‘& ‘Reference Guide -

© Version3.0

© ParaSoft Corporation, 1988, 1989, 1990

-

e L)

B RERG,

s

~

R

ES

COP}'ﬁgfii @;1988_ 19891
“Para&

2500, E Foothill Blvd.

405

91107

Soft Corporation

All brand and produet namesgare Iraée:mrks ofreg&stered trademarks of

Table of Contents

Chapter 1: System Commands o 2

Tools providing services in support of Express apphcatlons

1 Executing Express commands in “non-windowing” operating systems. 3
2 Executing Express commands in “windowing” systems 3
3 Specifying numeric data in sw1tches T 3
4 ManualPageLayout. 000000 e e e 4
Chapter 2: FORTRAN runtime library 52

Library routines avallable to Express programs wntten 1n FORTRAN | : .

1 High Level Communication System. e e e e 53
2 Hardware Dependent Communication System. 54
3 Synchronization 55
4 DecompositionTools 00000 .. 56
5 Multitasking Support e e e e e e e e e 56
6 Processor AllocationandControl. e e . - 57
7 IJOServices v vt v ... e e e e e e e e e 58
8 Graphics e e e e e e e e e 59
9 Standard variables and the /XPRESS/commonblock. 59
10 Manual PageLayout. e e e e e e e e e e 60
Appendix A: Classification of routines......... ettt e, 238

A listing of the Express routines, broken down by functlonahty '

Appendix B: Library Availability. ereerieereeeiecannneeeanees 246
The correspondence between C arid FORTRAN libraries and the syn-
chronization properties of Express functxons

Correspondence between’ bel and FQRTRAN 247

1

2 SynchronizationRules ...,, 0000000000 L 247

3 Libraries and Programmmg Models 247

4 NOTES. "0a . et e e e . .248
Appendlx T254

An alphabet1ca1 listing of routmes, vanables commands and macros

Appendix D: IndeX I 258
General index to Express and the examples from the text

> e SRR,

A
e dedie UTESR
s

<o)
£y R
[RN 32 PR A

R RYE R R e M

© ParaSoft Corporation, 1988, 1989, 1990

System Commands

P P ST . iy s N g
E e e I I I L L B A PR AR
RTINS L AN ST P S .

- Tools providing services in support of
EXxpress applications

ST

S S T TN g B

=

SRR

1 Executing Express commands in “non-windowing” operating systems-
g g op g systems- .

When running Express under operating systems with conventional line-oriented user interfaces
such as UNIX, MS-DOS, VMS and similar, commands are executed by typing their names at the
command line prompt. v

Usage generally follows the conventional UNIX style with options being indicated by the? ‘-’
character, e.g., .

cubix -n 2 -t 120 toyland

The particular command line string ‘-2’ provides a brief on-line summary of the options and
purpose of a command. While this may help in jogging the memory this manual should be
consulted for complete details.

On most machines you will need to add a new directory to the set which is searched when looking
for executable programs. The exact mechanism for doing this varies from one machine to another
and the details for individual operating systems can be found in the introductory guide to Express
for that machine. If you find that messages such as

Command not found

or
No such file or directory

appear whenever you try to execute one of the Express commands then you should check that the
appropriate directory really has been added to your search path. If this seems to be correct you
should next try running the excustom program which will ensure that the Express installation
is internally consistent.

In keeping with the conventional style all commands exit with status 0 upon successful termination
and with non-zero values if errors occur.

2 Executing Express commands in “windewing” systems

In windowing systems such as MicroSoft Windows and the Macintosh, Express programs are
usually executed by selecting icons from the screen. In most cases a dialog box will then be
presented allowing the entry of parameters. In most cases the entries to be made have a one-to-one
correspondence to the switches used in the line-oriented interfaces. Usually some mechanism is
also provided to “Abort” or “Cancel” the program without executing any commands.

Note that only the line-oriented interfaces are completely documented in this reference. In most
cases this causes few problems since the switches and “boxes” are obviously related to one another.
In cases where confusion may arise the introductory guide to Express on your system should be
consulted for more help.

3 Specifying numeric data in switches

Many of the parameters necessary to the commands listed in this section have numerical values -
the number of processors to use, the number of bytes to display, the position at which to load the
Express kernel, etc. In most cases these values can be entered with the usual C-style notation as
either decimal, octal or hexadecimal values.

R R 2 N o A

Consider the exdump command, for example. One of its arguments specifies the address from
which data should be extracted - the ‘B’ switch. Typically one knows this value as some “hex”
++-constant and would therefore use a command of the form

’ exdump ~B 0x79000...cc0000un ,

JAltérnauvely you could use either octal or decimal notation replacing this by
Sxintie exdump -B 01710000........
or

exdump -B 495616..... .

to achieve the same effect. Similar remarks apply to most of the other Express commands - you
can execute a Cubix program on 16 nodes with any of the command switches

cubix -n 16........
cubix -n 020........

cubix -n 0x10........

4 Manual Page Layout

The manual pages are, for better or worse, modeled after those often found in UNIX documentation
which means that each manual page has several well-defined sections. The overall structure is
shown below.

e

Header contains -the
name of the manual

acctool | «——— Ppage which is usually
acctool - Analyze accounting data command descrioed.
SYNOPSIS
acctool [-p] [-a dir] [-f logfile]
DOMAIN
Available on SUN host machines only
DESCRIPTION
acctool is used to analyze the us............
OPTIONS
~p Suppress graphics
-a dir Name of directory containing accounting data
-flogfile Write output to logfile.
EXAMPLES "
acctool -a /home/kastor/accounting
Analyze data from the directory /home/kastor/... pri
B Ly
NOTES/WARNINGS/BUGS
_ None
SEE ALSO
Excustom
The various sections and their contents are:
NAME Repeats the name associated with the manual page and a brief one-line

description of the purpose of the associated routines

SYNOPSIS Summarizes the arguments used by the indicated command. Arguments
enclosed in ‘[’, ‘]’ pairs are optional. If more than one command is
described on a particular page then all are listed in this section

DOMAIN Describes the machines on which the command is available and any

restrictions on when it may be used.

DESCRIPTION Describes the purpose of each command and lists the actions caused by its

OPTIONS

EXAMPLES

NOTES

WARNINGS

BUGS

SEE ALSO

most important arguments. This section is the most important reference
material for each command.

This section lists all the supported arguments for each command and the
actions caused by specifying them.

Usually several examples are presented of the use of each function showing
the most important arguments and switches.

If present this section contains useful information about oddities in the
implementations of a particular command. It may also repeat important
information from the DESCRIPTION section.

If the command has peculiar side effects or is “dangerous” in some way it
will be noted in this (optional) section. Any non-intuitive behavior is also
noted here.

Currently known bugs and/or unimplemented switches are noted in this
(optional) section.

Related commands and/or routines from the various Express libraries are
noted in this section. Using this information is usually the quickest way to
build a complete picture of the interaction between the various utilities.

AT

acctool

NAME

acctool - Analyze parallel computer usage under Express
SYNOPSIS

acctool [-p] [-a account_dir] [-f logfile]
DOMAIN

This command is available on SUN host computers only.
DESCRIPTION

acctool is used to analyze accounting data previously obtained from Express programs.

If the accounting system has been enabled on a particular host every Express program
writes an entry into a system data file whenever it allocates or deallocates nodes. Special
entries are also assigned whenever the system crashes or is reinitialized. acctool
analyzes this data in an interactive fashion displaying the usage of resources on a machine-
by-machine basis.

Results are reported for all users, in hours, or on a single job basis for individual users, in
seconds. Statistics are managed on a monthly basis with options to restrict attention to
particular months or ranges of months.

The operation of the accounting system is controlled by the excustom command. One of
this system’s options is whether or not to enable the accounting system. If enabled a place
must be indicated for the accounting information to be maintained.

OPTIONS

-a account_dir
By default acctool looks in the current directory for the data files
describing the system configuration and accounting data. This switch allows
an alternative directory to be specified.

-f logfile Allinformation provided by acctool appears on the display device. If this
switch is given a “log file” will also be kept containing the identical
information. (In the Sunview version of the program this effect is obtained
by entering a name in the log file field of the control panel.)

-p By default acctool operates in the Sunview environment providing a
simplified user interface. If Sunview is not supported on your system this
switch enables a line-oriented interface in which the user is prompted to
enter various options from the keyboard.

-2 Print usage message.

EXAMPLES

The following command executes the profiling tool in a windowing environment and
searches the directory /home/kastor/accounting for the necessary databases.

acctool -a /home/kastor/accounting

faectool

SEE ALSO

excustom.

cnftool

NAME

cnftool - Configure Transputer systems.

SYNOPSIS

cnftool [-p] [-d]

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command is used to configure or reconfigure a transputer network for use with
Express. Two interfaces are available; with the ‘~p’ switch a simple line oriented interface
leads the user through the configuration process. Without this switch a menu driven utility
allows the user to specify the physical transputer interconnect and also to add additional
hosts to an existing system.

One of the features of the system is a “worm” program which can be used to detect the
initial hardware configuration on statically wired systems. This program has a simple
searching algorithm which examines the links on each node and attempts to find a node
connected to each. As each link is examined and another node detected the program
recursively examines other nodes which may be attached. Note that this can only be
achieved if the system has “physical” rather than electrical connections. Hardware which
has INMOS’ link switch cannot be examined by this method since the links are initially
disconnected on hardware reset.

Details of the use of this system can be found in the accompanying documentation,
“Configuring Transputer Systems: cnftool”.

OPTIONS
-p By default cnftool supports a menu driven graphical interface. This
switch enables a simpler, but more tedious, line interface for system
configuration.
-d Run silently - the system is configured in much the same way as with the ‘-
p’ switch except that a “general” network topology is also selected
automatically. No user interaction is required unless the “worm” program
fails to operate successfully.
-2 Print usage message.
SEE ALSO

“CnfTool: Configuring Transputer Systems”

, gtool

NAME

ctool - Analyze Communication Profile

SYNOPSIS

ctool [-b nbins] [-p] [log_file name]

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command is used to examine and analyze the log file created with the communication
profiler commands. The only argument is the name of the file containing the profile data
which may be omitted if it has the default value “cprof.out”.

If the “—p” switch is given this command presents a separate table on stdout from each
node. The information contained in each table is:

* An identifier showing which node the following data is from.

» A summary of the calculation, communication and I/O times in the processor. In
making this classification all inter-node and basic host-node communication comes
under the heading “Communication” while genuine I/O requests such as calls to read,
write, printf, fopen, etc. are counted as 1/O.

¢ A summary of the time spent in, number of calls to and errors incurred in each
communication function called by the processor. This information is use to give a quick
breakdown of the total communication pattern. The “error” count is also a good place
to look for obscure bugs. Each function makes some consistency checks on the supplied
arguments and returns an error if they are inconsistent.

* A breakdown of the values returned by the communication functions. The return values
are binned logarithmically - the column headed “8” indicates the frequency of return
values in the inclusive range 8 thru 15. The exact interpretation of this data depends on
the particular function being invoked but is usually related to the message length
involved in the call. By default data from ten logarithmic bins is included in the output
although the ‘~b’ switch is provided to override this default.

One very important use of this system is the detection of programs which are sending too
much data in their messages. These will show up very clearly in the histogram output.

This data appears on stdout.

If the ctool command is invoked without the “—~p” switch then a graphical interface
allows data to be presented in graphical form. The package is menu-driven and (hopefully)
quite straightforward to use. A full list of the available options is presented in Subsection
3.4 of the PM manual.

OPTIONS

10

Suppress graphical output. The analysis results are presented in tabular form

ctool

on stream stdout.

-b nbins Specifies an alternate number of logarithmic bins to display when used in
conjunction with the ‘~p’ switch. (Default 10).

EXAMPLES
To examine the profile data in a file called “phase3.prof” execute the command

ctool phase3.prof
SEE ALSO

cubix in the Express documentation.

11

cubix

NAME

cubix - Host slave process for node programs.

SYNOPSIS

cubix [=?] [-n nodes] [-d doc] [-P] [-t time] [-S]
[-T plot_option] [-E custom_file] [-f file] [-fp]
[-mc|x}e] [-D] [-x] program [argl] [arg2]...

DESCRIPTION

This command provides an interface between node applications and the host filesystem and
operating system utilities. It is also responsible for node allocation and the communication
of command line arguments to a node program.

This command, with the ‘~S’ option, starts up a Cubix server process. Instead of loading a
user application as is usually the case the server merely waits for I/O requests from any
node in the parallel computer system.

While all standard I/O and graphics requests are available the stateless nature of the server
may make its operation slightly strange in a multi-user environment. Routines which affect
the state of the system such as chdir will have ramifications beyond those normally
expected. In this case, for instance, a call which changes the active directory of the server
for one user may invalidate requests to open files for another user.

OPTIONS

-n nodes Allocate nodes processor for this process. Default 1.

-d doc Alternative to —n switch. Specify size of processor group logarithmically in
manner suitable for hypercubes (i.e., doc = 0 for 1 node, doc = 1 for
two, doc = 2 for four, etc.) Default 0.

-P Load the program into its processors but do not start it running. This option
is useful in connection with the node debugger ndb.

-t time Time out the process after the given number of seconds. This can be useful
in detecting ‘hung’ programs. The default is no time out.

-T option Specify a graphics option for programs that use Plotix.

-fp Execute the program on attached “vector” nodes, if available.

-f file Read the programs to be run and their arguments from the specified file.

This option is used whenever different node programs are required or
different arguments should be passed to different nodes. The file format is
basically single lines containing a range of nodes, an executable program
and an argument list. See the examples below.

~-E custom_file

-m{x|clel Enable the performance monitoring tools. The ‘x’,

12

Directs cubix to use an alternative system customization file rather than
the system default.

? &

¢’ and ‘e’ characters

cubix

refer to the execution, communication and event driven profiling systems
respectively and may be combined. For more details refer to the PM
manual.

-0 start_node
Specifies which nodes are to be allocated to the program. An attempt wil be
made to allocate consecutively numbered nodes starting at the indicated
number. If this cannot be done the cubix command will terminate.

-S Enter server mode. (Used on multi-host systems.)

argl arg2... These arguments are passed to the node main program as the conventional
runtime parameters argc, argv.

-D Enable system debugging. With this option set cubix prints a huge amount
of data about the system as it runs. Should be of little interest to most users.

-X In windowing versions of Express such as the Macintosh or MicroSoft
Windows this switch forces the Express kemel to be re-loaded before
beginning the user program. It is essentially equivalent to running the
exinit program from the shell.

-2 Print usage message

EXAMPLES
cubix -n 4 noddy

Loads the program noddy into four processors. No arguments will be passed to main ()
other than the program name in argv [0].

cubix -d 1 -t 120 -mce longjob 3.14 2.72

Loads the executable 1ongjob into two nodes with a total execution time limit of two
hours. Also passes two extra arguments to the node program. Finally enables both
communication and event driven performance monitoring tools.

cubix -n4 —-Tega plotter

Run the program plotter in four nodes and enable graphics output on an IBM Enhanced
Graphics Adapter.

cubix -n 1 -P buggy

This sequence loads a single node with the user code buggy but halts execution before the
users main routine. The job is run in background mode so that debugging can be carried out.

cubix -n 4 -f loadfile

This sequence allocates four nodes and then loads programs according to the instructions
found in the file 1oadfile. Basically the format is single lines containing either a node
number or a range of nodes followed by a program name and argument list. Blank lines are
ignored and # introduces comments. Continuation lines, backslashes and quotes are
processed in the conventional manner. As an example consider the following sample
loadfile

13

cubix

This is a command file specifying how node programs
should be loaded into the cube.

0-1 proga foo bar

3 progb horse dog cow

2 progc really\ one\ argument

Note that a range of nodes is indicated for proga and that the backslash symbol is used to
concatenate tokens into a single argument - in the above case progc would have only two
arguments the name progc and the string really one argument.

EXIT CODE

The cubix process exits to the shell with the same exit code as used in the call to exit ()
in the node program.

DIAGNOSTICS

14

Among the errors detected by cubix are requests for more nodes than are available and
missing program files. After validating that the specified program is indeed an executable
image it is loaded into the machine using the ex1oad system call. This produces messages
about the size of file to be loaded and a single ‘b’ character for each 1024 byte block loaded.
A common situation is that in which the previous job crashed the node operating system in
which case the loader will say 1 oading some number of bytes but no ‘b’s appear, or many
‘b’s appear and the final ‘E’ but the program does nothing after the Starting message.
This is usually a good time to run exinit.

Upon exit cubix reports the elapsed time divided between user and system. The latter
is time spent performing system functions such as program loading and is always rather
small. It is provided simply for compatibility with other systems running cubix
applications.

etool

NAME

etool - Analyze Event Profile
SYNOPSIS

etool [-p] [-t] [log_file name]
DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command is used to examine and analyze the event log created with the eprof
commands. The only argument is the name of the file containing the profile data which may
be omitted if it has the default value “eprof.out”.

This package is exclusively graphical and menu-driven. The most complete source of
reference is the discussion in Section 4.4 of the PM manual.

OPTIONS
-p Suppress graphical output. The analysis results are presented in tabular form
on stream stdout.
-t Display only the data from the “toggle” events.
EXAMPLES

To examine the profile data in a file called “phase3.prof” execute the command

etool phase3.prof
SEE ALSO

cubix in the Express documentation.

15

excustom

NAME
excustom - Reconfigure Express.
SYNOPSIS
excustom [-r] [-?] custom file
DOMAIN
This command is available at the system prompt on the host processor.
DESCRIPTION

excustom is used to modify the system parameters which describe a particular
implementation or version of the Express system. All system variables are maintained in
a particular file called the “Express customization file” which is located in an operating
system dependent location. By default excustom will modify this file although another
may be indicated by the optional custom_file argument.

In non-windowing environments excustom prompts, in turn, for values of all important
system parameters, offering defaults based on the values found in the current customization
file. If you do not enter any input on a particular line the original value will be taken. In
windowing systems a pop-up display is typically used to offer the current values of all
parameters for modification. You can then change individual entries at will. An additional
option restores all entries to “sensible” defaults which guarantee that Express will operate
correctly. (This option is obtained in the non-windowing environment by specifying the ‘-~
r’ switch when invoking excustom.)

The excustom tool typically asks only about top level information from which it derives
all other related data using the “macro” mechanism discussed below. In some cases you
may need to modify individual system parameters at a finer level of detail. This is achieved
by simply editing the customization file with a suitable text editor or word processor. (You
can find the name of the default customization file with the ‘-2’ command line option.) The
exact meaning of all system variables is shown in the accompanying “Excustom” manual.

In order for the customization file to take effect the system must be reloaded with the
exinit command.

OPTIONS

16

-r

cu

By default excustom prompts you with the current system parameters as
obtained from the customization file. With this switch “sensible” defaults
are used instead of the current values.

stom_file This argument requests that the modification process be applied to the
named file rather than the default system configuration file. This allows
excustom to be used by applications which maintain their own
customization systems.

Print the name of the default system configuration file.

excustom

- IMPLEMENTATION

The customization file is a line oriented ASCII file which contains definitions of important
system variables, one to a line. Lines beginning with either ‘; ’ or ‘#’ characters are treated
as comments. Other lines take either of the symbolic forms

NAME=text
MACRO:=text

As is suggested by the above notation the former type are merely assignments to Express
system parameters while the second define macros that may be further used in the
customization file to simplify definitions of multiple related objects. A good example might
be the default start-up information required by the debugger, ndb. As part of its
configuration information it needs to know the location of the on-line help facility and also
the system start-up file which contains the definitions of system commands. Since these are
often in the same or related directories one might imagine two entries in the customization
file of the type

NDB_HELPDIR=c:\parasoft\help
NDB_STARTUP=c:\parasoft\lib

These entries could, however, be replaced using the macro replacement facility with the
lines

PARASQFT:=c:\parasoft
NDB_HELPDIR={PARASOFT} \help
NDB_STARTUP={PARASOFT} \1lib

Notice that the value of the PARASOF T macro is indicated with the ‘ {’ and ¢}’ characters.

While three lines may seem more complex than the original two the use of the PARASOFT
macro means that the Express system can be moved from one directory to another by
simply changing the macro rather than each line of the customization file.

SEE ALSO

excustom (subroutine), “Customizing Express”.

17

exdump

NAME

exdump - Retrieve data from node RAM files

SYNOPSIS

exdump [-?] [-B base] [-d doc] [~-1 length] [-n nodes]
[-N node] [-N node—-node] {-o file] [-t threshold]
[-p pid] [-s start] [device]

DOMAIN

This command is available at the command line prompt on the host processor.

DESCRIPTION

This command is used to retrieve the debugging information stored in the internal RAM
file under Cubix. It can be used either as a post-mortem dump or while a process is still
running. If set up correctly data can be retrieved after machine initialization with exinit.
The device argument specifies which array the dump is to be taken from - in the current
implementation this should be left to its machine dependent default.

By default the dump is assumed to contain ASCII data and continues until several
consecutive unprintable characters are seen. An alternative is to dump in “binary mode” in
which case data is just read from the node file and sent to stdout. In this case options are
available to both control the amount of data printed and also redirect the output to a file -
printing binary data to a terminal has rather detrimental effects on its behavior.

The detailed use of the RAM file and its manipulation are fully described in the
accompanying Cubix documentation - “Programming Parallel Computers Without
Programming Hosts”.

OPTIONS

-B Dump binary data instead of ASCII. By default 16 Kbytes will be taken
from each node.

-b base Defines the base address of the RAM file. Decimal, octal and hex constants
are valid base values. Note that this option potentially interacts with the
linker/locator and also the parameters used in the ramfopen call. Consult
the Appendix discussing RAM files in the Cubix manual.

-d doc Dump data from 29°¢ nodes. This is an alternative to the —n option
designed for hypercube users.

-1 length Specify amount of data to be dumped from each node. In the default ASCII
mode less will be read if the data ends early.

-n nodes Specify number of nodes from which to dump data.

-t threshold

18

As currently implemented exdump is most useful for retrieving printable
ASCII information. It continues reading data until threshold successive
unprintable characters are seen and then moves onto the next node. The

exdump

=S

-2

default threshold is five.

node Read the RAM file from processor node.
nodel-node2
Read RAM files from the inclusive range of nodes nodel-node2.
file Redirect output to the named file. Default output is to stdout.
pid If the process whose file is to be examined is still active then its process ID

should be specified and its RAM file will be read.

start Specify the physical node number from which the dump is to start. This is
useful in cases where the program ran in high numbered nodes and you are
dumping data after the program has stopped. Since the default allocation
strategy is to allocate the lowest numbered nodes with the required size it is
occasionally necessary to use this switch to “grab” the higher numbered
Processors.

Print usage message

EXAMPLES

exdump -d 1 -s 2

This command reads the RAM file from the default address in two nodes. The two
processors will, if possible, be those starting at node two in the array. This form of the
command is often used either after the node has “hung” in communication (and the nodes
had to be reset with exinit) or when the process finished but with some error. Note that
exinit normally initializes the contents of memory while loading Express so it is
necessary to use the excustom facility to prevent this if we wish to preserve RAM file
data.

exdump -n 1 -B 0x1000

Retrieves the data from a single node starting at address 1000 (hex). This form is used in
conjunction with the ramfopen call in Cubix.

exdump -p 376 -n 4 -N2-3

This option retrieves the information currently contained in the RAM file of the process
whose process ID is 376. Data will only be dumped from nodes 2 and 3 in the group
allocated by the process.

exdump -b -B0x80001000 -o xdump.out -1 4096 -n2

Dump 4 Kbytes of data in binary mode from two nodes. Write the output to the file
xdump . out.

NOTES

Numeric parameters may be specified in decimal, octal or hex using the usual C style
notation: 123 is decimal, 0123 is octal and 0x123 is hex. Switch values may follow
immediately after their switches or there may be intervening spaces: ‘-B0x1000’ and ‘-
B 0x1000’ are both valid.

19

exdump

SEE ALSO
“Cubix: Programming Parallel Computers Without Programming Hosts.”

exinit (command)

20

exinit

NAME

exinit - Reboot and reload Express kernel.

SYNOPSIS

exinit [-K] [-m] [custom file]

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

exinit must be executed before any routines may access the parallel machine - failure to
do so will result in the failure of all attempts to allocate processors. It loads the Express
kernel and starts it running in the node processors. It also performs any necessary hardware
configuration on systems which support such abilities.

exinit attempts to check that no node processes are actually executing before resetting
the hardware. If node programs are detected exinit will report and suggest the use of the
‘=K’ switch. If this switch is supplied any node programs will be killed before the reset
operation is performed.

It is important that all node processors be reset before loading the Express kernel since
otherwise parts of the network may be inaccessible. Most hardware systems have
intelligent reset lines so that several boards may be reset one by another. If you are
connecting several hosts together the exreset command is available to reset a particular
subset of the network. It does not, however, reload the Express kemel. This must be done
with the exinit command from some other console.

The optional custom_file argument is used to specify an alternative customization file
when downloading Express. This allows temporary modifications to the system
parameters for testing and also allows custom applications to maintain their own
customization information.

A very important point to note about exinit is that, by default, it destroys the contents of
the node memory while loading Express. This behavior is normally quite reasonable with
the exception that one may wish to preserve the contents of some RAM file for use with
exdump or ndb. In this case the ‘~m’ switch can be used to prevent memory initialization.
Alternatively the excustom tool has an option which forces the kernel to be loaded
without destroying memory by providing an explicit “start address”. A good way to
proceed, therefore, is to make an system customization file which contains the load address
and then to re-load Express by telling exinit to use this file rather than the system
default.

OPTIONS

-K

By default exinit aborts if any processes are still running in the parallel
machine. This switch causes an attempt to be made to kill all such programs
before resetting and reloading Express.

-m address Load Express into the nodes at the indicated address without destroying

21

exinit

the contents of memory. This is useful in conjunction with the RAM file
system for debugging after system crashes. The address used will depend on
your hardware configuration.

custom_file Indicates that a system customization file other than the default should be
used to load Express.

=-? Print usage message.
EXAMPLES
exinit -m 0x80069000 -K

Reinitialize the machine by killing all currently executing processes and loading Express
at the indicated address. The current contents of node memory will remain intact, except
for the region near 0280069000 which will be overwritten by the kernel.

SEE ALSO

exstat, “CnfTool: Configuring Express”, “Using Express with Multiple Hosts”,
“Excustom: Customizing Express”.

22

exreset

NAME

exreset - Reset a group of nodes.

SYNOPSIS

exreset

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command is used to reset a set of boards without loading the Express kernel. If your
hardware configuration is capable of supporting a tree-like reset path in which all nodes can
be reset from a central “master” console this command will be totally unnecessary since
exinit will be able to reset and load Express into all nodes.

If your hardware does not support this chaining of reset signals then you will need to
partition the nodes into groups, each of which can be reset from a particular host. The
exreset command will then perform this operation allowing a subsequent exinit to
load Express into the entire network.

SEE ALSO
exinit,“CnfTool: Configuring Express”.

exstat

NAME

exstat - Display node usage information.

SYNOPSIS

exstat [-1l] [device]

DESCRIPTION

exstat is used to present statistics about the current node usage on the multiprocessor
device. The default value will be either /dev/transputer or /dev/ncube
depending on the hardware installed.

Without the —1 switch only the number of allocated nodes and the total number of nodes
are presented. The inclusion of this switch also provides information about which process
is allocated which nodes, and which processes share which nodes.

Until the system has been initialized with a callto exinit this utility will return the rather
disconcerting result that there are no nodes available.

OPTIONS
-1 Produce an extended (long and informative) listing which includes the
process L. D. and physical node origin of all active processes.
-2 Print usage message.
SEE ALSO
exinit

24

ndb

NAME

ndb - Symbolic, source and assembly level debugger for parallel computers.

SYNOPSIS
ndb [-2?] [-I incdir] [-p procid] [-d doc] [-n nodes] file

DESCRIPTION

ndb is an interactive symbolic debugger for use on parallel computers. Two styles of
interface are available depending upon the particular hardware/compiler combination
available.

The simplest interface is a source level debugger patterned after the UNIX utility dbx. At
this level the user is able to examine code, set breakpoints and examine variables at the
level of the original C or FORTRAN source code.

The lower level interface is designed for machine level debugging and is based on the
conventional assembly level debugger adb. It allows for the examination of both data and
assembly level code as well as the setting of run-time breakpoints. ndb incorporates a
superset of adb commands which should facilitate its use.

ndb is always available at this second level and the commands associated with its use are
described completely in this document. The availability of the source level interface is
subject to compiler/hardware restrictions. The associated commands are described in this
manual but may be unavailable in some implementations.

In order to effectively debug parallel programs a simple extension to the conventional
debugger syntax has been made. This is the concept of a “set” of processors. Each
command is executed on some group of nodes which can be defined and altered by the user.
Several common groups of processors are predefined and user defined sets are also

available.
COMMAND LINE OPTIONS
-d doc Specify dimension of subcube to be debugged. Default is 0 (1 node).
-n nodes Alternative to ~d switch - specify the number of nodes rather than its

logarithm.

-p procid Debug a background process. This option is useful in conjunction with the
—P switch to cubix which loads a program and stops it at its starting point.
It is also used to perform post-mortem debugging on processes which are
“hung”.

-I dir Specify a directory to be searched when looking for source code. By default
only the current directory is searched. This switch may be repeated multiple
times and the associated directories are searched in the order they are
specified. '

file Specify the program whose symbol table is to be read. Unless this name is
specified no symbol table entries will be available which significantly
reduces the capabilities of ndb.

25

ndb

-2

Display information about supported run-time switches.

USAGE

26

An introductory guide to the debugger is available elsewhere so the following sections
merely explain the syntax of the various commands. In nearly all cases the low level syntax
is exactly as in the regular UNIX command adb while the source level command shares
the same syntax as dbx.

Help

A certain amount of on-line help is available by entering the help command. Various
topics may be selected for further perusal by entering

help topic

where t opic is the name of the required subject. The syntax for a particular command can
be found by using

help keyword
where keyword is the identifier whose usage is required.
Sets

Each command is executed on a collection of nodes called a “set”. A ‘current set’ is
maintained by ndb which is used unless overridden by prefixing a command with the on
keyword. There are three verbs used in manipulating sets.

on The following set specification is used for the commarid that follows
it and then the current set reverts to its previous value.

pick The current set is changed to the nodes listed.

setdef Define a new set containing the specified nodes. The resulting set is

assigned an index number which is retumed and can be used in
future set specifications.

The set specifications are built up from (comma separated) elements of the following types.
(In the following the symbol # denotes a decimal, integer, constant).

A single node.

node # A single node.

to # An inclusive range of nodes.
thru # An inclusive range of nodes.
- # An inclusive range of nodes.
all All nodes in the subcube.

even, odd Either the even or odd parity nodes defined by the number of bits set
in the processor number.

set # The set with index # as given by a previous setdef instruction.
(Note that set numbers are indicated when using the setdef

ndb

command or with he “show sets” command.
nof # The “hypercube” neighbors of node #.
neighbors The “hypercube” neighbors of all the nodes listed so far.

board n0;nl
Specifies node n1 on attached peripheral board n0. Ranges of nodes
may also be given as nl1-n2.

Displaying Source Code

The simplest command for displaying source code is 1ist. With no parameters this prints
out ten lines of program starting at the “current line”. This latter is set implicitly during
program execution by the show state, where and single stepping commands. It may
be explicitly altered with

file name Setthe “current line” to the first line of the named file. If no name is
given display the current file.

func name Setthe “current line” to the first line of the named function. With no
parameters display the current function.

The 1ist command has parameters itself which are either one or two integers separated
by a comma. The various combinations of positive and negative values are used to indicate
ranges of lines to display. A few examples should clarify the details.

list 20 Display line 20 only.
list 20,50 Display lines 20 through 50 inclusive.

list -5 Display ten lines starting 5 before the current line. This option
provides a “window” facility.

list -5, 20
Display 20 lines starting 5 before the current line.

list function
Display the first ten lines of the named function.

When source files are named, either explicitly in £ile commands or implicitly during
program execution an internal directory search path is used to look for appropriate source
files. Two methods are available for altering this path. When starting an ndb session the “-
I” command line argument names a directory which should be appended to the current
search list. Alternately the use command can be used - it is followed by a list of directories
which replaces the current list. Thus

use . ../src ../lib ../tst

might be given to name several directories in which source files are to be found. The order
of the entries in this list is important - directories are searched from left to right so possible
name clashes may have to be considered. Of course, if ndb fails to find the correct version
of a source file with its automatic search then the £ile command can be used with a full
pathname to override ndb’s choice.

27

ndb

28

The use command with no parameters displays the current search path.
Stack Operations

The most useful command for finding the current status of the program is where. With no
arguments this command displays the top 8 levels of stack activity naming subroutines
called and displaying their arguments. If less than 8 subroutines have been called the list
terminates with the system initialization routine. If more, or less than 8 levels are required
then a numeric parameter may be given; on all where 3 displays the top three function
calls in all nodes.

It is important to note that these stack tracing operations require that several probing
messages be sent to each node. As a result they may work incorrectly when the node
program is actually executing since the stack may be significantly different each time
leading to inconsistent results. If this is a problem then one of the single step commands
can be used to effectively “stop” the nodes allowing where to succeed. The program can
be later continued with the cont command.

Another useful function in connection with tracing subroutine calls is i sin. One can say
on all isin main

to obtain a listing of the activity of all nodes which currently have the named routine in their
stacktrace. This is a useful form of data reduction since it allows he user to immediately
discover which nodes are in the wrong place.

dump routine displays the calling sequence and local variables of the named routine if
it occurs in the stack backtrace. If no function is specified then that containing the current
program counter is dumped.

Note that these commands may interact with the language specification flag discussed in
context of the ndbenv command. Often different language compilers use different calling
sequences that cannot be dynamically inferred from the actual code. In this case a stack
trace may be invalid unless the language switch is set correctly. To change from C (the
default) to Fortran, for example, one issues the command

ndbenv Fortran

Commands such as this are often best placed in the user’s initialization file .ndbinit.
Displaying data

The simplest command for showing data values is print which takes a list of expressions
and prints their values according to the variable types indicated by the program. One can,
for example, type ‘

print 1+2.5, my struc

to which the response might be

1+2.5 = 3.5

my struc = {
i=12
f=1.44

ndb

}

Some compilers do not preserve information about symbol types in which case you have to
explicitly indicate in what manner you wish to see the data displayed. Occasionally you
may also wish to override ndb’s choice of formats for a printed variable.

Data display requests take the symbolic form
address, count / format

or
address, count ? format

The first form reads data from the nodes themselves while the second accesses the actual
executable on disk. For this reason the second form is to be preferred when looking at
assembly code while the first is most common for actual data.

Essentially the format field of the command is an instruction which explains how to print
data. This command is repeated count times starting at address. The address and
count fields may contain any valid expression (as explained below) while the format
field contains any number of modifier characters which denote how a particular datum is
to be formatted. The particular characters and their interpretation is as follows

32 bit integer

16 bit integer

32 bit octal

16 bit octal

32 bit hex

16 bit hex

32 bit unsigned

16 bit unsigned

8 bit octal

8 bit binary

8 bit ASCII

8 bit ASCII with interpretation of control characters
Null terminated string

Null terminated string with control character interpretation
Disassemble instruction

Source module and line number (No ‘.’ increment)
Symbolic address (No ‘.’ increment)

Symbolic address

Date and time

Tab

Space

Carriage return

Increment ‘.’ by current amount

Decrement ‘.’ by current amount

Backup ’.’ by current amount

+ 85 R KT OO HEOLOHOOQODUDES GX X0 O0AAU

>

29

ndb

30

Each of these characters can be preceded by a repeat count. ndb maintains an idea of the
current address on each node which is referred to by the special symbol °.’. Each of the
formatting instructions (except those specifically mentioned) increments this quantity by
the size of the object to be displayed.

Several other commands of this format are allowed and are denoted by the modifiers listed
below

v Dump data as both hex and ASCII. The count field denotes the
number of 16 byte lines of data to show. A repeat count before
the v character requests hex data values of that length (in bytes),
i.e., 4v requests a dump in 32 bit words.

1 value mask This command searches from the given address through
count bytes looking for a value which, when “AND”ed with
mask is equal to value. The default search length is 4096
bytes. Warning: this option is VERY slow

L value mask Searches for a 32 bit match. See previous modifier.

w value Write the specified 16 bit value at address
W value Write the given 32 bit value at address.
Expressions

ndb recognizes most of the usual arithmetic operators in expressions. Symbolic constants
are also recognized with or without the preceding * ’ added by the C compiler or the
conversion to upper case performed in Fortran. The scope rules for simple variable names
is to look in the current function (as denoted by the register PC or the most recent func
command) and then the external variable table. References to local variables in other than
the present function can be made by specifying a full symbol name of the form

function‘variable

NOTE that certain keywords are reserved for the use of ndb and
thus cannot be used as variable names. Since none of these words
begin with an *_’ character the variable with the same name can
always be referenced by including the underbar.

The various legal expression elements are

The value of the current address.

<name The value of the named register.
(exp) The value of the enclosed expression
name Address of the named symbol using the scope rule that the

function denoted by the current program counter is searched first
followed by the external variable table. (Can be overridden with
the func command.)

routine‘name The value of the variable name in the given subroutine which

ndb

must be in the current stack backtrace.
The following are allowed operators in expressions
+ Binary addition
- Either binary subtraction or unary minus

* Either a pointer dereference or binary multiplication
% Binary integer division

& Binary AND operator

| Binary OR operator

~ Binary XOR operator

~ Unary NOT operator

Round first operand to next multiple of second

<< Left shift.

>> Right shift

@ Pointer dereference

In addition to using expressions to specify addresses it is also possible to use ndb as a
regular integer calculator. The values of expressions are printed by following the
expression with ‘=" and a format specifier as indicated in the previous section on displaying
data. Thus

0x1234 + 16*(1<<3"{}2 - 3) =X

prints an uninteresting 32 bit hex value.

The “show” command

Various special commands have been added to the usual syntax to take advantage of some
special features of the parallel machine. These commands are all of the form

show something

where the something is chosen from the list (Other options may be available on your
system, type “help show” for details.)

breakpoints List active breakpoints.

pregs Internal processor communication registers.

queues Unread messages for this node.

regs General processor registers, current instruction and source
file location.

sets User defined sets.

state Process state, current instruction and source file location.

times Idle and active times in this processor.

Note that only an initial substring of the names listed above is necessary to pick options so
that show st is equivalentto show state.

31

ndb

32

Arrays

The simplest way to print out array elements is with the print command described
previously. If you have to resort to the lower level formatting commands for some reason
then array indices are indicated in a different way.

This syntax follows the C and Fortran notation with the addition that the user must specify
the declared dimensions of the array as well as the indices required. In C, therefore, the
syntax to print out the element 1attice[2] [4] [5] froma 10x 10x 10 array as a 32 bit
integer is

lattice{2;10)({4,;10]1([5;101/D

where the values after the semi-colons are the declared dimensions of the array. In order to
perform offset calculations ndb has to know the size of an individual array element. By
default the value is taken to be 4, correct for integer and 32 bit floating point data types. If
the data item is actually of a different size - e.g., a byte or a structure then this can be
specified in braces after the array name. Thus to print out values from an array of sixteen
byte structures one might use

complicated{16}(3;8](4;12]/ddfff

The notation for Fortran style arrays is similar with the array indices being paired up with
dimensions via semi-colons. An example might be

array(3;4, 5;120)/f

ndb understands the difference in ordering between multi dimensional arrays in C and
Fortran as well as the fact that Fortran array indices start at 1. It also nests array dimensions
arbitrarily deeply.

High level job control

Several high level commands are available for running and controlling user programs. The
first set are used to start up either the debugger or the user application

run string The command indicated by the “string” parameter is
executed and the debugger attempts to attach to the resulting
process as though started with an appropriate “—p” option. If no
string is given then the previous run command in re-
executed. I/O redirection is allowed with the usual ‘<’, >,
>&’, ©>>’ syntax.

debug program process

This command can be used to name the program that is to be
debugged after ndb has started. This is useful if more than one
executable is loaded into the machine since it allows switching
between symbol tables. The process argument is optional and
specifies the process-ID number of the program that is to be
debugged. The program argument can be the single character
‘-’ in which case no symbol table will be loaded but a process-
ID may still be given.

ndb

io This command is used to redirect terminal input to the user
program. Be default ndb reads all characters typed and
interprets them as debugger commands. After this command all
terminal input is sent to the user program. To issue further
debugger commands use the keyboard interrupt sequence
(usually CTRL-C) to return control to ndb.

kill Kill the program being debugged. Confirmation is requested.

As well as these functions commands are also available to control the execution of the user
code at a finer level through breakpoints, single stepping etc. The commands are

stop in name
Insert a breakpoint at the first line of the named function.

stop at number
Insert a breakpoint at the indicated line in the current source file.
Note that this command interacts with the file and func
commands discussed earlier.

stop variable
Continue execution in single step mode and halt the program
when the named variable changes value. This command
executes rather slowly due to the interpretive nature of the
processing required.

cont Continue execution from a breakpoint, or single step. This
command interacts with the “wait” flag of the ndbenv
command - by default the ndb prompt appears immediately
allowing further commands to be entered. Alternately one can
specify that ndb should continuously poll the nodes until
another breakpoint is found or the application terminates before
prompting again. This latter behavior is most common is
sequential debuggers but slows down ndb somewhat as polling
is an inherently slow process.

step n Single step the program over “n” lines of source code (default
1). If function calls are detected then the single stepping process
enters each subroutine. If the current node *“set” contains a single
processor then this command will display the source lines as
they are stepped past.

next n Single step over “n” lines of source code without entering any
new functions. (Default 1 line). This option is similar to step
but avoids the problems of having to single step through system
functions etc. Source lines are displayed as processed if the
current “set” contains a single node.

status Display the list of active breakpoints indicating which nodes
they are present in, where they are placed and an index number
used for deletions.

33

ndb

10

34

delete n

Delete the breakpoint with index number “n” as determined
from the status command.

Note that any of these commands may be prefixed by a “set” specification to allow different
actions to be performed n distinct nodes. Thus to insert breakpoints in only the first three

nodes one might use

on 0-2 stop at 23

Miscellaneous commands

Several miscellaneous commands are available to make debugging easier.

sh string
! string

pwd

cd directory

source file

alias sl s2

alias myuse use

quit

Any command line that begins with ‘!’ or sh is executed by the
shell.

Show current directory.

Change to an new directory. This is occasionally useful for
finding source files since the default search path starts with the
“current directory”.

Read ndb commands from the named source file. This is useful
for performing repetitive tasks or for making data dumps.
Consider also the $> command which redirects the output from
the debugger. By default ndb attempts to find a file named
.ndbinit in either your home directory or the current
directory whenever started and reads initialization commands
from it.

Define a new command. Henceforth the command s1 will be
treated exactly like the command s2. The command

alias 1 list

for example, allows one to use the single character ‘1’ instead of
the 1ist command. It is also possible to set up aliases with
arguments and defaults using the UNIX C-shell syntax. The
command

te{l-.} !':{2-../8rc} !1:3 t:4 ':5

defines a new command for setting the source code search path.
5 arguments are specified and the first two have defaults “.”” and
“../src” so that the simple command myuse can be issued
without any arguments to set the search pathto ‘. ../src’or
arguments can be specified to set the path to other things.

Exit ndb. If the user program started within ndb a “kill”
command will be given and you will be asked whether to
terminate the program or not. If the program started outside of
ndb it will be left alone.

ndb

11

12

The ndbenv command

This command defines the specific “environment” in which ndb is working. The currently
implemented settings are the high level language being debugged, the “wait” state, the
“repeat” mode and the “symbol match length”. To see the options currently in effect type

ndbenv

which might yield
Language: C
Wait mode: FALSE
Autorepeat: OFF

Symbol match length: 8192

Each of these options is explained below.

Language

Wait mode

Autorepeat

Symbol Match

Certain features of ndb depend implicitly upon the high level language
being debugged - for example array indexing and stack tracing. By defauit
ndb is in the C mode suitable for the “C” language but may be switched
over to Fortran with the command ndbenv F.

This parameter controls the behavior of ndb upon receiving a cont or run
command. By default the prompt immediately reappears and the user is able
to enter further debugging commands while the node program continues to
execute. If the wait state is set to TRUE with the command ndbenv wait
then ndb continuously polls the nodes and only returns control to the user
when all nodes have stopped at breakpoints or with some error. This mode
can be turned off again with ndbenv nowait.

By default ndb repeats the last command entered whenever the user
command is a single carriage return. This feature can be disabled with the
command ndbenv norep.

Length

When translating memory address into variable names ndb uses a cutoff to
avoid translating system memory addresses into user variable names - i.e.,
addresses further than this length above a known symbol will be translated
into hex values rather than “name+offset”. By default this cutoff is
32768 bytes. On occasions it may be necessary to increase this number so
that large functions appear by name in stack traces rather than as hex
numbers.

Assembly Level Debugging

In addition to the adb implementation effectively described in the next few sections the
following commands are available for debugging at the machine code level.

listi address Display ten machine instructions from the given address. If

none is given continue from the last address specified.

stepi n Similar to the step instruction but considers only the

machine code. Encountered subroutines are entered and the

35

ndb

13

36

machine registers are displayed if the current node “set”
contains only a single node.

nexti n Similar to stepi but passes over subroutine calls.

stopi address Place a breakpoint at the named address.
Assembly Level Job Control

Various commands are available which allow one to control the execution of a node
program. They are all of the general form

argl, arg2 : modifier string

in which argl and arg2 may be any general expression and the various modifiers are
listed below. (Note that some cases do not require arguments in which case argl and
arg2 can be omitted)

b Seta breakpoint at address argl. Note that only 8 breakpoints may be set
in any node at one time so an attempt to set more will result in a request from
ndb to delete an entry.

Delete the breakpoint at address argl.
Step processor over a single machine instruction.
Continue as from a breakpoint.

Continue from breakpoint but instead of returning control to ndb
immediately wait for the node specified as argl to hit a breakpoint. If
argl is omitted wait for node 0.

O o »n Q

o

Kill the process inside the machine.

Compare arg2 bytes of memory starting at address argl on all nodes in
the active set.

r Run the command specified by the st ring argument under the control of
the debugger. I/O redirection is available with the usual constructions “>’,
‘>>’, ‘<’ an, ‘>&’. Note the comment above on terminal input to the running
process.

R Run a command, as with the r specifier, above, but wait for the process
specified in argl to hit a breakpoint before returning control to ndb. If
argl is omitted, wait for node 0.

ndb leaves the debugger in control of the terminal even when continuing from breakpoints.
This is contrary to conventional sequential debuggers which normally switch over to
sending input to the debugged process whenever it is running. This distinction is made
because of the distributed nature of parallel applications where it is not unusual to have
some nodes running while looking at the state of others. If the running process requires
terminal input the single command io switches control from ndb to the user process
sending all further keyboard input to that process. To return control to the debugger use the
interrupt sequence (usually CTRL~C).

ndb

14 Assembly Level System control

Various commands are available to control the way ndb interprets and outputs its results
and to access some of the more machine specific requests. They all take the general form

argl $ modifier string

where argl is any legal ndb expression and the modifiers are as follows

WARNINGS

b

Q o o B8

List all active breakpoints. The notation for the nodes on which the
breakpoint is active is essentially a bit mask with each bit (reading from left
to right) denoting a single processor. :

Traceback of all active C procedures together with their arguments
interpreted as 32 bit hexadecimal constants.

As in the ‘c’ option above but prints out the values of all known local
variables. Note that the appropriate compiler options must be used to
compile information about local variables.

Set default base for numbers to 10.

Print out all external variables and their values interpreted as 32 bit hex
constants.

Traceback of all active Fortran subroutine calls. No argument information
is supplied by the compiler so the first few elements off the stack are
interpreted as 32 bit hex constants.

Fortran traceback showing all local variables are 32 bit hex constants. Note
that the appropriate compiler switch must be used to include information
about local variables.

Print memory map of current program showing sizes of various data areas.
Show internal processor communication registers.
Set default base for input to octal

Quit from ndb. If you entered ndb via the ~p command line option the
node process is left alone. Otherwise it is killed.

Print general processor registers together with an interpretation of the
current instruction and the source line/module information.

Set the maximum offset from the public symbol to argl for which ndb still
interprets an address as being within that function.

Show a one line status summary for each processor showing the current
state, program location and source file/line number information

Set the output page width to argl.

Redirect output to the file named in string

Error checking in ndb is rather primitive. Furthermore if an error is actually detected it will

37

ndb

quite probably be misdiagnosed. Certain words are reserved for use in commands and
cannot, therefore, be used as variable names. The full list of reserved words is as follows:
on, setdef, pick, thru, to, set, node, even, odd, all, show, help, quit, io,
neighbors, nof.

Programs which put the nodes into strange states may also affect the debugger in odd ways.

DIAGNOSTICS

BUGS

The prompt issued by ndb attempts to indicate the current set to which commands will be
applied. Most variations are self-explanatory except the mysterious word array which
indicates a node combination too complicated to figure out.

Syntactical errors on input generate many splendid messages, some of which might even
complain about errors.

If no program is given on the command line a warning is issued about the lack of a symbol
table.

Various out of memory errors produce both fatal and non-fatal diagnostics. Error recovery
from these cases may or may not work.

Attempting to load a non-standard executable program will fail and produce a message
suggesting corrective action.

Printing non-floating point values with the £ or F formats occasionally leads to core dumps.
This sometimes happens even with legal floating point values under XENIX due to
deficiencies in the run-time support.

The exact abilities of ndb depend a lot on the underlying operating system and hardware
characteristics. As a result it is not possible to implement all features of ndb in all Express
versions.

SEE ALSO

38

“NDB: A Guide to Parallel Debugging under Express.”

tee

NAME

tcc - Compile and link Express C and C* programs for Transputers.
SYNOPSIS

tcc [-B address] [-c] [-o outfile] [-Dname[=value]]
[Idirname] [~Uname] [-E] [-g] [-dryrun] [-K] [-llibname]
[-1][-P] [-S] [-TO] [-T4] [-T8] [~e name] [-N] [-x] [-n]
[@filelist] files...

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command provides an interface to the Logical Systems C compiler useful for
compiling programs to be run under Express. Filenames ending with the ‘. ¢’ suffix are
taken to be C source code and are compiled while those ending with ‘. tal’ are treated as
assembly code source and assembled. In both cases the resulting output files have the
‘.trl’ suffix. Note that the preprocessor is run on assembler files by default allowing
some of the advanced features of the Logical Systems assembler to be used.

After compiling all source files t cc proceeds, by default, to link the resulting object files
into an executable program. If no ‘-0’ switch is provided this will have the name
trans.tld. By default libraries are searched which allow access to the Express
communication routines only. The Cubix and Plotix subsystems are included with the -
lcubix and -1plotix switches respectively. (It is important to note that programs
linked with either of these switches CANNOT be executed with normal host programs in
the “host-node” mode. Similarly programs compiled without one of these switches will not
run with the cubix program.) '

In addition to producing the executable image two additional files are (optionally)
produced which have suffices ‘. sym’ and ‘. map’. The former is used by the source level
debugger ndb while the latter is of general interest - it contains information about the
memory locations of program variables and which libraries and object files were searched.

By default all compilation/linking is performed for T800 transputers. Note that object files
and libraries are not necessarily interchangeable between the two CPU types since
instructions may be generated that are not supported on both types of hardware. The ‘~T4’
switch is provided to force the generation of programs suitable for execution on T400 series
systems. The ‘~T0’ switch attempts to generate code independent of the transputer type by
omitting instructions specific to only one model. Note that this switch does not support
floating point operations.

OPTIONS

-B address Specify alternate load address for program. By default loading is performed
at the beginning of “off-chip” memory. (See “Excustom” in the “Express
users guide” for more information.)

39

tcc

-C

—dryrun

—Dname

-Dname=value

—€ hame

-g

-K

-Idirectory

-lcubix

-1lplotix

-n

-X

@filename

Compile only - do not proceed to link resulting object files.

Print the commands to be executed without actually performing any of
them. This options implies both ‘~x’ and ‘-N’.

Define preprocessor symbol and optionally assign a value.

Specify an alternate entry point. By default the user program is entered
through initialization routines required by Express.

Run preprocessor only. Output is left in a file with the suffix ‘.pp’.

Use 32 bit floating point arithmetic for all “double” variables. (Default is
64 bit.) Other options are also available - see the Logical Systems
documentation for more details.

Include additional symbol table information for source level debugging.
This switch adds additional code at entry and exit of ALL subroutine calls to
enable stack-tracing which can significantly slow down execution.

Disable stack tracing. Used to suppress stack tracing, even when °-g’ switch
is given.

Add a directory to the path searched when looking for ‘4 include’ files.

Search the Cubix library for unresolved symbols in addition to that required
by Express.

Search both Cubix and Plotix libraries for unresolved symbols.

Execute the link phase of compilation on transputers rather than the host
system. (Only available on some systems.)

Keep all intermediate files. (Default is to delete them after use.)

Specify an alternate name for the executable program produced by the
linker. Defaultis ‘trans.t1d’.

Run preprocessor only. Output remains in a file with the extension ‘. pp’.
Generate “position-independent” code which can be relocated at runtime.
Produce assembly code listing of C source program.

Compile for T400 series transputers.

Compile for T800 series transputers.

Undefine a preprocessor symbol. Reverses the effect of ‘-D’ switches or
‘#define’ statements.

Display all commands before executing them.

Take “filename” to be a file containing a list of source or object files to
be compiled or linked, one name to a line.

tce

=? Print usage message.

EXAMPLES
tce -c hello.c

Compile, but do not link the C source file he11lo. c. The resulting object file will be called
hello.trl and will be for the T800 series transputers.

tcc -0 prog fl.trl £2.c¢ £3.trl -lcubix

Compile file £2 . ¢ and proceed to link it with £1.tr1, £2.trl and the Cubix libraries
to make an executable program called prog. This executable will run on T800 transputers.

tcc -T4 -0 prog4 gl.trl g2.c g3.trl -lcubix

This example is the same as the previous one but the resulting executable file, called
prog4 will run only on T400 series transputers. Notice that one cannot mix transputer
types so the object files g1 .trl and g2.trl must have also been produced with the -
T4 switch.

tcec -S -T4 foo.c

Generate an assembly code listing of the C source file foo . ¢ suitable for a T400 transputer
system.

tcc -Imyinc -DCUBIX -c noddy.c

Compile but do not link the C source code in the file noddy . ¢ for a T800 series transputer
system. Additionally define the CUBIX symbol and search the directory myinc when
attempting to satisfy #include statements.

tcc —g =c noddy.c

Compile, but do not link, the file noddy.c for a T800 series transputer. Include both
source line numbering information and also additional entry/exit subroutine calls to enable
stack tracing. Note that the code resulting from this file will execute rather more slowly
than would be the result if the ‘—g’ switch were omitted.

tcc -0 prog -g prog.bin subs.bin -lcubix

In this case the two named object files are linked together to produce an executable program
called prog. In addition a symbol table called prog. sym will be created for use with the
source level debugger, ndb.

MULTIPLE INPUT FILES

Some operating systems impose constraints on the length of a command line which
preclude the linking of large programs with many input files using the standard tcc
syntax. In this case t cc allows the list of filenames to be provided in a file and passed to
the compiler using the ‘@’ syntax. Consider, for example, a program made up of ten object
files with names “object0.trl”,“objectl.trl”andsoonupto“objectd.trl”.
In this case we would create a file containing the ten lines

objectl.trl
objectl.trl

41

tee

42

object2.trl

object9.trl

and save it with aname suchas“link. 1st”. We could then invoke t cc with a command
such as

tcc -0 prog ~g @link.lst -lcubix

to link the program with the Cubix libraries, build a symbol table for debugging and name
the output file prog. Note that the suffix ‘. 1nk’ should not be used since tcc uses that
name internally.

tee3l

NAME
tcc31 - Compile and link Express C Transputer node programs.

SYNOPSIS

tcc3l [-B address] [-c] [-o outfile] [-Dname[=value]]
[-Idirname] [-Uname] [-dryrun] [-i] [-g] {-llibname]
[-T4] [-T8] [-x] [-N] [@filelist] files...

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command provides an interface to the 3L C compiler useful for compiling programs
to be run under Express. Filenames ending with the . ¢’ suffix are taken to be C source
code and are compiled. In both cases the resulting output files have the ‘.bin’ suffix.

After compiling all source files t cc proceeds, by default, to link the resulting object files
into an executable program. If no ‘-0’ switch is provided this will have the name
trans.tld. By default libraries are searched which allow access to the Express
communication routines only. The Cubix and Plotix subsystems are included with the —
lcubix and -1plotix switches respectively. (It is important to note that programs
linked with either of these switches CANNOT be executed with normal host programs in
the “host-node” mode. Similarly programs compiled without one of these switches will not
run with the cubix program.)

In addition to producing the executable image two additional files are (optionally)
produced which have suffices ‘. sym’ and ‘. map’. The former is used by the source level
debugger ndb while the latter is of general interest - it contains information about the
memory locations of program variables and which libraries and object files were searched.
The map file also contains the error messages, if any, from the linker. If the program aborts
with a message such as

Failed to find .b4 file

this usually indicates that the link process failed with some error which can be located by
searching for the string “ERROR” in the “ .map” file.

By default all compilation/linking is performed for T800 transputers. Note that object files
and libraries are not necessarily interchangeable between the two CPU types since
instructions may be generated that are not supported on both types of hardware. The ~T4
switch is provided to force the generation of programs suitable for execution on T400 series
systems.

It is important to note that the 3L compilers/linkers execute directly on the first transputer
in the attached network and destroy and Express programs executing there, including the
Express kernel itself. It is necessary to re-load the system with the exinit command
before running any program.

43

tee3l

OPTIONS
-B

-C

~dryrun

-Dname
~-Dname=value

Specify alternate load address for program. By default loading is performed
at the beginning of “off-chip” memory.

Compile only - do not proceed to link resulting object files.

Print the commands to be executed without actually performing any of
them. This options implies both ‘~x’ and *-N’.

Define preprocessor symbol and optionally assign a value.

-g Include additional symbol table information for source level debugging.
Used at link time to force the generation of a symbol table for use with the
debugger, ndb.

-i Do not search any of the built-in default directories for include files. Rely
solely on the definition of the 3LCC_INC environment variable.

-Idirectory Add adirectory to the path searched when looking for ‘#include’ files.

-lcubix Search the Cubix library for unresolved symbols in addition to that required
by Express.

-lplotix Search both Cubix and Plotix libraries for unresolved symbols.

-N Keep all intermediate files instead of deleting them.

-0 name Specify an alternate name for the executable program produced by the
linker. Defaultis ‘trans.tl1d’. _

-T4 Compile for T400 series transputers.

-T8 Compile for T800 series transputers.

-Uname Undefine a preprocessor symbol. Reverses the effect of ‘~D’ switches or
‘#define’ statements.

-X Generate a listing of all command lines before they are executed. This
option is useful if certain commands need to be run by hand.

@filename Take “filename” to be a file containing a list of source or object files to
be compiled or linked, one name to a line.

-2 Print usage message.

INCLUDE FILE PROCESSING

The rules regarding the searching for include files in the 3L compiler are quite tricky. On
UNIX systems some attempt is made to locate system include files according to the
customization information supplied when installing the system. While this method is
usually effective it can lead to extremely long command lines which cannot be processed
by the 3L compiler. To avoid this situation the ‘~i’ switch should be given, which
suppresses the default search completely. In this case only those directories specified in the
3LCC_INC environment variable will be searched when looking for include files.

tcc3l

Under MS-DOS no attempt is made to locate default include file directories since the
resulting command lines are nearly always too long for processing. In this case t cc31 will
not execute unless the 3LCC_INC variable is defined. If no such variable is found a
suggestion will be made as to the correct assignment.

EXAMPLES

tcec3L -c hello.c

Compile, but do not link the C source file hello. c. The resulting object file will be called
hello.bin and will be for the T800 series transputers.

tcec3l -0 prog fl.bin f2.c¢ £3.bin -lcubix

Compile file £2 . ¢ and proceed to link it with £1 .bin, £2.bin and the Cubix libraries
to make an executable program called prog. This executable will run on T800 transputers.

tcc -T4 -0 prog4 gl.bin g2.c g3.bin -lcubix

This example is the same as the previous one but the resulting executable file, called
prog4 will run only on T400 series transputers. Notice that one cannot mix transputer
types so the object files g1 .bin and g2 .bin must have also been produced with the -
T4 switch.

tce3Ll -8 -T4 foo.c

Generate an assembly code listing of the C source file foo . ¢ suitable for a T400 transputer
system.

tcc3l -Imyinc -DCUBIX -c noddy.c

Compile but do not link the C source code in the file noddy . ¢ for a T800 series transputer
system. Additionally define the CUBIX symbol and search the directory myinc when
attempting to satisfy # include statements.

tcc3l -0 prog -g prog.bin subs.bin =-lcubix

In this case the two named object files are linked together to produce an executable program
called prog. In addition a symbol table called prog. sym will be created for use with the
source level debugger, ndb.

MULTIPLE INPUT FILES

Some operating systems impose constraints on the length of a command line which
preclude the linking of large programs with many input files using the standard tcc31
syntax. In this case t cc3l allows the list of filenames to be provided in a file and passed to
the compiler using the ‘@’ syntax. Consider, for example, a program made up of ten object
files with names “object0.bin”,“objectl.bin” and soonupto“object9.bin”.
In this case we would create a file containing the ten lines

object0.bin
objectl.bin
object2.bin

object9.bin

45

tec3l

and save it with a name such as “link.lst”, We could then invoke tcc31 with a
command such as :

tce3l -0 prog -g @link.lst -lcubix

to link the program with the Cubix libraries, build a symbol table for debugging and name
the output file prog. Note that the suffix ‘. 1nk’ should not be used since t cc31 uses that
name internally.

DIAGNOSTICS
If the linking procedure fails for some reason a rather uninformative message similar to
Failed to find .b4 file

is often generated. In this case the “.map” file should be consulted for error messages. (A
good way to do this is to search for the string “ERROR” with a text editor or similar.)

tfc

NAME

t fc - Compile and link Express FORTRAN Transputer node programs

SYNOPSIS

tfc [-¢] [-o0 outfile] [-g] [-llibname] [-T4] [-T8]
[-dryrun] [-x] [-N] [@filelist] files...

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command provides an interface to the 3L FORTRAN compiler useful for compiling
programs to be run under Express. Filenames ending with the . £’ suffix are taken to be
FORTRAN source code and are compiled. The resulting output files have the ‘.bin’
suffix.

After compiling all source files t £c proceeds, by default, to link the resulting object files
into an executable program. If no ‘-0’ switch is provided this will have the name
trans.tld. By default libraries are searched which allow access to the Express
communication routines only. The Cubix and Plotix subsystems are included with the —
lcubix and -1plotix switches respectively. (It is important to note that programs
linked with either of these switches CANNOT be executed with normal host programs in
the “host-node”” mode. Similarly programs compiled without one of these switches will not
run with the cubix program.)

In addition to producing the executable image two additional files are (optionally)
produced which have suffices ‘. sym’ and ‘. map’. The former is used by the source level
debugger ndb while the latter is of general interest - it contains information about the
memory locations of program variables and which libraries and object files were searched.

By default all compilation/linking is performed for T800 transputers. Note that object files
and libraries are not necessarily interchangeable between the two CPU types since
instructions may be generated that are not supported on both types of hardware. The -T4
switch is provided to force the generation of programs suitable for execution on T400 series
systems.

OPTIONS

-C Compile only - do not proceed to link resulting object files.

-dryrun Print the commands to be executed without actually performing any of
them. This options implies both ‘-x’ and ‘~N’.

-g Include additional symbol table information for source level debugging. If
specified at link time force the generation of the ‘. sym” file for debugging.

-lcubix Search the Cubixlibrary for unresolved symbols in addition to that required
by Express.

-lplotix Search both Cubix and Plotix libraries for unresolved symbols.

47

tfc

-N Keep all intermediate files instead of deleting them.

-0 name Specify an alternate name for the executable program produced by the
linker. Default is ‘trans.tld’.

-T4 Compile for T400 series transputers.

-T8 Compile for T800 series transputers.

-X Print each command before executing it.

Q@filename Take “filename” to be a file containing a list of source or object files to
be compiled or linked, one name to a line.

-? Print usage message.

EXAMPLES

tfc -c hello.f

Compile, but do not link the Fortran source file hello. £. The resulting object file will be
called hello.bin and will be for the T800 series transputers.

tfc -0 prog fl.bin £f2.f £3.bin -lcubix

Compile file £2. £ and proceed to link it with £1 .bin, £2.bin and the Cubix libraries
to make an executable program called prog. This executable will run on T800 transputers.

tfc -T4 -0 prog4 gl.bin g2.f g3.bin -lcubix

This example is the same as the previous one but the resulting executable file, called
prog4 will run only on T400 series transputers. Notice that one cannot mix transputer
types so the object files g1 .bin and g2.bin must have also been produced with the -
T4 switch.

tfc -o prog -g prog.bin subs.bin -lcubix

In this case the two named object files are linked together to produce an executable program
called prog. In addition a symbol table called prog. sym will be created for use with the
source level debugger, ndb.

MULTIPLE INPUT FILES

Some operating systems impose constraints on the length of a command line which
preclude the linking of large programs with many input files using the standard tcc
syntax. In this case t £c allows the list of filenames to be provided in a file and passed to
the compiler using the ‘@’ syntax. Consider, for example, a program made up of ten object

files with names “object0.bin”,“objectl.bin”and soonupto “object9.bin”.
In this case we would create a file containing the ten lines

obiject0.bin
objectl.bin
object2.bin

. e 0 0

object9.bin

tfc

and save it with aname such as“link. 1st”. We could then invoke t f ¢ with a command
such as

tfc -o prog -g @link.lst -lcubix

to link the program with the Cubix libraries, build a symbol table for debugging and name
the output file prog. Note that the suffix ‘. 1nk’ should not be used since t fc uses that
name internally.

DIAGNOSTICS
If the linking procedure fails for some reason a rather uninformative message similar to
Failed to find .b4 file

is often generated. In this case the “. map” file should be consulted for error messages. (A
good way to do this is to search for the string “ERROR” with a text editor or similar.)

49

xtool

NAME

DOMAIN

50

xtool - Analyze Execution Profile
SYNOPSIS

xtool program name [log file name]

This command is available at the system prompt on the host processor.
DESCRIPTION

This command is used to examine and analyze the log file created with the execution
profiler, xprof, commands. The first argument is the name of the executable program to
be profiled and the second is the name of the file containing the profile data. This may be
omitted if it has the default value “xprof . out”. Note that the execution profiler relies on
data contained in a symbol table for correct functioning. This can usually be made by
specifying the ‘~g’ switch when linking the program - the same procedure as used for
debugging with “ndb”.

This command presents a separate table on stdout from each node. The information
contained in each table is:

An identifier showing which node the following data is from.

A summary of the busy and idle time in each processor. In this regard we measure CPU
time so that the only “idle” time is when the CPU is not actively executing the process
such as when waiting for a message to arrive. All other classes of activity are counted
as “busy”. Note that this interpretation is different from that of ctool which
distinguishes between calculation and communication time.

A count of the number of profiling “misses”. Since the buffer supplied to the profiling
function profil may not be large enough to encapsulate the entire program it is
possible that the execution profiler will “miss” occasionally - i.e., the program will be
executing at an address which lies outside the region mapped by the pro£il call when
it tries to log the profile event. In this case the “miss” counter is incremented. The ratio
of hits to misses is presented to give a guide to the effectiveness of the profile obtained
- a lot of misses means that the routines in the profile list may not, in fact, be the most
heavily used.

A profiling list containing the most heavily used 20 functions in the program. Each
shows the fraction of the total profiling events that it corresponds to.

This data appears on stdout.
EXAMPLES

To examine the profile data in a file called “phase3.prof” created by the program
master execute the command

xtoeol master phase3.prof

xtool

SEE ALSO

cubix in the Express documentation.

51

FORTRAN runtime library

Library routines available to Express
programs written in FORTRAN

This (large) section of the manual is devoted to a listing of the contents of the subroutine library
which is invoked by Express programs.

Since parallel processing is an inherently complex activity the capabilities of Express are
correspondingly broad. This, in turn, leads to a very extensive set of functions which may appear
daunting to those familiar with other parallel processing systems or totally unfamiliar with parallel
computing. These users should not, however, be put off by the long list of routines given in this
section since we have found that practical applications use only a small fraction of the available
number. Unfortunately different programs tend to use different small subsets of the total list which
makes predictions difficult.

As a help in selecting the appropriate functions we have tried to indicate routines with similar or
related functionality in the “SEE ALSO” section at the end of each manual page. In conjunction
with the full manual and the numerous “EXAMPLES?” this should give a reasonable guide.

One of the most important pieces of information contained on each manual page is in the
“DOMAIN?” section. This paragraph tells you whether the routine in question is available to
programs running on the “host” computer or to those running on the nodes of the parallel computer
system. In the latter case there is also an indication of which library switch is required to gain
access to the routine. Note that this information must be used in conjunction with that concerning
the “Host-Node” and/or Cubix programming models.

If you are using the former style of computation then only routines shown as appearing in all node
libraries may be called from your “node” programs. Routines shown as appearing in the Cubix or
Plotix libraries cannot be called from such programs.

On the other hand, if you are using the Cubix model of computation you may freely call nearly all
of the routines described in this manual being careful only to specify the Plotix libraries for the
graphical routines. The exceptions in this case are those routines which specifically interface to
similar routines in the host processor - since you will not be writing a program to run on the “host”
you cannot call the corresponding routine there! Typical examples are the CP/ELT combinations
such as KCPCP and KCPELT. To achieve the effect of these routines in Cubix programs one would
instead use KCPEND.

The information regarding which routines are available in which libraries and to which type of
programming models they belong is summarized in a later section of this manual where we also
show the correspondence between the various language variants of Express.

The various routines contained in Express can be classified according to their functionality in
several broad categories. The following sections attempt to indicate some of the important features
of each and also to supply, in a condensed form, some information about important Express
parameters and the header files necessary to use them.

1 High Level Communication System

This section describes the communication system available to application programs under
Express. Several levels of functionality are provided although some features are common to all.
While one may use the system to send messages to specific destination processors by specifying
their processor numbers one can also use the primitives in a “topology-independent” manner.

The KXGRID system allows problems to be specified in the domain of the user data structures and

53

can be used to determine processor numbers automatically for use in the communication
primitives. Using this system it is possible to design applications that have absolutely no
knowledge of the underlying hardware topology and which will, in fact, execute transparently on
any hardware that supports Express. Similar routines are available to dynamically configure an
application to the available processing resources at runtime.

Several concepts underpin the entire communication system and can be summarized as follows;

» All messages have “destinations”. This merely specifies the node to which the message
will be sent.

* All messages are “typed”. As well as the information concerning what data is to be sent
and to whom every message has a t ype field which allows receivers to distinguish
between various messages.

» The message reception mechanism has an “acceptance” criterion. All read routines may
specify source and type information which constrains the range of messages which
may be read. This information may either limit attention to specific node/type
combinations or various degrees of “dontcare” behavior may be specified using the
wildcard value NOCARE.

* Both blocking and non-blocking read functions are supplied.

» Messages are “atomic’. A single read operation corresponds to a single write operation.
If the sender transmits more data than is read then the excess are discarded and may
NOT be read with another read request. If less data are sent than were requested
then the message is read and a return code indicates the discrepancy - another read
request may not make up the difference unless another write request is also made.

On a more functional level the following generalities may also be observed:

2

* The “node” and “type” information associated with a message are always returned to
the calling routine. In read requests, for example, a wildcard specification will be
overwritten with the actual parameter value.

» The general ordering of arguments is: what, how much, where and type - i.e., the first
arguments specify what data is to be transmitted, the second how much, the third
indicates to whom the data should be sent and the last argument denotes the type of
the associated message. This standard leads to an obvious calling sequence for the
simplest “read” and “write” operations

ISTAT = KXREAD (BUFFER, LENGTH, ISRC, ITYPE)
ISTAT KXWRIT (BUFFER, LENGTH, IDST, ITYPE)

Some calls which both read and write data have the above sequence duplicated for both
operations so the exchange function, for example, has the calling sequence
ISTAT = KXCHAN (INBUF, INCNT, ISRC, ITYPE,
OUTBUF, OQUTCNT, IDST, OTYPE)

i

Hardware Dependent Communication System

Express has been carefully designed to allow programs to be written which will execute

54

transparently on a wide variety of different parallel architectures. As a result, none of the basic
primitives make any reference to the underlying hardware configuration. On occasions, however,
portability may be a less important goal than absolute performance on a particular piece of
hardware. To support those users who have this type of constraint an Express subsystem has been
provided with a “raw” interface to the communication hardware. Typically the use of these routines
disables most of the higher level processing of which Express is capable such as the debugging
and performance analysis tools. For this reason we suggest that its use be adopted as the final stage
in the development of any parallel processing project after whatever bugs and/or performance
questions have been resolved by using the full Express system.

3 Synchronization

One of the key concepts which underlies all of Express concerns interprocessor synchronization.
In some sense this issue is the key to all of parallel processing - different algorithms can most often
be classified not by the particular scientific or other field from which they arise but by the way in
which they necessitate interprocessor synchronization. In Express we classify two types of
behavior:

e Asynchronous
“Asynchronous” system calls can be made in any node at any time regardless of the
activities currently occurring in other nodes. One can consider that the node making
the call is operating totally in isolation.

» Loosely synchronous

A “loosely synchronous” system call can be perceived as a barrier to the further
progress of the program. When one node makes a loosely synchronous call it waits
for all other nodes to make the same system call (albeit with possibly different
arguments). When all nodes have made the call every node proceeds. This concept
might be classed “synchronous” but this is too restrictive - it is quite permissible for
one node to make the “loosely synchronous” call far ahead of the other nodes. All
nodes will, however, be synchronized after the call completes.

Note that these behaviors are not (usually) states of the system but are applied individually to
different function calls. The function KXWRIT, for example, which sends an Express message
may always be made asynchronously - i.e., any node may send a message at any time. Similarly
any node may call KABORT to terminate a program at any time. On the other hand, KMULTI, the
system call which switches between file I/O modes must always be made “loosely synchronously”.

Because the synchronization properties of a parallel program are often the key to its construction
and optimization, the situation is actually more complex than just discussed.

The default state of Express is that every system call has an associated synchronization property.
These states are listed in section 3 of this manual. Also available (in the Cubix library) is a global
override function, KCBXSY, which switches all system calls to asynchronous mode.

At a slightly more useful level, each open file has its own synchronization property. This allows,
for example, a program to have a global input stream for basic parameters, individually (and
asynchronously) accessed data files for operational data and error reporting, distributed
(synchronized) files for output data, etc. In each of these modes different requirements are made
by Express on what can and cannot be done to the files.

55

Even within the “asynchronous” functions there are different levels of behavior. The KXWRIT
function mentioned earlier, for example, may be called at any time in a user program, but it does
not return to its caller until a message has been transmitted to the receiving node. The analogous
KXSEND system call also sends a message to another processor but returns immediately to its caller
without waiting for the data to be transmitted. While both of these calls are “asynchronous” in the
sense that the start of the operation may occur in any node at any time KXSEND is clearly “more”
asynchronous than KXWRIT because the point at which the buffer containing the data which has
been sent can be re-used is not known when the call returns.

This discussion may have convinced you that the topic of interprocessor synchronization is too
complex to ever be understood. This is not, however, the case. While it is true that many of the
elementary bugs in Express are caused by violations of some synchronization constraint they are
remarkably easy to find and eliminate using tools like the ParaSoft debugger, ndb. Furthermore,
the existence of these synchronization constraints tends to help rather than hinder the development
process. Much care has gone into the I/O system, for example, to make the synchronization as
natural as possible. Typically we find that the message

abort (-1)

(which is the response of the cubix program to a violation of a synchronization rule) is indicative
of an error in the user application which might otherwise have gone unnoticed or else caused other
problems to occur later on.

4 Decomposition Tools

This section describes the utilities used to automatically distribute problems among parallel
processors The Express manuals describe a set of communication primitives designed to allow

“topology independent communication”. Problems can be specified in their own natural domain -
two dimensions for image processing applications and three for aircraft simulation, for example.
The utilities in this section are then provided to assign the “processor numbers” used by the
communication routines described in the previous section.

Also available is another utility which allows applications access to certain important runtime
parameters. In conjunction with the other utilities this allows programs to be dynamically
configured, at runtime, to the system on which they execute. This allows, for example, a program
developed on a four processor system to be run on a 1000 node production machine by merely
changing a single command line parameter.

5 Multitasking Support

Express supports a powerful remote multitasking facility which allows programs running on any
processor in the system to initiate a “task” on another node of the parallel computer. This system
is built around the KXHAND function which associates a program segment with a particular
message type. Upon the arrival of a registered message type the indicated program section is
triggered as a separate task which is then free to pursue its own independent execution path.

In support of this multitasking facility is a set of semaphore operations designed to’ allow two or
more processes on a node to cooperatively update shared data.

56

6 Processor Allocation and Control

This section describes in detail the control functions at the lowest levels of Express. They are used
in “Host” programs to allocate groups of processors, load programs and start execution. Note that
this section will not concern you if you intend to use the Cubix programming model since the
cubix program takes care of the necessary steps automatically.

The unifying concept of this section is that of the processor group. This is the fundamental unit of
processor allocation - processors are allocated to processor groups which are then treated as a unit.
When programs are to be loaded into processor groups the processor group index must be
specified.

PROGRAM FIRST
INTEGER PGIND

C
COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST, IALNOD, IALPRC
C
C-- Set up Express and its common block.
C
CALL KXINIT
C
C-- Allocate four transputer nodes anywhere in array.
C
PGIND = KXOPEN(’/dev/transputer’, 4, NOCARE)
IF(PGIND .LT. 0) THEN
WRITE(6,*) 'Failed to allocate 4 processors’
STOP
ENDIF
C
C-- Load application, "noddy" into all processors.
c

ISTAT = KXLOAD (PGIND, ’noddy’)
IF(ISTAT .LT. 0) THEN
WRITE (6, *) ‘Failed to load program’
STOP
ENDIF

As well as allowing a single host process to allocate and manipulate more than one group of
processors it is also possible for two or more users to simultaneously allocate and work with groups
of processors. (Provided, of course, that the host operating system allows multitasking. This
features is not, for example, supported under MS-DOS.) It is even possible for multiple host
processes to share access to the same group of processors. This mechanism allows multiple,
disjoint, front end processes such as a file serving utility and a complex graphical user interface to
both have access to the same group of nodes. Routines are available to ensure that the processes do
not interfere with each other.

57

All the routines in section return -1 to indicate errors. Some also write diagnostic messages and
some cause immediate termination of the calling process. In any case the parallel machine should
remain intact and available for use by other applications and users.

7 I/O Services

The Cubix1/O library is available to programs using the Cubix programming model and associated
server process. In principle, It provides a full set of utilities as well as many extensions designed
explicitly for parallel processing. Unfortunately, due to the abysmal lack of any standardized form
of FORTRAN I/O the current FORTRAN implementations of Cubix fall somewhat short of
perfection. For this reason a highly non-standard but useful set of SUBROUTINES and
FUNCTIONS have been made available to supplement the normal FORTRAN language
statements. Using these (parallel) extensions it is possible to make use of the full power of the
Cubix system albeit at the expense of losing portability.

The standard FORTRAN I/O interface is not documented here. You should consult whatever
documentation is supplied with your compiler for details of its capabilities. The following table
summarizes the current status of Cubix as regards compatibility with normal FORTRAN 1/O

language statements:

1/0 mode Terminal Formatted Unformatted
singl, input OK OK OK
multi, input Not available Not available Note 1
async, input OK Note 2 Note 3
singl, output OK OK OK
multi, output OK Note 4 Note 1
async, output OK Note 2 Notes 2,3
NOTES:
1. The simplest interface is provided by the KMREAD, KMWRITE, KMRD2D
and KMWT2D functions.
2. Asynchronous mode is most effective when each node access a different
file.
3. The simplest interface is currently provided by the KREAD and KWRITE
functions.
4. The behavior of formatted file output is somewhat erratic as various

compilers interpret FORTRAN files in unusual ways.

The following is the list of extensions to the normal FORTRAN I/O system which are
supported in all versions of Express, together with the list of restrictions imposed on each

58

P

by the parallel nature of the underlying system.

KREAD! KWRITE!
KMREAD? KMWRIT?
KMRD2D? KMWT2D?

NOTES:
1. These routines must be called “loosely synchronously” and with identical
arguments in each node unless the UNIT argument is in async mode.
2. Must be called “loosely synchronously” in all processors unless the stream

argument is in async mode. If the stream argument is in multi mode the
arguments may differ from node to node but the function must still be called
“loosely synchronously”.

8 Graphics

The Plotix library is supplied to allow both parallel programs running in the Cubix programming
model and “host” programs access to device independent graphics in a portable manner. The

library contains about twenty routines which are sufficient to cover the majority of graphical tasks
while not being an implementation of any particular standard.

9 Standard variables and the /XPRESS/ common block.

Central to the use of Express is the labelled common block “/XPRESS/” which should be
included whenever Express functions are being used. This defines a number of important
parameters which have wide usage in the system. Before any use of such values can be made,
however, they must be initialized by calling the start-up routine, KXINIT. This routine should be
called at the top of every Express FORTRAN program which should, therefore, have a structure
similar to the following

PROGRAM MYPROG

Cc
COMMON/XPRESS/NOCARE, NORDER, NONODE, THOST, IALNOD, IALPRC
C
C—-- Start up Express by initializing its COMMON block.
C
CALL KXINIT
Cc
C-— Can now proceed to use EXpress
C

The values in the common block are used for a variety of purposes as explained below.

NOCARE This value is used to indicate that the source or type of an incoming message
are of no consequence. Note that it is illegal to send a message with type

59

NORDER

NONODE

IHOST

IALNOD

IALPRC

NOCARE even if you really don’t care!

This value is used to indicate that the parallel I[/O system should operate in
a mode in which data from nodes is sent to and/or received from the host in
order of increasing processor number. It is used in conjunction with the
KORDER, KMREAD and KMWRIT function calls.

This macro value is used by the KXGRID functions to indicate that no node
is attached to the user decomposition in the indicated direction. Such a case
might arise, for example, when solving partial differential equations on a
finite space - some nodes have no neighbors in some directions since they
lie on the edge of the domain.

An integer variable which contains the “processor number” used by node
programs to send/receive data to the host. By default this is the machine that
loaded the node program although it is possible to override this.

A value used in the “global” communication routines (KXCOMB, KXBROD,
KXCONC, etc.) to indicate that a particular operation should be applied to all
nodes in a parallel processing system. Never includes the host processor(s).

A value similar in use to TALNOD except that it implicitly includes all host

processors attached to the system.

10 Manual Page Layout

The manual pages are, for better or worse, modeled after those often found in UNIX documentation
which means that each manual page has several well-defined sections. The overall structure is

shown below.

Header contains the

name of the manual

KABORT | <«——— page which is usually

NAME the same as the routine
KABORT - Immediately terminate program described.

SYNOPSIS

SUBROUTINE KABORT (STATUS)
INTEGER STATUS

DOMAIN
Available to node programs compiled with the Cubix or
Plotix libraries only

DESCRIPTION
The KABORT mechanism........

EXAMPLES
This function is most useful in.....

CALL KASYNC(6)
IF (ERROR .GT. 99) THEN

WRITE(6,*) ’‘Death!!., ..’
CALL KABORT (15)
ENDIF
BUGS/WARNINGS
None.
SEE ALSO
“Cubix: Programming parallel computers without
programming hosts”

The various sections and their contents are:

NAME Repeats the name associated with the manual page and a brief one-line
description of the purpose of the associated routines

SYNOPSIS Summarizes the arguments used by the indicated routines. If more than one
routines is described on a particular page then all are listed in this section

DOMAIN Describes the libraries in which the routine is to be found and any
restrictions on when it may be used.

DESCRIPTION Describes the purpose of each routine and lists the actions caused by its most
important arguments. This section is the most important reference material

61

EXAMPLES

WARNINGS

BUGS

SEE ALSO

for each command.

One of more examples of the use of each routine are shown on each manual
page. This section probably represents the best information on how the
various arguments are put together in “real” examples. This section is also
useful for demonstrating the order in which function calls should be made
and which ones are necessary at which points in the execution of Express

programs.
If the routine has peculiar side effects or is “dangerous” in some way it will

be noted in this (optional) section. Any non-intuitive behavior is also noted
here.

Currently known bugs and/or unimplemented routines are noted in this
(optional) section.

Related commands and/or routines from the various Express libraries are
noted in this section. Using this information is usually the quickest way to
build a complete picture of the interaction between the various utilities.

62

KABORT

NAME
KABORT - Immediately abort program.

SYNOPSIS

SUBROUTINE KABORT (STATUS)
INTEGER STATUS

DOMAIN
This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

The KABORT routines causes the immediate termination of the parallel program. A
message is displayed on the host processor showing the processor number of the aborting
node and also the STATUS value supplied to the call. If examined with the debugger, ndb,
the aborting nodes will appear to be at breakpoints.

EXAMPLE

This function is most useful for dealing with asynchronous problems which require
termination of the program but which might not occur in every node. If the termination
condition is known to occur in each node the regular STOP should probably be preferred.
A problem that may merit KABORT is the failure of the KOPENP graphics function for some

reason.

C

C-- Assume all arrays, parameters defined elsewhere..
c .

ISTAT = KOPENP (GBUFFR, IGSIZE)
IF (ISTAT .LT. 0) THEN

CALL KABORT (12)
ENDIF

63

KASP:

NAM

SYN(

DOM

DES(

EXALI

{ASPEC - Inquire device aspect ratio.
SIS

SUBROUTINE KASPEC(DEVX, DEVY)
REAL DEVX, DEVY

IN
This routine may only be called in programs compiled with the Plotix libraries.
IPTION

Chis routine returns the “size” of the display surface. This concept is less than well-defined;
t can either mean the number of pixels in each direction or the physical size of the display
levice. We choose to return the latter values since they seem to be more useful. In particular
he sizes returned are the width and height of the display surface, in inches.

’LE

Che following code shows the interaction between the KASPEC and KVPORT calls which
dlows the user image to always appear in the largest square region of the display surface
ndependent of the actual shape of the device screen. We assume that the user has supplied
. routine, DRAWSQ, that draws a square in the user coordinate space. We show the output
»oth on the default viewport and also after using KASPEC to make a square window.

REAL XFAC, YFAC, RATIO

Al
-
~
-

—-— Draw a square in user coordinate space.

CALL DRAWSQ

4

CALL KASPEC (XFAC, YFAC)

RATIO = XFAC/YFAC

IF (RATIO .GT. 1.0) THEN

CALL KVPORT(0.,0.,1./RATIO,1.)

ELSE ‘
CALL KVPORT(0.,0.,1.,1./RATIO)

ENDIF

CALL KLINEM(1)

—— Redraw square - should now look square!!

CALL DRAWSQ

64

KASPEC

SEE ALSO
KSPACE, KVPORT

KBOX

NAME

KBOX - Draw and fill rectangles.

SYNOPSIS

SUBROUTINE KBOX (X0, Y0, X1, Y1, COLOR, EDGE)
REAL X0, Y0, X1, Y1
INTEGER COLOR, EDGE

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine provides a simple interface to the polygon drawing primitives for the common
case of rectangular regions. A rectangle will be drawn whose bottom left corner has
position (X0, YO0) and whose top right corner is at (X1, Y1).The COLOR argument
indicates the manner in which the region should be filled. Positive values of COLOR
translate into solid colors in the same manner as the arguments to the line color primitive,
KCOLOR. Negative values yield device dependent shading patterns. If the EDGE argument
is non-zero then the boundary of the region will be drawn in the color most recently
specified in a call to the KCOLOR function.

All coordinates are expressed relative to the most recent call to KSPACE.

Note that filling with COLOR = 0 and EDGE = O results in a “selective erase” - specific
areas of the screen can be erased.

EXAMPLE

The following code draws a simple box in the foreground color and then takes a “bite” out
of it by drawing and filling in the background color.

C
C-- Define coordinate system.
C
CALL KSPACE(0.,0.,10., 10.)
C
CALL KBOX (1.0, 1.0, 9.0, 9.0, 1, 1)
CALL KBOX(5.0, 1.0, 9.0, 5.0, 0, 0)
C

CALL KSENDP

66

KBOX

Note that this code achieves the same effect as that shown on the KPANEL manual page but
is much simpler. Also note that filling rectangular regions can often be done by hardware
even in cases where no general hardware polygon fill is available. In these situations KBOX
will be significantly faster than the equivalent calls to either KPOLGN or the KPANEL

routines.

SEE ALSO
KPANEL, KCOLOR

67

KCALHO

NAME
KCALHO - Interface to user host routines from Cubix program
SYNOPSIS

INTEGER FUNCTION KCALHO (FUNC, ODAT, OCNT,
IDAT, ICNT, SENT, STAT)
INTEGER FUNC, ODAT (*) ,OCNT, IDAT (*), ICNT, SENT, STAT

INTEGER FUNCTION(FUNC, ODAT, OCNT)
INTEGER FUNC, ODAT (*), OCNT

INTEGER FUNCTION KRETHO (IDAT, ICNT, SENT, STAT)
INTEGER IDATA(*), ICNT, SENT, STAT

DOMAIN

These routines may only be called in programs compiled with the Cubix or Plotix libraries.
Furthermore special software is necessary to re-link the part of the Cubix server which
executes on the system host.

DESCRIPTION

These routines provide an interface between normal Cubix programs and user written
routines which must run on the host computer. The simplest routine, KCALHO, causes a
user written routine (denoted by the integer FUNC, explained later) to begin execution. This
routine can be passed up to 512 bytes of data from the buffer ODAT which it will receive as
an argument. The exact number of bytes to be sent to the host routine is specified in the
OCNT argument.

After processing the host routine is also allowed to send up to 512 bytes of information
back to the node program which invoked it. This data will be stored at address IDAT in the
node program. The ICNT argument indicates the maximum number of bytes which should
be copied to the node’s IDAT buffer. If more are sent from the host they are ignored. In any
case the SENT variable argument will be initialized to the number of bytes which the host
attempted to transfer, whether larger or smaller than ICNT.

Finally the variable STAT argument will be set to the value returned by the host routine.

The 512 byte restriction is imposed by the fact that for reasons of speed the data transferred
to/from the host routine is not copied to a “safe” user buffer but remains in the system buffer
to which it was sent. If this poses too strict a restriction on the abilities of the node program
then an alternative interface is provided by the KSTRHO and KRETHO functions.

KSTRHO is responsible for starting up the host routine and passing it up to 512 bytes of data
in the same manner as indicated by the first three arguments to KCALHO. KRETHO performs
the operation of the last four arguments to KCALHO which it interprets in an identical
fashion.The advantage of this interface is that between the calls to KSTRHO and KRETHO
in the node program the host and node codes are running in a mode identical to the “host-
node” programming model and can, therefore, communicate data at will using the regular

KCALHO

Express systems calls (KXREAD, KXWRIT, KXBROD, etc.)

Note, however, that this is a rather “double-edged” advantage. On the one hand it allows
the host routine and the node program to communicate data at will avoiding the 512 byte
restriction for data transactions in both directions. On the other hand the advantages of the
Cubix programming model are suspended until the host routine terminates. As a result the
node program cannot use any Cubix I/O or Plotix graphical commands until the call to
KRETHO completes. Similarly the user will have to resolve potential byte swapping and
alignment problems due to incompatible host and node CPU’s which might otherwise have
been covered up by the Cubix programming model. For these reasons, therefore, the
interface through the KCALHO routine is to be preferred.

EXAMPLE

The following code segment is used to execute the host routine with index 3 in the host. A
simple integer is sent to this routine and a small array of integers is returned.

INTEGER TOT, I, STAT, HSTAT, NGOT
INTEGER*4 INDAT (32)
INTEGER*4 MYVAL

Cc
C-- We might have to swap the stuff sent to the host....
C
CALL KXSWAW (MYVAL, MYVAL, 4)
ISTAT = KCALHO(3, MYVAL, 4, INDAT, 4*32, NGOT, HSTAT)
o
C—— If either the host or nodes reported an error give up now.
C
IF(ISTAT .LT. 0 .OR. HSTAT .LT. 0) THEN
WRITE (6, *) 'Something failed', ISTAT, HSTAT
RETURN
ENDIF
C

C-- Figure out how many bytes we actually got. This is either
C—- the number we asked for or the number sent, whichever is
C-- smaller.

IF (NGOT .GT. 4*32) NGOT = 4*32

C-— If everything seemed to be OK we can add up the numbers
C-- returned by the host. Note that we might have to swap some
C—-- bytes here......

CALL KXSWAW (INDAT, INDAT, NGOT)
TOT = 0
DO 10 I=1,NGOT/4

TOT = TOT + NGOT(I)

69

KCALHO

10 CONTINUE

It is important to note that the data buffer being transmitted to the host is sufficiently small
to fit into the 512 byte restriction. This allows us to use the KCALHO interface. Further we
take care to calculate correctly the amount of data returned to the node program and to
(potentially) swap bytes. Note that we have inserted calls to a byte swapping function
KXSWAW in this example - if the host and node byte orderings are the same these calls are
unncessary and can be removed.

HOST INTERFACE

The previous sections described the interface to the system from the perspective of the node
program. As well as incorporating one or more of the node system calls in your program
you must also arrange for the host program to be linked with your host routines.

This procedure is made most tricky for a FORTRAN programmer by the fact that, since the
cubix file server program is written in C its interface to any user written host routines
must also be in C. This restriction, however, only refers to the top level routine called by
the cubix server. If supported by the compilers used you may write the majority of your
host routine in FORTRAN and somehow link it to the rest of the server process. This
procedure is beyond the scope of this document and you should consult compiler
documentation for details.

The linking of host routines into the cubix server process is controlled by the source file
userlink.c supplied with the “Cubix user-link kit”. This file contains an array of
function pointers- the indices of which correspond to the func argument passed to
callhost or starthost. By default the top part of this file contains the following

static int user no_op():;

int (*user_funcs[]) () = {
user_no_op,
}bi

This code shows that a single host function is defined by default: user_no_op. This
function doesn’t actually do anything and is merely provided as a place holder to simplify
the introduction of new user routines. If, for example, two additional user functions are
required called, search_DB and sort_DB for example, we could modify the above part
of the userlink.cfile toread

extern int search DB(), sort DB();

int (*user funcs[]) () = {
searchDB,
sort_ DB,

70

KCALHO

Notice that we elected to delete the user no_op function and made the two new routines
take indices 0 and 1. Also note that we changed the definition from static to extern
since these routines are probably defined outside the userlink. c file.

Having initialized the data structures used by Cubix to find user host routines it remains
only to discuss the calling sequence used when invoking them.

When a user host routine is called it is passed three arguments and is expected to return an
integer value. The three arguments passed to the user routine are:

* A pointer to the buffer containing data sent to the host as the odat argument to
KSTRHO or KCALHO.

» The number of bytes contained in this buffer. This value will be the same as that
specified as OCNT when calling the host routine from the nodes.

» A pointer to an integer which should be set to the number of bytes to be returned
to the node program as IDAT. This data should be placed in the buffer pointed
to by the first argument, overwriting whatever values were sent there from the
nodes. The value written to this argument will be returned to the node program
through the SENT argument of KCALHO or KRETHO.

As an example, therefore, the skeleton of the search_DB function should be similar to

int search DB(buffer, in bytes, pout_bytes)
char *buffer;

int in_bytes;

int *pout_bytes;

{

® o e o 0 0 0 0

*pout _bytes = ...;
return ...;

Notice that we finish the function by making sure that the pout_bytes argument is
initialized. Finally we return a value which will be passed to the node program through the
STAT argument.

DIAGNOSTICS

The node routines described here indicate error conditions by returning -1. Possible error
conditions are as follows:

ETOOBIG An attempt was made to either send too much data to the host or return
too much to the nodes. The maximum amount of data that can be
transmitted through the system invocation mechanism is 512 bytes.

71

KCALHO

EBADPTR The FUNC argument indicated a function with an index outside those
defined in the host’s function table.

It is important to note that if an error occurs in a call to KSTRHO no call to KRETHO should
be made.

SEE ALSO
KCBXSY.

72

KCBXSY

NAME
KCBXSY - Specify synchronous or asynchronous system calls

SYNOPSIS

INTEGER FUNCTION KBCXSY (FLAG)
INTEGER FLAG

DOMAIN
This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

This call provides a system override which controls the overall synchronous or
asynchronous behavior of Cubix system calls.

By default the system is in “synchronous mode” which means that all function calls must
be made loosely synchronously. Furthermore each node must address its system requests
to the same system console. (Note, however, that asynchronous I/O is still supported in this
mode on a file by file basis).

Calling KCBXSY with a zero argument places the system in asynchronous mode. All further
operating system requests are made on a node by node, first come-first served, basis. In this
mode any node may address any host processor with impunity but the responsibility for
maintaining “sensible” ordering lies with the user. Note that I/O requests will, however,
still occur with the synchronization model implied by the unit’s “mode” - i.e., a file which
has been placed in multi mode with the KMULTI system call will continue to operate this
way even after the KCBXSY system call has placed the system in its asynchronous state.

The value returned is the previous “synchronization mode” flag which can be used as the
argument to subsequent calls to KCBXSY.

EXAMPLE

The asynchronous mode is rather difficult to control not the least because the inherent
asynchronicity introduced into applications make them harder to debug. It can, however,
be useful in system with multiple consoles, each under the control of a different group of
nodes. In the following example we suppose that nodes with even processor numbers
should communicate with host number THOST+1 while those with odd processor numbers
remain connected to the main system console.

PROGRAM ASYNC
INTEGER NDDATA (4)
COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST, IALNOD, IALPRC

C
C-- Setup Express and its common block.
C
CALL KXINIT
C

73

KCBXSY

C-— Get processor numbers.

c
CALL KXPARA (NDDATA)
C
CALL KCBXSY (0)
IF (MOD (NDDATA (1) ,2) .EQ. 0) THEN
CALL KCONND (IHOST+1)
ENDIF
cC

C-- The lowest numbered node now introduce themselves,
C—-- asynchronously, on their respective consoles.

C
IF (NDDATA(1) .LT. 2) THEN
WRITE(6,*) ’‘Hello world’
ENDIF
SEE ALSO
KCONND

74

KCLIP

NAME
KCLIP - Enable/Disable clipping.

SYNOPSIS

SUBROUTINE KSETCL (X0, YO0, X1, Y1)
REAL X0, Y0, X1, Y1

SUBROUTINE KENDCL

DOMAIN
This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These two calls are used to enable and disable the clipping primitives. The KSETCL routine
defines a two-dimensional clipping window relative to either the default user coordinate
range or that set by the most recent call to KSPACE. Further lines, points, markers and
polygons will be “clipped” relative to this window and portions lying outside the indicated
range will be removed.

The KENDCL routine disables the clipper.

It is important to note that clipping is performed with respect to each “vport” and that the
clipping window is specific to the active viewport when KSETCL is invoked. Each call to
KSETVP alters the clipping window to that associated with the particular “vport” selected.

Note that while clipping is typically expensive this process is supported on the nodes of a
distributed machine rather than on the graphics device itself. As a result all clipping is
performed in parallel leading to increased performance.

EXAMPLE

In the absence of the call to KSETCL the following code would draw a diamond shaped
polygon on the display surface. After clipping only a portion of the figure remains.

CALL KSPACE(0.,0.,4., 4.)
CALL KSETCL(l., 1., 3., 3.)

CALL KINITP (1, 1)

CALL KPANLP (0., 2.)

CALL KPANLP (2., 4.) CALL KPANLP (4., 2.)
CALL KPANLP (2., 0.)

CALL KENDPA

CALL KSENDP

75

KCLIP

SEE ALSO
KPANEL, KMOVE, KMARKE, KCONT

76

KCNTOR

NAME
KCNTOR - Contouring functions

SYNOPSIS

SUBROUTINE KCNTOR (FUNC,GX,GY, LEVMIN, LEVMAX, NLEV, PANELS)
REAL FUNC, LEVMIN, LEVMAX

INTEGER GX, GY, NLEV, PANELS

EXTERNAL FUNC

SUBROUTINE KINITL(FUNC, GX, GY, LEVEL, PANELS)
REAL FUNC, LEVEL

INTEGER GX, GY, PANELS

EXTERNAL FUNC

INTEGER FUNCTION KGETPT (PX, PY)
REAL PX, PY

DOMAIN
This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

The KCNTOR routine makes a two-dimensional contour map of the supplied function
FUNC. Rather than provide an array of values specifying the function to be contoured a
function is supplied which will be called repeatedly with pairs of integer arguments
representing the position at which a value is required. The range of values is specified by
the GX and GY arguments; the user function will be called as FUNC (I, J) withIand Jin
theranges 0<I<GXand 0 <J < GY.

Contours are drawn at NLEV positions equally spaced between LEVMIN and LEVMAX.
Optionally LEVMIN and LEVMAX can both be set to zero in which case suitable values are
selected internally.

The final argument, PANELS, selects the type of contouring to be performed. If non-zero
then the contours will be drawn as filled polygons while a zero value selects the more
conventional style in which the contours are represented by lines. In the case of filled
regions the lowest NLEV indices of the color map will be used. The KRAINB and KGREYS
functions can be used to re-map the appropriate color table entries.

Since this routine calls KUSEND internally it must be called in all nodes together. Failure
to do so will result in communication deadlock. Note, however, that no internode
communication is done in performing the contouring. It is the responsibility of the user to
distribute boundary values to processors that require them before calling the KCNTOR
routine.

The contouring utility described here assumes that the data lie in a rectangular domain - i.e.,
that the mesh underlying the data is a Cartesian grid. In order to contour data specified in
other coordinate systems, such as polar coordinates, the lower level KINITL and KGETPT

77

KCNTOR

routines are available.

The former specifies a function to be contoured and a range of I and J values just as in
KCNTOR. The LEVEL argument selects the contouring level and the PANELS argument
indicates the style of contouring to be performed. The interpretation of this value is not so
straightforward as in the KCNTOR routine. Essentially the purpose is to control exactly what
type of points are returned by the XKGETPT function. The allowed values and their
interpretations are

PANELS = 0 Allinterior points are returned. The surrounding box is treated as a
true rectangle and only the vertices are returned. This option is
designed for simple line contouring of rectangular regions.

PANELS = 1 The contour map is cut into horizontal strips and coordinates are
returned in such a way that the resulting polygonal regions are
simply connected. The bounding box is treated as in option 0.
Designed for color fill panels.

PANELS = 2 The interior points are treated as in option 1 but the boundary is also

divided into many points which are returned individually. This
option is designed for cases where the actual domain to be contoured
is not rectangular and hence the boundary values need to be
transformed in some manner.

The KGETPT function is used, once a contour has been initialized, to return coordinates
which lie on the contour. As well as returning an (X,Y) coordinate pair under the supplied
pointers the returned value indicates the nature of the returned point as follows

STATUS = 0 This contour level is finished. Ignore returned coordinates.
STATUS = 1 The coordinates are valid for the current contour.
STATUS = 2 A segment of the current contour line is finished. Ignore the

coordinates returned and call KGETPT again in which case it will
either return O indicating that no more points exist at this contour
level or 1 indicating that another disjoint piece of the current contour
exists.

A complete example of the use of these functions to contour a function supplied in polar
coordinates is shown in the Plotix documentation.

EXAMPLE

The following code demonstrates the elementary use of the contouring function.

SUBROUTINE DOCONT
REAL CIRCLS
EXTERNAL CIRCLS

CALL KCNTOR(CIRCLS, 10, 10, 0.0, 25.0, 6, 0)
RETURN

78

KCNTOR

END

C
C-- This is the function that will be c¢alled by the

C-- contouring utility.

C
REAL FUNCTION CIRCLS(I,J)
INTEGER I,J

o
REAL X0, YO

c
X0 = FLOAT (I-5)

Y0 = FLOAT(j-5)
CIRCLS = X0*X0 + YO*YO
RETURN
END
SEE ALSO

KCOLOR, KGREYS, KRAINB.

79

KCOLOR

NAME
KCOLOR - Change color attribute of graphical objects.
SYNOPSIS |

SUBROUTINE KCOLOR (INDEX)
INTEGER INDEX

DOMAIN
This routine may only be called in programs compiled with the Plotix libraries.
DESCRIPTION

This routine modifies the color used in drawing all subsequent lines and markers. The
INDEX argument is typically device-dependent but one can safely use the following on
“color” devices.

0 Background color for device. (“Black™)
1 Foreground color for device. (“White™)
2 Red.

3 Green.

4 Blue.

5 Cyan.

6 Purple.

7 Yellow.

Monochrome devices, by default, support only two of these indices, 0 and 1.
The background color is often useful for selectively erasing previous symbols.

This function interacts with the KGREYS and KRAINB routines providing full color on
devices capable of supporting such models.

EXAMPLE

The following code defines an 8 x 8 coordinate system and draws a simple box in the
foreground color. It then overwrites the lower right hand comer of the box in the
background color, erasing part of the image.

CALL KSPACE(0.,0.,8., 8.)

CALL KCOLOR(1)

CALL KMOVE(1l.,1.
CALL KCONT(7.,1.
CALL KCONT(7.,7.
CALL KCONT (1.,7.
CALL KCONT(1l.,1.

N e

CALL KCOLOR(0)
CALL KMOVE(4.,1.)

80

KCOLOR

CALL KCONT(7.,1.)
CALL KCONT(7.,4.)

CALL KSENDP

SEE ALSO
KCONT, KMOVE, KLINEM, KRAINB, KGREYS

81

KCONND

NAME

KCONND - Redirect system calls.

SYNOPSIS

SUBROUTINE KCONND (NODE)
INTEGER NODE

DOMAIN

Available to node programs using the Cubix file server only and which are compiled with
either the Cubix or Plotix libraries

DESCRIPTION

This function is provided to support systems with more than one attached host. By default
all Cubix system calls are directed to the processor which originally loaded and executed
the user application. On occasion, however, it may be necessary to perform certain system
tasks on other nodes in the system.

The console_node function has as its argument a processor number. All further (non-
1/O) operating system requests will be directed to this node. To obtain suitable node
numbers for use in this call we take the host identifier from the configuration utility,
cnftool, and OR in the highest bit. If cnft ool designated a particular host as “H1” then
the appropriate node number to use is 0x8001.

It is important to note that all file related I/O is always directed to the node which contained
the file when it was opened, independent of the status of the KCONND function.

EXAMPLE

Let us assume that three “host” processors are attached to our system. The first is the
original system console which can be addressed through the value IHOST from the
XPRESS common block. The others have the identifiers H1 and H2 as defined in the system
configuration utility, cnftool. The following code executes a rather simple operation;
opening two files, the first on the system default “HOST” and the second on host number 1.

COMMON/XPRESS/NOCARE, NORDER, NONODE, THOST, TALNOD, IALPRC

o
C-- Setup Express and its common block.
o
CALL KXINIT
C
CALL KCONND (IHOST)
OPEN (UNIT=1, FILE='"hostl.dat’, STATUS='unknown’)
C

C—- This number is 8001 in hexadecimal - i.e., Host 1
C

CALL KCONND (32769)

OPEN (UNIT=2, FILE='"host2.dat’, STATUS=’0OLD’)

82

KCONND

CALL KCONND (IHOST)

Note that different nodes are allowed to maintain distinct consoles with these calls although
one must then use asynchronous requests to avoid deadlock.

SEE ALSO
KCBXSY.

83

KCONT

NAME
KCONT - Move and draw a line.
SYNOPSIS

SUBROUTINE KCONT (X, Y)
REAL X, Y

DOMAIN
This routine may only be called in programs compiled with the Plotix libraries.
DESCRIPTION

Moves the current plotting position to (X,Y) and draws a line in the current color from the
previous plotting position. X and Y are specified relative to the coordinate system defined
by the most recent call to KSPACE.

EXAMPLE

The following code draws a broken diagonal line across the display surface.

CALL KSPACE(0.,0.,4., 4.)

C
CALL KMOVE(0.,0.)
CALL KCONT(1l.,1.)
CALL KMOVE(2.,2.)
CALL KCONT(3.,3.)

c
CALL KSENDP

SEE ALSO

KMOVE KCOLOR, KLINEM

KCPCP

NAME
KCPCP, KCPELT - Dump communication profile data.

SYNOPSIS
SUBROUTINE KCPCP

SUBROUTINE KCPELT (FNAME)
CHARACTER*80 FNAME

DOMAIN
KCPCP may only be called in the host processor and KCPELT may only be called in the
nodes.

DESCRIPTION

These routines are used to dump the communication profiling data collected with the
KCPROF functions. For each call to KCPELT on the nodes there must be a call to KCPCP
in the host processor. The profiling data will be written to a file on the host with the name
FNAME supplied in the node program.

Each call to KCPELT turns off the communication profiler and resets its internal counters
so that further profiling starts from the zero state. This allows distinct communication
profiles to be obtained for different regions of an application.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
communication profile.

1. Host Program

PROGRAM HSTPRF

C
C-—- Set up Express.
C
CALL KXINIT
C
C-— Allocate nodes, load programs.
C
o
C-- Execute algorithm and then dump data to "phasel.cprof®.
C
C
CALL KCPCP
STOP

85

KCPCP

END

2. Node Program

PROGRAM NODPRF

C
C-—- Set up Express.
C
CALL KXINIT
C
C-- Start off profiler.
o
CALL KCPON
C
C-- Application code
C .
C
C—-- Application complete, dump data with KCPCP/ELT.
C
CALL KCPELT (' phasel.cprof’)
C
STOP
END

Notice that we can selectively profile pieces of code. In this mode it makes sense to dump
out the profile data independently to separate files for simplicity in later analysis.

SEE ALSO
ctool (command), KCPROF, KCPEND

86

KCPINQ

NAME
KCPINQ, KCPEND - Manipulate communication profiler. under Cubix

SYNOPSIS
INTEGER FUNCTION KCPINQ({()

SUBROUTINE KCPEND

DOMAIN
These routines may only be called from the nodes.

DESCRIPTION

These routines provide a simple control interface to the communication profiler for
applications running in the Cubix environment,

KCP INQ returns an integer value representing the state of the “—m” runtime switch on the
cubix command line. This can be used to conveniently enable/disable the profiling
system at runtime. Consider a typical command

cubix -n 4 toyland 1024 1024 <noddy.dat

Since no “~m” switch is present a call to KCP INQ will return zero. If we modify the above
command to

cubix -mce -n 4 toyland 1024 1024 <noddy.dat

then the return value would be 1 since the character ‘c’ appears in the monitoring switch,

“_ .9
-m.

KCPEND is used to dump profiling data to the host computer file system. A file called
“cprof.out” is created for later analysis with the ct ool utility. In addition the profiler
is disabled and its internal state reset to zero so that further profiling leads to distinct, non-
overlapping data.

The operating system itself performs a check for the communication monitoring switch in
the cubix command and, if present, turns on the profiler with a call to KCPON. It also
arranges to call KCPEND at program termination with STOP. As a result a typical Cubix
application need contain no explicit calls to the communication profiling routines - they are
all made by the kernel. The only case in which such calls are needed is when more careful
control is required over the profiler and the data it dumps.

EXAMPLE

The following code is a skeleton of that which might be used to control the communication
profiler in a Cubix application.

PROGRAM CBXPRF
C .
C-- Initialize Express.

87

KCPINQ

cC

CALL KXINIT
c
C-- Start off profiler. This code is not strictly
C-- necessary since it is equivalent to the check
C—-- made automatically by Express.

C
ISTAT = KCPINQ()
IF (ISTAT .NE. 0) THEN
CALL KCPON
ENDIF
c
C

C—-- Program over, dump data again and exit. Again
C-- this code is superfluous since it duplicates the
C-- action of Express.
C

IF(ISTAT .NE. 0) THEN

CALL KCPEND

ENDIF

STOP

END

Notice that we can selectively profile pieces of code. In this mode it makes sense to dump
out the profile data independently to separate files for simplicity in later analysis. The calls
to rename in the above are necessary to prevent the second call to KCPINQ from
overwriting the file created by the first call.

SEE ALSO

ctool, KCPCP, KCPROF

88

KCPROF

NAME
KCPON, KCPOFF - Control communication profiler.

SYNOPSIS
SUBROUTINE KCPON

SUBROUTINE KCPOFF
DOMAIN

These routines may only be called from the nodes.

DESCRIPTION

KCPON is used to enable and start the communication profiler. After this call all subsequent
calls to the communication system result in entries being made in an internal log-file.
KCPOFF reverses this process - until a subsequent call to KCPON no communication
profiling will be performed.

For applications which have user programs running in the host computer the profiler is
initially off and must be explicitly enabled with a call to KCPON. For applications running
in the Cubix environment the initial state of the profiler is controlled by a runtime switch
in the cubix command. (See KCPEND).

The log of profiling information is written to the host file system with KCPCP or KCPEND.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
communication profiler.

PROGRAM PRFTST
C
C-- Start off profiler.
CALL KCPON
C
C-- Application Phase 1., profiler running.

C-- Phase 1 complete, dump data with KCPCP/ELT or KCPEND.

C-- Application Phase 2., profiler turned off by
C-- previous call to KCPCP/ELT or KCPEND.

89

KCPROF

C-- Application phase 3., turn on profiler again.
C

CALL KCPON
Cc
C—-- Program over, dump data again and exit. The STOP statement
C—— will take care of dumping data to the host automatically.
C

STOP

END

Notice that we can selectively profile pieces of code. In this mode it makes sense to dump
out the profile data independently to separate files for simplicity in later analysis.

SEE ALSO

ctool (command), KCPCP, KCPEND

90

KDISND

NAME
KDISND - Specify alternate display surface and server.

SYNOPSIS

SUBROUTINE KDISND (NODE)
INTEGER NODE

DOMAIN
This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine enables applications to select between output devices. By default all graphical
output is sent to the console file server to be distributed to display devices. This routine
allows alternate destinations to be specified, possibly connected to multiple display
devices.

KDISND redirects all future graphical commands to the specified node which is assumed
to be running a suitable server process.

Any of the Plotix functions may be assumed to be present on any graphics node attached
to the system. If, however, multiple displays are in use then only asynchronous mode
routines should be used since sending data to multiple host servers cannot satisfy any of the
synchronization models. This can be achieved with any of the routines KAOPEN, KASEND,
KAGIN, etc. or a suitable call to the Cubix function KCBXSY.

EXAMPLE

The following code divides the processors into two equal sized groups which direct their
graphical I/O to different servers. The lowest numbered node in each group then initializes
the device with a call to KAOPEN.

INTEGER NDDATA (4)

INTEGER GBUFFR(2048)
C
C-- Get parameters of system at runtime. Redirect output
C—- to servers attached to hosts 0 and 1. Note that these hosts
C-- have processors numbers 8000 and 8001 in hexadecimal which
C-- correspond to these decimal values.

C
CALL KXPARA (NDDATA)
IF (NDDATA (1) .LT. NDDATA(2)/2) THEN
CALL KDISND(32768)
ELSE
CALL KDISND (32769)
ENDIF
C

C-- Now setup the hardware by calling the asynchronous

91

KDISND

C-- "open".
C
CALL KAOPEN (GBUFFR, 8192)

SEE ALSO
KCONND.

92

KDOTEX

NAME
KDOTEX - Draw text with complex alignment.

SYNOPSIS

SUBROUTINE KDOTEX (TEXT, X, Y, ANGLE, HJUST, VJUST)
CHARACTER*80 TEXT

REAL X, Y

INTEGER ANGLE, HJUST, VJUST

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine draws the characters contained in the TEXT string at the position (X,Y). The
text is rotated through ANGLE degrees. The two “justification” parameters are used to
position the string with respect to the indicated coordinates as follows

HJUST = -1 Textis positioned entirely to the right of (X,Y).

HJUST = 0 The textis centered about (X,Y).

HJUST = 1 The textis placed entirely to the left of the indicated point.
VJUST = -1 The text lies totally above (X,Y).

VJusT
VJUST = 1 Textlies below (X,Y).

1l
o

Text is centered vertically on (X,Y).

Using various combinations of these parameters is it possible to align text in fairly arbitrary
manners. Using the particular combination HJUST = VJUST = 0 allows one to draw
“markers” from the ASCII character set.

EXAMPLE

The following calls are used to position the phrase “The End” around a particular point.

CALL KDOTEX(’The’, X,
CALL KDOTEX('End’, X

93

KDOTEX

WARNING

The current plotting position is undefined after this call. In order to perform reliable
graphical operations KMOVE should be used before any further drawing is performed.

SEE ALSO
KMARKE, KLABEL

94

KEPCP

NAME

KEPCP, KEPELT - Dump event log data.

SYNOPSIS

SUBROUTINE KEPCP

SUBROUTINE KEPELT (FNAME)
CHARACTER*80 FNAME

DOMAIN

KEPCP may only be called in the host processor while KEPELT may only be called in the

nodes.

DESCRIPTION

These routines are used to dump the event profiling data collected with the KEPROF
functions. For each call to KEPELT on the nodes there must be a call to KEPCP in the host
processor. The profiling data will be written to a file on the host with the name FNAME

supplied in the node program.

Each call to KEPELT turns off the profiler and resets its state so that future profiling

commands begin with the system in its initial state.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the event

profiler.
Host Program

PROGRAM HSTEPR

C
C-- Start up Express.
C
CALL KXINIT
C

C-- Allocate node, load programs, etc..
o

C
C-- Dump out profile data to "eprof.out".
C

CALL KEPCP

STOP

END

95

KEPCP

2. Node Program

PROGRAM NDEPR

C
INTEGER LOGBUF (2048), LABBUF (256)
cC
REAL ENERGY, RESID, GRIND, CRUNCH
INTEGER ITER, I
Cc

C—- Initialize profiler, make labels for indices 1-3.
C-- Start running.

C
CALL KEPINI (LABBUF, 1024, LOGBUF, 8192)
CALL KEPLAB (1, ’Outer loop’, ’'Iteration %d’)
CALL KEPLAB (2, ’After crunch’, ’'Energy = %d’)
CALL KEPLAB(3, ’'Inner loop’, ’‘resid = %d4')
CALL KEPON

C

C—- Compute, compute, compute

C
C

C-- Program over, dump profile data and exit.

c .
CALL KEPELT ('eprof.out’)
STOP
END

The strange looking strings passed as the third argument to the KEPLAB functions are
actually going to be passed to the C string formatting routine sprint £. All that is really
important for this application is that the characters “%d” will be replaced by the decimal
value supplied as the last argument to KEPADD.

Note that these functions may be called repeatedly - the only constraint is that each call to
KEPELT in the nodes must have a corresponding call to KEPCP in the host, and each call
to KEPELT in the nodes must be made “loosely synchronously”.

SEE ALSO
etool (command), KEPCP, KEPEND

KEPINQ

NAME
KEP INQ, KEPEND - Manipulate Event profile under Cubix

SYNOPSIS
INTEGER FUNCTION KEPINQ()

SUBROUTINE KEPEND
DOMAIN

These routines may only be called from the nodes.

DESCRIPTION

These routines provide a simple control interface to the event profiler for applications
running in the Cubix environment.

KEP INQ returns an integer value representing the state of the “~me” runtime switch on the
cubix command line. This can be used to conveniently enable/disable the profiling
system at runtime. Consider a typical command

cubix -n 4 toyland 1024 1024 <noddy.dat

Since no “-m” switch is present a call to KEP INQ will return zero. If we modify the above
command to

cubix -mce -n 4 toyland 1024 1024 <noddy.dat

then the return value would be 1 since the character ‘e’ appears in the monitoring switch,

113 ”
-

m-.

KEPEND is used to finally dump profiling data to the host computer file system. A file
called “eprof.out” is created for later analysis with the et ool utility. In addition the
profiler is turned off and the internal state reset to its initial, zeroed, condition.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the event
profiler.

PROGRAM EPRTST

C
INTEGER LOGBUF (2048), LABBUF (256)
o
REAL ENERGY, RESID, GRIND, CRUNCH
INTEGER ITER, I
Cc
C-—- Start up Express.
o .
CALL KXINIT
C

97

KEPINQ

C-- Setup profiler and make labels for indices. If
C-- asked to do so at runtime start the thing up.
Cc
CALL KEPINI(LABRBUF, 1024, LOGBUF, 8192)
CALL KEPLAB(l, ’'Outer loop’, 'Iteration %d’)
CALL KEPLAB (2, ‘After crunch’, ‘Energy = %d’)
CALL KEPLAB(3, ’'Inner loop’, 'resid = %d’)
ISTAT = KEPINQ()
IF(ISTAT .NE. 0) THEN
CALL KEPON
ENDIF
C
C--Start application code, then go into main loop.
Cc
DO 10 ITER=1,100
CALL KEPADD (1, ITER)

Cc
ENERGY = CRUNCH (ITER)
CALL KEPADD (2, INT(ENERGY))
C
DO 20 I=1,4
RESID = GRIND (ENERGY)
.CALL KEPADD (3, RESID)
20 CONTINUE
10 CONTINUE
C

C-- Program over; dump data to host for later analysis.
C

CALL KEPEND

STOP

END

The strange looking strings passed as the third argument to the KEPLAB functions are
actually going to be passed to the C string formatting routine sprint £. All that is really
important for this application is that the characters “%d” will be replaced by the decimal
value supplied as the last argument to KEPADD.

Notice that the KEPADD and KEPLAB calls are completely safe even if KEP INQ returns 0
and the profiler is not enabled.

SEE ALSO

etool (command), KEPCP, KEPROF

98

KEPROF

J—

NAME
KEPON, KEPOFF, KEPINI, KEPLAB, KEPADD - Event driven profiler.

SYNOPSIS

SUBROUTINE KEPON
SUBROUTINE KEPOFF

SUBROUTINE KEPINI (LABBUF, LABSIZ, LOGBUF, LOGSIZ)
INTEGER LABBUF (*), LABSIZ, LOGBUF(*), LOGSIZ

KEPLAB (INDEX, TITLE, FORMAT)
INTEGER INDEX
CHARACTER*80 TITLE, FORMAT

KEPADD (INDEX, DATUM)
INTEGER INDEX, DATUM

DOMAIN

These routines may only be called from the nodes.

DESCRIPTION

These routines make up the interface to the user specified event driven profiling facility.
KEPON and KEPOFF enable and disable the system respectively. While disabled no events
are logged even if calls are made to KEPADD.

The routine KEPINT must be called before any of the other profiling calls. The arguments
indicate two buffers to be used for “title” and “event” entries which must be supplied by
the calling program. Each “entry” corresponds to a single call to the KEPLAB and KEPADD
subroutines. As a guide to the amount of space which should be provided the current
overheads for log entries and labels are 12 and 68 bytes respectively. Note that the LOGSIZ
and LABSIZ arguments should be given in bytes.

KEPADD is the heart of the event system. It makes a new entry in the log file. Three items
are logged; the event “index” and “datum” as given in the function call and the time at
which the call is made. The INDEX argument is used to differentiate between events at the
highest level. This index corresponds to an optional TITLE string in a call to KEPLAB. The
DATUM argument is used to identify events at the lowest level. This will be used in
conjunction with the FORMAT argument supplied to a call to KEPLAB.

The function KEPLAB is used to facilitate event recognition when the log-file is
subsequently analyzed. Its use is optional. If no calls to KEPLAB are made then events will
be identified by their “INDEX” argument in the subsequent analysis and the DATUM value
will be assumed to be an integer. Making a call such as

CALL KEPLAB (3, ’'After return from crunch’, ’'Energy = %d’)

builds in extra information. Together with the event “INDEX” a legend will be presented

KEPROF

which connects type 3 with the string “After return from crunch”. Further, when the value
of the DATUM argument is shown it will be formatted according to the format string - a
typical result would be

Energy = 23

Note that the FORTRAN string is interpreted according to the conventions associated with
the C function print £. Atits simplest this merely means that text is printed as entered and
the special string ‘%d’ is replaced with an integer value.

The profiler is initially off and must be explicitly enabled with calls to KEPINI and
KEPON. In the Cubix environment this is facilitated by the use of the KEP INQ function to
query the state of the run-time switches given to the cubix command.

The log of profiling information is written to the host file system with KEPCP or KEPEND.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the event
profiler.

PROGRAM EPRTST

C
REAL ENERGY, RESID, GRIND, CRUNCH
INTEGER ITER, I
INTEGER LOGBUF (2048), LABBUF (256)
c .
C—- Start up Express.
C
CALL KXINIT
Cc

C-- Start profiler, make labels for indices 1-3.
C
CALL KEPINI (LABBUF, 1024, LOGBUF, 8192)
CALL KEPLAB(1l, ’‘Outer loop’, 'Iteration %d4d’)
CALL KEPLAB(2, 'After crunch’, ’'Energy = %d’)
CALL KEPLAB(3, ‘Inner loop’, ’‘resid = %d’)
CALL KEPON
C
C-- Start application code, then go into main loop.
C
DO 10 ITER=1,100
CALL KEPADD (1, ITER)
ENERGY = CRUNCH{(ITER)
CALL KEPADD (2, INT(ENERGY))
DO 20 I=1,4
~RESID = GRIND (ENERGY)
CALL KEPADD (3, INT(RESID))

100

KEPROF

20 CONTINUE
10 CONTINUE
o
C-- Program over, dump profile data and exit.
C
STOP
END

The insertion of events like these above can provide significant information about an
application. The time between events 1 and 2, for example, indicates the duration of a call
to the CRUNCH function. Similar information is available about GRIND from events 2 and
3, averaged over the four calls per iteration. The auxiliary DATUM fields will show the
interaction between the variables and the program execution rate. It may also show up bugs
and/or unexpected behavior which could the key to understandmg the failings of a
particular parallelization scheme.

SEE ALSO
etool (command), KEPCP, KEPEND

101

KEPTOG

NAME
KEPTGI, KEPTOG - Calculate program statistics.
SYNOPSIS

SUBROUTINE KEPTGI (TOGGLE, LABEL)
INTEGER TOGGLE (16)
CHARACTER*80 LABEL

SUBROUTINE KEPTOG (TOGGLE)
INTEGER TOGGLE (16)

DOMAIN
These routines may only be called from the nodes.
DESCRIPTION

These routines allow selective analysis of particular sections of code. By surrounding code
segments with calls to KEP TOG one can obtain statistics relating to the number of times the
particular code section was called and the average and total times spent in these sections.
The data is collected in exactly the same manner as the “event profiling” information
obtained through calls to KEPADD. The same commands are available to dump the
profiling data and/or rename the file containing it as are used by the other “KEPROF”
utilities.

Each “toggle” data structure must be initialized with a call to KEPTGI before it can be used
for data collection. This function expects to be passed an array of integers and a string that
will later be used to identify the collected statistics when analyzed with etool.

The log of profiling information is written to the host file system with KEPCP or KEPEND.
EXAMPLE

The following example demonstrates the use of the “toggle” ideas.

PROGRAM TOGTST

INTEGER LPTOG(16), GRNTOG(16)

REAL*4 ENERGY, GRIND

INTEGER ITER, I
COMMON/XPRESS/NOCARE, NORDER, NONODE, THOST, IALNOD, IALPRC

C
C-- Initialize Express and its common block.
C
CALL KXINIT
C
C-- Initialize toggle data structures.
C

CALL KEPTGI(LPTOG, ‘Main iteration loop’)
CALL KEPTGI (GRNTOG, ’Calls to GRIND’)

102

KEPTOG

c
C—-- Start application code, then go into main loop.
C

o
DO 10 ITER = 1, 100
CALL KEPTOG (LPTOG)
o
C-- Other processing going on here....
C
C

DO 201 =1, 4
CALL KEPTOG (GRNTOG)
ENERGY = GRIND (I)
CALL KEPTOG (GRNTOG)
20 CONTINUE
CALL KEPTOG (LPTOG)
10 CONTRINUE

C
C-- Dump data to host for later analysis...
C
C
STOP
END

The “toggle” data will be stored in a file with the name “eprof . out” (unless overridden
by some other function call) together with the normal “event” data which may have also
been collected with calls to KEPADD.

To analyze this data we execute the “et 0o1” command with
etool -p -t
This combination of switches both suppresses the normal graphical output and also restricts

103

KEPTOG

attention to the “toggle” data. the output for the above example might appear as follows

Node 0

Description I Total | #Calls | Avge. ! Var. |
Main iteration loop | 478.32 100 4.78 .28
Calls to GRIND 363.96 400 0.91 .03
Node 1

Description | Total I #Calls | Avge. | Var. '
Main iteration loop 478 .32 100 4.78 .28
Calls to GRIND 363.96 400 0.91 .03

etc...

For each node is displayed the list of initialized toggles together with the number of times
each code section was used, the total time elapsed in this section, the average time per call
and the variance of these times. Using this information it is possible to build up a very
accurate picture of the performance of a parallel program.

SEE ALSO
etool (command), KEPCP, KEPROF, KEPEND.

104

KERASE

NAME
KERASE, KAERAS - Clear the display surface.

SYNOPSIS
SUBROUTINE KERASE

SUBROUTINE KAERAS

DOMAIN
This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These routines are used to clear the display surface. KERASE must be called at the same
time in all nodes while KAERAS may be called asynchronously in any node at any time.
Note that this latter option can cause rather unpredictable results unless used with some care
since 1000 nodes all calling KAERAS makes the screen “blink™ rather a lot!

It is important to note that neither of these routines flushes the graphics buffer to the output
device. Rather they just reset the internal data structures to reflect empty buffers. All data
that is required to appear, however briefly, on the display surface must be flushed explicitly
with one of the KSEND routines before calling KERASE.

Hardcopy devices handle these functions in device specific ways. Some, for example, can
only print on a single sheet at once and so the KERASE commands are handled by switching
to a new output file. Eventually several files may be printed one at a time. Others, such as
laser printers, merely switch to new pages.

EXAMPLE
The following is typical of the general use of the KERASE functions.

C
C-- Start up graphics system.
c
ISTAT = KOPENP (GBUFFR, 8192)
IF(ISTAT .LT. 0) THEN
WRITE (6, *) ’'Failed to start up graphics’
STOP
ENDIF
C
C-- Grind away graphics, graphics, graphics....
C
C
C-- Finished with first image, erase and go again.
C

105

KERASE

CALL KERASE

SEE ALSO
KSENDP

106

KEXEC

NAME
KEXEC - Overlay a node application.

SYNOPSIS

SUBROUTINE KEXEC (PROG)
CHARACTER*80 PROG

SUBROUTINE KAEXEC (PROG)
CHARACTER *80 PROG

DOMAIN
This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

This routine overlays (and hence terminates) the calling program by loading a new
application from the file PROG. The new routine immediately begins execution from its
main entry point. Unless an error occurs the call to KEXEC will not return.

By default KEXEC causes the overlay to occur in all nodes. It must, therefore, be a loosely
synchronous operation. If, however, the default Cubix mode is asynchronous then each
node performs the overlaying operation independently. This is also the case for the
KAEXEC system call.

Since memory is not re-initialized across calls to these routines it is possible to share large
blocks of data in each node. To do this it is merely necessary for the data to be placed in a
region of memory where none of the intended programs will overwrite it.

EXAMPLE

The following code section causes the program PASS2 to be loaded on top of the currently
executing routine.

PROGRAM DOEXEC
CHARACTER*80 PRGNAM
PARAMETER (PRGNAM='pass2’)

C
C-- Start up Express.
C
CALL KXINIT
C

C-- Execute the first phase of the program and then EXEC the
C-—- second phase to overlay this one.
c .

CALL PHASE1l

CALL KEXEC (PRGNAM)

C—-—- If we get here then something really bad happened...

107

KEXEC

C
WRITE (6, *) ’'Returned from EXEC Hmmmmmm’
STOP
END
WARNINGS

This function is only available to programs running with the Cubix file server. If you are
running with a host program the same effect can be achieved by simply using the KXLOAD
routines to download another node application.

108

KFLUSH

NAME
KFLUSH - Flush I/O buffers.

SYNOPSIS
SUBROUTINE KFLUSH (UNIT)
INTEGER UNIT
DOMAIN
This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

Under Cubix /O is buffered which means that characters are stored up in internal data
structures and then emitted in large packets to improve efficiency. In this case it is not
always clear what will appear in a file when the buffers are automatically flushed by the
operating system and so KFLUSH is provided to force this process to happen under the users
control.

It is important to note that NO automatic flushing is ever performed on “multi” mode files
- KFLUSH is required to show any output from these files.
EXAMPLES

The following code segment demonstrates the effect of the KFLUSH call on a file in “multi”
mode.

PROGRAM MULTI

C
C-- Setup Express and its common block.
C
CALL KXINIT
o
WRITE (6, *) ’'Hello world’
CALL KMULTI (6)
C

WRITE(6,*) ’'This is one of the processors...’
C**

WRITE(6,*) ’'...and still is’

C

CALL KSINGL(6)

WRITE(6,*) ’... that’s all for now folks!’
C

STOP

END

When executed on four processors this would produce the output

109

KFLUSH

Hello world
This is one of the processors...

...and still is

This is one of the processors...
...and still is

This is one of the processors...
...and still is

This is one of the processors...
...and still is

... that’s all for now folks!

We can understand this output by noting that the KMULTI and KS INGL system calls both
force an implicit KFLUSH operation. As can be seen the two WRITE statements separated
by the comment line with all the asterisks were buffered - when the KSINGL call finally
flushed their buffers the two lines came out together in each node. If we replace the line of
asterisks with a call to KFLUSH then the output would have been:

Hello world

This is one of the processors...
This is one of the processors...
This is one of the processors...
This is one of the processors...
...and still is

...and still is

...and still is

...and still is

... that’s all for now folks!

in which we can see that every line is sent out as it is written.
SEE ALSO
KMULTI

110

KGETHO

NAME

KGETHO - Determine host specific characteristics

SYNOPSIS

SUBROUTINE KGETHO (NODE, BUFFER)
INTEGER NODE
CHARACTER*80 BUFFER

DOMAIN
This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

This routine is used to determine host-specific characteristics. The current implementation
is restricted to returning, in BUFFER, the name of the operating system running on the host
whose node identified is NODE. Up to 80 characters of this information will be transferred
to the indicated buffer, any extra will be discarded.

No attempt is made to differentiate between minor versions of operating systems, or
between the various “unix-like” machines.

EXAMPLE

In the following code we determine the type of operating system running on our standard
host in order to find the character used to separate components of filenames. Since
FORTRAN is notoriously non-standard in the area of character and string variables we
assume, for the purposes of this code segment, that a routine called ISTREQ exists which
compares two strings and returns zero if they are the same.

CHARACTER*1 FUNCTION GETSEP (NODE)
INTEGER NODE
CHARACTER*80 OSBUF

CALL KGETHO (NODE, OSBUF)

IF(ISTREQ(OSBUF, 'unix') .EQ. 0) GETSEP = '/’
ELSE IF(ISTREQ(OSBUF, 'dos') .EQ. 0) GETSEP = "\’
ELSE IF(ISTREQ (OSBUF, 'macintosh')) GETSEP = ’:’
ELSE IF(ISTREQ(OSBUF, 'vms')) GETSEP = '.f

ELSE
WRITE (6, *) 'Unrecognized 0S: ', OSBUF
GETSEP = 0

ENDIF

RETURN

END

111

KGETHO

SEE ALSO
KCBXSY

112

KGIN

NAME

KGIN, KAGIN - Graphical input operations

SYNOPSIS

INTEGER FUNCTION KGIN(BUTTON, PX, PY)
INTEGER BUTTON
REAL PX, PY

INTEGER FUNCTION KAGIN (BUTTON, PX, PY)
INTEGER BUTTON
REAL PX, PY

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These routines are used to perform graphical input operations usually termed “locator
input”. Upon execution a cursor appears on the screen and is positioned and triggered in a
device specific manner. After triggering the KGIN calls return and the specific trigger and
position are returned.

The KGIN routine must be called in each processor simultaneously while the KAGIN
function may be executed by any processor at any time. In this latter case it is the
responsibility of the user to ensure that sufficient information is present to allow the
operator to know which processor is requesting input. Further, no flushing is performed by
these functions. It is up to the user to ensure that the display surface actually contains up-
to-date data before requesting graphical input.

The coordinates returned to the user are expressed relative to those set up by the last call to
KSPACE in each processor. Further a status value is returned to indicate the result of the
KGIN operation. A negative value is returned by devices which are not capable of
performing input. A zero return value implies that the KGIN operation completed
successfully but that the cursor position was outside the window selected by the most recent
call to KVPORT or KSETVP in this processor. A positive return means that the coordinates
selected lay within the processor window. This last mechanism can be used to select
processors with a mouse, for example.

EXAMPLE

In the following we assign different halves of the display to two processors; node 0 gets the
left half and node 1 the right. We then use the input routines to select one or the other node
for some processing task.

INTEGER NDDATA (4)
REAL X, Y
INTEGER STAT, KEY

113

KGIN

C-- Divide up the screen on the basis of processor

C-- number.
C
CALL KXPARA (NDDATA)
C
IF (NDDATA(1l) .EQ. 0) THEN
CALL KVPORT (0., 0., .5, 1.)
ELSE
CALL KVPORT (.5, 0., 1., 1.)
ENDIF
C

C-- Now assign coordinates. Each processor’s window
C-— will be mapped individually to the unit square.

C

C
10

20

CALL KSPACE(0.,0.,1.,1.)

KEY = 1

ISTAT = KGIN(KEY, X, Y)

IF(ISTAT .LT. 0) GOTO 20

IF(ISTAT .GT. 0) THEN
CALL GRIND (X,Y)

ENDIF

IF(KEY .NE. 0) GOTO 10

CONTINUE

Having set up the windows and coordinate systems we loop until the KEY parameter is
returned as zero and the processor whose region we indicated with the mouse calls the
GRIND subroutine with the selected points as arguments. Note that we can perform similar
operations on more processors by using the KXGRID routines to set up and coordinate the

distribution of processors to screen areas.

SEE ALSO

KVPORT.

114

KGREYS

NAME
KGREYS, KAGREY - Change color attributes.

SYNOPSIS

SUBROUTINE KGREYS (FROM, TO)
INTEGER FROM, TO

DOMAIN
This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These routines change the association of color indices to device colors used by Plotix. By
default a limited color map is used which can be extended with the KGREYS and KRAINB
function calls.

KGREYS extends the Plotix color map by adding a smoothly varying grey-scale between
the two selected values. The lower value will be white and the upper black. The number of
distinct grey levels available is hardware dependent but in any case Plotix will map the
indicated range in as smooth a manner as possible.

EXAMPLE

The following code draws a set of 6 boxes of varying grey shades along the diagonal of the
screen image.

INTEGER I
REAL V

CALL KSPACE(0., 0., 6., 6.)
CALL KGREYS (10, 15)

DO 10 I = 1,6
V=1l
CALL KBOX(V, V, V+1., V+1l., 10+i, 0)
10 CONTINUE
CALL KSENDP

115

KGREYS

SEE ALSO
KCOLOR, KRAINB

116

KLABEL

o NAME
KLABEL - Add text.

SYNOPSIS

SUBROUTINE KLABEL (TEXT, X, Y)
CHARACTER*80 TEXT
REAL X, Y

DOMAIN
This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine draws the characters contained in the TEXT string at the position (X,Y). The
first character of the string is placed above and to the right of the indicated point. Other
methods of justification can be obtained with the KDOTEX function.

EXAMPLE

The following code defines a 12 x 12 coordinate system and writes a string at several
positions on the screen.

— INTEGER I
CHARACTER*80 S
C .
C-- Define square coordinate system.
C
CALL KSPACE(0.,0.,12., 12.)
C

DO 10 I=1,12,2
WRITE (S,20) I
20 FORMAT (1X, ‘At pos(‘,I3,’,’,I3,’)’)
CALL KLABEL(S, 2.0, FLOAT(I))
10 CONTINUE
o
CALL KSENDP

117

KLABEL

At pos (11,2)

At pos (9,2)
At pos (7,2)

At pos (5,2)
At pos (3,2)
At pos (1,2)

WARNING

The current plotting position is undefined after this call. In order to perform reliable
graphical operations KMOVE should be used before any further drawing is performed.

SEE ALSO
KDOTEX, KMARKE

118

KLINEM

NAME
KLINEM - Modify drawing style for lines

SYNOPSIS

SUBROUTINE KLINEM (INDEX)
INTEGER INDEX

DOMAIN
This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

Modifies the style in which all further lines are drawn. The INDEX argument is an integer
which specifies, in a device dependent manner, the actual linestyle to use. The value 0 will
always create solid lines.

EXAMPLE
The following code defines a 10 x 10 coordinate system and draws a box with a dashed edge
and a solid diagonal.
CALL KSPACE(C.,0.,10., 10.)
C
CALL KLINEM(1)
CALL KMOVE(l., 1.)
CALL KCONT(9.,1.)
CALL KCONT(9.,9.)
CALL KCONT(1.,9.)
CALL KCONT(1l.,1.)
C
CALL KLINEM(0)
CALL KCONT(9.,9.)
CALL KMOVE(1l.,9.)
CALL KCONT(9.,1.)
C

CALL KSENDP

119

KLINEM

SEE ALSO
KCONT, KCOLOR, KMOVE

120

KMARKE

NAME
KMARKE - Draw marker symbol.

SYNOPSIS

SUBROUTINE KMARKE (SYMBOL, X, Y, SIZE)
INTEGER SYMBOL
REAL X, Y, SIZE

DOMAIN
This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine draws a marker symbol at the position (X,Y) expressed relative to the
coordinate system most recently defined with the KSPACE function. The marker is drawn
with the given SIZE, expressed in the same units as the coordinates. The SYMBOL
argument is used to distinguish the various markers as follows

0 point

1 diamond

2 square

3 triangle

4 inverted triangle
5 Cross

6 plus

7 star

Some attempt is made to compensate for the fact that “squares” look bigger than “triangles”
- the SIZE argument is not strictly interpreted as the height of the triangle, for example.

EXAMPLE

The following code defines an 9 x 9 coordinate system and draws different marker symbols
along the diagonal.

INTEGER I
CALL KSPACE(0.,0.,8.,8.)

DO 10 I =1,6
CALL KMARKE (I, FLOAT(i+1), FLOAT(i+1l), .5)
10 CONTINUE
CALL KSENDP

121

KMARKE

SEE ALSO
KLABEL

122

KMOVE

NAME
KMOVE - Move without drawing.
SYNOPSIS

SUBROUTINE KMOVE (X, Y)
REAL X, Y

DOMAIN
This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

Moves the current plotting position to (X,Y). Nothing is drawn on the display surface. X
and Y are specified relative to the coordinate system defined by the most recent call to
KSPACE.

EXAMPLE

The following code draws a broken diagonal line across the display surface.

CALL KSPACE(0.,0.,4., 4.)

C
- CALL KMOVE(0.,0.)
CALL KCONT(1.,1.)
CALL KMOVE(2.,2.)
CALL KCONT(3.,3.)
C
CALL KSENDP
SEE ALSO

KCONT, KCOLOR, KLINEM

123

KMRD2D

NAME

KMRD2D, KMWT2D - Read/write two dimensional data sets.

SYNOPSIS

INTEGER FUNCTION KMRD2D (UNIT,BUF, TOTCOL, TOTROW, ITEMSZ,
COLO, COLl1, ROW0O, ROWl1l, SKIP)

INTEGER UNIT, TOTCOL, TOTROW, ITEMSZ

INTEGER COLO, COLl1l, ROWO, ROW1

INTEGER SKIP, BUF (*)

INTEGER FUNCTION KMWT2D (UNIT, BUF, TOTCOL, TOTROW, ITEMSZ,
COL0O, COLl1, ROWO, ROW1l, SKIP)

INTEGER UNIT, TOTCOL, TOTROW, ITEMSZ

INTEGER COLO, COLl1l, ROW0, ROW1l

INTEGER SKIP, BUF (*)

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

These functions provide a primitive interface to a two-dimensional file access mode for
Cubix programs. The basic idea is that data sets decomposed over a two dimensional array
of processors can be read and written with a single function call. '

Data is either read to or written from the array pointed to by BUF and consists of some
number of “items” each of size ITEMSZ. This concept is used instead of the more obvious
“byte” notation so that the other arguments to these functions may be assigned as row or
column indices.

The disk data set is treated as an array of TOTROW by TOTCOL items of which a subset is
to be read or written by each node. The particular piece of the global data set required by a
given node is specified by the ROWO, ROW1, COLO and COL1 arguments which are
inclusive parameters indexed from zero - the specification

COLO = 0
CoLl = 9
ROWO = 0
ROW1 = 9

would access the 10 x 10 block in the upper left hand comer of the array.

The SKIP parameter specifies the offset in the BUF array between successive “row” entries
again in “items”. This can be used to leave a boundary strip around the edge of the data as
is common in two dimensional decompositions and is illustrated in the example below.

EXAMPLE

Suppose we have a two dimensional array of integers of size NX by NY which we wish to

124

KMRD2D

decompose over the processors. The following code can be used to setup the decomposition
with the KXGRID functions.

PROGRAM TEST

COMMON/XPRESS/
C
INTEGER NDIM(2)
INTEGER GBLSZ (2), LCLSZ(2), LCLSTR(2)
INTEGER NDDATA (4)
C
C—- Set up Express and its common block.
o
CALL KXINIT
C

C-- Get runtime parameters, processor number etc..
CALL KXPARA (NDDATA)

C-- Divide the nodes up among the two dimensions of the
C-- data and initialize the KXGRID system.

CALL KXGDSP (NDDATA(2), 2, NDIM)
ISTAT = KXGDIN(2, NDIM)

C-- Figure out how much of the data fits in each node.

GBLSZ (1) = NX
GBLSZ (2) = NY
CALL KXGDSI(NDDATA(1l), GBLSZ, LCLSZ, LCLSTR)

Notice how we use KXGDSP to evenly divide up the number of processors between the data
dimensions and KXGDSI to divide up the array between the processors. The parameters
retumned by KXGDSTI can be used to read in a two-dimensional data set as follows. (We
assume that UNIT is a file descriptor corresponding to some previously opened file and that
the global variables defined in the previous program fragment are still available.

C
C-- Read data into nodes, no overlap allowed.
C
SUBROUTINE RDDATA (UNIT)
INTEGER UNIT
o

ISTAT = KMRD2D(UNIT, DATA, NX, NY, 4,

125

KMRD2D

LCLSTR(1), LCLSTR(1l)+LCLSZ(1)-1,
LCLSTR(2), LCLSTR(2)+LCLSZ(2)-1,
* LCLSZ (1))
RETURN
END

This strategy uses the values returned by KXGDSTI to figure out exactly which data to
request from the input data set. In this case each node gets a distinct piece of data, divided
as evenly as possible between the processors but with no overlap and no space for any. The
mapping is as shown in the following figure.

Processor decomposition Data array

A common situation is that in which the input data set is required to be read into the center
of a block which contains, around its edges, space for one or more entries from a neighbor
node. This is a common situation in image processing, for example, where some local
convolution is to be applied. To achieve this effect with the above parameters we change
the call to KXRD2D as follows:

C
C-- Read data into nodes, overlap allowed but not
C~- performed.
Cc
SUBROUTINE RDDATA (UNIT)
INTEGER UNIT

ISTAT = KMRD2D (UNIT, DATA(LCLSZ(1)+4), NX, NY, 4
* LCLSTR(1), LCLSTR(1)+LCLSZ(1)-1,
* LCLSTR(2), LCLSTR(2)+LCLSZ(2)-1,
* LCLSZ (1) +2)

RETURN

126

KMRD2D

END

This call performs the mapping shown in the next figure. Note that the skip dist
parameter has been modified to place a gap around each “row” of the data with one space
at the beginning and one at the end. This would be suitable for a nearest neighbor
interaction in which a single strip of data is required from each neighbor node.

... Data array
Processor decomposition

A last option which is interesting is one in which the data being read is overlapped at the
time it is originally taken from the data set. This is merely a variation on the last call which
provided space for the overlapped data but did not initialize it. The call required to read in
overlapping data is as follows :

C
C-- Read data into nodes with overlapping strip one
C-- "item" wide.
C
SUBROUTINE RDDATA (UNIT)
INTEGER UNIT

ISTAT = KXRD2D(UNIT, DATA, NX, NY, 4,
* LCLSTR(1)-1, LCLSTR(1l)+LCLSZ (1),
* LCLSTR(2)-1, LCLSTR(2)+LCLSZ(2),
* LCLSZ (1) +2)

RETURN

END

127

. KMRD2D

This mapping is shown in the next figure.

Processor decomposition Data array

WARNING

Reading and writing unformatted files is complicated by the fact that the host and nodes of
the parallel processing system may not have the same type of processor (CPU) and may not
share the same byte ordering properties. An example might be a Sun workstation hosting a
transputer or NCUBE machine. In this case the host processor is a Motorola based system
which has the most significant byte at the lowest memory address while the nodes have the
opposite ordering. To cover these cases Express provides a set of byte swapping
primitives: KXSWAP ,

RETURN VALUE

KMRD2D returns the number of bytes read, or -1 upon unrecoverable errors. Similarly
KMWT2D returns the number of bytes written by the calling node or -1 upon disastrous
€ITOTS.

SEE ALSO
KMREAD, KMWRIT, KXSWAP

128

KMREAD

NAME
KMREAD - Read independent data into each node.

SYNOPSIS

INTEGER FUNCTION KMREAD (UNIT, BUF, LENGTH, ORDER)
INTEGER UNIT LENGTH, ORDER, BUF (*)

DOMAIN
This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

KMREAD reads unformatted data into the nodes from the file indicated by the UNIT
argument. Independent data is read into each node; the LENGTH arguments need not all be
the same.

The call to KMREAD must be made loosely synchronously in all nodes.

The ORDER argument determines in what order the data from the input file are to be placed
in the nodes. The simplest case, obtained by setting ORDER = NORDER, (Defined in the
XPRESS common block), is for the input to appear in order of increasing processor number
so that node O receives the first block followed by node 1 and so on. Other cases are
obtained by setting the value to be an integer between 0 and the number of processors. The
node which specified ORDER = 0 receives the first block and then the node which gave
ORDER = 1 and so on. Note that it is an error if a value between 0 and the number of
processors is not specified in some node. This condition is indicated by KMREAD returning
-1.

EXAMPLE

Suppose that we have decomposed our domain into a two dimensional mesh with NX and
NY processors in the two dimensions. If we now want to read data blocks in the
conventional manner for such a grid - i.e., along the rows, then the KXGRID routines of
Express can be used as follows

INTEGER FUNCTION BLKRD (UNIT, BLOCK, BLKSIZ, NX, NY)
REAL BLOCK (*)

INTEGER NX, NY, UNIT, BLKSIZ

INTEGER NDDATA (4)

C
C—- Assume that KXINIT has been called elsewhere.
C
NPROCS (1) = NX
NPROCS (2) = NY
ISTAT = KXGDIN(2, NPROCS)
ISTAT = KXGDCO (NDDATA (1), COORD)
C
BLKRD = KMREAD (UNIT, BLOCK, BLKSIZ,

129

KMREAD

* COORD (2) *NX + COORD (1))
RETURN
END

This will order the input according to the row and column coordinates of the processor in
the two dimensional mesh.

WARNING

Reading and writing unformatted files is complicated by the fact that the host and nodes of
the parallel processing system may not have the same type of processor (CPU) and may not
share the same byte ordering properties. An example might be a Sun workstation hosting a
transputer or NCUBE machine. In this case the host processor is a Motorola based system
which has the most significant byte at the lowest memory address while the nodes have the
opposite ordering. To cover these cases Express provides a set of byte swapping
primitives: KXSWAP .

RETURN VALUE

KMREAD returns the number of bytes read, or -1 upon unrecoverable errors. A return value
of zero indicates an “end of file” condition.

SEE ALSO
KMWRIT, KXSWAP

130

KMULTI

NAME
KMULTI, KSINGL ISMULT, ISASY, KORDER - Parallel I/O characteristics.

SYNOPSIS

SUBROUTINE KMULTI (UNIT)
INTEGER UNIT

SUBROUTINE KSINGL (UNIT)
INTEGER UNIT

SUBROUTINE KASYNC (UNIT)
INTEGER UNIT

INTEGER FUNCTION ISMULT (UNIT)
INTEGER UNIT

INTEGER FUNCTION ISASYN(UNIT)
INTEGER UNIT

SUBROUTINE KORDER (UNIT, ORDER)
INTEGER UNIT, ORDER

DOMAIN
This routine may 6nly be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

These routines provide an interface to the parallel features of buffered file I/O. As well as
their usual characteristics Cubix “UNIT”s are either in singular, multiple or
asynchronous mode. This mode determines the exact behavior of READ and WRITE
calls on that file with regard to the distribution of data.

If a file is in singular mode then any read operation on it must be made loosely
synchronously and exactly the same data is transferred to each node. Similarly, write
operations must be made loosely synchronously and only node zero actually transmits any
data to the file. This has the effect of allowing all nodes to apparently write but only one
copy appears in the output file. In this mode it is an error if any node attempts to read or
write different data from the others. This error normally causes internode communication
to “hang” or may occasionally cause the cubix program to abort with status -1.

In multiple mode read requests are satisfied from the file independently. Thus each node
can read its own data. Output requests can also be made independently with each node
writing its own data to the file. Note that in multiple mode no implicit flushing of buffers
is performed and it is the responsibility of the user to call KFLUSH in order to cause data
to appear in the indicated file.

In asynchronous mode, I/O requests are handled independently on the processors on which
they occur. No interprocessor synchronization is performed. Each processor maintains its

131

KMULTI

own state variables recording the last byte it read or wrote in the file, and each request to
read or write implicitly returns the file to that location before proceeding.

The routines KMULT I, KSINGL and KASYNC switch files between multiple, singular and
asynchronous modes. KMULTI puts a file into the multiple mode and KSINGL restores it
to singular mode. KASYNC places a file in asynchronous mode. All three flush any data in
the file’s buffers prior to the call, and all must be made loosely synchronously in all nodes.

By default both input and output operations on “multi” mode files occur in order of
increasing processor number - i.e., node 0 gets the first crack followed by node 1, node 2
and so on. The KORDER system call is available to alter this default. The first argument
indicates the unit for which a new ordering is desired and the second is an integer in the
range 0. .. nprocs-1. Further “multi” mode operations on this file will result in the
processor which specified order=0 being first, followed by that which gave order=1
etc. From this it should be obvious that the ORDER parameters given in the call to KORDER
must form a permutation of the set {0, ..., nprocs-1} - i.e., each value must be
specified exactly once in one of the nodes. Failure to observe this rule results in deadlock
whenever 1/O is attempted on the affected stream. (Examples of the use of this parameter
in the lower-level KMREAD and KMWRIT system calls can be found on the respective
manual pages).

The routine I SMULT returns 1 if its argument is in multiple mode and zero otherwise.

The routine ISASY returns 1 if its argument is in asynchronous mode, and zero otherwise.

EXAMPLES

The following code segment demonstrates the effect of the KMULTI call

PROGRAM MULTI

C
C—- Setup Express and its common block.
C
CALL KXINIT
C
WRITE(6,*) "Hello world’ CALL KMULTI (6)
WRITE(6,*) ’'This is one of the processors...’
CALL KSINGL(6)
WRITE(6,*) ... that’s all for now folks!’
C
STOP
END

When executed on four processors this would produce the output

Hello world

This is one of the processors...
This is one of the processors...
This is one of the processors...

132

KMULTI

This is one of the processors...
... that’s all for now folks!

showing that only one line of output results from each call to WRITE in single mode while
each processor generates it own output while the file is in multi-mode.

Asynchronous mode typically arises in one of two situations. Either a code is truly
asynchronous - it’s behavior is too unpredictable in advance to allow use of the
synchronous I/O modes or one might want to use this mode for reporting runtime errors that
may only occur within a single node.

SEE ALSO
KMREAD, KMWRIT, KFLUSH

133

KMWRIT

NAME

KMWRIT - Write independent data from each node.

SYNOPSIS

INTEGER FUNCTION KMWRIT (UNIT, BUF, LENGTH, ORDER)
INTEGER UNIT, LENGTH, ORDER, BUF (*)

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

KMWRIT writes data from the nodes to the file indicated by the UNIT argument.
Independent data is written from each node; the LENGTH arguments need not all be the
same.

The call to KMWRIT must be made loosely synchronously in all nodes.

The ORDER argument determines in what order the data from the various nodes are to be
placed in the output file. The simplest case, obtained by setting ORDER = NORDER, is for
the output to appear in order of increasing processor number. (NORDER is to be found in
the XPRESS common block set up by the call to KXINIT.) Other cases are obtained by
setting the value to be an integer between 0 and the number of processors. First in the output
appears the data from the node which specified ORDER = 0 then that from the node with
ORDER = 1 and so on. Note that it is an error if a value between 0 and the number of

processors is not specified in some node. This condition is indicated by KMWRIT returning
-1.

EXAMPLE

Suppose that we have decomposed our domain into a two dimensional mesh with NX and
NY processors in the two dimensions. If we now want to write out data blocks in the
conventional manner for such a grid - i.e., along the rows then the KXGRID routines of
Express can be used as follows

INTEGER FUNCTION BLKWT (UNIT, BLOCK, BLKSIZ, NX, NY)
REAL BLOCK (*)
INTEGER NX, NY, UNIT, BLKSIZ
INTEGER NDDATA (4)
C
C—- Assume that KXINIT has been called elsewhere.
C
NPROCS (1) = NX
NPROCS (2) = NY

ISTAT = KXGDIN(2, NPROCS)
ISTAT = KXGDCO (NDDATA (1), COORD)
C
BLKRD = KMWRIT(UNIT, BLOCK, BLKSIZ,

134

* COORD (2) *NX + COORD (1))

RETURN
END

This will order the output according to the blocks in the two dimensional grid.

WARNING

Reading and writing unformatted files is complicated by the fact that the host and nodes of
the parallel processing system may not have the same type of processor (CPU) and may not
share the same byte ordering properties. An example might be a Sun workstation hosting a
transputer or NCUBE machine. In this case the host processor is a Motorola based system
which has the most significant byte at the lowest memory address while the nodes have the
opposite ordering. To cover these cases Express provides a set of byte swapping
primitives: KXSWAP

RETURN VALUE

KMWRIT returns the number of bytes written, or -1 upon unrecoverable errors.

SEE ALSO
KMREAD, KXSWAP

135

KOPENP

NAME

KOPENP, KAOPEN, KCLOSP - Begin and terminate graphics system.

SYNOPSIS

INTEGER FUNCTION KOPENP (BUFFER, SIZE)
INTEGER BUFFER(*), SIZE

INTEGER FUNCTION KAOPEN (BUFFER, SIZE)
INTEGER BUFFER(*), SIZE

SUBROUTINE KCLOSP

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These routines initialize and terminate the graphics system.

One of the KOPEN functions must be the first Plotix function called in any graphics
application. The arguments denote the internal buffer to be used for storing graphical
information between calls to the KSENDP functions. The array must be provided by the
user and its size (in bytes) indicated through the second argument. As a guide to appropriate
sizes a call to KMOVE or KCONT requires 5 bytes.

KAQPEN performs the same function as KOPENP but asynchronously - that is any node
may call this routine independent of the others with no synchronization constraints.

KOPENP returns a status code indicating the success or failure of the setup procedures.
Negative values indicate errors and it is unwise to proceed if an error condition exists since
terminals, for example, may be sent into strange states.

The last graphical routine to be called by an application should be KCLOSP. This serves to
close any open files and reset interactive devices to their normal states.

Both KOPENP and KCLOSP must be called loosely synchronously in all nodes, while
KAOPEN may be called independently at any time by any node.

EXAMPLE

The following skeleton code should provide the basis for all graphics applications.

PROGRAM GRAFIX
INTEGER GBUFF (2048)

C
C-—- Start up Express.
C
CALL KXINIT
C

136

KOPENP

C-- Set up graphics.

C
ISTAT = KOPENP (GBUFF, 8192)
IF(ISTAT .LT. 0) THEN
WRITE(6,*) ‘Failed to init graphics system’
STOP
ENDIF
C
C—- Application code e
C
C
C—- Application finished, clear up graphics system.
C
CALL KCLOSP
STOP
END
SEE ALSO
KSENDP

137

KPANEL

NAME
KPANEL - Draw and fill polygons.

SYNOPSIS

SUBROUTINE KINITP (COLOR, EDGE)
INTEGER COLOR, EDGE

SUBROQUTINE KPANLP (X, Y)
REAL X, Y

SUBROUTINE KENDPA

SUBROUTINE KPOLGN (NPTS, XPTS, ¥YPTS, COLOR, EDGE)
INTEGER NPTS, COLOR, EDGE
REAL XPTS(*), YPTS (*)

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.
DESCRIPTION

These routines are used to draw and fill polygonal regions of the display surface. KPOLGN,
the most straightforward of the routines takes two arrays each containing NPTS values as
the x and y coordinates of the vertices of the polygon to be drawn. The coordinates need
not close - the first and last points are joined by the system. The resulting polygon will be
filled according to the COLOR argument and will have its outline drawn in the current color
if EDGE is non-zero.

Positive values of COLOR translate into solid colors in the same manner as the arguments
to the line color primitive, KCOLOR. Negative values yield device dependent shading
patterns.

All coordinates are expressed relative to the most recent call to KSPACE.

An alternative interface to the polygon routines is provided by KINITP, KPANLP and
KENDPA. The first routine initializes the system so that the following polygon will be
drawn and filled according to the COLOR and EDGE arguments, interpreted as above. This
routine must be called to initialize each polygon. Successive calls to KPANLP then add
vertices to the current polygon and the figure is closed and filled by the KENDPA call. This
interface is often superior to KPOLGN since it does not have the memory overhead of
storing points in arrays.

Note that filling with COLOR = 0 and EDGE = O results in a “selective erase” - specific
areas of the screen can be erased.

EXAMPLE

The following code draws a simple box in the foreground color using the KPOLGN
primitive and then takes a “bite” out of it with the alternate routines by drawing and filling

138

o

KPANEL

in the background color.

C

C

o

C-- Now draw a polygon filled in the background color

C

REAL XPTS(4), YPTS(4)
DATA XPTS/1., 9., 9., 1./
DATA YPTS/1., 1., 9., 9./

CALL KSPACE(0.,0.,10., 10.)

CALL KPOLGN (4, XPTS, YPTS, 1, 1)

CALL KINITP (0, 0)
CALL KPANLP (5., 1.)
CALL KPANLP (9., 1.)
CALL KPANLP (9., 5.)
CALL KPANLP (5., 5.)
CALL KENDPA

CALL KSENDP

SEE ALSO

KBOX, KCOLOR

139

KPLOTH

NAME

KPLOTH - Analyze usage of system buffers.
SYNOPSIS

INTEGER FUNCTION KPLOTH
DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.
DESCRIPTION

Graphics commands are buffered internally on each node until flushed by one of the
KSENDP commands. This necessitates assigning a fixed size buffer for graphics. In order
to “tune” the size of this buffer and ensure that neither graphics gets lost nor too much
memory is devoted to this system the function KPLOTH returns the “high water mark” from
the graphics system - i.e., the maximum number of bytes that were present between any two
calls to the KSENDP primitives. Using this function allows the user to exactly determine
system memory requirements.

EXAMPLE

Assuming that the buffer size is currently set to 8192 bytes the following code might be
used to warn of impending overflows.

o
C-- Make display "“current".
o
CALL KUSEND
Cc

C-- Set up for asynchronous I/0 since not all node might
C-- have overflowed.
C

CALL KASYNC (6)

IHWM = KPLOTH ()

IF (IHWM .GT. 8000) THEN

WRITE(6,*) ’'Warning: graphics buffer tight’
ENDIF

Notice that we use the asynchronous Cubix mode for the warning message since it is not
guaranteed that all processors will have filled their buffers to the same extent.

SEE ALSO
KOPENP, KSENDP

140

KPLXOP

NAME
KPXGOP, KPXSOP - Manipulate hardware dependencies in Plotix programs.

SYNOPSIS

INTEGER FUNCTION KPXGOP (OPTION, VALUE)
CHARACTER*80 OPTION
INTEGER*4 VALUE

INTEGER FUNCTION KPXSOP (OPTION, VALUE)
CHARACTER*80 OPTION
INTEGER*4 VALUE

DOMAIN

These routines may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

Plotix attempts to provide device-independent graphical capabilities to Express programs.
Due to the simple nature of the underlying graphics model this can usually be achieved to
a large degree. To deal with those cases where either more capabilities are available or
where more information is required about a particular Plotix implementation these two
functions are provided.

KPXGOP accesses the value of some internal property described by the character string
OPTION and stores it under the supplied pointer variable. The particular values of OPTION
supported on any particular device vary according to device capabilities and are listed in
the device specific section of the Plotix chapter of the User’s Guide. If the indicated
property is not supported on the device in use -1 is returned.

The opposite function is provided to set internal state of some Plotix system with KPXSOP.
This routine takes a character representation of the required property and a single 32-bit
value to which the indicated property will be set. If the named property is not supported on
the device in use -1 will be returned.

When successful both routines return 0.

EXAMPLE

The following code segment initializes a Plotix system and also attempts to perform the
following three tasks:

» Inquire how many distinct colors are available for drawing lines.
* Request output in “landscape” rather than the default “portrait” mode.

* Install a named “redraw” function which will be used in windowing versions of
Plotix to repaint the screen under certain well-defined circumstances.

Note that any one of these requests may fail because the device currently in use may not be
able to support them. In the code segment below we imagine that the calling program is able
to deal with such failures without having to tell the user. In other situations we could look

141

KPLXOP

for a 0 return value from the calls to indicate failure and issue diagnostics.

SUBROUTINE GPHINI (PBUFFR, PSIZE, NCOLS)
INTEGER*4 PBUFFR(*), PSIZE, NCOLS

EXTERNAL IPAINT

CHARACTER*8(0 REDRAW, LANSCP, NLCOLS

PARAMETER (REDRAW='redraw', LANSCP='landscape®,
$ NLCOLS='nlcolors"')

ISTAT = KPXSOP (REDRAW, IPAINT)
ISTAT = KPXSOP (LANSCP, 0)

ISTAT KOPENP (PBUFFR, PSIZE)

IF(ISTAT .LT. 0) THEN
WRITE(6,*) 'Failed to initialize graphics'
STOP

ENDIF

{1

ISTAT = KPXGOP (NLCOLS, NCOLS)

IF(ISTAT .LT. 0) THEN
WRITE (6, *) 'No data - assuming monochrome'
NCOLS = 2

ENDIF

RETURN

END

We make the calls to KXP SOP before the call to KOPENP while the call to KPXGOP follows
it. This is common practice - in many Plotix implementations the call to KOPENP is
responsible for setting up a lot of the default behavior of the system and so it makes sense
to make our preferences known before starting the system. This is one of the few cases in
which KOPENP should not be the first call made to Plotix. Similarly we wait until after the
device has been initialized before asking how many colors are available. This allows for
systems which must be initialized before they can know how many colors are available.

SEE ALSO

KOPENP

142

KPROFI

NAME
KPROFI - Low level execution profiler

SYNOPSIS

SUBROUTINE KPROFI (BUFFER, BUFLEN, START, SCALE)
INTEGER BUFFER(*), BUFLEN, START, SCALE

DOMAIN
KPROF I may only be called in the nodes.

DESCRIPTION

This routine serves to initialize the execution profiler. Every few milliseconds the program
counter of the user application is examined and a histogram entry in the memory area
denoted by BUFFER is incremented. The size of the histogram area is BUFLEN bytes.

In order to decide which histogram entry to increment a “mapping function” is applied to
the program counter discovered by the system. First START is subtracted and then the
result is multiplied by SCALE and divided by 0x10000 (Hexadecimal) - i.e., the complete
mapping is

BIN = (PC - START)*SCALE/0x10000

The overall effect of the SCALE parameter is to map groups of adjacent program locations
into the same histogram bin. The value SCALE = 0x10000 maps every program location
into a separate histogram bin, SCALE = 0x8000 maps each pair of locations into a single
bin, SCALE = 0x4000 every group of four, and so on.

Using combinations of the BUFLEN, START and SCALE parameters it is possible to
allocate various memory ranges to be profiled. Note that no errors are incurred if the range
is not large enough resulting in a calculated BIN which is out of the histogram range. In
this case a special “misses” counter is incremented. This latter feature also provides some
diagnostic information concerning the success of the profiling attempt - if an incorrect
profiling range is selected most of the histogram entries will be in the “miss” bin allowing
easy diagnosis.

KPROFI does not enable the profiler. An explicit call to KXPON must be made to begin
gathering profile data.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
execution profile.

PROGRAM XPRTST

INTEGER PRFBUF (2048), PRFSCL
PARAMETER (PRFSCL = 8192)

143

C-- This is the name given to a particular routine in
C-- the program which is known to occur low in memory.
C-- This information can usually be obtained from a
C—- "linker map".

o
EXTERNAL F_MAIN
o
C-- Start Express.
o
CALL KXINIT
C
CALL KPROFI(PRFBUF, 8192, F_MAIN, PRFSCL)
CALL KXPON
C
C-- Application code, profiler running....
Cc

The choice of the START argument is most conveniently made in conjunction with the
“linker map” provided by the compiler. This usually contains a list of the addresses of all
the functions in an application and can be used to find the smallest.

SEE ALSO

xtool (command), KXPROF

144

KRAINB

NAME
KRAINB - Change color attributes.

SYNOPSIS

SUBROUTINE KRAINB(FROM TO)
INTEGER FROM, TO

DOMAIN
This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine changes the association of color indices to device colors used by Plotix. By
default a limited color map is used which can be extended with the KRAINB and KGREYS
function calls.

KRAINB extends the Plotix color map by adding a smoothly varying color spectrum
between the indicated values. The “rainbow” starts with red and varies, with full saturation
and value, through the different hues; red, magenta, blue, yellow, cyan and back to red. The
number of distinct colors available is hardware dependent but in any case Plotix will map
the indicated range in as smooth a manner as possible.

On devices incapable of providing color output this function is treated exactly as a call to
KGREYS.

EXAMPLE

The following code draws a set of 6 boxes of varying colors along the diagonal of the screen
image. Since the manual is printed on a monochrome device the output is exactly as if the
call to KRAINB were replaced with one to KGREYS!

INTEGER I
REAL V
C
CALL KSPACE(0., 0., 6., 6.)
C
~ CALL KRAINB(10, 15)
C
DO 10 I =1, 6
V=1

CALL KBOX(V, V, V+1.0, V+1.0, 10+I, 0)
10 CONTINUE
CALL KSENDP

145

KRAINB

SEE ALSO
KCOLOR, KGREYS

146

KREAD

NAME
KREAD, KWRITE - Read or write unformatted data.

SYNOPSIS

INTEGER FUNCTION KREAD (UNIT, BUFFER, LENGTH)
INTEGER UNIT LENGTH, BUF (*)

INTEGER FUNCTION KWRITE (UNIT, BUFFER, LENGTH)
INTEGER UNIT LENGTH, BUF (*)

DOMAIN
This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

KREAD reads unformatted data into the nodes from the file indicated by the UNIT
argument. LENGTH bytes are read and placed in the indicated BUFFER. KWRITE performs
the opposite function - LENGTH bytes are transmitted to the indicated UNIT from the
BUFFER.

If the indicated file UNIT is in “singl” mode then KREAD and KWRITE must be called
loosely synchronously in all nodes. If the file is in “async” mode or Cubix has been
switched to asynchronous mode with a call to KCBXSY then independent calls to these
functions may be made in each node.

These functions pfovide the fastest but least portable interface to unformatted Fortran file
I/O. They make direct calls to the C routines read and write circumventing any
intermediate buffering or file transfer protocols.

RETURN VALUE

KREAD returns the number of bytes read, or -1 upon unrecoverable errors. A return value
of zero indicates an “end of file” condition. KWRITE returns the number of bytes written

or -1 upon unrecoverable errors.

WARNING

Reading and writing unformatted files is complicated by the fact that the host and nodes of
the parallel processing system may not have the same type of processor (CPU) and may not
share the same byte ordering properties. An example might be a Sun workstation hosting a
transputer or NCUBE machine. In this case the host processor is a Motorola based system
which has the most significant byte at the lowest memory address while the nodes have the
opposite ordering. To cover these cases Express provides a set of byte swapping
primitives: KXSWAP .

SEE ALSO
KMREAD, KMWRIT, KXSWAP

147

KSENDP

NAME

KSENDP - Flush graphical data to display surface.

SYNOPSIS

SUBROUTINE KSENDP

SUBROUTINE KUSEND

SUBROUTINE KASEND

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

In the implementation of Plotix for parallel computers output is “buffered”. This means that
each KMOVE, KCONT, KPANLP, etc. command merely stores its parameters in an area of
memory rather than immediately attempting to draw the associated object. This strategy is
dictated by the fact that typical parallel computers have large computing power but little I/
O bandwidth. As a result it makes no sense to send lots of small messages about graphical
objects to the device since this would result in spending all ones time communicating rather
than computing. Instead we store up a large number of objects and then send them all at
once.

This method introduces the “flushing” concept to the graphical system. No data actually
appears on the display surface until one of the three KSENDP commands is executed. The
differences between the three commands are typified by the following observations of
common situations

KSENDP All the nodes have been simultaneously drawing the same part of an
image. This situation is quite common - it costs nothing to duplicate
the same sequential effort in all processors. All nodes make the call to
KSENDP together but the data is only flushed to the display once.

KUSEND The nodes have been working separately on their own pieces of the
image and are now ready to ship it out to the display. All processors
call KUSEND together and the set of objects from each node appear in
order of increasing processor number.

KASEND The nodes are working totally independently and asynchronously. A
particular node wishes to send some data to the display and has no way
of knowing the status of the other processors. Any node may call
KASEND at any time.

The effect of these calls is to empty the buffer on the calling node ready for more graphical
objects.

The buffer size required for graphical objects varies quite significantly from application to
application. In some codes it may be possible and efficient to call the KSENDP functions

148

KSENDP

quite regularly and so only a small buffer is required. Others may operate for long periods
without flushing data and, as a result, need large buffers. The size of the graphics buffer is
set in the call to KOPENP.

EXAMPLE

The following code segment illustrates one of the less obvious bugs possible under Plotix.
We use the system calls to draw a “menu” and then accept selections from it with KGIN.

o
C-- Demo of PLOTIX code —--- incorrect!!
C
CALL KSPACE(0., 0., 4., 4.)
C
C—- Draw simple menu on left hand edge of display.
C
CALL KLABEL('QUuIiT’, .1, .5)
CALL KLABEL(’ITERATE’, .1, 1.5)
CALL KLABEL('RESET’, .1, 2.5)
CALL KLABEL(’OQUTPUT’, .1, 3.5)
C
C-- Use KGIN to get user option from menu.
C

ISTAT = GIN(KEY, X, Y)
OPTION = INT(Y)

The error here is that data is not flushed before the call to KGIN. As aresult the user is asked
to make a selection from an invisible menu. Not very friendly. The solution is, however,
very straightforward; insert a call to KSENDP before the call to KGIN. Note that this
illustrates another aspect of the flushing commands - since all processors have been
drawing the same thing and we only want to see one copy of it on the display the
appropriate flushing function is KSENDP.

SEE ALSO
KOPENP

149

KSPACE

NAME

KSPACE - Define user coordinate system.

SYNOPSIS

SUBROQUTINE KSPACE (LOWX, LOWY, HIGHX, HIGHY)
REAL LOWX, LOWY, HIGHX, HIGHY

SUBROUTINE KORTHO (LOWX, LOWY, HIGHX, HIGHY, JUSTFY)
REAL LOWX, LOWY, HIGHX, HIGHY
INTEGER JUSTFY

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These routines define a coordinate system to be mapped onto the current window. By
default all plotting commands take place in a coordinate system which has (0., 0.) at its
lower left corner and (1., 1.) at the upper right. After this call all future plotting commands,
including the input request commands, will operate in the new coordinate system.

While the KSPACE routine covers the entire viewport with the selected coordinate range
the KORTHO function can be used to preserve the aspect ratio of the indicated coordinate
system. A mapping is created so that objects will actually appear with the correct shape
independent of the specific characteristics of a particular output device - circles will be
circular not elliptical.

Since a comrectly normalized region may not completely fill the current viewport the
JUSTFY parameter is used to indicate exactly where the region should be place. The value
-1 implies that the new region should be placed either to the left or at the bottom of the
viewport while +1 indicates the right or top. A zero value centers the region within the
viewport.

EXAMPLE

This example shows the effect of KSPACE transformations on simple objects. The routine
MYBOX draws a unit square on the screen.

SUBROUTINE MYBOX

CALL KMOVE(0., O
CALL KCONT(1., O
CALL KCONT(1l., 1.
CALL KCONT (0., 1
CALL KCONT (0., O
RETURN

150

KSPACE

END

To see the effect of the KSPACE call consider the following sequence

C
C-- Default coords ==> full screen "square".
c
CALL MYBOX
o

C-- Redefine coordinate system to make square fill only
C-- one quadrant of the display.
C

CALL KSPACE (0., 0., 2., 2.)

CALL MYBOX

CALL KSENDP

As can be seen the resulting “square” is not! To correct this we could instead use the
KORTHO function as shown below. Note that we chose the justification that the used area
should be to the left of the viewport.

CALL MYBOX
CALL KORTHO(O0., 0., 2., 2., -1)
CALL MYBOX
CALL KSENDP

151

KSPACE

In Appendix C is presented a complete example program in which the KXGRID routines
are used to map processors to their own individual windows on the display surface and
KSPACE is used to map each individual processor region to its own coordinate range. Note
that it is possible to have different coordinate ranges in separate processors.

SEE ALSO
KVPORT

152

KVPORT

NAME
KVPORT, KSETVP - Specify area of display to hold image.

SYNOPSIS

INTEGER FUNCTION KVPORT (LOWX, LOWY, HIGHX, HIGHY)
REAL LOWX, LOWY, HIGHX, HIGHY

SUBROUTINE KSETVP (WINDOW)
INTEGER WINDOW

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These routines allocate and activate/deactivate certain area of the display surface. The
supplied parameters are expressed as fractions of the total view surface so that the default
0.0<x<1.0 and 0.0<y<1.0 is the entire display. By selecting smaller regions in x and y itis
possible to confine an image to a smaller region of the display. This is useful if the final
image is required to have a certain aspect ratio or in parallel processing applications where
each processor is to be assigned a piece of the view surface.

Plotix allows several viewports to be present on the same display surface. Each is indicated
by a number returned by the corresponding call to KVPORT and is selected by a call to
KSETVP. Note that each viewport or window has its own coordinate range specified by a
call to KSPACE and that clipping is performed independently in each window. Further,
since the call to KVPORT selects the new viewport a call to KSPACE to set up a coordinate
system must come after the corresponding call to KVPORT.

EXAMPLE

This example shows the effect of KVPORT transformations on simple objects. The routine
MYBOX draws a unit square on the screen.

SUBROUTINE MYBOX

CALL KMOVE(O.
CALL KCONT (1.
CALL KCONT(1.
CALL KCONT (0.
CALL KCONT (0.
RETURN

END

. N N NN
O P OO0
. « . . .

N Nt e e

To see the effect of the KVPORT call consider the following sequence

153

KVPORT

Cc
C—- Default coordinates ==> full screen "“square".
Cc

CALL MYBOX
c
C-- Define (and implicitly activate) new viewport.
Cc

IVP = VPORT(O., Oo, .5, .5)

CALL MYBOX

CALL KSENDP

To see the effect of multiple viewports consider the following code segment. We create
three windows. The left window has a call to KSPACE which means that the “box” fills only
the bottom part of the viewport. The second window has no call to KSPACE so its
coordinate range will have the usual default. The last window uses KORTHO to make a
viewport with the correct aspect ratio - the square actually comes out square!

INTEGER LFTWIN, TOPWIN, LOWWIN

C
C-- Left window, scaling range (0,0) -> (1,2)
C
LFTWIN = KVPORT(0.0, 0.0, 0.2, 1.0)
CALL KSPACE (0.0, 0.0, 1.0, 2.0)
C

C-- Top window, default scaling range (0,0) --> (1,1)

TOPWIN = KVPORT (0.2, 0.5, 1.0, 1.0) C

C-- Lower window, scaled (0,0) --> (1,1), correct
C-- aspect ratio.
c

LOWWIN = KVPORT (0.2, 0.0, 1.0, 0.5)

154

KVPORT

CALL KORTHO(0.0, 0.0, 1.0, 1.0, 0)
C
C-- Set up windows, draw the squares
C
CALL KSETVP (LETWIN)
CALL MYBOX
C
CALL KSETVP (TOPWIN)
CALL MYBOX
C
CALL KSETVP (LOWWIN)
CALL MYBOX
C
CALL KSENDP
SEE ALSO

KSPACE

155

KXACCS

NAME

KXACCS - Share a processor group with another process

SYNOPSIS

INTEGER FUNCTION KXACCS (DEVICE, NNODES)
CHARACTER*80 DEVICE
INTEGER NNODES

DOMAIN

Host processor only.

DESCRIPTION

This routine provides a “brute-force” mechanism by which a host program can obtain
access to every node in the network irrespective of whether or not that node is currently
executing a program - even if allocated to another user. This often useful for providing
overall system monitoring or when only a single application is to run on the entire network.

The first argument specifies the particular parallel computer to which access is desired and
is interpreted in the same manner as the corresponding argument to KXOPEN. The last
argument is returned to the caller containing the number of nodes in the system.

RETURN YALUE

The value returned by KXACCS is the processor group index which must be used in future
references to the shared processors. If some error occurs or nodes are accessible to the host
processor -1 is returned.

WARNINGS

Communicating with shared processor groups is complicated by interactions between
source and type fields specified using the NOCARE wildcard. This situation can be eased
somewhat through the KXTYPE mechanisms which restrict the ranges indicated by
wildcard values. It should further be noted that subsequent to this call the host must
communicate with the processors using the node numbers indicated by cnftool rather
than according to the logical mapping which results from KXOPEN or KXSHAR.

SEE ALSO

KXOPEN, KXSHAR, KXTYPE.

156

KXBREA

NAME

KXBREA - Halt program at breakpoint
SYNOPSIS

SUBROUTINE KXBREA
DOMAIN

This routine may only be called in node programs.
DESCRIPTION

The exbreak function causes the program to halt as though it had encountered a
breakpoint of the ytpe normally associated with the debugger, ndb. Examination of the
process state with ndb will show the process to be in state Breakpoint.

SEE ALSO
KXPAUS.

157

KXBROD

NAME

KXBROD - Interprocessor broadcast.

SYNOPSIS

INTEGER FUNCTION KXBROD (BUFFER, ORIGIN, NBYTES,
NNODES, NODEL, TYPE)

INTEGER BUFFER(*)

INTEGER ORIGIN, NBYTES, NNODES, NODEL, TYPE

DOMAIN

KXBROD may be called in both host and node processors.

DESCRIPTION

KXBROD is used to perform broadcasting operations among the processors.

The broadcast starts from processor ORIGIN which attempts to broadcast the NBYTES of
data in the indicated BUFFER. The processors to which the broadcast will be sent are
indicated by the NNODES and NODEL arguments in the following way: NODEL is an array
of processor numbers which should receive the broadcast message. NNODES is the number
of elements in the array. Further the special value NNODES = IALNOD (defined in the
XPRESS common block set up by the KXINIT function) indicates that the broadcast
should go to all processors. In this case the value of NODEL is ignored. Receiving nodes
deposit the incoming data at BUFFER, up to a maximum of NBYTES.

The broadcast operation carries a “type” field in common with all other communication
primitives so that overlapping broadcasts may be distinguished. This parameter is supplied
as the argument TYPE and may be any positive quantity. It is illegal to use the NOCARE
value from the XPRESS common block for this field

A call to KXBROD in the originating node must have corresponding calls to KXBROD in all
target nodes. A corresponding call in other nodes which are not target nodes is not
necessary, but will be handled without error. All calls must specify the same values of the
ORIGIN, NNODES and NODEL arguments or communication deadlock will occur. A
receiving node must specify NBYTES greater than or equal to that specified in the
originating node. When NODEL is used the contents arrays must be exactly identical in each
processor. The ORIGIN may or may not appear in the NODEL, at the convenience of the
calling routine. When no errors occur, the value returned is the number of bytes written by
the originating node, or the number read by a receiving node.

EXAMPLE

In the following code we use the KXGRID tools to find the processor number of the
processor at the origin of a three dimensional processor decomposition. This processor then
broadcasts a set of data values to all other nodes.

PROGRAM MYTEST

158

KXBROD

INTEGER NPROCS (3), COORD(3), CORNER, TYPE

C

C—- This is the EXPRESS common block.

C
COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST, IALNOD, IALPRC
DATA TYPE/33/

C

C—- Set up Express and initialize its common block.

o
CALL KXINIT

C

C-- Initiate a three-dimensional decomposition of
C-- eight processors.

C
NPROCS (1) = 2
NPROCS (2) = 2
NPROCS (3) = 2
ISTAT = KXGDIN(3, NPROCS)
IF (ISTAT .LT. 0) THEN
STOP
ENDIF
C

C—-- Now find the processor in the (0,0,0) spot in the user
C-- topology.

C
COORD(1) = 0
COORD(2) = 0
COORD(3) = 0
CORNER = KXGDPR (COORD)
C
ISTAT = KXBROD (DATBUF, CORNER, 32*4, IALNOD, 0, TYPE)
C
DIAGNOSTICS

If any error occurs in KXBROD -1 is returned. Possible sources of error are: an illegal buffer,
a preposterous value of NBYTES or invalid values of ORIGIN, NNODES or NODEL. If no
error occurs the number of bytes broadcast is returned in the originating processor and the
number read in the receiving nodes. An error condition is also indicated in any node which
reads less bytes than were originally transmitted by the originating processor.

SEE ALSO
KXCOMB, KXCONC

159

KXCH

NAME

KXCH - Hardware dependent communication primitives.

SYNOPSIS

SUBROUTINE KXCHON (CHAN)
INTEGER CHAN

SUBROUTINE KXCHOF (CHAN)
INTEGER CHAN

INTEGER FUNCTION KXCHRD (CHAN, BUFFER, NBYTES)
INTEGER CHAN, BUFFER(*), NBYTES

INTEGER FUNCTION KXCHWT (CHAN, BUFFER, NBYTES)
INTEGER CHAN, BUFFER(*), NBYTES

DOMAIN

These routines are available only to node programs. Their availability is further subject to
hardware restrictions on the system in use.

DESCRIPTION

These routines implement a message passing strategy which directly accesses the hardware
present on the parallel processing system in use. As such their use is highly non-portable.
Since, however, these routines have a very trivial syntax they can provide communication
at the full speed of the underlying hardware. In most cases this affects the asymptotic
communication rate only slightly but may reduce the start-up time (latency) by as much as
an order of magnitude. They are most applicable, therefore, when the application needs to
send many short messages.

Before attempting to use the message passing routines KXCHOF must have been called for
every channel on which the low level functions will be used. this function serves to disable
the normal Express processing for that channel. Note that the user is responsible for
ensuring that no internode communication traffic will be disrupted by the sudden removal
of one of the message paths normally used by Express. In practice this usually means that
the application should force a synchronization through some operation before disabling any
of the communication channels. Note that while a channel is disabled none of the higher
level Express functions may be used. In particular this means that the debugger, ndb, will
be unable to operate.

KXCHON performs the opposite function, causing Express to once again become active on
the indicated channel. Again it is the user’s responsibility to ensure that no Express
messages are transmitted along channels that are still disabled.

The channel read function, KXCHRD, reads NBYTES bytes of data into the supplied
BUFFER from the channel indicated by the CHAN argument. It will not return until exactly
NBYTES have been read. The node from which data is read depends on the interpretation
of the CHAN argument, which is hardware dependent.

Similarly the KXCHWT function sends NBYTES bytes of data into the channel indicated by

160

KXCH

the CHAN argument. The data to be transmitted is taken from the user supplied BUFFER.
This function will not return until all data has been read by a corresponding call to KXCHRD.

EXAMPLES

The following schematic code shows a typical sequence involving the KXCH primitives.
We assume that some routine, NEARST requires heavy internode message traffic between
processors directly connected to each other in hardware. As such they are able to make use
of the KXCH functions.

C

C-- Assume that we can work here with the full Express system.

C

C

C-- For the next function we will disable Express.

C

. CALL KXSYNC

DO 10 I=1,NCHANS
CALL KXCHOF (I-1)

10 CONTINUE

CALL NEARST
c .
C-- Assume that this routine terminates fully synchronized
C-- so that we can enable Express.
C

DO 20 I=1,NCHANS

CALL KXCHON(I-1)

20 CONTINUE

C-- Proceed with Express functioning......

Notice that we have used a variable NCHANS to indicate how many channels should be
modified. The value of this variable is also somewhat machine dependent - on a transputer
system it might be four for all the hardware links, for example, while on a hypercube it will
usually be the base 2 logarithm on the number of nodes.

WARNING

These routines perform extremely hardware dependent operations and as such should be
used with caution. The “nearest neighbor” communication model that they represent has
however, been shown by a number of researchers to be adequate (if not optimal) for a wide
class of algorithms. (An excellent reference is the book “Solving Problems on Concurrent
Processors” by G.C.Fox et al., published by Prentice-Hall, 1988.)

161

KXCH

If these routines seem appropriate for your algorithm we suggest that the full Express
routines be used during development, since this enables use of the other system tools such
as the debugger, and then these routines be substituted in the final product.

SEE ALSO

exread, exwrite, exsync.

162

KXCHAN

NAME

KXCHAN, KXVCHA - Synchronous scalar/vector exchange primitive.

SYNOPSIS

INTEGER FUNCTION

KXCHAN (IBUF, ILEN, ISRC, ITYPE, OBUF, OLEN, ODEST, OTYPE)
INTEGER IBUF (*), OBUF (*)
INTEGER ILEN, ISRC, ITYPE, OLEN, ODEST, OTYPE

INTEGER FUNCTION
KXVCHA (IBUF, ISIZE, IOFF, IITEMS, ISRC, ITYPE,
OBUF, OSIZE, OOFF, OITEMS, ODEST,OTYPE)
INTEGER IBUF (*), OBUF (*)
INTEGER ISIZE, IOFF, IITEMS, ISRC, ITYPE,
OSIZE, OOFF, OITEMS, ODEST, OTYPE

DOMAIN

These functions may be called in either host or node processors.

DESCRIPTION

These functions are used to implement “synchronous” communication between two
processors; a call to KXCHAN in one processor will not return until the corresponding call
has been made in the sending and receiving processors.

This function essentially performs a similar task to successive calls to KXWRIT and
KXREAD - i.e., data is first sent and then read from (possibly) different nodes. The
advantage of this function is that its extra constraint (synchronicity) allows optimizations
to be made for both speed and reliability. The former can be achieved because data
transmission in the two directions can be overlapped while the latter is enhanced because
low level “handshaking” can be performed to ensure that no intermediate buffers overflow.
A second advantage is that the exchange of information can be considered to be
simultaneous - the user is freed from any worry about which node should read first and
which write. As a result these functions should be preferred to the analogous pair of
KXREAD/KXWRIT operations whenever the synchronous constraint can be met.

KXCHAN causes OLEN bytes of data to be sent to the node denoted by ODEST in a message
of type OTYPE. The data is taken from memory at OBUF. It is not guaranteed that OLEN
will be read by the reading processor; the actual number of bytes read depends on the
number specified in the corresponding call to KXCHAN. If no error occurs, the actual
number of bytes written is returned to the calling program. The interpretation of the
destination and type fields is exactly as in KXWRIT. Note that this includes the fact that
neither ODEST nor OTYPE may take the special NOCARE value.

KXCHAN also causes at most ILEN bytes of data to be read from the source denoted by
ISRC from a message of a type matching I TYPE. The data is placed in memory at IBUF.
It is not guaranteed that ILEN bytes will be read; the actual number of bytes read depends
on the number written by the transmitting processor. If no error occurs, the actual number

163

KXCHAN

of bytes read is returned to the calling program. The interpretation of the ISRC and ITYPE
arguments is exactly as in KXREAD.

A call to KXCHAN must be complemented by calls to KXCHAN in the processors denoted
by ODEST and ISRC in order to prevent communication deadlock. Similarly the message
types in these processors must be compatible.

Note that the exchange of data is conceptually simultaneous - data is written to the output
processor at the same time as it is received from the sender. This allows, for example, the
buffer arguments to be identical. The kernel maintains the integrity of the data and handles
any read/write synchronization problems.

The above discussion holds equally well for the KXVCHA function. The difference between
the two is analogous to the difference between KXREAD and KXVREA. While the former is
used to transmit contiguous blocks of memory the latter is able to send messages made up
of several disjoint memory areas.

The arguments to KXVCHA are interpreted in the same way as their counterparts in
KXVREA. The message is specified by defining a number of “objects” to be sent. Each is of
length SIZE bytes and is separated from the next by OFFSET bytes. In total I TEMS objects
will be transmitted. This description applies to both the input and output arguments of
KXVCHA.

EXAMPLE

Consider a simple model of a two-dimensional terminal screen. We assume that the data
currently displayed is represented by an 80 x 24 array of characters. Using the KXGRID and
KXCHAN primitives it is easy to construct routines which, for example, scroll the data in
different directions when decomposed in parallel.

PROGRAM MYTEST

PARAMETER (IHORIZ = 0, IVERT = 1)

INTEGER NPROCS(2)
Cc
C-- The amount of the display in each node is found by
C-- decomposing the 80 x 24 total over the processors.
C

LOGICAL*1 SCREEN(20,12)
c
C-— Set up Express
C

CALL KXINIT
C NPROCS (IHORIZ) = 4

NPROCS (IVERT) = 2

ISTAT = KXGDIN(2, NPROCS)

IF(ISTAT .LT. 0) THEN

STOP
ENDIF

164

KXCHAN

The macros THORIZ and IVERT are defined for our convenience and just serve to label
the two axes on the screen. We assign four processors to the horizontal dimension and two

to the vertical. (A more flexible assignment scheme is easily devised using the KXPARA
and KXGDSP system calls to determine at runtime the number of processors available.)

Now consider a simple scrolling operation in which data is to be passed to the right. We
need to figure out the processor numbers necessary to communicate in this direction using
KXGDNO.

INTEGER NDDATA (4)

INTEGER RECNUM(2), PERBC(2), TYPE

INTEGER UNODE, DNODE, LNODE, RNODE

DATA TYPE/12/
C
C-- Get runtime parameters, number of nodes, etc..
C

CALL KXPARA (NDDATA)

C
C-- Turn off periodic boundary conditions.
C
PERBC(1l) = 0
PERBC(2) = 0
CALL KXGDBC (PERBC)
c .

UNODE = KXGDNO (NDDATA(1), IVERT, 1)
DNODE KXGDNO (NDDATA (1), IVERT, -1)
LNODE KXGDNO (NDDATA (1), IHORIZ, -1)
RNODE = KXGDNO (NDDATA (1), IVERT, 1)

Note that we have made the additional step of dealing with the boundaries of the screen
correctly. If a processor is on the extreme left edge of the display and it tries to
communicate with a processor to its left then the value of LNODE will be correctly assigned
the value NONODE which will, in turn, direct KXCHAN to omit communication with this
non-existent processor.

Now in order to “scroll” the data over to the left we merely use the following call to
KXCHAN.

ISTAT = KXCHAN (SCREEN, 12, LNODE, TYPE,
SCREEN (20, 1), 12, RNODE, TYPE)

Notice that at no point in these calculations did the topology of the hardware enter.
Everything is specified in the user domain - i.e., screen coordinates, and KXGRID and
KXCHAN do the rest. Notice the appearance of the “magic” number 12 in the above call. To
arrive at this value we divided the height of the screen (24) by the number of processors in
that direction (2). We could do much better by using the KXGDSI function which would
also allow the possibility of changing the number of processors allocated to each dimension

165

KXCHAN

at runtime.
In order to scroll data vertically instead of horizontally we would just use the call

ISTAT = KXVCHA (SCREEN, 1, 12, 20, DNODE, TYPE,
SCREEN(1,12), 1, 12, 20, UNODE, TYPE)

The arguments here are arrived at in a similarly simple manner. If each processors piece of
the display surface is 20 x 12 then we need to take every twelfth byte when we scroll
upward. Also there are twenty bytes to transmit. (Again this can be made more flexible
using the KXGDS1I function.)

DIAGNOSTICS

If any error occurs in KXCHAN or KXVCHA -1 is returned. Possible sources of error are: an
illegal source or destination, an illegal buffer or a preposterous value of length, size, offset
or item arguments. If no error occurs KXCHAN returns the number of bytes read and
KXVCHA the number of items read.

SEE ALSO
KXREAD, KXWRIT, KXVREA, KXGRID, KXPARA

166

KXCLOS

NAME
KXCLOS - Deallocate processors.

SYNOPSIS

SUBROUTINE KXCLOS (PGIND)
INTEGER PGIND

DOMAIN
Available to host programs only.

DESCRIPTION
This routine is used to terminate a connection between the host and a processor group.

This routine should be called at the end of an application’s use of a processor group to
ensure that system resources are correctly reset. The sole argument, PGIND, is the
Processor group index originally returned by the KXOPEN call.

EXAMPLES

The following schematic code should be the general template of any host process which
allocates and uses processor groups.

PROGRAM MYTEST

INTEGER PGl

CHARACTER*80 DEVICE

PARAMETER (DEVICE='’/dev/transputer’)

C
C-- Set up Express.
C
CALL KXINIT
o
C-- Allocate a processor group.
C
PGl = KXOPEN(DEVICE, 4, NOCARE)
IF(PG1 .LT. Q) THEN
WRITE(6,*) ‘Failed to allocate nodes’
STOP
ENDIF
Cc

C-- Load progs, send/rec messages to groups of processors. C

C-- Program finished. Clean up by deallocating processors.

CALL KXCLOS (PG1)
STOP

167

KXCLOS

END

SEE ALSO
KXOPEN, KXSHAR, KXINIT

168

KXCOMB

NAME
KXCOMB - Node data compaction.

SYNOPSIS

INTEGER FUNCTION KXCOMB (BUFFER, FUNC, SIZE, ITEMS,
NNODES, NODEL, TYPE)

INTEGER BUFFER(*)

INTEGER FUNC, SIZE, ITEMS, NNODES, NODEL, TYPE

DOMAIN
KXCOMB may be called in the node processors only.

DESCRIPTION

This routine is used to performing “combining” operations on data within the node
processors. An example of such an operation is the sum of a set of values distributed over
the nodes of the parallel machines. Other example combining functions are products,
maximum and minimum functions.

NITEMS of data, each of size SIZE and taken from BUFFER are individually combined
across the specified node processors. The final vector of results will overwrite BUFFER in
each node.

In the nodes the user-supplied combining function will be called for each of the NITEMS
to be combined. In each case three arguments will be supplied to the routine. The first two
are the objects to be combined and the third is the SIZE argument supplied in the call to
KXCOMB. The combining function’s responsibility is to perform whatever operation is
required and write the result over the first operand. The value returned by the combining
function is used to detect errors in the KXCOMB routine. If a negative value is returned the
current call to KXCOMB is aborted and an error returned to its caller.

The nodes involved in the combining operation are specified by the NNODES and NODEL
arguments. The latter is an array of processor numbers listing those nodes on which the
combining operation is to take place. NNODES is the number of elements in this list. The
special value NNODES = IALNOD is allowed and performs the combining operation on
all processors. In this case the value of NODEL is ignored. IALNOD is found in the XPRESS
common block setup by the call to KXINIT.

The TYPE argument is used to specify a “type” for the combine operation. This is used to
distinguish between potentially overlapping communication operations. Any positive value
is legal - the special NOCARE value may not be used in this function.

All processors involved in the combining operation must call KXCOMB together with
identical values for both NNODES and NODEL - otherwise communication deadlock will
occur.

EXAMPLE

The first example merely calculates the global sum of the components of a vector
distributed over all processors. We assume that each processor contains NPTS values.

169

KXCOMB

PROGRAM MYTEST

C

INTEGER NPTS, I, TYPE

EXTERNAIL SUMUP

REAL RESULT

DATA TYPE/37/

COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST, IALNOD, IALPRC
C

C-—- Set up Express and initialize the common block.
C

CALL KXINIT
C
C-- First compute the subtotal in each node.
C

RESULT = 0.0

DO 10 I=1,NPTS

RESULT = RESULT + VALUE(I)

10 CONTINUE
o
C-- Now combine these values with the sum_up function.
C

ISTAT = KXCOMB(RESULT, SUMUP, 4, 1, IALNOD, 0, TYPE)
o

ooooooooo

C

INTEGER FUNCTION SUMUP (V1, V2, SIZE)
REAL V1, V2
INTEGER SIZE

Vil = V1l + V2
SUMUP = 0
RETURN

END

Notice how the combining function replaces its first argument with the result of the
combining operation and returns zero to indicate successful combination.

In the second example processors O thru 4 have obtained a vector of four floating point
values, MYVEC. The purpose of the call is to calculate, for each array slot, the maximum
value distributed over the nodes.

170

KXCOMB

INTEGER I, NNODES, NODEL(5), TYPE
EXTERNAL MAXFLT
REAL RESVEC (4)
DATA TYPE/48/
C
C-- Setup nodelist array to specify combining nodes.
C
NNODES = 5§
DO 10 I = 1,NNODES
NODEL(I) = I-1
10 CONTINUE

C
C——- Combine values with the maxflt function.
C

ISTAT = KXCOMB (MYVEC, MAXFLT, 4, 4, NNODES, NODEL, TYPE)
C
C

STOP

END

INTEGER FUNCTION MAXFLT(V1, V2, SIZE)

REAL V1, V2

INTEGER SIZE
C

IF(V2 .GT. V1) THEN

vVl = V2

ENDIF

MAXFLT = 0

RETURN

END

This example points out another important point. The purpose of the NITEMS field is to
allow multiple data items to be combined AND LEFT SEPARATE - it is not to perform
“on-node” combination operations before the global operation. This is the reason why we
explicitly coded the subtotal operation in the first example. In this last example four values
will be left in each node corresponding to the maximum value among all processors of
MYVEC(1), the maximum of MYVEC(2) and so on.

DIAGNOSTICS

If any error occurs in KXCOMB -1 is returned. Possible sources of error are: an illegal
BUFFER, preposterous values of NITEMS or SIZE and the return of a negative value from
the combining function. If no error occurs the number of items combined is returned.

171

KXCOMB

WARNING

BUGS

The combining function must be both commutative and associative in order to give results

which are independent of the underlying hardware topology. If we denote the operation of
the combining function on two elements A and B by A op B then the requirements can be
written as

Commutativity: AopB = BopA
Associativity: (AopB)opC = Aop(BopC)

Useful functions which satisfy these constraints are: addition, multiplication, maximum,
minimum, logical AND, logical OR, logical XOR. Operations which do not satisfy the
constraint are: subtraction (3-11!=1-3)and division(4/21=2/4)

A particularly unpleasant problem concerns the use of this function with floating point
numbers. Because of the intricacies of rounding and truncation while performing floating
point operations it cannot be guaranteed that all nodes will have exactly the same result
after a KXCOMB operation such as addition. While the difference will be (at worst)
microscopic it can occasionally be sufficient to cause Cubix programs to abort while
printing values in “singl” mode. At present no solution for this problem is known.

There is an implementation specific upper limit on the SIZE of each individual item that
can be combined. In most applications this should be an unimportant restriction.

SEE ALSO

KXBROD, KXCONC

172

KXCONC

NAME
KXCONC - Concatenate data from nodes.

SYNOPSIS

INTEGER FUNCTION KXCONC (MYBUF, MYBYTE, RESBUF, RESSZ,
SIZES, NNODES, NODEL, TYPE)

INTEGER MYBUF (*), RESBUF (*)

INTEGER MYBYTE, RESSZ, SIZES(*), NNODES, NODEL(*), TYPE

DOMAIN
KXCONC may be called in only the node processors.

DESCRIPTION

This routine is used to collect and concatenate data in a set of node processors.

Each node contributes MYBYTE bytes of data from the array MYBUF to be placed in each
node’s RESBUF. The individual blocks of data are sorted into order of increasing processor
number and placed in the RESBUF buffer, separated by RESSZ bytes. If any node
contributes more than RESSZ bytes to the global vector then the excess are discarded. The
amount of data contributed by each processor is stored in the appropriate slot of the SIZES
array.

The group of nodes participating in the concatenation operation is specified by the NNODES
and NODEL arguments. The latter is an array of processor numbers; NNODES specifies the
number of processors in the list. If NNODES has the special value IALNOD then the
concatenation is performed by all nodes irrespective of the value of the NODEL argument.
The IALNOD parameter is to be found in the XPRESS common block setup by the call to
KXINIT.

The TYPE argument is used to specify a “type” for the concatenation operation which will
distinguish it from other active communication. Any positive value may be supplied - the
special NOCARE value may not be used.

All nodes involved in the concatenation operation must call KXCONC together and with
identical values for the NNODES and NODEL arguments or communication deadlock will
ocCur.

EXAMPLE
Consider a simple case with four processors which have buffers as follows

Processor0: INTEGER MYBUF (4) {12, 13, 14}
Processor 1: INTEGER MYBUF (4) {32, 33, 34}
Processor 2: INTEGER MYBUF (4) = {52, 53, 54}
Processor 3: INTEGER MYBUF (4) {72, 73, 74}

In the simplest case we can concatenate all four buffers with the code
ISTAT = KXCONC (MYBUF, 3*4, IBUF, 3*4,SIZES, IALNOD, 0, TYPE)

173

KXCONC

which would result in each processor obtaining the following result in IBUF
IBUF = {12, 13, 14, 32, 33, 34, 52, 53, 54, 72, 73, 74}
and the value returned by the call would be 12 times the size of an INTEGER in each node.

Another simple case is obtained by sending different amounts of data from each processor.
Consider the following code:

INTEGER SIZES (4), TYPE, NDDATA(4)
DATA TYPE/56/

CALL KXPARA (NDDATA)
ISTAT = KXCONC (MYBUF, 4*NDDATA(l), IBUF, 3%*4, SIZES,
$ IALNOD, 0, TYPE)

In this case the “result” buffers on each node would be

IBUF = {0, O, O, 32, 0, O, 52, 53, 0, 72, 73, 74}
SIZES = {0, 4, 8, 12}

where we have assumed 4-byte integers. If we now change the arguments again by reducing
the RESSZ parameter to 8 then the resulting buffers would be

IBUF = (0, 0, 32, 0, 52, 53, 72, 73}
SIZES = {0, 4, 8, 8}

In each node the call to KXCONC would now return an error, to reflect the fact that node 3
attempted to send more data than was to be read.

In the final example we perform the concatenation only in processors 0,1 and 3.

INTEGER NNODES, NODEL(4), TYPE, SIZES(3)
DATA TYPE/12/

C
NNODES = 3
NODEL (1) = 0
NODEL(2) =1
NODEL (3) = 3

C
ISTAT = KXCONC (MYBUF, 3*4, IBUF, 3*4, SIZES,

$ NNODES, NODEL, TYPE)
DIAGNOSTICS

If any error occurs in KXCONC -1 is returned. Possible sources of error are: illegal values
of MYBUF or RESBUF and preposterous values of MYSIZE or RESSZ. If no error occurs
the total number of bytes stored in memory is returned. An error condition can also be
generated if the value of RESSZ on a node is smaller than the amount of data which is being

174

KXCONC

sent by a processor (including the node itself).

SEE ALSO
KXBROD, KXCOMB

175

KXCUST

NAME
KXCUST - Indicate an alternative system configuration file.

SYNOPSIS

INTEGER FUNCTION KXCUST (FNAME)
CHARACTER*80 FNAME

DOMAIN
Only available to host programs.
DESCRIPTION

KXCUST indicates that Express should use system configuration information from the
named file rather than the system default. This allows applications to maintain their own
customization programs independent of any other user or system requirements.

To complete the customization process the exinit command has an optional argument
which names the customization file which should be used while loading Express into the
transputer system. Similarly cubix has an additional ‘~E’ switch allowing an alternative
file to be named at runtime. In both cases the KXCUST function is invoked with the named
file as argument.

The KXCUST call must be made before any other Express system calls.
RETURN VALUE

The returned value indicates whether or not the indicated customization file was found.
Non-zero values indicate a failure to locate the named file.

EXAMPLES

The following code fragment could be used to allow a program to use an alternative
customization file.

PROGRAM MYCUST

C

COMMON/XPRESS/NOCARE, NORDER, NONODE, ITHOST, IALNOD, IALPRC
c

CALL KXINIT
C

ISTAT = KXCUST('myfile.cst’)

IF(ISTAT .NE. 0) THEN
WRITE(6,*) ’'Failed to find customization file’
STOP

ENDIF

176

KXCUST

SEE ALSO

excustom (command).

177

KXGRID

NAME

KXGRID - Automatic decomposition tools

SYNOPSIS

INTEGER FUNCTION KXGDIN(GRDDIM, NPROCS)
INTEGER GRDDIM, NPROCS (*)

INTEGER FUNCTION KXGDSP (NODES, GRDDIM, NSPLIT)
INTEGER NODES, GRDDIM, NSPLIT(*)

INTEGER FUNCTION KXGDCO (PROCNO, COORD)
INTEGER PROCNO, COORD (*)

INTEGER FUNCTION KXGDPR (COORD)
INTEGER COORD (*)

INTEGER FUNCTION KXGDSI (PROCNO, GLOBAL, SIZE, START)
INTEGER PROCNO, GLOBAL(*), SIZE(*), START(*)

INTEGER FUNCTION KXGDBC (PERBC)
INTEGER PERBC(*)

INTEGER FUNCTION KXGDNO (PROCNO, DIR, DIST)
INTEGER PROCNO, DIR, DIST

DOMAIN

The KXGRID routines may be called from any Express program.

DESCRIPTION

KXGRID collectively refers to a set of utilities that perform automatic decompositions of
user domains onto the underlying machine topology. A user specification for a problem
domain which has the topology of a Cartesian grid in N dimensions is mapped onto the
hardware topology and routines are available to enable processors (defined relative to the
user topology) to communicate through the primitive system calls.

KXGDIN is the routine which performs the elementary mapping and must be called before
any of the other KXGRID routines (except KXGDSP). The arguments are the number of
dimensions in the user topology and the number of processors to be assigned to each
dimension. If the requested topology is successfully mapped to the hardware zero is
returned; otherwise the value returned is -1.

The function KXGDSP is used to divide up the NODES processors between the GRDDIM
dimensions in as even a way as possible consistent with the requirement that all processors
be used. The number in each dimension will be returned in the array NSPLIT. A simple
example would be that of two dimensional decompositions: for eight nodes we would
obtain an 4 x 2 decomposition while nine processors yields 3 x 3.

178

KXGRID

Having set up the KXGRID system in this way the other function calls are available to
inquire about specific details of the decomposition. Particularly useful is information
conceming where, in the user defined topology, a certain processor is to be found. The
KXGDCO function call takes a processor number as argument and returns the coordinates in
the Cartesian grid of this processor. The inverse transformation is provided by the function
KXGDPR which takes as arguments an array of coordinates and returns the processor
number of the node at that position in the user grid.

The interface to the underlying communication structure is provided by the KXGDNO and
KXGDBC functions. The arguments to the former are a processor number, a direction in the
user grid and a distance. The returned value is a “NODE” suitable for use in calls such as
KXCHAN and KXVCHA which contains the necessary information for communication in that
direction. The distance parameter specifies the offset from the current node in the direction
indicated so that a value of +1 implies the next node along the positive axis while -1
indicates the next node in the negative direction. Magnitudes greater than 1 are also
possible and correspond to multiple hops in the given direction.

The KXGDBC function is provided to alter the boundary conditions at the edges of the user
domain. By default KXGDNO assumes that boundaries are connected periodically so that the
processor to the “left” of the leftmost is the one on the extreme right hand edge. To suppress
this feature one uses KXGDBC. The sole argument is an array of integers, one for each
dimension in the user domain. A non-zero value indicates that this dimension is to be
considered periodic while a zero value causes KXGDNO to return a NONODE at the
boundary.

The last function in the KXGRID collection, KXGDSI, is used to distribute an array over the
user grid. The first argument is again a processor number and the second is an array
containing the global sizes of the array to be decomposed. After the call the third argument
will be an array containing the number of entries in each dimension of the array which lie
in the processor specified. The final argument will be an array containing the global index
that corresponds to an index of zero in the local array.

A final point to note is that these routines are very useful in conjunction with the low level
I/O primitives KMREAD, KMWRIT, KMRD2D and KMWT 2D which require arguments easily
calculated by the KXGRID functions.

EXAMPLE

As a simple example consider a problem involving two dimensional images to be executed
on eight processors. A suitable call to initialize the system might be

INTEGER NPROCS(2), TYPE PARAMETER (IHORIZ=0, IVERT=1)
DATA TYPE/33/

NPROCS (IHORIZ) = 4
NPROCS (IVERT) = 2

ISTAT = KXGDIN(2, NPROCS)
IF(ISTAT .LT. O0) THEN

179

KXGRID

STOP
ENDIF

The macros THORIZ and IVERT are defined for our convenience and just serve to label
the two axes in the grid. We assign four processors to the horizontal dimension and two to
the vertical. (A more flexible assignment scheme is easily devised using the KXPARA
system call to determine at runtime the number of processors available.)

Now consider a simple scrolling operation in which data is to be passed to the right. We
need to figure out the processor numbers of the appropriate nodes in order to communicate
in this direction. The simple thing to do in this case is to use KXGDNO to calculate the
appropriate values. However, one must first consider the boundary values; What should
happen when data is scrolled off the right hand edge of he display? The two options are to
have it appear on the left hand edge, or to disappear completely. We adopt the latter
approach which entails altering the default assumption of KXGDNO that boundaries are
periodic. The following code uses KXGDBC to override this default and KXGDNO to assign
suitable processor values for the four directions we will be interested in.

INTEGER PERBC (2)
INTEGER NDDATA (4)

Cc

CALL KXPARA (NDDATA)
C

PERBC(1) = 0

PERBC(2) = 0

CALL KXGDBC (PERBC)
C

UNODE = KXGDNO (NDDATA (1), IVERT, 1)

DNODE = KXGDNO (NDDATA (1), IVERT, -1)
LNODE = KXGDNO (NDDATA (1), IHORIZ, -1)
RNODE = KXGDNO (NDDATA (1), IHORIZ, 1)

Now all the “nodes” are valid. If a processor is on the extreme left edge of the domain and
it tries to communicate with a processor to its left then the value of LNODE has been
correctly assigned the value NONODE which will, in turn, direct the communication system
to omit communication with this non-existent processor. Note how simple it would be to
adopt the alternative strategy and have data scroll off the right edge and re-appear on the
left. We simply omit the call to KXGDBC (or else change the zero values to ones) and the
correct values would be returned.

To show the actual use of these processor numbers assume that we wish to “scroll” 512
bytes along to the right. In each processor the data is to be taken from an array OBUF and
the data coming in from the left is to be read into an array IBUF. The following call to
KXCHAN is all that is required

ISTAT = KXCHAN (IBUF, 512, LNODE, TYPE,

180

KXGRID

OBUF, 512, RNODE, TYPE)

Notice that at no point in these calculations did the topology of the hardware enter.
Everything is specified in the user domain - i.e., that of the image, and KXGRID does the
rest.

To demonstrate the use of the KXGDSI function assume that the image to be “scrolled” is
not 1024 bytes tall as was implicitly assumed in the previous code (We scrolled 512 bytes
left in each processor and there are two processors in the vertical direction for a total of
1024 bytes.) Instead we will make the strange choice of an image which is 767 bytes high,
and 1024 bytes wide. The KXGDSTI routine can then be used to tell us how many elements
are in each processor through the following code

INTEGER GLOBAL(2), SIZES(2), START(2)
Cc
C-- Decompose the array over the processor ring.
C
GLOBAL (IHORIZ) = 1024
GLOBAL (IVERT) = 767
ISTAT = KXGDSI (NDDATA(1l), GLOBAL, SIZES, START)

At the completion of this call the values SIZES (1) and SIZES (2) contain the sizes of
the subregions assigned to each processor. Further, the values START (1) and START (2)
contain the horizontal and vertical index of the first byte that is stored in this processor. In
the case described here every processor would have the value 256 for SIZES (1) since the
horizontal size is divided exactly by the number of processors in that direction. In the
vertical direction, however, the division does not work out correctly and so the processors
whose responsibility is the lower half of the display would have SIZES (2) = 384 while
those in the upper half would have 383. Similarly, the processors in the upper half have
START (2) = 0 while those in the lower half have START (2) = 384. The modified
call to KXCHAN which scrolls the data to the right is

ISTAT = KXCHAN (IBUF, SIZES(2), LNODE, TYPE,
OBUF, SIZES(2), RNODE, TYPE)

RETURN VALUE

If any error occurs in the KXGRID routines they return -1. Particular errors include failing
to call KXGDIN before using the other functions and a failure of KXGDIN to match the user
requested topology onto that of the hardware.

SEE ALSO
KXPARA, KMREAD, KMRD2D, KORDER

181

KXHAND

NAME

KXHAND - Asynchronous message handler.

SYNOPSIS

INTEGER FUNCTION KXHAND (FUNC, SRC, TYPE)
INTEGER FUNC, SRC, TYPE
EXTERNAL FUNC

DOMAIN

KXHAND may be called in the node processors only.

DESCRIPTION

This routine is used to initialize a “handler” for messages of certain types and sources. The
idea is that whenever a message arrives that matches the SRC and TYPE parameters the
user-supplied procedure FUNC is invoked to process the data. This process occurs
immediately upon receipt of the message with as little overhead as possible and can be used
to implement a totally asynchronous processing style in which messages can be handled
transparently without the intervention of the main application code.

The FUNC is invoked immediately a message has arrived in the internal node buffers with
the following arguments

FUNC (PTR, LENGTH, SRC, TYPE)
INTEGER PTR(*)
INTEGER LENGTH, SRC, TYPE

i.e., it looks just like a call to KXREAD. Note however, that the supplied PTR argument
actually points to a buffer within the Express kernel. If the application needs to keep the
message for later processing memory must be allocated and the buffer copied. Otherwise
the data becomes unavailable when the user function completes.

The SRC and TYPE fields reflect the actual source and type of the message being handled
in cases where “NOCARE” values were originally supplied to the KXHAND function.

The user supplied function must return an integer value to its caller. This value will
determine the future behavior of the system; a negative value will terminate the association
between the message source/type and the function while positive (and zero) values
maintain the status quo. In this way it is possible to have a message handler that is invoked
only once, several times until a particular message arrives, or permanently.

EXAMPLE

The following example shows how this function can be used to implement a global, “read

~only” memory. A handler is set up which intercepts all messages of type MEMRD and

responds by sending back a message containing the memory requested. Obviously one
could implement a writable shared memory in a similar manner although problems
concerning mutual exclusion would probably have to be addressed.

182

KXHAND

PROGRAM MYTEST

PARAMETER (MEMRD=10, MEMDAT=11)

EXTERNAL MEMHND

INTEGER MEMTYP, SRC
COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST, IALNOD, IALPRC

C-- Setup Express and initialize its common block.
CALL KXINIT
C-—- Allow anyone to send memory requests.

MEMTYP = MEMRD

SRC = NOCARE

ISTAT = KXHAND (MEMHND, SRC, MEMTYP)
CALL KXSYNC

* e o 0 o o

C-- This is the function that fields requests for memory.
C-- The first argument will point to an array containing
C-- the address and number of bytes to read.

C-- NOTE: we return 0 so that the handler continues to
C—- operate.

INTEGER FUNCTION MEMHND (REQ, LENGTH, SRC, TYPE)
INTEGER REQ(2)
INTEGER LENGTH, SRC, TYPE

C
INTEGER RTYPE
PARAMETER (MEMRD=10, MEMDAT=11)
DATA RTYPE /MEMDAT/
C
ISTAT = KXWRIT(REQ(1l), REQ(2), SRC, RTYPE)
MEMHND = 0
RETURN
END

Having set up this message handler we can access memory on another node by simply
sending a message of type MEMRD. Notice that the message handler sends back the data in
a message of a different type that it read. This is an important point - if the routine adopted
the simpler strategy of returning the same type message as it received then that message
would be trapped by the message handler on the original node and treated as a memory
request. In this way an infinite chain of requests would be generated!

The following routine reads LENGTH bytes of memory from processor NODE and stores it

183

KXHAND

in the specified BUFFER. The routine returns the number of bytes read.

INTEGER FUNCTION RDMEM (NODE, ADDR, LENGTH, BUFFER)
INTEGER NODE, ADDRESS, LENGTH, BUFFER (*)

C
PARAMETER (MEMRD=10, MEMDAT=11)
INTEGER REQ(2), STYPE, RTYPE
C
REQ(1) = ADDR
REQ (2) = NODE
Cc
STYPE = MEMRD
RTYPE = MEMDAT
C

ISTAT = KXWRIT(REQ, 8, NODE, STYPE)

RDMEM KXREAD (BUFFER, LENGTH, NODE, RTYPE)
RETURN

END

This function forms the basis of an extremely elegant multitasking system under Express
which is discussed in more detail in the accompanying manual, “Multitasking under
Express”.

DIAGNOSTICS

If the kernel is unable to install the message handler -1 is returned. Otherwise the return
value will be 0.

WARNING

The current implementation restricts the length of a message that can be sent to a handler
to the “packet size” as specified in the customization procedure, excustom.

SEE ALSO

KXREAD, KXRECV

184

KXINIT

o NAME

KXINIT - Start Express system.

SYNOPSIS

SUBROUTINE KXINIT

DOMAIN

Available to host and node programs.

DESCRIPTION

This routine MUST be the first Express routine called in both host and node programs. It
serves to initialize the internal state of Express and also to set up a common block
containing useful parameters for use by application codes.

The system common block has the name XPRESS and is defined as follows:

COMMON/XPRESS/NOCARE, NORDER, NONODE, THOST, IALNOD, IALPRC
INTEGER NOCARE, NORDER, NONODE, IHOST, IALNOD, IALPRC

The various variables in this block are as follows

NOCARE

NORDER
NONCDE
IHOST

IALNOD

IALPRC

EXAMPLE

Used to indicate that a message should be read from any node or that
its type is of no concern. Note that you should not attempt to send a
message to destination NOCARE or with type NOCARE.

Used by Cubix programs to indicate the default ordering of output
in “multi’-mode I/O.

Used by the KXGRID utilities to indicate that no processor lies in the
indicated position of the user topology.

Special “node” value used to send messages to or receive them from
the host processor which loaded the node program.

Used in KXBROD, KXCOMB, KXCONC etc. operations to indicate that
all nodes should be involved in a particular communication
operation.

Used in KXBROD to indicate that the host processor should be
included as a recipient of a broadcast message.

The following schematic code should be the general template of any host or node program

which uses Express.

PROGRAM MYTEST
INTEGER PGl
COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST, IALNOD, IALPRC

Cc

C—— Set up Express

185

KXINIT

C
CALL KXINIT
C
C—-- Start application code......
C
CALL KXCLOS (PG1)
STOP
END
SEE ALSO

KXOPEN, KXSHAR.

186

KXLOAD

NAME

KXLOAD - Load a program.

SYNOPSIS

INTEGER FUNCTION KXLOAD (PGIND, NDPROG)
INTEGER PGIND
CHARACTER*80 NDPROG

DOMAIN

KXLOAD may only be called in the host computer.

DESCRIPTION

KXLOAD loads the program NDPROG into a set of processors previously allocated with
KXOPEN. The PGIND argument is the processor group index retumned by the KXOPEN

call.

The KXLOAD function provides the simplest interface to allocating processors and loading
application programs. A single application code is loaded into all processors. The
alternative call KXPLOA is provided if different programs are to be loaded into different
Processors.

EXAMPLES

The following code loads a program (called MYPROG) into four processors.

C

PROGRAM EXPTST

INTEGER PGIND

COMMON/XPRESS/NOCARE, NORDER, NONODE, THOST, IALNOD, IALPRC
CHARACTER*80 DEVICE, PROG

PARAMETER (DEVICE='/dev/ncube’, PROG=’'myprog’)

C-- Set up Express and its common block.

C

C

CALL KXINIT

ISTAT = KXOPEN(DEVICE, 4, NOCARE)

IF(ISTAT .LT. 0) THEN
WRITE(6,*) ’'Failed to allocate processors’
STOP

ENDIF

ISTAT = KXLOAD (PGIND, PROG)

187

KXLOAD

DIAGNOSTICS

If any error occurs during loading -1 is returned. Possible sources of error are: an illegal
value of PGIND or the failure of the system to allocate a the correct number of processors.
Errors are also returned if a routine fails to find an appropriate executable to load or if a
communication error occurs during loading.

SEE ALSO
KXPLOA

188

KXOPEN

NAME
KXOPEN - Allocate a processor group.

SYNOPSIS

INTEGER FUNCTION KXOPEN (DEVICE, NODES, START)
CHARACTER*80 DEVICE
INTEGER NODES, START

DOMAIN

Only available to host programs.

DESCRIPTION

KXOPEN allocates a processor group containing NODES processors in the device pointed
to by the character string DEVICE.

The NODES argument indicates the number of nodes to be allocated and the last argument
optionally requests a specific set of nodes within the parallel machine. The default value
NOCARE allows any group of nodes to be selected.

The KXOPEN call must be used before attempting to access any processor group.

RETURN VALUE

The returned value is a processor group index which must be used in all further references
to the allocated processors. In cases where no processor group of the appropriate size is
available or some other hardware error occurs the value returned is -1.

EXAMPLES

The following code allocates a group of 4 processors anywhere in the parallel machine.

PROGRAM MYTEST

INTEGER PGIND
COMMON/XPRESS/NOCARE, NORDER, NONODE, THOST, IALNOD, IALPRC
CHARACTER*80 DEVICE

PARAMETER (DEVICE='’/dev/transputer’)

C
C—- Setup Express and its common block.
C
CALL KXINIT
C

PGIND = KXOPEN(DEVICE, 4, NOCARE)

IF (PGIND .LT. 0) THEN
WRITE(6,*) ’'Failed to allocate processors’
STOP

ENDIF

189

KXOPEN

If we wanted to allocate a particular set of processors in the machine then we could replace,
for example, the NOCARE argument in the KXOPEN call:

ISTAT = KXOPEN(’ /dev/transputer’, 4, 8)

which attempts to allocate nodes 8 thru 11. In this case it is even more important that the
value returned by KXOPEN be checked since there is a larger chance of failure.

WARNINGS

In current implementations the DEVICE parameter will be one of

/dev/transputer Transputer based devices

/dev/ncube NCUBE systems.
/dev/symult Symult $2010, 68000 based nodes
/dev/symfpa Symult $2010, Weitek VFPA nodes

Note that this list is not necessarily exhaustive. It is complete at the time of writing but may
be extended at future dates.

Some systems are unable to support the start node argument to this function.

SEE ALSO
KXSHAR, KXLOAD, KXREAD, KXTEST, KXTYPE, KXWRIT

190

KXPARA

NAME
KXPARA - Runtime parameters.

SYNOPSIS

SUBROUTINE KXPARA (NDDATA)
INTEGER NDDATA (*)

DOMAIN
KXPARA may be called in either the host or node processors.

DESCRIPTION

This routine is used when an application program requires to know the details of its runtime
environment. The information available and its correspondence to the array elements
returned is

NDDATA (1) Processor number of the calling node. Nodes are numbered
consecutively from (and including) 0.

NDDATA (2) Number of processors allocated in this processor group.

NDDATA (3) Specifies the processor group index containing this node.

NDDATA (4) Specifies the process identifier of the process making the call.
The last two pieces of information are currently unused.

The use of this information and the KXGRID utilities is the key to writing reconfigurable
applications since they allow the program to adapt to different processor configurations at
runtime.

EXAMPLE

Assume that we wish to use the KXGRID tools to map the parallel machine to a two
dimensional mesh of processors. The following code supplies the necessary parameters to
the KXGRID routines.

PROGRAM MYTEST
INTEGER NDDATA (4)
INTEGER NPROCS (2)

c
C-- Set up Express.
c
CALL KXINIT
C
C-- Get runtime parameters.
C
CALL KXPARA (NDDATA)
C

C-- Divide up processors in two dimensional mesh. Set up

191

KXPARA

C-- the KXGRID routine with this decomposition.
C
ISTAT KXGDSP (NDDATA (2), 2, NPROCS)
ISTAT KXGDIN (2, NPROCS)
IF(ISTAT .LT 0) THEN
STOP
ENDIF

Note that we use the KXGDSP function to divide up the processors between the physical
dimensions.

SEE ALSO
KXGRID

192

KXPAUS

NAME
KXPAUS - Arrange for programs to be loaded “stopped”.

SYNOPSIS
SUBROUTINE KXPAUS

DOMAIN
Only available to host programs.

DESCRIPTION

This routine is used to control the initial state of a program or programs being loaded into
groups of processors. By default node programs start immediately. If KXPAUS is used
before the appropriate KXLOAD call then the programs will halt at their first instruction
after loading. This is useful when using the debugger, ndb, since it allows the user to
control the entire course of execution by setting breakpoints etc.

EXAMPLE

Consider the case where debugging is occasionally required. The following code segment
illustrates the use of KXPAUS to load programs in a stopped state if the number of
processors entered is negative. Otherwise programs will be loaded in the (default) running

state.
PROGRAM MYTEST
INTEGER NNODES, PGIND
COMMON/XPRESS/NOCARE, NORDER, NONODE, THOST, IALNOD, IALPRC
CHARACTER*80 DEVICE, PRGNAM
PARAMETER (DEVICE='/dev/transputer’, PRGNAM='myprog’)
C
C--Set up Express and its common block.
C
CALL KXINIT
C

WRITE (6, *) ’‘How many nodes ? (Negative ==> stopped)’
READ (5, *) NNODES

IF (NNODES .LT. 0) THEN

NNODES = -NNODES
CALL KXPAUS
ENDIF

ISTAT = KXOPEN(DEVICE, NNODES, NOCARE)
IF(PGIND .LT. 0) THEN
WRITE(6,*) ’'Failed to allocate nodes’
STOP
ENDIF

193

KXPAUS

C
C-- Finally load application program into nodes.
C
ISTAT = KXLOAD (PGIND, PRGNAM)
SEE ALSO

KXOPEN, KXSHAR.

194

KXPCP

NAME
KXPCP, KXPELT - Dump execution profile data.

SYNOPSIS
SUBROUTINE KXPCP

SUBROUTINE KXPELT (FNAME)
CHARACTER*80 FNAME

DOMAIN

KXPCP may only be called in the host processor while KXPELT may only be called in the
nodes.

DESCRIPTION

These routines are used to dump the execution profile data collected with the KXPROF
functions. For each call to KXPELT on the nodes there must be a call to KXPCP in the host
processor. The profiling data will be written to a file on the host with the name FNAME
supplied in the node program.

In addition to dumping out the profile data KXPELT also turns off the profiler and resets its
internal state so that further invocations of the execution profiler will begin from the zero
state and hence be totally independent.

EXAMPLE .)
The following code is a skeleton of that which might typically be used to control the
execution profiler.

1. Host Program

PROGRAM HSTXPR
C
C—-- Start Express.
o

CALL KXINIT

C
C-- Allocate nodes, load programs.
C
C
C-- Execute algorithm
C
C
C-- Dump profiling data.
C

CALL KXPCP

195

KXPCP

C
STOP
END

2. Node Program

PROGRAM NODXPR

C
INTEGER PRFBUF (2048), PRFSCL
PARAMETER (PRFSCL = 8192)

c

C-- This is the name of a function found to live at the
C-- low end of memory. This information can usually be
C-- found in the "linker map".

c
EXTERNAL F_MAIN
C
C—-- Start off profiler.
C
CALL KPROFI(PRFBUF, 8192, F_MAIN, PRFSCL)
CALL KXPON
C
C-- Application code, profiler running.
C
C
C-- Program over, dump data and exit.
C
CALL KXPELT (' xprof.out’)
STOP
END
SEE ALSO

xtool (command), KPROFI, KXPROF, KXPEND

196

KXPEND

NAME
KXPINQ, KXPEND - Manipulate execution profiler under Cubix.

SYNOPSIS
INTEGER FUNCTION KXPINQ ()

SUBROUTINE KXPEND
DOMAIN

These routines may only be called from the nodes.

DESCRIPTION

These routines provide a simple control interface to the execution profiler for applications
running in the Cubix environment.

KXP INQ returns an integer value representing the state of the “~mx” runtime switch on the
cubix command line. This can be used to conveniently enable/disable the profiling
system at runtime. Consider a typical command

cubix -n 4 toyland 1024 1024 <noddy.dat

Since no “-m” switch is present a call to KXP INQ will return zero. If we modify the above
command to

cubix -mcxe -n 4 toyland 1024 1024 <noddy.dat

then the return value would be 1 since the character ‘x’ appears in the monitoring switch,
‘t_m’Q.

KXPEND is used to finally dump profiling data to the host computer file system. A file
called “xprof.out” is created for later analysis with the xt oo1 utility. In addition the
profiler is disabled and its initial state reset to zero. This allows distinct phases of an
application to be profiled totally independently.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
execution profiler.

PROGRAM XPRTST

C
INTEGER PRFBUF (2048), PRFSCL
C
C—— This wvalue is 0x2000 (hexadecimal)
C
PARAMETER (PRFSCL = 8192)
C

C—- This is the name of a function in the program, low
C-- in memory. A suitable candidate can usually be found

197

KXPEND

C-- by looking through the "linker map".

C
EXTERNAL F_MAIN
C
C-— Start up Express.
C
CALL KXINIT
C
C-- Start up profiler if user selected -mx option.
o
ISTAT = KXPINQ()
IF(ISTAT .NE. () THEN
CALL KPROFI(PRFBUF, 8192, F_MAIN, PRFSCL)
CALL KXPON
ENDIF
C
C——- Execute application code with profiler running.
C
c
C-- Program over, dump data and exit.
C
IF (ISTAT .NE. 0) THEN
CALL KXPEND
ENDIF
STOP
END
SEE ALSO

xtool (command), KPROFI, KXPCP, KXPROF

198

KXPLOA

NAME
KXPLOA - Load a program into individual nodes.

SYNOPSIS

INTEGER FUNCTION KXPLOA (PGIND, PROG, NODE)
INTEGER PGIND, NODE
CHARACTER*80 PROG

DOMAIN

This routine may only be called in the host processor.

DESCRIPTION

KXPLOA provides a complementary interface to the KXLOAD routine for loading programs
into groups of processors. Instead of loading the entire array with a single node program
this routine allows different applications to be loaded into individual nodes of the machine.

In each case a previous call to KXOPEN must have allocated a set of processors into which
we are attempting to load programs. The processor group index returned by this call must
be supplied to the KXPLOA functions as the argument PGIND.

Having allocated a group of nodes user applications are loaded with the KXPLOA primitive
which loads the named code into the processor specified by the NODE argument. The
special value TALNOD defined in the XPRESS common block specifies that all processors
are to be loaded with the same item.

Before execution of the node program can begin calls must be made to the KXMAIN
function.

EXAMPLES

The following calls allocate, load and start a program in four processors

PROGRAM MYTEST

INTEGER PGIND
COMMON/XPRESS/NOCARE, NORDER, NONODE, THOST, IALNOD, IALPRC
CHARACTER*80 DEVICE, PRGNAM

PARAMETER (DEVICE=’/dev/transputer’, PRGNAM='myprog’)

C
C-- Initialize Express and its common block.
C
CALL KXINIT
C

PGIND = KXOPEN (DEVICE, 4, NOCARE)
IF(PGIND .LT. 0) THEN
WRITE (6, *) ’'Failed to allocate nodes’
STOP
ENDIF

199

KXPLOA

ISTAT = KXPLOA(PGIND, PRGNAM, IALNOD)
CALL KXMAIN (PGIND, IALNOD)

Note that the particular arguments chosen here make this code functionally equivalent to a
call to KXLOAD.

In the following example we load the programs “progl” into nodes O through 3 and
“prog2” into nodes 4 through 15 of a sixteen processor group.

PROGRAM MYTEST

INTEGER PGIND
COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST, IALNCOD, IALPRC
CHARACTER*80 DEVICE, PROG1l, PROG2

PARAMETER (DEVICE='/dev/transputer’)

PARAMETER (PROGl='progl’, PROG2='prog2’)

C
C-- Initialize Express and its common block.
C
CALL KXINIT
C
PGIND = KXOPEN(DEVICE, 4, NOCARE)
IF (PGIND .LT. 0) THEN
WRITE (6, *) ’'Failed to allocate nodes’
STOP
ENDIF
C

DO 10 I=0, 3
ISTAT = KXPLOA (PGIND, PROG1l, I)
10 CONTINUE
DO 20 I=4,15
ISTAT = KXPLOA (PGIND, PROG2, I)
20 CONTINUE

CALL KXMAIN(PGIND, IALNOD)

DIAGNOSTICS

KXPLOA returns zero upon successful loading of the executable program. If the executable
file is not found, or is invalid in some way the value 1 is returned.

200

KXPLOA

o SEE ALSO
KXIL.OAD, KXSTAR, KXMAIN

201

KXPROF

NAME
KXPON, KXPOFF - Control execution profiler.

SYNOPSIS
SUBROUTINE KXPON

SUBROUTINE KXPOFF
DOMAIN

These routines may only be called from the nodes.
DESCRIPTION

KXPON is used to enable and start the execution profiler which must have been previously
initialized with a call to KPROFI. Subsequently a periodically scheduled event occurs
which causes the program counter of the user application to be “logged” in an internal
structure. KXPOFF reverses this process - until a subsequent call to KXPON no execution
profiling will be performed.

The profiler is initially off and must be explicitly enabled with calls to KPROFI and
KXPON.

The log of profiling information is written to the host file system with KXPCP or KXPEND.
EXAMPLE

The following code is a skeleton of that which might typically be used to control the
execution profiler.

PROGRAM XPTEST

o
INTEGER PRFBUF (2048), PRFSCL
C
C—= This value is 0x2000 (hexadecimal)
C
PARAMETER (PREFSCL = 8192)
(o

C-- This is the name of a function found to be in
C-- low memory by perusing the "linker map".

C
EXTERNAL F_MAIN
o
C-- Start Express.
C
CALL KXINIT
C
C~- Start off profiler.
c

202

KXPROF

CALL KPROFI (PRFBUF, 8192, F_MAIN, PRFSCL)

CALL KXPON
o
C-- Application code, profiler running.
c
C
C-—- Program finishes. Dump data and exit.....
Cc
STOP
END
SEE ALSO

xtool (command), KPROFI, KXPCP, KXPEND

203

KXREAD

NAME

KXREAD - Read a message

SYNOPSIS

INTEGER FUNCTION KXREAD (BUF, LENGTH, SRC, TYPE)
INTEGER LENGTH, SRC, TYPE
INTEGER BUF (*)

DOMAIN

KXREAD is available to both host and node programs with identical calling sequences.

DESCRIPTION

This call is used to read messages in the Express system. This routine provides the
simplest interface to the message system - a blocking read; the function only returns when
a suitable message has been read.

The accepted message is read into the buffer pointed to by the BUF argument and is
truncated to size LENGTH bytes if necessary. The source and type of the message to be read
can be specified by the arguments SRC and TYPE as described below.

This routine blocks until a message with suitable parameters has been received.

OPTIONS

Under Express messages have both destinations and types which are used by reading
processes to distinguish between various available messages. A message will only be read
if it matches, in both source and type, the parameters supplied in the read call. However,
several options are available to allow the user extra flexibility. Both source and type fields
are treated equivalently at this level so the following discussion applies equally to both.

SRC = NOCARE A message will be read from any node. The particular node will
be indicated by modifying the value SRC. The value NOCARE is
to be found in the XPRESS common block setup by the call to
KXINIT.

SRC

number Any positive numeric value will restrict attention to messages
with that particular source.

These same considerations apply to the type, TYPE, except that the interpretation of the
wildcard value, NOCARE, is subject to modification through the KXTYPE system calls.

The special value THOST is used by nodes wishing to send messages to the host processor.
(This value is also to be found in the XPRESS common block.)

RETURN VALUE

The value returned is the length of the received message, after any necessary truncation has
been performed. If some sort of hard error occurs then -1 is returned.

204

KXREAD

EXAMPLES

In the following examples we consider a case in which the following four messages have
arrived on our node in the order given.

1. Source 1 Type 12 Length 32
2. Source HOST Type 2 Length 512
3. Source 1 Type 15 Length 1024
4, Source 2 Type 0 Length 0

The simplest case is where both source and type are explicitly stated as in the call
ISTAT = KXREAD (BUFFER, 512, 1, 15)

In this case message three will be accepted for reading. Note, however, that the actual
message is longer than the request length so only the first 512 bytes will be read and the
rest discarded. The returned value, ISTAT will be 512.

The next example uses the wildcard value, NOCARE, to read a message but retain
information about its source.

INTEGER SOURCE
SOURCE = NOCARE
ISTAT = KXREAD (BUFFER, 512, SOURCE, 0)

In this case the type is explicitly given and so message 4 will be read. The returned value
will be 0, the length of the message read and the SOURCE variable will contain 2, the source
of the message.

In the last examplé a wildcard value is given for the type field.

SOURCE =1
TYPE = NOCARE
ISTAT = KXREAD (BUFFER, 512, SOURCE, TYPE)

In this case the source is given explicitly and the type allowed to take any value. With the
parameters shown message 1 will be read and the value 12 stored in the TYPE variable. 32
bytes will be copied into the user buffer and the same value returned as STAT. Note that
types are subject to extra processing through the KXTYPE commands. If we had
specifically excluded type 12 from consideration then message 3 would have been read
instead since it has the correct source and has not been excluded. If we had excluded both
types 12 and 15 then the call to KXREAD would block until a more suitable message arrived.

WARNINGS

Types are restricted to be positive integers less than 16384. Other message types are
reserved for use within the Express kernel.

One very common “bug” concerns the use of the NOCARE parameter when reading
messages. Consider a situation where one needs to loop over all processors reading a single
message from each, in any order. The following code is incorrect:

C-- Attempt to read from each node, in any order

205

KXREAD

C—- INCORRECT CODE
c
TYPE = 124
NODE = NOCARE
DO 10 I = 1, NPROCS
ISTAT = KXREAD (BUF, 128, NODE, TYPE)
10 CONTINUE

The error in this code lies in the fact that the receipt of the first message in the loop
overwrites the value of the NODE variable. As a result the second call to KXREAD attempts
to read from the same node that responded in the first cycle rather than any node as was
desired. The simple solution to the problem is to move the assignment NODE = NOCARE
variable inside the loop.

SEE ALSO

KXOPEN, KXSHAR, KXTEST, KXWRIT, KXTYPE, KXGRID.

206

KXRECV

NAME
KXRECV - Non-blocking read function.

SYNOPSIS

INTEGER FUNCTION

KXRECV (BUFFER, LENGTH, SRC, TYPE, STATUS)
INTEGER LENGTH, SRC, TYPE, STATUS
INTEGER BUFFER(*)

DOMAIN
KXRECV may be called in only the node processors.
DESCRIPTION

This function provides a non-blocking read function for Express messages. It is intended
for use in applications such as “double-buffering” in which one wishes to process some data
while waiting for another message to arrive.

When called it looks for a message in the buffers that match the supplied SRC and TYPE
parameters. If such a message exists it is read as though by a normal call to KXREAD and
the STATUS value will contain the message length.

If no message exists which matches the requested parameters the value -1 is written under
the STATUS flag and the function immediately returns to its caller. When a message of the
correct type and source subsequently arrives it will be read into memory at the address
BUFFER and the length will be written under the STATUS variable replacing the -1. The
SRC and TYPE variables will also be updated at that time to reflect the newly read message.

The interpretation of the first four arguments is exactly as in the corresponding call to
KXREAD. The last argument, STATUS, is a mechanism by which one can poll for the arrival
of the requested message; while negative, no message has been received.

EXAMPLE

The following example is a sketch of a typical “double-buffered” application. We assume
that processor SOURCE is sending messages of type PROCES which must be passed to the
function GRIND for processing. When all messages for such treatment have been received
a message of type DONE will be sent. We assume that each of the PROCES messages will
be of no more than 1024 bytes.

SUBROUTINE DOGRIN (NODE)
INTEGER NODE

INTEGER PROCES, DONE
PARAMETER (PROCES=10, DONE=11)

INTEGER BUFFER(1024,2)
INTEGER STOP, TYPE, THIS, NEXT

207

KXRECYV

INTEGER STAT (2)

C
COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST, IALNOD, IALPRC
STOP = 0
THIS =1
NEXT = 2
cC

C~-- Get first buffer, blocking read this time. We assume
C-- that someone else called KXINIT to set up the XPRESS
C—- common block.
C

TYPE = NOCARE

STAT (THIS) = KXREAD (BUFFER(1,THIS), 1024, NODE, TYPE)

STOP = 0
20 CONTINUE

IF(TYPE .NE. DONE) THEN
TYPE = NOCARE
ISTAT = KXRECV(BUFFER(1,NEXT), 1024, NODE, TYPE,
$ STAT (NEXT))
ELSE
STOP =1
ENDIF

CALL GRIND(BUFFER(1l,THIS), STAT(THIS))
C
C—— If we’ve not finished then now is the time to poll for
C-- the next buffer to arrive.
o
IF (STOP .EQ. 0) THEN
30 CONTINUE
IF (STAT (NEXT) .LT. 0) GOTO 30
NEXT = MOD (NEXT, 2) + 1
THIS = MOD(THIS, 2) + 1
ENDIF

IF (STOP .EQ. 0) GOTO 20
RETURN
END

There are several points to note in this code. We assume that we must process the buffer
with the DONE type - this saves us a message since we can send valid data and still use the
type field to convey the important information. We also save the length of the message we
are going to process in the STAT variable - this could be important in the GRIND function.

208

KXRECV

Note that it would be dangerous to use a single variable here since it would get overwritten

whenever the second buffer arrived - possibly before the call to GRIND had been passed
the value. Finally note that we have to keep setting TYPE = NOCARE since its value is
overwritten whenever a message comes. Failing to do this is quite a common error and
would result in the failure to read the DONE message.

RETURN VALUE

This function returns zero unless insufficient memory is available to register the read
function. In this case -1 is returned.

SEE ALSO
KXREAD, KXHAND

209

KXSEM

NAME

KXSEM - Various semaphore operations.

SYNOPSIS

INTEGER FUNCTION KXSEMI (SEMPTR)
INTEGER SEMPTR(2)

SUBROUTINE KXSEMW (SEMPTR)
INTEGER SEMPTR(2)

SUBROUTINE KXSEMS (SEMPTR)
INTEGER SEMPTR(2)

DOMAIN

This routine may only be called in node programs.

DESCRIPTION

These routines implement a semaphore mechanism essential to protect critical sections of
code in a multitasking environment.

KXSEMI initializes a new semaphore in the array SEMPTR and sets it so that the first call
to KXSEMW will not block. If the initialization attempt fails -1 will be returned, otherwise
the result will be 0.

Each call to KXSEMW checks the status of the associated semaphore. If locked the calling
task sleeps until another process unlocks the semaphore. While sleeping no CPU time is
expended allowing other tasks to proceed.

The KXSEMS call unlocks the indicated semaphore allowing other processes to enter a
critical section of code.

EXAMPLE

The following code could be used to implement a global shared memory system for a
distributed memory machine. We will assume that the data being accessed is such that only
one process can be allowed access at any one time. This would be the case where, say,
extended records are being written to memory in which case the integrity of any particular
record is crucial. We would not, for example, allow two processes to both write records
simultaneously since they may each write half leaving inconsistent data.

To implement these ideas we need to register a message handler which will field the read/
write requests. For simplicity we will use only one handler for both purposes and let the
data sent indicate the requested operation. We will encode the various requests in a 3
element integer array with the elements identified as follows:

ARRAY (1) A code value which is either MEMRD for read requests or MEMWT
for writes.

210

KXSEM

ARRAY (2) A memory address for the read/write operation.
ARRAY (3) A number of bytes to be read or written.

The necessary message handler is as follows

INTEGER FUNCTION MEMHND (PTR, LENGTH, SRC, TYPE)
INTEGER PTR(3), LENGTH, SRC, TYPE
INTEGER RTYPE

COMMON/MEMORY /MEMRD, MEMWT , MEMACC , MEMRSP , MEMDAT , MEMSEM
INTEGER MEMSEM(2)

Block other users from entering this section of code
while we’re doing things.

CALL KXSEMW (MEMSEM)
Check: is this a read request ?
IF(PTR(l) .EQ. MEMRD) THEN
RTYPE = MEMRSP

ISTAT KXWRIT (PTR(2), PTR(3), SRC, RTYPE)
ENDIF

Is it a write request ?

IF (PTR(1) .EQ. MEMWT) THEN

RTYPE = MEMDAT

ISTAT KXREAD (PTR(2), PTR(3), SRC, RTYPE)
ENDIF

Release the semaphore.
CALL KXSEMS (MEMSEM)
MEMHND = 0

RETURN
END

We have assumed in the above code that the call to KXHAND which sets up this handler
is made elsewhere. Similarly the MEMSEM semaphore should be allocated before any use
will be made of this routine.

To use these routines it is merely necessary to add the following calls.

211

KXSEM

C
C—-- Function to read global memory using the message handler
C-- installed above.

c
INTEGER FUNCTION RDMEM (BUFFER, LENGTH, NODE, ADDR)
INTEGER BUFFER(*), LENGTH, NODE, ADDR
c
INTEGER MSG (3)
INTEGER TYPE, RTYPE
C
COMMON/MEMORY /MEMRD , MEMWT , MEMACC, MEMRSP , MEMDAT , MEMSEM
INTEGER MEMSEM (2)
C
TYPE = MEMACC
RTYPE = MEMRSP
c
C—- Build array to make memory request.
c
MSG (1) = MEMRD
MSG(2) = ADDR
MSG(3) = LENGTH
c
ISTAT = KXWRIT (MSG, 3*4, NODE, TYPE)
RDMEM = KXREAD (BUFFER, LENGTH, NODE, RTYPE)
RETURN
END
c

C-- Function to write global memory using the message
C-- handler installed above.

o
INTEGER FUNCTION WTMEM (BUFFER, LENGTH, NODE, ADDR)
INTEGER BUFFER(*), LENGTH, NODE, ADDR
C
INTEGER MSG(3)
INTEGER TYPE, RTYPE
C
COMMON /MEMORY/MEMRD, MEMWT , MEMACC, MEMRSP, MEMDAT , MEMSEM
INTEGER MEMSEM (2)
C
TYPE = MEMACC
RTYPE = MEMRSP
C
C~-— Build array to make memory request.
C

MSG(1l) = MEMWT

212

KXSEM

MSG (2) = ADDR
MSG (3) LENGTH

]

ISTAT = KXWRIT(MSG, 3*4, NODE, TYPE)

RDMEM = KXWRIT (BUFFER, LENGTH, NODE, RTYPE)
RETURN

END

Notice that several potential improvements could be made to this code. In particular we
could speed up the writing process by sending short amounts of data in the same message
as invokes the MEMHND handler. (KXHAND can only deal with messages up to the system
packet size so any extra could be sent in a second message.) A further bottleneck is due to
the fact that we have a single semaphore protecting a large memory space on each node. It
might be more practical to have separate semaphores protecting disjoint areas of memory
so that fewer processes would have to “sleep”.

SEE ALSO
KXSLEE, KXHAND

213

KXSEND

NAME

KXSEND - Non-blocking write function.

SYNOPSIS

INTEGER FUNCTION KXSEND (BUFFER, LENGTH, SRC, TYPE, STATUS)
INTEGER BUFFER(*), LENGTH, SRC, TYPE, STATUS

DOMAIN

KXSEND may be called in only the node processors.

DESCRIPTION

This function provides a non-blocking write function for Express messages. It is intended
for use in applications such as “double-buffering” in which one wishes to process some data
while waiting for another message to arrive or be sent.

This routine provides a mechanism by which a node can transmit a message and then carry
on processing regardless of whether or not the message has actually been sent. Upon return
from the kernel the STATUS variable is set to -1. When the message is finally processed
this value will be changed to the number of bytes sent. Until this has happened the user
should (probably) not alter the data in the message since it is unknown which bytes have
been transmitted to the receiving node and which have yet to be sent.

The interpretation of the first four arguments is exactly as in the corresponding call to
KXWRIT The last argument, STATUS, is a mechanism by which one can poll for the final
dispatch of the requested message; while negative, the message has still to be sent.

EXAMPLE

The following example is a sketch of a typical “double-buffered” application. We assume
that processor SOURCE is sending messages of type PROCES which must be passed to the
function GRIND for processing. When all messages for such treatment have been received
a message of type DONE will be sent. We assume that each of the PROCES messages will
be of no more than 1024 bytes.

SUBROUTINE DOGRIN (SRC,DEST)
INTEGER DEST, SRC

INTEGER PROCES, DONE
PARAMETER (PROCES=10, DONE=11)

INTEGER BUFFER(1024, 3)
INTEGER STOP, THIS, LAST, NEXT
INTEGER STAT(3), TYPE(3)

COMMON/XPRESS/NOCARE, NORDER, NONODE, THOST, IALNOD, IALPRC
STOP = 0
LAST = -1

214

KXSEND

THIS = 1

NEXT = 2
C
C-- Get first buffer, blocking read this time. We assume
C—-- that someone else called KXINIT to set up the XPRESS
C-- common block.

C
TYPE (THIS) = NOCARE
STAT (THIS) = KXREAD (BUFFER(1,THIS), 1024,
$ SRC, TYPE (THIS))
STOP = 0

20 CONTINUE

IF (TYPE (THIS) .NE. DONE) THEN
TYPE (NEXT) = NOCARE
IF(LAST .GE. 0 THEN

80 CONTINUE
IF (STAT (LAST) .LT. 0) GOTO 80

ENDIF

ISTAT = KXRECV (BUFFER(1,NEXT), 1024, SRC, TYPE (NEXT),
$ STAT (NEXT))
ELSE

STOpP =1
ENDIF

CALL GRIND(BUFFER(1,THIS), STAT(THIS))
ISTAT = KXSEND (BUFFER(1l,THIS),STAT (THIS),
$ DEST, TYPE (THIS), STAT (THIS))
C
C-- If we’ve not finished then now is the time to poll for
C-- the next buffer to arrive.
C
IF(STOP .EQ. 0) THEN
30 CONTINUE
IF (STAT (NEXT) .LT. 0) GOTO 30
LAST MOD (LAST, 3) + 1
NEXT MOD (NEXT, 3) + 1
THIS = MOD(THIS, 3) + 1
ENDIF

IF (STOP .EQ. 0) GOTO 20
RETURN
END

215

KXSEND

There are several points to note in this code. We assume that we must process the buffer
with the DONE type - this saves us a message since we can send valid data and still use the
type field to convey the important information. We also save the length of the message we
are going to process in the STAT variable - this could be important in the GRIND function.
Note that it would be dangerous to use a single variable here since it would get overwritten

whenever the second buffer arrived - possibly before the call to GRIND had been passed
the value. Finally note that we have to keep setting TYPE = NOCARE since its value is
overwritten whenever a message comes. Failing to do this is quite a common error and
would result in the failure to read the DONE message.

RETURN VALUE

This function returns zero unless insufficient memory is available to register the write
function. In this case -1 is returned.

SEE ALSO

KXWRIT, KXHAND, KXRECV

216

KXSHAR

NAME

KXSHAR - Share a processor group with another process

SYNOPSIS

INTEGER FUNCTICN KXSHAR(DEVICE, PID, NODES)
CHARACTER*80 DEVICE
INTEGER PID, NODES

INTEGER FUNCTION KXPID (UNIXID)
INTEGER UNIXID

DOMAIN

Host processor only.

DESCRIPTION

The KXSHAR routine allows two or more host processes to share access to the same
processor group. The first argument, DEVICE, specifies which array contains the processor
group to be shared and is interpreted exactly as in the KXOPEN call. The process ID of the
process with which the processor group is to be shared must be specified by PID. Upon
return the number of nodes in the shared processor group is written under the value NODES.

The most reliable source of information about process ID’s is provided by the KXOPEN
system call which reports the appropriate value. Similar information is often available from
the exstat command. On UNIX machines the function KXPID is available whose
argument is the UNIX process ID. The returned value is the Express process 1.D, suitable
for giving to the KXSHAR function.

RETURN VALUE

The value returned by KXSHAR is the processor group index which must be used in future
references to the shared processors.

If the indicated process has terminated or is not using any processors itself the value -1 is
returned.

EXAMPLE

The following code would be used if a second process wished to share the processor group
currently assigned to the process with process-ID 349.

PROGRAM MYTEST
INTEGER NNODES, MSGTYP, MSGSRC, PGIND
COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST, IALNOD, TALPRC
CHARACTER*80 DEVICE
PARAMETER (DEVICE=’/dev/transputer’)

C

C-- Set up Express and its common block.

217

KXSHAR

WARNINGS

Communicating with shared groups of nodes is complicated by interactions between source
and type fields specified using the NOCARE wildcard. This situation can be eased somewhat
through the KXTYPE mechanisms which restrict the ranges indicated by wildcard values.

SEE ALSO

o

CALL KXINIT

PGIND = KXSHAR(DEVICE, KXPID(349), NNODES)
IF (PGIND .LT. 0) THEN
WRITE(6,*) ’'Failed to share, job may have ended’
STOP
ELSE
WRITE(6,*) ’'Sharing ’, NNODES, ' processors’
ENDIF

C—— Successfully shared nodes, restrict wildcard message
C-- types and start reading.

C

c

CALL KXINCT (123, 125)

MSGTYP = NOCARE
MSGSRC = NOCARE
ISTAT = KXREAD (BUFFER, 512, MSGSRC, MSGTYP)

Note that having successfully shared the nodes with process 349 we use the KXTYPE
functions to restrict attention to the message types from 123 to 125. This allows us the
freedom to use the wildcard NOCARE values in reading without clashing with the process

whose nodes we are sharing.

KXOPEN, KXTYPE

218

KXSLEE

NAME
KXSLEE - Pause process.

SYNOPSIS

SUBROUTINE KXSLEE (MSECS)
INTEGER MSECS

DOMAIN
This routine may only be called in node programs

DESCRIPTION

This routine is used when a process needs to wait for an event without using CPU resources.
The supplied argument is the minimum time to wait in microseconds. This routine should
be used in multitasking applications where one task needs to wait for an event which will
potentially be generated by another task on this node.

EXAMPLE

The following code makes use of the KXSLEE function to implement a global semaphore
- i.e., a semaphore that can be used from any node. For definiteness we assume that the
physical semaphore is located on node 0. In this node we should register the following
function with a call to KXHAND.

INTEGER FUNCTION SEMHND (MSG, LENGTH, NODE, TYPE)
INTER MSG, LENGTH, NODE, TYPE

C
COMMON /SEMDAT/WAIT, SIGNAL, OPEN,CLOSED, SEMREQ, SEMRSP
INTEGER WAIT, SIGNAL, OPEN,CLOSED, SEMREQ, SEMRSP
COMMON /SEMSYS/ GBLSEM, GBLFLG
INTEGER GBLSEM(2), GBLFLG
C
INTEGER RESP, RTYPE
C
RTYPE = SEMRSP
o

C-- There are two types of requests which basically
C-- correspond to the KXSEMW and KXSEMS calls on local
C-- semaphores.
C
IF (MSG .EQ. WAIT) THEN
CALL KXSEMW (GBLSEM)
IF (GBLFLG .EQ. OPEN) THEN
GBLFLG = CLOSED
RESP = QOPEN
ELSE

219

KXSLEE

RESP = CLOSED
ENDIF
CALL KXSEMS (GBLSEM)
ISTAT = KXWRIT(RESP, 4, NODE, RTYPE)
ENDIF

IF (MSG .EQ. SIGNAL) THEN
CALL KXSEMW (GBLSEM)
GBLFLG = OPEN
CALL KXSEMS (GBLSEM)

ENDIF '

SEMHND = 1
RETURN
END

Note that we implement the global semaphore with a simple variable, GBLFLG to which
access is restricted with the local semaphore, GBLSEM. If the semaphore is “locked” a
message is sent back to the requesting node indicating that it should sleep. The code which
implements the “signal” and “wait” requests for this global semaphore is shown below. For
simplicity we do not show the code which initializes the local semaphores or sets up the

message handler.

SUBROUTINE GBLSIG

INTEGER MSG, DEST, TYPE
COMMON /SEMDAT/WAIT, SIGNAL, OPEN, CLOSED, SEMREQ, SEMRSP
INTEGER WAIT, SIGNAL, OPEN, CLOSED, SEMREQ, SEMRSP

MSG = SIGNAL

DEST = 0

TYPE = SEMREQ

ISTAT = KXWRIT(MSG, 4, DEST, TYPE)
RETURN

END

SUBROUTINE GBLWAT

INTEGER MSG, DEST, TYPE, RTYPE, STATUS
COMMON /SEMDAT/WAIT, SIGNAL, OPEN, CLOSED, SEMREQ, SEMRSP
INTEGER WAIT, SIGNAL,OPEN,CLOSED, SEMREQ, SEMRSP

MSG = WAIT
DEST = 0
TYPE = SEMREQ

220

KXSLEE

10

RTYPE = SEMRSP
STATUS = CLOSED

ISTAT = KXWRIT (MSG, 4, DEST, TYPE)
ISTAT = KXREAD (STATUS, 4, DEST, RTYPE)
IF (STATUS .EQ. CLOSED) THEN

CALL KXSLEE (10)

GOTO 10
ENDIF
RETURN
END

»

The important point to note in this code is the call to KXSLEE in the last routine. This
allows other processes on a node to proceed even though the calling process is blocked
waiting for the global semaphore.

SEE ALSO

KXSEM, KXHAND

221

KXST

NAM

SYN!(

DON

DES(

EXA

XXSTAR - Start execution of program

SIS

SUBROUTINE KXSTAR (PGIND, NODE)
INTEGER PGIND, NODE
SUBROUTINE KXMAIN (PGIND, NODE)
INTEGER PGIND, NODE

IN

Available to host processes only.

JIPTION

These routines begin execution of a program previously loaded into a node with the
XXPLOA system call. Programs loaded with KXLOAD do not need to use these calls.

The special value NODE = IALNOD may be specified to perform the action on all allocated
10des. This value is defined in the XPRESS common block set up by the call to KXINIT.

PLE

The following example shows the correct use of KXSTAR and KXMAIN to begin execution
of a job successfully loaded into the nodes.

PROGRAM MYTEST

INTEGER PGIND
COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST, IALNOD, IALPRC
CHARACTER*80 DEVICE, PRGNAM

PARAMETER (DEVICE=’/dev/ncube’, PRGNAM='noddy’)

-—- Set up Express and its common block.

(2 (2 L2

CALL KXINIT

{2

PGIND = KXOPEN (DEVICE, 4, NOCARE)

IF(PGIND .LT. 0) THEN
WRITE(6,*) ‘Failed to allocate processors’
STOP

ENDIF

—-- Load program into processor group using index returned.

[I UV A O |

ISTAT = KXPLOA(PGIND, PRGNAM, IALNOD)
IF(ISTAT .LT. 0) THEN
WRITE (6,*) ’'Failed to load application’

222

KXSTAR

STOP
ENDIF
C
C-- Start application running.
C

CALL KXSTAR(PGIND, IALNOD)
CALL KXMAIN(PGIND, IALNOD)

Note that these calls can be used to explicitly control when a process begins executing. It
may be important, for example, that certain actions be performed on the host before
execution begins. In this case the “start” calls can be deferred until an appropriate time.

SEE ALSO
KXLOAD, KXPLOA, KXOPEN, KXPAUS

223

KXSWAP

NAME

KXSWAB, KXSWAW, KXSWAD - Byte swapping routines

SYNOPSIS

SUBROUTINE KXSWAB(FROM, TO, NBYTES)
INTEGER*2 FROM(*), TO(*)
INTEGER NBYTES

SUBROUTINE KXSWAW(FROM, TO, NBYTES)
INTEGER*4 FROM(*), TO(*)
INTEGER NBYTES

SUBROUTINE KXSWAD (FROM, TO, NBYTES)
REAL*8 FROM(*), TO(*)
INTEGER NBYTES

DOMAIN

These routines may be called in any Express program.

DESCRIPTION

An unfortunate problem with many parallel processing systems is that the host machines
and node processors have different CPU types. It is often then the case that the binary
representation of various data types is different. Typical examples are Sun workstations
hosting transputer or NCUBE systems. The former has a Motorola CPU with the most
significant byte of a word having the lowest memory address while the node processors
store the least significant byte first.

To aid with these problems Express provides a set of byte swapping primitives for
transforming data between “big” and “little” endian machines. Each routine has a pair of
pointer arguments which denote the buffers from which data should be taken and into
which it should be placed after swapping. These two pointers may be the same. The last
argument, in each case, is the number of bytes in the buffer to be swapped. This should be
a multiple of the size of each item being swapped.

The three routines each serve a different swapping style as follows:
KXSWAB Swaps adjacent bytes in 2-byte quantities

KXSWAW Reverses the bytes in 4-byte quantities - i.e., the original order
{0,1,2,3} becomes {3,2,1,0}.

KXSWAD Reverses the bytes in 8-byte quantities - the original order
{0,1,2,3,4,5,6,7} becomes {7,6,5,4,3,2,1,0}.

Note that these routines are sufficient to transform data items between Motorola byte
ordered machines (Sun workstations, etc.) and INTEL byte ordered machines (NCUBE,
transputers, etc.)

224

KXSWAP

EXAMPLE

When necessary, byte swapping typically occurs in one of two places depending on the
programming model in use.

In “Host-node” programs it is typical to have to swap all data items that are transmitted to
or received from the nodes. The issue of which processor should perform the byte swapping
is one of pure convenience - either the host or the nodes can swap the bytes. Often this
decision is made according to who has to further use the data being swapped - the following
code fragment represents a typical bug

C
C-- Byte swapping in a "host-node" program - INCORRECT
C
SUBROUTINE ITERAT (NTIMES)
INTEGER*4 NTIMES
INTEGER I, TYPE
COMMON/XPRESS/NOCARE, NORDER, NONODE, ITHOST, IALNOD, IALPRC
TYPE = 123
CALL KXSWAW(NTIMES, NTIMES, 4)
ISTAT = KXBROD (NTIMES, IHOST, 4, IALNOD, 0, TYPE)
C
C--~ This is a BUG ntimes just had its bytes swapped!
c .

DO 10 I=1,NTIMES

10 CONTINUE

This code shows some typical features in a byte-swapping environment. The “bug” in the
above code is that the host program swaps the bytes in the NTIMES value and sends it to
the nodes (correct) but then attempts to use the value in the following loop - without
swapping the bytes back. As a result the loop will probably run for an extremely long time!

Among several possible “fixes” are:

+ Adding another call to KXSWAW after the call to KXBROD to restore the NTIMES
variable to its proper state.

e Making a temporary variable, swapping NTIMES into it and sending the
temporary value to the nodes.

« Having the nodes do the byte swapping in this case.

Cubix programs should only have byte swapping problems when performing binary I/O.
Regular text files should pose no problems since the internal protocols take care of all
appropriate byte swapping. Arguments to system calls that will be sent to another host are
also byte swapped automatically. For binary files, however, the problem remains and the
only viable solution seems to be the insertion of many calls to the appropriate swapping

225

KXSWAP

routine.

SEE ALSO
KMREAD, KMRD2D, KMWRIT.

226

KXSYNC

NAME
KXSYNC - Synchronization primitive

SYNOPSIS
SUBROUTINE KXSYNC

DOMAIN
KXSYNC may only be called from the nodes.

DESCRIPTION

This routine is used to implement synchronization points in applications. It is guaranteed
that no processor will proceed past the call to KXSYNC until all are ready to do so.
Furthermore the processors emerge from the KXSYNC calls on their respective nodes as
synchronized as can be arranged.

A call to KXSYNC in one processor must be complemented by a call to KXSYNC in all other
Processors.

EXAMPLE

In the following code we assume that it is important that all processors be synchronized
between two phases of an algorithm.

C .
C-- PHASE 1. of application
C

C-- Before beginning second phase make sure all processors
C-- in sync.

C
CALL KXSYNC
C
C-- PHASE 2. of application - all processors synchronized.
c

Another good place for this function is after installing message handlers with the KXHAND
system call. Synchronizing all processors is a good idea since it prevents any one processor
sending a message to another which has yet to install its signal handler.

SEE ALSO
KXCHAN

227

KXTEST

NAME

KXTEST - Test for an incoming message, non-blocking

SYNOPSIS

INTEGER FUNCTION KXTEST(SRC, TYPE)
INTEGER SRC, TYPE

DOMAIN

KXTEST is available to both host and node programs. The calling sequence is identical in
both cases.

DESCRIPTION

This function looks for an incoming message in a non-blocking fashion. It is intended for
use in implementing strategies which require non-blocking read capabilities. The
arguments SRC and TYPE are interpreted just as in the KXREAD call with the same
wildcard interpretations.

The useful feature of the “test” function is that it returns immediately indicating by the
return value whether or not a message currently exists which matches the supplied
parameters. If no such message is found -1 is returned. Otherwise the return value is the
length of the matching message.

EXAMPLES

In the following examples we consider a case in which the following four messages have
arrived on our node in the order given.

1. Source 1 Type 12 Length 32
2. Source HOST Type 2 Length 512
3. Source 1 Type 15 Length 1024
4. Source 2 Type O Length 0
The simplest case is where both source and type are explicitly stated as in the call
SOURCE = 1
TYPE = 15

ISTAT = KXTEST (SOURCE, TYPE)

In this case message three will be accepted. ‘The returned value, ISTAT will be 1024, the
length of the acceptable message.

The next example uses the wildcard value, NOCARE, to look for any message but retain
information about its source. (This value is defined in the XPRESS common block set up
by the call to KXINIT.

SOURCE = NOCARE
TYPE 0
ISTAT = KXTEST (SOURCE, TYPE)

In this case the type is explicitly given and so message 4 will be matched. The returned

228

KXTEST

va

In

In

pa
Ti

3
s

el
€X
-1

RETUR?

Tt
wi

SEE ALS
K>

s will be 0, the length of the message and the SOURCE variable will contain 2, the
ce of the message.

e last example a wildcard value is given for the type field.

SOURCE =1
TYPE = NOCARE
ISTAT = KXTEST (SOURCE, TYPE)

is case the source is given explicitly and the type allowed to take any value. With the
meters shown message 1 will be accepted and the value 12 stored in the TYPE variable.
value 32 will be returned. Note that types are subject to extra processing through the
YPE commands. If we had specifically excluded type 12 from consideration then
sage 3 would have been used instead since it has the correct source and has not been
1ded. If we had excluded both types 12 and 15 then the call to KXTEST would return
indicate that no suitable message had yet arrived.

/ALUE

return value is the length of the matching message or -1 if no message can be found
‘h fits the indicated parameters.

PEN, KXREAD, KXTYPE

229

KXTIME

NAME
KXTIME, KXTICK - Time measurement

SYNOPSIS
INTEGER*4 FUNCTION KXTIME ()

INTEGER FUNCTION KXTICK ()
DOMAIN

These functions are available to all node programs.
DESCRIPTION

KXTIME returns the number of microseconds since a fixed reference point.
KXTICK returns the number of hardware clock ticks since a fixed reference point.

Both routines are intended to be used for timing measurements. KXTIME provides
measurements in convenient units but suffers from the fact that its accuracy may depend on
some “unknown” constant such as the hardware’s clock speed. It may further require
significantly longer than KXT ICK to return a result since one or more arithmetic operations
will normally be required to convert the machine clock ticks to microseconds.

Note that the availability of a routine which returns time in microseconds should not be
taken to imply the existence of hardware with this resolution. In most cases the hardware
timers will have intervals of many microseconds.

KXTYPE

NAME

KXINCT, KXEXCT - Include or exclude certain
message types in interpreting wildcards.

SYNOPSIS

SUBROUTINE KXINCT (LOTYPE, HITYPE)
INTEGER LOTYPE, HITYPE

SUBROUTINE KXEXCT (LOTYPE, HITYPE)
INTEGER LOTYPE, HITYPE

DOMAIN
KXINCT and KXEXCT are available in both host and node processors.

DESCRIPTION

These routines are used to modify the behavior of the “NOCARE” wildcard value used in
the TYPE field of the calls KXREAD, KXTEST, etc. In particular the user can specify that
certain types be excluded or included among those that match the “any type” condition.

KXEXCT specifies a low and high type value defining an (inclusive) range of types which
should not be considered when processing the wildcard value. All the other types will
remain acceptable.

KXINCT specifies the low and high end of an (inclusive) range of types which can be
accepted by the program. All other types of messages will be excluded.

These routines are of most use when two or more processes share the same processor group
with the KXSHAR call or when message handlers are being used (¢f. KXHAND). In this case
the use of wildcards is dangerous, without previously calling these routines, since
otherwise the recipient of any given message is unpredictable. Using these routines it is
possible to allow one process access to only a restricted range of types while the other
process can safely use all the other types and BOTH may still be permitted the use of
wildcards.

EXAMPLES
In the following code we limit attention to types in the range 123 thru 125.

PROGRAM MYTEST
INTEGER MSGSRC, MSGTYP
COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST, IALNOD, IALPRC

C
C-- Initialize Express and its common block.
C
CALL KXINIT
C

C-- Code to allocate nodes and load programs.

231

KXTYPE

C
C
C-- Restrict attention to only a small range of message
C-- types.
c
CALL KXINCT(123,125)
C

C-- Read with wildcard values, restricted to range [123,125]
o4

MSGSRC = NOCARE

MSGTYP = NOCARE

ISTAT = KXREAD (BUFFER, 128, MSGSRC, MSGTYP)

After including only the specific types the wildcard values may be used freely but with their
meanings restricted to a smaller range. In the above example the call to KXREAD will only
ever read messages whose types lie in the range 123-125.

As mentioned above this technique is most useful when two or more processes wish to
share access to a particular set of nodes. If the above call had been made in one process then
the other one might wish to make a call such as

CALL KXEXCT (99, 125)

in which we explicitly delete the message type range 99-125 from consideration. (This
would be useful if yet another process were sharing the same nodes and using types 99-
100.) All other message types will remain valid.

The include/exclude mechanism can be turned off by supplying two NOCARE arguments to
the appropriate function.

SEE ALSO

KXREAD, KXTEST, KXSHAR.

232

KXVREA

NAME
KXVREA, KXVWRI - Vector read/write functions

SYNOPSIS

INTEGER FUNCTION

KXVREA (BUFFER, SIZE, OFFSET, ITEMS, SRC, TYPE)
INTEGER BUFFER (*)
INTEGER SIZE, OFFSET, ITEMS, SRC, TYPE

INTEGER FUNCTICON

KXVWRI (BUFFER, SIZE, OFFSET, ITEMS, DEST, TYPE)
INTEGER BUFFER(*)
INTEGER SIZE, OFFSET, ITEMS, DEST, TYPE

DOMAIN
KXVREA and KXVWRI may be called in both host and node processors.

DESCRIPTION

These routines implement direct read and write functions. Additionally they allow non-
contiguous blocks of data to be transmitted as a single message.

These functions correspond directly to KXREAD and KXWRIT except in the interpretation
of the actual bytes to be transmitted. In the KXREAD function a single block of contiguous
data is transmitted while the KXVREA functions allow messages to be built up from non-
contiguous memory blocks.

The manner in which the blocks are specified to KXVWRI is as follows: ITEMS objects,
each of size SIZE bytes are taken starting from BUFFER. In addition each block is
separated from the next by OFFSET bytes.

The specification is similar for KXVREA except that objects are read into distinct memory
blocks separated by OFFSET bytes.

In all other regards the arguments to KXVREA and KXVWRI perform just as they would in
KXREAD and KXWRIT - including the restriction that neither DEST nor TYPE arguments
may be NOCARE in calls to KXVWRI.

EXAMPLE

The most useful application of these functions is to deal with multi-dimensional arrays in
which we are required to pass data across a dimension in which the array data is not
contiguous. (In FORTRAN the first array dimension is the one that indexes contiguous
memory locations). Consider an example in which we have a 10 x 10 array of values in each
node corresponding to a two-dimensional image. The first dimension refers to the vertical
axis while the second refers to the horizontal. (array (2, 2) 1is thus near the bottom left-
hand corner, for example). If we now consider a simple scrolling operation in which data
is to be moved from left to right then we see that the data lies correctly and a suitable call
to KXREAD, for example, would be

233

-KXVREA

ISTAT = KXREAD (ARRAY, 10*4, LNODE, TYPE)

assuming that LNODE had been correctly assigned and a suitable call to KXWRIT had been
made in some processor. If the scroll were to be in the vertical direction, however, then
KXREAD is not appropriate; the operation can be coded as

ISTAT = KXVREA (ARRAY, 4, 10*4, 10, DNODE, TYPE)

which specifies that each array element has the size of an INTEGER and that the total
distance between elements ARRAY (I, J) and ARRAY (I, J+1) is 10 times the size of an
individual element. Finally ten items should be transmitted. Notice that we can also use a
call to KXVREA for the horizontal shift by merely changing the OFFSET field in the above
call from 10*4 to 4. This allows the code to have a uniform structure for both axes.

DIAGNOSTICS

If any error occurs in KXVREA or KXVWRI -1 is returned. Possible sources of error are: an
illegal source or destination, an illegal buffer or a preposterous value of SIZE, OFFSET
or ITEMS. If no error occurs KXVREA returns the number of items read and KXVWRI the
number written.

" SEE ALSO

KXREAD, KXWRIT, KXCHAN.

234

KXWRIT

NAME
KXWRIT - Write a message

SYNOPSIS

INTEGER FUNCTION KXWRIT (BUF, LENGTH, DEST, TYPE)
INTEGER LENGTH, DEST, TYPE
INTEGER BUF (*)

DOMAIN
KXWRIT is available to both host and node programs with identical calling sequences.

DESCRIPTION

This routine sends a message to the processor indicated by the DEST argument. The
message will consist of LENGTH bytes taken from the supplied BUF pointer. The message
has the type specified by the TYPE parameter which may not take the special NOCARE
value from the XPRESS common block.

The special value THOST may be used to give the host processor as destination. This value
is to be found in the XPRESS common block set up by the call to KXINIT.

RETURN VALUE
KXWRIT returns the number of bytes written, or -1 upon unrecoverable errors.

EXAMPLES

The following code is used to send 15 bytes taken from the address MYBUF to processor 12.
The message will have type 99.

PROGRAM MYTEST
INTEGER DEST, TYPE

o
C-- Set up Express.
C
CALL KXINIT
C
DEST = 12
TYPE = 99
C
ISTAT = KXWRIT (MYBUF, 15, DEST, TYPE)
C

The next code sends a 128 byte message to the host processor. The message type will be 10.

PROGRAM MYTEST

235

INTEGER DEST, TYPE
COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST, IALNOD, IALPRC

C
C-- Set up Express and its common block.
C
CALL KXINIT
Cc
DEST = IHOST
TYPE = 10
c
ISTAT = KXWRIT(DATA, 128, DEST, TYPE)
WARNINGS
Certain message types are restricted to the Express kernel. User message types must be
less than 16384.
SEE ALSO

KXOPEN, KXREAD

236

KXWRIT

237

Classification of routines

A listing of the Express routines,
broken down by functionality

This section lists the various functions and routines available to Express programs
grouped according to functionality. While no exact division between routines is possible
this information may serve as a useful guide to “related” functions.

User Commands (Man page)
acctool Analyzeaccountingdata.0c0iiieienncann acctool
cnftool Configure Transputer Systems . . o « v v v e e evoeeeooas cnftool
ctool Analyze communication profiledata.................. ctool
cubix Download and execute Cubix programs, /O server cubix
etool analyze event profile data and “toggles” etool
excustom Modify Express System parameters. . « o « e e oo e ee oo excustom
exdump Retrieve data fromRAMfilescocviiunnn exdump
exinit Reboot and reload Expresskemel exinit
exreset Reset ransputer System . .. oo e v vvevvvrecncooncons exinit
exstat Display node usage information.co0evevenns exstat
ndb Sourceleveldebugger ittt ndb
xtool Analyze executionprofiledata00, xtool
Compilers (Man page)
nce Ccompilerand linkerfor NCUBEc0ceeuen nce
nf77 FORTRAN compiler and linker for NCUBE nf77
symcc C compiler and linker for SYMULT symcc
symf77 FORTRAN compiler and linker for SYMULT symf77
tcc Logical Systems C compiler and linker for transputers tce
tce3l 3L C compiler and linker for transputers tcc3Ll
tfc 3L FORTRAN compiler and linker for transputers tfc
System Initialization (Man page)
KXINIT Start up Express and initialize XPRESS common block ...KXINIT
Processor Allocation and Control (Man page)
KXCLOS Deallocate processor groUP « v« e v v v v vt e vveannsnnas KXCLOS
KXLOAD Load programintoallnodes KXLOAD
KXMAIN Start execution of mainprogramcc0c00000. KXSTAR
KXOPEN Allocate a group Of processors. oveveveeeanves KXOPEN
KXPAUS Arrange for program to be loaded “stopped” KXPAUS
KXPID Translate UNIX process ID to Express processID....... KXSHAR

239

KXPLOA Load a programintoasinglenode KXPLOA

KXSHAR Share a processor group between multiple host programs .. KXSHAR
KXSTAR Start execution of anode program KXSTAR
Basic Communication System (Man page)
KXEXCT Define meaning of “read/write” wildcards KXTYPE
KXINCT Define meaning of “read/write” wildcards KXTYPE
KXREAD Read amessageccevveeeesnseesccncacanns KXREAD
KXTEST Test for an incoming message - non-blocking KXTEST
KXVREA Readavectormessage v v cvveeeneeeannnnns KXVREA
KXVWRI Send avectormessage . v .o vvveo ettt aanann KXVREA
KXWRIT Sendamessageceviiirrtrctrecttsaonanns KXWRIT
“Global” Communication System (Man page)
KXBROD Interprocessor broadcast.cciiee i KXBROD
KXCHAN Synchronous multi-node dataexchange. KXCHAN
KXCOMB Apply user supplied operation to distributed dataset KXCOMB
KXCONC Transfer distributed datato localmemory KXCONC
KXSYNC . Synchronize processorscceoecooooececccacacs KXSYNC
KXVCHA Synchronous multi-node vector exchange KXCHAN
Asynchronous Communication System | " (Man page)
KXHAND Install asynchronous message handler KXHAND
KXRECV Read a message - non-blocking KXRECV
KXSEND Send amessage - non-blocking KXSEND
Hardware Dependent Communication System (Man page)
KXCHON Re-enable Express processingonachannel KXCH
KXCHOF Disable Express processingonachannel KXCH
KXCHRD Read bytes from disabledchannel KXCH
KXCHWT Write bytes todisabledchannel KXCH
Decomposition Tools (Man page)
KXGDBC.. .. . Define boundary conditionsonuserdomain........... KXGRID
KXGDCO Determine positioninuserdomain KXGRID

KXGDIN Initialize decompositionsystemcovev o KXGRID
KXGDNO Determine communication parameters from user domain .. KXGRID
KXGDPR Map user domain coordinates to processor number KXGRID
KXGDSI Distribute data among Processors . « .« v e v e ceevenens . KXGRID
KXGDSP Distribute processorsonuserdomainc..00.. KXGRID
KXPARA Determine run-time configurationcec0ceee.. KXPARA
Customization (Man page)
KXCUST Modify Express System Parameters. « « o « o o e s s o0 oo s v KXCUST
/O (Man page)
KABORT Immediately terminate node programc.... KABORT
KMULTI Switchfilel/Omode to “multi” KMULTI
KSINGL Switch file /O mode to “single”c..... KMULTI
ISASYN Inquire file /O mode et te et ettt KMULTI
ISMULT Inquire file/Omode Cheeeeae e KMULTI
KMREAD Read independent dataintonodesc000 KMREAD
KMRD2D Read two-dimensional data setintonodes KMRD2D
KMWRIT Write independentdatafromnode KMWRIT
KMWT2D Write two-dimensional data setintonodes KMRD2D
KCBXSY Assign overall synchronous/asynchronous modeKCBXSY
Debugging (Man page)
KABORT Immediately terminate node programcc000. KABORT
KXBREA Halt program at breakpoint [KXBREA
KXPAUS Load node program “stopped” at a breakpoint KXPAUS
Multi-Host systems (Man page)
KCONND Indicate an alternative host for systemcalls KCONND
KDSPND Indicate an alternative host for graphical output KDSPND
KXACCS Override access to all nodes in system. “......KXACCS
KXSHAR Share a group of nodes with another host program........ KXSHAR
Multitasking (Man page)
KEXEC Overlay a node program withanother KEXEC

241

KXHAND Install asynchronous message handler. KXHAND
KXSEMA .. Allocate and initialize a semaphore KXSEM
KXSEMF Deallocate a semaphore structure . . . v e e v e veveeneeennn KXSEM
KXSEMS Exit a critical section and “signal” any waiting processes KXSEM
KXSEMW Attempt to enter a critical section, sleeping if necessaryKXSEM
KXSLEE Suspend process for indicated time 00 e... .KXSLEE
Graphics (Man page)
KAERAS Erase display asynchronouslyccc0ciieennn. KERASE
" KAGIN . Perform asynchronous graphical input operationsKGIN
KAQPEN Initialize Plotix asynchronouslyKOPENP
‘ KASEND Flush graphical data to display surface asynchronouslyKSENDP
KASPEC Inquire device aspectratiocc00..n eseees.. KASPEC
KROX Draw, and optionally fill, rectangle.0KBOX
KCL.OSP. . Terminate Plotix cessccceenessecooo s KCLOSP
"KCOLOR . - Setlinedrawingcolorccciccococececenncans KCOLOR
KCONT - Draw.visible line incurrentcolor s KCONT
KCNTOR Draw a contour plot of a user supplied function KCNTOR
KDISND Indicate an alternative host for graphical output KDISND
KDOTEX Drawandjustifytextcoeevcvonccecns «eoe...KDOTEX
KENDCL Disableclippingccvceeeeaes cesrecesseansane KCLIP
KENDPA Close and optionally fill polygonKPANEL
KERASE Erasedisplaysurface ceceeenKERASE
KGIN Perform “locator” inputcvvvieroneecenanas .. .KGIN
KGREYS Modify color look-up table, create greyscale KGREYS
KINITP . Beginpolygon ... ittt it ce e KPANEL
KLABEL Drawtextcovrerereneccannns cecenens .KLABEL
KLINEM ~Setlinestylecvvviiiiiiionn. et eesenn KLINEM
KMARKE ~Drawmarkersymbol i ittt enaon KMARKE
KMOVE . Move current position withoutdrawing KMOVE
KOPENP Initialize Plotix cecaaes ceereeeanns KOPENP
KORTHO Define user coordinate range « . v o oo veveeveneeennnn. KSPACE
KPANLP Define pointinpolygonciviiieeenennnn KPANEL
KPLOTH Monitor graphics bufferusage KPLOTH
KPOLGN Drawpolygon i ireenenn cesesean KPANEL
KPXGOP Inquire device capability Cececacceans .KPLXOP
KPXSOP - Set hardware-dependent graphicsoption KPLXOP
KRAINB Modify color look-up table, create HSVtable. KRAINB
KSENDP - Flush graphical data to display surface synchronously KSENDP

242

KSETCL Enable clipping against rectangularregiono o0 .. KCLIP
KSETVP Switch between “windows” et recseteeenes KSETVP
KSPACE Define user coordinate range ceeean e eaeenas KSPACE
KVPORT Define a region of the display as a “window” KVPORT
KUSEND Flush independent data to display synchronouslyKSENDP
Performance Analysis (Man page)
KCPEND Terminate communication profiler and dumpdata...... . .KCPINQ
KCPINQ Inquire setting of runtime ‘-m¢’ switch KCPINQ
. KCPON Enable communicationprofilerc0c0uu.. KCPROF
KCPOFF Disable communicationprofiler.c.00ecenens KCPROF
KCPCP Receive communication profile data in host processor KCPCP
KCPELT Send communication profile data to host processor KCPCP
KEPADD Indicate a“user’event e v it ei ittt ennns KEPROF
KEPEND Terminate event profiler and dumpdataKEPINQ
KEPINI Initialize memory for event profiler ceseeseen KEPROF
KEPINQ Inquire setting of runtime ‘-me’ switch Ceeaeenen KEPINQ
KEPLAB Assign a label to a user specified “event”. KEPROF
KEPON Enable eventprofiler e eceeee et KEPROF
KEPOFF Disableeventprofilercciviviieennne KEPROF
KEPTOG Enable/disable timing for a region of source codeKEPTOG
KEPTGI Initialize memory for a “toggle”. i iii it KEPTOG
KEPCP Receive event profile data in hostprocessor KEPCP
KEPELT Send event profile data to host processor Ceeneas .. .KEPCP
KPROFI Assign memory for execution profiler............KPROFI
KXPEND Terminate execution profiler and dumpdata............ KXPINQ
KXPINQ Inquire setting of runtime ‘-mx’ switchKXPINQ
KXPON Enable executionprofiler eeeKXPROF
KXPOFF Disable executionprofiler.cccevan.. . . . KXPROF
KXPCP Receive execution profile data in host processor KXPCP
KXPELT Send execution profile data to host processor KXPCP
Host Interface Utilities (Man page)
KCALHO Call host routine from Cubix node program KCALHO
KGETHO Inquire host capabilitiesccveiveieennnns KGETHO
KRETHO Return from host routine in Cubix node programs KCALHO
KSTRHO Start host routine in Cubix node program «....KCALHO

243

Utility Routines | | (Man page)

KXSWAB Reverse bytes in 16-bitquantities e v v eveeien.. KXSWAP
KXSWAD Reverse bytes in 64-bitquantities . . v v o e vt e it KXSWAP
KXSWAW Reverse bytes in 32-bit quantities e v v e vve.KXSWAP
KXTICK Measure time in hardware “ticks” ceeesns -KXTIME
KXTIME Measure time in microseconds.cccccvees ... KXTIME

245

Library Availability

| The correspondence between C and FOR-
- TRAN libraries and the synchronization
propertles of Express functions

1 Correspondence between C and FORTRAN
The first two columns of the following table list the equivalent C and FORTRAN routines. A blan.k

entry indicates that no such routine exists.

&
¥
z

2 Synchronization Rules

The third column of the table indicates the synchronization modes associated with each function.
The various codes are:

a

Is, all

Is, group

mode

These routines may be called with no regard to any synchronization constraints,: -
any node may make such a call at any time.

These routines must be made “loosely synchronously” in all processors. When a
node calls one of these routines it will halt until all other nodes have called the same
routine. Arguments may or may not be different in each node according to the
particular function involved.

These routines must be made “loosely synchronously” in all participating
processors. Typically this means that two processors will be involved in some
transaction in which case the first to arrive will halt until the others arrive at the
synchronization point.

The synchronization requirements of these calls depend on the global
synchronization state of the system, as modified with the syncmode or KCBXSY
system calls. If the global synchronization mode is “on” (the default) then these
routines behave as though their synchronization constraint were “Is, all”. If the
global state is “off” they behave as “a”.

3 Libraries and Programming Models

The last column in the table indicates the libraries and/or programming model combinations which
support the named routines. These latter are coded as follows:

h

Routine is available to programs running on the host processor, linked with the
Express library.

Available to programs running on the parallel computer nodes in the “Host-Node”
programming style. Such programs should NOT be linked with either the Cubix or
Plotix libraries.

These routines are part of the Cubix I/O library and may only be linked with
programs using the Cubix programming model. Usually a compiler switch is
available to indicate this programming model and the associated libraries.

These routines are to be found in the Plotix library which can be linked to programs
running under the Cubix programming model. In some cases a compiler switch is
available which links both the Cubix and Plotix libraries. If this is not so on your
system the Cubix switch should be used supplemented by the pathname of the
Plotix library.

247

4 ;MENI(_)TES

@

(i)
(iii)
(iV)

v

)

oL

While no corresponding routine is available in FORTRAN the effect can be

. -achieved by modifying the parameters to an OPEN statement. See the section on
-~ *open file modes” in the Cubix chapter for more details.

_These calls may be made asynchronously but they have no subsequent effect on the
objects they access. The graphical open functions, for example, may be made

asynchronously but the mode in which data is flushed to the cutput device is still

“determined by the flushing function used. Similarly a file opened with one of the
‘asynchronous “open” functions still has as its default the “singl” access mode.

These functions can be called asynchronously be will usually be used in a mode
-similar to “Is, group”. Once invoked they leave the affected nodes in a state which

will;almost certainly function in a an unpredictable manner until the corresponding

action has been performed on other members of the group.

-These functions can be called asynchroncusly but should be used with extreme care

when so doing. Because of their nature it is easy to introduce “race conditions”

“when using these routines asynchronously. In most cases it is easy (and safer) to

force a synchronization after using one of these routines.

| ffI’he; synchronization behavior of these routines depends upon the “mode” of the

associated file. For “singl” and “multi” mode files the constraint is “Is, group”
while it becomes “a” for “async” mode files.

C FORTRAN Synchronization Library
KXEXIT Is, all n
KXINIT Is, all - h,n,c,p
_ex_swab KXSWAB a’ h,n,c,p
_ex _swad KXSWAD a h,n,c,p
_exX_swaw KXSWAW a h,n,c,p
abort KABORT a c,p
aerase KAERAS a P
aexecve KAEXEC a .CGPp
agin KAGIN a P
aopen @) a, (i) ‘c,p
aopenpl KAOPEN a, (i) p
asendplot KASEND g, o]
aspect KASPEC a, p
box KBOX a, P
callhost KCALHO mode c.p
closepl KCLOSP Is, all o]
color KCOLOR a - p
console_node KCONND a, (i) c,p
cont KCONT a P
contour KCNTOR Is, all P
cprof_end KCPEND Is, all c.p
cprof_ing KCPINQ mode c.p
cprof off KCPOFF a n,c,p
cprof_on KCPON a n,c,p
cprofcp KCPCP h
cprofelt KCPELT Is, all n
display_node KDISND a, (ii) p
dotext KDOTEX a p
endpanel KENDP a p
eprof add KEPADD a n,c,p
eprof_end KEPEND Is, all c.p
eprof init KEPINI Is, all n,c,p
eprof _ing KEPINQ mode c.p
eprof_ label KEPLAB a n.c,p
eprof off KEPQFF a n,c,p
eprof_on KEPON a n.c,p
eprof_toggle KEPTOG a n,c,p
eprof toginit KEPTGI a n,c,p
eprofcp KEPCP h
eprofelt KEPELT Is, all n
erase KERASE Is, all P
exaccess KXACCS h
exargldl h
exargldv h

C =91 FORTRAN Synchronization | Library

. exbreak . KXBREA a n.c,p

exbroadcast " KXBROD Is, group h,n,c,p

.| “ex¢hange KXCHAN Is, group h,n,c,p
exchanoff KXCHOF a, (iii) n.c.p

" | _éxchanon ~ KXCHON a, (iii) - nep

. | “exchanrd "I KXCHRD is, group n,c,p

' | " éxchanwt KXCHWT is, group n.c,p
_exclose KXCLOS h
éxcombine KXCOMB Is, group n,c.p
exconcat _ KXCONC Is, group n,c,p
excustom © KxcusT | h
execve " KEXEC mode c.p

| exenvld AR ' h

exexctype . KXEXCT a, (iv) h,n,c.p
exgridbc . KXGDBC a h,n,c,p
exgridcoord " "KXGDCO a h,n,c.p

: exgridinit . KXGDIN a h,n,c,p

? exgridnode © KXGDNO a h,n,c,p

exgridproc KXGDPR a h,n,c,p

exgridsize KXGDSI a h,n,c,p

' exgridsplit KXGDSP a h,n,c,p
exhandle KXHAND a, (iv) n,c,p.
exinctype KXINCT a, (iv) h,n,c.p
exload KXLOAD h
exloadl ’ "h
exloadle “ h
exloadv h
exloadve , h
exmain KXMAIN h

; exopen KXOPEN , h

! exparam . KXPARA - a h,n,c,p

| expause " KXPAUS “h
expid ' " 'KXPID h
expload " KXPLOA “h
exread T KXREAD a h,n,c,p
exreadfd - h
exreceive KXRECV a n,c,p
exsemalloc KXSEMI a n,c,p
exsemfree : a n,c,p
exsemsig KXSEMS a n,c,p

: éxsemwait RXSEMW a © ncp

i exsend KXSEND a n,c,p

: exshare . KXSHAR 1 h
exsleep " "KXSLEE a : 1 ncp

DI L e I Ep— - JE

C FORTRAN Synchronization Library
exstart KXSTAR ‘ h
exsync KXSYNC Is, all . _ncp
extest KXTEST .a o .hnep
extick KXTIME a | Tnep
extime KXTIME a "1 necp
exvchange KXVCHA Is, group “h,n,c,p
exvread KXVREA a “h,nc,p
exvwrite KXVWRI a “hncp
exwrite KXWRIT a ““hinep
exwritefd B
fasync KASYNC Is, all cp .
fmulti KMULTI Is,all cp
forder KORDER a, (ii) cp
fsingl KSINGL Is, all S cp
gethost KGETHO mode X I
getplxopt KPXGOP mode P
getpoint KGETPT a Cp
gin KGIN ~mode . P
greyscale KGREYS ! ' P
initlevel KINITL a p
initpanel KINITP a P
isasync KISASY a c.p
ismulti KISMUL a c.p
label KLABEL a p
linemod KLINEM a p
malloc avail a c.p
malloc_debug a c,p
malloc_print Is, group (v) ‘ep
malloc_verify a S cp ‘
marker KMARKE . a : P ‘
move KMOVE .a | P
mread KMREAD “ls, all |l &p .
mread2d KMRD2D 1s,all Iep:
mwrite KMWRIT Is,all cp
mwrite2d KMWT2D is,all cp
openpl KOPENP mode P
ortho_space KORTHO a P
panelpoint KPANLP a) p .
plothwm KPLOTH a ; i P
polgn KPOLGN a ' p
profil KPROF'I a T .necp
rainbow KRAINB a B
ramfopen () a ep
rethost KRETHO ~ mode “cp

C FORTRAN Synchronization
sendplot KSENDP mode p
setclip KSETCL a p
setplxopt KPXSOP mode p
setvbuf a, (ii) c.p
space KSPACE a p
starthost KSTRHO mode c.p
syncmode KCBXSY a, (ii) c.p
usendplot KUSEND Is, all p
vport KVPORT a p
xprof_end KXPEND Is, all c.p
xprof_ing KXPINQ mode c.p
xprof off KXPOFF a n,c,p
xprof_on KXPON a n.c,p
xprofcp KXPCP h
xprofelt KXPELT Is, all n

BN b A Ty A € B I PR ST BN L 8N AR B R b R

7%

]
'
Ry — SNSRI

25,

Index of Rouﬁneﬁs_ff}

g P
-
"y
-
-
i

An alphabetical listing of routines,
variables, commands and macros

Index to Routines

Index to Routines

TE easpr R i U Ry

L e L IRE d e,

This index contains an alphabetical list of the various subroutines, macros and variables which may
be of use to Express programs. Each routine has an indication of the page on which its deﬁmnba

and arguments can be found.

A

acctool?

C

cnftool 9
ctool 10
cubix 12

E

etool 15
examples

system initialization 185
excustom 16

exdump 18
exinit 21
exreset 23
exsend 214
exstat 24

I

ISASY 131
ISMULT 131

KABORT 63

., KAERAS 105
: KAEXEC 107
" KAGIN 113
- KAOPEN 136
. KASEND 148
. KASPEC 64

KASYNC 131
KBOX 66

KCALHO 68
KCBXSY 73
KCNTOR 77
KCOLOR 80
KCONND 82
KCONT 84

KCPCP 85

KCPELT 85
KCPEND 87
KCPINQ 87
KCPOFF 89
KCPON 89

KDISND 91
KDOTEX 93
KENDCL 75
KENDPA 138
KEPADD 99
KEPCP 95

KEPELT 95
KEPEND 97
KEPINI 99
KEPINQ 97
KEPLAB 99

~ KEPOFF 99

KEPON 99

KEPTGI 102.

KEPTOG 102
KERASE 105
KEXEC 107

KFLUSH 109
KGETHO 111

i

255

Jndex to Routines

KGETPT 77
KGIN 113
KGREYS 115
KINITL 77
KINITP 138
KLABEL 117
KLINEM 119
KMARKE 121
KMOVE 123
KMRD2D 124
KMREAD 129
KMULTI 131
KMWRIT 134
KMWT2D 124
KOPENP 136
KORDER 131
KORTHO 150
KPANLP 138
KPLOTH 140
KPOLGN 138

KPROFI 143

KPXGOP 141
KPXSOP 141
KRAINB 145
KREAD 147

KRETHO 68

KSENDP 148
KSETCL 75

KSETVP 153
KSINGL 131
KSPACE 150
KSTRHO 68

KUSEND 148
KVPORT 153
KWRITE 147
KXACCS 156
KXBREA 157
KXBROD 158
KXCHAN 163
KXCHOF 160
KXCHON 160
KXCHRD 160
KXCHWT 160
KXCLOS 167
KXCOMB 169
KXCONC 173

KXCUST 176
KXEXCT 231
KXGDBC 178
KXGDCO 178
KXGDIN 178
KXGDNO 178
KXGDPR 178
KXGDSI 178
KXGDSP 178
KXHAND 182
KXINCT 231
KXINIT 185
KXLOAD 187
KXMAIN 222
KXOPEN 189
KXPARA 191
KXPAUS 193
KXPCP 195

KXPELT 195
KXPEND 197
KXPID 217

KXPINQ 197
KXPLOA 199
KXPOFF 202
KXPON 202

KXREAD 204
KXRECV 207
KXSEMI 210
KXSEMS 210
KXSEMW 210
KXSHAR 217
KXSLEE 219
KXSTAR 222
KXSWAB 224
KXSWAD 224
KXSWAW 224
KXSYNC 227
KXTEST 228
KXTICK 230
KXTIME 230
KXVCHA 163
KXVREA 233
KXVWRI 233
KXWRIT 235

1.7

-Index t6 Routinés

ndb 25 i

system initialization 185

T

tcc 39 -
tcc3143 -
tfc 47 : e

X

xtool 50 o Z’

i

;
H o
HR
b i
]
p S
i !
v .
* L
¢
3 -
. P i
¥ - .
-
. . -
- o CE e
s b ” -
2 1
P a1 by I
- PR
- . .
. Eal i
- 3
- o
o - - >
- e eeag
< rt"a/
t -
- x
.- U
e ‘
T -
Nl L e :
. .
LN R A

7t ;_57

P

e bR}
5 -
f e
Cun
el
el

General mdex to Express and theex-
amples from the text e

' -t
, 5
-
¥

i communication ~

General Index

General Index Cwmm

solely to subroutines have their page numbers in typewriter font: exwrite 178, for example.

B

£ T

. %

Pt o S s 7 st sro——

This index is the general reference for all the topics discussed in this manual. It hsts not only the
various functions/routines but also the examples and other points of note. Index entries refemng

A
accounting 7
argc, argv 187
arguments 187
ordering 54
type 54
aspect ratio 64
asynchronous 1/0 73, 131
automatic decomposition 178

B

binary file I/O 147
breakpoints 157, 193
buffering

graphics 140, 148
byte swapping 224

C

clear display surface 105
clipping 75

; color 80

color maps 115, 145

-

. basic 53-54, 204, 233, 235

! global 158, 163, 169, 173

hardware dependent 160
overlapped, asynchronous 214

! communication profiler 10, 85, 87, 89
- compilers

e P

3LC43

3L FORTRAN 47

Logical Systems C 39
configuration 9, 16, 82, 176
contour plots 77
coordinate systems 150, 153
customization 16, 176

D

debugging 193
assembly code 35-37
breakpoints 157
interactive 25
post mortem 18
source code 27-35
decomposition 124, 178
disk farms 82
domain decomposition 124, 178
domains 53
DONTCARE 204
double buffering 207, 214
downloading
data 158 -
grams 187 199

Ea~ \,,L,: M ’f"'.

erTors

asynchronous runtime 63
event driven profiler 15, 95, 97, 99
event driven profiling 102

259

.+§~;
-3

General Index

PSRN

SRR

ir

examplcs : LI

afgc,arngg 2oy e

asynchronous | programs 207 214
asynchronous systém calls 73

basic communication 205, 233, 235
broadcast 158

byte swapping 225 ¢
communicating arrays 233 v
communication H
hardware dependent 161 4
data-basé 69 . o
decomposition 191
display processing 179
DONTCARE 228
double buffering 207, 214

exgrid 124,.134,:158,.164: - SRR
flushing files 109 . - N

global block 227, 228

global communication 164, 169, 173
global maximum 170 Cer it

global memory 182. - ;;':, »';:‘-f e
global semaphores 219 = ., .,
global sum 169 DU ety
global to local data transformanon 173
graphics
aspectratio64 -1 x4, -
buffer control 140 .- - ..
clipping 75 -,

color 80, 115,145 ", ., . . =

contouring 78

coordinate systems 150, 153

erase 105

flushing.149 . B

hardware dependenmes 141

initialization 136

input 113

line drawing 84, 119, 123

markers 121 o

multiple hosts 91, 93

polygons 66, 138

text 93, 117, 149 S
hardware dependencies 141"
host capabilities 111 , = "™
I/O modes 73 L
image analysis 124 . .
message types 205 228 231 o

R PR

multiple hosts 82 .
multitasking 107, 182, 219 o
parallel I/O 109, 124, 129, 132, 134
performance
evaluation
xtool 195
performance evaluation 102
ctool 85,87,89.; .
etool 95, 97, 100 e _ .
xtool 143, 197, 202 s
preparation for debuggmg 193
processor (de)allocation 167, 187, 189,
199,222 .
processor control 222
processor sharing 217
program loading 187
runtime configuration 176
runtime errors 63, 140 i
shared memory 210
synchromzanon 227,228
user host toutines 69 '
wildcard processing 205
wildcards 228° -5
execution profiler 50, 143, 195, 197, 202

F

file /O, parallel 131

file server 12,82 ..,

flushing o
graphics 148

flushing files 109

G

global block 227

global communication 158, 163, 169, 173 227

global memory 210 ..

global operations 169, 173

graphical input 113 *

graphics
buffering 140, 148
clipping 75 -
color 145 .
coordinate systems-150, 153
device dependenaes 141
mltlallzanon 136

TV

«:{"r

e General Index

line drawing 84, 123 ‘ multitasking 56, 107, 182, 210, 219
polygons 138:.": S multiuser systems 24, 156 217
symbols 121 .** R mutual exo‘lusmn 210
text 117 R L cprees i
graphics servers 91 ‘ N A o
H @ . L NOCARES) =i oy .
, ‘ node processes 24 R
hardware communichtion 160 nodes ' TR
hardware reset 23) allocation 189.,
hardware spemﬁc graphlcs 141 non-blocking communication. 297 214
~ help ' S NONODE 60) BN S
" ndb26 7 NORDER 60 3 L
host capabilities 111 o S el EE
host programs - . 0O RS ST
interface to cub1x programs 68 overlapped communicatioh:163 ¢ - - =+
Hostless programnéyng 12 B ; overlaying programs 107 0 o

D)

3% NNV SR

! A S
1/O 58-59 . berformance b

HOD-FORTRAN behav,wx: 109 ‘ analys1s 10 1 5 50
parallel 124, 129, 134. g ctool 85, 89 - :
unformatted, reliable 147’“ sivrr ol n etool 99 i,”?‘}‘ T ,,A
1/O modes e evaluation
asynchronous 73 ' ctool 87
IALNOD 60 etool 95, 97
IALPRC 60 a xtool 143, 195, 197,_202
IHOSTGO " f_f: o . optimization 16,176 ~ * =+ ’
initializing programs 59 performance analysis 102 o
installation 16 E v polygons 66 SUPT
interrupt handling 182 L process D217 - A;‘y Ly
L » processor R
(de)allocatlon 57 167 189”
libraries 53 e control 222*" S
linestyle 119 ;' e synchromzatwn 227
load individual nodes 199" ©'* "’ ° program
load program “stopped” 193 o startup 222 -
loading programs 187, 199 T programming models 53 - f o

u“

(PN P

M . R .
message types 54, 204 RAMfiles18.
process specific 231 o read message 204 7 _,

restrictions 205,236 .. rebooting Express 21 .. .
messages 54 o rectangle 66 .
multiple host programs 156 217 oo runtime configuration 19L-
multiple hosts 9, 23, 82, 91,231 runtime parameters 191"

GénerabIndex

semaphores 210
global 219
send message 235
shared memory 210 N
sharing processor groups 156,217
statistics 24, 102
suspend process 219
system constants
- JALNOD 60
o ;IALPRC 60
IHOST 60

'N@Nona 60
"+ "NORDER 60 .
system variables. 59

time measurement 230

wildcards 54, 204, 228, 231

XPRESS common block 59

	Table of Contents
	Chapter 1: System Commands - Tools providing services in support of Express applications
	1 Executing Express commands in ''non-windowing'' operating sytems
	2 Executing Express commands in ''windowing'' systems
	3 Specifying numeric data in switches
	4 Manual Page Layout
	5 Tools
	acctool - Analyze parallel computer usage under Express
	cnftool - Configure Transputer systems
	ctool - Analyze Communication ProfIle
	cubix - Host slave process for node programs
	etool - Analyze Event Profile
	excustom - Reconfigure Express.
	exdump - Retrieve data from node RAM files
	exinit - Reboot and reload Express kernel
	exreset - Reset a group of nodes
	exstat - Display node usage information
	ndb - Symbolic, source and assembly level debugger for parallel computers
	1 Help
	2 Sets
	3 Displaying Source Code
	4 Stack Operations
	5 Displaying data
	6 Expressions
	7 The "show" command
	8 Arrays
	9 High level job control
	10 Miscellaneous commands
	11 The ndbenv command
	12 Assembly Level Debugging
	13 Assembly Level Job Control
	14 Assembly Level System control

	tcc - Compile and link Express C and C++ programs for Transputers
	tcc3l - Compile and link Express C Transputer node programs
	tfc - Compile and link Express FORTRAN Transputer node programs
	xtool - Analyze Execution Profile

	Chapter 2: FORTRAN runtime library - Library routines available to Express programs written in FORTRAN
	1 High Level Communication System
	2 Hardware Dependent Communication System
	3 Synchronization
	4 Decontpositlon Tools
	5 Multitasking Support
	6 Processor Allocation and Control
	7 I/O Services
	8 Graphics
	9 Standard variables and the /XPRESS/ common block
	10 Manual Page Layout
	11 Library routines
	KABORT - Immediately abort program
	KASPEC - Inquire device aspect ratio
	KBOX - Draw and fill rectangles
	KCALHO - Interface to user host routines from Cubix program
	KCBXSY- Specify synchronous or asynchronous system calls
	KCLIP - Enable/Disable clipping
	KCNTOR - Contouring functions
	KCOLOR - Change color attribute of graphical objects
	KCONND - Redirect system calls
	KCONT - Move and draw a line
	KCPCP, KCPELT - Dump communication profile data
	KCPINQ, KCPEND - Manipulate communication profiler, under Cubix
	KCPON, KCPOFF - Control communication profiler
	KDISND - Specify alternate display surface and server
	KDOTEX - Draw text with complex alignment
	KEPCP, KEPELT - Dump event log data
	KEPINQ, KEPEND - Manipulate Event profile under Cubix
	KEPON, KEPOFF, KEPINI, KEPLAB, KEPADD - Event driven profiler
	KEPTGI, KEPTOG - Calculate program statistics
	KERASE, KAERAS - Clear the display surface
	KEXEC - Overlay a node application
	KFLUSH - Flush I/O buffers
	KGETHO - Detennine host specific characteristics
	KGIN, KAGIN - Graphical input operations
	KGREYS, KAGREY - Change color attributes
	KLABEL - Add text
	KLINEM - Modify drawing style for lines
	KMARKE - Draw marker symbol
	KMOVE - Move without drawing
	KMRD2D, KMWT2D - Read/write two dimensional data sets
	KMREAD - Read independent data into each node
	KMULTI, KSINGL, ISMULT, ISASYI, KORDER - Parallel I/O characteristics
	KMWRIT - Write independent data from each node
	KOPENP, KAOPEN, KCLOSP - Begin and terminate graphics system
	KPANEL - Draw and fill polygons
	KPLOTH - Analyze usage of system buffers
	KPXGOP, KPXSOP - Manipulate hardware dependencies in Plotix programs
	KPROFI - Low level execution profiler
	KRAINB - Change color attributes
	KREAD, KWRITE - Read or write unformatted data
	KSENDP - Flush graphical data to display surface
	KSPACE - Define user coordinate system
	KVPORT, KSETVP - Specify area of display to hold image
	KXACCS - Share a processor group with another process
	KXBREA - Halt program at breakpoint
	KXBROD - Interprocessor broadcast
	KXCH - Hardware dependent communication primitives
	KXCHAN, KXVCHA - Synchronous scalar/vector exchange primitive
	KXCLOS - Deallocate processors
	KXCOMB - Node data compaction
	KXCONC - Concatenate data from nodes
	KXCUST - Indicate an alternative system configuration file
	KXGRID - Automatic decomposition tools
	KXHAND - Asynchronous message handler
	KXINIT - Start Express system
	KXLOAD - Load a program
	KXOPEN - Allocate a processor group
	KXPARA - Runtime parameters
	KXPAUS - Arrange for programs to be loaded "stopped"
	KXPCP, KXPELT - Dump execution profile data
	KXPINQ, KXPEND - Manipulate execution profiler under Cubix
	KXPLOA - Load a program into individual nodes
	KXPON, KXPOFF - Control execution proftler
	KXREAD - Read a message
	KXRECV - Non-blocking read function
	KXSEM - Various semaphore operations
	KXSEND - Non-blocking write function
	KXSHAR - Share a processor group with another process
	KXSLEE - Pause process
	KXSTAR - Start execution of program
	KXSWAB, KXSWAW, KXSWAD - Byte swapping routines
	KXSYNC - Synchronization primitive
	KXTEST - Test for an incoming message, non-blocking
	KXTIME, KXTICK - Time measurement
	KXINCT, KXEXCT - Include or exclude certain message types in interpreting wildcards
	KXVREA, KXVWRI - Vector read/write functions
	KXWRIT- Write a message

	Appendix A: Classification of routines - A listing of the Express routines,broken down by functionality
	User Commands
	Compilers
	System Initialization
	Processor Allocation and Control
	Basic Communication System
	"Global" Communication System
	Asynchronous Commutlication Sysfem
	Hardware Dependent Communication System
	Decomposition Tools
	Customization
	I/O
	Debugging
	Multi-Host systems
	MuItitasking
	Graphics
	Performance Analysis
	Host Interface Utilities
	Utility Routines

	Appendix B: Library Availability - The correspondence between C and FORTRAN libraries and the synchronization properties of Express functions
	1 Correspondence between C and FORTRAN
	2 Synchronization Rules
	3 Libraries and Programming Models
	4 NOTES

	Appendix C: Index of Routines - An alphabetical listing of routines, variables, commands and macros
	Appendix D: Index - General index to Express and the examples from the text

