '
distributoo,:IKllI"5:-·:>
distributing processqrs 103 ~

domain decomposi~on 9, 26~ 47-57~ 6g~: 101-
112, 121, 153, 186 ,.: ". .

double-buffering 97

D

customizationfile
finding the 270, 282
fonnat269

datadisttibution 93, 114
data-base processing 154
"Deadlock..free" routing 245
"Deadlock" 93, 118, 272
debugging

asynchronous programs 95
with multiple consoles 262

decomposition 33
algorithm structure 9
by data 105-114
I/O 116

>~'in one dimension 47
in two dimensions 53

defining-events 219
device dependencies 184
device independent graphics 171
diagnosing

asynchronous I/O 117
compilation problems 127
Cubix errors 149
domain decompositions 107
double-buffering 99
hardware level communication 119
heterogeneous networks 259
incomplete networks 250
message handlers 96
multi-host systems 261
program loading 86.
real-time'errors·145-·147
runtime errors ':142

disabling ·.ExpresS·.• ·1.18
display'devices ·.191

EGA, underXENIX 191
Macintosh t94 <"J.

NCUBE 194
PC compatible 191
PostScript 194
Sun workstations 192
X-windows 193

displaying
broadcast trees· 263

. ,:eLls'



."...,.. it "m-m

I,

.::."it·/.

. , ~,' .

F

G

fluid mechanics 112
forwarding tables 251, 261
full-duplex channels 107

H

....~l

global averaging 113 ,~j"';.

graphics ! '

buffering 177, 178-179
clipping 182
color 183
contouring 181, 188
coordinate systems 54, 172
device independent 171
initialization 177 J
interaction with decomposition tools,186
locator input 180
monitor type 281
multiple output devices 171
output devices 191
tennination 177
viewports 173

half-duplex channels 107::
hardware

resetting 77
supported types 278

hardware dependent
communication 117
multitasking features 155

hardware independence.l~t ,,(}~!, •

"Hello world"
parallel 31, 116
sequential 28, 115

histogram, bin size 200
host interface 273; 280/,,· /, ,~. ~\.f ~','~~ \ .,'

host-node program 40-47 ~~.~,.,' ~ I' ~,

hypercubes 247 :,!~i.

I
I/O 135

asynchronous 142
buffering 140

j ~,:

hardware depend~ntCQro~JJ'JlJ:i~tiQ,n:.119

I/O modes 29, 31~,34 :.}'
incoming message sele~tjQnf9"6::fl3,,

KXCHAN 107, 108" J09 ' ':i' ~;

,K~COMB 113,.
KXGDCO 103
KXGDNO 104
KXGDSP 103
KXGRID 101
KXHAND 9~,,;.155:·

KXPARA 100···· ," ~-

KXVCHA 111
load balancing 95
loading non-identi~Jl'tp!Wlrw ,g(
loading program,~,8~',.,; :';'",:' )~:;; ~)i;q"
loading programs' at ~;§re~'po~q~~~'~"t~:;~
Mandelbrqt, par~,ll~1,.6t..~ ..,·~~,. .' .'r ~

Mandelbrot~'sequeriiiaf
4
5,9,..:,

matrix operations 34~:, 65~-"~
"~,... "'; r :''l'. 4 {1·~.( ~~

message types 1\'1 ,'!;:'r.I .. f· '''''('',

multi-mode 116, 1351!~ 13.6, _1.~8,. 14.o~,,::~!
multi-mode input 13i""'~- ~': i i '.~' 7.'" .' ~~i~';'~~ ,',.

'v!D~!tiple yiew~~~, l75 ,e ·.,::'~J~,l;.,
, 'one dimensional 4ecOmpQ,si~iQ~ 121

parallel ,I/O 1~§, (37·~.'ir$~",. t''; '7)'>

:. . 1... " ,.;.. ,.-' "\~, ~ (,

rendenng 183 . "" ~.,,;'

semaphores J64, .
signal proc,t?ising :Ji6()~~ \ ~. . ;' ~ "~. ki

.skeletop evel)i pr<i~~lng(ff*11~' ,
skeleton < execution'pro'tiler c,Oqe 200
skeleto.o Expr~ss~C prpgr:~m~;go

skeleton ExpressFFOR:tRAN
J

program 81
skeleton PJotix program 177 .
spread-sheet 68 , " '__._. "
timing with "toggles" 2~2: '. , ",

.transaction.processing 164" ..~. . "~.

e'ichartiirig data 107 h .} , ,." ,.1

excomb;ipe.'l?;-:~9 '",
excu'st'oril '270 .'
executable files 279

t ~'"'t~ f

exgr id 50-57 .. .
exinit 27 :' # ••

exread41 "
exwrite 41



• to, •.•.•.
• -~ ).' ~"¥

........- .",-:~

... ;, r ,f!

J. ~.

.i

. t .. 'i:.

. :\.,.."~

menlis214
IJ1e~sage pa~sing 23

.~ i: .blocking 89,93
;,' 1 ' non-blocki~g 9,l, .94

point to point 87
~, ,

• ' •• ~ p~ topologyindepende~t.l 00
;' ,~essage types 88 i ',.~ J

:;,~I ignoringJ12 ' t,'"

'. ,".. inclusion and exclusion 92\·'1~!·;. ~-~,~.;;~"\ I~ :./.,;'

" " res~cti~n~89 ' .. ~;>. , ," \

·.. ··<·'usedforKXHAND 159 !::'~ l..~.;.. L.·'
. ') t ~ t. • . .

' ~,' '.-:, Jnessages87--89
'. I;, i ' ~ttributes 88 . ~ .

.' ..~ ..~ ~ :~.~~ ~l: .. . I , 'J' 4' 90
. distinguis~i~~.~t'~lXUng.;'.·.·. :l~"':
.mcomlng.'message ,selection- 90. ',.. \..

': ?;r",,1 length restrlc,tions 89, 162

:) monitoring' with c~001206
non-blocking ,read 97
parameters 88 "

; J ""routing 245 ,,' :>< "..';1:'(

selecting ~between inpoiningt38
,'" zero length 97 , LL~j,u;rJ

,messages, physiq~$lnlE~~~4 ';' , ,'~.! ;r\

..r.'.~.·n MIMDarchitect,ute~i21p:. '"~,.~~.~,~ ". i', " ~ ~~~.rj~

,,;.~ **mi~ s e$'X '* , e.x~ri~J}, .pr9ttlpr,201
~.~ multi-mode 136-'141, 178' ".' "

~. buffering 140 ~

;-; multiplegraphicsdevices179
,/'. multiple hosts 115r~~f~JT259, :,•.\ ' " ,I;

adding 261 '. .'1

naming. conventions ~45 ':: '. '. '
resetting .boards 259

, multiple ~iewp<>rts 11;5 \ .; ;\ - . -o:'.r...;C':1

'. ", multitaSki~g9S;"l54---1Q8 .' .,.~ :~. r..~i~ t~\:;'

without hard""a.redepeI1.4encies16~,,'· .. ..~.

~.. ~. ,""K
kemels·217
KPROFI200
KXCOMBl12, 122
KXHANO 155-163

L
languages 80

parallel 6"
libraries 279 .
link adaptor param~ters280,'
links . ;'. r .~-:~: "

electrically switched 245, 253-258
mechanical 2,45, 248-253

load balancing 95
loading programs 82 .' :..

different in each node 84
stopped~~t~breakpoints83

logicaltopolokie's~41'~'~ 'r :/

loosel}': syfichronous'141~ 142, 153
.:;.

file modes 30-36, 135
server 115

identifying "events" 221
idle time, measuring 204
image proc,essing 175
initialization' .4 ,I', &lr

eventprofiler 220
execution profil~r 200
FORTRAN program~:~O, 81
graphics 177·

installation 269
installation ·directory 278
interrupt·h.andlin.g 94

, r

·N
network ... ~.(~,. '~f

automatic detection·241~.' .: ." " ,t;{.~ ~':~

configutatiort:\vjdiout!~pI#cs~~~266' ~f
networks _.

editing 253-25.8,r~.\:~ ..,:.; <:~0~ .

. '. het~rQg~n~qps .}9~·.,~ ':~1'::
...parililet}jrOCes~g 14~' /-

NOCARE 90, 91, 112 .
nodealloeation .81

~;: -

Mandelbrot 59
mapping,<problem-l01
master-siaveprogramming 154, 233
·matrix operations 33·
matrix·transpnsitiort 64
measuring execution times 222
.memory' checking 276
memory usage 274 .
memory,dumping·146

'. ''''.'''# ......f"" ...; ......._ ...._,_



G~Deral Index

d,

... ,... ~

. '.... ",.

~, • , ... G <f'

·f., .,4'

,. ~ ,. ,

" ''',: ! .::,,~i' ~.a ~~;. i 'f" .1;, \ :

\o,L" 16 .
, ~.-"~ ~ , :, .

.;.1.f~. :. ~. •~

. ,

R

s

properties
'. ,.', '; , of graphics devices 184. :'

-.... '
..i;

•.. . ~ ..
". ,:.. --.. ':

node process ID 86
node sharing 86
NONODE 108

o RAM ftIes 145-147 ~~. ,: "';.. "1:"f:l~':~:::

on-chip memory 274 \,: 2r;'Jfit$!,~;::;'~'~i~1--;){:;:: ~ preserving 277 ,:, ' ",'ji]

open file, asynchronously 149""< "..... -. ...., . real-time perfonnance analysis 198 .
operating system server 115 ~~¥Jal-time systems 94 ; '.:: 9

operating system services 141 reconfiguration 100, 245
operating systems 3--9, 27 recording execution paths;21S'
optimization remote procedure calls 155

reducing overheads 109 remote task creation 159 ;'\<:~. ';',,' r:~

optimizing .... " ')b'~'~~~ repaint procedures 185 .- ;.:.;f~';J.('i

communication late99~~jgt/iii)ij':<lI:i'i'; resetting heterogeneous hardware 24S';lL',
I/O bandwidl.tJ~97,:?J1:S·;~'-:'·~·'t,~,:~:~;":· .~ ,~." . routing 245

overheads24'" ' ~'. ::::,'; . rontime profiling switches 201, 207, 223
assessing 218

p
scalability 14

packets, message 272 selecting nodes
parallel 110 30, lr5;"'i35'-i in ctool 214

, parallel languages 6 , sequential code, running in parallel 134
parallel processing ·hi1rd.wnre·f2(}:'''~,. '.:~nsharing
parall~l processing softWare:11 "1::-:;' " .L, nodes between programs 86
parailelizing."sequ;ertti;.ll'1~de,.£)il.~..: .signal processing 97, 159
parity·119 " .!SIMDarchitectures21 .. '.
PC display devices 191 simultaneous data transfers 107
perfonnance ~'<"" '~. 0:. ~., ,singl-mode 136-139, 178

optimization l)y~reCt>hflguration 2;45.:·~: ,: ,., spread-sheets 66
perfonnance analysis. stack placement 274

subroutine usage 199, ,,' statistical analysis of calls 223 .' _,~ ':.L
peripherals 15 statistical profiling 199 (!

picking nodes graphically 180 subroutine usage 199 'i':j ,t.. fy.,·· "u.~~

Plotix 53 switching between nodepro~8W§,..lq~~..:;!
problems' "" synchronization 141:;, ."., I;' ,'., L(;t;'· ; .~. ~.:. ,.:;. l:

byte swapping 127 after KXHAND 158 " , ~

data types 127 rules, violation of 149
process ID86 system
processOr' allocation8i,>.' """. . .,~ii, "events" 222
PrOcessOr';numPets aSsigni~g 4'" : . -,:,.' include files 279 ",
prof 199 ...•" '~'. ,.,', .,[ .t:':;-cid.': ' libraries 279 "

profiling an existing program)·~"34r;.;;~r"...... ~~-, :' variables 269
programming languages 80; ~;},.:,.';;;:,;)~~',' :. system libraries 279 ,.' ,
programming models 9t!4~~~$;·;7~:;i.~.~80: i 14,

133-135 -.J. - -~ ,,: ~~~

., ..... "' .. ~,... ~, ·· ..·'.1.··· ";';''0'...:" •. \ ......~~ ..... ~ ....... ~'" ••• ',., ~ •

·..q."""' ... ,..5...-,":· .. ·lIl(I;.t:oe. .........;·:...~~... _ .........H .....-.....;.. __

- ~-~~) ...~~-~ ". -..s.. ·........ ··~/P"··..,.·~ ........... '.·m ~¢ .. ~ ..... , ~ 289



", .."J:<247 '. "'·;,:,:r;,.~:?,'·> ~'::(~.

'~:~,~*~J~"i;:~~·;~SSi~~··.i54
'U
use1; in~erface 10

..';.~ . <~:.: .

'·v
vi:ewporls 173 ..:;.'.

« "{"'mul~pte ,17$ .......• '. .:.; .
'. visw»i.zatiQn.;~gQrithm '171

\W,.

-~.- ._~~~~~~~.~~.~~~;~~~;~~:~,~::~:~~;~~, ~~~~~'~'~~~~~~~~~~~'~~'~~';~~J~~~~~!:~.~~:~~,' •.~~~.~;~"_:~l~._~~,~~~~.~~:~.'~:~~.~~~~)~~~0:f:~;...~ ,'. :':~:',:';'~::'::'.._~ .., '. " :,:., .• :."'""" .


	Table of Contents
	Chapter 1: Overview - What is Express and what kind of systems can be built with it?
	1 Overview
	2 What Express is NOT
	2.1 An Operating System
	2.2 A Language
	2.3 The Ultimate Solution

	3 What is Express?
	3.1 An ''Operating System"
	3.2 A Parallel Processing Toolkit

	4 How to Run Parallel Programs
	5 Where can I use Express?
	6 Conclusions

	Chapter 2: An Express tutorial - An introduction to parallel processing with Express
	1 Introduction
	2 Overview
	2.1 Hardware
	2.2 Software
	2.3 Message Passing
	2.4 Express Programming Models

	3 An Introduction to Express
	3.1 A note about FORTRAN I/O
	3.2 The Exercises
	Exercise·1. Hello World
	Exercise 2. A Parallel Hello World
	Exercise 3. Matrix by Vector Multiplication
	Exercise 4. A Parallel Sum
	Exercise 5. A Host - Node Program
	Exercise 6. The "Ring" program. Automatic decomposing tools
	Exercise 7. Two dimensional decomposition with graphics

	3.3 Summary

	4 Advanced Applications
	Exercise 8. Porting existing codes: A MandeIbrot program
	Exercise 9. Matrix transposition
	Exercise 10. A Spread-sheet Program

	5 For more information

	Chapter 3: Express - A portable, efficient communication system for parallel computers ... and much more
	1 Introduction
	2 Express Fundamentals
	2.1 System Configuration; Booting Express
	2.2 Programming models
	2.3 Software Initialization; Languages

	3 Processor Allocation and Program Loading
	3.1 Processor Allocation

	4 Node Addressed Interprocessor Communication
	4.1 Messages, Nodes and Types
	4.2 Blocking Communication Functions
	4.3 Non-blocking Communication Functions

	5 Topology Independent Communication
	5.1 Automatic Decomposition and Run-Time Configuration
	5.2 Using the Automated Decomposition Tools
	5.3 Utility Functions

	6 I/O and Cubix
	7 Hardware Dependent Communication
	8 Complete Example Programs
	8.1 The "RING" Program
	8.1.1 Cubix Program
	8.1.2 Host-Node Program, "Host"code
	8.1.3 Host-Node Program, "Node" code

	8.2 Other Examples


	Chapter 4: Cubix - Programming parallel computers without programming hosts
	1 Introduction
	2 A Different Perspective
	3 The Catch - I/O modes
	3.1 Synchronous I/O Modes
	3.2 Asynchronous Mode
	3.3 Multiple hosts, Distributed filesystems, etc.

	4 Debugging: A Last Resort
	5 Executing Cubix
	6 Examples
	7 Specifying Cubix file I/O modes
	8 Common Errors
	9 Conclusions

	Chapter 5: Multitasking - Executing multiple processes.on individual processors
	1 Introduction
	2 Asynchronous Processing - KXHAND
	3 Mutual Exclusion - Semaphores
	4 Executing alternate node programs, under Cubix
	5 Portable use of KXHAND

	Chapter 6: Parallel Graphics - A simple, portable, parallel graphics system: Plotix
	1 Introduction
	2 Coordinate systems
	3 Starting, Stopping and Flushing
	4 Graphical Input
	5 High Level Functionality - Contouring, Clipping, etc.
	6 Colors
	7 Hardware Dependencies
	8 Example Programs
	8.1 The Interaction between Plotix and the KXGRID tools
	8.2 Other example programs

	9 The Low Level Contouring System
	10 Output Device Characteristics
	10.1 IBM PC and compatibles, Borland Graphics Interface - "-Tbgi"
	10.2 IBM Enhanced Graphics Adapter - "-Tega"
	10.3 SUN system, suntools environment - "-Tsun"
	10.4 SUN system, XWindows - "-TX"
	10.5 PostScript - "-Tps"
	10.6 AXIS NCUBE systems - "-Trt", and "-Tnat"
	10.7 Macintosh systems - no switch


	Chapter 7: Performance Analysis - PM: A profiling. system for parallel programs
	1 Introduction
	2 Execution Profiling
	2.1 General Profiling Commands
	2.2 Details for Cubix Programs
	2.3 Details for Host-Node Programs
	2.4 Analyzing the Execution Profile - xtool

	3 Communication Profiling
	3.1 General Profiling Commands
	3.2 Details for Cubix Programs
	3.3 Details for Host-Node programs
	3.4 Analyzing the Communication Profile - ctool

	4 Event Driven Profiling
	4.1 General Profiling Commands
	4.2 Measuring time intervals with "Toggles"
	4.3 Details for Cubix Programs
	4.4 Details for Host-Node programs
	4.5 Analyzing the Event Profile - etool
	4.6 Analyzing the "'Toggle" data - etool -t

	5 Example programs
	5.1Cubix program
	5.2 Host-Node Program, "Host" code
	5.3 Host-Node program, "Node" code


	Chapter 8: Network Configuration - Using Cnftool to build multi- transputer networks for Express
	1 Introduction
	2 Topologies and Routing Strategies
	3 Configuring Simple Networks
	3.1 Machines with mechanical links
	3.2 Electrically Configured Machines
	3.3 Minimal use of cnftool

	4 Configuring a Multi Host System
	5 Cosmetic Improvements
	6 Displaying Routing Information
	7 cnftool without graphics
	8 Transputer Variants of Standard Topologies

	Chapter 9: Customizing Express - Modifying the installation, size and performance of Express with Excustom
	1 Customizing Express
	2 The Express "Customization" file
	3 Modifying System Parameters with excustom
	4 Express buffers
	5 Express and the Transputer Memory Map
	6 Express on UNIX machines
	7 Listing of Express customization variables
	8 Default locations for Express customization files
	8.1 MS-DOS
	8.2 Unix and look-alikes
	8.3 Macintosh
	8.4 VMS


	Appendix A: Index - General index to Express and the examples from the text

