
. ' .OJ

"';,jR6~er8ri~e'~~itle:"} •. ·'.. :.~~" .
.-~ :':'.-~~-.,.ll;.~.---- - ~..~ .-.-~~.._ ~:,;:.. :::;":..;.;.~ ~_.;\;'~..~<.~.~:;:~~.~.:.-..~ .

-.: ~~.~:~~: .

. .'

© ParaSoft'Corporation~ 198~;, 1989, .1990

···,:~.M..'

• ~ <t" J;"

......... :..
~.~ j : . ..,.i

f·... ,..,' po

~ ~ t-.;..

:fj?f ;;:"""~'~;';~~~Jj~,: ~.>~j;~:(f'IC~-:'

.... ". .. ". . ' . . .~:," .. r.]:'~·~?'~J;"f.t:i.:: .(. .,·
;All brand and prq9u~nam~~,4)te)~eqj#1,s':i)r~registeredtrademarks of

., ~> ;~:~~~~~~~:<'),.
'£~~~~~e~~~~~}9~ '(

2500J E~Foothill Blvde >

',' '.' ::-;, .. '::'~;,,;rts ~ "~~~~~4?{ .~ .: ~~~.:~~:~.~)'_~" ~~~: .. .1. '::,>:".t.,"

.P~sade~t;:CA~91107.:.: .
!.:

Table of Contents

dd d g IIIL b t. ttd J L t t bU. b UI • Lb.. a

Chapter 1: System Commands
Tools providing service~.in. support of Express applications

JUuu Ub LU] U d'; d d J 0 • k t uw· . 1 d bb bb d U

2

L ±

1 1

1
2
3
4

Executing Express commands in "non-windowing" operating systems.
Executing Express commands in '~windowing"systems
Specifying numeric data in switches
Manual Page Layout.·'.

nl , '1

. 3
• 3,

· . . 3
.4

Chapter 2: FORTRAN runtime library 52
Library routines available to Express programs written in FORTRAN

1
2
3
4
5
6
7
8
9
10

High Level Communication System.
Hardware Dependent Communication System.
Synchronization . .
Decomposition Tools
Multitasking Support
Processor Allocation and Control.
I/O Services, • •
Graphics, .
Standard variables and the/XPRESS/ common block.
Manual Page Layout. . . . • '. • •

· . 53
· . S4

• . • . . S5
. 56

S6
.: 57

.. S8
. 509

.. . . 59
. 60

bUt b . b M db

Appendix A: Classification of routines•.... ~'. 238
A listing of the Express routines, broken down by functionality

L btL d Uk bL d L. b

Appendix B: Library Availability 246
The correspondence ,b,etweeiiCarld' FORTRAN libraries and the syn­
chronization properi:ieso.r Exptess functions

1
2
3
4

Correspondence betwe~n';t'a#,~~~' ': .
Synchronization Rules . ~ ~ .. ~. "':.,..~". ~.~<;: '~' ..~ ¥ ••.• •

Libraries and Programming;·~QQelS';';·.
.' .":.! .. };,.: ·0::

NOTES.:. l· ·0 ~ o· ~>"" •.•• ~'. •
f '"

jJ ..)'&. ~ pittnMr

. • . •·247

. • • • . . 247
. 247

.• ..248

Appendix C: Index of Routines '. ~ .. 254
An alphabetical listing of routines,:yariables, commands ~d macros ~ ,

i

lorn .• p.(

App.endix. D: In.dex. •. ~ .. e258
General index to Express and the examples from the text

ii

© ParaSoftCorporation, 1988, 1989, 1990

1

System Commands

\;Tools providing services in support of
Express applications

1 Executing Express commands in ''non-windowing'' operating sy~~~!!JS"'

When running Express under operating systems with conventional line-oriented user interfacd
such as UNIX, MS-DOS, VMS and similar, commands are executed by typing their names at tlte
command line prompt. . ,;.

(

Usage generally follows the conventional UNIX style with options being indicated by the~ 'L~~

character, e.g., ~

cubix -n 2 -t 120 toyland ~
~

The particular command line string '-?' provides a brief on-line summary of the options.and
purpose of a command. While this may help in jogging the memory this manual should be
consulted for complete details.

On most machines you will need to add a new directory to the set which is searched when looking
for executable programs. The exact mechanism for doing this varies from one machine to another
and the details for individual operating systems can be found in the introductory guide to Express
for that machine. If you find that messages such as

Command not found

or

No such file or directory

appear whenever you try to execute one of the Express commands then you should check that the
appropriate directory really has been added to your search path. If this seems to be correct you
should next try mnning the excustom program which will ensure that the Express installation
is internally consistent.

In keeping with the conventional style all commands exit with status 0 upon successful tennination
and with non-zero values if errors occur.

2 Executing Express commands in ''windowing'' systems

In windowing systems such as MicroSoft Windows and the Macintosh, Express programs are
usually executed by selecting icons from the screen. In most cases a dialog box will then be
presented allowing the entry of parameters. In most cases the entries to be made have a one-to-one
correspondence to the switches used in the line-oriented interfaces. Usually some mechanism is
also provided to "Abort" or "Cancel" the program without executing any commands.

Note that only the line-oriented intetfaces are completely documented in this reference. In most
cases this causes few problems since the switches and "boxes" are obviously related to one another.
In cases where confusion may arise the introdu~tory guide to Express on your system should be
consulted for more help.

3 Specifying numeric data in switches

Many of the parameters necessary to the commands listed in this section have numerical values­
the number of processors to use, the number of bytes to display, the position at which to load the
Express kernel, etc. In most cases these values can be entered with the usual C-style notati~nas

either decimal, octal or hexadecimal values.

3

Consider the exdump command, for example.Oneaf itsargumentsspeeifies ·theaddress·from
which data should be extracted - the '-B' switch. Typically one knows this value as some "hex"

'~fr~constantandwould therefore use a command of the fonn

··exdump -B Ox79000 ...••...••.
... r~; " r,'", ~ ,

~~~·.~~Altqriati'V~ly you could use either octal or decimal notation replacing this by
..... ./.-".. . "

exdump -B 01710000 .•.•..••

eXdump -B 49561:6 •••••••

to achieve the same effect. Similar remarks.apply to most of the other Express commands - you
cane,xecute aCubix program on 16 nodes with any of the command switches

cubix -n 16 ...•....

cubix -n 020 .

cubix -n OxlO •.....•.

4 Manual Page Layout

Theman.ual pages are, for betteror worse, modeled after those often found in UNIX documentation
which· means that each ·manual page has sevieral w,ell..defined sections. The overall structure is
shown below•



acctool ..c-----------------------
NAME

acctool - Analyze accounting data

SYNOPSIS
acctool [-p] [-a dir] [-f logfilel

DOMAIN
Available on SUN host machines only

DESCRIPTION
acctool is used to analyze the us .

OPTIONS
-p Suppress graphics
-a dir Name of directory containing accounting data
·f logfile Write output to logfile.

EXAMPLES
acctool -a /home/kastor/accounting

Analyze data from the directory /home/kastor/ ...

NOTESIWARNINGSIBUGS
None

SEE ALSO
Excustom

Header contains ·'the
name of the manual
page which i~ usuwly
the same as .'...... '·'the

command described.

The various sections and their contents are:

NAME Repeats the name associated with the manual page and a brief one-line
description of the purpose of the associated routines

SYNOPSIS Summarizes the arguments used by the indicated command. Arguments
enclosed in '[', ']' pairs are optional. If more than one command is
described on a particular page then all are listed in this section

DOMAIN Describes the machines on which the command is available and ~y

restrictions on when it may be used.

DESCRIPTION Describes the purpose of each command and lists the actions caused by its

5



OPTIONS

EXAMPLES

NOTES

WARNINGS

BUGS

SEE ALSO

6

most important arguments. This section is the:''tDo:st 'important reference
material for each command.

This section lists all the supported arguments for each command and the
actions caused by specifying them.

Usually several examples are presented of the use ofeach function showing
the most important argument.sand switcheSe

If present this section contains useful infonnation about oddities in the
implementations of a particular command. It may 'also repeat important
infonnation from the DESCRIptION section.

If the command has peculiar side effects or is "dangerous" in some way it
will be noted in this (optional) section. Any non-intuitive behavior is also
noted here.

Currently known bugs and/or unimplemented switches are noted in this
(optional) section.

Related commands and/or routines from the various Express libraries are
noted in this sectiono Using this infonnation is usually the quickest way to
build a complete picture of the interaction between the various utilities.



acctool

NAME

acctool- Analyze parallel computer usage under Express

SYNOPSIS

acctool [-p] [-a account_dir] [-f logfile]

DOMAIN

This command is available on SUN host computers only.

DESCRIPTION

acctool is used to analyze accounting data previously obtained from Express programs.

If the accounting system has been enabled on a particular host every Express program
writes an entry into a system data file whenever it allocates or deallocates nodes. Special
entries are also assigned whenever the system crashes or is reinitialized. acctool
analyzes this data in an interactive fashion displaying the usage of resources on a machine­
by-machine basis.

Results are reported for all users, in hours, or on a single job basis for individual users, in
seconds. Statistics are managed on a monthly basis with options to restrict attention to
particular months or ranges of months.

The operation of the accounting system is controlled by the excustom command. One of
this system's options is whether or not to enable the accounting system. If enabled a place
must be indicated for the accounting information to be maintained.

OPTIONS

-a account dir
By default acctool looks in the current directory for the data files
describing the system configuration and accounting data. This switch allows
an alternative directory to be specified.

-f logfile All information provided by acctool appears on the display device. If this
switch is given a "log file" will also be kept containing the identical
infonnation. (In the Sunview version of the program this effect is obtained
by entering a name in the log file field of the control panel.)

-p By default acctool operates in the Sunview environment providing a
simplified user interface. If Sunview is not supported on your system this
switch enables a line-oriented interface in which the user is prompted to
enter various options from the keyboard.

-? Print usage message.

EXAMPLES

The following command executes the profiling tool in a windowing environment and
searches the directory /home/kastor / accounting for the necessary databases.

acctool -a /home/kastor/accounting

7



SEE ALSO

excustom.

8



cnftool

NAME

cnftool - Configure Transputer systems.

SYNOPSIS

cnftool [-p] [-d]

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command is used to configure or reconfigure a transputer network for use with
Express. Two interfaces are available; with the '-p' switch a simple line oriented interface
leads the user through the configuration process. Without this switch a menu driven utility
allows the user to specify the physical transputer interconnect and also to add additional
hosts to an existing system.

One of the features of the system is a "wonn" program which can be used to detect the
initial hardware configuration on statically wired systems. This program has a simple
searching algorithm which examines the links on each node and attempts to find a node
connected to each. As each link is examined and another node detected the program
recursively examines other nodes which may be attached. Note that this can only be
achieved if the system has "physical" rather than electrical connections. Hardware which
has INMOS' link switch cannot be examined by this method since the links are initially
disconnected on hardware reset.

Details of the use of this system can be found in the accompanying documentation,
"Configuring Transputer Systems: cnftool".

OPTIONS

-p

-d

-?

SEE ALSO

By default cnftool supports a menu driven graphical interface. This
switch enables a simpler, but more tedious, line interface for system
configuration.

Run silently - the system is configured in much the same way as with the '­
p' switch except that a "general" network topology is also selected
automatically. No user interaction is required unless the "worm" program
fails to operate successfully.

Print usage message.

"CnfTool: Configuring Transputer Systems"

9



'~tool

NAME

ctool - Analyze Communication ProfIle

SYNOPSIS

ctool [-b nbins] [-p] [log_file_name]

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command is used to examine and analyze the log file created with the communication
profiler commands. The only argument is the name of the file containing the profile data
which may be omittedif it has the default value "cprof . out".

If the "-p" switch is given this command presents a separate table on stdout from each
node. The informa,tion contained in each table is:

• An identifier showing which node the following data is frome

• A summary of the calculation, communication and I/O times in the processore In
making this classification all inter-node and basic host-node communication comes
under the heading "Communication" while genuine I/O requests such as calls to read,
write, printf, fopen, etc.. are counted as 110.

• ~sM~~ ~f the tim~spent i~, number of calls to and elTOfS incurred in each
comtritinicationfunction called b}Pthe processor. This infonnation is use to give a quick
b~akq.qwn()fthe totalcommuni~3tion patteme The "error" count is also a good place
tOlook for obsCure bugs. Each funttion makes some consistency checks on the supplied
arguments and returns an· error if they are inconsistent.

• A breakdown of the values returned by the communication functionse The return values
are binned logarithmically - the column headed "8" indicates the frequency of return
values in the inclusive range 8 thm 15. The exact interpretation of this data depends on
the particular function being invoked but is usually related to the message length
involved in the call. By default data from ten logarithmic bins is included in the output
although the '-b' switch is provided to override this default.

One.very important use of this system is the detection of programs which are sending too
much data in their messages. These will show up very clearly in the histogram output.

This data appears on stdout.

If the ctool command is invoked without the "-p" switch then a graphical interface
allows data to be presented in graphical form. The package is menu-driven and (hopefully)
quite straightforward to use. A full list of the available options is presented in Subsection
3.4 of the PMmanual.

OPTIONS

-p

10

Suppress graphical output. The analysis results are presented in tabular fonn



-b nbins

EXAMPLES

ctool

on stream stdout.

Specifies an alternate number of logarithmic bins to display when used in
conjunction with the '-p' switch. (Default 10).

To examine the profile data in a file called "phase3 •prof" execute the command

ctool phase3.prof

SEE ALSO

cubix in the Express documentation.

11



NAME

cubix· Host slave process for node programs.

SYNOPSIS

cubix [-?] [-n nodes] [-d doc] [-P] [-t time] [---5]
[-T plot_option] [-Ecustom_file] [-f file] [-fp]
[-mclxle] [-D] [-x] program [argll (arg2] ...

DESCRIYfION

This command provides an interface between node applications·and the host filesystem and
operating system utilities. It is also responsible for nodealloca,tion and the communication
of command line arguments to a node program.

This command, with the '-5' option, starts upa Cubix server process. Instead of loading a
user application as is usually the case the server merely waits for I/O requests from any
node in the parallel computer.system.

While all standard I/O and graphics requests are available the stateless nature of the server
may make its operation slightly strange ina multi-user environment. Routines which affect
the state of the system such aschdi r will have ramifications beyond those nonnally
expected..In this case, for instance, aeall which changes the active directory of the server
for one user may invalidate requests to open files for another user.

OPTIONS

--n nodes Allocate nodes processor for this process. Default 1e

-d doc Alternative to -n switch.Specifysize·ofprocessor group logarithmically in
manner suitable for hypercubes (i.e., doc = Q for 1 node, doc = 1 for
two, doc = 2 for four, etc.) Default O.

-p Load the program into its processors but do not start it running. This option
is useful in connection with the node debugger ndb.

-t time Time out the process after the given number of seconds. This can be useful
in detecting 'hung'programs. The default is no time out.

-T option Specify a graphics option for programs that use PJotix.

-fp Execute the program on attached "vector" nodes, if available.

-f file Read the programs to be run and their arguments from the specified fue.
This option is used whenever different node programs are required or
different arguments should be passed to different nodes. The file fonnat is
basically single lines containing a range of nodes, an executable program
and an argument list. See the examples below.

-E custom file
Directs cubix to use an alternative system customization file rather than
the system default.

-m [x I c Ie] Enable the perfonnance monitoring tools. The 'x', 'c' and 'e' characters



cubix

refer to the execution, communication and event driven profl1ing systems
respectively and may be combined. For more details refer to the PM
manual.

-0 start node
Specifies which nodes are to be allocated to the program. An attempt wi! be
made to allocate consecutively numbered nodes starting at the indicated
number. If this cannot be done the cubix command will tenninate.

-5 Enter server mode. (Used on multi-host systems.)

arg1 arg2... These arguments are passed to the node main program as the conventional
runtime parameters argc, argv.

-0

-x

-1

EXAMPLES

Enable system debugging. With this option set cubix prints a huge amount
of data about the system as it runs. Should be of little interest to most users.

In windowing versions of Express such as the Macintosh or MicroSoft
Windows this switch forces the Express kernel to be re-Ioaded before
beginning the user program. It is essentially equivalent to mnning the
exinit program from the shell.

Print usage message

cubix -n 4 noddy

Loads the program noddy into four processors. No arguments will be passed to main (')
other than the program name in argv [0 ] .

cubix -d 1 -t 120 -mce longjob 3.14 2.72

Loads the executable longjob into two nodes with a total execution time limit of two
hours. Also passes two extra arguments to the node program. Finally enables both
communication and event driven perfonnance monitoring tools.

cubix -n4 -Tega plotter

Run the program p I att e r in four nodes and enable graphics output on an IBM Enhanced
Graphics Adapter.

cubix -n 1 -P buggy

This sequence loads a single node with the user code buggy but halts execution before the
users main routine. The job is run in background mode so that debugging can be carried oul

cubix -n 4 -f loadfile

This sequence allocates four nodes and then loads programs according to the instructions
found in the file loadfile. Basically the format is single lines containing either a node
number or a range of nodes followed by a program name and argument list Blank lines are
ignored and # introduces comments. Continuation lines, backslashes and quotes are
processed in the conventional manner. As an example consider the following sample
loadfile

13



cobix

# This is a command file specifying how. node programs
i s'hould be loaded into the cube.

0-1 proga foo bar
3progb horse dog cow
2 progc really\one\argument

Note that a range of nodes is indicated for proga and that the backslash symbol is used to
concatenate tokens into a single argument .. in the above caseprogc would have only two
arguments the name progcand·the string really one argument.

EXIT CODE

The cubix process exits to the shell with the same exit code as used in the call to exit ( )
in the node program.

DIAGNOSTICS

Among the errors detected by cubix are requests for more n,odes than are available and
missing program files. After validating that the specified program is indeed an executable
image it is loaded into the machine using the exload system call. This produces messages
about the size offile to be loaded and a single 'b' character for each 1024 byte block loaded.
A common situation is that in which the previous job crashed the node operating system in
which case the loader will say loading some number of bytes but no 'b's appear, or many
'b's appear and the final'E' but the program does nothing after the Starting message.
This 'is usually a good time to runexinito

Uponexitcubix reports the elapsed time dividedbetween·user and system. The latter
is time spent perfonning system function's such as program loading and is always rather
small. It is provided simply for compatibility with other systems running cubix
applications.

14



etool

NAME

etool - Analyze Event Profile

SYNOPSIS

etool [-p] [-t] [log_file_name]

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command is used to examine and analyze the event log created with the eprof
commands. The only argument is the name of the file containing the profile data which may
be omitted if it has the default value "eprof . out".

This package is exclusively graphical and menu-driven. The most complete source of
reference is the discussion in Section 4.4 of the PM manual.

OPTIONS

-p

-t

EXAMPLES

Suppress graphical output. The analysis results are presented in tabular form
on stream stdout.

Display only the data from the "toggle" events.

To examine the profile data ina file called "phase3 . prof" execute the command

etool phase3.prof

SEE ALSO

cubix in the Express documentation.

15



-r

excustom

NAME

excustom - Reconfigure Express.

SYNOPSIS

excustom [-r] [-?] custom file

DOMAIN

This command is available at the system prompton the host processor.

DESCRIPTION

excustom is used to modify the system parameters which describe a particular
implementation or version of th:e Express system. All system variables are maintained in
a particular file called the "Expresscustomization file" which is located in an operating
system dependent location. By default excustom will modify this file although another
may be indicated by the optional custom file argument.

In non-windowing environments excustom prompts, in turn, for values of all important
system parameters, offering defaults based on the values found in the current customization
file. If you do not enter any input on a particular line the original value will be taken. In
windowing systems a pop-up display is typically used to offer the current values of all
parameters for modification. You can then change individual entries at will. An additional
option restores·all· entries to "sensible" defaults which.guarantee. that Express will operate
correctly. (Thisoption.is obtained in the non-windowing environment by specifying the '­
r' switch,when·invokingexcustomo)

'The excu,stom tool. typic,allyasksonlyabout top level int:onnation from which it derives
all other related data using the "macro" mechanism discussed below. In some cases you
may need to modify individual system parameters at a fmer level of detail. This is achieved
by simply editing the customization file with a suitable text editor or word processor.. (You
can find the name of the default customization file with the '-?' command line option 0 ) The
exact meaning of all system variables is shown in the accompanying "Excustom" manuaL

In order for the customization file to take effect the system must be reloaded with the
exinit command.

onIONS

By default excustom prompts you with the current system parameters as
obtained from the customization file. With this switch "sensible" defaults
are used instead of the current values.

custom file This argument requests that the modification process be applied to the
named file rather than the default system configuration [tIe. This allows
excustom to be used by applications which maintain their own
customization systems.

16

-? Print the name of the default system configuration file.



excustom

IMPLEMENTATION

The customization file is a line oriented ASCII file which contains defmitions of important
system variables, one to a line. Lines beginning with either' ; , or '#' characters are treated
as comments. Other lines take either of the symbolic fonns

NAME=text
MACRO:=text

As is suggested by the above notation the fonner type are merely assignments to Express
system parameters while the second defme macros that may be further used in the
customization file to simplify definitions ofmultiple related objects. A good example might
be the default start-up information required by the debugger, ndb. As part of its
configuration information it needs to know the location of the on-line help facility and also
the system start-up file which contains the definitions of system commands. Since these are
often in the same or related directories one might imagine two entries in the customization
file of the type

NDB_HELPDIR=c:\parasoft\help
NDB_STARTUP=c:\parasoft\lib

These entries could, however, be replaced using the macro replacement facility with the
lines

PARASOFT:=c:\parasoft
NDB_HELPDIR={PARASOFT}\help
NDB_STARTUP={PARASOFT}\lib

Notice that the value of the PARASOFT macro is indicated with the' {, and ' }, characters.

While three lines may seem more complex than the original two the use of the PARASOFT
macro means that the Express system can be moved from one directory to another by
simply changing the macro rather than each line of the customization file.

SEE ALSO

excustom (subroutine), "Customizing Express'.

17



-B

-b base

exdump

NAME

exdump - Retrieve data from node RAM fues

SYNOPSIS

exdump [-?] [-B base] [-d doc] [-1 length] [-n nodes]
[-N node] [-N node-node] [-0 file] [-t threshold]
[-p pid] [-5 start] [device]

DOMAIN

This command is av'ailable at the command line prompt on the host processor.

DESCRIPTION

This command is used to retrieve the debugging information stored in the internal RAM
file under Cubix. It can be used either as a post-mortem dump or while a process is still
running. If set upcorrectly data c,an be retrieved after machine initialization with exinito
The device argument specifies which array the dump is to be taken from - in the current
implementation this should be left to its machine dependentdefaulto

By default the dump is assumed to contain ASCn data and continues until several
consecutive unprintable characters are seene An alternative is to dump in "binary mode" in
which case data is just read from the node file and sent to stdout. In this case options are
available to· both control the amount of data printed and also redirect the output to a file­
printing binary data to a terminal has rather detrimental effects on its behavioro

The detailed use of the RAM file .and its manipulation are fully described in the
accompanying Cubix documentation - "Programming Parallel Computers Without
Programming Hosts".

OPTIONS

Dump binary data instead of ASCIIo By default 16 Kbytes will be taken
from each nodeo

Defines the base address of the RAM file. Decimal, octal and hex constants
are valid base values. Note that this option potentially interacts .with the
linker/locator and also the parameters used in the r amfopen call. Consult
the Appendix discussing RAM files· in theCubix manual.

-d doc Dump data from 2doc nodes. This is an alternative to the -n option
designed for hypercube users.

-1 1ength Specify amount of data to be dumped from each node. In the default ASCII
mode less will be read if the data ends early.

-n nodes Specify number of nodes from which to dump data.

-t threshold
As currently implemented exdump is most.useful for retrieving printable
ASCII information. It continues reading data until threshold successive
unprintable characters are seen and then moves onto the next node. The

18



exdump

default threshold is five.

-N node Read the RAM file from processor node.

-N nodel-node2
Read RAM files from the inclusive range of nodes nodel-node2.

-0 file Redirect output to the named file. Default output is to stdout.

-p pid If the process whose file is to be examined is still active then its process ID
should be specified and its RAM ftIe will be read.

-s start Specify the physical node number from which the dump is to start. This is
useful in cases where the program ran in high numbered nodes and you are
dumping data after the program has stopped. Since the default allocation
strategy is to allocate the lowest numbered nodes with the required size it is
occasionally necessary to use this switch to "grab" the higher numbered
processors.

- ? Print usage message

EXAMPLES

exdump -d 1 -s 2

This command reads the RAM file from the default address in two nodes. The two
processors will, if possible, be those starting at node two in the array. This fonn of the
command is often used either after the node has "hung" in communication (and the nodes
had to be reset with exinit) or when the process finished but with some error. Note that
exinit nonnally initializes the contents of memory while loading Express so it is
necessary to use the excustom facility to prevent this if we wish to preserve RAM [tIe
data.

exdump -n 1 -B OxlOOO

Retrieves the data from a single node starting at address 1000 (hex). This fonn is used in
conjunction with the ramfopen call in Cubix.

exdump -p 376 -n 4 -N2-3

This option retrieves the infonnation currently contained in the RAM file of the process
whose process ID is 376. Data will only be dumped from nodes 2 and 3 in the group
allocated by the process.

exdump -b -BOx80001000 -0 xdump.out -1 4096 -n2

Dump 4 Kbytes of data in binary mode from two nodes. Write the output to the file
xdump.out.

NOTES

Numeric parameters may be specified in decimal, octal or hex using the usual C style
notation: 123 is decimal, 0123 is octal and Ox123 is hex. Switch values may follow
immediately after their switches or there may be intervening spaces: '-BOxlOOO' and '­
B OxlOOO' are both valid.

19



exdump

SEE ALSO

IICubix: Programming Parallel Computers Without Programming Hosts."

exinit (command)

20



exinit

NAME

exinit - Reboot and reload Express kernel.

SYNOPSIS

exinit [-K] [-m] [custom_file]

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

exinit must be executed before any routines may access the parallel machine - failure to
do so will result in the failure of all attempts to allocate processors. It loads the Express
kernel and starts it running in the node processors. It also performs any necessary hardware
configuration on systems which support such abilities.

exinit attempts to check that no node processes are actually executing before resetting
the hardware. Ifnode programs are detected exini t will report and suggest the use of the
'-K' switch. If this switch is supplied any node programs will be killed before the reset
operation is perfonned.

It is important that all node processors be reset before loading the Express kernel since
otherwise parts of the network may be inaccessible. Most hardware systems have
intelligent reset lines so that several boards may be reset one by another. If you are
connecting several hosts together the exreset command is available to reset a particular
subset of the network. It does not, however, reload the Express kernel. This must be done
with the exini t command from some other console.

The optional custom file argument is used to specify an alternative customization file
when downloading Express. This allows temporary modifications to the system
parameters for testing and also allows custom applications to maintain their own
customization infonnation.

A very important point to note about exinit is that, by default, it destroys the contents of
the node memory while loading Express. This behavior is normally quite reasonable with
the exception that one may wish to preserve the contents of some RAM file for use with
exdump or ndb. In this case the '-m' switch can be used to prevent memory initialization.
Alternatively the excustom tool has an option which forces the kernel to be loaded
without destroying memory by providing an explicit "start address". A good way to
proceed, therefore, is to make an system customization file which contains the load address
and then to re-Ioad Express by telling exinit to use this file rather than the system
default.

OPTIONS

-K By default exinit aborts if any processes are still running in the parallel
machine. This switch causes an attempt to be made to kill all such programs
before resetting and reloading Express.

-m addre s s Load Express into the nodes at the indicated address without destroying

21



exinit

the contents of memory. This is useful in conjunction with the RAM ftIe
system for debugging after system crashes. The address used will depend on
your hardware configuration.

custom file Indicates that a system customizationfile other than the default should be
used to load Expresse

- ? Print usage message.

EXAMPLE:S

exinit -m Ox80069000 -K

Reinitialize the machine by killing all currently executing processes and loading Express
at the indicated address. The cuttent.contents of node memory will remain intact, except
for the region near· 0x800 69000 which will be overwritten by the kernel.

SEE ALSO

exstat, '·CnfTool: Configuring Express', "Using Express with Multiple Hosts",
"Excustom : Customizing Express'.

22



exreset

NAME

exreset - Reset a group of nodes.

SYNOPSIS

exreset

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command is used to reset a set of boards without loading the Express kernel. If your
hardware configuration is capable of supporting a tree-like reset path in which all nodes can
be reset from a central "master" console this command will be totally unnecessary since
exinit will be able to reset and load Express into all nodes.

If your hardware does not support this chaining of reset signals then you will need to
partition the nodes into groups, each of which can be reset from a particular host. The
exreset command will then perform this operation allowing a subsequent exinit to
load Express into the entire network.

SEE ALSO

exinit, "CnfTool: Configuring Express'.

23



exstat

NAME

exstat - Display node usage information.

SYNOPSIS

exstat [-1] [device]

DESCRIPTION

exstat is us,ed to present statistics about the current node usage on the multiprocessor
device. The default value will be either /dev/transputer or /dev/ncube
depending on the hardware installed.

Without the -1 switch only the number of allocated nodes and the total number of nodes
are presented. The inclusion of this switch also provides information about which process
is allocated which nodes, and which processes share which nodes.

Until the system h,as been initialized with a call to exinit this utility will return the rather
disconcerting result that there are no nodes available.

OPTIONS

-1

-?

SEE ALSO

exinit

24

Produce an extended (long and infonnative) listing which includes the
process I. D. and physical node origin of all active processes.

Print usage message.



ndb

NAME

ndb - Symbolic, source and assembly level debugger for parallel computers.

SYNOPSIS

ndb [-?] [-I incdir] [-p procid] [-d doc] [-n nodes] file

DESCRIPTION

ndb is an interactive symbolic debugger for use on parallel computers. Two styles of
interface are available depending upon the particular hardware/compiler combination
available.

The simplest interrace is a source level debugger patterned after the UNIX utility dbx. At
this level the user is able to examine code, set breakpoints and examine variables at the
level of the original C or FORTRAN source code.

The lower level interface is designed for machine level debugging and is based on the
conventional assembly level debugger adb. It allows for the examination of both data and
assembly level code as well as the setting of run-time breakpoints. ndb incorporates a
sup,erset of adb commands which should facilitate its use.

ndb is always available at this second level and the commands associated with its use are
described completely in this document. The availability of the source level interface is
subject to compiler/hardware restrictions. The associated commands are described in this
manual but may be unavailable in some implementations.

In order to effectively debug parallel programs a simple extension to the conventional
debugger syntax has been made. This is the concept of a "set" of processors. Each
command is executed on some group of nodes which can be defined and altered by the user.
Several common groups of processors are predefined and user defined sets are also
available.

COMMAND LINE OPTIONS

-d doc

-n nodes

-p procid

-I dir

file

Specify dimension of subcube to be debugged. Default is 0 (1 node).

Alternative to -d switch - specify the number of nodes rather than its
logarithm.

Debug a background process. This option is useful in conjunction with the
-p switch to cubix ~hich loads a program and stops it at its starting point.
It is also used to perrorm post-mortem debugging on processes which are
"hung".

Specify a directory to be searched when looking for source code. By default
only the current directory is searched. This switch may be repeated multiple
times and the associated directories are searched in the order they are
specified.

Specify the program whose symbol table is to be read. Unless this name is
specified no symbol table entries will be available which significantly
reduces the capabilities of ndb.

25



ndb

-?

USAGE

Display infonnation about supported run·time switches.

pick

setdef

An introductory guide to the debugger is available elsewhere so the following sections
merely explain the syntax of the various commands. In nearly all cases the low level syntax
is exactly as in the regular UNIX command adb while ,the source level command shares
the same syntax as dbx.

l' Help

A cenainamount of on-line help is available by entering the help command. Various
topics may be selected for further perusal by entering

help topic

wheretop i c is the name of the required subject. The syntax for a particular command can
be found by using

help keyword

where keyword is the identifier whose usage is require(t

2 Sets

Each command is executed on a collection of nodes called a "set". A 'current set' is
maintained by ndb which is used unless overridden by prefixing ,a coannand with the on
keyword. There are three verbs used in manipulating sets.

on The followin~gset specification is used for tHe comrnafidthat follows
it and then the current set reverts to its previous value.

The current set is changed to the nodes listed.

Define a new set containing the specified nodes. The resulting set is
assigned an index number which is returned and can be used in
future set specifications.

The set specifications are built up from (comma separated) elements of the following types.
(In the following the symbol # denotes a decimal, integer, constant).

t A single node.

node # A single node.

I to # An inclusive range of nodes.

# thru # An inclusive range of nodes.

i - # An inclusive range of nodes,.

all All nodes in the subcube.

even, odd Either the even or odd parity nodes defined by the number of bits set
in the processor number.

set # The set with index # as given by a previous setdef instruction.
(Note that set numbers are indicated when using the setdef



ndb

command or with he "show sets" command.

nof # The "hypercube" neighbors of node t.
neighbors The "hypercube" neighbors of all the nodes listed so far.

board nO;nl
Specifies node n 1 on attached peripheral board nO. Ranges of nodes
may also be given as nl-n2.

3 Displaying Source Code

The simplest command for displaying source code is list. With no parameters this prints
out ten lines of program starting at the "current line". This latter is set implicitly during
program execution by the show state, where and single stepping commands. It may
be explicitly altered with

f i 1e name Set the "current line" to the first line of the named file. If no name is
given display the current file.

func name Set the "current line" to the first line of the named function. With no
parameters display the current function.

The list command has parameters itself which are either one or two integers separated
by a comma. The various combinations of positive and negative values are used to indicate
ranges of lines to display. A few examples should clarify the details.

lis t 20 Display line 20 only.

list 20 , 50 Display lines 20 through 50 inclusive.

list -5 Display ten lines starting 5 before the current line. This option
provides a "window" facility.

list -5, 20
Display 20 lines starting 5 before the current line.

list function
Display the first ten lines of the named function.

When source files are named, either explicitly in f i 1e commands or implicitly during
program execution an internal directory search path is used to look for appropriate source
files. Two methods are available for altering this path. When starting an ndb session the "­
I" command line argument names a directory which should be appended to the current
search list. Alternately the use command can be used - it is followed by a list ofdirectories
which replaces the current list. Thus

use ••• /src .. /lib .. /tst

might be given to name several directories in which source files are to be found. The order
of the entries in this list is important - directories are searched from left to right so possible
name clashes may have to be considered. Of course, if ndb fails to find the correct version
of a source file with its automatic search then the file command can be used with a full
pathname to override ndb's choice.

27



ndb

The use command with no parameters displays; the current search path.

4 StackOper.ations

The most useful command for finding the current status of the program is where. With no
arguments this command displays the top 8 levels of stack activity naming subroutines
called and displaying their arguments~ If less than 8 subroutines have been called the list
terminates with the system initialization routineo Ifmore, or less than 8 levels are required
then a numeric parametermay be given; on all where 3 displays the top three function
calls in all nodes.

It is important to note that these stack tracing operations require that several probing
messages be sent to each node. Asa result they may work incorre:ctly when the node
program ·is actually executing since the stack may be significantly different each time
leading. to inconsistent results. If this is a problem then one of the single step commands
can be used to effectively "stop" the nodes allowing where to succeed. The program can
be later continued with thecont command.

Another useful function in connection with tracing subroutine calls is isino One can say

on all isin main

to obtain a listing ofthe activity of all nodes which currently have the named routine in their
stacktrace.This is· a useful fonn of data reduction since it allows he user to immediately
discover which nodes are in the wrong place.

dump rout ine displays the calling sequence and local variables of the named routine if
it occurs in the stack backtrace.. If no function is specified then that containing the·')current
program counter is dumped.

Note· that these commands may interact with the language specification flag discussed in
context of the ndbenv command. Often different language compilers use different calling
sequences that cannot be dynamically inferred from the actual code. In this case a stack
trace may be invalid unless the language switch is set correctly.. To change from C (the
default) to Fortran, for example, one issues the command

ndbenv Fortran

Commands such as this are often best placed in the user's initialization file. ndbinit.

5 Displaying data

The simplest command for showing data values is print which takes a list ofexpressions
and prints their values according to the variable types indicated by the program. One can,
for example, type

print 1+2.5, my_struc

to which the response might be

1+2.5 = 3.5

my_struc = {
i = 12
f == 1. 44

28



Ddb

Some compilers do not preselVe information about symbol types in which case you have to
explicitly indicate in what manner you wish to see the data displayed. Occasionally you
may also wish to override ndb's choice offonnats for a printed variable.

Data display requests take the symbolic form

address, count / format

or

address, count ? format

The fIrSt form reads data from the nodes themselves while the second accesses the actual
executable on disk. For this reason the second fonn is to be preferred when looking at
assembly code while the frrst is most common for actual data.

Essentially the format field of the command is an instruction which explains how to print
data. This command is repeated count times starting at address. The address and
count fields may contain any valid expression (as explained below) while the format
field contains any number of modifier characters which denote how a particular datum is
to be fonnatted. The particular characters and their interpretation is as follows

D 32 bit integer
d 16 bit integer
o 32 bit octal
o 16 bit octal
X 32 bit hex
x 16 bit hex
U 32 bit unsigned
u 16 bit unsigned
b 8 bit octal
B 8 bit binary
c 8 bit ASCII
C 8 bit ASCII with interpretation of control characters
s Null tenninated string
S Null terminated string with control character interpretation
i Disassemble instruction
I Source module and line number (No'.' increment)
a Symbolic address (No '.' increment)
p Symbolic address
Y Date and time
t Tab
r Space
n Carriage return
+ Increment '.' by current amount

Decrement '.' by current amount
Backup '.' by current amount

29



ndb

Each of these characters can be preceded by a repeat count. ndbmaintains·an idea of the
current address on each node which is referred to by the special symbol '. '. Each of the
fonnatting instructions (except those specifically mentioned) increments this quantity by
the size of the object to be displayed.

Several other commands of this fonnat are allowed and are denoted by the modifiers listed
below

v Dump data as both hex and ASClle The count field denotes the
number of 16 byte lines of data to show. A repeat count before
the v character requests hex data values of that length (in bytes),
i.e., 4v requests a dump in 32 bit words.

1 value mask This command searches from the given address through
count bytes looking for a value which, when "AND"ed with
mask is equal to value. The default search length is 4096
bytes. Warning: this option is VERY slow

L value mask Searches for a 32 bit match. See previous modifier.

w value Write the specified 16 bit value at address

W value Write the given 32 bit value at addresso

6 Expressions

ndb recognizes most of the usual arithmetic operators in"expressions.. Symbolic constants
~ also reco~n~?;ed with or. without .. the ..• preceding '_'a~4ed by the C compiler or the
conversion to uppercase performed in Fortran. The scope rules for simple variable names
js to look in the current function (as <ienotedby the regi~ter PC or the most recent func
command) and then the external variable table. References to local variables in other than
the present function can be made by specifying a full symbol name of the fonn

function 'variable

NOTE that certain keywords are reserved for the use of ndb and
thus cannot be used as variable names. Since none of these words
begin with an '_' character the variable with the same name can
always be referenced by including the underbar.

The various legal expression elements are

The value of the current address.

30

<name

(exp)

name

routine 'name

The value of the named register.

The value of the enclosed expression

Address of the named symbol using. the scope rule that the
function denoted by the current program counter is searched frrst
followed by the external variable table. (Can be overridden with
the func command.)

The value of the variable name in the given subroutine which



ndb

must be in the current stack backtrace.

*

@

%
&

I

«
»

The following are allowed operators in expressions

+ Binary addition
Either binary subtraction or unary minus
Either a pointer dereference or binary multiplication
Binary integer division
Binary AND operator
Binary OR operator
Binary XOR operator
Unary NOT operator
Round fIrst operand to next multiple of second
Left shift.
Right shift
Pointer dereference

In addition to using expressions to specify addresses it is also possible to use ndb as a
regular integer calculator. The values of expressions are printed by following the
expression with '=' and a fonnat specifier as indicated in the previous section on displaying
data. Thus

Ox1234 + 16*(1«3 A {}2 - 3) = X

prints an uninteresting 32 bit hex value.

7 The "show" command

Various special commands have been added to the usual syntax to take advantage of some
special features of the parallel machine. These commands are all of the fonn

show something

where the something is chosen from the list (Other options may be available on your
system, type "help show" for details.)

breakpoints List active breakpoints.

pregs Internal processor communication registers.

queues Unread messages for this node.

regs General processor registers, current instruction and source
file location.

sets

state

User defined sets.

Process state, current instruction and source file location.

times Idle and active times in this processor.

Note that only an initial substring of the names listed above is necessary to pick options so
that snow st is equivalent to show state.

31



ndb

8 Arrays

The simplest way to printout array elements is with the print command described
previously. If you have to resort to the lower level fonnatting commands for some reason
then array indices are indicated in a different way.

This syntax. follows the C and Fortran notation with the addition that the user must specify
the declared dimensions of the array as well as the indices requiredc In C, therefore, the '
syntaxtoprintouttheelementlattice[2] [4] [5] £rom a lOx lOx 10 array as a 32 bit
integer is

lattice [2; 10] [4;10] [5;10]/D

where the values after 'the semi-colons are the declared dimensions of the array. In order to
perform offset calculations ndb has to know the size of an individual array element By
default the value is taken to be 4, correct for integer and 32 bit floating point data typeso If
the data item is actually of a different size - e.g., a byte or a structure then this can be
specified in braces after the array name. Thus to print out values from an array of sixteen
byte structures one might use

complicated{16} [3;8] [4;12]!ddfff

The notation for Fortran style arrays is similar with the array indices being paired up with
dimensions via semi-colons. An example might be

array(3;4, 5;120}/f

ndb understands the difference in ordering be~~~multi dimens~?,~al arr~ysin Cand
Fortran as well as the fact that Fortran array indic'esstarrat 1. Italso nests array"dimensions
arbitrarily deeply.

9 High level job control

Several high level commands are available for running and controlling user programs. The
ftrst set are used to start up either the debugger or the user application

run /string The command indicated by the "string" parameter is
executed and the debugger attempts to attach to the resulting
process as though started with an appropriate "-p" option. Ifno
string is given then the previous run command in re­
executed. I/O redirection is allowed with the usual '<', '>', '
>&', '»' syntax.

debug program process
This command can be. used to name the program that is to be
debugged after ndb has started. This is useful if more than one
executable is loaded into the machine since it allows switching
between symbol tables. The process argument is optional and
specifies the process-ID number of the program that is to be
debugged. The program argument can be the single character
'-' in which case no symbol table will be loaded but a process­
ID may still be given.

32



ndb

i 0 This command is used to redirect tenninal input to the user
program. Be default ndb reads all characters typed and
interprets them as debugger commands. After this command all
tenninal input is sent to the user program. To issue further
debugger commands use the keyboard interrupt sequence
(usually CfRL-C) to return control to ndb.

kill Kill the program being debugged. Confmnation is requested.

As well as these functions commands are also available to control the execution of the user
code at a finer level through breakpoints, single stepping etc. The commands are

stop in name
Insert a breakpoint at the first line of the named function.

stop at number
Insert a breakpoint at the indicated line in the current source file.
Note that this command interacts with the file and func
commands discussed earlier.,

stop variable

cant

step n

next n

status

Continue execution in single step mode and halt the program
when the named variable changes value. This command
executes rather slowly due to the interpretive nature of the
processing required.

Continue execution from a breakpoint, or single step. This
command interacts with the "wait" flag of the ndbenv
command - by default the ndb prompt appears immediately
allowing further commands to be entered. Alternately one can
specify that ndb should continuously poll the nodes until
another breakpoint is found or the application tenninates before
prompting again. This latter behavior is most common is
sequential debuggers but slows down ndb somewhat as polling
is an inherently slow process.

Single step the program over "n" lines of source code (default
1). If function calls are detected then the single stepping process
enters each subroutine. If the current node "set" contains a single
processor then this command will display the source lines as
they are stepped past.

Single step over "n" lines of source code without entering any
new functions. (Default 1 line). This option is similar to step
but avoids the problems of having to single step through system
functions etc. Source lines are displayed as processed if the
current "set" contains a single node.

Display the list of active breakpoints indicating which nodes
they are present in, where they are placed and an index number
used for deletions.

33



ndb

delete n Delete the breakpoint with index number"n"as detennined
from the status command.

Note that any of these commands may be prefixed bya "set" specification to allow different
actions to be performed n distinct nodes. Thus to insert breakpoints in only the fIrSt three
nodes one might use

on 0-2 stop at 23

10 Miseellaneouseomman.ds

Several miscellaneous commands are available to make debugging easier.

sh ~tring

! string Any command line that begins with 'I' or sh is executed by the
shell.

pwd

alias sl 52

source file

cd directory

Show current directory.

Change to an new directory. This is occasionally useful for
finding source files since the default search path starts with the
"current directory".

Read ndb commands from the named source file. This is useful
for perfonning repetitive tasks or for making data dumps.
Consider also the $> command which redirects the output from
the debugger. Bydefaultndb attempts to find a file named
.ndbinit}Il. either your home diI,"ec:~ory or the current
directory whenever started and reads initialization commands
from it.

Define a new command. Henceforth the command s 1 will be
treated exactly ·like the command·s 2. The command

alias 1 list

for example, allows one to use the single character'1 ' instead of
the list command. It is also possible to set up aliases with
arguments and defaults using the UNIX C-shell syntax. The
command

alias myuse use!: {l-.} !: {2- .. /src} !:3 !:4 !:5

quit

defines a new command for setting the source code search path.
S arguments are specified and the fIrst two have defaults" •" and
" .. / src" so that the simple command myuse can be issued
without any arguments to set the search path to '. •• / s rc' or
arguments can be specified to set the path to other things.

Exit ndb. If the user program started within ndb a "kill"
command will be given and you will be asked whether to
terminate the program or not. If the program started outside of
ndb it will be left alone.

34



C
FALSE
OFF
8192

ndb

11 The ndbenv command

This command defines the specific "environment" in which ndb is working. The currently
implemented settings are the high level language being debugged, the "wait" state, the
"repeat" mode and the "symbol match length". To see the options currently in effect type

ndbenv

which might yield

Language:
Wait mode:
Autorepeat:
Symbol match length:

Each of these options is explained below.

Language Certain features of ndb depend implicitly upon the high level language
being debugged - for example array indexing and stack tracing. By default
ndb is in the C mode suitable for the "e" language but may be switched
over to Fortran with the command ndbenv F.

Wai t mode This parameter controls the behavior of ndb upon receiving a cont or run
command. By default the prompt immediately reappears and the user is able
to enter further debugging commands while the node program continues to
execute. If the wait state is set to TRUE with the command ndbenv wait
then ndb continuously polls the nodes and only returns control to the user
when all nodes have stopped at breakpoints or with some error. This mode
can be turned off again with ndbenv nowait.

Autorepeat By default ndb repeats the last command entered whenever the user
command is a single carriage return. This feature can be disabled with the
command ndbenv norep.

Symbol Match Length
When translating memory address into variable names ndb uses a cutoff to
avoid translating system memory addresses into user variable names - i.e.,
addresses further than this length above a known symbol will be translated
into hex values rather than "name+offset". By default this cutoff is
32768 bytes. On occasions it may be necessary to increase this number so
that large functions appear by name in stack traces rather than as hex
numbers.

12 Assembly Level Debugging

In addition to the adb implementation effectively described in the next few sections the
following commands are available for debugging at the machine code level.

listi address Display ten machine instructions from the given address. If
none is given continue from the last address specified.

stepi n Similar to the step instruction but considers only the
machine code. Encountered subroutines are entered and the

35



ndb

nexti n

stopi address

machine registers are displayed if· the current··node "set"
contains only a single node.

Similar to stepi but passes over subroutine calls.

Place a breakpoint at the named address.

13 Assembly Level Job. Control

Variouscommands are available which allow one to control the execution of a node
program. They are all of the general form

argl, arg2 : modifier string

in which argl and arg2 may be any ge.neral expression and the various modifiers are
listed below. (Note .that some cases do not require arguments in which case argl and
arg2 can be omitted)

b Set a breakpoint at address argl. Note that only 8 breakpoints may ~e set
in any node at one time so an attempt to set more will result in a request from
ndb to delete an entry 0

d Delete the breakpoint at address argl.

s Step processor over a single·machine instruction.

c Continue .as from ·a breakpoint.

C Continue from breakpoint but instead of returning control to ndb
innilediately wait for the,.node specified as .. a rg1 to.· hit a breakpointo If
ar91 is omitted wait for node Oe

k Kill the process inside the··machine.

K Compare arg2 bytes of memory starting at address argl on all nodes in
the ~active set.

r Run the command specified by the string argument under the control of
the debugger. I/O redirection is available with the usual constructions '>',
'>>" '<' an, '>& ' • Note the comment above on terminal input to the running
process.

R Run a command, as with the r specifier, above, but wait for the process
specified in argl to hit a breakpoint before returning control to ndb. If
argl is omitted, wait for node O.

ndb leaves the debugger in control of the terminal even when continuing from breakpoints.
This is contrary to conventional sequential debuggers which nonnally switch over to
sending input to the debugged process whenever it is running. This distinction is made
because of the distributed nature of parallel applications where it is not unusual to have
some nodes running while looking at the state of others. If the running process requires
terminal input the single command i 0 switches control from ndb to the user process
sending all further keyboard input to that process. To return control to the debugger use the
interrupt sequence (usually CTRL-C).

36



ndb

14 Assembly Level System control

Various commands are available to control the way ndb interprets and outputs its results
and to access some of the more machine specific requests. They all take the general fonn

argl $ modifier string

where argl is any legal ndb expression and the modifiers are as follows

b List all active breakpoints. The notation for the nodes on which the
breakpoint is active is essentially a bit mask with each bit (reading from left
to right) denoting a single processor.

c Traceback of all active C procedures together with their arguments
interpreted as 32 bit hexadecimal constants.

C As in the 'c' option above but prints out the values of all known local
variables. Note that the appropriate compiler options must be used to
compile information about local variables.

d Set default base for numbers to 10.

e Print out all external variables and their values interpreted as 32 bit hex
constants.

f Traceback of all active Fortran subroutine calls. No argument infonnation
is supplied by the compiler so the fIrst few elements off the stack are
interpreted as 32 bit hex constants.

F Fortran traceback showing all local variables are 32 bit hex constants. Note
that the appropriate compiler switch must be used to include infonnation
about local variables.

m Print memory map of current program showing sizes of various data areas.

n Show internal processor communication registers.

o Set default base for input to octal

q Quit from ndb. If you entered ndb via the -p command line option the
node process is left alone. OthelWise it is killed.

r Print general processor registers together with an interpretation of the
current instruction and the source line/module infonnation.

s Set the maximum offset from the public symbol to argl for which ndb still
interprets an address as being within that function.

t Show a one line status summary for each processor showing the current
state, program location and source file/line number infonnation

w Set the output page width to argl.

> Redirect output to the file named in string

WARNINGS

Error checking in ndb is rather primitive. Furthennore if an error is actually detected it will

37



ndb

quite probably be misdiagnosedo Certain words are reserved for use in commands and
cannot, therefore, be used as variable n,ames. The full list of reserved words is as follows:
on, setdef, pick, thru, to, set, node, even, odd, all, show, help, quit, io,
neighbors, nof.

Programs which put the nodes into strange states may also affect the debugger in odd ways.

DIAGNOSTICS

The prompt issued by ndb attempts to indicate. the current set to which commands will be
applied. Most variations are self~explanatory except the mysterious word array which
indicates a node combination too complicated to figure out.

Syntactical errors on input generate many splendid messages, some of which might even
complain abouteITors.

If noprogralll is give.non the command line a warning is issued about the lack of a symbol
table.

Various out of memory errors produce both fatal and non-fatal diagnostics. Error recovery
from these cases mayor may not work~

Attempting to load a non-standard executable program will fail and produce a message
suggesting corrective .action.

BUGS

Printing non-floating pointvalues with the f or F formats occasionally leads to core dumps.
This sometimes happens' even with legal floating point values ··under XENIX due to
deficiencies in the run-time support.

The exact abilities of ndbdepend a lot on the underlying operating system and hardware
characteristics. Asa result it is not possible to implement all features ofndb in all Express
versions.

SEE ALSO

"NDB: A Guide to Parallel Debugging under Express."

38



tee

NAME

tee - Compile and link Express C and C++ programs for Transputers.

SYNOPSIS

tee [-B address] [-e] [-ooutfile] [-Dname[=value]]
[Idirname] [-Uname] [-E] [-g] [-dryrun] [-K] [-llibname]
[-r] [-P] [-5] [-TO] [-T4] [-T8] [-e name] [-N] [-x] [-n]
[@filelist] files ...

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command provides an interface to the Logical Systems C compiler useful for
compiling programs to be run under Express. Filenames ending with the ' •c' suffix are
taken to be C source code and are compiled while those ending with ' •tal' are treated as
assembly code source and assembled. In both cases the resulting output files have the
, . t r l' suffix. Note that the preprocessor is run on assembler files by default allowing
some of the advanced features of the Logical Systems assembler to be used.

After compiling all source files tee proceeds, by default, to link the resulting object files
into an executable program. If no '-0' switch is provided this will have the name
trans. tld. By default libraries are searched which allow access to the Express
communication routines only. The Cubix and Plotix subsystems are included with the ­
lcubix and -lp'lotix switches respectively. (It is important to note that programs
linked with either of these switches CANNOT be executed with Donna! host programs in
the "host-node" mode. Similarly programs compiled without one of these switches will not
run with the eubix program.) .

In addition to producing the executable image two additional files are (optionally)
produced which have suffices ' • sym' and ' •map'. The fonner is used by the source level
debugger ndb while the latter is of general interest - it contains infonnation about the
memory locations ofprogram variables and which libraries and object files were searched.

By default all compilation/linking is perfonned for T800 tr~sputers.Note that object fues
and libraries are not necessarily interchangeable between the two CPU types since
instructions may be generated that are not supported on both types of hardware. The '-T4'
switch is provided to force the generation ofprograms suitable for execution on T400 series
systems. The '-T0' switch attempts to generate code independent of the transputer type by
omitting instructions specific to only one model. Note that this switch does not support
floating point operations.

OPTIONS

-B address Specify alternate load address for program. By default loading is performed
at the beginning of "off-chip" memory. (See "Excustom" in the IIExpress
users guide" for more information.)

39



tee

-c

-dryrun

-Dnarne

-Dname=value

Compile only· - do not proceed to link resulting obJect files.

Print the commands to be executed without actually performing any of
them. This options implies both '-x'and'-N'.

40

Define preprocessor symbol and optionally assign a value.

-e name Specify an alternate ·entry point. By default the user program is entered
through initialization routines required by Express.

-E Run preprocessor only. OU.lput is left in a fue with the suffix '.pp'.

-f2 Use 32 bit floating point arithmetic for all "double" variables. (Default is
64 bit.) Other options are also available - see the Logical Systems
documentation for more details.

-g Include additional symbol table infonnation for source level debugging.
This switch adds additional code at entry and exit ofAU subroutine calls to
enable stack-tracing which can significantly slow down execution.

-K Disable stack tracing. Used to suppress Slack tracing, even when '-g' switch
is given,.

-Idirectory Add a directory to the path·searched when looking for 'tinclude' fues.

-lcubix Search the Cubix library for unresolved symbols in addition to that required
by Express.

-lplotix Search bothCubixand Plotixlibraries for unresolved symbols.

-n Execute the link phase of compilation on transputers rather than the host
system. (Only available on some systems.)

-N Keep all intennediate files. (Default is to delete them after use.)

-0 name Specify an alternate name for the executable program produced by the
linker. Default is 'trans. tld'.

-p Run preprocessor only. Output remains in a file with the extension ' •pp' .

-r Generate "position-independent" code which can be relocated at runtime.

-5 Produce assembly code listing of C source program.

-T4 Compile for T400 series transputers.

-T8 Compile for T800 series transputers.

-Uname Undefine a preprocessor symbol. Reverses the effect of'-D' switches or
'idefine'· statements.

-x Display all commands before executing them.

@filename Take "filename" tobea ftIe containing a list of source or object files to
be compiled or linked, one name to a line.



-?

EXAMPLES

Print usage message.

tee

tee -e hello.e

Compile, but do not link the C source file hello. e. The resulting object file will be called
hello. trl and will be for the T800 series transputers.

tee -0 prog fl.trl f2.e f3.trl -leubix

Compile file f 2 • e and proceed to link it with fl. t r l, f 2 • t r 1 and the Cubix libraries
to make an executable program called prog. This executable will run on T800 transputers.

tee -T4 -0 prog4 gl.trl g2.e g3.trl -lcubix

This example is the same as the previous one but the resulting executable rue, called
prog4 will run only on T400 series transputers. Notice that one cannot mix transputer
types so the object files g1. trl and g2 . trl must have also been produced with the ­
T4 switch.

tee -5 -T4 foo.e

Generate an assembly code listing of the C source file foo. c suitable for a T400 transputer
system.

tee -Imyine -DCUBIX -c noddy.c

Compile but do not link the C source code in the file noddy. c for a T800 series transputer
system. Additionally define the CUBIX symbol and search the directory myinc when
attempting to satisfy #inelude statements.

tee -g -c noddy.e

Compile, but do not link, the rtIe noddy. e for a T800 series transputer. Include both
source line numbering infonnation and also additional entry/exit subroutine calls to enable
stack tracing. Note. that the code resulting from this file will execute rather more slowly
than would be the result if the '-g' switch were omitted.

tcc -0 prog -g prog.bin subs.bin -leubix

In this case the two named object files are linked together to produce an executable program
called prog. In addition a symbol table called prog. sym will be created for use with the
source level debugger, ndb.

MULTIPLE INPUT FILES

Some operating systems impose constraints on the length of a command line which
preclude the linking of large programs with many input files using the standard tee
syntax. In this case tee allows the list of filenames to be provided in a file and passed to
the compiler using the '@' syntax. Consider, for example, a program made up of ten object
files with names "object0 . trl", "object1 . tr1" and so on up to "object 9 . trl".
In this case we would creat~ a file containing the ten lines

objectO.trl
objectl.trl

41



tcc

42

objeet2.trl

object9 0 trl

and save it with a name such as "link .1st"cWe could then invoke tee with a command
such as

tee -0 prog ~g @link.lst -lcubix

to link the program with theCubix libraries, build a symbol ta.ble for debugging and name
the output file .prog. Note that the sufftx ' .lnk' should not be used since tee us,es that
name internally.



tcc31

NAME

tcc3l - Compile and link Express C Transputer node programs.

SYNOPSIS

tcc3l [-B address] [-c] [-ooutfile] [-Dname[=value]]
[-Idirname] [-Uname] [-dryrun] [-i] [-g] [-llibname]
[-T4] [-T8l [-x] [-N] [@filelistl files ..•

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command provides an interface to the 3L C compiler useful for compiling programs
to be ron under Express. Filenames ending with the ' • C' suffIX are taken to be C source
code and are compiled. In both cases the resulting output files have the ' •bin' suffix.

After compiling all source files tee proceeds, by default, to link the resulting object files
into an executable program. If no '-0' switch is provided this will have the name
trans. tld. By default libraries are searched which allow access to the Express
communication routines only. The Cubix and Plotix subsystems are included with the ­
lcubix and -lplotix switches respectively. (It is important to note that programs
linked with either of these switches CANNOT be executed with Donnal host programs in
the "host-node" mode. Similarly programs compiled without one of these switches will not
run with the cubix program.)

In addition to producing the executable image two additional files are (optionally)
produced which have suffices ' • s yrn' and ' •map'. The fonner is used by the source level
debugger ndb while the latter is of general interest - it contains infonnation about the
memory locations of program variables and which libraries and object files were searched.
The map file also contains the error messages, if any, from the linker. If the program aborts
with a message such as

Failed to find .b4 file

this usually indicates that the link process failed with some error which can be located by
searching for the string "ERROR" in the" •map" file.

By default all compilation/linking is perfonned for T800 transputers. Note that object fues
and libraries are not necessarily interchangeable between the two CPU types since
instructions may be generated that are not supported on both types of hardware. The -T4
switch is provided to force the generation of programs suitable for execution on T400 series
systems.

It is important to note that the 3L compilers/linkers execute directly on the fIrst transputer
in the ,attached network and destroy and Express programs executing there, including the
Express kernel itself. It is necessary to re-Ioad the system with the exinit command
before running any program.

43



tcc31

OPTIONS

-B

-c

-dryrun

-Dname
-Dname=value

-g

-i

- I di'rectory

"lcubix

-lplotix

-N

-0 name

-T4

-T8

-Uname

-x

@filename

-?

Specifyaltemate load address for program. By default loading is perfonned
at the beginning of "off-chip" memory.

Compile only - do not proceed to link resulting object files.

Print the commands to be executed without actually perfonning any of
them. This options implies both '-x' and'-N'.

Define preprocessor symbol and optionally assign a value.

Includeaddition,al symbol table infonnation for source level debugging.
Used at link time to force the generation of a symbol table for use with the
deb,ugger, ndb.

Do not search any of the built-in default directories for include files. Rely
solely on the definition of the 3LCC_INC environment variable.

Add a directory to the path searched when looking for '#include' files.

Search the Cubixlibrary for unresolved symbols in addition to that required
by Express.

Search both Cubixand Plotix libraries for unresolved symbols.

Keep all intermediate files instead ofdeleting them.

~pecify an alternate nam.e f()r the e~ecut3:ble"program prexluced by the
linker. Default is 'trans. tId'.

Compile for T400 series transputers.

Compile for T800 series transputers.

Undefine a preprocessor symbol. Reverses the effect of '-0' switches or
'#define'statements.

Generate a listing of all command lines before they are executed. This
option is useful if certain commands need to be run by hando

Take "filename" to be a fIle containing a list of source or object files to
be compiled or linked, one name to a line.

Print usage message.

INCLUDE FILE PROCESSING

The rules regarding the searching for include files in the 3L compiler are quite tricky. On
UNIX systems some attempt is made to locate system include ftIes according to the
customization infonnation supplied when installing the system. While this method is
usually effective it can lead to extremely long command lines which cannot be processed
by the 3L compiler. To avoid this situation the '-i' switch should be given, which
suppresses the default search completely. In this case only those directories specified in the
3LCC_INC environment variable will be searched when looking for include files.

44



tcc31

Under MS-DOS no attempt is made to locate default include file directories since the
resulting command lines are nearly always too long for processing. In this case t c c 31 will
not execute unless the 3LCC INC variable is defined. IT no such variable is found a
suggestion will be made as to the correct assignment.

EXAMPLES

tcc3L -c hell0.c

Compile, but do not link the C source file he110 • c. The resulting object file will be called
hello .bin and will be for the T800 series transputers.

tce3L -0 prog fl.bin f2.e f3.bin -lcubix

Compile file f2 . c and proceed to link it with fl . bin, f2 . bin and the Cubix libraries
to make an executable program called prog. This executabl.e will run on T800 transputers.

tee -T4 -0 prog4 gl.bin g2.c g3.bin -lcubix

This example is the same as the previous one but the resulting executable rI1e, called
prog4 will run only on T400 series transputers. Notice that one cannot mix transputer
types so the object files gl •bin and g2 . bin must have also been produced with the ­
T4 switch.

tee3L -5 -T4 foo.e

Generate an assembly code listing of the C source file f 00 . c suitable for a T400 transputer
system.

tce3L -Imyinc -DCUBIX -c noddy.c

Compile but do not link the C source code in the file noddy. c for a T800 series transputer
system. Additionally define the CUBIX symbol and search the directory rnyinc when
attempting to satisfy tinclude statements.

tec3L -0 prog -g prog.bin subs.bin -lcubix

In this case the two named object files are linked together to produce an executable program
called prog. In addition a symbol table called prog. sym will be created for use with the
source level debugger, ndb.

MULTIPLE INPUT FILES

Some operating systems impose constraints on the length of a command line which
preclude the linking of large programs with many input [ties using the standard tcc3l
syntax. In this case tcc31 allows the list of filenames to be provided in a file and passed to
the compiler using the '@' syntax. Consider, for example, a program made up of ten object
files with names "object0 •bin", "object1 . bin" and so on up to "object 9 . bin".
In this case we would create a file containing the ten lines

objectO.bin
objeetl.bin
object2.bin

object9.bin

4S



tcc31

and save it with a name such as "link. 1st". We could then invoke tee3l with a
command such as

tee31 -0 prog -g @1ink.lst -lcubix

to link the program with the Cubixlibraries, build a symbol table for debugging and name
the output ftIe p r og. Note that the suffix ' •1nk' should not he used since tee31 uses that
name internally.

DIAGNOSTICS

If the linking procedure fails for some reason a rather uninfonnative message similar to

Failed to find .b4 file

is often generated. In this case the" •map" file should be consulted for error messages. (A
good way to do this is to search for the string "ERROR" with a text editor or similar.)



tfc

NAME

t f c - Compile and link Express FORTRAN Transputer node programs

SYNOPSIS

tfc [-c] [-0 outfile] [-g] [-llibname] [-T4] [-T8]
[-dryrun] [-x] [-N] [@filelist] files ...

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command provides an interface to the 3L FORTRAN compiler useful for compiling
programs to be run under Express. Filenames ending with the' • f' suffix are taken to be
FORTRAN source code and are compiled. The resulting output files have the '. bin'
suffIX.

After compiling all source files t f c proceeds, by default, to link the resulting object files
into an executable program. If no '-0' switch is provided this will have the name
trans. tId. By default libraries are searched which allow access to the Express
communication routines only. The Cubix and Plotix subsystems are included with the ­
lcubix and -lplotix switches respectively. (It is important to note that programs
linked with either of these switches CANNOT be executed with nonnal host programs in
the "host-node" mode. Similarly programs compiled without one of these switches will not
run with the cubix program.)

In addition to producing the executable image two additional files are (optionally)
produced which have suffices ' . s yrn' and ' • rnap '. The fonner is used by the source level
debugger ndb while the latter is of general interest - it contains infonnation about the
memory locations ofprogram variables and which libraries and object files were searched.

By default all compilation/linking is perfonned for T800 transputers. Note that object flies
and libraries are not necessarily interchangeable between the two CPU types since
instructions may be generated that are not supported on both types of hardware. The -T4
switch is provided to force the generation of programs suitable for execution on T400 series
systems.

OPTIONS

-c

-dryrun

-g

-lcubix

-lplotix

Compile only - do not proceed to link resulting object files.

Print the commands to be executed without actually petfonning any of
them. This options implies both '-x' and '-N'.

Include additional symbol table infonnation for source level debugging. If
specified at link time force the generation of the' • s yrn" file for debugging.

Search the Cubix library for unresolved symbols in addition to that required
by Express.

Search both Cubix and Plotix libraries for unresolved symbols.

47



tre

-N

-0 name

-T4

-T8

-x

@filename

-1

EXAMPLES

Keep all intermedia~eftles instead ofdeleting them.

Specify an alternate name for -the executable program produced by the
linker. Default is 'trans. tId'.

Compile for T400 series transputers.

Compile for T800 series'transputers.

Print each command before executing it

Take "filename" to be a fIle containing a list of source or object files to
be compiled or linked, one name to a line.

Print usage message.

tfc -c hello.f

Compile, but do not link the Fortran source file he110 . f. The resulting object file will be
called hello. bin and will be for the T800 series transputers.

tfc -0 prog flebin f2.f f3.bin -lcubix

Compile file f2 • f and proceed to link it with fl . bin, f2 •bin and the Cubix libraries
to make an executable program called prog. This executable will run on T800 transp,uters.

tfc ~T4 -0 prog4 gl.b~n g2.f g3.bin -lcubix

~is eJt~g!~.is tile sarn.e .....~•. the previous one but the. re~mlting executa;~!~<rJ1e, called
prog4 will run only on T400 series transputers. Notice that one cannot mix transputer
types so the object files gl. bin andg2 .bin must have also been produced with the ­
T4 switch.

tfe -0 prog -g prog.bin subs.bin -lcubix

In this case the two named object files are linked together to produce an executable program
called prog. In addition a symbol table called prog. sym will be created for use with the
sourceleveldebugger,ndb.

MULTIPLE INPUT FILES

Some operating systems impose constraints on the length of a command line which
preclude the linkin.g of large programs with many input files using the standard tee
syntax. In this case t f c allows the list of filenames to be provided in a file and passed to
the compiler using the '@' syntax. Consider, for example, a program made up of ten object
files with names "objeetO . bin", "object1 . bin" and soon up to "object 9 •bin".
In this case we would create a file containing the ten lines

objectO.bin
objeetl.bin
object2.bin

objeet9.bin

48



tfc

and save it with a name such as "link . 1st". We could then invoke tfc with a command
such as

tfc -0 prog -g @link.lst -lcubix

to link the program with the Cubix libraries, build a symbol table for debugging and name
the output file prog. Note that the SUffIX' .lnk' should not be used since tfc uses that
name internally.

DIAGNOSTICS

If the linking procedure fails for some reason a rather uninfonnative message similar to

Failed to find .b4 file

is often generated. In this case the " •map" file should be consult~ for error messages. (A
good way to do this is to search for the string "ERROR" with a text"editor or similar.)

49



xtool

NAME

xtool - Analyze Execution Profile

SYNOPSIS

DOMAIN

This command is available at the system prompt.on the host processor.

DESCRIPTION

This command is used to examine and analyze the log file created with the execution
profiler, xprof, commands. The [lIst argument is the name of the executable program to
be profiled and the second is the name of the fde containing the profile data. This may be
omitted if it has the default value "xprof . out". Note that the execution profiler relies on
data contained in a symbol table for correct functioning. This can usually be made by
specifying the '-g' switch when linking the program -= the same procedure as used for
debugging with "ndb"..

This command presents a separate table on stdout from each node. The infonnation
contained in each table is:

• An identifier showing which node the following data is frome

• A summary of the busy and idle time in each processorc In this regard we measure CPU
time 80 that the only "idle" time is when the apu is not activelyexecutin,g the process
such as when waiting for a message to arrive. All other classes of activity are counted
as "busy". Note that this interpretation is different from that of ctoal which
distinguishes between .calculation and communication time.

• A count of the number of profiling "misses". Since the buffer supplied to the profiling
function profil may not be large enough to encapsulate the entire program it is
possible that the execution proftler will "miss" occasionally - i.e., the program will be
executing at an address which lies outside the region mapped by the profil call when
it tries to log the profile event. In this case the "miss" counter is incremented. The ratio
of hits to misses is presented to give a guide to the effectiveness of the profile obtained
- a lot of misses means that the routines in the profile list may not, in fact, be the most
heavily used.

• A profiling list containing the most heavily used 20 functions in the program. Each
shows the fraction of the total profiling events that it corresponds to.

This data appears on stdout.

EXAMPLES

To examine the profile data in a file called "phase3. prof" created by the program
master execute the command

xtool master phase3.prof

so



SEE ALSO

cubix in the Express documentation.

xtool

51



FORTRAN runtime library

Library routines available to Express
programs written in FORTRAN



.~ This (large) section of the manual is devoted to a listing of the contents of the subroutine library
which is invoked by Express programs.

Since parallel processing is an inherently complex activity the capabilities of Express are
correspondingly broad. This, in turn, leads to a very extensive set of functions which may appear
daunting to those familiar with other parallel processing systems or totally unfamiliar with parallel
computing. These users should not, however, be put off by the long list of routines given in this
section since we have found that practical applications use only a small fraction of the available
number. Unfortunately different programs tend to use different small subsets of the total list which
makes predictions difficult.

As a help in selecting the appropriate functions we have tried to indicate routines with similar or
related functionality in the "SEE ALSO" section at the end of each manual page. In conjunction
with the full manual and the numerous "EXAMPLES" this should give a reasonable guide.

One of the most important pieces of infonnation contained on each manual page is in the
"DOMAIN" section. This paragraph tells you whether the routine in question is available to
programs running on the "host" computer or to those running on the nodes of the parallel computer
system. In the latter case there is also an indication of which library switch is required to gain
access to the routine. Note that this information must be used in conjunction with that concerning
the "Host-Node" and/or Cubixprogramming models.

If you are using the fonner style of computation then only routines shown as appearing in all node
libraries may be called from your "node" programs. Routines shown as appearing in the Cubix or
Plotix libraries cannot be called from such programs.

On the other hand, if you .are using the Cubix model ofcomputation you may freely call nearly all
of the routines described in this manual being careful only to specify the Plotix libraries for the
graphical routines. The exceptions in this case are those routines which specifically interface to
similar routines in the host processor - since you will not be writing a program to run on the "host"
you cannot call the corresponding routine there! Typical examples are the CP fELT combinations
such as KCPCP and KCPELT. To achieve the effect of these routines in Cubixprograms one would
instead use KCPEND.

The infonnation regarding which routines are available in which libraries and to which type of
programming models they belong is summarized in a later section of this manual where we also
show the correspondence between the various language variants of Express.

The various routines contained in Express can be classified according to their functionality in
several broad categories. The following sections attempt to indicate some of the important features
of each and also to supply, in a condensed fonn, some information about important Express
parameters and the header files necessary to use them.

1 High Level Communication System

This section describes the communication system available to application programs under
Express. Several levels of functionality are provided although some features are common to all.
While one may use the system to send messages to specific destination processors by specifying
their processor numbers one can also use the primitives in a "topology-independent" manner.

The KXGRI D system allows problems to be specified in the domain of the user data structures and

S3



can be used to determine processor numbers automatically for use in the communication
primitives. Using this system it is possible to design applications that have absolutely no
knowledge of the underlying hardware topology and which will, in fact, execute transparently on
any hardware that supports Exp.ress. Similar routines are available to dynamically configure an
application to the available processing resources at runtime.

Several concepts underpin the entire communication system and can be summarized as follows;

• All messages have "destinations". This merely specifies the node to which the message
will be sent.

• All messages are "typed". As well as the infonnation concerning what data is lobe sent
and to whom every message has a type field which allows receivers to distinguish
between various messages.

• The message reception mechanism has an "acceptance" criterion. All read routines may
specify source and type infonnationwhich constrains the range of messages which
may be read. This infonnation may either limit attention to specific node/type
combinations or various degrees of "dontcaren behavior may be specified using the
wildcard value NO·CAREe

• Both blocking and non-blocking read functions are supplied.

• Mes.sages are "atomic". A single read operation corresponds to·asingle write operation..
If the sender transmits more data than is read then the excess are discarded and may
NOT be read with another read request. If less data are sent than were requested
then tlle mes~~e is read a~? ~returncode indicates.the discrepanCY - another read
request may notmake up the difference unless another write request is also madeo

On a more functional·level the following generalities may also be observed:

• The."nooe" and "type" informa~i9n associated with a message are ~ways r~tumed to
the calling routine. In read requests, for example, a wildcard specification will be
overwritten with the actual parameter value.

• The general ordering of arguments is: what, how much, where and type - i.e., the fIrSt
argum.ents specify what data is to be transmitted, the second how much, the third
indicates to whom the data should be sent and the last argument denotes the type of
the associated message. This standard leads to an obvious calling sequence for the
simplest "read" and "write" operations

ISTAT = KXREAD(BUFFER, LENGTH, ISRC, ITYPE)
ISTAT = KXWRIT(BUFFER, LENGTH, lDST, lTYPE)

Some calls which both read and write data have the above sequence duplicated for both
operations so the exchange function, for example, has the calling sequence

ISTAT = KXCHAN(INBUF, INCNT, ISRC, ITYPE,
OUTBUF, OUTCNT, lOST, OTYPE)

2 Hardware Dependent Communication System

Express has been carefully designed to allow programs to be written which will execute

54



transparently on a wide variety of different parallel architectures. As a result, none of the basic
primitives make any reference to the underlying hardware configuration. On occasions, however,
portability may be a less important goal than absolute performance on a particular piece of
hardware. To support those users who have this type ofconstraint an Express subsystem has been
provided with a "raw" interface to the communication hardware. Typically the use of these routines
disables most of the higher level processing of which Express is capable such as the debugging
and performance analysis tools. For this reason we suggest that its use be adopted as the final stage
in the development of any parallel processing project after whatever bugs and/or petfonnance
questions have been resolved by using the full Express system.

3 Synchronization

One of the key concepts which underlies all of Express concerns interprocessor synchronization.
In some sense this issue is the key to all ofparallel processing - different algorithms can most often
be classified not by the particular scientific or other field from which they arise but by the way in
which they necessitate interprocessor synchronization. In Express we classify two types of
behavior:

• Asynchronous
"Asynchronous" system calls can be made in any node at any time regardless of the
activities currently occurring in other nodes. One can consider that the node making
the call is operating totally in isolation.

• Loosely synchronous
A "loosely synchronous" system call can be perceived as a barrier to the further
progress of the program. When one node makes a loosely synchronous call it waits
for all other nodes to make the same system call (albeit with possibly different
arguments). When all nodes have made the call every node proceeds. This concept
might be classed "synchronous" but this is too restrictive - it is quite pennissible for
one node to make the "loosely synchronous" call far ahead of the other nodes. All
nodes will, however, be synchronized after the call completes.

Note that these behaviors are not (usually) states of the system but are applied individually to
different function calls. The function KXWRIT, for example, which sends an Express message
may always be made asynchronously - i.e., any node may send a message at any time. Similarly
any node may call KABORT to tenninate a program at any time. On the other hand, KMULTI, the
system call which switches between file I/O modes must always be made "loosely synchronously".

Because the synchronization properties of a parallel program are often the key to its construction
and optimization, the situation is actually more complex than just discussed.

The default state of Express is that every system call has an associated synchronization property.
These states are listed in section 3 of this manual. Also available (in the Cubix library) is a global
override function, KCBXSY, which switches all system calls to asynchronous mode.

At a slightly more useful level, each open file has its own synchronization property. This allows,
for example, a program to have a global input stream for basic par~eters, individually (and
asynchronously) accessed data files for operational d~ta and error reporting, distributed
(synchronized) files for output data, etc. In each of these modes different requirements are made
by Express on what c~ and cannot be done to the files.

S5



Even within the "asynchronous" functions thereare·different levels of behavior. The KXWRIT
function mentioned earlier, for example, may be called at any time in a user program, but it does
not return. to its caller until a message has been transmitted.10 the receiving node. The analogous
KXSEND systemcall also· sends a message to another processor but returns immediately to its caller
without waiting for the data to be transmitted. While both of these calls are "asynchronous" in the
sense that the start of the operation may occur in any node at any time KXSEND is clearly "more"
asynchronous than KXWRIT because the point at which the buffer containing the data which has
been sent can be re-used is not known when the call returns.

This discussion may have convinced you that the topicof·interprocessor synchroniz.ation is too
complex to ever· be understood. This is not, however, the case. While it is true that many of the
elementary bugs in Express are,caused by·violations of some synchronization constraint they are
remarkably easy to find and eliminate using tools like the ParaSoftdebugger, ndb. Furthennore,
the existence·of these synchronization constraints tends to help rather than hinder the development
process. Muc,h care has gone into the I/O system, for example, to make the synchronization as
natural as possible. Typically we find that the message

abort (-1)

(which is the response oftbe cubix program to a violation of a synchronization rule) is indicative
ofan error in the user application which might otherwise h.avegone unnoticed or else caused other
problems to occur later on.

4 Decontpositlon Tools

This section describes the utilities used to automatically distribute problems among parallel
processors. The· Express manuals describe a set of communication·primitives'designoo·to allow
"topology independent communication". Problems can be specified in their own. natural. domain coo

two dUnensions for image processing applications and three for aircraft simula'tion, for example.
The utilities in this. section are then provi4ed to assign .the "processor numbers" used by the
communication routines described in the previous section.

Also available is another utility which allows applications access to certain important runtime
parameters. In conjunction with the other utilities this allows programs to be dynamically
configured, at runtime, to the system on which they execute. This allows, for example, a program
developed on a four processor system to be run on a 1000 node production machine by merely
changing a single command line parameter.

5 Multitasking Support

Express supports a powerful remote multitasking facility which allows programs running on any
processor in the system to initiate a "task"on another node of the parallel computer. This system
is built around the KXHAND function which associates a program segment with a particular
message type. Upon the arrival of a registered message type· the indicated program section is
triggered as a separate task which is then free to pursue its own independent execution path.

In support of this multitasking facility is a set of semaphore operations designed to'allow two or
more processes on a node to cooperatively update shared data.

-!

S6



6 Processor Allocation and Control

This section describes in detail the control functions at the lowest levels of Express. They are used
in "Host" programs to allocate groups of processors, load programs and start execution. Note that
this section will not concern you if you intend to use the Cubix programming model since the
cubix program takes care of the necessary steps automatically.

The unifying concept of this section is that of the processorgroup. This is the fundamental unit of
processor allocation - processors are allocated to processor groups which are then treated as a unit.
When programs are to be loaded into processor groups the processor group index must be
specified.

PROGRAM FIRST
INTEGER PGIND

c
COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC

c
C-- Set up Express and its common block.
C

CALL KXINIT
c
C-- Allocate four transputer nodes anywhere in array.
C

PGIND = KXOPEN('/dev/transputer', 4, NOCARE)
IF(PGIND .LT. 0) THEN

WRITE(6,*) 'Failed to allocate 4 processors'
STOP

ENDIF
c
C-- Load application, "noddy" into all processors.
C

ISTAT = KXLOAD(PGIND, 'noddy')
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'Failed to load program'
STOP

ENDIF

As well as allowing a single host process to allocate and manipulate more than one group of
processors it is also possible for two or more users to simultaneously allocate and work with groups
of processors. (Provided, of course, that the host operating system allows multitasking. This
features is not, for example, supported under MS-DOS.) It is even possible for multiple host
processes to share access to the same group of processors. This mechanism allows multiple,
disjoint, front end processes such as a file serving utility and a complex graphical user interface to
both have access to the same group of nodes. Routines are available to ensure that the processes do
not interfere with each other.

57



All the routines in section return -1 to indicate errors. Some also write diagnostic messages and
some cause immediate tennination of the calling process. In any case the parallel machine should
remain intact and available for use by other applications and users.

7 110.Services

The CubixIlO library is available to programs using the Cubixprogramming model and associated
server process. In principle, It provides a full set of utilities as well as many extensions designed
explicitly for parallel processing. Unfortunately, due to the abysmal lack of any standardized fonn
of FORTRAN I/O the current FORTRAN implementations of Cubix fall somewhat short of
perfection. For this re.a8on a highly non-standard but useful set of SUBROUTINES and
FUNCTIONS have been ·made availa.ble to supplement the normal FORTRAN language
statements. Using these (parallel) extensions it is possible to make use of the full power of the
Cubix system albeit at the expense of losing portability.

The standard FORTRAN I/O interface is not documented here. You should consult whatever
documentation is supplied with your compiler for details of its capabilities. The following table
summarizes the current status of Cubixas regards. compatibility with nonnal FORTRAN I/O

language statements:

110 mode

singl, input
multi, input
async, input
singl, output
multi, output
async, output

NOTES:

Tenninal

OK
Not available

OK
OK
OK
OK

Fonnatted

OK
Not available

Note 2
OK

Note 4
Note 2

Unformatted

OK
Note 1
Note 3

OK
Note 1

Notes 2,3

1. The simplest interface is provided by the KMREAD, KMWRITE, KMRD2D
and KMWT2D functions.

2. Asynchronous mode is most effective when each node access a different
file.

3. The simplest interface is currently provided by the KREAD and KWRI TE
functions.

4. The behavior of formatted file output is somewhat erratic as various
compilers interpret FORTRAN files in unusual ways.

The following is the list of extensions to the n,onnal FORTRAN I/O system which are
supported in all versions of Express, together with the list of restrictions imposed on each

58



by the parallel nature of the underlying system.

KREAD1 KWRITE1

KMREAD2 KMWRIT2

KMRD2D2 KMWT2D2

NOTES:

1.

2.

These routines must be called "loosely synchronously" and with identical
arguments in each node unless the UNIT argument is in async mode.

Must be called "loosely synchronously" in all processors unless the stream
argument is in async mode. If the stream argument is in multi mode the
arguments may differ from node to node but the function must still be called
"loosely synchronously".

8 Graphics

The Plotix library is supplied to allow both parallel programs running in the Cubix programming
model and "host" programs access to device independent graphics in a portable manner. The

library contains about twenty routines which are sufficient to cover the majority of graphical tasks
while not being an implementation of any particular standard.

9 Standard variables and the /XPRESS/ common block.

Central to the use of Express is the labelled common block "/XPRESS/" which should be
included whenever Express functions are being used. This defines a number of important
parameters which have wide usage in the system. Before any use of such values can be made,
however, they must be initialized by calling the start-up routine, KXINIT. This routine should be
called at the top of every Express FORTRAN program which should, therefore, have a structure
similar to the following

PROGRAM MYPROG
c

COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
C
C-- Start up Express by initializing its COMMON block.
C

CALL KXINIT
C
C-- Can now proceed to use Express .
C

The values in the common block are used for a variety of purposes as explained below.

NOCARE This value is used to indicate that the source or type ofan incoming message
are of no consequence. Note that it is illegal to send a message with type

59



NORDER

NOCARE even if·you really don't care!

This value is used to indicate that the parallel I/O system should operate in
a mode in which data from nodes is sent to and/or received from the host in
order of increasing processor number. It is used in conjunction with the
KORDER, KMREAD andKMWRIT function callso

NONODE This macro value is used by the KXGRID functions to indicate that no node
is attached to the user decomposition in the indicated direction. Such a case
might arise, for example, when solving partial differential equations on a
fmite space - some nodes have no neighbors in some directions since they
lie on the edge ·of the domain.

IHOST An integer variable which contains the "processor number" used by node
programs to send/receive data to the host. By default this is the machine that
loaded the node program although it is possible to override this.

IALNOD A value used in the "global" communication routines (KXCOMB, KXBROD,
KXCONC, etc.) tq indicate that a particularoperation should be applied to all
nodes in a parallel processing system. Never includes the host processor(s)..

IALPRC A value similar in use to IALNOD except that it implicitly includes all host

processors attached· to the systemo

10 Manual Page Layout

'l'h~manualpag~sare~for.better ()!;-w0rse. m~cr~,d after ~<ls~ of~nfoundJnUNIX,~~,ntation
which means that each manual page has several well-defined sections.. The overall. stiUcture is

60



shown below.

KABORT --c--
NAME

KABORT - Immediately terminate program

SYNOPSIS
SUBROUTINE KABORT(STATUS)
INTEGER STATUS

DOMAIN
Available to node programs compiled with the Cubix or
Plotix libraries only

DESCRIPTION
The KABORT mechanism .

EXAMPLES
This function is most useful in.....

CALL KASYNC(6)
IF(ERROR .GT. 99) THEN

WRITE(6,*) 'Death!!.
CALL KABORT(15)

ENDIF

BUGSIWARNINGS
None.

SEE ALSO
"Cubix: Programming parallel computers without
programming hosts"

Header contains the
name of the manual
page which is usually
the same as the routine
described.

The various sections and their contents are:

NAME Repeat~ the name associated with the manual page and a brief one-line
description of the purpose of the associated routines

SYNOPSIS Summarizes the arguments used by the indicated routines. If more than one
routines is described on a particular page then all are listed in this section

DOMAIN Describes the libraries in which the routine is to be found and any
restrictions on when it may be used.

DESCRIPTION Describes the purpose ofeach routine and lists the actions caused by its most
important arguments. This section is the most important reference material

61



62

EXAMPLES

WARNINGS

BUGS

SEE ALSO

for each command.

One ofmore examples of the use ofeach routine are shown on e,ach manual
page. This section probably represents the best infonnation on how the
various arguments are put together in "real" examples. This section is also
useful for demonstrating the order in which function calls should be made
and which ones are necessary at which points in the execution of .Express
programs.

If the routin,e has peculiar side effects or is "dangerous" in some way it will
be noted in this (optional) section. Any non-intuitive behavior is also noted
here.

Currently known bugs and/or unimplemented routines are noted in this
(optional) section.

Related commands and/or routines from the various Express libraries are
noted in this section. Using this information is usually the quickest way to
build a complete picture of the interaction between the various utilities.



KABORT

NAME

KABORT - Immediately abort program.

SYNOPSIS

SUBROUTINE KABORT(STATUS)
INTEGER STATUS

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

The KABORT routines causes the immediate termination of the parallel program. A
message is displayed on the host processor showing the processor number of the aborting
node and also the STATUS value supplied to the call. Ifexamined with the debugger, ndb,
the aborting nodes will appear to be at breakpoints.

EXAMPLE

This function is most useful for dealing with asynchronous problems which require
tennination of the program but which might not occur in every node. If the termination
condition is known to occur in each node the regular STOP should probably be preferred.
A problem that may merit KABORT is the failure of the KOPENP graphics function for some
reason.

C
C-- Assume all arrays, parameters defined elsewhere ..
C

ISTAT = KOPENP(GBUFFR, IGSIZE)
IF(ISTAT .LT. 0) THEN

CALL KABORT(12)
ENDIF

63



KASPJ '

NAM

\ASPEC - Inquire device aspect ratio.

SYN( )SIS

3UBROUTINE KASPEC(DEVX, DEVY)
REAL DEVX, DEVY

DOM IN

rIlis routine may o:nly be called in programs compiled with the Plotix libraries.

DES( .IPTION

rhis routine returns the "size" of the display surface. This concept is less than well-defined;
t can either mean the number of pixels in each direction or the physical size of the display
levice. We choose to return the latter values since they seem to be more useful. In particular
he sizes returned are the width ,and height of the display surface, in inches.

EXAI ?LE

fhe following code shows the interaction between the KASPEC and KVPORT calls which
tllows the user image to always appear in the largest square region of the display surface
ndependent of the actual shape of the device screen. We assume that the user has supplied
t routine,.DRAW.SQ, that draws a square in the user coordinate space. We show the output
lOth on the default viewport and also after using KASPEC to make a square window.

RE~:L XFAC, YFAC, BATIO

Draw a square in user coordinate space.

CALL DRAWSQ

CALL KASPEC(XFAC, YFAC)
RATIO = XFAC/YFAC
IF(RATIO .GT. 1.0) THEN

CALL KVPORT(O.,O.,le/RATIO,l.)
ELSE

CALL KVPORT(O.,O.,l.,l./RATIO)
ENDIF
CALL KLINEM(l)

64

Redraw square

CALL DRAWSQ

should now look square!!



SEE ALSO

KSPACE, KVPORT

KASPEC

65



KB'OX

NAME

KBOX - Drnw and fill rectangles.

SYNOPSIS

SUBROUTINE KBOX(XO, YO, Xl, Yl, COLOR, EDGE)
REAL XO, YO, Xl, Yl
INTEGER COLOR, EDGE

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine provides a simple interface to the polygon drawing primitives for the common
case of rectangular regions. A rectangle will be drawn whose bottom left comer has
position (XO, YO) and whose top right comer is at (Xl, Yl). The COLOR argument
indicates the manner in which the region should be filled. Positive values -afeOLoR
translate into solid colors in the same manner as the arguments to the line color primitive,
KeOLOR. Negative values yield device dependent shading patterns. If the EDGE argument
is non-zero then the boundary of the region will be drawn in the color most recently
specified in a call to the KeOLOR function.

All coordinates are expressed relative to the most recent call to KSPACE.

Notetpa.tfilling with COLO~ = 0 and EOGE = 0 results in a "selectiye erase" -specific
areas of the screen can be erasedo

EXAMPLE

The following code draws a simple boxin the foreground color and then takes a "bite" out
of it by drawing and filling in the background color.

C
C-- Define coordinate system.
C

CALL KSPACE(O.,0.,10., 10.)
C

CALL KBOX (1 .0, 1 .0, 9.0, 9 .0, 1,
CALL KBOX(5.0, 1 .0, 9.0, 5 .0, 0,

1)
0)

C
CALL KSENDP

66



KBOX

Note that this code achieves the same effect as that shown on the KPANEL manual page but
is much simpler. Also note that filling rectangular regions can often be done by hardware
even in cases where no general hardware polygon fill is available. In these situations KBOX
will be significantly faster than the equivalent calls to either KPOLGN or the KPANEL
routines.

SEE ALSO

KPANEL, KeOLOR

67



KCALHO

NAME

KCALHO - Interface to user host routines fromCubix program

SYNOPSIS

INTEGER FUNCTION KCALHO(FUNC,ODAT,OCNT,
IDAT,ICNT,SENT,STAT)

INTEGER FUNC,ODAT(*),OCNT,IDAT(*),ICNT,SENT,STAT

INTEGER FUNCTION(FUNC, OOAT, OeNT)
INTEGER FUNC, ODAT(*), oeNT

INTEGER FUNCTION KRETHO(IDAT, leNT, SENT, STAT)
INTEGER IDATA(*), lCNT, SENT, STAT

DOMAIN

These routines may only be called in programs compiled with the CubixorPlotix libraries..
Furthennore special software is necessary to re-link the part of the Cubix server which
executes on the system host

DESCRIPTION

These routines provide an interface between nonnal Cubix programs and user written
routines which must run on the host computer. The simplest routine, KCALHO, causes a
user written routi~e (denoted by the integer FUNe, explained later) to begin executione This
routine can be passed up to 512 bytes ofdata from the buffer ODAT which it will receive as
an argument.. The exact number of bytes to be sent to the host routine is specified in the
oeNT argument.

After processing the host routine is also allowed to send up to 512 bytes of infonnation
back to the node program which invoked it.. This data will be stored at address IDAT in the
node programe The I eNT argument indicates the maximum number of bytes which should
be copied to the node's IDAT buffer. Ifmo~e are sent from the host they are ignored. In any
case the SENT variable argument will be initialized to the number of bytes which the host
attempted to transfer, whether larger or smaller than leNT.

Finally the variable STAT argument will be set to the value returned by the host routine.

The 512 byte restriction is imposed by the fact that for reasons of speed the data transferred
to/from the host routine is not copied to a "safe" user buffer but remains in the system buffer
to which it was sent. If this poses too strict a restriction on the abilities of the node program
then an alternative interface is provided by the KSTRHO and KRETHO functions.

KSTRHO is responsible for starting up the host routine and passing it up to 512 bytes of data
in the same manner as indicated by the first three arguments to KCALHO. KRETHO petfonns
the operation of the last four arguments to KCALHO which it interprets in an identical
fashion.The advantage of this interface is that between the calls to KSTRHO and KRETHO

in the node program the host and node codes are running in a mode identical to the "host­
node" programming model and can, therefore, communicate data at will using the regular



KCALHO

Express systems calls (KXREAD, KXWRIT, KXBROD, etc.)

Note, however, that this is a rather "double-edged" advantage. On the one hand it allows
the host routine and the node program to communicate data at will avoiding the 512 byte
restriction for data transactions in both directions. On the other hand the advantages of the
Cubix programming model are suspended until the host routine terminates. As a result the
node program cannot use any Cubix I/O or Plotix graphical commands until the call to
KRETHO completes. Similarly the user will have to resolve potential byte swapping and
alignment problems due to incompatible host and node CPU's which might otherwise have
been covered up by the Cubix programming model. For these reasons, therefore, the
interface through the KCALHO routine is to be preferred.

EXAMPLE

The following code segment is used to execute the host routine with index 3 in the host. A
simple integer is sent to this routine and a small array of integers is returned.

INTEGER TOT, I, STAT, HSTAT, NGOT
INTEGER*4 INDAT(32)
INTEGER*4 MYVAL

c
C-- We might have to swap the stuff sent to the host ..•.
C

CALL KXSWAW(MYVAL, MYVAL, 4)
ISTAT ~ KCALHO(3, MYVAL, 4, INDAT, 4*32, NGOT, HSTAT)

C
C-- If either the host or nodes reported an error give up now.
C

IF(ISTAT .LT. 0 .OR. HSTAT .LT. 0) THEN
WRITE(6,*) 'Something failed', ISTAT, HSTAT
RETURN

ENDIF
c
C-- Figure out how many bytes we actually got. This is either
C-- the number we asked for or the number sent, whichever is
C-- smaller.
C

IF(NGOT .GT. 4*32) NGOT = 4*32
c
c-- If everything seemed to be OK we can add up the numbers
C-- returned by the host. Note that we might have to swap some
C-- bytes here .
C--

CALL KXSWAW(INDAT, INDAT, NGOT)
TOT = 0
DO 10 I=1,NGOT/4

TOT = TOT + NGOT(I)

69



KCALHO

10 CONTINUE

It,is important to note that the data buffer being transmitted to the host is sufficiently small
to fit into the 512 byte restriction. This allows us to use the KCALHO interface. Further we
take care to calculate correctly the amount of data returned to the node program and to
(potentially) swap bytes. Note that we have inserted calls toa byte swapping function
KXSWAW in this example - ·if the host and node byte orderings are the same these calls are
unncessary and can be removed.

HOST INTERFACE
The previous sections described the interface to the system from the perspective ofthe node
program. As well as incorporating one or more of the node system calls in your program
you must also arrange for the host program to be linked with your host routines.

This procedure is made most tricky for a FORTRAN programmer by the fact that, since the
cubix file server program is written in C its interface to any user written host routines
must also be in C. This restriction, however, only refers to the top level routine called by
thecubix server. If supported by the compilers used you may write the majority of your
host routine in FORTRAN and somehow link it to the rest of the server process6 This
procedure is beyond the scope of this document and you should consult compiler
documentation for details.

The linking ofhost routines into the cubix server process is controlled by the source file
userlink. c supplied with th,e "Cubix user-link kit". This file contains an array of
function··· pointers-the indices of which· correspond to the func .·argument passed to
callhost or starthost. By default the top part of this file contains the following

int (*user_funes[]) () = {
user_no_op,

} ;

This code shows that a single host function is defined by default: user_ no_ Ope This
function doesn't actually do anything and is merely provided as a place holder to simplify
the introduction of new user routines. If, for example, two additional user functions are
required called, search_DB and sort_DB for example, we could modify the above part
of the user1 ink .c file to read

extern int search_DB(), sort_DB();

int (*user_ funes [ ] ) () =
searchDB,·
sort_DB,

70



KCALHO

} ;

Notice that we elected to delete the user_no_ op function and made the two new routines
take indices 0 and 1. Also note that we changed the definition from static to extern
since these routines are probably defined outside the userlink. c file.

Having initialized the data structures used by Cubix to find user host routines it remains
only to discuss the calling sequence used when invoking them.

When a user host routine is called it is passed three arguments and is expected to return an
integer value. The three arguments passed to the user routine are:

• A pointer to the buffer containing data sent to the host as the odat argument to
KSTRHO or KCALHO.

• The number of bytes contained in this buffer. This value will be the same as that
specified as ceNT when calling the host routine from the nodes.

• A pointer to an integer which should be set to the number of bytes to be returned
to the node program as IDAT. This data should be placed in the buffer pointed
to by the fIrst argument, overwriting whatever values were sent there from the
nodes. The value written to this argument will be returned to the node program
through the SENT argument of KCALHO or KRETHO.

As an example, therefore, the skeleton of the search_DB function should be similar to

int search_DB(buffer, in_bytes, pout_bytes)
char *buffer;
int in_bytes;
int *pout_bytes;
{

*pout_bytes =
return ..• ;

.. . .,

Notice that we finish the function by making sure that the pout_bytes argument is
initialized. Finally we return a value which will be passed to the node program through the
STAT argument.

DIAGNOSTICS

The node routines described here indicate error conditions by returning -1. Possible error
conditions are as follows:

ETOOB I G An attempt was made to either send too much data to the host or return
too much to the nodes. The maximum amount of data that can be
transmitted through the system invocation mechanism is 512 bytes.

71



KCALHO

EBADPTR The FUNCargument indicated a function with· an index outside those
defined in the host's function table.

It is important to note that if an error occurs ina call to KSTRHOno call to KRE'THO should
be made.

SEE ALSO

KCBXSYo

72



KCBXSY

NAME

KCBXS Y- Specify synchronous or asynchronous system calls

SYNOPSIS

INTEGER FUNCTION KBCXSY(FLAG)
INTEGER FLAG

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

This call provides a system override which controls the overall synchronous or
asynchronous behavior of Cubix system calls.

By default the system is in "synchronous mode" which means that all function calls must
be made loosely synchronously. Furthennore each node must address its system requests
to the same system console. (Note, however, that asynchronous I/O is still supported in this
mode on a file by file basis).

Calling KCBXSY with a zero argument places the system in asynchronous mode. All further
operating system requests are made on a node by node, first come-first served, basis. In this
mode any node may address any host processor with impunity but the responsibility for
maintaining "sensible" ordering lies with the user. Note that I/O requests will, however,
still occur with the synchronization model implied by the unit's "mode" - i.e., a file which
has been placed in multi mode with the KMULTI system call will continue to operate this
way even after the KCBXSY system call has placed the system in its asynchronous state.

The value returned is the previous "synchronization mode" flag which can be used as the
argument to subsequent calls to KCBXSY.

EXAMPLE

The asynchronous mode is rather difficult to control not the least because the inherent
asynchronicity introduced into applications make them harder to debug. It can, however,
be useful in system with multiple consoles, each under the control of a different group of
nodes. In the following example we suppose that nodes with even processor numbers
should communicate with host number I HO ST+1 while those with odd processor numbers
remain connected to the main system console.

PROGRAM ASYNC
INTEGER NDDATA(4)
COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST, IALNOD,IALPRC

c
C-- Setup Express and its common block.
C

CALL KXINIT
C

73



KCBXSY

c-- Get processor numbers.
C

CALL KXPARA(NDDATA)
c

CALL KCBXSY(O)
IF(MOD(NDDATA(1),2) .EQe 0) THEN

CALL KCONND(IHOST+l)
ENDIF

c
C--- The lowest numbered node now introduce themselves,
c-- asynchronously, on their respective consoles.
e

IF (NDDATA(l) .LT. 2) THEN
WRITE(6,*) 'Hello world'

ENDIF

SEE ALSO

KCONND

14



KCUP

NAME

KCLIP - EnablelDisable clipping.

SYNOPSIS

SUBROUTINE KSETCL(XO, YO, Xl, Yl)
REAL XO, YO, Xl, YI

SUBROUTINE KENDCL

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These two calls are used to enable and disable the clipping primitives. The KSETCL routine
defines a two-dimensional clipping window relative to either the default user coordinate
range or that set by the most recent call to KSPACE. Further lines, points, markers and
polygons will be "clipped" relative to this window and portions lying outside the indicated
range will be removed.

The KENDCL routine disables the clipper.

It is important to note that clipping is performed with respect to each "vport" and that the
clipping window is specific to the active viewport when KSETCL is invoked. Each call to
KSETVP alters the clipping window to that associated with the particular "vport" selected.

Note that while clipping is typically expensive this process is supported on the nodes of a
distributed machine rather than on the graphics device itself. As a result all clipping is
performed in parallel leading to increased perfonnance.

EXAMPLE

In the absence of the call to KSETCL the following code would draw a diamond shaped
polygon on the display surface. After clipping only a portion of the figure remains.

CALL KSPACE(0.,O.,4., 4.)
CALL KSETCL (1 ., I., 3., 3.)

C
CALL KINITP(l, 1)
CALL KPANLP(O., 2.)
CALL KPANLP(2., 4.) CALL KPANLP(4., 2.)
CALL KPANLP(2., 0.)
CALL KENDPA

c
CALL KSENDP

75



KCLIP

SEE ALSO

KPANEL, KMOVE, KMARKE, KCONT

76



KCNTOR

NAME

KCNTOR - Contouring functions

SYNOPSIS

SUBROUTINE KCNTOR(FUNC,GX,GY,LEVMIN,LEVMAX,NLEV,PANELS)
REAL FUNC, LEVMIN, LEVMAX
INTEGER GX, GY, NLEV, PANELS
EXTERNAL FUNC

SUBROUTINE KINITL(FUNC, GX, GY, LEVEL, PANELS)
REAL FUNC, LEVEL
INTEGER GX, GY, PANELS
EXTERNAL FUNC

INTEGER FUNCTION KGETPT(PX, PY)
REAL PX, PY

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIYfION

The KCNTOR routine makes a two-dimensional contour map of the supplied function
FUNC. Rather than provide an array of values specifying the function to be contoured a
function is supplied which will be called repeatedly with pairs of integer arguments
representing the position at which a value is required. The range of values is specified by
the GX and GY arguments; the user function will be called as FUNC (I, J) with I and J in
the ranges Os 1< GX and 0 s J < GY.

Contours are drawn at NLEV positions equally spaced between LEVMIN and LEVMAX.
Optionally LEVMIN and LEVMAX can both be set to zero in which case suitable values are
selected internally.

The final argument, PANELS, selects the type of contouring to be performed. If non-zero
then the contours will be drawn as filled polygons while a zero value selects the more
conventional style in which the contours are represented by lines. In the case of filled
regions the lowest NLEVindices of the color map will be used. The KRAINB and KGREYS
functions can be used to re-map the appropriate color table entries.

Since this routine calls KUSEND internally it must be called in all nodes together. Failure
to do so will result in communication deadlock. Note, however, that no internode
communication is done in performing the contouring. It is the responsibility of the user to
distribute boundary values to processors that require them before calling the KCNTOR
routine.

The contouring utility described here assumes that the data lie in a rectangular domain - i.e.,
that the mesh underlying the data is a Cartesian grid. In order to contour data specified in
other coordinate systems, such as polar coordinates, the lower level KINITL and KGETPT

77



KCNTOR

routines are available.

The fonner specifies a.function to be contoured and a range of I and J values Just as in
KeNTOR. The LEVEL argument selects the contouring level and the PANELS argument
indicates the style of contouring to beperfonned. The interpretation of this value is not so
straightforward as in the ReNTOR routine. Essenti.ally the purpose is to control exactly what
type of points are returned by the KGETPT function. The allowed values and· their
interpretations ·are

PANELS = 0 All interior points are returned. The surrounding box is treated as a
true rectangle and only the vertices are returned. This option is
designed for simple line contouring of rectangular regions.

PANELS = 1 The contour map is cut into horizontal strips and coordinates are
returned in such a way that the resulting polygonal regions are
simply connected. The bounding box is treated as in optionO.
Designed for color fill panels.

PANELS = 2 The interior points are treated as in option 1 but the boundary is also
divided into many points which are returned individu.allYe This
option is designed for cases where the actual domain to be contoured
is not rectangular and hence the boundary values need to be
transfonned in some manner.

The KGET·PT function is used, once a contour has been initialized, toretum coordinates
which lie on the contouro As well as returning an (X,Y) coordinate pair under the supplied
pointers. the returned value indicates the nature of the returned point· as follows

STATUS = o Thjs contour leY91 is finisheclo.Igpore re~1.lrned coorq~Qat~&.

STATUS = 1 The coordinates are valid for the current contour.

STATUS = 2 A segment of the current contour line is finished. Ignore the
coordinates returned and call KGETPT again in which case it will
either return 0 indicating that no more points exist at this contour
level or 1 indicating that another disjoint piece of the current contour
exists.

A complete example of the use of these functions to contour a function supplied in polar
coordinates is shown in the Plo.tix documentation.

EXAMPLE

The following code demonstrates the elementary use of the contouring function.

SUBROUTINE DOCONT
REAL CIRCLS
EXTERNAL CIRCLS

C
CALL KCNTOR(CIRCLS, 10, 10, 0.0, 25.0, 6, 0)
RETURN

78



END
C
C-- This is the function that will be called by the
C-- contouring utility.
C

REAL FUNCTION C1RCLS(1,J)
INTEGER 1,J

C
REAL XO, YO

C

xo = FLOAT (1-5)
YO = FLOAT (j-5)
CIRCLS = XO*XO + YO*YO
RETURN
END

SEE ALSO

KCOLOR,KGREYS,KRA1NB.

KCNTOR

79



KCOLOR

NAME

KeOLOR ... Change color attribute of graphical objects.

SYNOPSIS

SUBROUTINE KCOLOR(INDEX)
INTEGER INDEX

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine modifies the color used in drawing all subsequent lines and markers. The
INDEX argument is typically device-dependent but one can safely use the following on
~~color" devices.

o Background color for device. ("Black")
1 Foreground color for device. ("White")
2 Re'd.
3 Green.
4 Blue.
S Cyan.
6 Purple.
7 Yellow.

Monochrome devices, by default, support only two of these indices, 0 and 1.

The background color is often useful for selectively erasing previous symbols..

This .·function interacts.· with the KGREYS and KRAINB. routines providing full color. on
devices capable of supporting such models.

EXAMPLE

The following code defines an 8. x 8 coordinate system and draws a simple box in the
foreground color. It then overwrites the lower right hand comer of the box in the
background color, erasing part of the image.

CALL KSPACE(O.,O.,8., 8.)
C

CALL KCOLOR(l)
CALL KMOVE(l.,l.)
CALL KCONT(7.,1.)
CALL KCONT(7.,7.)
CALL KCONT(1.,7.)
CALL KCONT(l.,l.)

C
CALL KCOLOR(O)
CALL KMOVE(4.,1.)

80



CALL KCONT(7.,1.)
CALL KCONT(7.,4.)

C
CALL KSENDP

SEE ALSO

KCONT, KMOVE, KLINEM, KRAINB, KGREYS

KCOLOR

81



KCONND

NAME

KCONND - Redirect system calls.

SYNOPSIS

SUBROUTINE KCONND(NODE)
INTEGER NODE

DOMAIN

Available to node programs using the Cubix rue server only and which are compiled with
either the Cubixor Plotix libraries

DESCRIPTION

This function is provided to support systems with more than one attached host. By default
all Cubix system calls are directed to the processor which originally loaded and executed
the user application. On occasion, however, it may be necessary to perform certain system
tasks on other nodes in the system.

The console_node function has as its argument a processor number., All further (non­
110) operating system requests will be directed to this node., To obtain suitable node
numbers for use in this call we take the host identifier from the configuration utility,
cnftool, and OR in the highest bit. If cnftool designated a particular host as "HI" then
the appropriate node number louse is 0x 8001.

It is~~~tg>~otethat all fil~~~lated I/Ois alw~5.'directedtothe n04ewhich contained
the file wnen it'\vas opened, independent of the status of the KCONND function.

EXAMPLE

Let us· assume that· three "host" processors are attached to our system. The fIrSt is the
original system console which can be addressed through the value IHOST from the
XPRESS common block. The others have the identifiers HI and H2 as defined in the system
configuration utility, cnftool. The following code executes a rather simple operation;
opening two files, the first on the system default "HOST" and the second on host number 1.

COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
C
C-- Setup Express and its common block.
C

CALL KXINIT
C

CALL KCONND(IHOST)
OPEN (UNIT=l, FILE='hostl.dat', STATUS='unknown')

C
C-- This number is 8001 in hexadecimal - i.e., Host 1
C

CALL KCONND(32769)
OPEN (UNIT=2, FILE='host2.dat', STATUS='OLD')

82



KCONND

CALL KCONND(IHOST)

Note that different nodes are allowed to maintain distinct consoles with these calls although
one must then use asynchronous requests to avoid deadlock.

SEE ALSO

KCBXSY.

83



KCONT

NAME

KCONT - Move and draw a lineo

SYNOPSIS

SUBROUTINE KCONT(X, Y)
REAL X, Y

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

Moves the current plotting position to (X,Y) and draws a line in the current color from the
previous plotting position. X and Y are specified relative to the coordinate system defined
by the most recent call to KSPACE.

EXAMPLE

The following code draws a broken diagonal line across the display suIface.

CALL KSp·ACE (0 • , 0 • , 4 ., 4.)

c
CALL KMOVE (0., 0.)

CALL KCONT(l.,le)
CALL KMOVE (2 • , 2 0 )

CALL KeONT (3 • , 3 0 )

C
CALL KSENDP

SEE ALSO

KMOVE KeOLOR, KLINEM



KCPCP

NAME

KCPCP, KCPELT - Dump communication profile data.

SYNOPSIS

SUBROUTINE KCPCP

SUBROUTINE KCPELT(FNAME)
CHARACTER*80 FNAME

DOMAIN

KCPCP may only be called in the host processor and KCPELT may only be called in the
nodes.

DESCRIPTION

These routines are used to dump the communication profiling data collected with the
KCPROF functions. For each call to KCPELT on the nodes there must be a call to KCPCP
in the host processor. The profiling data will be written to a file on the host with the name
FNAME supplied in the node program.

Each call to KCPELT turns off the communication profiler and resets its internal counters
so that further profiling starts from the zero state. This allows distinct communication
profiles to be obtained for different regions of an application.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
communication profile.

1. Host Program

PROGRAM HSTPRF
C
C-- Set up Express.
C

CALL KXINIT
C
C-- Allocate nodes, load programs.
C

C
C-- Execute algorithm and then dump data to "phasel.cprof".
C

C
CALL KCPCP
STOP

85



KCPCP

END

2. Node Program

PROGRAM NODPRF
c
C-- Set up Express.
C

CALL KXINIT
c
c-- St~rt off profiler.
C

CALL KCPON
c
C-- Application code .
C

c
C-- Application complete, dump data with KCPCP/ELT.
C

CALL KCPELT ('phasel. cprof' )
c

STOP
END

Notice .ttlat we can selectively profile pieces of codeQ In this mode it makes sense to dump
out the profile data independently to separate files for simplicity in later analysis.

SEE ALSO

ctool (command), KCPROF, KCPEND

86



KCPINQ

NAME

KCP INQ, KCPEND - Manipulate communication proftler. under Cubix

SYNOPSIS

INTEGER FUNCTION KCPINQ()

SUBROUTINE KCPEND

DOMAIN

These routines may only be called from the nodes.

DESCRIPTION

These routines provide a simple control interface to the communication profiler for
applications running in the Cubix environment.

KCP INQ returns an integer value representing the state of the "-ro" runtime switch on the
cubix command line. This can be used to conveniently enable/disable the profiling
system at runtime. Consider a typical command

cubix -n 4 toyland 1024 1024 <noddy.dat

Since no "_m" switch is present a call to KCP INQ will return zero. If we modify the above
command to

cubix -mce -n 4 toyland 1024 1024 <noddy.dat

then the return value would be 1 since the character 'c' appears in the monitoring switch,
"-m".

KCPEND is used to dump profiling data to the host computer file system. A file called
"cprof. out" is created for later analysis with the ctool utility. In addition the profiler
is disabled and its internal state reset to zero so that further profiling leads to distinct, non­
overlapping data.

The operating system itself performs a check for the communication monitoring switch in
the cubix command and, if present, turns on the profiler with a call to KCPON. It also
arranges to call KCPEND at program termination with STOP. As a result a typical Cubix
application need contain no explicit calls to the communication profiling routines - they are
all made by the kernel. The only case in which such calls are needed is when more careful
control is required over the profiler and the data it dumps.

EXAMPLE

The following code is a skeleton of that which might be used to control the communication
profiler in a Cubix application.

PROGRAM CBXPRF
c
C-- Initialize Express.

87



KCPINQ

c
CALL KXINIT

c
C-- Start off profiler. This code is not strictly
c-- necessary since it is equivalent to the check
C-~ made automatically by Express.
C

ISTAT = KCPINQ ()
IF(ISTAT .NE. 0) THEN

CALL KCPON
ENDIF

C

c
C-- Program over, dump data again and exit. Again
C-- this code is superfluous since it duplicates the
C-- action of Express.
C

IF(ISTAT .NE. 0) THEN
CALL KCPEND

ENDIF
STOP
END

~otice that we can selectively profile pieces of code. In this. mode it makes sense to dump
out the proftle data independently to separate files for simplicity in later analysis. The calls
to rename.in the above are necessary to prevent the second call to KeF INQ from
overwriting the file created by the fIrst call.

SEE ALSO

ctool, KCPCP, KCPROF

88



KCPROF

NAME

KCPON, KCPOFF - Control communication profiler.

SYNOPSIS

SUBROUTINE KCPON

SUBROUTINE KCPOFF

DOMAIN

These routines may only be called from the nodes.

DESCRIPTION

KCPON is used to enable and start the communication profiler. After this call all subsequent
calls to the communication system result in entries being made in an internal log-file.
KCPOFF reverses this process - until a subsequent call to KCPON no communication
profiling will be performed.

For applications which have user programs running in the host computer the profiler is
initially off and must be explicitly enabled with a call to KCPON. For applications running
in the Cubix environment the initial state of the profiler is controlled by a runtime switch
in the cubix command. (See KCPEND).

The log ofprofiling information is written to the host file system with KCPCP or KCPEND.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
communication profiler.

PROGRAM PRFTST
C
C-- Start off profiler.

CALL KCPON
C
C-- Application Phase 1., profiler running.
C

C
C-- Phase 1 complete, dump data with KCPCP/ELT or KCPEND.
C

C
C-- Application Phase 2., profiler turned off by
C-- previous call to KCPCP/ELT or KCPEND.
C

c

89



KCPROF

c--, Application phase 3., turn on profiler again.
C

CALL KCPON

c
C-'- Program over, dump data again and exit. The STOP statement
C-- will take care of dumping data to the host automatically.
C

STOP
END

Notice that we can selectively profile pieces of code. In this mode it makes sense to dump
out the profile data independently to separate files for simplicity in later analysis.

SEE ALSO

ctool (command), KCPCP, KCPEND

90



KDISND

NAME

KD I SND - Specify alternate display surface and server.

SYNOPSIS

SUBROUTINE KDISND(NODE)
INTEGER NODE

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine enables applications to select between output devices. By default all graphical
output is sent to the console fue server to be distributed to display devices. This routine
allows alternate destinations to be specified, possibly connected to multiple display
devices.

KD I SND redirects all future graphical commands to the specified node which is assumed
to be running a suitable server process.

Any of the Plotix functions may be assumed to be present on any graphics node attached
to the system. If, however, multiple displays are in use then only asynchronous mode
routines should be used since sending data to multiple host servers cannot satisfy any of the
synchronization models. This can be achieved with any of the routines KAOPEN, KASEND,
KAGIN, etc. or a suitable call to the Cubixfunction KCBXSY.

EXAMPLE

The following code divides the processors into two equal sized groups which direct their
graphical I/O to different seIVers. The lowest numbered node in each group then initializes
the device with a call to KAOPEN.

INTEGER NDDATA(4)
INTEGER GBUFFR(2048)

c
C-- Get parameters of system at runtime. Redirect output
C-- to servers attached to hosts a and 1. Note that these hosts
C-- have processors numbers 8000 and 8001 in hexadecimal which
C-- correspond to these decimal values.
C

CALL KXPARA(NDDATA)
IF (NDDATA(l) .LT. NDDATA(2)/2) THEN

CALL KDISND(32768)
ELSE

CALL KDISND(32769)
ENDIF

c
C-- Now setup the hardware by calling the asynchronous

91



KDISND

C-- "open".
C

CALL KAOPEN(GBUFFR, 8192)

SEE ALSO

KCONNO.

92



KDOTEX

NAME

KDOTEX - Draw text with complex alignment.

SYNOPSIS

SUBROUTINE KDOTEX(TEXT, X, Y, ANGLE, HJUST, VJUST)
CHARACTER*80 TEXT
REAL X, Y
INTEGER ANGLE, HJUST, VJUST

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine draws the characters contained in the TEXT string at the position (X,Y). The
text is rotated through ANGLE degrees. The two "justification" parameters are used to
position the string with respect to the indicated coordinates as follows

HJUST = -1 Text is positioned entirely to the right of (X,Y).

HJUST = 0 The text is centered about (X,Y).

HJUST = 1 The text is placed entirely to the left of the indicated point.

VJUST = -1 The text lies totally above (X,Y).

VJUST = 0 Text is centered vertically on (X,Y).

VJUST = 1 Text lies below (X,Y).

Using various combinations of these parameters is it possible to align text in fairly arbitrary
manners. Using the particular combination HJUST = VJUST = 0 allows one to draw
"markers" from the ASCII character set.

EXAMPLE

The following calls are used to position the phrase "The End" around a particular point.

CALL KDOTEX('The', X, Y, 0, 0, -1)
CALL KDOTEX('End', X, Y, 0, 0, 1)

93



KDOTEX

WARNING

The current plotting position is undefined after this calle In order to perform reliable
graphical operations KMOVE should be used before any further drawing is perfonned.

SEE ALSO

KMARKE, KLABEL

94



KEPCP

NAME

KEPCP, KEPELT - Dump event log data.

SYNOPSIS

SUBROUTINE KEPCP

SUBROUTINE KEPELT(FNAME)
CHARACTER*80 FNAME

DOMAIN

KEPCP may only be called in the host processor while KEPELT may only be called in the
nodes.

DESCRIPrION

These routines are used to dump the event profiling data collected with the KEPROF
functions. For each call to KEPELT on the nodes there must be a call to KEPCP in the host
processor. The profiling data will be written to a file on the host with the name FNAME
supplied in the node program.

Each call to KEPELT turns off the profiler and resets its state so that future profiling
commands begin with the system in its initial state.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the event
profiler.

1. Host Program

PROGRAM HSTEPR
c
C-- Start up Express.
C

CALL KXINIT
c
C-- Allocate node, load programs, etc ..
C

c
C-- Dump out profile data to "eprof.out".
C

CALL KEPCP
STOP
END

95



KEPCP

2. Node Program

PROGRAM NDEPR
C

INTEGER LOGBUF(2048), LABBUF(256)
c

REAL ENERGY, RESID, GRIND, CRUNCH
INTEGER ITER, I

c
c-- Initialize profiler, make labels for indices 1-3.
c-- Start running.
C

CALL KEPINI(LABBUF, 1024, LOGBUF,8192)
CALL KEPLAB(l, 'Outer loop', 'Iteration %d')
CALL KEPLAB(2, 'After crunch', 'Energy = %d')
CALL KEPLAB(3, 'Inner loop', 'resid = %d')
CALL KEPON

c
C-- Compute, compute, compute .. GIlIO.

C

c
C-- Program over, dump profile data and exite
C

~~LL K~P~LT('eprof.out')

STOP
END

The strange looking strings passed as the third argument to the KEPLAB functions are
actually going to be passed to the C string fonnatting routine sprintf. All that is really
important for this application is that the characters "%d" will be replaced by the decimal
value supplied as the last argument to KEPADD.

Note that these functions may be called repeatedly - the only constraint is that each call to
KEPELT in the nodes must have a corresponding call to KEPCP in the host, and each call
to KEPELT in the nodes must be made "loosely synchronously".

SEE ALSO

etool (command), KEPCP, KEPEND



KEPINQ

/=~, NAME

KEP INQ, KEPEND - Manipulate Event profile under Cubix

SYNOPSIS

INTEGER FUNCTION KEPINQ()

SUBROUTINE KEPEND

DOMAIN

These routines may only be called from the nodes.

DESCRIPTION

These routines provide a simple control interface to the event profiler for applications
running in the Cubix environment.

KEP INQ returns an integer value representing the state of the "-me" runtime switch on the
cubix command line. This can be used to conveniently enable/disable the profiling
system at runtime. Consider a typical command

cubix -n 4 toyland 1024 1024 <noddy.dat

Since no "-m" switch is present a call to KEP INQ will return zero. If we modify the above
command to

cubix -mce -n 4 toyland 1024 1024 <noddy.dat

then the return value would be 1 since the character 'e' appears in the monitoring switch,
"_m".

KEPEND is used to finally dump profiling data to the host computer file system. A file
called "eprof •out" is created for later analysis with the etool utility. In addition the
profiler is turned off and the internal state reset to its initial, zeroed, condition.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the event
profiler.

PROGRAM EPRTST
c

INTEGER LOGBUF(2048), LABBUF(256)
C

REAL ENERGY, RESID, GRIND, CRUNCH
INTEGER ITER, I

C
C-- Start up Express.
C

CALL KXINIT
C

97



DO 20 I=1,4
RESID = GRIND (ENERGY)

.CALL KEPADD(3, RESID)
CONTINUE

CONTINUE

KEPINQ

c-- Setup profiler and make labels for indices. If
c-- asked to do so at runtime start the thing up.
C

CALL KEPINI(LABBUF, 1024, LOGBUF, 8192)
CALL KEPLAB(l, 'Outer loop', 'Iteration %d')
CALL KEPLAB(2, 'After crunch', 'Energy = %d')
CALL KEPLAB(3, 'Inner loop', 'resid = %d')
ISTAT = KEPINQ ()
IF(ISTAT .NE. 0) THEN

CALL KEPON
END IF

C
C--Start application code, then go into main loop.
C

DO 10 ITER=l,lOO
CALL KEPADD(l, ITER)

c
ENERGY = CRUNCH(ITER)
CALL KEPADD(2, INT(ENERGY»

c

20
10

C
C-- Program over; dump data to host for later analysis.
C

CALL KEPEND
STOP
END

The strange looking strings passed as the third argument to the KEPLAB functions are
actually going to be passed to the Cstring fonnatting routine sprintfo All that is really
important for this application is that the characters "%d"·will be replaced by the decimal
value supplied as the last argument to KEPADD.

Notice that the KEPADD and KEPLAB calls are completely safe even ifKEPINQ returns 0
and the profl1er is not enabled.

SEE ALSO

etool (command), KEPCP, KEPROF

98



KEPROF

NAME

KEPON, KEPOFF, KEPINI, KEPLAB, KEPADD - Event driven profiler.

SYNOPSIS

SUBROUTINE KEPON

SUBROUTINE KEPOFF

SUBROUTINE KEPINI(LABBUF, LABSIZ, LOGBUF, LOGSIZ)
INTEGER LABBUF(*), LABSIZ, LOGBUF(*), LOGSIZ

KEPLAB(INDEX, TITLE, FORMAT)
INTEGER INDEX
CHARACTER*80 TITLE, FORMAT

KEPADD(INDEX, DATUM)
INTEGER INDEX, DATUM

DOMAIN

These routines may only be called from the nodes.

DESCRIYfION

These routines m~e up the interface to the user specified event driven profiling facility.
KEPON and KEPOFF enable and disable the system respectively. While disabled no events
are logged even if calls are made to KEPADD.

The routine KEP INI must be called before any of the other profiling calls. The arguments
indicate two buffers to be used for "title" and "event" entries which must be supplied by
the calling program. Each "entry" corresponds to a single call to the KEPLAB and KEPADD
subroutines. As a guide to the amount of space which should be provided the current
overheads for log entries and labels are 12 and 68 bytes respectively. Note that the LOGS I Z
and LABS I Z arguments should be given in bytes.

KEPADD is the heart of the event system. It makes a new entry in the log file. Three items
are logged; the event "index" and "datum" as given in the function call and the time at
which the call is made. The INDEX argument is used to differentiate between events at the
highest level. This index corresponds to an optional TITLE string in a call to KEPLAB. The
DATUM argument is used to identify events at the lowest level. This will be used in
conjunction with the FORMAT argument supplied to a call to KEPLAB.

The function KEPLAB is used to facilitate event recognition when the log-file is
subsequently analyzed. Its use is optional. If no calls to KEPLAB are made then events will
be identified by their "INDEX" argument in the subsequent analysis and the DATUM value
will be assumed to be an integer. Making a call such as

CALL KEPLAB (3, 'After return from crunch', 'Energy = %d')

builds in extra information. Together with the event "INDEX" a legend will be presented

99



KEPROF

which connects type 3 with the string "After.return from crunch". Further, when the value
of the DATUM argument is shown it will be formatted according to the fonnat string- a
typical result would be

Energy = 23

Note that the FORTRAN string is interpreted according to the conventions associated with
the C function p r int f 0 At its simplest this merely means that text is printed as entered and
the special string 'Slid' is replaced with an integer valueo

The profiler is initially off and must be explicitly enabled with calls to K,EP INI and
K.EPON. In the Cubix environment this is facilitated by the use of the KEP INQ function to
query the state of the run-time switches given to thecubix command.

The log ofprofiling information is written to the host file system with KEPCP or KEPEND.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the event
profiler.

PROGRAM EPRTST
c

REAL ENERGY, RESID, GRIND, CRUNCH
INTEGER ITER, I
INTEGER LOGBUF(2048), LABBUF(256)

c
C-- Start up Express.
C

CALL KXINIT
c
C-- Start profiler, make labels for indices 1-3.
C

CALL KEPINI(LABBUF, 1024, LOGBUF, 8192)
CALL KEPLAB(l, 'Outer loop', 'Iteration %d')
CALL KEPLAB(2, 'After crunch', 'Energy = %d')
CALL KEPLAB(3, 'Inner loop', 'resid = %d')
CALL- KEPON

C
C-- Start application code, then go into main loop.
C

DO 10 ITER=l,lOO
CALL KEPADD(1, ITER)
ENERGY = CRUNCH(ITER)
CALL KEPADD(2, INT(ENERGY»

DO 20 I=1,4
_RESID = GRIND (ENERGY)

CALL KEPADD(3, INT{RESID»

100



KEPROF

20 CONTINUE
10 CONTINUE

C
C-- Program over, dump profile data and exit.
C

STOP
END

The insertion of events like these above can provide significant infonnation about an
application. The time between events 1 and 2, for example, indicates the duration of a call
to the CRUNCH function. Similar infonnation is available about GRIND from events 2 and
3, averaged over the four calls per iteration. The auxiliary DATUM fields will show the
interaction between the variables and the program execution rate. It may also show up bugs
and/or unexpected behavior which could the key to understanding the failings of a
particular parallelization scheme.

SEE ALSO

etool (command), KEPCP, KEPEND

101



KEPTOG

NAME

KEPTGI, KEPTOG -Calculateprogram statistics.

SYNOPSIS

SUBROUTINE KEPTGI(TOGGLE, LABEL)
INTEGER TOGGLE (16)
CHARACTER*80 LABEL

SUBROUTINE KEPTOG(TOGGLE)
INTEGER TOGGLE (16)

DOMAIN

These routines may· only be called from the nodes.

DESCRIPTION

These routines allow·selective analysis of particular sections of codee By surrounding code
segments with calls to KEPTOGonecanobtam statistics relating to the number·of times the
p.articular code section was· called and the average and total times spent in these sectionse
The data is collected in exactly the same manner as the "event proftling" information
obtained .through calls to KEPADD.The same commands are available to dump the
profiling.ta .and/Qfrename the. file containing it as are used by the other "KEPROF"
utilities.

Each"toggle""datastr'tlcture must be initializedwith·acall to KEPTGI·before it can be used
for ~~co~ti(>n. Thisfuncti()l1 expects to be passedan array of integers and a string that
·williaterbeused to identify the collected statistics ·when analyzed with etool$

The log ofprofiling information is written to the host'file system with KEPCP or KEPENDo

EXAMPLE

The following example demonstrates the use of the "toggle" ideas.

PROGRAM TOGTST
INTEGER LPTOG(16), GRNTOG(16)
REAL*4 ENERGY, GRIND
INTEGER ITER, I
COMMON!XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC

c
C"'- Initialize Express and its common block.
C

CALL KXINIT
C
c-- Initialize toggle data structures.
C

CALL KEPTGI(LPTOG, 'Main iteration loop')
CALL KEPTGI(GRNTOG, 'Calls to GRIND')

102



KEPTOG

c
C-- Start application code, then go into main loop.
C

C
DO 10 ITER = 1, 100

CALL KEPTOG(LPTOG)
C
C-- Other processing going on here ....
C

C
DO 20 I = 1, 4

CALL KEPTOG(GRNTOG)
ENERGY =, GRIND (I)
CALL KEPTOG(GRNTOG)

20 CONTINUE
CALL KEPTOG(LPTOG)

10 CONTRINUE
C
C-- Dump data to host for later analysis ...
C

C
STOP
END

The "toggle" data will be stored in a file with the name "eprof . out" (unless overridden
by some other function call) together with the nonna! "event" data which may have also
been collected with calls to KEPADD.

To analyze this data we execute the "etool" command with

etool -p -t

This combination of switches both suppresses the nonnal graphical output and also restricts

103



KEPTOG

attention to the "toggle" data. the output for the above 10xamplemight appear as follows

Node' 0

Description

Main iteration loop
Calls to GRIND

Node 1

De.scription

Main iteration loop
Calls to GRIND

Total tCalls

478.32 100
363.96 400

Total tCalls

478.32 100
363.96 400

Avge.

4.78
0.91

Avge.

4.78
0.91

Var.

.28

.03

Var.

.28

.03

For each node is displayed the list of initialized toggles together with the number of times
eacbcode section was used., the total time elapsed in this section, the average time per call
and the variance·of th'ese times. Using this infonnation it is possible to build up a very
aec'urate picture of the perfonnance of a parallel program.

SEE ALSO

etool (comrtl'l.fld), i{SPCP, KEPROF, KEPEND 0

104



KERASE

NAME

KERASE, KAERAS - Clear the display surface.

SYNOPSIS

SUBROUTINE KERASE

SUBROUTINE KAERAS

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These routines are used to clear the display surface. KERASE must be called at the same
time in all nodes while KAERAS may be called asynchronously in any node at any time.
Note that this latter option can cause rather unpredictable results unless used with some care
since 1000 nodes all calling KAERAS makes the screen "blink" rather a lot!

It is important to note that neither of these routines flushes the graphics buffer to the output
device. Rather they just reset the internal data structures to reflect empty buffers. All data
that is required to appear, however briefly, on the display surface must be flushed explicitly
with one of the KSEND routines before calling KERASE.

Hardcopy devices handle these functions in device specific ways. Some, for example, can
only print on a single sheet at once and so the KERASE commands are handled by switching
to a new output file. Eventually several files may be printed one at a time. Others, such as
laser printers, merely switch to new pages.

EXAMPLE

The following is typical of the general use of the KERASE functions.

c
c-- Start up graphics system.
C

ISTAT = KOPENP(GBUFFR, 8192)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'Failed to start up graphics'
STOP

ENDIF
c
c-- Grind away .... graphics, graphics, graphics ....
C

c
C-- Finished with first image, erase and go again.
C

105



KERASE

CALL KERASE

SEE ALSO

KSENDP

106



KEXEC

NAME

KEXEC - Overlay a node application.

SYNOPSIS

SUBROUTINE KEXEC(PROG)
CHARACTER*80 PROG

SUBROUTINE KAEXEC(PROG)
CHARACTER *80 PROG

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

This routine overlays (and hence terminates) the calling program by loading a new
application from the file PROG. The new routine immediately begins execution from its
main entry point. Unless an error occurs the call to KEXEC will not return.

By default KEXEC causes the overlay to occur in all nodes. It must, therefore, be a loosely
synchronous operation. If, however, the default Cubix mode is asynchronous then each
node perfonns the overlaying operation independently. This is also the case for the
KAEXEC system call.

Since memory is not re-initialized across calls to these routines it is possible to share large
blocks of data in each node. To do this it is merely necessary for the data to be placed in a
region of memory where none of the intended programs will overwrite it.

EXAMPLE

The following code section causes the program PASS2 to be loaded on top of the currently
executing routine.

PROGRAM DOEXEC
CHARACTER*80 PRGNAM
PARAMETER (PRGNAM='pass2')

C
C-- Start up Express.
C

CALL KXINIT
C
C-- Execute the first phase of the program and then EXEC the
C-- second phase to overlay this one.
C

CALL PHASEl
CALL KEXEC(PRGNAM)

C
C-- If we get here then something really bad happened ...

107



KEXEC

c
WRITE(6,*) 'Returned from EXEC •...• Hmmmmmm'
STOP
END

WARNINGS

This function is only available to programs run.ning with the Cubix file server. If you are
running with a host program the same effect can be achieved by simply using the KXLOAD
routines to download another node application.

108



KFLUSH

NAME

KFLUSH - Flush I/O buffers.

SYNOPSIS

SUBROUTINE KFLUSH(UNIT)
INTEGER UNIT

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

Under Cubix I/O is buffered which means that characters are stored up in internal data
structures and then emitted in large packets to improve efficiency. In this case it is not
always clear what will appear in a rtIe when the buffers are automatically flushed by the
operating system and so KFLUSH is provided to force this process to happen under the users
control.

It is important to note that NO automatic flushing is ever perfonned on "multi" mode files
- KFLUSH is required to show any output from these files.

EXAMPLES

The following code segment demonstrates the effect of the KFLUSH calion a file in "multi"
mode.

PROGRAM MULTI
C
C-- Setup Express and its common block.
C

CALL KXINIT
C

WRITE(6,*) 'Hello world'
CALL KMULTI(6)

C
WRITE(6,*) 'This is one of the processors ... '

c********************************************************
WRITE(6,*) , ... and still is'

c
CALL KSINGL(6)
WRITE(6,*)' that's all for now folks!'

C
STOP
END

When executed on four processors this would produce the output

109



KFLUSH

Hello world
This is one of the processors .••

.•. and still is
This is one of the processors •..
o C). Gland still is
This is one of the processors .••
e •• and still is
This is one of the processors •.•
•.• and still is
.•. that's all for now folks!

We can understand this output by noting that the KMULT I and KS INGL system calls both
force an implicit KFLUSH operation. As can be seen the twoWRI TEstatements separated
by the CODlment line with all the asterisks were buffered - when the KSINGLcall finally
flushed their buffers the two lines came out together in each node. If we replace the line of
asterisks with aeall to KFLUSH then the output would have been:

Hello world
This is one of the processors ••.
This is one of the processors .
This is one of the processors .
This is one of the processors .
••• and still is
... and still is
. .. •and ·sti\ll i:s'
... and still is
•.. that's all for now folks!

in which we can see that every line is sent out as it is written.

SEE ALSO

KMULTI

110



KGETHO

NAME

KGETHO .. Detennine host specific characteristics

SYNOPSIS

SUBROUTINE KGETHO(NODE, BUFFER)
INTEGER NODE
CHARACTER*80 BUFFER

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

This routine is used to determine host-specific characteristics. The current implementation
is restricted to returning, in BUFFER, the name of the operating system running on the host
whose node identified is NODE. Up to 80 characters of this information will be transferred
to the indicated buffer, any extra will be discarded.

No attempt is made to differentiate between minor versions of operating systems, or
between the various "unix-like" machines.

EXAMPLE

In the following code we determine the type of operating system running on our standard
host in order to find the character used to separate components of filenames. Since
FORTRAN is notoriously non-standard in the area of character and string variables we
assume, for the purposes of this code segment, that a routine called ISTREQ exists which
compares two strings and returns zero if they are the same.

CHARACTER*l FUNCTION GETSEP(NODE)
INTEGER NODE
CHARACTER*80 OSBUF

CALL KGETHO(NODE, OSBUF)
IF (ISTREQ(OSBUF, 'unix') .EQ. 0) GETSEP = 'I'
ELSE IF(ISTREQ(OSBUF, 'dos') .EQ. 0) GETSEP =
ELSE IF(ISTREQ(OSBUF, 'macintosh'» GETSEP =
ELSE IF(ISTREQ(OSBUF, 'vms'» GETSEP = '.'
ELSE

WRITE(6,*) 'Unrecognized os: " OSBUF
GETSEP = 0

ENDIF
RETURN
END

, \'
, .,.

111



KGETHO

SEE ALSO

KCBXSY

112



KGIN

NAME

KGIN, KAGIN - Graphical input operations

SYNOPSIS

INTEGER FUNCTION KGIN(BUTTON, PX, PY)
INTEGER BUTTON
REAL PX, PY

INTEGER FUNCTION KAGIN(BUTTON, PX, PY)
INTEGER BUTTON
REAL PX, PY

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These routines are used to perfonn graphical input operations usually tenned "locator
input". Upon execution a cursor appears on the screen and is positioned and triggered in a
device specific manner. After triggering the KGIN calls return and the specific trigger and
position are returned.

The KGIN routine must be called in each processor simultaneously while the KAGIN
function may be executed by any processor at any time. In this latter case it is the
responsibility of the user to ensure that sufficient infonnation is present to allow the
operator to know which processor is requesting input. Further, no flushing is perfonned by
these functions. It is up to the user to ensure that the display surface actually contains up­
to-date data before requesting graphical input

The coordinates returned to the user are expressed relative to those set up by the last call to
KSPACE in each processor. Further a status value is returned to indicate the result of the
KGIN operation. A negative value is returned by devices which are not capable of
perfonning input. A zero return value implies that the KG IN operation completed
successfully but that the cursor position was outside the window selected by the most recent
call to KVPORT or KSETVP in this processor. A positive return means that the coordinates
selected lay within the processor window. This last mechanism can be used to select
processors with a mouse, for example.

EXAMPLE

In the following we assign different halves of the display to two processors; node 0 gets the
left half and node 1 the right. We then use the input routines to select one or the other node
for some processing task.

INTEGER NDDATA(4)
REAL X, Y
INTEGER STAT, KEY

c

113



KGIN

c-- Divide up the screen on the basis of processor
c-- number.
C

CALL KXPARA(NDDATA)
C

IF (NDDATA(l) .EQ. 0) THEN
CALL KVPORT(O., 0., .5, 1.)

ELSE
CALL KVPORT(.5, 0., 1., 1.)

ENDIF
c
c-- Now assign coordinates. Each processor~s window
c-- will be mapped individually to the unit square.
C

CALL KSPACE(O.,O.,l.,l.)
C

10 KEY = 1
ISTAT = KGIN(KEY, X, Y)
IF(ISTAT .LT. 0) GOTO 20
IF(ISTAT .GT. 0) THEN

CALL GRIND(X,Y)
ENDIF
IF(KEY .NE. 0) GOTO 10

20 CONTINUE

Having set up the windows and coordinate systems we loop until the KEY parameter is
retumedas zero and the processor whose region we·indicated with the· mouse calls.the
GRIND subroutine with the selected points as arguments. Note that we can perform similar
operations on more processors by using the KXGRID routines to set up and coordinate the
distribution of processors to screen areas.

SEE ALSO

KVPORT.

114



KGREYS

NAME

KGREYS, KAGREY - Change color attributes.

SYNOPSIS

SUBROUTINE KGREYS(FROM, TO)
INTEGER FROM, TO

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These routines change the association of color indices to device colors used by Plotix. By
default a limited color map is used which can be extended with the KGREYS and KRAINB
function calls.

KGREYS extends the Plotix color map by adding a smoothly varying grey-scale between
the two selected values. The lower value will be white and the upper black. The number of
distinct grey levels available is hardware dependent but in any case Plotix will map the
indicated range in as smooth a manner as possible.

EXAMPLE

The following code draws a set of 6 boxes of varying grey shades along the diagonal of the
screen image.

INTEGER I
REAL V

C
CALL KSPACE(O., 0., 6., 6.)

C
CALL KGREYS(10, 15)

C
DO 10 I = 1,6

V = I
CALL KBOX(V, V, V+1., V+l., 10+i, 0)

10 CONTINUE
CALL KSENDP

115



KGREYS

SEE ALSO

KeOLOR, KRAINB

116



KLABEL

NAME

KLABEL - Add text.

SYNOPSIS

SUBROUTINE KLABEL(TEXT, X, Y)
CHARACTER*80 TEXT
REAL X, Y

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine draws the characters contained in the TEXT string at the position (X,Y). The
fU"St character of the string is placed above and to the right of the indicated point. Other
methods ofjustification can be obtained with the KDOTEX function.

EXAMPLE

The following code defines a 12 x 12 coordinate system and writes a string at several
positions on the screen.

INTEGER I
CHARACTER*80 5

c
C-- Define square coordinate system.
C

CALL KSPACE(O.,0.,12., 12.)
c

DO 10 I=1,12,2
WRITE(S,20} I

20 FORMAT (IX, 'At pos(',I3,',' ,I3,'}')
CALL KLABEL(S, 2.0, FLOAT(I»

10 CONTINUE
C

CALL KSENDP

117



KLABEL

WARNING

The current plotting position is undefined after this call. In order to perform reliable
graphical operations KMOVE should be used before any further drawing is perfonned.

SEE ALSO

KDOTEX, KMARKE

118



KLINEM

NAME

KLINEM - Modify drawing style for lines

SYNOPSIS

SUBROUTINE KLINEM(INDEX)
INTEGER INDEX

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIYfION

Modifies the style in which all further lines are drawn. The INDEX argument is an integer
which specifies, in a device dependent manner, the actual linestyle to use. The value 0 will
always create solid lines.

EXAMPLE

The following code defmes a lOx 10 coordinate system and draws a box with a dashed edge
and a solid diagonal.

CALL KSPACE(O.,O.,lO., 10.)
c

CALL KLINEM(l)
CALL KMOVE(l., 1.)
CALL KCONT(9.,1.)
CALL KCONT(9.,9.)
CALL KCONT(1.,9.)
CALL KCONT(l.,l.)

C
CALL KLINEM(O)
CALL KCONT(9.,9.)
CALL KMOVE(1.,9.)
CALL KCONT(9.,1.)

c
CALL KSENDP

119



KLINEM

SEE ALSO

KCONT, KeoLOR, KMOVE

120



KMARKE

NAME

KMARKE - Draw marker symbol.

SYNOPSIS

SUBROUTINE KMARKE(SYMBOL, X, Y, SIZE)
INTEGER SYMBOL
REAL X, Y, SIZE

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine draws a marker symbol at the position (X,Y) expressed relative to the
coordinate system most recently defined with the KSPACE function. The marker is drawn
with the given SIZE, expressed in the same units as the coordinates. The SYMBOL
argument is used to distinguish the various markers as follows

o point
1 diamond
2 square
3 triangle
4 inverted triangle
5 cross
6 plus
7 star

Some attempt is made to compensate for the fact that "squares" look bigger than "triangles"
- the SIZE argument is not strictly interpreted as the height of the triangle, for example.

EXAMPLE

The following code defines an 9 x 9 coordinate system and draws different marker symbols
along the diagonal.

INTEGER I

C

CALL KSPACE(0.,0.,8.,8.)
c

DO 10 I = 1,6
CALL KMARKE(I, FLOAT(i+l), FLOAT(i+l), .5)

10 CONTINUE
CALL KSENDP

121



KMARKE

SEE ALSO

KLABEL

122



KMOVE

NAME

KMOVE - Move without drawing.

SYNOPSIS

SUBROUTINE KMOVE(X, Y)
REAL X, Y

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

Moves the current plotting position to (X,Y). Nothing is drawn on the display surface. X
and Y are specified relative to the coordinate system defined by the most recent call to
KSPACE.

EXAMPLE

The following code draws a broken diagonal line across the display surface.

CALL KSPACE(O.,O.,4., 4.)
C

CALL KMOVE(O.,O.)
CALL KCONT(l.,l.)
CALL KMOVE(2.,2.)
CALL KCONT(3.,3.)

C
CALL KSENDP

SEE ALSO

KCONT, KeOLOR, KLINEM

123



KMRD2D

NAME

KMRD20, KMWT20 - Read/write two dimensional data sets.

SYNOPSIS

INTEGER FUNCTION KMRD2D(UNIT,BUF,TOTCOL,TOTROW,ITEMSZ,
COLO, CaLl, ROWO, ROW1,SKIP)

INTEGER UNIT, TOTCOL, TOTROW, ITEMSZ
INTEGER COLO, COLi, ROWO, ROWl
INTEGER SKIP, BUF(*)

INTEGER FUNCTION KMWT20(UNIT,BUF,TOTCOL,TOTROW,ITEMSZ,
COLO, COL1, ROW°, ROWl, SKIP)

INTEGER UNIT, TOTCOL, TOTROW, IT~MSZ

INTEGER COLO, COLl, ROWQ, ROWl
INTEGER SKIP, BUF(*)

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

These functions provide a primitive interface to a two-dimensional file access mode for
CUbixprograms. Ute basic idea is that data sets decomposed over a two dimensional array
of processors can .be read and written with a single function calL

Data is either read to or written from the array pointed to by aUF and consists of some
number of "items" each ofsize I TEMSZ. This concept is used instead of the more obvious
"byte" notation so that the other arguments totbese functions may be assigned as row or
column indices.

The disk dataset is treated as an array of TOTROW by TOTCOL items of which a subset is
to be read or written by each nodeo The particular piece of the global data set required by a
given node is specified by the ROWO, ROWl, COLO and CaLl arguments which are
inclll,sive parameters indexed from zero ... the specification

COLO = 0
COLl == 9
ROWa = 0
ROWl == 9

would access the 10 x 10 block in the upper left hand corner of the array.

The SKIP parameter specifies the offset in the BUF array between successive "row" entries
again in "items". This can be used to leave a boundary strip around the edge of the data as
is common in two dimensional decompositions and is illustrated in the example below.

EXAMPLE

Suppose we have a two dimensional array of integers of size NX by NY which we wish to

124



KMRD2D

decompose over the processors. The following code can be used to setup the decomposition
with the KXGRID functions.

PROGRAM TEST
COMMON/XPRESS/

c
INTEGER NDIM(2)
INTEGER GBLSZ(2) , LCLSZ(2) , LCLSTR(2)
INTEGER NDDATA(4)

C
C-- Set up Express and its common block.
C

CALL KXINIT
C
C-- Get runtime parameters, processor number etc ..
C

CALL KXPARA(NDDATA)
C
C-- Divide the nodes up among the two dimensions of the
C-- data and initialize the KXGRID system.
C

CALL KXGDSP(NDDATA(2) , 2, NOIM)
ISTAT = KXGDIN(2, NDIM)

C
c-- Figure out how much of the data fits in each node.
C

GBLSZ(l) = NX
GBLSZ(2) = NY
CALL KXGDSI(NDDATA(l) , GBLSZ, LCLSZ, LCLSTR)

c

Notice how we use KXGDSP to evenly divide up the number ofprocessors between the data
dimensions and KXGD S I to divide up the array between the processors. The parameters
returned by KXGDSI can be used to read in a two-dimensional data set as follows. (We
assume that UNIT is a file descriptor corresponding to some previously opened file and that
the global variables defmed in the previous program fragment are still available.

C
C-- Read data into nodes, no overlap allowed.
C

SUBROUTINE RDDATA(UNIT)
INTEGER UNIT

C
ISTAT = KMRD2D(UNIT, DATA, NX, NY, 4,

125



KMRD2D

* LCLSTR(l), LCLSTR(l)+LCLSZ{l)-l,
* LCLSTR(2), LCLSTR(2)+LCLSZ(2)~1,

* LCLSZ(l»
RETURN
END

This strategy uses the values ·retumed by KXGDSI to figure out exactly which data to
request from the input data set In this case.each node gets a distinct piece of data, divided
as evenly as possible between the processors but with no overlap and no space for any. The
mapping is as shown in the following figure.

Processor decomposition Data array

A common situation is that in which the input data set is required to be read into the center
of a block which contains, around its edges, space for one orrtlore entries from a neighbor
node. This isa common situation in image processing, for example, where some local
convolution is to be appliede To achieve this effect with the above parameters we change
the call to KXRD2D as follows:

c
C-- Read data into nodes, overlap allowed but not
c-- perform~d.

C
SUBROUTINE RDDATA(UNIT)
INTEGER UNIT

C
ISTAT =KMRD2D(UNIT, DATA(LCLSZ(1)+4), NX, NY, 4

* LCLSTR(l), LCLSTR(l)+LCLSZ(l)-l,
* LCLST~(2), LCLSTR(2)+LCLSZ(2)-1,
* LCLSZ(1)+2)

RETURN

126



KMRD2D

END

This call perfonns the mapping shown in the next figure. Note that the skip_di s t
parameter has been modified to place a gap around each "row" of the data with one space
at the beginning and one at the end. This would be suitable for a nearest neighbor
interaction in which a single strip of data is required from each neighbor node.

Data array
Processor decomposition

A last option which is interesting is one in which the data being read is overlapped at the
time it is originally taken from the data set. This is merely a variation on the last call which
provided space for the overlapped data but did not initialize it. The call required to read in
overlapping data i's as follows

c
C-- Read data into nodes with overlapping strip one
C-- "item" wide.
C

SUBROUTINE RDDATA(UNIT)
INTEGER UNIT

C

ISTAT = KXRD2D(UNIT, DATA, NX, NY, 4,
* LCLSTR(l)-l, LCLSTR(l)+LCLSZ(l),
* LCLSTR(2)-1, LCLSTR(2)+LCLSZ(2),
* LCLSZ(1)+2)

RETURN
END

127



KMRD2D

This mapping is shown in the next figure.

Processor decomposition

.WARNING

Data array

Reading and writing unformatted rues is complicated by the fact that the host and nodes of
the parallel processing system may not have the same type ofprocessor (CPU) and may not
share the same byte ordering properties. An example might be a Sun workstation-hosting a
transputer or NCUBE machine. In this case the host processor is aM?torola based system
which has the most significant byte at the lowest memory address while the nodes have the
opposite orderingo To cpver these. c~ses Express provides a set of byte swapping
primitives: KXswAP.

RETURN VALUE

KMRD2D returns the number of bytes-read, or -1 upon unrecoverable errors. Similarly
KMWT2D returns the number of bytes written by the calling node or -1 upon disastrous
errors.

SEE ALSO

KMREAD, KMWRIT, KXSWAP

128



KMREAD

NAME

KMREAD - Read independent data into each node.

SYNOPSIS

INTEGER FUNCTION KMREAD(UNIT, BUF, LENGTH, ORDER)
INTEGER UNIT LENGTH, ORDER, BUF(*)

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

KMREAD reads unfonnatted data into the nodes from the file indicated by the UNIT
argument. Independent data is read into each node; the LENGTH arguments need not all be
the same.

The call to KMREAD must be made loosely synchronously in all nodes.

The ORDER argument detennines in what order the data from the input file are to be placed
in the nodes. The simplest case, obtained by setting ORDER = NORDER, (Defmed in the
XPRES 5 common block), is for the input to appear in order of increasing processor number
so that node 0 receives the frrst block followed by node 1 and so on. Other cases are
obtained by setting the value to be an integer between 0 and the number of processors. The
node which specified ORDER = 0 receives the first block and then the node which gave
ORDER = 1 and so on. Note that it is an error if a value between 0 and the number of
processors is not specified in some node. This condition is indicated by KMREAD returning
-1.

EXAMPLE

Suppose that we have decomposed our domain into a two dimensional mesh with NX and
NY processors in the two dimensions. If we now want to read data blocks in the
conventional manner for such a grid - i.e., along the rows, then the KXGRID routines of
Express can be used as follows

INTEGER FUNCTION BLKRD(UNIT, BLOCK, BLKSIZ, NX, NY)
REAL BLOCK(*)
INTEGER NX, NY, UNIT, BLKSIZ
INTEGER NDDATA(4)

c
C-- Assume that KXINIT has been called elsewhere.
C

NPROCS(l) = NX
NPROCS(2) = NY
ISTAT = KXGDIN(2, NPROCS)
ISTAT = KXGDCO(NDDATA(l), COORD)

C
BLKRD = KMREAD(UNIT, BLOCK, BLKSIZ,

129



KMREAD

*
RETURN
END

COORD(2)*NX + COORD(l»

This will order the input according to the row and column coordinates of the processor in
the two dimensional mesh.

WARNING

Reading and writing unfonnatted files is complicated by the fact that the host and nodes of
the parallel processing system may not have the same type ofprocessor (CPU) and may not
share the same byte ordering properties. An example might be a Sun workstation hosting a
transputer or NCUBE machine. In this case the host processor is a Motorola based system
which has the most significant byte at the lowest memory address while the nodes have the
opposite ordering. To cover these cases Express provides a set of byte swapping
primitives: KXSWAP •

RETURN VALUE

KMRE.AD returns the number of bytes read, or -1 upon unrecoverable errorso A return value
of zero indicates an "end of file" condition.

SEE ALSO

KMWRI T, KXSWAP

130



KMULTI

NAME

KMULTI, KSINGL ISMULT, ISASY I KORDER - Parallel I/O characteristics.

SYNOPSIS

SUBROUTINE KMULTI(UNIT)
INTEGER UNIT

SUBROUTINE KSINGL(UNIT)
INTEGER UNIT

SUBROUTINE KASYNC(UNIT)
INTEGER UNIT

INTEGER FUNCTION ISMULT(UNIT)
INTEGER UNIT

INTEGER FUNCTION ISASYN(UNIT)
INTEGER UNIT

SUBRO~TINE KORDER(UNIT, ORDER)
INTEGER UNIT, ORDER

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

These routines provide an interface to the parallel features of buffered file I/O. As well as
their usual characteristics Cubix "UNIT"s are either in singular, multiple or
asynchronous mode. This mode determines the exact behavior of READ and WRITE
calls on that file With. regard to the distribution of data.

If a file is in singular mode then any read operation on it must be made loosely
synchronously and exactly the same data is transferred to each node. Similarly, write
operations must be made loosely synchronously and only node zero actually transmits any
data to the ftIe. This has the effect of allowing all nodes to apparently write but only one
copy appears in the output file. In this mode it is an error if any node attempts to read or
write different data from the others. This error nonnally causes internode communication
to "hang" or may occasionally cause the cubix program to abort with status -1.

In multiple mode read requests are satisfied from the file independently. Thus each node
can read its own data. Output requests can also be made independently with each node
writing its own data to the file. Note that in multiple mode no implicit flushing of buffers
is petfonned and it is the responsibility of the user to call KFLUSH in order to cause data
to appear in the indicated file.

In asynchronous mode, I/O requests are handled independently on the processors on which
they occur. No interprocessor synchronization is perfonned. Each processor maintains its

131



KMULTI

own state variables recording the last byte it read or wrote in the file, and each request.to
read or write implicitly returns theflle to that location before proceeding.

The routines KMULTI, KSINGL and KASYNC switch files between multiple, singular and
asynchronous modes. KMULTI puts a rue into the multiple mode and KSINGL restores it
to singular mode. KAS YNC places a file in asynchronous mode. All three flush any data in
the rue's buffers prior to the call, and all must be made loosely .synchronously in all nodes.

By default both input and output operations on "mu1t i" mode files occur in order .of
increasing processor number .. i.e., node 0 gets the first crack followed by node 1, node 2
and so on. The KORDER system call is available to alter this default. The fttstargument
indicates the unit· for which anew ordering is desired and the·second is an integer· in the
range o. .. nprocs-l. Further~'multi"mode operations on· this file will result in the
processor which specified order=O being first, followed by that which gave order=l
etc. From this it should be obvious that the ORDER parameters given in the call to KORDER
must fonna permutation of the set {O, ••• , nprocs-l} ... i.e., each value must be
specified exactly once in one of the nodes. Failure to observe this rule results in deadlock
whenever I/O is attempted on the affected stream. (Examples of the use of this parameter
in the lower-level KMREADand KMWRIT system calls can be found on the respective
manual pages).

The routine ISMULT returns 1 if its argument is in multiple mode and zero otherwise..

The routine. I SASY returns 1 ifits argument is in a.§YJlChroI19us·IJlode, al14zero otherwise.

EXAMPLES

The following code segment demonstrates the effect of the·KMULTI call

PROGRAM· MULTI
c
c-- Setup Express and its common block.
C

CALL KXINIT

C
WRITE(6,*) 'Hello world' CALL KMULTI(6)
WRITE(6,*) 'This is one of the processors ... '
CALL KS IN·GL(6 )

WRITE(6,*) , •.. that's all for now folks!'
c

STOP
END

When executed on four processors this would produce the output

Hello world
This is one of the processors .
This is one of the processors .
This is one of the processors .

132



KMULTI

This is one of the processors ...
... that's all for now folks!

showing that only one line of output results from each call to WRI TE in single mode while
each processor generates it own output while the fue is in multi-mode.

Asynchronous mode typically arises in one of two situations. Either a code is truly
asynchronous - it's behavior is too unpredictable in advance to allow use of the
synchronous I/O modes or one might want to use this mode for reporting runtime errors that
may only occur within a single node.

SEE ALSO

KMREAD, KMWRIT, KFLUSH

133



KMWRIT

NAME

KMWRI T - Write independent data from each node.

SYNOPSIS

INTEGER FUNCTION KMWRIT(UNIT, BUF, LENGTH, ORDER)
INTEGER UNIT, LENGTH, ORDER, BUF(*)

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

KMWRIT writes data from the nodes to the file indicated by the UNIT argument.
Independent data is written from each node; the LENGTH arguments need not all be the
same.

The call to KMWRIT must be made loosely synchronously in all nodes.

The ORDER argument detennines in what order the data from the various nodes are to be
placed in the output file. The simplest case, obtained by setting ORDER = NORDE~ is for
the output to appear in order of increasing processor nu.mbero (NORDER is to be found in
the XPRESS common block set up by the call to KXINIT.) Other cases are obtained by
setting the vaIue to be an integer between 0 and the numberofproc~swrs.First in the output
appears the data from the node which specified ORDER = 0 then that from the node with
ORDER = 1 anc;lso on. Note that it is 8Jl··crrorif a value between 0 andthc. number of
processors is not specified in some node. This condition.is indicated by KMWRI T returning
-1.

EXAMPLE

Suppose that we have dec;omposed our domain into a two dimensional mesh with NX and
NY processors in the two dimensions. If we now want to write out data blocks in the
conventional manner for such a grid - i.e., along the rows then the KXGRID routines of
Express can be used as follows

INTEGER FUNCTION BLKWT(UNIT, BLOCK, BLKSIZ, NX; NY)
REAL BLOCK (*)

INTEGER NX, NY, UNIT, BLKSIZ
INTEGER NDDATA(4)

c
C-- Assume that KXINIT has been called elsewhere.
C

NPROCS(l) = NX
NPROCS(2) = NY
ISTAT = KXGDIN(2, NPROCS)
ISTAT = KXGDCO(NDDATA(l), COORD)

C
BLKRD = KMWRIT(UNIT, BLOCK, BLKSIZ/

134



*
RETURN
END

COORD(2)*NX + COORD(l»

KMWRIT

This will order the output according to the blocks in the two dimensional grid.

WARNING

Reading and writing unfonnatted files is complicated by the fact that the host and nodes of
the parallel processing system may not have the same type ofprocessor (CPU) and may not
share the same byte ordering properties. An example might be a Sun workstation hosting a
transputer or NCUBE machine. In this case the host processor is a Motorola based system
which has the most significant byte at the lowest memory address while the nodes have the
opposite ordering. To cover these cases Express provides a set of byte swapping
primitives: KXSWAP •

RETURN VALUE

KMWRI T returns the number of bytes written, or .. l upon unrecoverable errors.

SEE ALSO

KMREAD, KXSWAP

135



KOPENP

NAME

KOPENP, KAOPEN, KCLOSP - Begin and ~enninate graphics system.

INTEGER FUNCTION KAOPEN(BUFFER, SIZE)
INTEGER BUFFER(*), SIZE

SUBROUTINE KCLOSI?

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These routines initialize and tenninate the graphics systemc

One of the KOPEN functions must be the fltSt Plotix function called in any graphics
application. The arguments denote' the internal buffer to be used for storing graphical
infonnation between calls to the KSENDP functions. The array must be provided by the
userand its size (in bytes) irtdicatedthrough the second-argument Asa guide to appropriate
sizes a call to KMOVE.,~r KCONT requires 5 bytes.

KAOPEN perfonns the same function as KOPENP but asynchronously - that is 'any node
may call this routine independentof the others with no synchronization constraints.

KOPENP returnsa,<statuscode i~dicating the. success or failure of the setup.procedures.
Negative values indicate errors and it is unwise to proceed if an error condition exists since
tenninals7 for example, may be sent into strange states.

The last graphical routine to be called by an application should be KCLOSP e This serves to
close any open files and reset interactive devices to their normal states.

Both KOPENP and KCLOSP must be called loosely synchronously in all nodes7 while
KAOPEN maybe called independently at any time by any node.

EXAMPLE
The following skeleton code should provide the basis for all graphics applications.

PROGRAM GRAFIX
INTEGER GBUFF(2048)

C

C-- Start up Express.
C

CALL KXINIT
C

136



C-- Set up graphics.
C

ISTAT = KOPENP(GBUFF, 8192)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'Failed to init graphics system'
STOP

ENDIF
C
C-- Application code ......•...
C

C
C-- Application finished, clear up graphics system.
C

CALL KCLOSP
STOP
END

SEE ALSO

KSENDP

KOPENP

137



SUBROUTINE KPANLP(X, Y)
REAL X, Y

SUBROUTINE KENDPA

SUBROUTINE KPOLGN(NPTS, XPTS, YPTS, COLOR, EDGE)
INTEGER NPTS, COLOR, EDGE
REAL XPTS(*), YPTS(*)

DOMAIN

This routine may only be called in programs compiled with thePlotix librarieso

DESCRIPTION

These routines are used to draw and fill polygonal regions.of the display surface. KPOLGN,

the most straightforward of the routines takes two arrays each containing NPTS values as
the x and y coordinates of the vertices of the polygon to be drawn.. The coordinates·need
not close - the first and last points are joined by the system;> The resulting polygon will be
filled according to the COLOR argument and will have its outline-drawn in the current color
if EDGE is non-zero.

Positive values of COLOR translate into solid colors in the same manner as the arguments
to the line color primitive, KCOLOR.Negative values yield device dependent shading
patterns.

All coordinates are expressed relative to the most recent call to KSPACE.

An alternative interface to the polygon routines is provided by KINITP, KPANLP and
KENDPA. The fIrst routine initializes the system so that the following polygori will be
drawn and filled according to the COLOR and EDGE arguments, interpreted as above. This
routine must be called to initialize each polygon. Successive calls to KPANLP then add
vertices to the current polygon and the figure is closed and filled by the KENDPA call. This
interface is often superior to KPOLGN since it does not have the memory overhead of
storing points in attays.

Note that filling with COLOR = 0 and EDGE = 0 results in a "selective erase" - specific
areas of the screen can be erased.

EXAMPLE

The following code draws a simple box in the foreground color using the KPOLGN
primitive and then takes a "bite" o'ut of it with the alternate routines by drawing and filling

138



in the background color.

REAL XPTS(4), YPTS(4)
DATA XPTS/1., 9., 9., 1.1
DATA YPTS/1., 1., 9., 9.1

C
CALL KSPACE (0 • , 0 • , 10 ., 10 . )

c
CALL KPOLGN(4, XPTS, YPTS, 1, 1)

c
C-- Now draw a polygon filled in the background color
C

CALL KINITP(O, 0)
CALL KPANLP(S., 1.)
CALL KPANLP(9., 1.)
CALL KPANLP(9., 5.)
CALL KPANLP(5., 5.)
CALL KENDPA

C
CALL KSENDP

SEE ALSO

KBOX, KeOLOR

KPANEL

139



KPLOTH

NAME

Kl?LOTH - Analyze usage of system buffers.

SYNOPSIS

INTEGER FUNCTION KPLOTH

DOMAIN

This routine may·only be called in programs compiled with the Plotix libraries.

DESCRIYfION

Graphics commands are buffered internally on each node until flushed by one of the
KSENDP commands. This necessitates assigning a fixed size buffer for graphics. In order
to ntu~e" the size of this buffer and ensure that neither graphics gets lost nor too much
memory is devoted to this system the function KPLOTH returns the "high'water mark" from
the graphics system - i.e., the maximum number ofbytes that were present between any two
calls to the KSENDP primitives. Using this function allows the user to exactly determine
system memory requirements.

EXAMPLE

Assuming that the buffer size is currently set to 8192 bytes the following code might be
used to· wamof impending overflows.

c
C-- Make display "current".
C

CALL KUSEND
c
C-- Set up for asynchronous I/O since not all node might
C-- have overflowed.
C

CALL KASYNC(6)
IHWM = KPLOTH ()
IF(IHWM .GT. 8000) THEN

WRITE(6,*) 'Warning: graphics buffer tight'
ENDIF

Notice that we use the asynchronous Cubix mode for the warning message since it is not
guaranteed that all processors will have filled their buffers to the same extent.

SEE ALSO

KOPENP, KSENDP

140



KPLXOP

NAME

KPXGOP, KPXSOP - Manipulate hardware dependencies in Plotixprograms.

SYNOPSIS

INTEGER FUNCTION KPXGOP(OPTION, VALUE)
CHARACTER*80 OPTION
INTEGER*4 VALUE

INTEGER FUNCTION KPXSOP(OPTION, VALUE)
CHARACTER*80 OPTION
INTEGER*4 VALUE

DOMAIN

These routines may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

Plotix attempts to provide device-independent graphical capabilities to Express programs.
Due to the simple nature of the underlying graphics mopel this can usually be achieved to
a large degree. To deal with those cases where either more capabilities are available or
where more information is required about a particular Plotix implementation these two
functions are provided.

KPXGOP accesses the value of some internal property described by the character string
OPTION and stores it under the supplied pointer variable. The particular values ofOPT I ON
supported on any particular device vary according to device capabilities and are listed in
the device specific section of the Plotix chapter of the User's Guide. If the indicated
property is not supported on the device in use -1 is returned.

The opposite function is provided to set internal state of some Plotix system with KPXSOP.
This routine takes a character representation of the required property and a single 32-bit
value to which the indicated property will be set. If the named property is not supported on
the device in use -1 will be returned.

When successful both routines return O.

EXAMPLE

The following code segment initializes a Plotix system and also attempts to perfonn the
following three tasks:

• Inquire how many distinct colors are available for drawing lines.

• Request output in "landscape" rather than the default "portrait" mode.

• Install a named "redraw" function which will be used in windowing versions of
Plotix to repaint the screen under certain well-defined circumstances.

Note that anyone of these requests may fail because the device currently in use may not be
able to support them. In the code segment below we imagine that the calling program is able
to deal with such failures without having to tell the user. In other situations we could look

141



KPLXOP

for a 0 return value from the calls to indicate failure and issue diag.nostics.

SUBROUTINE GPHINI(PBUFFR, PSIZE, NeOLS)
INTE·GER*4 PBUFFR (*), PSIZE, NeOLS
EXTERNAL IPAINT
CHARACTER*80 REDRAW, LANSCP, NLCOLS
PARAMETER (REDRAW='redraw', LANSCP='landscape',

$ NLCOLS=lnlcolors')

ISTAT = KPXSOP(REDRAW, IPAINT)
ISTAT = KPXSOP(LANSCP, 0)

ISTAT == KOPENP(PBUFFR, PSIZE)
IF(ISTAT .LT. 0) THEN

WRITE<6,*) 'Failed to initialize graphics'
ST'Q·P

END IF

ISTAT = KPXGOP(NLCOLS, NeOLS}
IF(ISTAT .LTe O} THEN

WRITE(6,*} 'No data- assuming monochrome'
NeOLS = 2

ENDIF
RETURN
~ND

We makethe calls to·KxPSOP·beforetheeall'toKOPENP while the emIto KPXGOP follows
ito This is common practice - in many Plotix implementations the call to KOPENP is
responsible for setting upa lotaf the default behavior of the system and so it makes sense
to make our preferences known before starting the system. This is one of the few cases in
which KOPENP should not be the frrst call made to Plotix. Similarly we wait until after the
device has been initialized before asking how many colors are available. This allows for
systems which must be initialized before they can know how many colors are available.

SEE ALSO

KOPENP

142



KPROFI

NAME

KPROF I - Low level execution profiler

SYNOPSIS

SUBROUTINE KPROFI(BUFFER, BUFLEN, START, SCALE)
INTEGER BUFFER(*), BUFLEN, START, SCALE

DOMAIN

KPROF I may only be called in the nodes.

DESCRIPTION

This routine serves to initialize the execution profI1er. Every few milliseconds the program
counter of the user application is examined and a histogram entry in the memory area
denoted by BUFFER is incremented. The size of the histogram area is BUFLEN bytes.

In order to decide which histogram entry to increment a "mapping function" is applied to
the program counter discovered by the system. First START is subtracted and then the
result is multiplied by SCALE and divided by OxlOOOO (Hexadecimal) .. i.e., the complete
mapping is

BIN = (PC - START)*SCALE/Ox10000

The overall effect of the SCALE parameter is to map groups of adjacent program locations
into the same histogram bin. The value SCALE = 0x10000 maps every program location
into a separate histogram bin, SCALE == 0x 8000 maps each pair of locations into a single
bin, SCALE == Ox4000 every group of four, and so on.

Using combinations of the BUFLEN, START and SCALE parameters it is possible to
allocate various memory ranges to be profiled. Note that no errors are incurred if the range
is not large enough resulting in a calculated BIN which is out of the histogram range. In
this case a special "misses" counter is incremented. This latter feature also provides some
diagnostic infonnation concerning the success of the profiling attempt - if an incorrect
profiling range is selected most of the histogram entries will be in the "miss" bin allowing
easy diagnosis.

KPROFI does not enable the profiler. An explicit call to KXPON must be made to begin
gathering profile data.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
execution profile.

PROGRAM XPRTST
c

INTEGER PRFBUF(2048), PRFSCL
PARAMETER(PRFSCL = 8192)

C

143



KPROFI

C-- This is the na.Ine given to a particular routine in
C-- the progr.am which is known to occur low in memory.
C-- This information can usually be obtained from a
c-- "linker map".
C

EXTERNAL F MAIN
c
C-- Start Express.
C

CALL KXINIT
c

CALL KPROFI(PRFBUF, 8192, F_MAIN, PRFSCL)
CALL KXPON

C
C-- Application code, profiler running ....
C

The choice of the START argument is most conveniently made in conjunction with the
"linker map" provided by the compiler. This usually contains a list of the addresses of all
the functions in an application andean be used to find the smallest.

SEE ALSO

xtool (command), KXPROF

144



KRAINB

NAME

KRAINB - Change color attributes.

SYNOPSIS

SUBROUTINE KRAINB(FROM TO)
INTEGER FROM, TO

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPrION

This routine changes the association of color indices to device colors used by Plotix. By
default a limited color map is used which can be extended with the KRAINB and KGREYS
function calls.

KRAINB extends the Plotix color map by adding a smoothly varying color spectrum
between the indicated values. The "rainbow" starts with red and varies, with full saturation
and value, through the different hues; red, magenta, blue, yellow, cyan and back to red. The
number of distinct colors available is hardware dependent but in any case Plotix will map
the indicated range in as smooth a manner as possible.

On devices incapable of providing color output this function is treated exactly as a call to
KGREYS.

EXAMPLE

The following code draws a set of6 boxes ofvarying colors along the diagonal of the screen
image. Since the manual is printed on a monochrome device the output is exactly as if the
call to KRAINB were replaced with one to KGREYS!

INTEGER I
REAL V

c
CALL KSPACE(O., 0., 6., 6.)

c
CALL KRA1NB(10, 15)

c
DO 10 I = 1, 6

V = I
CALL KBOX(V, V, V+1.0, V+1.0, 10+1, 0)

10 CONTINUE
CALL KSENDP

145



KRAINB

SEE ALSO

KeOLOR, KGREYS

146



KREAD

NAME

KREAD, KWRI TE - Read or write unfonnatted data.

SYNOPSIS

INTEGER FUNCTION KREAD(UNIT, BUFFER, LENGTH)
INTEGER UNIT LENGTH, BUF(*)

INTEGER FUNCTION KWRITE(UNIT, BUFFER, LENGTH)
INTEGER UNIT LENGTH, BUF(*)

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

KREAD reads unfonnatted data into the nodes from the file indicated by the UNIT
argument. LENGTH bytes are read and placed in the indicated BUFFER. KWRI TE perfonns
the opposite function - LENGTH bytes are transmitted to the indicated UNIT from the
BUFFER.

If the indicated file UNIT is in "singl" mode then KREAD and KWRITE must be called
loosely synchronously in all nodes. If the file is in "async" mode or Cubix has been
switched to asynchronous mode with a call to KCBXSY then independent calls to these
functions may be made in each node.

These functions provide the fastest but least portable interface to unformatted Fortran file
I/O. They make direct calls to the C routines read and write circumventing any
intennediate buffering or file transfer protocols.

RETURN VALUE

KREAD returns the number of bytes read, or -1 upon unrecoverable errors. A return value
of zero indicates an "end of file" condition. KWRI TE returns the number of bytes written
or -1 upon unrecoverable errors.

WARNING

Reading and writing unfonnatted files is complicated by the fact that the host and nodes of
the parallel processing system may not have the same type ofprocessor (CPU) and may not
share the same byte ordering properties. An example might be a Sun workstation hosting a
transputer or NCUBE machine. In this case the host processor is a Motorola based system
which has the most significant byte at the lowest memory address while the nodes have the
opposite ordering. To cover these cases Express provides a set of byte swapping
primitives: KXSWAP .

SEE ALSO

KMREAD, KMWRI T, KXSWAP

147



KSENDP

NAME

KSENDP .. Flush graphical data to display surface.

SYNOPSIS

SUBROUTINE KSENDP

SUBROUTINE KUSEND

SUBROUTINE KASEND

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPfION

In the implementation ofPlotixforparallel computers output is "buffered". This means that
each KMOVE, KeONT, KPANLP, etc. command merely stores its parameters in an area of
memory rather than·immediately attempting to draw the associated object. This strategy is
dictated by the fact that typical parallel computers have large computing power but little II
o bandwidth. Asa.result it makes no sense to send lots of small messages about graphical
objects to the device since this would result in spending all ones time communicating rather
than computing. Instead we store· up.a largenumber,of objects .and·then se,nd .them all at
once.

This methodintrekiuces the "flushing" concept to the 'graphical system. No data actually
appears on the display surface until one of the three KSENDPcommands is exec,uted. The
differences between the three commands are typified by the following observations of
common situations

KSENDP All the nodes have been simultaneously drawing the same part of an
image. This situation is quite common ... it costs nothing to duplicate
the same sequential effort in all processors. All nodes make the call to
KSENDP together but the data is only flushed to the display once.

KUSEND The nodes bave been working separately on their own pieces of·the
image and are now ready to ship it out to the display. All processors
call KUSEND together and the set of objects from each node appear in
order of increasing proc'essor number.

KASEND The nodes are working totally independently and asynchronously. A
particular node wishes to send some data to the display and has no way
of knowing the status of the other processors. Any node may call
KASEND at any time.

The effect of these calls is to empty the buffer on the calling node ready for more graphical
objects.

The buffer size required for graphical objects varies quite significantly from application to
application. In some codes it may be possible and efficient to call the KSENDP functions

148



KSENDP

quite regularly and so only a small buffer is required. Others may operate for long periods
without flushing data and, as a result, need large buffers. The size of the graphics buffer is
set in the call to KOPENP.

EXAMPLE

The following code segment illustrates one of the less obvious bugs possible under Plotix.
We use the system calls to draw a "menu" and then accept selections from it with KGIN.

c
C-- Demo of PLOTIX code --- incorrect!!
C

CALL KSPACE (0 ., 0., 4., 4.)
C
C-- Draw simple menu on left hand edge of display.
C

CALL KLABEL('QUIT', .1, .5)
CALL KLABEL('ITERATE', .1, 1.5)
CALL KLABEL('RESET', .1, 2.5)
CALL KLABEL('OUTPUT', .1, 3.5)

c
c-- UseKGIN to get user option from menu.
C

ISTAT ~ GIN (KEY, X, Y)
OPTION = INT(Y)

The error here is that data is not flushed before the call to KGIN. As a result the user is asked
to make a selection from an invisible menu. Not very friendly. The solution is, however,
very straightforward; insert a call to KSENDP before the call to KGIN. Note that this
illustrates another aspect of the flushing commands - since all processors have been
drawing the same thing and we only want to see one copy of it on the display the
appropriate flushing function is KSENDP.

SEE ALSO

KOPENP

149



KSPACE

NAME

KSPACE - Defme user coordinate system.

SYNOPSIS

SUBROUTINE KSPACE(LOWX, LOWY, HIGHX, HIGHY)
REAL LOWX, LOWY,HIGHX, HIGHY

SUBROUTINE KORTHO (LOWX, L.QWY, HIGHX, HIGHY, JUSTFY)
REAL LOWX, LOWY, HIGHX, HIGHY
INTEGER JUSTFY

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPI'ION

These routines define a coordinate system to be mapped onto the current window. By
default all plotting commands take place in a coordinate system which has (0., 0.) at its
lower left corner and (1., 1.) at the upper right. After this call all future plotting commands,
including the input request cOlllPlands, will operate in the new coordinate system.

While the KSPACE routine covers the entire viewport with the selected .coordinate range
the KORTHO function can be used to preserve the aspect ratio ofthe indicated coordinate
system. A mapping is created s'o that objects will actually appear with the correct shape
'independeritof tile· specific characteristics of a particular outptitdevice- circles will be
circular not e~liptical.

Since a correctly normalized region may not completely fill. the current viewport the
JUSTFY parameter is used to indicate exactly where the region should be place. The value
·1 implies that the new region should be placed either to the left or at the bottom of the
viewport while +1 indicates the right or top. A zero value centers the region within the
viewport.

EXAMPLE

This example shows the effect of KSPACE transformations on simple objects. The routine
MYBOXdraws a unit square on the screen.

SUBROUTINE MYBOX
C

CALL KMOVE(O., 0.)
CALL KCONT(l., 0.)
CALL KCONT(l., 1.)
CALL KCONT (0 ., 1.)
CALL KCONT(O., 0.)
RETURN

150



KSPACE

END

To see the effect of the KSPACE call consider the following sequence

C
C-- Default coords ==> full screen "square".
C

CALL MYBOX
C
C-- Redefine coordinate system to make square fill only
C-- one quadrant of the display.
C

CALL KSPACE(O., 0., 2., 2.)
CALL MYBOX
CALL KSENDP

As can be seen the resulting "square" is not! To correct this we could instead use the
KORTHO function as shown below. Note that we chose the justification that the used area
should be to the left of the viewport.

CALL MYBOX
CALL KORTHO(O., 0., 2., 2., -1)
CALL MYBOX
CALL KSENDP

151



KSPACE

In Appendix C is presented a complete example program in·which the KXGRID routines
are used to map processors to their own individual windows on the display surface and
KSPACE is used to map each individual processor region to its own coordinate range. Note
that it is possible to have different coordinate ranges in separate processors.

SEE ALSO

KVPORT

152



KVPORT

NAME

KVPORT, KSETVP - Specify area of display to hold image.

SYNOPSIS

INTEGER FUNCTION KVPORT(LOWX, LOWY, HIGHX, HIGHY)
REAL LOWX, LOWY, HIGHX, HIGHY

SUBROUTINE KSETVP(WINDOW)
INTEGER WINDOW

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPrION

These routines allocate and activate/deactivate certain area of the display surface. The
supplied parameters are expressed as fractions of the total view surface so that the default
O.O<x<1.0 and O.O<y<l.O is the entire display. By selecting smaller regions in x and y it is
possible to confine an image to a smaller region of the display. This is useful if the final
image is required to have 8certain aspect ratio or in parallel processing applications where
each processor is to be assigned.8 piece of the view surface.

Plotix allows several viewports to be present on the same display surface. Each is indicated
by a number returned by the corresponding call to KVPORT and is selected by a call to
KSETVP. Note that each viewport or window has its own coordinate range specified by a
call to KSPACE and that clipping is perfonned independently in each window. Further,
since the call to KVPORT selects the new viewport a call to KSPACE to set upa coordinate
system must come after the corresponding call to KVPORT.

EXAMPLE

This example shows the effect of KVPORT transfonnations on simple objects. The routine
MYBOX draws a unit square on the screen.

SUBROUTINE MYBOX
c

CALL KMOVE(O., 0.)
CALL KCONT(l., 0.)
CALL KCONT(l., 1.)
CALL KCONT(O., 1.)
CALL KCONT(O., 0.)
RETURN
END

To see the effect of the KVPORT call consider the following sequence

153



KVPORT

c
c-- Default coordinates ==> full screen "square".
C

CALL MYBOX
c
C-- Define (and implicitly activate) new viewporte
C

IVP = VPORT (0., 0., .5, .5)
CALL MYBOX
CALL KSENDP

To see the effect of multiple viewportsconsider the following code segment. We create
,three windows. The left window has a call toKSPACEwhicllmeans tnat the "Qox" fills only
the bottom part of the viewport. The second window has no call to KSPACE so its
coordinate range will have the usual default. The last window uses KORTHO to make a
viewport with the correct aspect ratio .. the square actually comes out square!

INTEGER LFTWIN, TOPWIN, LOWWIN
c
C-- Left window, scaling range (0,0) -> (1,2)
C

LFTWIN = KVPORT(O.O, 0.0, 0.2, 1.0)
CALL KSPACE(O.O, 0.0, 1.0, 2.0)

c
C-- Top window, default scaling range (0,0) --> (1,1)
C

TOPWIN = KVPORT(0.2, 0.5, 1.0, 1.0) C
C-- Lower window, scaled (0,0) --> (1,1), correct
c-- aspect ratio.
C

LOWWIN = KVPORT(0.2, 0.0, 1.0, 0.5)

154



CALL KORTHO(O.O, 0.0, 1.0, 1.0, 0)
C
C-- Set up windows, draw the squares
C

CALL KSETVP(LFTWIN)
CALL MYBOX

c
CALL KSETVP(TOPWIN)
CALL MYBOX

C
CALL KSETVP(LOWWIN)
CALL MYBOX

C

CALL KSENDP

SEE ALSO

KSPACE

KVPORT

ISS



KXACCS

NAME

KXACCS - Share a processor group with another process

SYNOPSIS

INTEGER FUNCTION KXACCS(DEVICE, NNODES)
CHARACTER*80 DEVICE
INTEGER NNODES

DOMAIN

Host proces~or only.

DESCRIPTION

This routine provides a "brute-force" mechanism by which a host program can obtain
access to every node in the network irrespective of whether or not that node is currently
executing a program - even if allocated to another user. This often useful for providing
overall system monitoring or when only a single application is to run on the entire network.

The rlist argument specifies the particular parallel computer to which access is desired and
is interpreted in the same manner as the cOlTesponding argument to KXOPEN. The last
argument is returned to the caller containing the number of nodes in the system.

R.ETURN VALUE

1JleJ~uet$!UI"Ile~l,!>y~CCSis tllel/('oces,fll' grollPiYt1ex which must~iused infutUl"e
references to the shared'processors. If some error occurs or nodes are accessible to the host
proces,sor -1. is returned.

WARNINGS

Communicating with shared processor groups is complicated by interactions between
source and type fields specified using the NOCARE wildcard. This situation can be eased
somewhat through the KXTYPE mechanisms which restrict the ranges indicated by
wildcard values. It should further be noted that subsequent to this call the host must
communicate with the processors using the node numbers indicated by cnftool rather
than according to the logical mapping which results from KXOPEN or KXSHAR.

SEE ALSO

KXOPEN, KXSHAR, KXTYPE.

156



KXBREA

NAME

KXBREA - Halt program at breakpoint

SYNOPSIS

SUBROUTINE KXBREA

DOMAIN

This routine may only be called in node programs.

DESCRIPTION

The exbreak function causes the program to halt as though it had encountered a
breakpoint of the ytpe nonnally associated with the debugger, ndb. Examination of the
process state with ndb will show the process to be in state Breakpoint.

SEE ALSO

KXPAUS.

157



KXBROD

NAME

KXBROD - Interprocessor broadcast.

SYNOPSIS

INTEGER FUNCTION KXBROD(BUFFER, ORIGIN, NBYTES,
NNODES, NODEL, TYPE)

INTEGER BUFFER(*)
INTEGER ORIGIN, NBYTES, NNODES, NODEL, TYPE

DOMAIN

KXBRODtnay be called in both host and node processors.

DESCRIPTION

KXBROD is used to perfonn broadcasting operations among the processors.

The broadcast starts from processor ORIGIN which attempts to broadcast the NBYTES of
data in the indicated BUFFERo The processors to which the broadcast will be sent are
indicated by the NNODES and NODEL arguments in the following way: NODEL is an array
ofprocessor numbers which should receive the broadcast message., NNODES is the number
of elements in the array. Further the special value NNODES = IALNOD (defined in the
XPRESS common block set up by the KXINIT function) indicates that the broadcast
should go to allproeessors. In this case the value of NODEL is ignored. Receiving nodes
deposit the incoming data at BUFFER, up to a maximum ofNBYTES.

The broadcast operation carries a utype" field in common with all other communication
primitives so that overlapping broadcasts may be distinguished. This parameter is supplied
as the argument TYPE and may be any positive quantity. It is illegal to use the NOCARE

value from the XPRESS common block for this field

A call to KXBROD in the originating node must have corresponding calls to KXBROD in all
target nodes. A corresponding call in other nodes which are not target nodes is not
necessary, but will be handled without error. All calls must specify the same values of the
ORIGIN, NNODES and NODEL arguments or communication deadlock will occur. A
receiving node must specify NBYTES greater than or equal to that specified in the
originating node. When NODEL is used the contents arrays must be exactly identical in each
processor. The ORIGIN mayor may not appear in the NODEL, at the conv-enience of the
calling routine. When no errors occur, the value returned is the number of bytes written by
the originating node, or the number read by a receiving node.

EXAMPLE

In the following code we use the KXGRID tools to find the processor number of the
processor at the origin of a three dimensional processor decomposition. This processor then
broadcasts a set of data values to all other nodes.

PROGRAM MYTEST
C

158



KXBROD

INTEGER NPROCS(3), COORD(3), CORNER, TYPE
C
C-- This is the EXPRESS common block.
C

cOMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
DATA TYPE/33/

C
C-- Set up Express and initialize its common block.
C

CALL KXINIT
C
C-- Initiate a three-dimensional decomposition of
C-- eight processors.
C

NPROCS(l) = 2
NPROCS(2) = 2
NPROCS(3) = 2
ISTAT = KXGDIN(3, NPROCS)
IF(ISTAT .LT. 0) THEN

STOP
ENDIF

C
C-- Now find the processor in the (0,0,0) spot in the user
C-- topology.
C

COORD (1) = 0
COORD (2) = 0
COORD (3) = 0
CORNER = KXGDPR(COORD)

C
ISTAT = KXBROD(DATBUF, CORNER, 32*4, IALNOD, 0, TYPE)

C

DIAGNOSTICS

Ifany error occurs in KXBROD -1 is returned. Possible sources oferror are: an illegal buffer,
a preposterous value of NBYTES or invalid values of ORIGIN, NNODES or NODEL. If no
error occurs the number of bytes broadcast is returned in the originating processor and the
number read in the receiving nodes. An error condition is also indicated in any node which
reads less bytes than were originally transmitted by the originating processor.

SEE ALSO

KXCOMB, KXCONC

159



KXCH

NAME

KXCH ... Hardware dependent communication primitives.

SYNOPSIS

SUBROUTINE KXCHON(CHAN)
INTEGER CHAN

SUBROUTINE KXCHOF(CHAN)
INTEGER CHAN

INTEGER FUNCTION KXCHRD(CHAN, BUFFER, NBYTES)
INTEGER CHAN, BUFFER(*),NBYTES

INTEGER FUNCTION KXCHWT(CHAN, BUFFER, NBYTES)
INTEGER CHAN, BUFFER(*), NBYTES

DOMAIN

These routines are available only to node programso Their availability is further subject to
hardware restrictions on the system in use.

DESCRIFfION

These routines·implement a message passing strategy which directly accesses the hardware
presentoD the parallel processing system in·use. As such their use is· highly non-portable.
Since, however, these routines have a very trivial syntax they can provide communication
at the .full speed of the underlying hardware. In. most cases thisaffeets the asymptotic
co~unication rate only slightly but may reduce the start-up time (lat~ncy) by as·much as
an order of magnitude. They are most applicable, therefore, when the application needs to
send many short messages.

Before attempting to use the message passing routines KXCHOF must have been called for
every channel on which the low level functions will be used. this function serves to disable
the nonnaI Express processing for that channel. Note that the user is responsible for
ensuring that no internode communication traffic will be disrupted by the sudden removal
ofone of the message paths nonnally used by Express. In practice this usually means that
the application should force a synchronization through some operation before disabling any
of the communication channels. Note that while a channel is disabled none of the higher
level Express functions maybe used. In particular this means that the debugger, ndb, will
be unable to operate.

KXCHON performs the opposite function, causing Express to once again become active on
the indicated channel. Again it is the user's responsibility to ensure· that no Express
messages are transmitted along channels that are still disabled.

The channel read function, KXCHRD, reads NBYTES bytes of data into the supplied
BUFFER from the channel indicated by the CHAN argument. It will not return until exactly
NBYTES have been read. The node from which data is read depends on the interpretation
of the CHAN argument, which is hardware dependent.

Similarly the KXCHWT function sends NBYTESbytes of data into the channel indicated by

160



KXCH

the CHAN argument. The data to be transmitted is taken from the user supplied BUFFER.
This function will not return until all data has been read by a corresponding call to KXCHRD.

EXAMPLES

The following schematic code shows a typical sequence involving the KXCH primitives.
We assume that some routine, NEARST requires heavy internode message traffic between
processors directly connected to each other in hardware. As such they are able to make use
of the KXCH functions.

C
C-- Assume that we can work here with the full Express system.
C

C
C-- For the next function we will disable Express.
C

CALL KXSYNC
DO 10 I=1,NCHANS

CALL KXCHOF (I -1 )

10 CONTINUE

CALL NEARST
C
C-- Assume that this routine terminates fully synchronized
c-- so that we can enable Express.
C

DO 20 I=1,NCHANS
CALL KXCHON (1-1 )

20 CONTINUE
C
C-- Proceed with Express functioning .
C

Notice that we have used a variable NCHANS to indicate how many channels should be
modified. The value of this variable is also somewhat machine dependent - on a transputer
system it might be four for all the hardware links, for example, while on a hypercube it will
usually be the base 2 logarithm on the number of nodes.

WARNING

These routines perfonn extremely hardware dependent operations and as such should be
used with caution. The "nearest neighbor" communication model that they represent has
however, been shown by a number of researchers to be adequate (if not optimal) for a wide
class of algorithms. (An excellent reference is the book "Solving Problems on Concurrent
Processors" by G.C.Fox et al., published by Prentice-Hall, 1988.)

161



KXCH

If these routines seem appropriate for your algorithm we suggest that the full Express
routines be used during development, since this enables use of the other system tools such
as the debugger, and then these routines be substituted in the final product.

SEE ALSO

exread, exwrite, exsynco

162



KXCHAN

NAME

KXCHAN, KXVCHA - Synchronous scalarlvector exchange primitive.

SYNOPSIS

INTEGER FUNCTION
KXCHAN(IBUF,ILEN,ISRC,ITYPE,OBUF,OLEN,ODEST,OTYPE)

INTEGER IBUF(*), OBUF(*)
INTEGER ILEN, ISRC, ITYPE, OLEN, ODEST, OTYPE

INTEGER FUNCTION
KXVCHA(IBUF, ISIZE, IOFF, IITEMS, ISRC, ITYPE,

OBUF, OSIZE, OOFF, OITEMS, ODEST,OTYPE)
INTEGER IBUF(*), OBUF(*)
INTEGER ISIZE, IOFF, IITEMS, ISRC, ITYPE,
OSIZE, OOFF, OITEMS, ODEST, OTYPE

DOMAIN

These functions may be called in either host or node processors.

DESCRIPTION

These functions are used to implement "synchronous" communication between two
processors; a call to KXCHAN in one processor will not return until the corresponding call
has been made in the sending and receiving processors.

This function essentially performs a similar task to successive calls to KXWRI T and
KXREAD - i.e., data is fJIst sent and then read from (possibly) different nodes. The
advantage of this function is that its extra constraint (synchronicity) allows optimizations
to be made for both speed and reliability. The former can be achieved because data
transmission in the two directions can be overlapped while the latter is enhanced because
low level "handshaking" can be perfonned to ensure that no intennediate buffers overflow.
A second advantage is that the exchange of infonnation can be considered to be
simultaneous - the user is freed from any worry about which node should read frrst and
which write. As a result these functions should be preferred to the analogous pair of
KXREAD/KXWRIT operations whenever the synchronous constraint can be met.

KXCHAN causes OLEN bytes of data to be sent to the node denoted by ODEST in a message
of type OTYPE. The data is taken from memory at OBUF. It is not guaranteed that OLEN
will be read by the reading processor; the actual number of bytes read depends on the
number specified in the corresponding call to KXCHAN. If no error occurs, the actual
number of bytes written is returned to the calling program. The interpretation of the
destination and type fields is exactly as in KXWRI T. Note that this includes the fact that
neither ODEST nor OTYPE may take the special NOCARE value.

KXCHAN also causes at most ILEN bytes of data to be read from the source denoted by
I SRC from a message of a type matching I TYPE. The data is placed in memory at IBUF.
It is not guaranteed that I LEN bytes will be read; the actual number of bytes read depends
on the number written by the transmitting processor. If no error occurs, the actual number

163



KXCHAN

ofbytes read is returned to the calling program. The interpretation of the I SRC and· I TYPE
arguments is exactly as in KXREAD.

A call to KXCHAN must be complemented by calls to KXCHAN in the processors denoted
bYODEST and ISRC in order to prevent communication deadlock. Similarly the message
types in these processors must be compatible.

Note that the exchange of data is conceptually simultaneous - data is written to the output
processor at the same time as it is received from the sendero This allows, for example, the
buffer arguments to be identical. The kernel maintains the integrity of the data and handles
any readlwritesynchronization problems.

The above discussion holds equally well for the KXVCHA function. The difference between
the two is analogous to·-the difference between KXREAD and-KXVREA. While the former is
used to transmit contiguous blocks of memory the latter isab.le to send messages made up
of several disjoint memory areas.

The arguments to KXVCHA are interpreted in the same way as their counterparts in
KXVREA. The message is specified by defming a number of"objects" to be sent. Each is of
length SIZE bytes and is separated from the next by OFFSET byteso In total I TEMS objects
will be transmitted. This description applies to. both the input and output arguments of
KXVCHA.

EXAMPLE

Consider a simple model of ,a two-dimensional teonina! screen. We assume that the data
currendydisplayed is represented by an 80x 24<arrayofcharactersQ Using the KXGRIOand
KXCHAN -primitives-it •is easy to construct routines which, for example, scroll the data in
different directions when decomposed>mparallel.

PROGRAM MYTEST
PARAMETER (IHORIZ = 0, lVERT = 1)
INTEGER NPROCS (2)

C
C-- The amount of the display in each node is found by
c-- decomposing the 80 x 24 total over the processors.
C

LOGICAL*l SCREEN(20,12)
c
c-- Set up Express
C

CALL KXINIT
C NPROCS(IHORIZ) = 4

NPROCS(IVERT) = 2
ISTAT = KXGDIN(2, NPROCS)
IF(ISTAT .LT. 0) THEN

STOP
ENDIF

164



KXCHAN

The macros IHORIZ and lVERT are defined for our convenience and just serve to label
the two axes on the screen. We assign four processors to the horizontal dimension and two

to the vertical. (A more flexible assignment scheme is easily devised using the KXPARA
and KXGDSP system calls to determine at runtime the number of processors available.)

Now consider a simple scrolling operation in which data is to be passed to the right. We
need to figure out the processor numbers necessary to communicate in this direction using
KXGDNO.

INTEGER NDDATA(4)
INTEGER RECNUM(2), PERBC(2), TYPE
INTEGER UNODE, DNODE, LNODE, RNODE
DATA TYPE/12/

c
C-- Get runtime parameters, number of nodes, etc ..
C

CALL KXPARA(NDDATA)
C
C-- Turn off periodic boundary conditions.
C

PERBC(1) = 0
PERBC(2) = 0
CALL KXGDBC(PERBC)

C
UNODE = KXGDNO(NDDATA(1), lVERT, 1)
DNODE = KXGDNO(NDDATA(l), lVERT, -1)
LNODE = KXGDNO(NDDATA(l), IHORIZ, -1)
RNODE = KXGDNO(NDDATA(l), lVERT, 1)

Note that we have made the additional step of dealing with the boundaries of the screen
correctly. If a processor is on the extreme left edge of the display and it tries to
communicate with a processor to its left then the value ofLNODE will be correctly assigned
the value NONODE which will, in turn, direct KXCHAN to omit communication with this
non-existent processor.

Now in order to "scroll" the data over to the left we merely use the following call to
KXCHAN.

ISTAT = KXCHAN(SCREEN, 12, LNODE, TYPE,
SCREEN (20, 1), 12, RNODE, TYPE)

Notice that at no point in these calculations did the topology of the hardware enter.
Everything is specified in the user domain - i.e., screen coordinates, and KXGRID and
KXCHAN do the rest. Notice the appearance of the "magic" number 12 in the above call. To
arrive at this value we divided the height of the screen (24) by the number of processors in
that direction (2). We could do much better by using the KXGDSI function which would
also allow the possibility ofchanging the number of processors allocated to each dimension

165



KXCHAN

at runtime.

In order to scroll data vertically instead of horizontally we would just use the call

ISTAT = KXVCHA(SCREEN, 1, 12, 20,ONODE, TYPE,
SCREEN(1,12), 1, 12,20, UNODE, TYPE)

The arguments here are arrived at in a similarly simple manner. If each processors piece of
the display surface is 20 x 12 then we n:eed to take every twelfth byte when we scroll
upward. Also there are twenty bytes·to transmit. (Again this can be made more flexible
using the KXGDSI function.)

DIAGNOSTICS

If any error occurs in KXCHAN or KXVCHA -1 is returned. Possible sources of error are: an
illegal source or destination, an illegal buffer or a preposterous value of length, size, offset
or item arguments. If no error occurs KXCHAN· returns the number of bytes read and
KXVCHA the number of items read.

SEE ALSO

KXREAD, KXWRIT, KXVREA, KXGRID, KXPARA

166



KXCLOS

NAME

KXCLOS - Deallocate processors.

SYNOPSIS

SUBROUTINE KXCLOS(PGIND)
INTEGER PGIND

DOMAIN

Available to host programs only.

DESCRIPTION

This routine is used to tenninate a connection between the host and a processor group.

This routine should be called at the end of an application's use of a processor group to
ensure that system resources are correctly reset. The sole argument, PGIND, is the
Processor group index originally returned by the KXOPEN call.

EXAMPLES

The following schematic code should be the general template of any host process which
allocates and uses processor groups.

PROGRAM MYTEST
INTEGER PGl
CHARACTER*80 DEVICE
PARAMETER (DEVICE='/dev/transputer')

c
C-- Set up Express.
C

CALL KXINIT
C
C-- Allocate a processor group.
C

PGl = KXOPEN(DEVICE, 4, NOCARE)
IF(PGl .LT. 0) THEN

WRITE(6,*) 'Failed to allocate nodes'
STOP

ENDIF
C
C-- Load progs, send/rec messages to groups of processors. C

C
C-- Program finished. Clean up by deallocating processors.
C

CALL KXCLOS (PG1)
STOP

167



KXCLOS

END

SEE ALSO

KXOPEN, KXSHAR, KXINIT

168



KXCOMB

NAME

KXCOMB - Node data compaction.

SYNOPSIS

INTEGER FUNCTION KXCOMB(BUFFER, FUNC, SIZE, ITEMS,

NNODES, NODEL, TYPE)

INTEGER BUFFER(*)
INTEGER FUNC, SIZE, ITEMS, NNODES, NODEL, TYPE

DOMAIN

KXCOMB may be called in the node processors only.

DESCRIPTION

This routine is used to perfonning "combining" operations on data within the node
processors. An example of such an operation is the sum of a set of values distributed over
the nodes of the parallel machines. Other example combining functions are products,
maximum and minimum functions.

NITEMS of data, each of size SIZE and taken from BUFFER are individually combined
across the specified node processors. The final vector of results will overwrite BUFFER in
each node.

In the nodes the user-supplied combining function will be called for each of the NITEMS

to be combined. In each case three arguments will be supplied to the routine. The fIrst two
are the objects to be combined and the third is the SIZE argument supplied in the call to
KXCOMB. The combining function's responsibility is to perfonn whatever operation is
required and write the result over the fIrst operand. The value returned by the combining
function is used to detect errors in the KXCOMB routine. If a negative value is returned the
current call to KXCOMB is aborted and an error returned to its caller.

The nodes involved in the combining operation are specified by the NNODES and NODEL

arguments. The latter is an array of processor numbers listing those nodes on which the
combining operation is to take place. NNODES is the number of elements in this list. The
special value NNODES = IALNOD is allowed and perfonns the combining operation on
all processors. In this case the value of NODEL is ignored. IALNOD is found in the XPRESS

common block setup by the call to KXINIT.

The TYPE argument is used to specify a "type" for the combine operation. This is used to
distinguish between potentially overlapping communication operations. Any positive value
is legal - the special NOCARE value may not be used in this function.

All processors involved in the combining operation must call KXCOMB together with
identical values for both NNODES and NODEL - otherwise communication deadlock will
occur.

EXAMPLE

The frrst example merely calculates the global sum of the components of a vector
distributed over all processors. We assume that each processor contains NP TS values.

169



KXCOMB

PROGRAM MYTEST
c

INTEGER NPTS, I, TYPE
EXTERNAL SUMUP
REAL RESULT
DATA TYPE/37/
COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC

C

C-- Set up Express and initialize the common block.
C

CALL KXINIT
c
c-- First compute the subtotal in each node.
C

RESULT = 0.0
DO 10 !=l,NPTS

RESULT = RESULT + VALUE(I)
10 CONTINUE
C
C-- Now combine these values with the sum_up function.
C

ISTAT = KXCOMB(RESULT, SUMUP, 4, 1, IALNOD, 0, TYPE)
C

STOP
END

INTEGER FUNCTION SUMUP(Vl, V2, SIZE)
REAL Vl, V2
INTEGER SIZE

C

Vl = Vl + V2
SUMUP = 0
RETURN
END

Notice how the combining function replaces its frrst argument with the result of ·the
combining operation and returns zero to indicate successful combination.

In the second example processors 0 thru 4 have obtained a vector of four floating point
values, MYVEC. The purpose of the call is to calculate, for each array slot, the maximum
value distributed over the nodes.

170



KXCOMB

INTEGER I, NNODES, NODEL(5), TYPE
EXTERNAL MAXFLT
REAL RESVEC (4)
DATA TYPE/48/

C
C-- Setup nodelist array to specify combining nodes.
C

NNODES = 5
DO 10 I = 1,NNODES

NODEL(I) = 1-1
10 CONTINUE
C
C-- Combine values with the maxflt function.
C

ISTAT = KXCOMB(MYVEC, MAXFLT, 4, 4, NNODES, NODEL, TYPE)
C

C
STOP
END

INTEGER FUNCTION MAXFLT(VI, V2, SIZE)
REAL VI., V2
INTEGER SIZE

C
IF(V2 .GT. VI) THEN

VI = V2
ENDIF
MAXFLT = 0
RETURN
END

This example points out another important point. The purpose of the NITEMS field is to
allow multiple data items to be combined AND LEFT SEPARATE - it is not to perfonn
"on-node" combination operations before the global operation. This is the reason why we
explicitly coded the subtotal operation in the fIrst example. In this last example four values
will be left in each node corresponding to the maximum value among all processors of
MYVEC(l)~the maximum of MYVEC(2) and so on.

DIAGNOSTICS

If any error occurs in KXCOMB -1 is returned. Possible sources of error are: an illegal
BUFFER, preposterous values of NI TEMS or SI ZE and the return of a negative value from
the combining function. If no error occurs the number of items combined is returned.

171



KXCOMB

The combining function must be bothcornmutative and associative in order to give results

which are independent of the underlying hardware topology. If we denote the operation of
the combining function on two elements A and B by A op B then the requirements can be
written as

Commutativity: AopB == BopA

Associativity: (AopB)opC = Aop(BopC)

Useful functions which satisfy these constraints are: addition, multiplication, maximum,
minimum, logical AND, logical OR, logical XOR. Operations which do not satisfy the
constraint are: subtraction (3 - 1 1== 1 - 3) and division (4/2 != 2/4)

A particularly unpleasant problem concerns the use of this function with floating point
numberso Because of the intricacies of rounding and truncation while performing floating
point operations it cannot be guaranteed that all nodes will have exactly the same result
artera KXCOMB operation such as addition. While .the difference will be (at worst)
microscopic it can occasionally be sufficient to cause Cubix programs to abort while
printing values in "singl" modeo At present no solution for this problem is knowne

BUGS

There is an implementation specific upper limit on the SIZE of each individual item that
can becotnbined.· In most applications this should be an· unimportant restrictione

SEE·AI.JSO

KXBROD, KXCONC

172



KXCONC

NAME

KXCONC - Concatenate data from nodes.

SYNOPSIS

INTEGER FUNCTION KXCONC(MYBUF, MYBYTE, RESBUF, RESSZ,
SIZES, NNODES, NODEL, TYPE)

INTEGER MYBUF(*), RESBUF(*)
INTEGER MYBYTE, RESSZ, SIZES(*), NNODES, NODEL(*), TYPE

DOMAIN

KXCONC may be called in only the node processors.

DESCRIPTION

This routine is used to collect and concatenate data in a set of node processors.

Each node contributes MYBYTE bytes of data from the array MYBUF to be placed in each
node's RESBUF. The individual blocks ofdata are sorted into order of increasing processor
number and placed in the RESBUF buffer, separated by RESSZ bytes. If any node
contributes more than RESSZ bytes to the global vector then the excess are discarded. The
amount ofdata contributed by each processor is stored in the appropriate slot of the SIZES
array.

The group ofnodes participating in the concatenation operation is specified by the NNODES
and NODEL arguments. The latter is an array of processor numbers; NNODES specifies the
number of processors in the list. If NNODES has the special value IALNOD then the
concatenation is perfonned by all nodes irrespective of the value of the NODEL argument.
The IALNOD parameter is to be found in the XPRESS common block setup by the call to
KXINIT.

The TYPE argument is used to specify a "type" for the concatenation operation which will
distinguish it from other active communication. Any positive value may be supplied - the
special NOCARE value may not be used.

All nodes involved in the concatenation operation must call KXCONC together and with
identical values for the NNODES and NODEL arguments or communication deadlock will
occur.

EXAMPLE

Consider a simple case with four processors which have buffers as follows

Processor 0: INTEGER MYBUF (4) = {12, 13, 14}
Processor 1: INTEGER MYBUF(4) = {32, 33, 34}
Processor 2: INTEGER MYBUF (4) = {52, 53, 54}
Processor 3: INTEGER MYBUF (4) = {72, 73, 74}

In the simplest case we can concatenate all four buffers with the code

ISTAT = KXCONC(MYBUF,3*4,IBUF,3*4,SIZES,IALNOD,O,TYPE)

173



KXCONC

which would result in each processor obta.ining the following result in IBUF

IBUF = {12, 13, 14, 32, 33, 34, 52, 53, 54, 72, 73, 74}

and the value returned by the call would be 12 times the size of an INTEGER in each node.

Another simple case is obtained by sending different amounts of data from each processor.
Consider the following code:

INTEGER SIZES(4), TYPE, NDDATA(4)
DATA TYPE/56/

c
CALL KXPARA(NODATA)
ISTAT == KXCONC(MYBUF, 4*NDDATA(1), IBUF, 3*4, SIZES,

$ IALNOD, 0, TYPE)

In this case the "result" buffers on each node would be

IBUF = to, 0, 0, 32, 0, 0, 52, 53, 0, 72, 73, 74}
SIZES ={O, 4, 8, 12}

where we have assumed 4-byte integers. Ifwe no.w change the arguments again by reducing
the RESSZ parameter to 8 then the resulting buffers would be

IBUF == to, 0, 32, 0, 52, 53, 72, 73}
SIZES = {O, 4, 8~ 8}

In e,ach node the call to KXCONC would now return an error, to reflect the fact that node 3
attempted to send more data than was to be read.

Ip..Jhe finale~plewe penorm the concatenation only in processors O,l .. and 3.

INTEGER NNODES, NODEL(4), TYPE, SIZES(3)
DATA TYPE/12/

c
NNODES = 3
NODEL(l) = 0
NODEL(2) = 1
NODEL(3) = 3

c
ISTAT = KXCONC(MYBUF, 3*4, IBUF, 3*4, SIZES,

$ NNODES, NODEL, TYPE)

DIAGNOSTICS

If any error occurs in KXCONC -1 is returned. Possible sources of error are: illegal values
of MYBUF or RESBUF and preposterous values of MYSIZE or RESSZ. If no error occurs
the total number of bytes stored in memory is returned. An error condition can also be
generated ifthe value of RESSZon a node is smaller than the amount ofdata which is being

174



sent by a processor (including the node itself).

SEE ALSO

KXBROD, KXCOMB

KXCONC

175



KXCUST

NAME

KXCUST -Indicate an alternative system configuration file.

SYNOPSIS

INTEGER FUNCTION KXCUST(FNAME)
CHARACTER*80 FNAME

DOMAIN

Only available to host programs.

DES,CRIPTION

KXCUST indicates that Express should use system configuration infonnation from the
named file rather than the system default. This allows applications to maintain their own
customization programs independent of any other user or system requirements.

To.complete the custo·mizationprocess the exinit command has an optional argument
which names the customization file which should be used while loading Express into the
transputer system. Similarlycubix has an additional '-E' switch allowing an alternative
rue to be named atrontime. In both cases the KXCUST function is invoked with the named
file as argument.

The KXCUSTcall must be made before any other Express system calls.

RETURN VALUE

The returned .value indicates whether or not the indicated customization file was foundo
Non-zero values indicate a failure to locate the named file.

EXA,MPLES

The following code fragment could be used to allow a program to use an alternative
customization file.

PROGRAM MYCUST
C

COMMON/XPRESS!NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
c

CALL KXINIT
C

ISTAT = KXCUST('myfile.cst')
IF(ISTAT .NE. 0) THEN

WRITE(6,*) 'Failed to find customization file'
STOP

ENDIF

176



SEE ALSO

excustom (command).

KXCUST

177



KXGRID

NAME

KXGRID - Automatic decomposition tools

SYNOPSIS

INTEGER FUNCTION KXGDIN(GRDDIM, NPROCS)
INTEGER GRDDIM, NPROCS(*)

INTEGER FUNCTION KXGOSP(NODES, GRDDIM, NSPLIT)
INTEGER NODES, GRDDIM, NSPLIT(*)

INTEGE,R FUNCTION KXGDCO (PROCNO,COORD)
INTEGER PROCNO, COORD(*)

INTEGER FUNCTION KXGDPR(COORD)
INTEGERCOORD(*)

INTEGER FUNCTION KXGDSI(PROCNO, GLOBAL, SIZE, START)
INTEGER PROCNO, GLOBAL(*), SIZE(*), START(*)

INTEGER FUNCTION KXGDBC(PERBC)
INTEGER PERBC(*)

INTEGER ~UNCTION KXGDNO (~"ROCNO, DIR, DIST)
INTEGER PROC'NO, DIR,DIST

DOMAIN

The KXGRID routines may be called from any Express program.

DESCRIPTION

KXGRID collectively refers to a set of utilities that perfonn automatic decompositions of
user domains onto the underlying machine topology. A user specification for a problem
domain which has the topology of a Cartesian grid in N dimensions is mapped onto the
hardware topology and routines are available to enable processors (defined relative to the
user topology) to communicate through the primitive system calls.

KXGD IN is the routine which performs the elementary mapping and must be called before
any of the other KXGRID routines (except KXGDSP). The arguments are the number of
dimensions in the user topology and the number of processors to be assigned to each
dimension. If the requested topology is successfully mapped to the hardware zero is
returned; otherwise the value returned is -1.

The function KXGDSP is used to divide up the NODES processors between the GRDDIM
dimensions in as even a way as possible consistent with the requirement that all processors
be us,ed. The number in each dimension will be returned in the array NSPLIT. A simple
example would be that of two dimensional decompositions: for eight nodes we would
obtain an 4 x 2 decomposition while nine processors yields 3 x 3.

·178



KXGRID

Having set up the KXGRID system in this way the other function calls are available to
inquire about specific details of the decomposition. Particularly useful is information
concerning where, in the user defined topology, a certain processor is to be found. The
KXGDCO function call takes a processor number as argument and returns the, coordinates in
the Cartesian grid of this processor. The inverse transfonnation is provided by the function
KXGDPR which takes as arguments an array of coordinates and returns the processor
number of the node at that position in the user grid.

The interface to the underlying communication structure is provided by the KXGDNO and
KXGDBC functions. The arguments to the fonner are a processor number, a direction in the
user grid and a distance. The returned value is a "NODE" suitable for use in calls such as
KXCHAN and KXVCHA which contains the necessary infonnation for communication in that
direction. The distance parameter specifies the offset from the current node in the direction
indicated so that a value of +1 implies the next node along the positive axis while -1
indicates the next node in the negative direction. Magnitudes greater than 1 are also
possible and correspond to multiple hops in the given direction.

The KXGDBC function is provided to alter the boundary conditions at the edges of the user
domain. By default KXGDNO assumes that boundaries are connected periodically so that the
processor to the "left" of the leftmost is the one on the extreme right hand edge. To suppress
this feature one uses KXGDBC. The sole argument is an array of integers, one for each
dimension in the user domain. A non-zero value indicates that this dimension is to be
considered periodic while a zero value causes KXGDNO to return a NONODE at the
boundary.

The last function in the KXGRID collection, KXGDS I, is used to distribute an array over the
user grid. The frrst argument is again a processor number and the second is an array
containing the global sizes of the array to be decomposed. After the call the third argument
will be an array containing the number of entries in each dimension of the array which lie
in the processor specified. The final argument will be an array cOiltaining the global index
that corresponds to an index of zero in the local array.

A final point to note is that these routines are very useful in conjunction with the low level
I/O primitives KMREAD, KMWRIT, KMRD2D and KMWT2D which require arguments easily
calculated by the KXGRID functions.

EXAMPLE

As a simple example consider a problem involving two dimensional images to be executed
on eight processors. A suitable call to initialize the system might be

INTEGER NPROCS(2), TYPE PARAMETER (IHORIZ=O, lVERT=l)
DATA TYPE/33/

C
NPROCS(IHORIZ) = 4
NPROCS(IVERT) = 2

c
ISTAT = KXGDIN(2, NPROCS)
IF(ISTAT .LT. 0) THEN

179



KXGRID

STOP
ENDIF

The macros IHORI Z and lVERT are defined for our convenience and just serve to label
the two axes in the grid. We assign four processors to the horizontal dimension and two to
the vertical. (Amore flexible assignment scheme is easily devised llsingthe KXPARA
system call to detennine at runtime the number of processors available.)

Now consider a simple .scrolling operation in which data is to be passed to the right. We
need to figure out the processor numbers of the appropriate nodes in order to communicate
in this direction. The simple thing to ,do in this case is to use KXGDNO to calculate the
appropriate values. However,. one must first consider the boundary values; What should
happen when data is scrolled off the right hand edge of he display? The two options are to
have it appear on the left hand edge, or to disappear completely. We adopt the latter
approach which entails altering the default assumption of KXGDNO that boundaries are
periodic. The following code uses KXGDBC to overrid~ this default and KXGDNO to assign
suitable· processor values for the four directions we will be interested in.

INTEGER·PERBC(2)
INTEGER NDDATA(4)

c
CALL KXPARA(ND,DATA)

c
PERB"C (1-)= 0
PERBC(2) = 0
CALL KXGDBC(PERBC)

c
UNODE = KXGDNO (NDDATA(l)'I IVERT, 1)

DNODE = KXGDNO(NDDATA(l), lVERT, -1)
LNODE = KXGDNO(NDDATA(l) , IHORIZ, -1)
RNODE = KXGDNO(NDDATA(l) , IHORIZ, 1)

Now all the "nodes" are valid. If a processor is on the extreme left edge of the domain and
it tries to communicate with a processor to its left then the value of LNOOE has been
correctly assignedthe,va!ueNONODE which will, in turn, direct the communication system
to omit communication with this non-existent processor. Note how simple it would be to
adopt the alternative strategy and have data scroll off the right edge and re-appear on the
left. We simply omit the call to KXGDBC (or else change the zero values to ones) and the
correct values would be returned.

To show the actual use of these processor numbers assume that we wish to "scroll" 512
bytes along to the right. In each processor the data is to be taken from an array OBUF and
the data coming in from the left is to be read into an array IBUF. The following call to
KXCHAN is all that is required

ISTAT = KXCHAN(IBUF, 512, LNODE, TYPE,

180



KXGRID

OBUF, 512, RNODE, TYPE)

Notice that at no point in these calculations did the topology of the hardware enter.
Everything is specified in the user domain - i.e., that of the image, and KXGRID does the
rest.

To demonstrate the use of the KXGD S I function assume that the image to be "scrolled" is
not 1024 bytes tall as was implicitly assumed in the previous code (We scrolled 512 bytes
left in each processor and there are two processors in the vertical direction for. a total of
1024 bytes.) Instead we will make the strange choice of an image which is 767 bytes high,
and 1024 bytes wide. The KXGD S I routine can then be used to tell us how many elements
are in each processor through the following code

INTEGER GLOBAL(2), SIZES(2), START (2)
C
C-- Decompose the array over the processor ring.
C

GLOBAL (IHORIZ) = 1024
GLOBAL (IVERT) = 767
ISTAT = KXGDSI(NDDATA(l), GLOBAL, SIZES, START)

At the completion of this call the values SIZES (1) and SIZES (2) contain the sizes of
the subregions assigned to each processor. Further, the values START (1) and START (2)

contain the horizontal and vertical index of the fIrst byte that is stored in this processor. In
the case described here every processor would have the value 256 for SIZES (1) since the
horizontal size is divided exactly by the number of processors in that direction. In the
vertical direction, however, the division does not work out correctly and so the processors
whose responsibility is the lower halfof the display would have SI ZES (2) = 38 4 while
those in the upper half would have 383. Similarly, the processors in the upper half have
START (2) = 0 while those in the lower half have START (2 ) = 384. The modified
call to KXCHAN which scrolls the data to the right is

ISTAT = KXCHAN(IBUF, SIZES(2), LNODE, TYPE,
OBUF, SIZES(2), RNODE, TYPE)

RETURN VALUE

If any error occurs in the KXGRID routines they return -1. Particular errors include failing
to call KXGDIN before using the other functions and a failure ofKXGDIN to match the user
requested topology onto that of the hardware.

SEE ALSO

KXPARA, KMREAD, KMRD20, KORDER

181



KXHAND

NAME

KXHAND - Asynchronous message handler.

SYNOPSIS

INTEGER FUNCTION KXHAND(FUNC, SRC, TYPE)
INTEGER FUNC, SRC, TYPE
EXTERNAL FUNC

DOMAIN

KXHAND may be called in the node processors only.

DESCRIPTION

This routine is used to initialize a "handler" for me.ssages of certain types and sources. The
idea is that whenever a message arrives that matches the SRC and TYPE parameters the
user-supplied procedure FUNC is invoked to process the data. This proces.s occurs
immediately upon receipt of the message with as little overhead as possible and can be used
to implement a totally asynchronous processing style in which messages can be handled
transparently without the intervention of the main application code..

The FUNC is invoked immediately a message has arrived in the internal node buffers with
the following arguments

FUNC(PTR, LENGTH, SRC, TYPE)
INTEGER PTR (* )
INTEGER LENGTH, SRC, TYPE

i.e., it looks just like a call to KXREAD. Note however, that the suppliedPTR'atgument
actually points to a buffer within the Express kernel. If the application needs to keep the
message for later processing memory must be allocated and the buffer copied. OtherWise
the data becomes unavailable when the user function completes.

The SRC and TYPE fields reflect the actual·source and type of the message being handled
in cases where "NOCARE" values were originally supplied to the KXHAND function.

The user supplied function must return an integer value to its caller. This value will
determine the future behavior of the system; a negative value will terminate the association
between the message source/type and the function while positive (and zero) values
maintain the status quo. In this way it is possible to have a message handler that is invoked
only once, several times until a particular message arrives, or permanently.

EXAMPLE

The following example shows how this function can be used to implement a global, "read
only" memory. A handler is set up which intercepts all messages of type MEMRD and
responds by sending back a message containing the memory requested. Obviously one
could implement a writable shared memory in a similar manner although problems
concerning mutual exclusion would probably have to be addressed.

18%



KXHAND

PROGRAM MYTEST
PARAMETER (MEMRD=lO, MEMDAT=ll)
EXTERNAL MEMHND
INTEGER MEMTYP, SRC
COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC

C
C-- Setup Express and initialize its common block.
C

CALL KXINIT
C
C-- Allow anyone to send memory requests.
C

MEMTYP = MEMRD
SRC = NOCARE
ISTAT = KXHAND(MEMHND, SRC, MEMTYP)
CALL KXSYNC

c-- This is the function that fields requests for memory.
C-- The first argument will point to an array containing
C-- the address and number of bytes to read.
C-- NOTE: we return 0 so that the handler continues to
C-- operate.
C

INTEGER FUNCTION MEMHND(REQ, LENGTH, SRC, TYPE)
INTEGER REQ(2)
INTEGER LENGTH, SRC, TYPE

C
INTEGER RTYPE
PARAMETER (MEMRD=10, MEMDAT=11)
DATA RTYPE /MEMDAT/

C
ISTAT = KXWRIT(REQ(l), REQ(2), SRC, RTYPE)
MEMHND = 0
RETURN
END

Having set up this message handler we can access memory on another node by simply
sending a message of type MEMRD. Notice that the message handler sends back the data in
a message of a different type that it read. This is an important point - if the routine adopted
the simpler strategy of returning the same type message as it received then that message
would be trapped by the message handler on the original node and treated as a memory
request. In this wayan infinite chain of requests would be generated!

The following routine reads LENGTH bytes of memory from processor NODE and stores it

183



KXHAND

in the specified BUFFER. The routine returns the number of bytes read.

INTEGER FUNCTION RDMEM(NODE, ADDR, LENGTH, BUFFER)
INTEGER NODE, ADDRESS, LENGTH, BUFFER(*)

c
PARAMETER (MEMRD=lO, MEMDAT=11)
INTEGER REQ(2), STYPE, RTYPE

c
REQ (1) = ADDR
REQ(2) = NODE

c
STYPE = MEMRD
RTYPE = MEMDAT

c
ISTAT = KXWRIT(REQ, 8, NODE, STYPE)
RDMEM = KXREAD(BUFFER, LENGTH, NODE, RTYPE)
RETURN
END

This function forms the basis of an extremely elegant multitasking system under Express
which is discussed in ·mote.. deWl· in the accompanying man,ual, "Multitasking under
Express".

nUGNOSTICS

If the kernel is· unable ·to install the message; handler";..l is returned. Otherwise the return
value will be Dc

WARNING

The current implementation restricts the length of a message that can be sent to a handler
to the "packet size" as specified in the customization procedure, excustoffio

SEE ALSO

KXREAD, KXRECV

184



KXINIT

NAME

KXINIT - Start Express system.

SYNOPSIS

SUBROUTINE KXINIT

DOMAIN

Available to host and node programs.

DESCRIPTION

This routine MUST be the first Express routine called in both host and node programs. It
serves to initialize the internal state of Express and also to set up a common block
containing useful parameters for use by application codes.

The system common block has the name XPRESS and is defined as follows:

COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
INTEGER NOCARE, NORDER, NONODE, IHOST, IALNOD,IALPRC

The various variables in this block are as follows

NOCARE Used to indicate that a message should be read from any node or that
its type is of no concern. Note that you should not attempt to send a
message to destination NOCARE or with type NOCARE.

NORDER Used by Cubix programs to indicate the default ordering of output
in "multi'-mode I/O.

NONODE Used by the KXGRID utilities to indicate that no processor lies in the
indicated position of the user topology.

IHOST Special "node" value used to send messages to or receive them from
the host processor which loaded the node program.

IALNOD Used in KXBROD, KXCOMB, KXCONC etc. operations to indicate that
all nodes should be involved in a particular communication
operation.

IALPRC Used in KXBROD to indicate that the host processor should be
included as a recipient of a broadcast message.

EXAMPLE

The following schematic code should be the general template of any host or node program
which uses Express.

PROGRAM MYTEST
INTEGER PGl
COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST, IALNOD,IALPRC

C
C-- Set up Express

185



KXlNlT

c
CALL KXINIT

c
C-- Start application code .
C

CALL KXCLOS(PG1)
STOP
END

SEE ALSO

KXOPEN, KXSHAR.

186



KXLOAD

NAME

KXLOAD - Load a program.

SYNOPSIS

INTEGER FUNCTION KXLOAD(PGIND, NDPROG)
INTEGER PGIND
CHARACTER*80 NDPROG

DOMAIN

KXLOAD may only be called in the host computer.

DESCRIPTION

KXLOAD loads the program NDPROG into a set of processors previously allocated with
KXOPEN. The PGIND argument is the processor group index returned by the KXOPEN
call.

The KXLOAD function provides the simplest interface to allocating processors and loading
application programs. A single application code is loaded into all processors. The
alternative call KXPLOA is provided if different programs are to be loaded into different
processors.

EXAMPLES

The following code loads a program (called MYPROG) into four processors.

PROGRAM EXPTST
INTEGER PGIND
COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
CHARACTER*80 DEVICE, PROG
PARAMETER (DEVICE='/dev/ncube', PROG='myprog')

c
C-- Set up Express and its common block.
C

CALL KXINIT
c

ISTAT = KXOPE~(DEVICE, 4, NOCARE)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'Failed to allocate processors'
STOP

ENDIF
C

ISTAT = KXLOAD(PGIND, PROG)
c

187



KXLOAD

DIAGNOSTICS

If any error occurs during loading ·1 is returned. Possible sources of ettorare: an illegal
value of PGIND or the failure of the system to allocate a the correct number of processors.
Errors are also returned if a routine fails to find an appropriate executable to load or if a
communication error occurs during loading.

SEE ALSO

KXPLOA

188



KXOPEN

NAME

KXOPEN - Allocate a processor group.

SYNOPSIS

INTEGER FUNCTION KXOPEN(DEVICE, NODES, START)
CHARACTER*80 DEVICE
INTEGER NODES, START

DOMAIN

Only available to host programs.

DESCRIPfION

KXOPEN allocates a processor group containing NODES processors in the device pointed
to by the character string DEVICE.

The NODES argument indicates the number of nodes to be allocated and the last argument
optionally requests a specific set of nodes within the parallel machine. The default value
NOCARE allows any group of nodes to be selected.

The KXOPEN call must be used before attempting to access any processor group.

RETURN VALUE

The returned value is a processorgroup index which must be used in all further references
to the allocated processors. In cases where no processor group of the appropriate size is
available or some other hardware error occurs the value returned is -1.

EXAMPLES

The following code allocates a group of 4 processors anywhere in the parallel machine.

PROGRAM MYTEST
INTEGER PGIND
COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
CHARACTER*80 DEVICE
PARAMETER (DEVICE='/dev/transputer')

C

C-- Setup Express and its common block.
C

CALL KXINIT
C

PGIND = KXOPEN(DEVICE, 4, NOCARE)
IF(PGIND .LT. 0) THEN

WRITE(6,*) 'Failed to allocate processors'
STOP

ENDIF

189



KXOPEN

If we wanted to allocate a particular set ofprocessors in the machine then we could replace,
for example, the NOCARE argument in the KXOPEN call:

ISTAT = KXOPEN('!dev/transputer', 4, 8)

which attempts to allocate nodes 8 thru 11. In this case it is even more important that the
value returned by KXOPEN be checked since there is a larger chance of failure.

WARNINGS

Incunent implementations the DEVICE parameter will be one of

I dev/ transputer Transputer based devices

/ dev/ ncube NCUBE systems.

I devI symult Symult S2010, 68000 based nodes

Idevl symfpa Symult 52010, Weitek VFPA nodes

Note· that this list is not necessarily exhaustive. It is complete at the time ofwriting but may
be extended at future dates.

Some systems are unable to support the start_node argument to this functione

SEE ALSO

KXSHAR, KXLOAD, KXREAD, KXTEST, KXTYPE, KXWRIT

190



KXPARA

NAME

KXPARA - Runtime parameters.

SYNOPSIS

SUBROUTINE KXPARA(NDDATA)
INTEGER NDDATA(*)

DOMAIN

KXPARA may be called in either the host or node processors.

DESCRIPTION

This routine is used when an application program requires to know the details of its runtime
environment. The infonnation available and its correspondence to the array elements
returned is

NDDATA (1 ) Processor number of the calling node. Nodes are numbered
consecutively from (and including) O.

NDDATA (2 ) Number of processors allocated in this processor group.

NDDATA (3) Specifies the processor group index containing this node.

NDDATA (4) Specifies the process identifier of the process making the call.

The last two pieces of infonnation are currently unused.

The use of this information and the KXGRID utilities is the key to writing reconfigurable
applications since they allow the program to adapt to different processor configurations at
runtime.

EXAMPLE

Assume that we wish to use the KXGRID tools to map the parallel machine to a two
dimensional mesh of processors. The following code supplies the necessary parameters to
the KXGRID routines.

PROGRAM MYTEST
INTEGER NDDATA(4)
INTEGER NPROCS(2)

C
C-- Set up Express.
C

CALL KXINIT
C
C-- Get runtime parameters.
C

CALL KXPARA(NDDATA)
C
C-- Divide up processors in two dimensional mesh. Set up

191



KXPARA

c-- the KXGRID routine with this decom.position.
C

ISTAT = KXGDSP(NDDATA(2), 2, NPROCS)
ISTAT = KXGDIN(2, NPROCS)
IF(ISTAT .LT 0) THEN

STOP
ENDIF

Note that we use the KXGDSP function to divide up the processors between the physical
dimensions.

SEE ALSO

KXGRID

192



KXPAUS

NAME

KXPAUS - Arrange for programs to be loaded "stopped".

SYNOPSIS

SUBROUTINE KXPAUS

DOMAIN

Only available to host programs.

DESCRIPTION

This routine is used to control the initial state of a program or programs being loaded into
groups of processors. By default node programs start immediately. If KXPAUS is used
before the appropriate KXLOAD call then the programs will halt at their fIrSt instruction
after loading. This is useful when using the debugger, ndb, since it allows the user to
control the entire course of execution by setting breakpoints etc.

EXAMPLE

Consider the case where debugging is occasionally required. The following code segment
illustrates the use of KXPAUS to load programs in a stopped state if the number of
processors entered is negative. Otherwise programs will be loaded in the (default) running
state.

PROGRAM MYTEST
INTEGER NNODES, PGIND
COMMON/XPRESS/NOCARE, NORDER, NONODE, IHOST,IALNOD, IALPRC
CHARACTER*80 DEVICE, PRGNAM
PARAMETER (DEVICE='/dev/transputer', PRGNAM='myprog')

C
C--Set up Express and its common block.
C

CALL KXINIT
C

WRITE(6,*) 'How many nodes? (Negative ==> stopped)'
READ(5,*) NNODES

IF(NNODES .LT. 0) THEN
NNODES = -NNODES
CALL KXPAUS

ENDIF
ISTAT = KXOPEN(DEVICE, NNODES, NOCARE)
IF(PGIND .LT. 0) THEN

WRITE(6,*) 'Failed to allocate nodes'
STOP

ENDIF

193



KXPAUS

c
c-- Finally load application program into nodes.
C

ISTAT = KXLOAD(PGIND, PRGNAM)

SEE ALSO

KXOPEN, KXSHAR.

194



KXPCP

NAME

KXPCP, KXPELT - Dump execution profile data.

SYNOPSIS

SUBROUTINE KXPCP

SUBROUTINE KXPELT(FNAME)
CHARACTER*80 FNAME

DOMAIN

KXPCP may only be called in the host processor while KXPELT may only be called in the
nodes.

DESCRIPTION

These routines are used to dump the execution profile data collected with the KXPROF
functions. For each call to KXPELT on the nodes there must be a call to KXPCP in the host
processor. The profiling data will be written to a file on the host with the name FNAME
supplied in the node program.

In addition to dumping out the profile data KXPELT also turns off the profiler and resets its
internal state so that further invocations of the execution profiler will begin from the zero
state and hence be totally independent.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
execution profiler.

1. Host Program

PROGRAM HSTXPR
C
C-- Start Express.
C

CALL KXINIT
C
C-- Allocate nodes, load programs.
C

C
C-- Execute algorithm
C

C
C-- Dump profiling data.
C

CALL KXPCP

195



KXPCP

c
STOP
END

2. Node Program

PROGRAM NODXPR
C

INTEGER PRFBUF(2048), PRFSCL
PARAMETER (PRFSCL = 8192)

c
C-- This is the name of a function found to live at the
C-- low end of memory. This information can usually be
C-- found in the "linker map".
C

EXTERNAL F MAIN
c
C-- Start off profiler.
C

CALL KPROFI(PRFBUF, 8192, F_MAIN, PRFSCL)
CALL KXPON

c
C-- Applicat.ion code, ,profiler running 9

C

c
C-- Program over, dump data and exit.
e

CALL KXPELT('xprofQout')
STOP
END

SEE ALSO

xtool (command), KPROFI, KXPROF, KXPEND

196



KXPEND

NAME

KXPINQ, KXPEND - Manipulate execution profiler under Cubix.

SYNOPSIS

INTEGER FUNCTION KXPINQ()

SUBROUTINE KXPEND

DOMAIN

These routines may only be called from the nodes.

DESCRIPTION

These routines provide a simple control interface to the execution profiler for applications
running in the Cubix environment.

KXP INQ returns an integer value representing the state of the "-mx" runtime switch on the
cubix command line. This can be used to conveniently enable/disable the profiling
system at runtime..Consider a typical command

cubix -n 4 toyland 1024 1024 <noddy.dat

Since no "_m" switch is present a call to KXP INQ will return zero. If we modify the above
command to

cubix -mcxe -n 4 toyland 1024 1024 <noddy.dat

then the return value would be 1 since the character 'x' appears in the monitoring switch,
"-m".

KXPEND is used to finally dump profiling data to the host computer file system. A file
called "xprof . out" is created for later analysis with the xtool utility. In addition the
profiler is disabled and its initial state reset to zero. This allows distinct phases of an
application to be profiled totally independently.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
execution profiler.

PROGRAM XPRTST
C

INTEGER PRFBUF(2048), PRFSCL
c
C-- This value is Ox2000 (hexadecimal)
C

PARAMETER (PRFSCL = 8192)
C
c-- This is the name of a function in the program, low
c-- in memory. A suitable candidate can usually be found

197



KXPEND

c-- by looking through the "linker map".
C

EXTERNAL F MAIN
C
C-- Start up Express.
C

CALL KXINIT
c
C-- Start up profiler if user selected -mx option.
C

ISTAT= KXPINQ ()
IF(ISTAT .NE. 0) THEN

CALL KPROFI(PRFBUF, 8192, F_MAIN, PRFSCL)
CALL KXPON

ENDIF
c
c-- Execute application cede with prefiler running.
C

c
C-- Program over, dump data and exit.
e

IF(ISTAT .NE. 0) THEN
CAL:L KXPEND

ENDIF
STOP
END

SEE ALSO

xtool (command), KPROFI, KXPCP, KXPROF

198



KXPLOA

NAME

KXP LOA - Load a program into individual nodes.

SYNOPSIS

INTEGER FUNCTION KXPLOA(PGIND, PROG, NODE)
INTEGER PGIND, NODE
CHARACTER*80 PROG

DOMAIN

This routine may only be called in the host processor.

DESCRIPTION

KXP LOA provides a complementary interface to the KXLOAD routine for loading programs
into groups of processors. Instead of loading the entire array with a single node program
this routine allows different applications to be loaded into individual nodes of the machine.

In each case a previous call to KXOPEN must have allocated a set of processors into which
we are attempting to load programs. The processor group index returned by this call must
be supplied to the KXPLOA functions as the argument PGIND.

Having allocated a group ofnodes user applications are loaded with the KXP LOA primitive
which loads the named code into the processor specified by the NODE argument. The
special value IALNOD defined in the XPRESS common block specifies that all processors
are to be loaded with the same item.

Before execution of the node program can begin calls must be made to the KXMAIN
function.

EXAMPLES

The following calls allocate, load and start a program in four processors

PROGRAM MYTEST
INTEGER PGIND
COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
CHARACTER*80 DEVICE, PRGNAM
PARAMETER (DEVICE='/dev/transputer', PRGNAM='myprog')

C
C-- Initialize Express and its common block.
C

CALL KXINIT
C

PGIND = KXOPEN(DEVICE, 4, NOCARE)
IF(PGIND .LT. 0) THEN

WRITE(6,*) 'Failed to allocate nodes'
STOP

ENDIF

199



KXPLOA

C
ISTAT = KXPLOA(PGIND, PRGNAM, IALNOD)
CALL KXMAIN(PGIND, IALMOD)

Note that the particular arguments chosen here make this code functionally equivalent to a
call to KXLOAD.

In the following example we load the programs "progl" into nodes 0 through 3 and
"prog2" into nodes 4 through 15 of a sixteen processor group.

PROGRAM MYTEST
INTEGER PGINO
COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,1ALPRC
CHARACTER*80 DEVICE, PROG1, PROG2
PARAMETER (DEVICE='/dev/transputer')
PARAMETER (PROG1='progl', PROG2='prog2')

C
c-- Initialize Express and its common block.
C

CALL KXINIT
c

PGIND = KXOPEN(DEVICE, 4, NOCARE)
IF(PGIND .LT. 0) THEN

WRITE(6,*) 'Failed to allocate nodes'
STOP

ENDIF
c

DO 10 1=0, 3
ISTAT = KXPLOA(PGIND, PROGI, I)

10 CONTINUE
DO 20 1=4,15

ISTAT = KXPLOA(PGIND, PROG2, I)
20 CONTINUE
C

CALL KXMAIN(PGIND, IALNOD)

DIAGNOSTICS

KXPLOA returns zero upon successful loading of the executable program. If the executable
file is not found, or is invalid in some way the value -1 is returned.

200



SEE ALSO

KXLOAD, KXSTAR, KXMAIN

KXPLOA

201



KXPROF

NAME

KXPON, KXPOFF - Control execution proftler.

SYNOPSIS

SUBROUTINE KXPON

SUBROUTINE KXPOFF

DOMAIN

These routines may only be called from the nodes.

DESCRIPTION

KXPON is used to enable and start the execution profiler which must have been previously
initialized with a call to KPROFlc Subsequently a periodically scheduled event occurs
which causes the program counter of the user application to be Ulogged". in an internal
structure. KXPOFF reverses this process - until a subsequent call to KXPON no execution
proftling will be performed.

The profner is initially off and must be explicitly enabled with calls to KPROFI and
KXPON.

The logofp~ofilil1ginfo~~tionis\Ylittellto the host file system with KXP(~l? or KXPENDe

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
executionfprofiler.

PROGRAM XPTEST
c

INTEGER PRFBUF(2048) , PRFSCL
C

c-- This value is Ox2000 (hexadecimal)
C

PARAMETER(PRFSCL = 8192)
c
c.....- This is the name of a function found to be in
c-- low memory by perusing the "linker map".
C

EXTERNAL F MAIN
c
C-- Start Express.
C

CALL KXINIT
c
C-- Start off profiler.
C

202



CALL KPROFI(PRFBUF, 8192, F_MAIN, PRFSCL)
CALL KXPON

c
c-- Application code, profiler running.
C

c
c-- Program finishes. Dump data and exit .....
C

STOP
END

SEE ALSO

xtool(command), KPROFI, KXPCP, KXPEND

KXPROF

203



KXREAD

NAME

KXREAD ... Read a message

SYNOPSIS

INTEGER FUNCTION K,XREAD (BUF, LENGTH, SRC, TYPE)
INTEGER LENGTH, SRC, TYPE
INTEGER BUF(*)

DOMAIN

KXREAD is available to both host and node programs with identical calling sequences.

DESCRIPTION

This call is used to r~ad messages in the Express system. This routine .provides the
simplest interface to the message system - a blocking read; the function only returns when
a suitable message has been read.

The accepted message is read into the buffer pointed to by the BUF argument and is
truncated to size LENGTH bytes if necessary., The source and type of the message to be read
can be specified by the arguments SRC and TYPE as described below.

Thistoutine blocks until a message with suitable parameters' has been received.

OPTIONS

Under Express ~essages have both destinations and types,W'·hich are:, used:, by. reading
processes to distinguish between various available messages. A message will only be read
if it matches,. in both source and type, the parameters supplied in the read call. However,
several options are available to allow the user extra flexibility. Both source and type fields
are treated equivalently at this level· so the following discussion applies equally to both.

SRC = NOCARE A message will be read from any node. The particular node will
be indicated by modifying the value SRC. The value NOCARE is
to be found in the XPRESScommon block setup by the call to
KXINIT.

SRC = number Any positive numeric value will restrict attention to messages
with that particular source.

These same considerations apply to the type, TYPE, except that the interpretation of the
wildcard value, NOCARE, is subject to modification through the KXTYPE system calls.

The special value IHOST is used by nodes wishing to send messages to the host processor.
(This value is also to be found in the XPRESS common block.)

RETURN VALUE

The value returned is the length of the received message, after any necessary truncation has
been perfonned. If so~e sort of hard error occurs then -1 is returned.

204



KXREAD

EXAMPLES

In the following examples we consider a case in which the following four messages have
arrived on our node in the order given.

1. Source 1 Type 12 Length 32
2. Source HOST Type 2 Length 512
3. Source 1 Type 15 Length 1024
4. Source 2 Type 0 Length 0

The simplest case is where both source and type are explicitly stated as in the call

ISTAT = KXREAD(BUFFER, 512, 1, 15)

In this case message three will be accepted for reading. Note, however, that the actual
message is longer than the request length so only the first 512 bytes will be read and the
rest discarded. The returned value, ISTAT will be 512.

The next example uses the wildcard value, NOCARE, to read a message but retain
infonnation about its source.

INTEGER SOURCE
SOURCE = NOCARE
ISTAT = KXREAD(BUFFER, 512, SOURCE, 0)

In this case the type is explicitly given and so message 4 will be read. The returned value
will be 0, the length of the message read and the SOURCE variable will contain 2, the source
of the message.

In the last example a wildcard value is given for the type field.

SOURCE = 1
TYPE = NOCARE
ISTAT = KXREAD(BUFFER, 512, SOURCE, TYPE)

In this case the source is given explicitly and the type allowed to take any value. With the
parameters shown message 1 will be read and the value 12 stored in the TYPE variable. 32
bytes will be copied into the user buffer and the same value returned as STAT. Note that
types are subject to extra processing through the KXTYPE commands. If we had
specifically excluded type 12 from consideration then message 3 would have been read
instead since it has the correct source and has not been excluded. If we had excluded both
types 12 and 15 then the call to KXREAD would block until a more suitable message arrived.

WARNINGS

Types are restricted to be positive integers less than 16384. Other message types are
reserved for use within the Express kernel.

One very common "bug" concerns the use of the NOCARE parameter when reading
messages. Consider a situation where one needs to loop over all processors reading a single
message from each, in any order. The following code is incorrect:

c-- Attempt to read from each node, in any order

20S



KXREAD

c-- INCORRECT CODE
C

TYPE = 124
NODE = NOCARE
DO 10 I = 1, NPROCS

ISTAT = KXREAD(BUF, 128, NODE, TYPE)
10 CONTINUE

The error in this code ,lies in the fact that the receipt of the fltst message in the loop
overwrites the value of the NODE variable. As a result the second call to KXREAD attempts
to read from the same node that responded in the frrstcycle rather than any node as was
desired. The simple solution to the problem is to move the assignment NODE = NOCARE
variable inside the loop.

SEE ALSO

KXOPEN, KXSHAR, KXTEST, KXWRIT, KXTYPE, KXGRID.



KXRECV

NAME

KXRECV - Non-blocking read function.

SYNOPSIS

INTEGER FUNCTION
KXRECV(BUFFER, LENGTH, SRC, TYPE, STATUS)

INTEGER LENGTH, SRC, TYPE, STATUS
INTEGER BUFFER(*)

DOMAIN

KXRECV may be called in only the node processors.

DESCRIPfION

This function provides a non-blocking read function for Express messages. It is intended
for use in applications such as "double-buffering" in which one wishes to process some data
while waiting for another message to arrive.

When called it looks for a message in the buffers that match the supplied SRC and TYPE
parameters. If such a message exists it is read as though by a normal call to KXREAD and
the STATUS value will contain the message length.

If no message exists which matches the requested parameters the value -1 is written under
the STATUS flag and the function immediately returns to its caller. When a message of the
correct type and source subsequently arrives it will be read into memory at the address
BUFFER and the length will be written under the STATUS variable replacing the -1. The
SRC and TYPE variables will also be updated at that time to reflect the newly read message.

The interpretation of the frrst four arguments is exactly as in the corresponding call to
KXREAD. The last argument, STATUS, is a mechanism by which one can poll for the arrival
of the requested message; while negative, no message has been received.

EXAMPLE

The following example is a sketch of a typical "double-buffered" application. We assume
that processor SOURCE is sending messages of type PROCES which must be passed to the
function GRIND for processing. When all messages for such treatment have been received
a message of type DONE will be sent. We assume that each of the PROCES messages will
be of no more than 1024 bytes.

SUBROUTINE DOGRIN(NODE)
INTEGER NODE

C
INTEGER PROCES, DONE
PARAMETER (PROCES=10, DONE=1l)

C
INTEGER BUFFER(1024,2)
INTEGER STOP, TYPE, THIS, NEXT

207



KXRECV

INTEGER STAT(2)
C

COMMON!XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
STOP = 0
THIS = 1
NEXT = 2

C
c-- Get first buffer, blocking read this time. We assume
C-- that someone else called KXINIT to set up the XPRESS
C-- common block.
C

TYPE = NOCARE
STAT (THIS) = KXREAD(BUFFER(l,THIS), 1024, NODE, TYPE)

STOP =0
20 CONTINUE

IF(TYPE .NE. DONE) THEN
TYPE = NO'CARE
ISTAT = KXRECV(BUFFER(l,NEXT), 1024, NODE, TYPE,

$ STAT (NEXT) )
ELSE

STOP = 1
ENDIF

CALL GRIND(BUFFER(l,THIS), STAT(THIS»
C
C.;...- If we've not finished then now is the time to poll for
c-- the next buffer to arrive~

C
IF(STOP .EQ. 0) THEN

30 CONTINUE
IF (STAT (NEXT) .LT. 0) GOTO 30
NEXT = MOD (NEXT, 2) + 1
THIS = MOD (THIS, 2) + 1

ENDIF

IF(STOP .EQ. 0) GaTO 20
RETURN
END

There are several points to note in this code. We assume that we must process the buffer
with the DONE type ... this saves us a message since we can send valid data and still use the
type field to convey the important information. We also save the length of the message we
are going to process in the STAT variable - this could be important in the GRIND function.

208



KXRECV

Note that it would be dangerous to use a single variable here since it would get overwritten

whenever the second buffer arrived - possibly before the call to GRIND had been passed
the value. Finally note that we have to keep setting TYPE = NOCARE since its value is
overwritten whenever a message comes. Failing to do this is quite a common error and
would result in the failure to read the DONE message.

RETURN VALUE

This function returns zero unless insufficient memory is available to register the read
function. In this case -1 is returned.

SEE ALSO

KXREAD, KXHAND

209



KXSEM

NAME

KXSEM - Various semaphore operations.

SYNOPSIS

INTEGER FUNCTION KXSEMI(SEMPTR)
INTEGER SEMPTR(2)

SUBROUTINE KXSEMW(SEMPTR)

INTEGER SEMPTR(2)

SUBROUTINE KXSEMS(SEMPTR)
INTEGER SEMPTR(2)

DOMAIN

This routine may only be called in node programs.

DESCRIPTION

These routines implement a semaphore mechanism essential to protect critical sections of
code in a multitasking environment.

KXSEMI initializes a new semaphore in the array SEMPTR and sets it so that the fIrSt call
to KXSEMW will not blocke If the initialization attempt fails -1 will beretumed., otherwise
the result will be O.

Each call to KXSEMW checks the status of the associatccf semaphore. iflocked the calling
task sleeps until another process unlocks ·the semaphore~ While sleeping ··DOc,CPU· time is
expended allowing other tasks to proceed.

The KXSEMS call unlocks the indicated semaphore allowing other Ijfocesses to enter a
critical section of code.

EXAMPLE

The following code could be· used to implement a global shared memory system for a
distributed memory machine. We will assume that the data being accessed is such that only
one process can· be allowed access at anyone time. This would be the' case where, say,
extended records are being written to memory in which case the integrity of any particular
record is crucial. We would not, for example, allow two processes to both write records
simultaneously since they may each write half leaving inconsistent data.

To implement these ideas we need to register a message handler which will field the read!
write requests. For simplicity we will use only one handler for both purposes and let the
data sent. indicate the requested operation. We will encode the various requests in a 3
element integer array with the elements identified as follows:

ARRAY ( 1 ) A code value which is either MEMRD for read requests or MEMWT

for writes.

210



KXSEM

ARRAY (2 ) A memory address for the read/write operation.

ARRAY (3) A number of bytes to be read or written.

The necessary message handler is as follows

INTEGER FUNCTION MEMHND(PTR, LENGTH, SRC, TYPE)
INTEGER PTR(3), LENGTH, SRC, TYPE
INTEGER RTYPE

C
COMMON/MEMORY/MEMRD, MEMWT, MEMACC, MEMRSP, MEMDAT, MEMSEM
INTEGER MEMSEM(2)

C
C-- Block other users from entering this section of code
C-- while we're doing things.
C

CALL KXSEMW(MEMSEM)
C

C-- Check: is this a read request ?
C

IF(PTR(l) .EQ. MEMRD) THEN
RTYPE = MEMRSP
ISTAT = KXWRIT(PTR(2), PTR(3), SRC, RTYPE)

ENDIF
c
C-- Is it a write request ?
C

IF(PTR(l) .EQ. MEMWT) THEN
RTYPE = MEMDAT
ISTAT = KXREAD(PTR(2), PTR(3), SRC, RTYPE)

ENDIF
C
C-- Release the semaphore.
C

CALL KXSEMS(MEMSEM)
c

MEMHND = 0
RETURN
END

We have assumed in the above code that the call to KXHAND which sets up this handler
is made elsewhere. Similarly the MEMSEM semaphore should be allocated before any use
will be made of this routine.

To use these routines it is merely necessary to add the following calls.

211



KXSEM

c
c-- Function to read global memory using the message handler
C-- installed above.
C

INTEGER FUNCTION RDMEM(BUFFER, LENGTH, NODE, ADDR)
INTEGER BUFFER(*), LENGTH, NODE, ADDR

c
INTEGER MSG(3)
INTEGER TYPE, RTYPE

c
COMMON!MEMORY/MEMRD, MEMWT, MEMACC, MEMRSP, MEMDAT,MEMSEM
INTEGER MEMSEM(2)

C
TYPE := MEMACC
RTYPE = MEMRSP

c
C-- Build array to make memory request.
C

MSG(l) = MEMRD
MSG(2) = ADDR
MSG(3) = LENGTH

C
ISTAT ~ KXWRIT (MSG, 3*4, NODE,T,YPE)

RDMEM = KXREAD(BUFFER, LENGTH, NODE, RTYPE)
RETURN
END

c
C-- Function to write global memory using the message
C-- handler installed above.
C

INTEGER FUNCTION WTMEM(BUFFER, LENGTH, NODE, ADDR)
INTEGER BUFFER(*), LENGTH, NODE, ADDR

c
INTEGER MSG(3)
INTEGER TYPE, RTYPE

C

COMMON /MEMORY!MEMRD,MEMWT,MEMACC,MEMRSP,MEMDAT,MEMSEM
INTEGER MEMSEM(2)

c
TYPE =:: MEMACC
RTYPE = MEMRSP

c
C-- Build array to make memory request.
C

MSG(l) = MEMWT

212



KXSEM

MSG(2) = ADDR
MSG(3) = LENGTH

c
ISTAT = KXWRIT(MSG, 3*4, NODE, TYPE)
RDMEM = KXWRIT(BUFFER, LENGTH, NODE, RTYPE)
RETURN
END

Notice that several potential improvements could be made to this code. In particular we
could speed up the writing process by sending short amounts of data in the same message
as invokes the MEMHND handler. (KXHAND can only deal with messages up to the system
packet size so any extra could be sent in a second message.) A further bottleneck is due to
the fact that we have a single semaphore protecting a large memory space on each node. It
might be more practical to have separate semaphores protecting disjoint areas of memory
so that fewer processes would have to "sleep".

SEE ALSO

KXSLEE, KXHAND

213



KXSEND

NAME

KXSEND - Non-blocking write function.

SYNOPSIS

INTEGER FUNCTION KXSEND(BUFFER,LENGTH,SRC,TYPE,STATUS)
INTEGER BUFFER(*),LENGTH, SRC, TYPE, STATUS

DOMAIN

KXSEND may be called in only the node processors.

DESCRIPTION

This function provides a non-blocking write function for Express messages. It is intended
for use in applications such as "double-b·uffering" in which one wishes to process some data
while waiting for another message toanive or be sent.

This routine provides a me,chanism by which·a node can transmit a message'and then carry
on processing regardless of whether or not the message has actually been sent. Upon return
from the kernel the STATUS variable is set to -1. When the message is finally processed
this value will be changed to the number of bytes sent Until this has happened the user
should (probably) not alter the data in the message since it is unknown which bytes h.ave
been transmitted to the receiving node and·which have yet to be sent.

The interpretation of the frrst four arguments is exactly as in the corresponding call to
Kxwa1T1'h~ 13,st ar~{l,~ ST,A'!'US ~ is,3, mecha.nism 1?ywhi~ o~~ ~anpQll £oJ:' the fitUll
dispatch of the requested message; while negative, the message has still to tie sent.

EXAMPLE

The following example ~is a sketchofa typical "double.;.buffered" application. We assume
that processor SOURCE is sending messages of type PROCES which must be passed.to the
function GRIND for processing. When all messages for such treatment have been received
a message of type DONE will be sent. We assume that each of the PROCES messages will
be of no more than 1024 bytes.

SUBROUTINE DOGRIN(SRC,DEST)
INTEGER DEST, SRC

c
INTEGER PROCES, DONE
PARAMETER (PROCES=10, DONE=11)

C
INTEGER BUFFER (1024, 3)
INTEGER STOP, THIS, LAST, NEXT
INTEGER STAT(3), TYPE (3)

c
COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
STOP = 0
LAST = -1

214



THIS = 1
NEXT = 2

c
C-- Get first buffer, blocking read this time. We assume
C-- that someone else called KXINIT to set up the XPREsS
C-- common block.
C

TYPE (THIS) = NOCARE
STAT (THIS) = KXREAD(BUFFER(l,THIS), 1024,

$ SRC, TYPE(THIS»

STOP = 0
20 CONTINUE

IF (TYPE (THIS) .NE. DONE) THEN
TYPE (NEXT) = NOCARE
IF(LAST .GE. 0 THEN

80 CONTINUE
IF (STAT (LAST) .LT. 0) GOTO 80

ENDIF
ISTAT = KXRECV(BUFFER(1,NEXT),1024, SRC, TYPE(NEXT),

$ STAT(NEXT»
ELSE

STO~ = 1
ENDIF

CALL GRIND(BUFFER(l,THIS), STAT(THIS»
ISTAT = KXSEND(BUFFER(l,THIS),STAT(THIS),

$ DEST,TYPE(THIS),STAT(THIS»
c
C-- If we've not finished then now is the time to poll for
C-- the next buffer to arrive.
C

IF(STOP .EQ. 0) THEN
30 CONTINUE

IF (STAT (NEXT) .LT. 0) GOTO 30
LAST = MOD (LAST, 3) + 1
NEXT = MOD (NEXT, 3) + 1
THIS = MOD (THIS, 3) + 1

ENDIF

IF(STOP .EQ. 0) GOTO 20
RETURN
END

215



KXSEND

There are several points to note in this code. We assume that·we must process the buffer
with the DONE type ... this saves us a message since we can send valid data and still use the
type field to convey the important infonnation. We also save the length of the message we
are going to process in the STAT variable - this could be important in the GRIND function.
Note that it would be dangerous to use a single variable here since it would get overwritten

whenever the second buffer arrived .. possibly before the call to GRIND had been passed
the valueo Finally note that we have to keep setting TYPE = NOCARE since its value is
overwritten whenever a message comeso. Failing to do this is quite a common error and
would result in the failure to read the DONE message.

RETURN VALUE

This function returns zero unless insufficient memory is available to ·register the write
function. In this case -1 is returned.

SEE ALSO

KXWRIT, KXHAND, KXRECV

216



KXSHAR

NAME

KXSHAR - Share a processor group with another process

SYNOPSIS

INTEGER FUNCTION KXSHAR(DEVICE, PID, NODES)
CHARACTER*80 DEVICE
INTEGER PlD, NODES

INTEGER FUNCTION KXPID(UNIXlD)
INTEGER UNIXID

DOMAIN

Host processor only.

DESCRIPTION

The KXSHAR routine allows two or more host processes to share access to the same
processor group. The frrst argument, DEVICE, specifies which array contains the processor
group to be shared and is interpreted exactly as in the KXOPEN call. The process ID of the
process with which the processor group is to be shared must be specified by PlD. Upon
return the number ofnodes in the shared processor group is written under the value NODES.

The most reliable source of infonnation about process ID's is provided by the KXOPEN
system call which reports the appropriate value. Similar infonnation is often available from
the exstat command. On UNIX machines the function KXPID is available whose
argument is the UNIX process ID. The returned value is the Express process 1.0, suitable
for giving to the KXSHAR function.

RETURN VALUE

The value returned by KXSHAR is the processor group index which must be used in future
references to the shared processors.

If the indicated process has tenninated or is not using any processors itself the value -1 is
returned.

EXAMPLE

The following code would be used if a second process wished to share the processor group
currently assigned to the process with process-ID 349.

PROGRAM MYTEST
INTEGER NNODES, MSGTYP, MSGSRC, PGlND
COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
CHARACTER*80 DEVICE
PARAMETER (DEVICE='/dev/transputer')

C
C-- Set up Express and its common block.

217



KXSHAR

c
CALL KXINIT

C
PGIND = KXSHAR(DEVICE, KXPID(349), NNODES)
IF(PGIND .LT. 0) THEN

WRITE(6,*) 'Failed to share, job may have ended'
STOP

ELSE
WRITE(6,*) 'Sharing " NNODES, , processors'

ENDIF
C
c-- Successfully share,d nodes, restrict wildcard message
C-- types and start reading.
C

CALL KXINCT(123, 125)
C

MSGTYP == NOCARE
MS'GSRC= NOCARE
ISTAT == KXREAD(BUFFER, 512, MSGSRC, MSGTYP)

Note that having successfully shared the nodes with process 349 we use the KXTYPE
functions to restrict attention to the message types from 123 to 125. This allows us the
freedom to use the. wildcard NOCARE values in reading without clashing with the proce~s

whose nOdes' weafesharingc

WARNINGS

Communicating·with· shared groups ofnodes is complicated by interactions between source
and type fields specified using the NOCARE wildcard. This situation can be eased somewhat
through the KXTYPE mechanisms which restrict the ranges indicated by wildcard values.

SEE ALSO

KXOPEN, KXTYPE

218



KXSLEE

NAME

KXSLEE - Pause process.

SYNOPSIS

SUBROUTINE KXSLEE(MSECS)
INTEGER MSECS

DOMAIN

This routine may only be called in node programs

DESCRIPTION

This routine is used when a process needs to wait for an event without using CPU resources.
The supplied argument is the minimum time to wait in microseconds. This routine should
be used in multitasking applications where one task needs to wait for an event which will
potentially be generated by another task on this node.

EXAMPLE

The following code makes use of the KXSLEE function to implement a global semaphore
- i.e., a semaphore that can be used from any node. For definiteness we assume that the
physical semaphore is located on node O. In this node we should register the following
function with a call to KXHAND.

INTEGER FUNCTION SEMHND(MSG, LENGTH, NODE, TYPE)
INTER MSG, LENGTH, NODE, TYPE

C

COMMON /SEMDAT/WAIT,SIGNAL,OPEN,CLOSED,SEMREQ,SEMRSP
INTEGER WAIT, SIGNAL, OPEN, CLOSED, SEMREQ, SEMRSP
COMMON /SEMSYS/ GBLSEM, GBLFLG
INTEGER GBLSEM(2), GBLFLG

c
INTEGER RESP, RTYPE

C

RTYPE = SEMRSP
c
C-- There are two types of requests which basically
C-- correspond to the KXSEMW and KXSEMS calls on local
C-- semaphores.
C

IF(MSG .EQ. WAIT) THEN
CALL KXSEMW(GBLSEM)
IF(GBLFLG .EQ. OPEN) THEN

GBLFLG = CLOSED
RESP = OPEN

ELSE

219



KXSLEE

RESP = CLOSED
ENDIF
CALL KXSEMS(GBLSEM)
ISTAT = KXWRIT(RESP, 4, NODE, RTYPE)

ENDIF
c

IF(MSG "EQ. SIGNAL) THEN
CALL KXSEMW(GBLSEM)
GBLFLG = OPEN
CALL KXSEMS(GBLSEM)

ENDIF
C

SEMHND = 1
RETURN
END

Note that we implement the global semaphore with a simple variable, GBLFLG to which
accc'ss is restricted with the local semaphore, GBLSEM. If the semaphore is "locked" a
message is sent back to the requesting node indicating that it should sleep. The code which
implements the "signal" and "wait" requests for this global semaphore is shown below. For
simplicity we do not show the code which initializes the local semaphores or sets up the
message handlere

SUBROUTINE GBLSIG
c

INTEGER MSG, DEST, TYPE
COMMON /SEMDAT/WAIT, SIGNAL, OPEN, CLOSED, SEM'REQ, SEMRSP
INTEGER WAIT, SIGNAL, OPEN, CLOSED, SEMREQ,SEMRSP

C
MSG =, SIGNAL
DEST = 0
TYPE = SEMREQ
ISTAT = KXWRIT(MSG, 4, DEST, TYPE)
RETURN
END

SUBROUTINE GBLWAT
c

INTEGER MSG, DEST, TYPE, RTYPE, STATUS
COMMON /SEMDAT/WAIT,SIGNAL,OPEN,CLOSED,SEMREQ,SEMRSP
INTEGER WAIT,SIGNAL,OPEN,CLOSED,SEMREQ,SEMRSP

c
MSG = WAIT
DEST = 0
TYPE = SEMREQ

220



KXSLEE

RTYPE = SEMRSP
c

STATUS = CLOSED
C

10 ISTAT = KXWRIT(MSG, 4, DEST, TYPE)
ISTAT = KXREAD(STATUS, 4, DEST, RTYPE)
IF(STATUS .EQ. CLOSED) THEN

CALL KXSLEE(10)
GOTO 10

ENDIF
RETURN
END

The important point to note in this code is the call to KXSLEE in the last routine. This
allows other processes on a node to proceed even though the calling process is blocked
waiting for the global semaphore.

SEE ALSO

KXSEM, KXHAND

221



KXST I

NAl\1

KXSTAR - Start execution of program

SYNC >sIS

SUBROUTINE KXSTAR(PGIND, NODE)
INTEGER PGIND, NODE

SUBROUTINE KXMAIN(PGIND, NODE)
INTEGER PGIND, NODE

DON IN

.t\vailable to host processes only.

DES( ~IPrION

These routines begin execution of a program previously loaded into a node with the
KXPLOA system call. Programs loaded with KXLOAD do not need to use these calls.

The special value NODE = IALNOD may be specified to perfonn the action on all allocated
lodes. This value is defined in the XPRESS common block set up by the call to KXINIT.

EXA~ PLE

The following example shows the correct use OfK'XSTARartdKXMAINto'beginexeetttion
)f a job successfully loaded into the nodes.

PROGRAM MYTEST
INTEGER PGIND
COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC
CHARACTER*80 DEVICE, PRGNAM
PARAMETER (DEVICE='!dev/ncube', PRGNAM='noddy')

:-- Set up Express and its common block.
~

J

CALL KXINIT
....
J

PGIND = KXOPEN(DEVICE, 4, NOCARE)
IF(PGIND .LT. 0) THEN

WRITE(6,*) 'Failed to allocate processors'
STOP

ENDIF

:-- Load program into processor group using index returned.

ISTAT = KXPLOA(PGIND, PRGNAM, IALNOD)
IF(ISTAT .LT. 0) THEN

WRITE(6,*) 'Failed to load application'

222



KXSTAR

STOP
ENDIF

c
C-- Start application running.
C

CALL KXSTAR(PGIND, IALNOD)
CALL KXMAIN(PGIND, IALNOD)

Note that these calls can be used to explicitly control when a process begins executing. It
may be important, for example, that certain actions be perfonned on the host before
execution begins. In this case the "start" calls can be deferred until an appropriate time.

SEE ALSO

KXLOAD, KXPLOA, KXOPEN, KXPAUS

223



KXSWAD

KXSWAP

NAME

KXSWAB, KXSWAW, KXSWAD - Byte swapping routines

SYNOPSIS

SUBROUTINE KXSWAB(FROM, TO, NBYTES)
INTEGER*2 FROM(*), TO(*)
INTEGER NBYTES

SUBROUTINE KXSWAW(FROM, TO, NBYTES)
INTEGER*4 FROM(*), TO(*)
INTE·GER NBYTES

SUBROUTINE KXSWAD(FROM, TO, NBYTES)
REAL*8 FROM(*), TO(*)
INTEGERNBYTES

DOMAIN

These routines may be called in any Express pro.grame

DESCRIPTION

An unfortu;pate pJ;()blem. with many parallel processing systems is. that the host machines
and node processors· have different CPU types. It is often then the case that the binary
representation of·,various data types is different. Typical examples are Sun workstations
hosting transputer or NCUBE systems. The former has a Motorola CPU with the most
significant byte ofa word having the lowest ·memory address while the .node processors
store the least significant byte fltSt.

To aid with these problems Express provides a set of byte· swapping primitives for
transfonning data between "big" and "little" endian machinese Each routine has a pair of
pointer arguments which denote the buffers from which data should be taken and into
which it should be placed after swapping. These two pointers may be the same. The last
argument, in each case, is the number of bytes in the buffer to be swappede This should be
a multiple of the size of each item being swapped.

The three routines each serve a different swapping style as follows:

KXSWAB Swaps adjacent bytes in 2-byte quantities

KXSWAW Reverses the bytes in 4-byte quantities - i.e., the original order
{O,1,2,3} becomes {3,2,1,O}.

Reverses the bytes in 8-byte quantities - the original order
{O,1,2,3,4,5,6,7} becomes {7,6,5,4,3,2,1,O}.

Note that these routines are sufficient to transfonn data items between Motorola byte
ordered machines (Sunworkstations,·etc.) and INTEL byte ordered machines (NCUBE,
transputers, etc.)

224



KXSWAP

EXAMPLE

When necessary, byte swapping typically occurs in one of two places depending on the
programming model in use.

In "Host-node" programs it is typical to have to swap all data items that are transmitted to
or received from the nodes. The issue of which processor should perform the byte swapping
is one of pure convenience - either the host or the nodes can swap the bytes. Often this
decision is made according to who has to further use the data being swapped - the following
code fragment represents a typical bug

C
C-- Byte swapping in a "host-node" program - INCORRECT
C

SUBROUTINE ITERAT(NTIMES)
INTEGER*4 NTIMES
INTEGER I, TYPE
COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC

TYPE = 123
CALL KXSWAW(NTlMES, NTIMES, 4)
ISTAT = KXBROD(NTIMES, IHOST, 4, IALNOD, 0, TYPE)

C
C-- This is a BUG ntimes just had its bytes swapped!
C

DO 10 I=1,NTIMES

10 CONTINUE

This code shows some typical features in a byte-swapping environment. The "bug" in the
above code is that the host program swaps the bytes in the NTIMES value and sends it to
the nodes (correct) but then attempts to use the value in the following loop - without
swapping the bytes back. As a result the loop will probably run for an extremely long time!

Among several possible "fixes" are:

• Adding another call to KXSWAW after the call to KXBROD to restore the NTIMES
variable to its proper state.

• Making a temporary variable, swapping NTIMES into it and sending the
temporary value to the nodes.

• Having the nodes do the byte swapping in this case.

Cubix programs should only have byte swapping problems when perfonning binary I/O.
Regular text files should pose no problems since the internal protocols take care of all
appropriate byte swapping. Arguments to system calls that will be sent to another host are
also byte swapped automatically. For binary files, however, the problem remains and the
only viable solution seems to be the insertion of many calls to the appropriate swapping

22S



KXSWAP

routine.

SEE ALSO

KMREAD, KMRD2D, KMWRIT.

226



KXSYNC

NAME

KXSYNC - Synchronization primitive

SYNOPSIS

SUBROUTINE KXSYNC

DOMAIN

KXSYNC may only be called from the nodes.

DESCRIPfION

This routine is used to implement synchronization points in applications. It is guaranteed
that no processor will proceed past the call to KXSYNC until all are ready to do so.
Furthennore the processors emerge from the KXSYNC calls on their respective nodes as
synchronized as can be arranged.

A call to KXSYNC in one processor must be complemented by a call to KXSYNC in all other
processors.

EXAMPLE

In the following code we assume that it is important that all processors be synchronized
between two phases of an algorithm.

C
C-- PHASE 1. of application
C

C
C-- Before beginning second phase make sure all processors
C-- in sync.
C

CALL KXSYNC
C
C-- PHASE 2. of application - all processors synchronized.
C

Another good place for this function is after installing message handlers with the KXHAND
system call. Synchronizing all processors is a good idea since it prevents anyone processor
sending a message to another which has yet to install its signal handler.

SEE ALSO

KXCHAN

227



KXTEST

NAME

KXTEST - Test for an incoming message, non-blocking

SYNOPSIS

INTEGER FUNCTION KXTEST(SRC, TYPE)
INTEGER SRC, TYPE

DOMAIN

KXTEST is available to both host and node programs. The calling sequence is identical in
both cases.

DESCRIYfION

This function looks for an incoming message ina non-blocking fashion. It is intended for
use in implementing strategies which require non-blocking read capabilities. The
arguments SRC and TYPE are interpreted just as in the KXREAD call with the same
wildcard interpretations.

The useful feature of the "test" function is that it returns immediately indicating by the
return value whether 'or not a message currently exists which matches the supplied
parameters. If no such message is found -1 ,is returned. Otherwise ,the return value is the
length of the matching message.

EXAMPLES

In the following examples we consider'·acase.in>which'tne'(81Iowing{our mes'sages nave
arrived on our node in the order given.

1. Source 1 Type 12 Length 32
2. Source HOST Type 2 Length 512
3. Source 1 Type 15 Length 1024
4. Source 2 Type 0 Length 0

The simplest case is where both source and type are explicitly stated as in the call

SOURCE = 1
TYPE = 15
ISTAT = KXTEST(SOURCE, TYPE)

In this case message three will be accepted. The retumedvalue, I STAT will be 1024, the
length of the acceptable message.

The next example uses the wildcard value, NOCARE, to look for any message but retain
infonnation about its source. (This value is defined in the XPRESS common block set up
by the call to KXINIT.

SOURCE = NOCARE
TYPE = 0
ISTAT = KXTEST(SOURCE, TYPE)

In this case the type is explicitly given and so message 4 will be matched. The returned

228



KXTEST

va e will be 0, the length of the message and the SOURCE variable will contain 2, the
so :e of the message.

In e last ex~ple a wildcard value is given for the type field.

SOURCE = 1
TYPE = NOCARE
ISTAT = KXTEST(SOURCE, TYPE)

In is case the source is given explicitly and the type allowed to take any value. With the
pa meters shown message 1 will be accepted and the value 12 stored in the TYPE variable.
TI value 32 will be returned. Note that types are subject to extra processing through the
K} YPE commands. If we had specifically excluded type 12 from consideration then
m( ;age 3 would have been used instead since it has the correct source and has not been
ex Jded. If we had excluded both types 12 and 15 then the call to KXTEST would return
-1 indicate that no suitable message had yet arrived.

RETURl\ I ALUE

n return value is the length of the matching message or -1 if no message can be found
wI :h fits the indicated parameters.

SEEAL~

K} PEN, KXREAD, KXTYPE

229



KXTIME

NAME

KXTIME, KXTICK - Time measurement

SYNOPSIS

INTEGER*4 FUNCTION KXTIME()

INTEGER FUNCTION KXTICK()

DOMAIN

These functions are available to all node programs.

DESCRIPrION

KXT1MB retQIlls .the number of microseconds since a fixed reference point.

KXT I CK returns the number of hardware clock ticks since a fixed reference point

Both routines are intended to be· used for timing measurements. KXT IME provides
measurements in convenient units but suffers from the fact that its accuracy may depend on
some "unknown" constant such as the hardware's clock speed..It may further require
significantly longer than KXT ICK to return a result sinc.e one or more arithmetic operations
will nonnally be required to convert the machine clock ticks to microseconds.

Note that·the availability ..of.a routine which returns time in microseconds should not be
taken to imply the existence of hardware with this resolution. In most cases the hardware
timers will haveibterv~alsof many microseconds0



KXTYPE

NAME

KXINCT, KXEXCT - Include or exclude certain
message types in interpreting wildcards.

SYNOPSIS

SUBROUTINE KXINCT(LOTYPE, HITYPE)
INTEGER LOTYPE, HITYPE

SUBROUTINE KXEXCT(LOTYPE, HITYPE)
INTEGER LOTYPE, HITYPE

DOMAIN

KXINCT and KXEXCT are available in both host and node processors.

DESCRIPTION

These routines are used to modify the behavior of the "NOCARE" wildcard value used in
the TYPE field of the calls KXREAD, KXTEST, etc. In particular the user can specify that
certain types be excluded or included among those that match the "any type" condition.

KXEXCT specifies a low and high type value defining an (inclusive) range of types which
should not be considered when processing the wildcard value. All the other types will
remain acceptable.

KXINCT specifies the low and high end of an (inclusive) range of types which can be
accepted by the program. All other types of messages will be excluded.

These routines are ofmost use when two or more processes share the same processor group
with the KXSHAR call or when message handlers are being used (cf. KXHAND). In this case
the use of wildcards is dangerous, without previously calling these routines, since
otherwise .the recipient of any given message is unpredictable. Using these routines it is
possible to allow one process access to only a restricted range of types while the other
process can safely use all the other types and BOTH may still be pennitted the use of
wildcards.

EXAMPLES

In the following code we limit attention to types in the range 123 thru 125.

PROGRAM MYTEST
INTEGER MSGSRC, MSGTYP
COMMON/XPRESS/NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC

c
C-- Initialize Express and its common block.
C

CALL KXINIT
c
C-- Code to allocate nodes and load programs.

231



KXTYPE

c

C
C-- Restrict attention to only a small range of message
C-- types.
C

CALL KXINCT(123,125)
C
C-- Read with wildcard values, restricted to range [123,125]
C

MSGSRC == NOCARE
MSGTYP = NOCARE
ISTAT = KXREAD(BUFFER, 128, MSGSRC, MSGTYP)

Mterincluding only the specific types the wildcard values may be used freely but with their
meanings restricted to a smaller range. In the above example the call to KXREADwiII only
ever read messages whose types lie in the range 123-1250

As mentioned above this technique is most useful when two or more processes wish' to
share access to a particular set ofnodes. If the above call had been made in one process tlj~n

'the other one might wish to make a call such as

CALL KXEXCT( 99, ·125)

in wllichw,e:e:;pticitly delete the message type range .. 99.;-,125 from consideration.,. (This
would be useful if yet another process were sharing the same nodes and using types 99­
100.) All other,message types will remain valide

The. include/excludemechaqi~~~~!l<be tUrned off bys9pplying two NOCA.REargl.!~~n~Jq

the appropriate function.

SEE ALSO

KXREAD, KXTEST, KXSHAR.



KXVREA

NAME

KXVREA, KXVWRI - Vector read/write functions

SYNOPSIS

INTEGER FUNCTION
KXVREA(BUFFER, SIZE, OFFSET, ITEMS, SRC, TYPE)

INTEGER BUFFER(*)
INTEGER SIZE, OFFSET, ITEMS, SRC, TYPE

INTEGER FUNCTION
KXVWRI(BUFFER, SIZE, OFFSET, ITEMS, DEST,TYPE)

INTEGER BUFFER(*)
INTEGER SIZE, OFFSET, ITEMS, DEST, TYPE

DOMAIN

KXVREA and KXVWRI may be called in both host and node processors.

DESCRIPTION

These routines implement direct read and write functions. Additionally they allow non­
contiguous blocks of data to be transmitted as a single message.

These functions correspond directly to KXREAD and KXWRI T except in the interpretation
of the actual bytes to be transmitted. In the KXREAD function a single block of contiguous
data is transmitted while the KXVREA functions allow messages to be built up from non­
contiguous memory blocks.

The manner in which the blocks are specified to KXVWRI is as follows: I TEMS objects,
each of size SIZE bytes are taken starting from BUFFER. In addition each block is
separated from the next by OFFSET bytes.

The specification is similar for KXVREA except that objects are read into distinct memory
blocks separated by OFFSET bytes.

In all other regards the arguments to KXVREA and KXVWRI perform just as they would in
KXREAD and KXWRIT - including the restriction that neither DEST nor TYPE arguments
may be NOCARE in calls to KXVWRI.

EXAMPLE

The most useful application of these functions is to deal with multi-dimensional arrays in
which we are required to pass data across a dimension in which the array data is not
contiguous. (In FORTRAN the fIrSt array dimension is the one that indexes contiguous
memory locations). Consider an example in which we have a 10 x 10 array ofvalues in each
node corresponding to a two-dimensional image. The first dimension refers to the vertical
axis while the second refers to the horizontal. (array (2, 2) is thus near the bottom left­
hand corner, for example). If we now consider a simple scrolling operation in which data
is to be moved from left to right then we see that the data lies correctly and a suitable call
to KXREAD, for example, would be

233



.KXVREA

ISTAT = KXREAD(ARRAY, 10*4, LNODE, TYPE)

assuming that LNODE had been correctly assigned and a suitable call to KXWRIT h.ad been
made in some processor. If the scroll were to be in the ·vertical direction, however, then
KXREAD is not appropriate; the operation can be coded as

ISTAT = KXVREA(ARRAY, 4, 10*4, 10, DNODE, TYPE)

which specifies that each array element has the size of an INTEGER and that the total
distance between elements ARRAY (I, J)and ARRAY (I, ,J+1) is ·10 times the size of.an
individual element. Finally ten items should be transmitted. Notice that we can also use a
call to KXVREA for the horizontal shift by merely changing the OFFSET field in the above
call from 10*4 to 4. This allows the code to have a unifonn structure for both axes.

DIAGNOSTICS

If any error occurs in KXVREA or KXVWRI -1 is returned. Possible sources of error are: an
illegal source or destination, an illegal buffer or a preposterous value of SIZE, OFFSET
or ITEMS. If no error occurs KXVREA returns the number of items read and KXVWRI the
number written.

KXREAD, KXWR'I'T, KXCHAN.

234



KXWRIT

NAME

KXWRI T - Write a message

SYNOPSIS

INTEGER FUNCTION KXWRIT(BUF, LENGTH, DEST, TYPE)
INTEGER LENGTH, DEST, TYPE
INTEGER BUF(*)

DOMAIN

KXWRI T is available to both host and node programs with identical calling sequences.

DESCRIPTION

This routine sends a message to the processor indicated by the DEST argument. The
message will consist of LENGTH bytes taken from the supplied BUF pointer. The message
has the type specified by the TYPE parameter which may not take the special NOCARE
value from the XPRESS common block.

The special value IHOST may be used to give the host processor as destination. This value
is to be found in the XPRESS common block set up by the call to KXINIT. .

RETURN VALUE

KXWRI T returns the number of bytes written, or -1 upon unrecoverable errors.

EXAMPLES

The following code is used to send 15 bytes taken from the address MYBUF to processor 12.
The message will have type 99.

PROGRAM MYTEST
INTEGER DEST, TYPE

C

C-- Set up Express.
C

CALL KXINIT
C

DEST = 12
TYPE = 99

C
ISTAT = KXWRIT(MYBUF, 15, DEST, TYPE)

C

The next code sends a 128 byte message to the host processor. The message type will be 10.

PROGRAM MYTEST

235



KXWRIT

INTEGER DEST, TYPE
COMMON!XPRESS!NOCARE,NORDER,NONODE,IHOST,IALNOD,IALPRC

c
C-- Set up Express and its common block.
C

CALL KXINIT
c

DEST = IHOST
TYPE = 10

c
ISTAT = KXWRIT(DATA, 128, DEST, TYPE)

WARNINGS

Certain message types are restricted to the ·Express kernel. User message types must be
less than 16384.

SEE ALSO

KXOPEN, KXREAD

236



KXWRIT

237



Classification of routines

A listing of the Express routines,
broken down by functionality



This section lists the various functions and routines available to Express programs
grouped according to functionality. While no exact division between routines is possible
this information may seIVe as a useful guide to "related" functions.

User Commands (Man page)

acctool
cnftool
etool
eubix
etool
exeustom
exdump
exinit
exreset
exstat
ndb

xtool

Compilers

nee
nf77
symee
symf77

tee
tee3L
tfe

Analyze accounting data ••••••••.•••••••.••••••• aectool
Configure Transputer systems ••••••.••••••••••••• enftool
Analyze communication profile data •••••••••••••••••• etool
Download and execute Cubix programs, I/O server •••••••• eubix
analyze event profile data and "toggles" ••••••••••••••• etool
Modify Express system parameters •.••••••••.••••• excustom
Retrieve data from RAM files .••••.••••••••••••••• exdump
Reboot and reload Express kernel ••••.••••.••..•••• exinit
Reset transputer system • • • • • • • • • • • • • . . • . • • . • • • • • exin i t

Display node usage infonnation •••••••••••••••••••• exstat
Source level debugger ••••••••••••••••••••••••••••• ndb

Analyze execution profile data ••••••••••••••••••••• xtool

(Man page)

C compiler and linker for NCUBE .•••••••••••.••••.••• nee
FORTRAN compiler and linker for NCUBE ••.•••••••••• nf77
C compiler and linker for SYMULT ••.••••.....•••••• symec
FORTRAN compiler and linker for SYMULT •.•••••••• syrnf77
Logical Systems C compiler and linker for transputers •••••••• tee
3L C compiler and linker for transputers .•••..•.•••••.• tcc3L
3L FORTRAN compiler and linker for transputers ••••.•.••• t f e

System Initialization (Man page)

KXINIT Start up Express and initialize XPRESS common block ••• KXINIT

Processor Allocation and Control (Man page)

KXCLOS
KXLOAD
KXMAIN
KXOPEN
KXPAUS
KXPID

Deallocate processor group. . • . • . • • . •• • • • • . • • . . •. KXCLOS

Load program into all nodes • • • • . • . . • • • • . • • • • • • .• KXLOAD
Start execution of main program •.•.•••••..••••••• KXSTAR

Allocate a group of processors. • • • • • • • • • • • • • • • • • •• KXOPEN

Arrange for program to be loaded "stopped" •.••...•.. KXPAUS

Translate UNIX process ID to Express process ID • . • • . .• KXSHAR

239



KXPLOA
KXSHAR

KXSTAR

Load aprogram into a single node •••••••••••••• 0 •• KXPLOA

Share a processor group between multiple host programs • • KXSHAR

Start execution of a node program •••••.••.••••••.• KXSTAR

Basic Communication.System (Man page)

KXEXCT
KXINCT
KXREAD

KXTEST
KXVREA
KXVWRI

,KXWRIT

Define meaning of "read/write" wildcards • • • • • • • • • • •• KXTYPE

Define meaning of "readlwrite"wildcards • • • . • • • • • ••• KXTYPE

Read a message •••• ••• • • • • • • . • • • • ••• • • • • • • •• KXREAD

Test for an incomin.g message - non-blocking. • • • • • • • •• KXTEST

Read a vector message • • • • • • • • •• • • • • • • • •• • • • • •• KXVREA

Send·a vector message. • • • • • • • • • • • • • • • . • • • • • • •• KXVREA

Send a message e 00 • • 0 •• • • • • •• • • • • • • • •• • • • • •• KXWRIT

"Global" Communication System (Man page)

KXBROD
KXCHAN

KXCOMB
KXCONC
KXSYNC
KXVCHA

Interprocessor broadcast. . •. • • • • •.• • . .·0 • • • 0 • • • • •• KXBROD

Synchronous multi-node data exchange. • • • • • • • • • • • •• KXCHAN

Apply user supplied operation to distributed dataset • • • •• KXCOMB

Transfer distributed data to local memory .•••••••••.• KXCONC

. Synchronize processors ••. oe e'••• eo ••••••••••• o. KXSYNC

Synchronous multi...node vector exchange ••• e·$ 0 0 • 0 0 • 0 KXCHAN

Asynchronous·CommutlicationSysfem

KXHAND

KXRECV

KXSEND

Install asynchronous message handler «l .$ O • ., .... 0 " • GO." KXHAND

Read a message - non-blocking •••• ,.. • 0 • O. coo •••• 0 0 KXRECV

Send a message • non-blocking • 1\ ••••••••••• 0 ••• 0 •• KXSEND

Hardware Dependent Communication System (Man page)

KXCHON
KXCHOF

KXCHRD
KXCHWT

Re-enable Express processing on a channel ••.•••.•••••• KXCH

Disable Express processing on a channel .....•• 0 •• 0 ••.•• KXCH

Read bytes from disabled channel .••...•........ 0 •••• KXCH

. Write bytes to disabled channel ••••.••••••.•••••••••• KXCH

Decomposition Tools (Man page)

KXGDBC",

'KXGDCO

,<~.Define boundary conditions on user domain .... It • •• • •• KXGRID

< De~ennine position in user domain. • • . . . . . . . . . . . • .. KXGRID



KXGDIN

KXGDNO

KXGDPR

KXGDSI

KXGDSP

KXPARA

Initialize decomposition system. • • • • • • • • • • • • • . • • •. KXGRID

Determine communication parameters from user domain •• KXGRID

Map user domain coordinates to processor number. • • • •• KXGRID

Distribute data among processors. • • • • • • • • • • • • • • • •• KXGRID

Distribute processors on user domain ••••••••••••••• KXGRID

Determine ron-time configuration ••••••••••••••••• KXPARA

Customization (Man page)

KXCUST

I/O

KABORT
KMULTI

KSINGL

ISASYN

ISMULT
KMREAD

KMRD2D
KMWRIT
KMWT2D
KCBXSY

Debugging

KABORT
KXBREA
KXPAUS

Modify Express system parameters. • • • • • • • • • • • • • • • • •KXCU'S T

(Man page)

Immediately terminate node program •••••••••••••••• KABORT

Switch file I/O mode to "multi" ••••••••.••••.•.•••. KMULTI

Switch file I/O mode to "single" •••••.•..•••••••••• KMULTI

Inquire [tIe I/O mode • • • • • • • • • • • • • • • . • • • • • • • • • • •KMULTI

Inquire ftIe I/O mode • • • • • • • • • • • • • • • . • • • • . . • • • • •KMULTI

Read independent data into nodes •••••••••••••••••• KMREAD

Read two-dimensional data set into nodes •••••••••••.• KMRD2D

Write independent data from node • • • • . • • • • • • • • • • • • •KMWRI T

Write two-dimensional data set into nodes ••••••••••••• KMRD2D

Assign ovemll synchronous/asynchronous mode ••.•.•••• KCBXSY

(Man page)

Immediately terminate node program •••••••••••••••• KABORT

Halt program at breakpoint • • • • • • • • • • • . • • • .• • • • . • • •KXBREA

Load node program "stopped" at a breakpoint ••••.••••• KXPAUS

Multi-Host systems (Man page)

KCONND

KDSPND

KXACCS

KXSHAR

MuItitasking

KEXEC

Indicate an alternative host for system calls ...••••.•••• KCONND

Indicate an alternative host for graphical output •••.••••• KDSPND

Override access to all nodes in system ••••••••• _.•....••• KXACCS

Share a group of nodes with another host program •.•••.•• KXSHAR

(Man page)

Overlay a node program with another ..•••.•...•.••••• KEXEC

241



KXHAND
KXSEMA
KXSEMF
KXSEMS
KXSEMW
KXSLEE

Graphics~'

Install asynchrononsmessage handler. • • • • . .• •.• • •• '. •• KXHAND

, -~ . Allocate and initialize a semaphore •• 0 •••••••• 0 •••• 0 • KXSEM

Deallocate a semaphore structure •••••••••••••••.•••• KXSEM

, Exit a critic-al section and "signal" any waiting processes •••• KXSEM

Attempt to enter a criticalsection, sleeping if necessary • • 00 .KXSEM

Suspend process for indicated time «> •• '•• 0 •• «> co. 08 (9 «> • «> KXSLEE

(Man page)

, < , ,Set line style o. 0 QQ •••••••••••• Q KLlNEM

i ., Move current position without drawing • •• • eO " • • • • • • 0 • • KMOVE

KAERAS
. KAGIN

KAOPEN
(KASEND ,.

KASPEC .
KBOX
KCLOSP. ,

-KeOLOR, , <

KCONT
KCNTOR
KDISND
KDOTEX
KENDCL
KENDPA
KERASE

KGIN
KGREYS
KINITP
KLABEL

':KLINEM

KMARKE

KM0VE

-KO.PENP

KORTHO

KPANLP

KPLOTH
KPOLGN
KPXGOP

KPXSOP

KRAINB
I{SSNO'P

Erase display asynchronously ••••••••••••••••••.•• KERASE

, Perform asynchronous graphical input operations •• • • ••.• • • •K'GIN

Initialize Plotixasyncmonously • • . • 0 • • • • • • • • • • 0 • • • • KOPENP

Flush graphical data to display surface asynchronously ••• (» KSENDP

Inquire device aspect ratio •••••••••••••• 0 ••0 •••• 0 • KASPEC

< Draw, and optionally fill, rectangle. e e • 0 «> •• 0 • • • • CD • • • • • • KBOX

Tenninate Plotix • G e co c> • 0 • I') ••• 0 «> CD (> • 0 ••• CD • CD G «> • CD 0 KCLOSP

Set line drawing color 0.0.," 0 0 •• 0 0 CD CD ., •••••••• 0 It • CD KeOLOR

· ; Draw,visible line in current color •• '•• ~ •••• 0 ••••••••• CD KCONT

Praw a contour plot ofa user supplied function ••• 0 • • • • • KCNTOR
Indicate an alternative hosffor graphical output ~ •• 0 ••••• KDISND

. Draw and justify text •••••••• 0- 0-', •• 0 • O •• 0 •• 0 • CD CD • • • KDOTEX

Disableclipping •• 0 0 ••••• 0 ••• 0 ••• 0 • t ~ •••• 0 ••••• KCLIP
Close and optionally fill polygon • o' 0 .... ~ 0 •• 0 •• (». 0 • 0 • KPANEL

Era$e display surface •• ., ••••••• CD ~ ~ ••• ~. " •• 0 ••••• KERASE

Perform "locator" input •• 0 •••••• f) •••••• 0 •••••••••• KGIN

Modify color look-up table, create greyscale •• eo •••• 0 • e KGREYS

Begin polygon •••••••••• 0 •••• 0 0 •••• 0 CD •••• 0 • 0 c KPANEL

Draw·text ~ •• 0 ~ •••••••••••••••••••• 0 • 0 ••• 0 •• KLABEL

, Draw marker symbol • • • 0 • 0 • • •• • ~ • 0 0 • e 0 41 0 • • • • • CD • KMARKE

" Initialize Plotix 0 • • • .. • • • • • • • •• • 0 ~ • 0 • e $ 0 • • •. 0 • • • .. K0PENP

riefine user coordinate range 0 ••• 0 ••••• 0 •••• 0 ••••• 0 KSPACE

Define point in polygon • 0 ••••••• 0 •••• e _. 0 •• 0 ••••• KPANEL

Monitor graphics buffer usage •••• 0 ••••• 0 ••• 0 •••• 0 • KPLOTH

Draw polygon ..•••.••••••.•••• .. 0 •••• 0 ••••• 0 KPANEL

Inquire device capability o. ~ 0 • O. • • 0 0 • 0 " • 0 • • • • • • 0 • KPLXOP

Set hardware-dependent graphics option •• 0 0 • 0 •••• 00 •• KPLXOP

Modify color look-up table, create HSV table e •••••••••• KRAINB

Flu'sli'griiphical data to display surface synchronously •••• 0 KSENDP



KSETCL
KSETVP
KSPACE
KVPORT

KUSEND

Enable clipping against rectangular region •••••••••..••• KCLIP

Switch between "windows" ••••.••••••••••••••.•• KSETVP

. Define user coordinate range • • • • • • • • • • • • • • • • • • . . • • KSPACE

Define a region of the display as a "window" •••••••.••• KVPORT

Flush independent data to display synchronously ••••.•• G KSENDP

Performance Analysis (Man page)

KCPEND
KCPINQ

;.KCPON
KCPOFF
KCPCP
KePELT
KEPADD
KEPEND
KEPINI
KEPINQ
KEPLAB
KEPON
KEPOFF
KEPTOG

KEPTGI
KEPCP
KEPELT
KPROFI
KXPEND
KXPINQ
KXPON
KXPOFF
KXPCP
KXPELT

Tenninate communication profiler and dump data •••• ~ .•• KCPINQ

Inquire setting of runtime'-me' switch •••.•••••••.••• Kep INQ

Enable communication profiler ••••••••.•• G •••••••• KCPROF

Disable communication profiler •• Q ••••••• ~ •••••••••• KCPROF

Receive communication profile data in host processor •.•••• KCPCP

Send communication profile data to host processor ••••.••• KCPCP

Indicate a "user" event ••••••••.•••••.•••••.••••• KEPROF

Tenninate event profiler and dump data • e •••••••••••• KEP INQ

Initialize memory for event profiler •.••• e •••••••••• ~ KEPROF

Inquire setting of runtime'-me' switch •••.••••••••••• KEP INQ

Assign a label to a user specified "event" ••.•••••••..•• KEPROF

Enable event profiler •••••••••••••••.•••••••.••• KEPROF

Disabl~event profiler ••••••••••••••••••••••.••• KEPROF

Enable/disable timing for a region of source code ••••.••• KEPTOG

Initialize memory for a "toggle" ••••••••••••••••.••• KEPTOG

Receive event profile data in host processor ••••••••••••• KEPCP

Send event profIle data to host processor ••.••••.••..•••• KEPCP

Assign memory for execution profI1er ••••.••••••.•••• KPROFI

Tenninate execution profiler and dump data ••••••••.•.• KXP INQ

Inquire setting of runtime '-mx' switch ••••.~ .' 0 •••••••• K,XP INQ

Enable execution profI1er •••••••.••••••• <9.•••••••• KXPROF

Disable execution profiler •••••••••• G ••• :••••••••• e KXPROF

Receive exeCution profile data in host processor •••••.•••• KXPCP

Send execution profile data to host processor • ~ •••••.•••• KXPCP

Host Interface Utilities (Man page)

KCALHO
KGETHO
KRETHO
KSTRHO

Call host routine from Cubix node program •• 0 ••••••••• KCALHO

Inquire host capabilities • • ~ • • • • • • . • • • •.: e • • •••••• e KGE THO

Return from host routine in Cubix node programs •.•....• KCALHO

Start host routine in Cubix node program •••' ••••••..•.• KCALHO

243



Utility Routines (Man page)

KXSWAB
KXSWAD
KXSWAW
KXTICK
KXTlME

Reverse bytes in 16-bit quantities •••••••.••••••••••• KXSWAP

Reverse bytes in 64-bit quantities ••••••••••.•••••••• KXSWAP

Reverse bytes in 32-bit quantities •••••••••••••••••• e KXSWAP

Measure time in hardware "ticks" • lit • • • • •• • e • • • • • • 0 0 KXT IME
Measure time in microseconds. • . • • • • • • • • • •• • • • • •• .KXTIME



245



Library Availability

), ."

" .•f<• .:;

:... ,The c0t!esp~~dencebetween C and FOR­
",TRA~ li1?:~~ri~s and the synchronization

properties~;~f'Express functions .



1 Correspondence between C and FORTRAN

The fIrst two columns ofthe following table list the equivalent C and FORTRAN routines. A blaqk
entty indicates that no such routine exists.

2 Synchronization Rules

The third column of the table indicates the synchronization modes associated with each function.
The various codes are:

a These routines may be called with no regard to any synchronization constraints. ­
any node may make such a call at any time.

Is, all These routines must be made "loosely synchronously" in all processors. When a
node calls one of these routines it will halt until all other nodes have called the same
routine. Arguments mayor may not be different in each node according to the
particular function involved.

Is, group These routines must be made "loosely synchronously" in all participating
processors. Typically this means that two processors will be involved in some
transaction in which case the first to arrive will halt until the others arrive at the
synchronization point.

mode The synchronization requirements of these calls depend on the global
synchronization state of the system, as modified with the syncmode or KCBXSY
system calls. If the global synchronization mode is "on" (the default) then these
routines behave as though their synchronization constraint were "Is, all". If the
global state is "off' they behave as "a".

3 Libraries and Programming Models

The last column in the table indicates the libraries and/or programming model combinations which
support the named routines. These latter are coded as follows:

h Routine is available to programs running on the host processor, linked with the
Express library.

n Available to programs running on the parallel computer nodes in the "Host-Node"
programming style. Such programs should NOT be linked with either the Cubix or
Plotix libraries.

c These routines are part of the Cubix I/O library and may only be linked with
programs using the Cubix programming model. Usually a compiler switch is
available to indicate this programming model anq. th~ ass<?Ciated libr¢eso

p These routines are to be found in the Plotix libiary~ whichc,an'be liDkedto programs
running under the Cubix programming model. In sam~' cases a compiler switch is
available which links both the Cubix and Plotix 11braP~s. If this is not so on your
system the Cubix switch should be used· supple~ented·.~,.by .tl.t~ pathnatrte of the
Plotix library.

247



4·, NOTES

(1)

(ii)

(iii)

Wh~le no corre.sponding routine is available in FORTRAN the effect can be
.. , "achieved by modifying the parameters to an OPEN statement See the section on

r' t~~open fue modes" in Ute Cubix chapter for more details.

'These calls rnay be made asynchronously but they have no subsequent effect on the
? obj~ctsthey -accesso The graphical open functions, for example, may be made
asynchronously but the mode in which data is flushed to the output device is still

'=detennined 'by the flushing function used. Similarly a file opened -with one of the
'asynchronous'~open" function,sstilillas as its default the"singl~' access mode.

·~neSe fune'uoDs ~anbe' ,ealledasyncbronoDsly be will usually be used-in a mCJde
·:~ar to "J8, group". Once invoked they leave the affected nodes in a state which
"_~Ulfalmosteertainly f~nction in a an unpredictable manner until the corresponding
action has been petfo~edon other-members of the group.

(, These functions can be called asynchronously but should be used with extreme care
·when sodoingo Because of their nature -it is easy to introduce "race conditions"
<whep. nsingthese routines asynchronously" Inmost c,ases it is easy (and safer) to
'force a synchronization after using one of these routines.

~e, synchronization behavior of these routines depends upon the "mode" of the
"as~iated file. For "singl" and "multi" mode files the constraint is "Is, group"
-whileitbecoIDes "a" for 'toasync"mooefiles..



c

ex swab
ex swad
ex swaw

abort
aerase
aexecve
agin
aopen
aopenpl
asendplot
aspect
box
callhost
closepl
color
console node
cont
contour
cprof_end
cprof_inq.
cprof_off
cprof_on
cprofcp
cprofelt
display_node
dotext
endpanel
eprof_add
eprof_end
eprof_init
eprof_inq
eprof_label
eprof_off
eprof_on
eprof_toggle
eprof_toginit
eprofcp
eprofelt
erase
exaccess
exargldl
exargldv

FORTRAN

KXEXIT
KXINIT
KXSWAB
KXSWAD
KXSWAW
KABORT
KAERAS
KAEXEC
KAGIN
(i)
KAOPEN
KASEND
KASPEC
KBOX
KCALHO
KCLOSP
KeOLOR
KCONND
KCONT
KeNTOR
KCPEND
KCPINQ
KCPOFF
KCPON
KCPCP
KCPELT
KDISND
KDOTEX
KENDP
KEPADD
KEPEND
KEPINI
KEPINQ
KEPLAB
KEPOFF
KEPON
KEPTOG
KEPTGI
KEPCP
KEPELT
KERASE
KXACCS

Synchronization

IS,all
Is~ all ­
a'
a
a
a
a,
a
a
at (ii) .
a, ~(ii) ,

a~

a,
a,
mode
Is, all
a
a, (ii)
a
Is, all
Is, all
mode
a
a

Is, all
a, (ii)
a
a
a
Is, all
Is, all
mode
a
a
a
a
a

Is, all
Is, all

,.« ,.

Library

n
h,n,c,p
h,n,c,p

. h,n,c,p
h,n,c,p
c,p

;P
, ,~c,p

,p
;'c,p
p
p

'p
",'p
c,p
p
p

,.c,p
'p
p
c,p
c,p
n,c,p
n,c,p
h
n
p
p
p
n,c,p
c,p
n,c,p
c,p
n,ctp
n,c,p
n,c,p
n,c,p
n,c,p
h
n
p
h
h
h

. ", .~. ". .- ,. " .t



·c

exb,~eak

~l{b~foadcast
,.j·~x.c~ange

~~'cJlanoff

~~ctJ.anon

~exchanrd

.. ~~~hanwt

. exc~lose
n e2{C:9mbine

ex
w
C

F

9ncat
e~c.~st·om
execve
e~e'hvld

"

e~e'~ct·ype

eKg~idbc

excj~t: i d:coord
exg~idlinit

exqtidnod;E!
eX9..~id~roc
~Xqfici~iZ~
exgridsplit
exhandle
exinctype
exload·
e~.~9adl

e~.~:9ad·,le

eXl"oad;v
exl'oadve

""eXlllain
exopen:
ex;p~raXn
e~p>~us{e

t.,:, ...... i
e1t.pJ-d .
explQad
exi~ad:
exread~fd

exrece'ive
exs.,~malloc

exsemfree
exs~ms~ig

exs.~mw:ait
e~-,s:~nd·

e~~¢,hare

elC's'leep

.. J I::: FORTRAN

KXBREA
KXBROD
KXCHAN
KXCHOF
KXCHON
KXCHRD
KXCHWT
KXCLOS
KXCOMB
,~CONC

'KXCUST

KEXEC

.iXEXCT
~X,GDBC

"KXGDCO
KXGDIN
~XGD»O

KXGDPR
KXGOSI
KXGDSP
KXHAND
KXINCT
K~LOAD

i\XMAIN
!<XOPEN
J<XPARA
'R:XPAOS

li' 1kXPID

kXPLOA
~';~XREAD
.~ ~:

~XRECV
i<XSEMI

~XSEMS

RXSEMW
~XSEND

KXSHAR
. "·~;'KXSLEE

Synchronization

a
IS,grou.p
Is, grou,p
a, (iii)
a, (iii)
Is, group
Is, grou.p

Is,'group
Is, group

mode

a, (iv)
a
a
a
a
a
a
a
.a,(iv)
a,(iv)

a

a

a
a
a
a
a
a

a

Library

n,c,p
h,n,c,p
h,n,.c,p

. n,c,p
n,c,p
n,C,p
"tC,p
h
n,c,p
n,c,p
h
c,p
h
h,n,c,p
h,n,c,p
h,n,c,p
h,n,c,p
h,n,c,p
h,n,c,p
h.,n,c.p
h,n,c'.p

r;;n~c,p)

h,o,o,p
h

"n
k~~ h

h
h
h
h
h,n,c,p
h
'h

'h
h,n,c,p
h
n,c,p
n,c,p
n,C,p
n,c,p
n,c,p
n,c,p
'h
n,c,p

~"'l':t:'1<. ~.I/;~~~~ ........, ,.,..,; f~ 44;\.1' t<~ol:"~' 't'>olJP'''fl;,.. ·;••tI'~~_..o::!II!ai!'.P,:.t'''~#··~of~..,.:.t~·,~.,.~.,"¥.iooi.~.~'''~.:,j\.J\·.1~''.~dl,":j:-;w,.,..
,::.':.·::.,.~,·'.c,_·



c FORTRAN Synchronization ~ibrary

exstart
exsync
extest
extick
extime
exvchange
exvread
exvwrite
exwrite
exwritefd
fasync
fmulti
forder
fsingl
gethost
getplxopt
getpoint
gin
greyscale
initlevel
initpanel
isasync
ismulti
label
lin~mo~
malloc~ avail
malloe_debug
malloe_print
malloe_verify
marker
move
mread
mread2d
mwrite
mwrite2d
openpl
ortho_space
panelpoint
plothwm
polgn
profil
rainbow
ramfopen
rethost

KXSTAR
KXSYNC
KXTEST
KXTIME
KXTlME
KXVCHA
KXVREA
KXVWRI
KXWRIT

KASYNC
KMULTI
KORDER
KSINGL
KGETHO
KPXGOP
KGETPT
KGIN
KGREYS
KINITL
KINITP
KISASY
KISMUL
KLABEL
KLINEM

KMARKE

KMOVE
KMREAD
KMRD2D

KMWRIT
KMWT2D
KOPENP
KORTHO
KPANLP
KPLOTH
KPOLGN
KPROFI
KRAINB
(i)
KRETHO

Is, all
.s
a
a
Is, group
a
a
's

.' IS,all
IS,all
a, (ii)
l~, all
mode
mode
a

"mode;
a
a
a
a
a
a
a
a
a
Is, group (v)
a
~

> ••a
J'I"s, all

."'r'f~ IIvS,a
'I ':: . II. $,a

'.~_.: ,:I~,all

mode;
,a
a
a
a
a
a
a

~ mode

h



c

'sendplot
setclip
setplxopt
setvbuf
space
starthost
syncmode
usendplot
vport
xprof.....end
xprof_inq
xp,ro.·•••·f .off-xprof.-on
xprofcp
xp.rofelt

FO:RTRAN

KSENDP
KSETCL
KPXSOP

KSPACE
KSTRHO
KCBXS·Y
KUSEND
KVPORT
KXPEND
KXPINQ
KXPOFF
KXPON
KXPCP
KXPELT

Synchronization

mode
a
mode
a, (ii)
a
mode
a,(ii)
Is, aU
a
Is, aU
mode
a
a

Is, all

Library

p
p
p
C,p
P
c,p
c,p
p
p
c,p
c,p
n,C,p
n,c,p
h
n





'f"
\.;

,-
... '.,'

.,'" ") -', , , .
...'.,.. ............

f C ...

, (!

.. ,)fL:.

.....;:..,

An alphabeticalJl~ting of routines, .
variables, commands and macros

f' ''''',' ",
~ "",.1"' 'I



Index to Routines

Index to Routines

. *.;

This illdex contains an alphabetical list of the various subroutines, macros and variables which.maY
be of'use to Express programs. Each routine has an indication of the page on which its defin~tio,

and arguments can be found. .:
,f,

A
acctoo17

c
cnftoo19
ctooll0
cubix 12

E
etool15
examples

system initialization 185
excustom16
exdump 18
exinit 21
exreset 23
exsend214
exstat 24

I
ISASY 131
ISMULT 131

K
KABORT 63
lq\ERAS 105
mXEC 107

. KAGIN 113
KAOPEN 136
KASEND 148
KASPEC 64

KASYNC 131
KBOx66
KCALHO 68
KCBXSY 73
KCNTOR 77
KCOLOR80
KCONND 82
KCONT 84
KCPCP 85
KCPELT 85
KCPEND 87
KCPINQ 87
KCPOFF89
KCPON 89
KDISND 91
KDOTEX93
KENDCL 75
KENDPA 138
KEPADD 99
KEPCP 95
KEPELT 95
KEPEND 97
KEPINI99
KEPINQ97
KEP,LAB 99

- ~KEtP~OFF 99
KEPON99

,'KEPT·GI 102,' ,
KEPTOG 102
KERASE 105
KEXEC 107
KFLUSH 109
KGETHO 111

2SS



~:foROlla_,

KGETPT77
KGIN 113
KGREYS·ll.S
KINITL7'7
KINITP 138
KLABEL 117
KLINEM 119
J<MAlU(E 121
KMOVE 123
KMRD2D 124
KMREAD 129
~MUL'TI 131
KMWRIT 134
KMWT2D 124
KOPENP 136
KORDER131
KORTHO ISO
KPANLP 13,8
KPLOTH 140
KPOLGN 138
KPROFII43:
J~PXGOP 141
Kl?XSOP 141
KRAI,NB 145­
KREAD 147
KRETH068
KSENDP 148
KSETCL75
KSETVP 153
KSINGL 131
KSPACE ISO
KSTRH068
KUSEND'l48
IWPORT IS3
KWRITE 147
:KXAeeS 156
KXBREA 157
KXBROD 158
KXCHAN 163
KXCHOF 160
KXCHON 160
KXCHRD 160
KX,CHWT 160
KXCLOS167
KXCOMB 169
KXCONC 173

KXCUST176
KXEXCT' '231
KXGDBC 178
KXGDCO 118
KXGDIN 178
KXGDNO 178
KXGDPR 178
KXGDSI178
KXGDSP 178
KXHAND 182
KXINCT 231
KXINIT 185
KXLOAD 187
KXMAIN222
KXOPEN 189
KXPARA191
KXPAUS 193
KXPCP 195
KXPELT 195
KXPEND 197
KXPID 217
KXPINQ 197
KXPLOA 199
KXp·OFF,··,202
KXPON202
KXREAD:·"g04
KXREcv207
KXSEMI210
KXSEMS 210
KXSEMW210
KXSHAR217
KXSLEE 219
KXSTAR222
KXSWAB224

KXSWAD 224
KXSWAW224
KXSYNC 227
KXTEST 228

KXTICK230
KXTIME 230
KXVCHA 163
KXVREA233
KXVWRI233
KXWRIT 235

-; •.•iir-.'

.. ...",~ :
.' .... : .. I .. r



N
ndb25

s
system initialization 185

T
tee 39
tec3143
tfc47

x
xtoolSO

~" r
., J

'\

:' ~~..... .
~ ..-'.

, .. ~ ...... j-.
,; :~t ~~ ~:- ~ .

"I ...'

~" ~ .,-., .. -~ ,-" " ~;

J... ~,. > }?;. '·.-~~,/1

, .

.i >'. ,:••_ •••••

.. ,. r
.'~'''' r-- .... # ,.. t '. o' ..

",' ,. i-l

' ... ," ., ,r.;"

'\. '~ ....... : ••J~ ,1 _~ "'.~

'~'''',

I..• , ;
'!' • 'l , .ii, ~ )

.......... j .....



"",'~ . . .... " ~ ~

.. ~ .'f'~; '!' '.'

~ .~~:~ 'I ,:,"

' .. , .

........ ,. ..~ ~ ;

~. " ...

'; I···n···de···.·x·.·····,.\··'. . . . ... . .. .,"~ ,

~ .~ ...
J~. ~ i

\. , ~ .' r

,. '".

,·;,t...

General inQ.e~,tc;l~xpr9ss and therex­
~mples frQrn th~ text

,.. " .. ~) ~.

", "J,

.... I/"._\.OQOI ..... I..,.. .... '.·~"" •. ..... ....,. .. ...- ..... aj:!t ••••I0 __ .......,. ... ..,,,

": ".'
i • .;. .•. , ...



General Index

This index is the general reference for all the topics discussed in this manual. It lists 'not only ;ute
various functions/routines but also the examples and other points of note. Index entries referrjdg ~

solely to subroutines have their page numbers in typewriter font: exwrite 1 7 8, for example. ~; ~

errors
asynchronous runtime 63

event,driven profiler 15, 95, 97, 99
event driven profiling 102

D

3LC43
3L FORTRAN 47,
Logical Systems C 39

configuration 9, 16, 82, 176
contour plots 77
coordinate systems 150, 153
customization 16, 176

debugging 193
assembly code 35-37
breakpoints 157
interactive 25
post mortem 18
source code 27-35,

decomposition 124, 178
disk fanns 82
domain decomposition 124, 178
domains 53"
DONTCARE 204
double buffering 207, 214
downloading
,,(.tvt4a~ }58 ',:., _ "., ' ~

.' . pTogtamsl 187, 199, <•• ':.q.. ·1., ....

\ . ~ ~
...,; \;' .... ~;"tt..... "..~.. ,,'

accounting 7
argc, argv 187
arguments 187

ordering 54
type 54

aspect ratio 64
asynchronous I/O 73, 131
automatic decomposition 178

B

c

binary file I/O 147
breakpoints 157, 193
buffering

graphics 140, 148
byte swapping 224

A

clear display surface 105
clipping 75
color 80

color maps 115, 145
communication·i "a_ <

: basic 53-54, 204, 233, 235
global 158, 163, 169, 173
hardware dependent 160
overlapped, asynchronous 214

,:1 communication profiler 10, 85, 87, 89
, co~pilers

259



Generalladex
';.,.~:J i)nL : f~;, ~;,~ ~', :t. r

- ~. v.
n

, a .... ~ .. s:~ ,

. . ~

" .Ii····;
.,' }t

'.,~ it

. ':' .:': ~ , It

,. ..:.'.:~

global block 227 :~f>Li,~

globalcommu.. ni.c..an...·ou ~$~;~ J;63, 169,173.,427
, '"".I .. "". "

global memory 210. . '.-./ ~ ,
global operations 1~9, {73'
graphical input 113' ,: ~;

graphics
buffering 140, 148 *.;_

clipping7S :.;::, ~,.,

color 145
coordinate systentS"-15()~ ~153
devicedep~l)den~ies 141
initialization" 136t ;':~<.·~L.. ~~.

~. ."" .. p. : '. (I"r

F
~e.!f>~.Jl~!~l.q~
file server 12, 82 .
flushing

graphics 148
flushing ftIes 109

multiple hosts 84 ••. ,'
multitasking 101, 182, 219
parallel I/O 109, 124, 129, 132, ,1:34
performance

evaluation
xtool195

performance evaluation 102
cleol 85., 87,'89,\ r"-~, 1 ,

etool95, 97,10ti"',~-'.~·'

xtoo1143, 197,20Z:,'
preparation 'for debugging 193
processor (de)aUocatiQn 161, 187, 189,

199,222 . ", :
processor control 222 ~

processor sharing 21,7: .
program loading 191;~,~,

runtime co.nfiguration 176
runtime errors 63, 140
shared memory 210
synchronizatipn 277~ .728
user hosrtoUtlheS"69.l ,.

~ ,- ( I

~ildcard prp~J\g:ZOS .
wildcards 228 1 ~.;.'jD1}:

execution profiler;:50, .143+" 195, 197.,202:

G

examples ,",' .' .' ;
• . . t ~. ..',. :~: ;'; ~.

argc'~ atgv .19~·'..: ,.l ~" >~. ',P'r' ~". t) ~: -t.... ,:";' :"':~
asynchronous:pto~~~~:2Q7~"2J4M

~'~'."~.'

asynchronous systein caiis'73'
basiccotnnlunication 205, 233,235
broadcast 1S8

'. ."','byte swapping 225 ' ~, ;., ;': .
QOm11lunicating arrays 233 '; .~, "
communication ~. ,

hardware dependent 16-( ,~:. J
da.~base:69 ~~ .. '" . ;~ ~ ',;' , ..,~ .
decomposition.191 ' 1, :. .

'~#~5,~ .~display processing 179
DONTCAR.B .• 228
double buffering 207,214
exgrid 1~4,; 134,:1~S8:,~164'i" ' i~j : ',!~~,

flushing files l09f ~. \,tf ~. ,:'•.> :~~-.(~:,

global bloek227, 228 ~..{.
global communication 164., 169, 11"3 I, ';'

glo~alm~\l~170 .!~. t· .~ &;' ":: ~l <

global memory lS~~,.,,·.: ;.;': ,'. ~. Jr.,,~

~s~~$,~l~J .:-;,
global sum 169 .~!Q
global to local data tr~sfQnnatioll·113

graphics
aspect ratio· 64 , .~,:.:.~" tf v I._ '~"

buffer conttoll40 (. ~ ~ _ '.
clipping7S' . -;'~'< ,',~;: .
color 80,,115, 145.; hi; nf . ,":~,'_ ~,~',.r.:,

." ... : ;.. :' " .:. (. ..... ' j.u.. - ~ ";"., ., ...

contouring.·''. 18
~

coordinate systems 150,: !5?i
erase 105 .~ ..
flushin,;~~~4~ ....~ ..' .. ~:. :tt;'>';L,;:' :·;L,.

hardwafedependencie:~J~l,' '. ,':, -
initialization 136-

,~ .#.

input 113'
line drawing 84, 119, 12.3 ... , .
markers 121
multiple hosts 91, 93
polygons 66, 138
text 93, 111, 149

hardware dependencies 141
host capabilities 111 ( .' ~,;.,

• .. ••__.ol<.~} • • f ::. .
I/O modes 13 ~ (~ ~ '. .",
imageanaly.sis l~~ '. . ., ~:,. X ~~.. .. .

. y ~-~ ~ 1."1'.~ .,~

message types 2(j5~22'8~,'2'?1 ~ '. "~~. ~, ~
~ ....

.~ ',' ... "- : :-'" - - ". ~, ' - ," ,- , '.':' ,'" - ,... ' ',' - ,- . ' ':' 1

f~". "'~f""" ~1"""U-"""'__'''~...l. '";'h d' \W .. ~ ......... $0 ~.;.. ;;.~ ..... ·f ~.,,-.

~2§O.
" ~\I....



1'" ~.-......' .'O«f:,""''' :-.. €'.. ",' -~Genenli Index
....1 .. ~ _,.~ ..,.,~ ~~.~-

i' .' ...•

'. ,t~-·· ..........}o

perfonnance , ., '. ..
analysis 10 15 5(i i \·;~(lJ;~U'; ,, '. ,.. '..ctoo185, 89: ~ ~.~.:, j. \ ·-~~·,;·:rj~.·2

etool99 · [It.l;

evaluation
ctool87
etool 95, 97
xtool 143, 195', 197~~202: ;

optimization 16, 176, ..'~, !~:. '

performance analYSl~~102-;
polygons 66 ·'::~, ....1';·

process ID 217 ;.1"
••I~ ~ r ...

processor. .."", - '. .. '
(de)allocation 57, 167:~t89:'rt;,;~~L~, .
controi '222~,li ;(\·.;}l,~~·;·': ~ . .f

synchronization 227 i ',':. E1 L~ ..'" :;. ~ i;, ": ;',
"... ; ; 'f ~ / ~'.program .... ,

startup 222 1

' < . ,

programming models 53 ;. ;~.

p ~.

overlapped commuiiicilti(;)n~16~; " ':,:
overlaying programs 107 '~. ','ft'

7

'," :}'~

NOCARES9
node processes 24
nodes .40 .~./ .:'

a11ocati~n 18~: '~, j., ~ .. '.

non-blocking communicati~~1.~.Q7 ;~4~l4

NONODE 60 'j. i :.:" ..~,)

NORDER 60 r~ \, '.'.~
'"1

multitasking 56, 107, 182,,2,10, ~19,
multi~ sy,~ 24~ l~6;:~~7'~'':''f ,':!:
mutual e1tc!uslor{'21O' ~. ".,. .~..~ ~c ~

-. ;. ,~.r .', ,~~ '\. ~'.~ ;,;' ,in. '~~, .

, J'

, ... ,...... "
,; .~

L

(

hardware communication 160
hardware reset 23 '~'::-

hardware specifi¢;'~phics 141
help';':

ndb 26 -'.,',~

host capabilities Ill,
host programs <

interface to cub~ programs 68
Hosdesspro~ilg 12 ,

~

H

110 58-59 .I·P'!:.

non-FORTRAN- t>eha~lor~':i 09
parallel 124, 1~9" 't34~,'.:' J' ':,:: .

unfonnatted, reliable f47~
110 modes ;.";;"">

asynchronous 73
IALNOD60
IALPRC60
HiOST60
initializing programs 59
installation 16
interrupt handling 182

line drawing 84, 123
polygons 138 ~,..-:J :.

symbols 121 ~

text 117
graphics servers 91

I

libmries 53
linestyle 119, "

··ltiad 'individual node~ 199 ,, ' :,~.'.~ U .'. .:

load program "stopp~" 19~1' "'''.''~.

loading programs 187, -199 .

M R
message types 54, 204

process specific 231
restrictions 20~,..236

messages 54 ;~;;.t
. ,. ~

lDultiple host prognimSi1S6, 2.~,7'·

multiple hosts 9, 23, 82, 91,'231~
't:

RAM ftIes 18 ',' ~"'. '.' ',-t

read message 204 ':' ,:> '.f

rebooting Express 21 .. ,.~, ;"', .:~;

rectangle 66 ~' , .,. . ., ~:.; ::; -, ,.....
mntime contig.uratio~ f91~, """t' '.'

runtime pa.raIDeterS 19f .'. ~ '.'

., ~Aa''\O'''.''_~~'' ._ ,. ; ..-,._ , , -.., .ft~.,· ,., " ~ .. ~ {>~~..,.,. ,..~.,. _ •. ' -.w' o/.",w ..,,""'.,· • • •



$'-
sedftpftOles210

.' '-;219,
'send"me.ssagc'235.ared P1emo~,21~O·,.: ; .."
sharinl:proc·CSsef 'gioups.·1S6,.'!4·V
·.tistic~.24', 102

6 219

:~C,60

'lSOST60

'><:\'~:
:):;~: ,'::'~<6Il«<':
~$t.eDfvatia"Ie$>~9

T
,lime.:~~nt2~Q···

\it)
wildcards 54, 204, 228, 231

'X'
xpOss Coltiinbh·jjl0C.:S9~;·~·


	Table of Contents
	Chapter 1: System Commands - Tools providing services in support of Express applications
	1 Executing Express commands in ''non-windowing'' operating sytems
	2 Executing Express commands in ''windowing'' systems
	3 Specifying numeric data in switches
	4 Manual Page Layout
	5 Tools
	acctool - Analyze parallel computer usage under Express
	cnftool - Configure Transputer systems
	ctool - Analyze Communication ProfIle
	cubix - Host slave process for node programs
	etool - Analyze Event Profile
	excustom - Reconfigure Express.
	exdump - Retrieve data from node RAM files
	exinit - Reboot and reload Express kernel
	exreset - Reset a group of nodes
	exstat - Display node usage information
	ndb - Symbolic, source and assembly level debugger for parallel computers
	1 Help
	2 Sets
	3 Displaying Source Code
	4 Stack Operations
	5 Displaying data
	6 Expressions
	7 The "show" command
	8 Arrays
	9 High level job control
	10 Miscellaneous commands
	11 The ndbenv command
	12 Assembly Level Debugging
	13 Assembly Level Job Control
	14 Assembly Level System control

	tcc - Compile and link Express C and C++ programs for Transputers
	tcc3l - Compile and link Express C Transputer node programs
	tfc - Compile and link Express FORTRAN Transputer node programs
	xtool - Analyze Execution Profile


	Chapter 2: FORTRAN runtime library - Library routines available to Express programs written in FORTRAN
	1 High Level Communication System
	2 Hardware Dependent Communication System
	3 Synchronization
	4 Decontpositlon Tools
	5 Multitasking Support
	6 Processor Allocation and Control
	7 I/O Services
	8 Graphics
	9 Standard variables and the /XPRESS/ common block
	10 Manual Page Layout
	11 Library routines
	KABORT - Immediately abort program
	KASPEC - Inquire device aspect ratio
	KBOX - Draw and fill rectangles
	KCALHO - Interface to user host routines from Cubix program
	KCBXSY- Specify synchronous or asynchronous system calls
	KCLIP - Enable/Disable clipping
	KCNTOR - Contouring functions
	KCOLOR - Change color attribute of graphical objects
	KCONND - Redirect system calls
	KCONT - Move and draw a line
	KCPCP, KCPELT - Dump communication profile data
	KCPINQ, KCPEND - Manipulate communication profiler, under Cubix
	KCPON, KCPOFF - Control communication profiler
	KDISND - Specify alternate display surface and server
	KDOTEX - Draw text with complex alignment
	KEPCP, KEPELT - Dump event log data
	KEPINQ, KEPEND - Manipulate Event profile under Cubix
	KEPON, KEPOFF, KEPINI, KEPLAB, KEPADD - Event driven profiler
	KEPTGI, KEPTOG - Calculate program statistics
	KERASE, KAERAS - Clear the display surface
	KEXEC - Overlay a node application
	KFLUSH - Flush I/O buffers
	KGETHO - Detennine host specific characteristics
	KGIN, KAGIN - Graphical input operations
	KGREYS, KAGREY - Change color attributes
	KLABEL - Add text
	KLINEM - Modify drawing style for lines
	KMARKE - Draw marker symbol
	KMOVE - Move without drawing
	KMRD2D, KMWT2D - Read/write two dimensional data sets
	KMREAD - Read independent data into each node
	KMULTI, KSINGL, ISMULT, ISASYI, KORDER - Parallel I/O characteristics
	KMWRIT - Write independent data from each node
	KOPENP, KAOPEN, KCLOSP - Begin and terminate graphics system
	KPANEL - Draw and fill polygons
	KPLOTH - Analyze usage of system buffers
	KPXGOP, KPXSOP - Manipulate hardware dependencies in Plotix programs
	KPROFI - Low level execution profiler
	KRAINB - Change color attributes
	KREAD, KWRITE - Read or write unformatted data
	KSENDP - Flush graphical data to display surface
	KSPACE - Define user coordinate system
	KVPORT, KSETVP - Specify area of display to hold image
	KXACCS - Share a processor group with another process
	KXBREA - Halt program at breakpoint
	KXBROD - Interprocessor broadcast
	KXCH - Hardware dependent communication primitives
	KXCHAN, KXVCHA - Synchronous scalar/vector exchange primitive
	KXCLOS - Deallocate processors
	KXCOMB - Node data compaction
	KXCONC - Concatenate data from nodes
	KXCUST - Indicate an alternative system configuration file
	KXGRID - Automatic decomposition tools
	KXHAND - Asynchronous message handler
	KXINIT - Start Express system
	KXLOAD - Load a program
	KXOPEN - Allocate a processor group
	KXPARA - Runtime parameters
	KXPAUS - Arrange for programs to be loaded "stopped"
	KXPCP, KXPELT - Dump execution profile data
	KXPINQ, KXPEND - Manipulate execution profiler under Cubix
	KXPLOA - Load a program into individual nodes
	KXPON, KXPOFF - Control execution proftler
	KXREAD - Read a message
	KXRECV - Non-blocking read function
	KXSEM - Various semaphore operations
	KXSEND - Non-blocking write function
	KXSHAR - Share a processor group with another process
	KXSLEE - Pause process
	KXSTAR - Start execution of program
	KXSWAB, KXSWAW, KXSWAD - Byte swapping routines
	KXSYNC - Synchronization primitive
	KXTEST - Test for an incoming message, non-blocking
	KXTIME, KXTICK - Time measurement
	KXINCT, KXEXCT - Include or exclude certain message types in interpreting wildcards
	KXVREA, KXVWRI - Vector read/write functions
	KXWRIT- Write a message


	Appendix A: Classification of routines - A listing of the Express routines,broken down by functionality
	User Commands
	Compilers
	System Initialization
	Processor Allocation and Control
	Basic Communication System
	"Global" Communication System
	Asynchronous Commutlication Sysfem
	Hardware Dependent Communication System
	Decomposition Tools
	Customization
	I/O
	Debugging
	Multi-Host systems
	MuItitasking
	Graphics
	Performance Analysis
	Host Interface Utilities
	Utility Routines

	Appendix B: Library Availability - The correspondence between C and FORTRAN libraries and the synchronization properties of  Express functions
	1 Correspondence between C and FORTRAN
	2 Synchronization Rules
	3 Libraries and Programming Models
	4 NOTES

	Appendix C: Index of Routines - An alphabetical listing of routines, variables, commands and macros
	Appendix D: Index - General index to Express and the examples from the text



