
. . . . t ~;. '. " ,3,..4. ,. ,.• 3 g. .

.Reference Guide

@ ParaSoftCorporation, 1988, 1989, 1990

. .
......... \,:. ,....":11,1

Version 3.0

.. :
,*::,-:.•~.·~~"''''''1"'r,~'.w.'~·i:~i..:~':.1.~,,.; ••~f '$:~" 1~');·""j(lt. \~.;-:.~~;:..., ~.~..... , '. r~_ ..~ ~'.

rr:

- =-....111 "" ..."

~"

.~ ..

'.9"'

'11'·'••"'"

r~

..t ...

I,
.;""' .

..• ~'t' ..••..J~••. ;,.. ,

. f··

.". • -1:' ..' ~'" i'

4'. :. ~.' . ,'~. + ·"V....: ·h.· . '. . ' - . r • ~

~q.b~lp1dp~UCt'~~·.~ tii4e.nar~s.9l" reg1stet:ed tnidemarks o~,.:,;
their res~cti¥~, holders. ~ ~

:;:" . ..:' .v•. \' . '4' ~.

' ~\,

·~i,.: ' .. ' '.'''~ = .. "... 1. ,

Copyright ©1988, 1'989,.. ~990 .
.ParaSoft corPoration .
2500,.};.F06thill·Blvd.

~'! :1>asadena~'~'CA 91107: :.,' ~~

,~,

l?rinted ¥t the. U.S.A

Table of Contents

d d d dUd d IUd J d H 1 I . 21 d

Chapter 1: System Commands
Tools providing services in support of ExprfJss applications

b d b I ..

.2

1
2
3
4

rr

Executing Express commands in "non-windowing" operating systems.
Executing Express commands in "~~owing"systems
Specifying nuineric data in switches
Manual Page Layout.

· • . 3
· . . 3
.. . 3

.4

Chapter 2: C runtime library
Library routines available to Expres$ programs ~ritten·:in C

52

1
2
3
4
5
6
7
8
9
10

High Level'Communication System.
Hardware Dependent Communication System.. .
Synchronization
Decomposition Tools
Multitasking Support
Processor Allocation and Control.
I/O Services
Graphics
Header files, macros, variables, etc.. . .
Manual Page Layout.

· • '53
· . 55

55
... 56
· . 56

'57
58
5·~
59

· . 60

Appendix A: Classification of routines. '. '.' 256
A listing of the Express routines, broke~ down by functionality

b ' b b b b b b btU. IUb I

FA

Appendix B: Library Availability .'. 264
The correspondence between C and FORTRAN lib~ries and the
synchroniz3:tion properties o,f ~J!pr~s~ 7~9~Qns, · 1: :(:'> ;

1
2
3
4

Correspondence between Cand:FORn'iAN,:i.. .
Synchronization Rules. . ~.. ';_ . ~ t.·,'. • • ." .~

Libraries and Programming M¢els. • ~'. ~'. ,. .' ,t'~' •

NOTES. · · · · · · .'."~. t',: '~4'· ..~ ..~." te-, ~". • •

. . 265 '
.265

. ..265
... 266

, . f
. .4.:~ t' 1:"

P PI

Appendix C: Index of Routines.......•'. 272
An alphabetical listing of routines; variables, commanqs and macros

i

ii

© ParaSoftCorporation, 1988, 1989, 1990

1

;' ~' ... ; . 1, .'
.~

l- '..

. System Commands

:; r

t .

.j

i .'

;

(0 .'

. T I -de - - f~'.:- ooS~prOVI "lng"servlces In support 0

Express applicatiol).s

1 Executing Express commands in ''non-windowing'' operat,!ng-systems

When running Express under operating systems with conventional line-oriented user interfaces
such as UNIX, MS-DOS, VMS and similar, ~ommands are executed by typing their names at th~
command line prompt. '.

J

Usage generally follows the conventional UNIX style with options being· indicated .by the ~-'

ch.aracter, e.g.,

cubix -n 2 -t 120 toyland

The particular command line string '-?' provides a brief on-line summary of the options and
purpose of a command. While this may help in jogging the memory this manual should be
consulted for complete details.

On most machines you will need to add a new directory to the set which is searched when looking
for executable programs. The exact mechanism for doing this varies from one machine to another
and the details for individual operating systems can be found in the introductory guide to Express
for that machine. If you fmd that messages such as

Command not found

or

No such file or directory

appear whenever you try to execute one of the Express commands then you should check that the
appropriate directory really has been added to your search path. If this seems to be correct you
should next try running the excustom program which will ensure that the Express installation
is internally consistent.

In keeping with the conventional style all commands exit with status 0 upon successful tennination
and with non-zero values if errors occur.

2 Executing Express commands in ''windowing'' systems

In windowing systems such as MicroSoft Windows and the Macintosh, Express pJ;"ograms are
usually executed by selecting icons from the screen. In most cases a dialog box will then be
presented allowing the entry of parameters. In most cases the entries to be made have a one-to-one
correspondence to the switches used in the line-oriented interfaces. Usually some mechanism is
also provided to "Abort" or "Cancel" the program without executing any commands.

Note that only the line-oriented interfaces are completely documented in.this reference. In most
cases this causes few problems since the switches and "boxes" are obviously related to one another.
In cases where confusion may arise the introductory·~ide tQExpress p~ your.sYstem should be
c,onsulted for more help. ". - . .

3 Specifying numeric data in switches

Many of the parameters necessary to the commands listed in this section have numerical values
the number of processors to use, the number of bytes to display, the position at which to load the
Express kernel, etc. In most cases these values can be entered with the usual C-style notation as
either decimal, Octal or hexadecimal values.

3

'.):I: .. '~,q ";-,. ~.,

Consider the exdump command, for example. One of its arguments specifies the address from
which data should be extracted -·the '-B' switch. Typically one knows· this value as some "hex"
con~tantand would therefore use a command of the form

exdump -B Ox79000eo •••••••• o

:' ;,Alternatively you could use either octal·or decimal notation replacing this by

€!,xdump -B 01710000 ••••••••

or

exdump -B 495616 •.•..••

to achieve the same effect> Similar remarks apply to most of the other Express commands - you
can execute a CUbixprogramon 16 nodes with·any of the command switches

cubix -n 16 •...••••

cubix -n 020 ..•..•..

cubix -n OxID •••.• ·•••

4 Manual Page Layout

The manual pages~, for better or worse, modeled after those often found in UNIX documentation
which means that each manual page has ··several well-defined sections. The overall structure is
shown below.

4

Header contains the
name of the manual

aC".etool ..c--- page which is usually
--------------------- the same as the
NAME command describe(t~

acctool - Analyze accounting data

SYNOPSIS
acctool [-p] [-a dir] [-f logfile]

DOMAIN
Available on SUN host machines only

DESCRIPTION
acctool is used to analyze the us .

OPTIONS
-p Suppress graphics
-a dir Name of directory containing accounting data
-f logfile Write output to 10gfl1e.

EXAMPLES
acctool -a /home/kastor/accounting

Analyze data from the directory /home/kastor/

NOTESIWARNINGSIBUGS
None

SEE ALSO
Excustom

The various sections and their contents are:

NAME Repeats the name associated with the manual page and a brief one-line
description of the purpose of the associated routines

SYNOPSIS Summarizes the arguments used by the indicated command. Arguments
enclosed in '[', ']' pairs are optional. If more than one command is
described on a particular page then all are listed in this section

DOMAIN Describes the machines on which the command is available and any
restrictions on when it may be used.

DESCRIPTION Describes the purpose of each command and lists the actions caused by its

5

6

OPTIONS

EXAMPLES

NOTES

WARNINGS

BUGS

SEE ALSO

most important arguments. This section is the most important reference
material for each command.

This section lists all the supported arguments for each command and the
actions caused by specifying themo

Usually seveml examples are presented of the use of each function showing
. the most important arguments and switcheso

If present this section contains useful infonnation about oddities in the
implementations of a particular command. It may also repeat important
infonnation from the DESCRIPTION section.

If the command has peculiar side effects or is "dangerous" in some way it
will be noted in this (optional) section. Any non-intuitive behavior is also
noted here.

Currently known bugs and/or unimplemented switches are noted in this
(optional) section.

Related commands and/or routines from the various Express libraries are
noted in this sectiono Using this information is usually the quickest way to
build a complete picture of the interaction between the various utilities.

acetool

NAME

acctool- Analyze parallel computer usage under Express

SYNOPSIS

acctool [-p] [-a account_dirl [-f logfilel

DOMAIN

This command is available on SUN host computers only.

DESCRIPTION

acctool is used to analyze accounting data previously obtained from Express programs.

If the accounting system has been enabled on a particular host every Express program
writes an entry into a system data file whenever it allocates or deallocates nodes. Special
entries are also assigned whenever the system crashes or is reinitialized. acctool
analyzes this data in an interactive fashion displaying the usage of resources on a machine
by-machine basis.

Results are reported for all users, in hours, or on a single job basis for individual users, in
seconds. Statistics are managed on a monthly basis with options to restrict attention to
particular months or ranges of months.

The operation of the accounting system is controlled by the excustom command. One of
this system's options is whether or not to enable the accounting system. If enabled a place
must be indicated for the accounting infonnation to be maintained.

OPTIONS

-a account dir
By default acctool looks in the current directory for the data files
describing the system configuration and accounting data. This switch allows
an alternative directory to be specified.

-f logfile All infonnationprovided by acctool appears on the display device. If this
switch is given a "log file" will also be kept containing the identical
infonnation. (In the Sunview version of the program this effect is obtained
by entering a name in the log file field of the control panel.)

-p By default acctool operates in the Sunview environment providing a
simplified user interface. If Sunview is not supported on your system this
switch enables a line-oriented interface in which the user is prompted to
enter various options from the keyboard.

- ? Print usage message.

EXAMPLES

The following command executes the profiling tool in a windowing environment and
searches the directory /home/kastor / accounting for the necessary databases.

acctool -a /home/kastor/accounting

7

acetool

SEE ALSO

excustolIL

8

cnftool

NAME

cnftool - Configure Transputer systems.

SYNOPSIS

cnftool [-p] [-d]

DOMAIN

This command is available at the system prompt on the host proces~or.

DESCRIPTION

This command is used to configure or reconfigure a transputer network for use with
ExpresS6 Two interfaces are available; with the '-p' switch a simple line oriented interface
leads the user through the configuration process. Without this switch a menu driven utility
allows the user to specify the physical transputer interconnect and also to add additional
hosts to an existing system.

One of the features of the system is a "wonn" program which can be used to detect the
initial hardware configuration on statically wired systems. This program has a simple
searching algorithm which examines the links on each node and attempts to find a node
connected to each. As each link is examined and another node detected the program
recursively examines other nodes which may be attached. Note that this can only be
achieved if the system has "physical" rather than electrical connections. Hardware which
has INMOS' link switch cannot be examined by this method since the links are initially
disconnected on hardware reset.

Details of the use of this system can be found in the accompanying documentation,
"Configuring Transputer Systems: cnftool".

OPTIONS

-p

-d

-?

SEE ALSO

By default cnftool supports a menu driven graphical interface. This
switch enables a simpler, but more tedious, line interface for system
configuration.

Run silently - the system is configured in much the same way as with the '
p' switch except that a "general" network topology is also selected
automatically. No user interaction is required unless the "worm" program
fails to operate successfully.

Print usage message.

"CnfTool: Configuring Transputer Systems"

9

ctool

NAME

ctool- Analyze Communication ProfIle

SYNOPSIS

ctool [-b nbins] [-p] [log_file_namel

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION .

This command is used to examine and analyze the·log rue created with the communication
profiler commands. The only argument is the name of the file containing the profile data
which may be omitted if it has the default value "cprof. out".

If the "-p" switch is given this command presents a separate table on stdout from each
node. The infonnationcontained in each table is:

• An identifier. showing which node the following data is from.

• A summary of the calculation, communication and I/O times in the processoro In
making this classification all inter-node and basic host-node communication comes
under the heading "Communication" while genuine I/O requests such as calls to read,
write, printf, fopen, etc.. are counted as I/O.

• A summary of the time spent in, number of calls to and errors incurred in each
communication function called by the processor. This information is use to give a quick
breakdown of the total communication pattern. The "error" count is also a good place
to look for obscure bugs. Each function makes some consistency checks on the supplied
arguments and returns an error if they are inconsistent.

• A breakdown of the values returned by the communication functions. The return values
are binned'logarithmically - the column headed "8" indicates the frequency of return
values in the inclusive range 8 thru 15. The exact interpretation of this data depends on
the particular function being invoked but is usually related to the message length
involved in the call. By default data from ten logarithmic bins is included in the output
although the'-b' switch is provided to override this default.

One very important use of this system is the detection of programs which are sending too
much data in their messages. These will show up very clearly in the histogram output

This data appears on stdout.

If the ctoolcommand is invoked without the "-p" switch then a graphical interface
allows data to be presented in graphical form. The package is menu-driven and (hopefully)
quite straightforward to use. A full list of the available options is presented in Subsection
3.4 of the PM manual..

OPTIONS

-p

10

Suppress graphical output The analysis results are presented in tabular form

-b nbins

EXAMPLES

ctool

on stream stdout.

Specifies an alternate number of logarithmic bins to display when used in
conjunction with the '-p' switch. (Default 10).

To examine the proftle data in a file called "phase3 . prof" execute the command

ctool phase3.prof

SEE ALSO

cubix in the Express documentation.

11

cubix

NAME

cubix - Host slave process for node programs.

SYNOPSIS

cubix [-1] [-n nodes] [~d doc] [-P] [-t time] [-5]
[-T plot_option] [-E custom_file] [-f file] [-fp]
[-mclxle] [-0] [-xl program [argl] [arg2] ...

DESCRIPrION

This command provides an interface between node applications and the host filesystemand
operating system utilities. It is also responsible for node·allocation and the communication
of command line arguments to a node program.

This command, with the '-5' option, starts up a Cubix server process. Instead of loading a
user application as is usually the case the server merely waits for I/O requests from any
node in the parallel computer system.

While all standard I/O and graphics requests are available the stateless nature of the server
may make its operation slightly strange in a multi-user environment. Routines which affect
the state of the system such as chdi r will have ramifications beyond those nonnally
expected. In this case, for instance, a call which changes the active directory of the server
for one user may invalidate requests to open files for another user.

OPTIONS

--n nodes Allocate nodes processor for this process. Default 1.

-d doc Alternative to -n switch. Specify size ofprocessor group logarithmically in
manner suitable for hypercubes (i.e., doc = 0 for 1 node, doc = 1 for
two, doc = 2 for four, etc.) DefaultO.

- P Load the program into its processors but do not start it running. This option
is useful in connection with the node debugger ndb.

-t time Time out the process after the given number of seconds. This can be useful
in detecting 'hung' programs. The default is no time out.

-T option Specify a graphics option for programs that use Plotix.

-fp Execute the program on attached "vector" nodes, if available.

-f file Read the programs to be run and their arguments from the specified file.
This option is used whenever different node programs are required or
different arguments should be passed to different nodes. The file fonnat is
basically single lines containing a range of nodes, an executable program
and an argument list. See the examples below.

-E custom file
Directs cubix to use an alternative system customization file rather than
the system default.

-m [x I c Ie] Enable the perfonnance monitoring tools. The 'x', 'c' and 'e' characters

12

cubix

refer to the execution, communication and event driven proftling systems
respectively and may be combined. For more details refer to the PM
manual.

-0 start node
Specifies which nodes are to be allocated to the program. An attempt wil be
made to allocate consecutively numbered nodes starting at the indicated
number. If this cannot be done the cubix command will tenninatee

-5 Enter server mode. (Used on multi-host systems.)

argl arg2... These arguments are passed to the node main program as the conventional
runtime parameters argc, argv.

-D Enable system debugging. With this option set cubix prints a huge amount
of data about the system as it runs. Should be of little interest to most users.

-x In windowing versions of Express such as the Macintosh or MicroSoft
Windows this switch forces the Express kernel to be re-loaded before
beginning the user program. It is essentially equivalent to running the
exinit program from the shell.

... ? Print usage message

EXAMPLES

cubix -n 4 noddy

Loads the program noddy into four processors. No arguments will be passed to main ()
other than the program name in argv [0].

cubix -d 1 -t 120 -mce longjob 3.14 2.72

Loads the executable longjob into two nodes with a total execution time limit of two
hours. Also passes two extra arguments to the node program. Finally enables both
communication and event driven perfonnance monitoring tools.

cubix -n4 -Tega plotter

Run the program plotter in four nodes and enable graphics output on an IBM Enhanced
Graphics Adapter.

cubix -n 1 -P buggy

This sequence loads a single node with the user code buggy but halts execution before the
users main routine. The job is run in background mode so that debugging can be carried out

cubix -n 4 -f loadfile

This sequence allocates four nodes and then loads programs according to the instructions
found in the file loadfile. Basically the fonnat is single lines containing either a node
number or a range of nodes followed by a program name and argument list Blank lines are
ignored and # introduces comments. Continuation lines, backslashes and quotes are
processed in the conventional manner. As an example consider the following sample
loadfile

13

cubix

This is a command file specifying how node programs
should be loaded into the cube~

0-1 proga foo bar
3 progb horse dog cow
2 progc really\ one\ argument

Note that a range of nodes is indicated for proga and that the backslash symbol is used to
concatenate tokens into a single argument - in the above case progc would have only two
arguments the name progc and the string really one argumente

EXIT CODE

The cu1;)ix process exits to the shell with the same exit code as used in the call to exit ()
in the node program.

DIAGNOSTICS

Among the errors detected by cubix are requests for more nodes than are available and
missing programftles. After validating that the specified program is indeed an executable
image it is loaded into the machine using the exload system callo This produces messages
about the size of file to be loaded and a single 'b' character for each 1024 byte block loaded.
A common situation is that in which the previous job crashed the node operating system in
wpichcase the loader will say loading some number ofbytes but no 'b's appear, or many
'b's appear and the final 'E' but the program does nothing after the Starting messageo
This is usually a good time to run exinit.

Upon exit cubix reports the elapsed time divided between user and systemo The latter
is time spent performing system functions such as program loading and is always rather
small. It is provided simply for compatibility with other systems running cubix
applications.

14

etool

NAME

etool - Analyze Event Profile

SYNOPSIS

etool [-p] [-t] [log_file_name]

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command is used to examine and analyze the event log created with the eprof
commands. The only argument is the name of the fue containing the profile data which may
be omitted if it has the default value "eprof . out".

This package is exclusively graphical and menu-driven. The most complete source of
reference is the discussion in Section 4.4 of the PM manual.

OPTIONS

-p

-t

EXAMPLES

Suppress graphical output The analysis results are presented in tabular form
on stream stdout.

Display only the data from the "toggle'~ events.

To examine the profile data in a file called "phase3. prof" execute the command

etool phase3.prof

SEE ALSO

cubix in the Express documentation.

15

-r

excustom

NAME

excustom - Reconfigure Express.

SYNOPSIS

excustom [-r] [-1] custom file

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

excustom is used to modify the system parameters which describe a particular
implementation or version of the Express system. All system variables are maintained in
a particular fue called the "Expresscustomization file" which is located in an operating
system dependent location. By default excustom will modify this file although another
may be indicated by the optional custom_file argument.

In non-windowing environments excustom prompts, in turn, for values of all important
system parameters, offering defaults based on the values found in the current customization
file. If you do not enter any input on a particular line the original value will be taken. In
windowing systems a pop-up display is typically used to offer the current values of all
parameters for modification. You can then change individual entries at will. An additional
option restores all entries to "sensible" defaults which guarantee that Express will operate
correctly. (This option is obtained in the non-windowing environment by specifying the '
r' switch when invoking excustom.)

The excustom tool typically asks only about top level infonnation from which it derives
all other related data using the "macro" mechanism discussed below. In some cases you
may need to modify individual system parameters at a fmer level ofdetail. This is achieved
by simply editing the customization file with a suitable text editor or word processor. (You
can fmd the name of the default customization file with the '-?' command line option.) The
exact meaning of all system variables is shown in the accompanying "Excustom" manual.

In order for the customization file to take effect the system must be reloaded with the
exinit command.

OPTIONS

By default excustom prompts you with the current system parameters as
obtained from the customization file. With this switch "sensible" defaults
are used instead of the current values.

custom file This argument requests that the modification process be applied to the
named ftIe rather than the default system configuration file. This allows
excustom to be used by applications which maintain their own
customization systems.

16

-? Print the name of the default system configuration file.

excustom

IMPLEMENTATION

The customization file is a line oriented ASCII file which contains defmitions of important
system variables, one to a line. Lines beginning with either' ; , or ' #' characters are treated
as comments. Other lines take either of the symbolic forms

NAME=text
MACRO:=text

As is suggested by the above notation the fonner type are merely assignments to Express
system parameters while the second defme macros that may be further used in the
customization file to simplify defmitions ofmultiple related objects. A good example might
be the default start-up information required by the debugger, ndb. As part of its
configuration information it needs to know the location of the on-line help facility and also
the system start-up fue which contains the definitions of system commands. Since these are
often in the same or related directories one might imagine two entries in the customization
file of the type

NDB_HELPDIR=c:\parasoft\help
NDB_STARTUP=c:\parasoft\lib

These entries could, however, be replaced using the macro replacement facility with the
lines

PARASOFT:=c:\parasoft
NDB_HELPDIR={PARASOFT}\help
NDB_STARTUP={PARASOFT}\lib

Notice that the value of the PARASOFT macro is indicated with the' {, and ' }, characters.

While three lines may seem more complex than the original two the use of the PARASOFT
macro means that the Express system can be moved from one directory to another by
simply changing the macro rather than each line of the customization file.

SEE ALSO

excustom (subroutine), "Customizing ExpresS".

17

-B

exdump

NAME

exdump - Retrieve data from node RAM files

SYNOPSIS

exdump [-?l [-B- base] [-d doc] [-1 l,ength] [-n nodes]
[-N node] [-N node-node] [-0 file] [-t threshold]
[-p pid] [-s start] [device]

DOMAIN

This command is available at the command line prompt on the host processor.

DESCRIPTION

This command is used to retrieve the debugging infonnation stored in the internal RAM
file under Cubix. It can be used either as a post-mortem dump or while a process is still
running. H set up correctly data can be retrieved after machine initialization with exinit.
The device argument specifies which array the dump is to be taken from - in the current
implementatio~ this should be left to its machine dependent default.

By default the dump is· assumed to contain ASCII data and continues until several
consecutive unprintable characters are seen. An alternative is to dump in "binary mode" in
which case data is just read from the node file and sent to stdout. In this case options are
available to both control the amount of data printed and also redirect the output to a file
printing binary data to a terminal has rather detrimental effects on its behavior.

The detailed use of the RAM file and its manipulation are fully described in the
accompanying Cubix documentation - "Programming Parallel Computers Without
Programming Hosts".

OPTIONS

Dump binary data instead of ASCile By default 16 Kbytes will be taken
from each node.

-b base Defines the base address of the RAM fue. Decimal, octal and hex constants
are valid base values. Note that this option potentially interacts with the
linkerllocator and also the parameters used in the ramfopen call. Consult
the Appendix discussing RAM files in the Cubix manual.

-d doc Dump data from 2doc nodes. This is an alternative to the -n option
designed for hypercube users.

-1 length Specify amount of data to be dumped from each node. In the default ASCII
mode less will be read if the data ends early.

-n nodes Specify number of nodes from which to dump data.

-t threshold
As currently implemented exdump is most useful for retrieving printable

. ASCII infonnation. It continues reading data until threshold successive"
unprintable characters are seen and then moves onto the next node. The

18

exdump

default threshold is five.

-N node Read the RAM file from processor node.

-N nodel-node2
Read RAM files from the inclusiv~ range of nodes nodel-node2.

-0 file Redirect output to the named file. Default output is to stdout. \

-p pid If the process whose file is to be examined is still active then its process ill
should be specified and its RAM fue will be read.

-5 start Specify the physical node number from which the dump is to start. This is
useful in cases where the program ran in high numbered nodes and you are
dumping data after the program has stopped. Since the default allocation
strategy is to allocate the lowest numbered nodes with the required size it is
occasionally necessary to use this switch to "grab" the higher numbered
processors.

- ? Print usage message

EXAMPLES

exdump -d 1 -5 2

This command reads the RAM file from the default address in two nodes. The two
processors will, if possible, be those starting at node two in the array. This fonn of the
command is often used either after the node has "hung" in communication (and the nodes
had to be reset with exinit) or when the process finished but with some error. Note that
exinit normally initializes the contents of memory while loading Express so it is
necessary to use the excustorn facility to prevent this if we wish to preserve RAM fue
data.

exdurnp -n 1 -B OxlOOO

Retrieves the data from a single node starting at address 1000 (hex). This fonn is used in
conjunction with the ramfopen call in Cubix.

exdurnp -p 376 -n 4 -N2-3

This option retrieves the information currently contained in the RAM file of the process
whose process ID is 376. Data will only be dumped from nodes 2 and 3 in the group
allocated by the process.

exdurnp -b -BOx80001000 -0 xdump.out -1 4096 -n2

Dump 4 Kbytes of data in binary mode from two nodes. Write the output to the file
xdump.out.

NOTES

Numeric parameters may be specified in decimal, octal or hex using the usual C style
notation: 123 is decimal, 0123 is octal and Ox123 is hex. Switch values may follow
immediately after their switches or there may be intervening spaces: '-BOx1 000' and '-
B Oxl 000' are both valid. .

19

exdump

SEE ALSO

tlCubix: Programming Parallel Computers Without Programming Hosts~"

exinit (command)

20

exinit

NAME

exinit - Reboot and reload Express kernel.

SYNOPSIS

exinit [-K] [-m] [custom_file]

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIYfION

exinit must be executed before any routines may access the parallel machine - failure to
do so will result in the failure of all attempts to allocate processors. It loads the Express
kernel and starts it running in the node processors. It also performs any necessary hardware
configuration on systems which support such abilities.

exinit attempts to check that no node processes are actually executing before resetting
the hardware. Ifnode programs are detected exinit will report and suggest the use of the
'-K' switch. If this switch is supplied any" node programs will be killed before the reset
operation is perfonned.

It is important that all node processors be reset before loading the Express kernel since
otherwise parts of the network may be inaccessible. Most hardware systems have
intelligent reset lines so that several boards may be reset one by another. If you are
connecting several hosts together the exreset command is available to reset a particular
subset of the network. It does not, however, reload the Express kernel. This must be done
with the exinit command from some other console.

The optional custom file argument is used to specify an alternative customization file
when downloading Express. This allows temporary modifications to the system
parameters for testing and also allows custom applications to maintain their own
customization infonnation.

A very important point to note about exinit is that, by default, it destroys the contents of
the node memory while loading Express. This behavior is normally quite reasonable with
the exception that one may wish to preserve the contents of some RAM file for use with
'exdurnp or ndb. In this case the '-m' switch can be used to prevent memory initialization.
Alternatively the excustom tool has an option which forces the kernel to be loaded
without destroying memory by providing an explicit "start address". A good way to
proceed, therefore, is to make an system customization file which contains the load address
and then to re-Ioad Express by telling exinit to use this file rather than the system
default.

OPTIONS

-K By default exini t aborts if any processes are still running in the parallel
machine. This switch causes an attempt to be made to kill all such programs
before resetting and.reloading Express.

-m address Load Express into the nodes at the indicated address without destroying

21

exinit

the contents of memory. This is useful in conjunction with the RAM [tIe
system for debugging after system crashes. The address used will depend on
your hardware configuration.

custom file Indicates that a system customization file other than the default should be
used to load Express.

- ? Print usage message.

EXAMPLES

exinit -m Ox80069000 -K

Reinitialize the machine by killing all currently executing processes and loading Express
at the indicated address. The current contents of node memory will remain intact, except
for the region near 0x 800 6 90 00 which will be overwritten by the kernel.

SEE ALSO

exstat, "CnfTool: Configuring Express", "Using Express with Multiple Hosts",
"Excustom: Customizing Express'.

22

exreset

NAME

exreset - Reset a group of nodes.

SYNOPSIS

exreset

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command is used to reset a set of boards without loading the Express kernel. Ifyour
hardware configuration is capable of supporting a tree-like reset path in which all nodes can
be reset from a central "master" console this command will be totally unnecessary since
exinit will be able to reset and load Express into all nodes.

If your hardware does not support this chaining of reset signals then you will need to
partition the nodes into groups, each of which can be reset from a particular host. The
exreset command will then perform this operation allowing a subsequent exinit to
load Express into the entire network.

SEE ALSO

exinit, "CnfTool: Configuring Express'.

23

exstat

NAME

exstat - Display node usage information.

SYNOPSIS

exstat [-1] [device]

DESCRIPTION

exstat is used to present statistics about the current node usage on the multiprocessor
device. The default value will be either /dev/transputer or /dev/ncube
depending on the hardware installed.

Without the -1 switch only the number of allocated nodes and the total number of nodes
are presented. The inclusion of this switch also provides information about which process
is allocated which nodes, and which processes share which node~.

Until the system has been initialized with a call to exinit this utility will return the rather
disconcerting result that there are no nodes available.

OPTIONS

-1

-?

SEE ALSO

exinit

24

Produce an extended (long and infonnative) listing which includes the
process I. D. and physical node origin of all active processes.

Print usage message.

ndb

NAME

ndb - Symbolic, source and assembly level debugger for parallel computers.

SYNOPSIS

ndb [-1] [-I incdir] [-p procid] [-d doc] [-n nodes] file

DESCRIPTION

ndb is an interactive symbolic debugger for use on parallel computers. Two styles of
interface are available depending upon the particular hardware/compiler combination
available.

The simplest interface is a source level debugger patterned after the UNIX utility dbx. At
this level the user is able to examine code, set breakpoints and examine variables at the
level of the original C or FORTRAN source code.

The lower level interface is designed for machine level debugging and is based on the
conventional assembly level debugger adb. It allows for the examination of both data and
assembly level code as well as the setting of run-time breakpoints. ndb incorporates a
superset of adb commands which should facilitate its use.

ndb is always available at this second level and the commands associated with its use are
described completely in this document. The availability of the source level interface is
subject to compiler/hardware restrictions. The associated commands are described in this
manual but may be unavailable in some implementations.

In order to effectively debug parallel programs a simple extension to the conventional
debugger syntax has been made. This is the concept of a "set" of processors. Each
command is executed on some group of nodes which can be defined and altered by the user.
Several common groups of processors are predefined and user defined sets are also
available.

COMMAND LINE OPTIONS

-d doc

-n nodes

-p procid

-I dir

file

Specify dimension of subcube to be debugged. Default is 0 (1 node).

Alternative to -d switch - specify the number of nodes rather than its
logarithm.

Debug a background process. This option is useful in conjunction with the
-p switch to cubix which loads a program and stops it at its starting point.
It is also used to perfonn post-mortem debugging on processes which are
"hung".

Specify a directory to be searched when looking for source code. By default
only the current directory is searched. This switch may be repeated multiple
times and the associated directories are searched in the order they are
specified.

Specify the program whose symbol table is to be read. Unless this name is
specified no symbol table entries will be available which significantly
reduces the capabilities of ndb.

2S

ndb

-?

USAGE

Display infonnation about supported run-time switches.

An introductory guide to the debugger is available elsewhere so the following sections
merely explain the syntax of the various commands. In nearly all cases the low level syntax
is exactly as in the regular UNIX commandadb while the source level command shares
the same syntax as dbx.

1 Help

A certain amount of on-line help is available by entering the help command. Various
topics may be selected for further perusal by entering

help topic

where topic is the name of the required subject. The syntax for. a particular command can
be found by using

help keyword

where keyword is the identifier whose usage is required.

2 Sets

Each command is executed on a collection of nodes called a "set". A ¤t set' is
maintained by ndb which is used unless overridden, by prefIXing a command with the on
keyword. There are three verbs used in manipulating sets.

on The following set specificatioll is used for the command that follows
it and then the current set reverts to its previous value.

pick The current set is changed to the nodes listed.

setdef Define a new set containing the specified nodes. The resulting set is
assigned an index number which is returned and can be used in
future set specifications.

The set specifications are built up from (comma separated) elements of the following types.
(In the following the symbol # denotes a decimal, integer, constant).

* A single node.

node * A single node.

to * An inclusive range of nodes.

* thru * An inclusive range of nodes.

- # An inclusive range of nodes.

all All nodes in the subcube.

even, 0 dd Either the even or odd parity nodes defined by the number of bits set
in the processor number.

set * The set with index # as given by a previous setdef instruction.
(Note that set numbers are indicated when using the setdef

26

ndb

command or with he "show sets" command.

nof t The "hypercube" neighbors of node t.
neighbors The "hypercube" neighbors of all the nodes listed so far.

board nO;nl
Specifies node n 1 on attached peripheral board nO. Ranges of nodes
may also be given as nl-n2.

3 Displaying Source Code

The simplest command for displaying source code is 1 ist. With no parameters this prints
out ten lines of program starting at the "current line". This latter is set implicitly during
program execution by the show state, where and single stepping commands. It may
be explicitly altered with

f i 1e' name Set the "current line" to the first line of the named file. Ifno name is
given display the current file.

func name Set the "current line" to the fIrst line of the named function. With no
parameters display the current function.

The list command has parameters itself which are either one or two integers separated
by a comma. The various combinations of positive and negative values are used to indicate
ranges of lines to display. A few examples should clarify the details.

list 20 Display line 20 only.

1 i st 20, 50 Display lines 20 through 50 inclusive.

list -5 Display ten lines starting 5 before the current line. This option
provides a "window" facility.

list -5, 20
Display 20 lines starting 5 before the current line.

list function
Display the fIrst ten lines of the named function.

When source files are named, either explicitly in file commands or implicitly during
program execution an internal directory search path is used to look for appropriate source
files. Two methods are available for altering this path. When starting an ndb session the "
I" command line argument names a directory which should be appended to the current
search list. Alternately the use command can be used - it is followed by a list ofdirectories
which replaces the current list. Thus

use ••. /src •. /lib .• /tst

might be given to name several directories in which source files are to be found. The order
of the entries in this list is important - directories are searched from left to right so possible
name clashes may have to be considered. Of course, if ndb fails to find the correct version
of a source file with its automatic search then the f i 1 e command can be used with a full
pathname to ·override ndb's choice.

27

ndb

The use command with no parameters displays the current search path.

4 Stack Operations

The most useful command for finding the current status of the program is where. With no
arguments this command displays the top 8 levels of stack activity naming subroutines
called and displaying their. arguments. If less than 8 subroutines have been called the list
terminates with the system initialization routine. If more, or less than 8 levels are required
then a numeric p.arameter may be given; on all where 3 displays the top three function
calls in all nodes.

It is important to Dote that these stack tracing operations require that several probing
messages be .sent to each node. As a result they may work incorrectly when the node
program is actually executing since the stack may be significantly different each time
leading to inconsistent resultsc If this is a problem then one of the single step commands
can be used to effectively "stop" the nodes allowing where to succeedo The program can
be later continued with the cont command.

Another useful function in connection with tracing subroutine calls is isin. One can say

on all isin main

to obtain a listing of the activity ofall nodes which currently have the named routine in their
stacktrace. This is a useful fonn of data reduction since it allows he user to immediately
discover which nodes are in the wrong place.

dump rout ine displays the calling sequence and local variables of the named routine if
it occurs in the stack backtracee If no function is specified then that containing the current
program counter is dumped.

Note that these commands may interact with the language specification flag discussed in
context of the ndbenv command. Often different language compilers use different calling
sequences that cannot be dynamically inferred from the actual code. In this case a stack
trace may be invalid unless the language switch is set correctly. To change from C (the
default) to Fortran, for example, one issues the command

ndbenv Fortran

Commands such as this are often best placed in the user's initialization file. ndbinit.

5 Displaying data

The simplest command for showing data values is print which takes a list of expressions
and prints their values according to the variable types indicated by the program. One can,
for example, type

print 1+2.5, rny_struc

to which the response might be

1+2.5 = 3.5

my_struc = {
i = 12
f = 1.44

28

ndb

Some compilers do not preserve information about symbol types in which case you have to
explicitly indicate in what manner you wish to see the data displayed. Occasionally you
may also wish to override ndb's choice of formats for a printed variable.

Data display requests take the symbolic form

address, count / format

or

address, count ? format

The frrst form reads data from the nodes themselves while the second accesses the actual
executable on disk. For this reason the second form is to be preferred when looking at
assembly code while the first is most common for actual data.

Essentially the format field of the command is an instruction which explains how to print
data. This command is repeated count times starting at address. The address and
count fields may contain any valid expression (as explained below) while the format
field contains any number of modifier characters which denote how a particular datum is
to be fonnatted. The particular characters and their interpretation is as follows

D 32 bit integer
d 16 bit integer
o 32 bit octal
o 16 bit octal
X 32 bit hex
x 16 bit hex
U 32 bit unsigned
u 16 bit unsigned
b 8 bit octal
B 8 bit binary
c 8 bit ASCII
C 8 bit ASCII with interpretation of control characters
s Null terminated string
s Null terminated string with control character interpretation
i Disassemble instruction
I Source module and line number (No'.' increment)
a Symbolic address (No '.' increment)
p Symbolic address
y Date and time
t Tab
r Space
n Carriage return
+ Increment '.' by current amount

Decrement '.' by current amount
Backup '.' by current amount

29

ndb

Each of these characters can be preceded by a repeat count. ndb maintains an idea of the
current address on each node which is referred to by the special symbol '.'. Each of the
fonnatting instructions (except those specifically mentioned) increments this· quantity by
the size of the object to be displayed.

Several other commands of this fonnat are allowed and are denoted by the modifiers listed
below

v Dump data as both hex and ASCII. The count field denotes the
number of 16 byte lines of data to show. A repeat count before
the v character requests hex data values of that length (in bytes),

. i.e., 4v requests a dump in 32 bit words.

1 value mask This command searches from the given address through
count bytes looking for a value which, when "AND"ed with
mask is equal to value. The default search length is 4096
bytes. Warning: this option is VERY slow

L value mask Searches for a 32 bit match. See previous modifier.

w value Write the specified 16 bit value at address

W value Write the given 32 bit value at address.

6 Expressions

ndb recognizes most of the usual arithmetic operators in expressions. Symbolic constants
are also recognized with or without the preceding' 'added by the C compiler or the
conversion to upper case perfonned in Fortran. The scope rules for simple variable names
is to look in the current function (as denoted by the register PC or the most recent func
command) and then the external variable table. References to local variables in other than
the present function can be made by specifying a full symbol name of the form

function 'variable

NOTE that certain keywords are reserved for the use of ndb and
thus cannot be used as variable names" Since none of these words
begin with an '_' character the variable with the same name can
always be referenced by including the underbar.

The various legal expression elements are

The value of the current address.

30

<name

(exp)

name

routine 'name

The value of the named register.

The value of the enclosed expression

Address of the named symbol using the scope rule that the
function denoted by the current program counter is searched frrst
followed by the external variable table. (Can be overridden with
the func command.)

The value of the variable name in the given subroutine which

ndb

must be in the current stack backtrace.

*

@

%
&

I

«
»

The following are allowed operators in expressions

+ Binary addition
Either binary subtraction or unary minus
Either a pointer dereference or binary multiplication
Binary integer division
Binary AND operator
Binary OR operator
Binary XOR operator
Unary NOT operator
Round first operand to next multiple of second
Left shift.
Right shift
Pointer dereference

In addition to using expressions to specify addresses it is also possible to use ndb as a
regular integer calculator. The values of expressions are printed by following the
expression with '=' and a fonnat specifier as indicated in the previous section on displaying
data. Thus

Ox1234 + 16*(1«3 A {}2 - 3) = X

prints an uninteresting 32 bit hex value.

7 The "show" command

VariOllS special commands have been added to the usual syntax to take advantage of some
special features of the parallel machine. These commands are all of the fonn

show something

where the something is chosen from the list (Other options may be available on your
system, type "help show" for details.)

breakpoints List active breakpoints.

pregs Internal processor communication registers.

queues Unread messages for this node.

regs General processor registers, current instruction and source
file location.

sets

state

User defined sets.

Process state, current instruction and source file location.

times Idle and active times in this processor.

Note that only an initial substring of the names listed above is necessary to pick options so
that show st is equivalent to show state.

31

ndb

8 Arrays

The simplest way to print out array elements is with the print command described
previously. If you have to resort to the lower level formatting commands for some reason
then array indices are indicated in a different way.

This syntax follows the C and Fortran notation with the addition that the user must specify
the declared dimensions of the array as well as the indices required. In C, therefore, the
syntax to print out the element lattice [2] [4] [5] from a lOx lOx 10 array as a 32 bit
integer is

lattice[2;10] [4;10] [5;10]/D

where the values after the semi-colons are the declared dimensions of the array. In order to
perform offset calculations ndb has to know the size of an individual array element. By
default the value is taken to be 4, correct for integer and 32 bit floating point data types. If
the data item is actually of a different size - e.g., a byte or a structure then this can be
specified in. braces after the array name. Thus to print out values from 3.':1 array of sixteen
byte structures one might use

complicated{16} [3;8] [4i12]/ddfff

The notation for Fortran style arrays is similar with the array indices being paired up with
dimensions via semi-colons. An example might be

array(3i4, 5;120)/f

ndb understands the difference in ordering between multi dimensional arrays in C and
Fortran as well as the fact that Fortran array indices start at 1. It also nests array dimensions
arbitrarily deeply.

9 High level job control

Several high level commands are available for running and controlling user programs. The
fIrSt set are used to start up either the debugger or the user application

run string The command indicated by the "string" parameter is
executed and the debugger attempts to attach to the resulting
process as though started with an appropriate "-p" option. If no
string is given then the previous run command in re
executed. I/O redirection is allowed with the usual '<', '>', '
>&', '»' syntax.

debug program process
This command can be used to name the program that is to be
debugged after ndb has started. This is useful if more than one
executable is loaded into the machine since it allows switching
between symbol tables. The process argument is optional and
specifies the process-ill number of the program that is to be
debugged. The program argument can be the single character
,-' in which case no symbol table will be loaded but a process
ill may still be given.

32

ndb

i 0 This command is used to redirect tenninal input to the user
program. Be default ndb reads all characters typed and
interprets them as debugger commands. After this command all
tenninal input is sent to the user program. To issue further
debugger commands use the keyboard interrupt sequence
(usually CfRL-C) to return control to ndb.

kill Kill the program being debuggedo Confmnation is requested.

As well as these functions commands are also available to control the execution of the user
code at a finer level through breakpoints, single stepping etc. The commands are

stop in name
Insert a breakpoint at the first line of the named function.

stop at number
Insert a breakpoint at the indicated line in the current source file.
Note that this command interacts with the file and func
commands discussed earlier.

stop variable

cont

step n

next n

status

Continue execution in single step mode and halt the program
when the named variable changes value. This command
executes rather slowly due to the interpretive nature of the
processing required.

Continue execution from a breakpoint, or single step. This
command interacts with the "wait" flag of the ndbenv
command - by default the ndb prompt appears immediately
allowing further commands to be entered. Alternately one can
specify that ndb should continuously poll the nodes until
another breakpoint is found or the application terminates before
prompting again. This latter behavior is most common is
sequential debuggers but slows down ndb somewhat as polling
is an inherently slow process.

Single step the program over "n" lines of source code (default
1). If function calls are detected then the single stepping process
enters each subroutine. If the current node "set" contains a single
processor then this command will display the source lines as
they are stepped past.

Single step over "n" lines of source code without entering any
new functions. (Default 1 line). This option is similar to step
but avoids the problems of having to single step through system
functions etc. Source lines are displayed as processed if the
current "set" contains a single node.

Display the list of active breakpoints indicating which nodes
they are present in, where they are placed and an index number
used for deletions.

33

ndb

delete n Delete the breakpoint with index number "n" as detennined
from the status command.

Note that any of these commands may be prefixed by a "set" specification to allow different
actions to be performed n distinct nodese Thus to insert breakpoints in only the fIrSt three
nodes one might use

on 0-2 stop at 23

Any command line that begins with '!' or sh is executed by the
shell.

10 Miscellaneous commands

Several miscellaneous commands are available to make debugging easier.

sh string
! string

pwd

alias sls2

source file

cd directory

Show current directory.

Change to an new directory. This is occasionally useful for
finding source files since the default search path starts with the
"current directory".

Readndb commands from the named source file. This is useful
for perfonning repetitive tasks or for making data dumps.
Consider also the $> command which redirects the output from
the debugger. By default ndb attempts to find a file named
. ndbinit in either your home directory or the current
directory whenever started and reads initialization commands
from it

Define a new command. Henceforth the command s 1 will be
treated exactly like the command s 2. The command

alias 1 list

for example, allows one to use the single character'1 ' instead of
the list command. It is also possible to set up aliases with
arguments and defaults using the UNIX C-shell syntax. The
command

alias myuse use !:{l-.} !:{2- .. /src} !:3 !:4 !:5

defines a new command for setting the source code search path.
5 arguments are specified and the fIrst two have defaults" . " and
" .. / src" so that the simple command myuse can be issued
without any arguments to set the search path to '. .• / src' or
arguments can be specified to set the path to other things.

qui t Exit ndb. If the user program started within ndb a "kill"
command will be given and you will be asked whether to
tenninate the program or not. If the program started outside of
ndb it will be left alone.

34

C
FALSE
OFF·
8192

ndb

11 The ndbenv command

This command defines the specific "environment" in which ndb is working. The currently
implemented settings are the high level language being debugged, the "wait" state, the
"repeat" mode and the "symbol match length". To see the options currently in effect type

ndbenv

which might yield

Language:
'Wait mode:
Autorepeat:
Symbol match length:

Each of these options is explained below.

Language Certain features of ndb depend implicitly upon the high level language
being debugged - for example array indexing and stack tracing. By default
ndb is in the C mode suitable for the "e" language but may be switched
over to Fortran with the command ndbenv F.

Wait mode This parameter controls the behavior of ndb upon receiving a cont or run
command. By default the prompt immediately reappears and the user is able
to enter further debugging commands while the node program continues to
execute. If the wait state is set to TRUE with the command ndbenv wait
then ndb continuously polls the nodes and only returns control to the user
when all nodes have stopped at breakpoints or with some error. This mode
can be turned off again with ndbenv nowait.

Autorepeat By default ndb repeats the last command entered whenever the user
command is a single carriage return. This feature can be disabled with the
command ndbenv norep.

Symbol Match Length
When translating memory address into variable names ndb uses a cutoff to
avoid translating system memory addresses into user variable names - i.e.,
addresses further than this length above a known symbol will be translated
into hex values rather than "name+offset". By default this cutoff is
32768 bytes. On occasions it may be necessary to increase this number so
that large functions appear by name in stack traces rather than as hex
numbers.

12 Assembly Level Debugging

In addition to the adb implementation effectively described in the next few sections the
following commands are available for debugging at the machine code level.

listi address Display ten machine instructions from the given address. If
none is given continue from the last address specified.

stepi n Similar to the step instruction but considers only the
machine code. Encountered subroutines are entered and the

35

ndb

nexti n

stopi address

machine registers are displayed if the current node "set"
contains only a single node.

Similar to stepi but passes over subroutine 'calls.

Place a breakpoint at the named address.

13 Assembly Level Job Control

Various commands are available which allow one to control the execution of a node
program. They are all of the geneml fonn

argl, arg2 : modifier string

in which argl and arg2 may be any general expression and the various modifiers are
listed below. (Note that some cases do not require arguments in which case argl and
arg2 can be omitted)

b Set a breakpointat address argl. Note that only 8 breakpoints may be set
in any node at one time so an attempt to set more will result in a request from
ndb to delete an entry.

d Delete the breakpoint at address argl.

s Step processor over a single machine instruction.

c Continue as from a breakpoint.

C Continue from breakpoint but instead of returning control to ndb
immediately wait for the node specified asargl to hit a breakpoint. If
argl is omitted wait for node O.

k Kill the process inside the machine.

K Compare arg2 bytes of memory starting at address argl on all nodes in
the active set.

r Run the command specified by" the st.ring argument under the control of
the debugger. I/O redirection is available with the usual constructions '>',
'»', '<' an, '>&'. Note the comment above on tenninal input to the running
process.

R Run a command, as with the r specifier, above, but wait for the process
specified in argl to hit a breakpoint before returning control to ndb. If
argl is omitted, wait for node O.

ndb leaves the debugger in control of the tenninal even when continuing from breakpoints.
This is contrary to conventional sequential debuggers which normally switch over to
sending input to the debugged process whenever it is runningo This distinction is made
because of the distributed nature of parallel applications where it is not unusual to have
some nodes running while looking at the state of"others. If the running process requires
tenninal input the single command i 0 switches control from ndb to the user process
sending all further keyboard input to that process. To return control to the debugger use the
interrupt sequence (usually CTRL-C).

36

m

n

0

q

r

s

t

w

>

WARNINGS

ndb

14 Assembly Level System control

Various commands are available to control the way ndb interprets and outputs its results
and to access some of the more machine specific requests. They all take the genernl fonn

argl $ modifier string

where argl is any legal ndb expression and the modifiers are as follows

b List all active breakpoints. The notation for the nodes on which the
breakpoint is active is essentially a bit mask with each bit (reading from left
to right) denoting a single processor.

c Traceback of all active C procedures together with their arguments
interpreted as 32 bit hexadecimal constants.

C As in the 'c' option above but prints out the values of all known local
variables. Note that the appropriate compiler options must be used to
compile infonnation about local variables.

d Set default base for numbers to 10.

e Print out all external variables and their values interpreted as 32 bit hex
constants.

f Traceback of all active Fortran subroutine calls~ No argument infonnation
is supplied by the compiler so the first few elements off the stack are
interpreted as 32 bit hex constants.

F Fortran traceback showing all local variables are 32 bit hex constants. Note
that the appropriate compiler switch must be used to include infonnation
about local variables.

Print memory map of current program showing sizes of various data areas.

Show internal processor communication registers.

Set default base for input to octal

Quit from ndb. If you entered ndb via the -p command line option the
node process is left alone. Otherwise it is killed.

Print general processor registers together with an interpretation of the
current instruction and the source line/module infonnation.

Set the maximum offset from the public symbol to argl for which ndb still
interprets an address as being within that function.

Show a one line status summary for each processor showing the current
state, program location and source file/line number infonnation

Set the output page width to argl.

Redirect output to the file named in string

Error checking in ndb is rather primitive. Furthennore if an error is actually detected it will

37

ndb

quite probably be misdiagnosed. Certain words are reserved for use in commands and
cannot, therefore, be used as variable names. The full list of reserved words is as follows:
on, setdef, pick, thru, to, set, node, even, odd, all, show, help, quit, io,
neighbors, nof.

Programs which put the nodes into strange states may also affect the debugger in odd ways.

DIAGNOSTICS

The prompt issued by ndb attempts to indicate the current set to which commands will be
applied. Most variations are self-explanatory except the mysterious word array which
indicates a node combination too complicated to figure out.

Syntactical· errors on input generate many splendid messages, some of which might even
complain about errors.

If no program is given on the command line a warning is issued about the lack of a symbol
table.

Various out of memory errors produce both fatal and non-fatal diagnosticso Error recovery
from these cases mayor may not work.

Attempting to load a non-standard executable program will fail and produce a message
suggesting corrective action.

BUGS

Printing non-floating point values with the f or F formats occasionally leads to core dumps.
This sometimes happens even with legal floating point values under XENIX due to
deficiencies in the run-time support.

The exact abilities of ndb depend a lot on the underlying operating system and hardware
characteristics. As a result it is not possible to implement all features of ndb in all Express
versions.

SEE ALSO

"NDB: A Guide to Parallel Debugging under Express."

38

tee

NAME

tee - Compile and link Express C and C++ programs for Transputers.

SYNOPSIS

tee [-B address] [-e] [-ooutfile] [-Dname[=value]]
[Idirname] [-Uname] [-E] [-g] [-dryrun] [-K] [-llibname]
[-r] [-P] [-5] [-TO] [-T4] [-Tal [-e name] [-N] [-x] [-n]

[@filelist] files ...

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command provides an interface to the Logical Systems C compiler useful for
compiling programs to be run under Express. Filenames ending with the ' •e' suffix are
taken to be C source code and are compiled while those ending with ' •tal' are treated as
assembly code source and assembled. In both cases the resulting output files have the
, . t r l' suffIX. Note that the preprocessor is run on assembler files by default allowing
some of the advanced features of the Logical Systems assembler to be used.

After compiling all source files tee proceeds, by default, to link the resulting object fues
into an executable program. If no '-0' switch is provided this will have the name
t rans . tId. By default libraries are searched which allow access to the Express
communication routines only. The Cubix and Plotix subsystems are included with the
leubix and -lplotix switches respectively. (It is important to note that programs
linked with either of these switches CANNOT be executed with nonnal host programs in
the "host-node" mode. Similarly programs compiled without one of these switches will not
run with the eubix program.)

In addition to producing the executable image two additional files are (optionally)
produced which have suffices ' • s ym' and ' •map'. The fonner is used by the source level
debugger ndb while the latter is of general interest - it contains infonnation about the
memory locations ofprogram variables and which libraries and object files were searched.

By default all compilation/linking is perfonned for T800 transputers. Note that object fues
and libraries are not necessarily interchangeable between the two CPU types since
instructions may be generated that are not supported on both types of hardware. The '-T4 '
switch is provided to force the generation ofprograms suitable for execution on T400 series
systems. The '-T0' switch attempts to generate code independent of the transputer type by
omitting instructions specific to only one model. Note that this switch does not support
floating point operations.

OPTIONS

-B address Specify alternate load address for program. By default loading is performed
at the beginning of "off-chip" memory. (See "Excustom" in the IIExpress
users guide" for more infonnation.)

39

tee

-c

-dryrun

-Dname

-Dname=value

Compile only - do not proceed to link resulting object files.

Print the commands to be executed without actually performing any of
themo This options implies both. '-x' and '-N'.

40

Defme preprocessor symbol and optionally assign a valueo

-e name Specify an alternate entry point. By default the user program is entered
through initialization routines required by Express.

-E Run preprocessor only. Output is left in a file with the suffIX'.pp' 0

.-.f2 Use 32 bit floating point arithmetic for all "double" variables. (Default is
64 bit.) Other options are also available - see the Logical Sys~ems

documentation for more details.

-g Include additional symbol table information for source level debugging.
This switch ad~s additional code at entry and exit ofAU subroutine calls to
enable stack-tracing which can significantly slow down execution.

--K Disable stack tracing. Used to suppress stack tracing, even when ' ...g' switch
is given.

~Idirectory Add a directory to the path searched when looking for '#include' files.

-1cub i x Search the Cubix library for unresolved symbols in addition to that required
by Express.

-1plot i x Search both Cubix and Plotix libraries for unresolved symbols.

-n Execute the link phase of compilation on· transputers rather than the host
system. (Only available on some systems.)

-N Keep all intermediate fIles. (Default is to delete them after use.)

-0 name Specify an alternate name for the executable program produced by the
linker. Default is 'trans. tId'.

- P Run preprocessor only. Output remains in a file with the extension ' . pp,.

-r Generate "position-independent" code which can be relocated at runtime.

- S Produce assembly code listing of C source program.

-T4 Compile for T400 series transputers.

-T8 Compile for T800 series transputers.

-Uname Undefine a preprocessor symbol. Reverses the effect of '-D' switches or
'tdefine'statements.

-x Display all commands before executing them.

@filename Take "filename" to be a fIle containing a list of source or object files to
be compiled or linked, one name to a line.

-?

EXAMPLES

Print usage message.

tee

tee -e hell0.c

Compile, but do not link the C source file he110 0 e. The resulting object file will be called
he110 • t r 1 and will be for the T800 series transputers.

tee -0 prog f1.trl f2.c f3.trl -leubix

Compile [tIe f2. e and proceed to link it with fl. trl, f2. trl and the Cubixlibraries
to make an executable program called prog. This executable will run on T800 transputers.

tee -T4 -0 prog4 gl.trl g2.e g3.trl -lcubix

This example is the same as the previous one but the resulting executable fue, called
prog4 will run only on T400 series transputers. Notice that one cannot mix transputer
types so the object files g1. trl and g2 . trl must have also been produced with the
T4 switch.

tee -5 -T4 foo.c

Generate an assembly code listing of the C source file foo. e suitable for a T400 transputer
system.

tee -Imyinc -DCUBIX -c noddy.c

Compile but do not link the C source code in the file noddy. c for a T800 series transputer
system. Additionally define the CUBIX symbol and s~arch the directory myinc when
attempting to satisfy tinclude statements.

tee -g -c noddy.e

Compile, but do not link, the fue noddy. c for a T800 series transputer. Include both
source line numbering information and also additional entry/exit subroutine calls to enable
stack tracing. Note that the code resulting from this file will execute rather more slowly
than would be the result if the '-g' switch were omitted.

tee -0 prog -g prog.bin subs.bin -leubix

In this case the two named object files are linked together to produce an executable program
called prog. In addition a symbol table called prog. sym will be created for use with the
source level debugger, ndb.

MULTIPLE INPUT FILES

Some operating systems impose constraints on the length of a command line which
preclude the linking of large programs with many input files using the standard tcc
syntax. In this case tcc allows the list of filenames to be provided in a file and passed to
the compiler using the '@' syntax. Consider, for example, a program made up of ten object
files with names "object 0 •tr1", "object1 . tr1" and so on up to "object 9 . tr1".
In this case we would create a file containing the ten lines

objectO.trl
objectl.trl

41

tcc

42

object2.trl

object9.trl

and save it with a name such as "link . 1st". We could then invoke tee with a command
such as

tee -0 prog -g @link.lst -lcubix

to link the program with the Cubix libraries, build a symbol table for debugging and name
the output file progo Note that the suffix' • Ink' should not be used since tee uses that
name internally.

tcc31

NAME

tcc31 - Compile and link Express C Transputer node programs.

SYNOPSIS

tcc31 [-B address] [-c] [-0 outfile] - [-Dname [=value]]
[-Idirname] [-Uname] [-dryrun] [-i] [-g] [-llibname]
[-T4] [-Tal [-x] [-N] [@filelist] files. ~ ~

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command provides an interface to the 3L C compiler useful for compiling programs
to be run under Express. Filenames ending with the ' . c' suffIX are taken to be C source
code and are compiled.The resulting output files have the' . bin' suffix.

After compiling all source files tcc31 proceeds, by default, to link the resulting object
files into an executable program. If no '-0' switch is provided this will have the name
trans. tId. By default libraries are searched which allow access to the Express
communication routines only. The Cubix and Plotix subsystems are included with the
lcubix and -lplotix switches respectively. (It is important to note that programs
linked with either of these switches CANNOT be executed with nonnal host programs in
the "host-node" mode. Similarly programs compiled without one of these switches will not
run with the cubix program.)

In addition to producing the executable image two additional files are (optionally)
produced which have suffices' . s ym' and' . map'. The fonner is used by the source level
debugger ndb while the latter is of general interest - it contains information about the
memory locations of program variables and which libraries and object files were searched.
The map file also contains the error messages, if any, from the linker. If the program aborts
with a message such as

Failed to find .b4 file

this usually indicates that the link process failed with some error which can be located by
searching for the string "ERROR" in the" . map" file.

By default all compilation/linking is perfonned for T800 transputers. Note that object files
and libraries are not necessarily interchangeable between the two CPU types since
instructions may be generated that are not supported on both types of hardware. The -T 4
,switch is provided to force the generation of programs suitable for execution on T400 series
systems.

It is important to note that the 3L compilers/linkers execute directly on the first transputer
in the attached network and destroy and Express programs executing there, including the
Express kernel itself. It is necessary to re-Ioad the system with the exini t command
before running any program.

43

tcc31

OPTIONS

- B Specify alternate load address for program. By default loading is performed
at the beginning of "off-chip" memory.

-c Compile only - do not proceed to link resulting object files.

-dryrun Print the commands to be executed without actually performing any of
~em. This options implies both '-x' and '-N'.

-Dname
-Dname=value Define preprocessor symbol and optionally assign a value.

-g Include additional· symbol table information for source level debugging.
Used at link time to force the generation of a symbol table for use with the
debugger, ndb.

- i Do not search any of the built-in default directories for include files. Rely
solely on the definition of the 3LCC INC environment variable.

-Idirectory Add a directory to the path searched when looking for '#include' fues.

-lcubix Search the CUbixlibrary for unresolved symbols in addition to that required
by Express.

-lplotix Search both Cubixand Plotixlibraries for unresolved symbols.

-N Keep. all intennediate ftIes instead of deleting them.

-0 name Specify an alternate name for the executable program produced by the
linker. Default is 'trans. tId'.

-T4 Compile for T400 series transputers.

-T8 Compile for T800 series transputers.

-Uname Undefine a preprocessor symbol. Reverses the effect of '-D' switches or
'#define'statements.

-x Generate a listing of all command lines before they are executed. This
option is useful if certain commands need to be run by hand.

@filename Take "filename" to be a ftIe containing a list of source or object files to
be compiled or linked, one name to a line.

- ? Print usage message.

INCLUDE FILE PROCESSING

The rules regarding the searching for include files in the 3L compiler are quite tricky. On
UNIX systems some attempt is made to locate system include fues according to the
customization information supplied when installing the system. While this method is
usually effective it can lead to extremely long command lines which cannot be processed
by the 3L compiler. To avoid this situation the '-i' switch should be given, which
suppresses ~e default search completely. In this case only those directories specified in the
3LCC_INC environment variable will be searched when looking for include flies.

44

tee31

Under MS-DOS no attempt is made to locate default include file directories since the
resulting command lines are nearly always too long for processing. In this case tee 31 will
not execute unless the 3LCC INC variable is defined. If no such variable is found a
suggestion will be made as to the correct assignment.

EXAMPLES

tee31 -e hellooe

Compile, but do not link the C source file he110 • e. The resulting object file will be called
hello. bin and will be for the T800 series transputers.

tcc31 -0 prog fI.bin f2.e f3.bin -lcubix

Compile file f2 . c and proceed to link it with fl . bin, f2 . bin and the Cubix libraries
to make an executable program called prog. This executable will run on T800 transputers.

tee3l -T4 -0 prog4 gl.bin g2.e g3.bin -leubix

This example is the same as the previous one but the resulting executable flie, called
prog4 will run only on T400 series transputers. Notice that one cannot mix transputer
types so the object files gl . bin and g2 . bin -must have also been produced with the
T4 switch.

tee3L -5 -T4 foo.c

Generate an assembly code listing of the C source file foo. c suitable for a T400 transputer
system.

tee31 -Imyinc -DCUBIX -e noddy.c

Compile but do not link the C source code in the file noddy. e for a T800 series transputer
system. Additionally define the CUBIX symbol and search the directory myinc when
attempting to satisfy #inc1ude statements.

tee3l -0 prog -g prog.bin subs.bin -lcubix

In this case the two named object files are linked together to produce an executable program
called prog. In addition a symbol table called prog.sym will be created for use with the
source level debugger, ndb.

tee31 -0 prog -BOx80000ff8 prog.bin -lcubix

Link the named object file into a program called prog which will execute with its stack
placed in the fast "on-chip" memory of the transputer, at address Ox80000ff8 As the
program executes the stack will grow down from this address towards the bottom of
memory.

MULTIPLE INPUT FILES

Some operating systems impose constraints on the length of a command line which
preclude the linking of large programs with many input files using the standard tcc31
syntax. In this case tce31 allows the list of filenames to be provided in a file and passed to
the compiler using the '@' syntax. Consider, for example, a program made up of ten object
files with names "ob ject 0 . bin", "ob j ect 1 . bin" and so on up to "ob j eet 9 . bin".

45

tcc31

and save it with a name such as "link c 1st". We could then invoke tee3l with a
command such as

tcc31 -0 prog -g @link.lst -leubix

to link the program with the Cubix libraries, build a symbol table for debugging and name
the output fue prog. Note that the suffix' c Ink' should not be used since tee31 uses that
name internally.

DIAGNOSTICS

If the linking procedure fails for some reason a rather uninfonnative message similar to

Failed to find .b4 file

is often generated. In this case the " •map" fue should be consulted for error messagese (A
good way to do this is to search for the string "ERROR" with a text editor or similare)

46

tfc

NAME

t f c - Compile and link Express FORTRAN Transputer node programs

SYNOPSIS

tfc [-c] [-0 outfile] [-g] [-Ilibname] [-T4] [-Tal
[-dryrun] [-xl [-N] [@filelist] files. 4> •

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command provides an interface to the 3L FORTRAN compiler useful for compiling
programs to be run under Express. Filenames ending with the ' • f' suffix are taken to be
FORTRAN source code and are compiled. The resulting output files have the '. bin'
suffIX.

After compiling all source files t f c proceeds, by default, to link the resulting object files
into an executable program. If no '-0' switch is provided this will have the name
trans. tId. By default libraries are searched which allow access to the Express
communication routines only. The Cubix and Plotix subsystems are included with the
Icubix and -Iplotix switches respectively. (It is important to note that programs
linked with either of these switches CANNOT be executed with nonna! host programs in
the "host-node" mode. Similarly programs compiled without one of these switches will not
run with the cubix program.)

In addition to producing the executable image two additional files are (optionally)
produced which have suffices' • sym' and ' •map'. The fonner is used by the source level
debugger ndb while the latter is of general interest - it contains infonnation about the
memory locations ofprogram variables and which libraries and object files were searched.

By default all compilation/linking is perfonned for T800 transputers. Note that object fues
and libraries are not necessarily interchangeable. between the two CPU types since
instructions may be generated that are not supported on both types of hardwaree The -T4
switch is provided to force the generation of programs suitable for execution on T400 series
systems.

OPTIONS

-c

-dryrun

-g

-lcubix

-lplotix

Compile only - do not proceed to link resulting object files.

Print the commands to be executed without actually perfonning any of
them. This options implies both '-x' and '-N'.

Include additional symbol table infonnation for source level debugging. If
specified at link time force the generation of the' . s ym" file for debugging.

Search the Cubixlibrary for unresolved symbols in addition to that required
by Express.

Search both Cubix and Plotix libraries for unresolved symbols.

47

tre

-N

-0 name

-T4

-T8

-x

@filename

-?

EXAMPLES

Keep all intermediate fues instead of deleting them.

Specify an alternate name for the executable program produced by the
linker. Default is 'trans. tId'e

Compile for T400 series transputerse

Compile forT800 series transputers.

Print each command before executing it .

Take "filename" to be a ftIe containing a list of source or object files to
be compiled or linked, one name to a linee .

Print usage message.

tfc -c hello.f

Compile, but do not link the Fortran source file he110 • f e The resulting object file will be
called he110 • b in and will be for the T800 series transputers.

tfc -0 prog fI.bin f20f f3.bin-Lcubix

Compile file f2 e f and proceed to link it with fl . bin, f2. bin and the Cubi~ libraries
to make an executable program called prog. This executable will run on T800 transputers.

tfc -T4 -0 prog4 gl.bin g2.f g3.bin -lcubix

This example is the same as the previous one but the resulting executable fl1e, called
prog4 will run only on T400 series transputers. Notice that one cannot mix transputer
types so the object files g1 . bin and g2 . bin must have also been produced with the
T4 switch.

tfc -0 prog -g prog.bin subs.bin -lcubix

In this case the two named object files are linked together to produce an executable program
called prog.. In addition a symbol table called prog. sym will be created for use with the
source level debugger, ndb.

MULTIPLE INPUT FILES

Some operating systems impose constraints on the length of a cominand line which
preclude the linking of large programs with many input files using the standard tce
syntax. In this case t f c allows the list of filenames to be provided in a file and passed to
the compiler using the '@' syntax. Consider, for example, a program made up of ten object
files with names "objectO . bin", "object1 . bin" and so on up to "object 9 . bin".
In this case we would create a file containing the ten lines

objectO.bin
objectl.bin
object2.bin

object9.bin

48

tfc

and save it with a name such as "link . 1st". We could then invoke tfc with a command
such as

tfc -0 prog -g @link.lst -lcubix

to link the program with the Cubix libraries, build a symbol table for debugging and name
the output fue prog. Note that the suffix' .Ink' should not be used since tfc uses that
name internally.

DIAGNOSTICS

If the linking procedure fails for some reason a rather uninfonnative message similar to

Failed to find .b4 file

is often generatedo In this case the " •map" fue should be consulted for error messages. (A
good way to do this is to search for the string "ERROR" with a text editor or similar.)

49

xtool

NAME

xtool- Analyze Execution Profile

SYNOPSIS

DOMAIN

This command is available at the system prompt on the host processor.

DESCRIPTION

This command is used to examine and analyze the .log file created with the execution
profiler, xprof, commands. The first argument is the name of the executable program to
be profl1ed and the second is the name of theftIe containing the profile data. This may be
omitted if it has the default value "xprof . out". Note that the execution profilerrelies on
data contained in a symbol table for correct functioning. This can usually be made by
specifying the '-g' switch when linking the program - the same procedure as used for
debugging with "ndb"o

This command presents a separate table on stdout from each node. The infonnation
.contained in each table is:

• An identifier showing which node the following data is from.

• A summary of the busy and idle time in each processor. In this regard we measure CPU
time so that the only "idle" time is when the CPU is not actively executing the process
such as when waiting for a message to arrive. All other classes of activity are counted
as "busy". Note that this interpretation is different from that of ctool which
distinguishes between calculation and communication time.

• A count of the number of profiling "misses". Since the buffer supplied to the profiling
function profil may not be large enough to encapsulate the entire program it is
possible that the execution profI1er will "miss" occasionally - i..e., the program will be
executing at an address which lies outside the region mapped by the profil call when
it tries to log the profile event. In this case the "miss" counter is incremented. The ratio
of hits to misses is presented to give a guide to the effectiveness of the profile obtained
- a lot of misses means that the routines in the profile list may not, in fact, be the most
heavily used.

• A profiling list containing the most heavily used 20 functions in the program. Each
shows the fraction of the total profIling events that it corresponds to.

This data appears on stdout.

EXAMPLES

To examine the profile data in a file called "phase3 .prof" created by the program
master execute the command

xtool master phase3.prof

so

SEE ALSO

cubix in the Express documentation.

xtool

51

C runtime library

Library routines available to Express
programs written in C

This (large) section of the manual is devoted to a listing of the contents of the subroutine library
which is invoked by Express programs.

Since parallel processing is an inherently complex activity the capabilities of Express are
correspondingly broad. This, in turn, leads to a very extensive set of functions which may appear
daunting to those familiar with other parallel processing systems or totally unfamiliar with parallel
computing. These users should not, however, be put off by the long list of routines given in this
section since we have found that practical applications use only a small fraction of the available
number. Unfortunately different programs tend to use different small subsets of the total list which
makes predictions difficult.

As a help in selecting the appropriate functions we have tried to indicate routines with similar or
related functionality in the "SEE ALSO" section at the end of each manual page. In conjunction
with the full manual and the numerous "EXAMPLES" this should give a reasonable guide.

One of the most important pieces of infonnation contained on each manual page is in the
"DOMAIN" section. This paragraph tells you whether the routine in question is available to
programs running on the "host" computer or to those running on the nodes of the parallel computer
system. In the latter case there is also an indication of which library switch is required to gain
access to the routine. Note that this infonnation must be used in conjunction with that concerning
the "Host-Node" and/or Cubixprogramming models.

If you are using the fonner style of computation then only routines shown as appearing in all node
libraries may be called from your "node" programs. Routines shown as appearing in the Cubix or
Plotix libraries cannot be called from such programs.

On the other hand, if you are using the Cubix model of computation you may freely call nearly all
of the routines described in this manual being careful only to specify the Plotix libraries for the
graphical routines. The exceptions in this case are those routines which specifically interface to
similar routines in the host processor - since you will not be writing a program to run on the "host"
you cannot call the corresponding routine there! Typical examples are the cp / e 1 t combinations
such as cprofcp and cprofelt. To achieve the effect of these routines in Cubixprograms one
would instead use cprof_end.

The information regarding which routines are available in which libraries and to which type of
programming models they belong is summarized in a later section of this manual where we also
show the correspondence between the various language variants of Express.

The various routines contained in Express can be classified according to their functionality in
several broad categories. The following sections attempt to indicate some of the important features
of each and also to supply, in a condensed fonn, some infonnation about important Express
parameters and the header ftIes necessary to use them.

1 High Level Communication System

This section describes the communication system available to application programs under
Express. Several levels of functionality are provided although some features are common to all.
While one may use the system to send messages to specific destination processors by specifying
their processor numbers one can also use the primitives in a "topology-independent" manner. The
exgrid system allows problems to be specified in the domain of the user data structures and can
be used to detennine processor numbers automatically for use in the communication primitives.

S3

Using this system it is possible to design applications that have absolutely no knowledge of the '\
underlying hardware topology and which will, in fact, execute transparently on any hardware that
supports Express. Similar routines are available to dynamically configure an application to the
available processing resources at runtime.

Several concepts underpin the entire communication system and can be summarized as follows;

• All messages have "destinations". This merely specifies the node to which the
message will be sent

• All messages are "typed". As well as the infonnation concerning what data is to
be sent and to whom every message has a type field which allows receivers to
distinguish between various messages.

• The message reception mechanism has an "acceptance" criterion. All read
routines may specify source.and type infonnation which constrains the range of
messages which may be read. This information may either limit· attention to
specific node/type combinations or various degrees of"dontcare" behavior may
be specified using the DONTCARE macro.

• Both blocking and non-blocking read functions are supplied.

• Messages are "atomic". A single read operation corresponds toa single write
operation. If the sender transmits more data than is read then the excess are
discarded and may NOT be read with another read request.·If less data are sent
than were requested then the message is read and a return code indicates the
discrepancy - another read request may not make up the difference unless
another write request is also made.

On a more functional level the following generalities may also be observed:

• The "node" and "type" infonnation associated with a message are always
supplied in pointer fonn - even when this seems unnecessary. In read requests,
for example, pointer values are required since a wildcard specification will be
overwritten with the actual parameter value. In write requests, however, this is
superfluous. The pointer standard is adopted for consistency.

• The general ordering of arguments is: what, how much, where and type - i.e.,
the [JIst arguments specify what data is to be transmitted, the second how much,
the third indicates to whom the data should be sent and the last argument
denotes the type of the associated message. This standard leads to an obvious
calling sequence for the simplest "read" and "write" operations

exread(buffer, length, &source, &type);
exwrite(buffer, length, &dest, &type)i

(Note the pointer arguments for the last two). Some calls which both read and write data
have the above sequence duplicated for both operations so the exchange function, for
example, has the calling sequence

exchange (inbuffer, inlength, &source, &intype,
outbuffer, outlength, &dest, &outtype);

S4

2 Hardware Dependent Communication System

Express has been carefully designed to allow programs to be written which will execute
transparently on a wide variety of different parallel architectures. As a result, none of the basic
primitives make any reference to the underlying hardware configuration. On occasions, however,
portability may be a less important goal than absolute performance on a particular piece of
hardware. To support those users who have this type ofconstraint an Express subsystem has been
provided with a "raw" interface to the communication hardware. Typically the use ofthese routines
disables most of the higher level processing of which Express is capable such as the debugging
and perfonnance analysis tools. For this reason we suggest that its use be adopted as the final stage
in the development of any parallel processing project after whatever bugs and/or perfonnance
questions have been resolved by using the full Express system. .

3 Synchronization

One of the key concepts which underlies all of Express concerns interprocessor synchronization.
In some sense this issue is the key to all ofparallel processing - different algorithms can most often
be classified not by the particular scientific or other field from which they arise but by the way in
which they necessitate interprocessor synchronization. In Express we classify two types of
behavior:

• Asynchronous
"Asynchronous" system calls can be made in any node at any time regardless of the
activities currently occurring in other nodes. One can consider that the node making
the call is operating totally in isolation.

• Loosely synchronous
A "loosely synchronous" system call can be perceived as a barrier to the further
progress of the program. When one node makes a loosely synchronous call it waits
for all other nodes to make the same system call (albeit with possibly different
arguments). When all nodes have made the call every node proceeds. This concept
might be classed "synchronous" but this is too restrictive - it is quite pennissible for
one node to make the "loosely synchronous" call far ahead of the other nodes. All
nodes will, however, be synchronized after the call completes.

Note that these behaviors are not (usually) states of the system but are applied individually to
different function calls. The function exwrite, for example, which sends an Express message
may always be made asynchronot,lsly - i.e., any node may send a message at any time. Similarly
any node may call abort to tenninate a program at any time. On the other hand, fmulti, the
system call which switches between file I/O modes must always be made "loosely synchronously".

Because the synchronization properties of a parallel program are often the key to its construction
and optimization, the situation is actually more complex than just discussed.

The default state of Express is that every system call has an associated synchronization property.
These states are listed in section 3 of this manual. Also available (in the Cubix library) is a global
override function, syncmode, which switches all system calls to asynchronous mode.

At a slightly more useful level, each open file has its own synchronization property. This allows,
for example, a program to have a global input stream for basic parameters, individually (and

ss

asynchronously) accessed data files for operational data and error reporting, distributed
(synchronized) files for output data, etc. In each of these modes different requirements are made
by Express on what can and cannot be done to the fues.

Even within the "asynchronous" functions there are different levels of behaviore The exwrite
function mentioned earlier, for example, may be called at any time in a user program, but it does
not return to its caller until a message has been transmitted to the receiving node. The analogous
exsend system call also sends a message to another processor but returns immediately to its caller
without waiting for the data to be transmitted. While both of these calls are "asynchronous" in the
sense that the start of the operation may occur in any node at any time exsend is clearly "more" _
asynchrononsthan exwrite because the point at which the buffer containing the data which has
been sent can be re-used is not known when the call returns.

This discussion may have convinced you that the topic of interprocessor synchronization is too
complex to ever be understood. This is not, however, the case. While it is true that many of the
elementary bugs in Express are caused by violations of some synchronization constraint they are
remarkably easy to find and eliminate using tools like the ParaSoftdebugger, ndb. Furthermore,
the existence of these synchronization constraints tends to help rather than hinder the development
process. Much care has gone into the I/O system, for example, to make the synchronization as
natural as possible. Typically we find that the message

abort (-1)

(which is the response of the cubix program toa violation ofa synchronization rule) is indicative
of an error in the user application which might otherwise have gone unnoticed or else caused other
problems to occur later on.

4 Decomposition Tools

This section describes the utilities used to automatically diStribute problems among parallel
processors. The Express manuals describe a set of communication primitives designed to allow
"topology independent communication". Problems can be specified in their own natural domain
two dimensions for image processing applications and three for aircraft simulation, for example..
The utilities in this section are then provided to assign the "processor numbers" used by the
communication routines described in the previous section.

Also available is another utility which allows applications access to certain important runtime
parameters. In conjunction with the other utilities this allows programs to be dynamically
configured, at runtime, to the system on which they execute. This allows, for example, a program
developed ona four processor system to be run on a 1000 node production machine by merely
changing a single command line parameter.

5 Multitasking Support

Express supports a powerful remote multitasking facility which allows programs running on any
processor in the system to initiate a "task" on another node of the parallel computer. This system
is built around the exhandle function which associates a program segment with a particular
message type. Upon the arrival of· a registered message type the indicated program section is
triggered as a separate task which is then free to pursue its own independent execution path.

In support of this multitasking facility is a set of semaphore operations designed to allow two or '

56

more processes on a node to cooperatively update shared data. These routines use the data type
EXSEM, defined in the standard header file express. h.

6 Processor Allocation and Control

This section describes in detail the control functions at the lowest levels of Express. They are used
in "Host" programs to allocate groups of processors, load programs and start execution. Note that
this section will not concern you if you intend to use the Cubix programming model since the
cubix program takes care of the necessary steps automatically.

The unifying concept of this section is that of the processorgroup. This is the fundamental unit of
processor allocation - processors are allocated to processor groups which are then treated as a unit.
When programs are to be loaded into processor groups the processor group index must be
specified.

iinclude "express.h"

main ()
{

int pgindex;

/* Allocate four transputer nodes anywhere in array */

if ((pgindex=exopen (" / dev/transputer", 4, DONTCARE» <0)

fprintf(stderr, "Failed to allocate processors\n")i
exit(2)i

}

/* Load application, "noddy" into all processors */

if (exload(pgindex, "noddy") < 0) {
fprintf(stderr, "Failed to load application\nn)i
exit(3);

}

As well as allowing a single host process to allocate and manipulate more than one group of
processors it is also possible for two or more users to simultaneously allocate and work with groups
of processors. (Provided, of course, that the host operating system allows multitasking. This
features is not, for example, supported under MS-DOS.) It is even possible for multiple host
processes to share access to the same group of processors. This mechanism allows multiple,
disjoint, front end processes such as a file serving utility and a complex graphical user interface to
both have access to the same group of nodes. Routines are available to ensure that the processes do
not interfere with each other.

All the routines in section return -1 to indicate errors. Some also write diagnostic messages and
some cause immediate tennination of the calling process. In any case the parallel machine should

57

remain intact and available for use by other applications and users.

7 I/O Services

The Cubix I/O library is available to programs using the Cubixprogramming model and associated
server process. It provides a full set of C style I/O utilities as well as many extensions designed
explicitly for parallel processing. Only the latter are fully documented here.

The following routines are provided from Section 2 of the UNIX programmers manual which is
the best reference for the arguments and functionality of the routines.

exit creat ftime kill pipe sync
abort dup getgid link read system
access dup2 getpid Iseek setgid time

chdir errno getuid mknod setuid umask
chmod fcnt14 gtty nice stat unlink

chown fstat ioctl open4 stty write

close

(For the interpretation of the superscript notes, see below.)

Note that, by default, each routine must be called "loosely synchronously" in all processors with
identical arguments. Note that the syncmode function can be used to relax this constraint

The following is the list of supported functions from the Standard C library for C programs as
specified in Chapter 4 of the draft ANSI standard O'3Jl1)0 Unless noted these functions may be
called asynchronously in the processing nodes since they modify data structures local to the
individual processors.

NaN atexit atof atoi
exitS fasync 1 fcIose 1 feof

ferror !flush1 fgetc3 fgetposl

fgets3 fileno finite fmulti 1

fprintf2 fputc2 fputs2 fread3

fscanf3 fseek1 fsetposl ftell 1

fwrite2 getc3 getchar3 getenv

gets3 isalnum isalpha iscntrl

isdigit isgraph islower ismulti
isprint ispunct isspace isupper
isxdigit malloe avail malloe_debug malloc_print

malloc_verify printf2 putc2 putchar2

puts2 rand remove 1 rename1

scanf3 setvbuf4 sprintf sscanf

strerror strtod strtol strtoul

tmpnam ungete3 vfprintf2 vfseanf3

58

NOTES:

1Q These routines must be called "loosely synchronously" and with identical
arguments in each node unless the stream argument is in async mode.

2. Must be called "loosely synchronously" and with identical arguments in each node
unless the stream argument is in async or multi modes.

3. Must be called "loosely synchronously" in all processors unless the stream
argument is in async mode. If the stream argument is in multi mode the
~guments may differ from node to node but the function must still be called
"loosely synchronously".

4. These functions have arguments in the Cubix I/O system which may not be
supported on normal "host" systems and their use should be monitored carefully if
program portability is to be maintained.

5. These functions must be called "loosely synchronously" and with identical
arguments in every node unless the syncmode function has been used to initiate
asynchronous processing.

8 Graphics

The Plotix library is supplied to allow both parallel programs running in the Cubix programming
model and "host" programs access to device independent graphics in a portable manner. The
library contains about twenty routines which are sufficient to .cover the majority of graphical tasks
while not being an implementation of any particular standard.

9 Header files, macros, variables, etc.

Central to the use of Express is the C header ftIe "express. h" which should be included
whenever Express functions are being used. This file defines a number of important parameters
which have wide usage in the system.

DONTCARE This macro value is used to fudicate that the source or type of an
incoming message are of no consequence. Note that it is illegal to send
a message with type DONTCARE even if you really don't care!

PROCNUM ORDER

NONODE

NULLPTR

This macro value is used to indicate that the parallel I/O system should
operate in a mode in which data from nodes is sent to and/or received
from the host in order of increasing processor number. It is used in
conjunction with the forder, mread and mwrite function calls.

This macro value is used by the exgrid functions to indicate that no
node is attached to the user decomposition in the indicated direction.
Such a case might arise, for example, when solving partial differential
equations on a finite space - some nodes have no neighbors in some
directions since they lie on the edge of the domain.

A macro value equivalent to the NULL pointer. Useful in a number of
situations where Express would normally return information (in the

S9

HOST

src or type fields of a call to exread or the sizes argument to
exconcat, for example) but the caller has no interest in the associated
data.

An integer variable which contains the "processor number" used by
node programs to send/receive data to the host. By default this is the
machine that loaded the node program although it is possible to override

.this.

HOSTMASK A macro value that can be used to create the "processor numbers" ofany
host within a multi-host system. When configured Express assigns
small integer values to the various hosts present in the system and the
"logical OR" of this value· with HOSTMASK· will create a processor
number suitable for communication with the processor.

ALLNODES A macro yalue used in the "global" communication routines
(excombine, exbroadcast, exconcat, etc.) to indicate that a
particular operation should be applied to all nodes in a parallel
processing system. Never includes the host processor(s).

ALLPROCS A macro value similar in use to ALLNODES except that it implicitly
includes all host processors attached to the system.

In addition to these variable/macro values express. h defines a number of important variable
types.,

struct nodenv A data structure whose contents indicate the run-time parameters
associated with the executing program, the number of nodes it is using
etc. The values are obtained with the exparam function call.

EXSEM The "semaphore" structure manipulated by the operations exsemsig,
exsemwait, etc. to implement the mutual exclusion primitives
important in multitasking operations.

ETOGGLE The "toggle" structure· used by the event profiler to measure CPU time
and other statistics in indicated program segments.

10 Manual Page Layout

The manual pages are, for better or worse, modeled after those often found in UNIX documentation
which means that each manual page has several well-defined sections. The overall structure is

60

shown below.

abort 4-C------------------------NAME
abort - Immediately tenninate program

SYNOPSIS
abort (status)
int status;

DOMAIN
Available to node programs compiled with the Cubix or
Plotix libraries only

DESCRIPTION
The abort mechanism .

EXAMPLES
This function is most useful iooo.eo

fasync(stderr)i /* Async message */
if«ptr=malloc(8192» == (char *)0) {

fprintf (stderr, "Death!! \n");
abort(lS);

FORTRAN SYNOPSIS
SUBROUTINE KABORT(ISTAT)

FORTRAN DESCRIPTION
This routine causes the immediate tennination

BUGSIWARNINGS
None.

SEE ALSO
"Cubix: Programming parallel computers without

Header contains the
name of the manual
page which is usually
the same as the routine
describedo

The various sections and their contents are:

NAME Repeats the name associated with the manual page and a brief one-line
description of the purpose of the associated routines

SYNOPSIS Summarizes the arguments used by the indicated routines. If more than one
routines is described on a particular page then all are listed in this section

DOMAIN Describes the libraries in which the routine is to be found and any
restrictions on when it may be used.

DESCRIPTION Describes the purpose ofeach routine and lists the actions caused by its most
important arguments. This section is the most important reference material

61

for each command.

EXAMPLES One of more examples of the use of each routine are shown on each manual
page. "This section probably represents the best infonnation on how the
various arguments are put together in "real" examples~This section is also
useful for demonstrating the order in which function calls should be made
and which ones are necessary at which points in the execution of Express
programs.

FORTRAN SYNOPSIS
Whenever a similar routine is available in FORTRAN its arguments and
type are shown. In most cases the use of the arguments exactly parallel those
of the equivalent C routine.

FORTRAN DESCRIPrION
If the arguments or usage of a FORTRAN function differ from those of the
C counterpart this section attempts to explain the differences. Hopefully this
information will be sufficient to allow C programmers to make the transition
to FORTRAN but if not, the FORTRAN reference manual contains explicit
examples and a more detailed discussion of the FORTRAN calling
sequences.

WARNINGS If the routine has peculiar side effects or is "dangerous" in some way it will
be noted in this (optional) section. Any non-intuitive behavior is also noted
here.

62

BUGS

SEE ALSO

Currently known bugs and/or unimplemented routines are noted in this
(optional) section.

Related commands andlor routines from the various Express libraries are
noted in this section.. Using this information is usually the quickest way to
build a complete picture of the interaction between the various utilities..

abort

NAME

abort - Immediately abort program

SYNOPSIS

abort (status)
int status;

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPrION

The abort function causes the immediate tennination of the parallel program. A message
is displayed on the host processor showing the processor number of the aborting node and
also the status value supplied to the call. If examined with the debugger, ndb, the
aborting nodes will appear to be at breakpoints.

EXAMPLE

This function is most useful for dealing with asynchronous problems which require
tennination of the program but which might not occur in every node. If the tennination
condition is known to occur in each node the regular system call, exit should probably be
preferred. A common problem that often merits abort is the failure of the memory allocator
malloc. Code such as the following prints a warning message and then halts processing via
an abort call.

fasync(stderr); /* Async message */

if ((ptr=malloc (8192» -- (char *) 0) {
fprintf (stderr, "Out of memory !! \n") ;
abort (15) ;

}

else /* Process new memory block */

FORTRAN SYNOPSIS

SUBROUTINE KABORT(ISTAT)
INTEGER ISTAT

63

aopeD

NAME

aopen - Open a file asynchronously

SYNOPSIS

#include <fcntl.h>

fd = aopen(name, flags, mode)
char *name;
int flags;
int mode;

fd ~ open(name, flags, mode)
char *name;
int flags;
int mode;

fcntl(fd, cmd, arg)
int fd;
int cmd;
int arg;

DOMAIN

These routines may only be called in programs compiled with the Cubixor Plotix libraries.
Host programs may use open and fentl but not the O_CBXASYNC flag described below..

DESCRIPTION

The function aopen is used to open a file completely asynchronously for use on one node
only. All subsequent calls to I/O primitives referring to the returned file descriptor will be
executed only on the specific node, with no regard for synchronization. The flags and
mode arguments are described in the programmers manual for the host computer under
open.

The functions open and fentl are also documented in the programmers manual for the
host computer. Cubix provides for an addi.tional flag bit, 0_CBXAS YNC, (which may also
be used with open), which signifies that subsequent flO operations on the file descriptor
should be asynchronous. In contrast to aopen, open must be called synchronously on all
processors. All processors receive the same file descriptor, but if the 0_CBXAS YNC bit was
set in flags, they will subsequently access the file asynchronously.

This functionality is supported in the buffered I/O system through the extra "A" character
in the call to f open. The command

fp = fopen(n/tmp/foobar", "wA");

opens the indicated file "asychrnously" - each node making this call will receive its own
pointer into the file. Furthennore not all nodes need make the call together.

64

aopen

EXAMPLE

The following code can be used to modify the "synchronous" access mode for an individual
flie. We frrst acquire the current flag settings and then add in the special 0_ CBXASYNC
flag 0

#include <fcntl.h>/* Needed to define 0 flags */
{

flags = fcntl(l, F_GETFL);
/* Read current file settings */

flags 1= O_CBXASYNC;
/* Add in the asynchronous "bit" */

fentl (1, F_SETFL,' flags) ;
/* Set new flags */

}

SEE ALSO

fmulti,forder,mread,mwrite

65

aspect

NAME

aspect - Inquire device aspect ratio~

SYNOPSIS

aspect(devx, devy)
double *devx, *devYi

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

. DESCRIPTION

This routine returns the "size" of the display surface. This concept is less than well-defined;
it can either mean the number of pixels in each direction or the physical size of the display
device. We choose to return the latter values since they seem to be more useful. In particular
the sizes returned are the width and height of the display surface, in inches.

EXAMPLE

The following code shows the interaction between the aspect and vport calls which
allows the user image to always appear in the largest square region of the display surface
independent of the actual shape of the device screen. The draw_square routine draws a
square in the user coordinate space. We show the output both on the default viewport and
also after using aspect to make a square window.

double xfac, yfac, ratio;

draw_square();/* Draw square on default viewport */

aspect(&xfac,&yfac)i
ratio = xfac/yfaci
if (ratio > 1.) vport(O.,O.,l./ratio,l.);
else vport(O.,O.,l.,l./ratio);

linemod(l);
draw_square () ; / * Now draw tt real" square */
sendplot();

66

FORTRAN SYNOPSIS

aspect

SUBROUTINE KASPEC(XRES, YRES)
REAL*4 XRES, YRES

SEE ALSO

space,vport

67

box

NAME

box - Draw and ftIl rectangleso

SYNOPSIS

box(xO, yO, xl, yl, color, edge)
double xO, yO, xl, yl;
int color, edge;

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix librarieso

DESCRIPTION

This routine provides a simple interface to the polygon drawing primitives for the common
case of rectangular regions. A rectangle will be drawn whose bottom left corner has
position (xO, yO) and whose top right comer is at (xl, yl) ¢ The color argument
indicates the manner in which the region should be filledo Positive values of color
translate into solid colors in the same manner as the arguments to the line color primitive,
color 0 Negative values yield device dependent shading patterns. If the edge argument is
non-zero then the boundary of the region will be drawn in the color most recently specified
in a call to the color function.

All coordinates are expressed relative to the most recent call to space.

Note that filling with color = 0 and edge = 0 results in a "selective erase" - specific
areas of the screen can be erased.

EXAMPLE

The following code draws a simple box in the foreground color and then takes a "bite" out
of it by drawing and filling in the background color.

space(O.,O.,lO., 10.);/* Define coordinate system */

box (1 .0, 1. 0, 9. 0, 9. 0, 1, 1);
box (5 . 0, 1. 0, 9. 0, 5. 0, 0, 0);

sendplot();

68

box

Note that this code achieves the same effect as that shown on the panel manual page but
is much simpler. Also note that filling rectangular regions can often be done by hardware
even in cases where no general hardware polygon fill is available. In these situations box
will be significantly faster than the equivalent calls to either po1gn or the pane1 routines.

FORTRAN SYNOPSIS

SUBROUTINE KBOX(XO,XYO,Xl,Yl,ICOL,IEDGE)
REAL*4 XO, YO, Xl, Yl
INTEGER IeOL, lEDGE

SEE ALSO

panel, color

69

callhost

NAME

eallhost - Interface to user host routines from Cubixprogram

SYNOPSIS

int callhost(func, odat,ocnt, idat,icnt, psent, pstat)
int func, oent, lent, *psent, *pstat;
char *odat; *idat;

int starthost(fune, odat, oent)
int fune, oent;
ehar *odati

int rethost(idat, ient, psent, pstat)
int ient, *psent, *pstat;
ehar *idati

DOMAIN

These routines may only be called in programs compiled with the Cubixor Plotix libraries.
Furthennore special software is necessary to re-link the part of the Cubix server which
executes on the'system host

DESCRIPTION

These routines provide an interface between normal Cubix programs and user written
routines which must run on the host computer. The simplest routine, callhost, causes a
user written routine (denoted by the integer func, explained later) to begin execution. This
routine can be passed up to 512 bytes ofdata from the buffer odat which it will receive as
an argument. The exact number of bytes to be sent to the host routine is specified in the
oent argument

After· processing the host routine is also allowed to send up to 512 bytes of infonnation
back to the node program which invoked it.. This data will be stored at address idat in the
node program. The i ent argument indicates the maximum number of bytes which should
be copied to the node's idat buffer. If more are sent from the host they are ignored. In any
case the variable pointed to by the psent argument will be initialized to the number of
bytes which the host attempted to transfer, whether larger or smaller than icnt.

Finally the variable pointed to by the pstat argument will be set to the value returned by
the host routine.

The 512 byte restriction is imposed by the fact that for reasons of speed the data transferred
to/from the host routine is not copied to a "safe" user buffer but remains in the system buffer
to which it was sent. If this poses too strict a restriction on the abilities of the node program
then an alternative interface is provided b~ the staJ;~hos.t- and ret~host functions.

starthost is responsible for starting up the host routine and passing it up to 512 bytes
of data in the same manner as indicated by the fIrst three arguments to callhost.
rethost perfonns the operation of the last four arguments to eallhost which it

70

caIIhost

interprets in an identical fashion.The advantage of this interface is that between the calls to
starthost and rethost in the node program the host and node codes are running in a
mode identical to the "host-node" programming model and can, therefore, communicate
data at will using the regular Express systems calls (exread, exwrite,
exbroadcast, etc.)

Note, however, that this is a rather "double-edged" advantageo On the one hand it allows
the host routine and the node program to communicate data at will avoiding the 512 byte
restriction for data transactions in both directions. On the other hand the advantages of the
Cubix programming model are suspended until the host routine tenninates. As a result the
node program cannot use any Cubix I/O or Plotix graphical commands until the call to
rethost completes. Similarly the user will have to resolve potential byte swapping and
alignment problems due to incompatible host and node CPU's which might otherwise have
been covered up by the Cubix programming model. For these reasons, therefore, the
interface through the callhost routine is to be preferred.

EXAMPLE

The following code segment is used to execute the host routine with index 3 in the host. A
simple character string is sent to this routine and a small array of integers is returned.

int tot, i, stat, hoststat, ngot;
long indat[32];
char *str = "Social security numbers";

stat = callhost(3, str, strlen(str)+l,
indat, sizeof(indat), &ngot, &hoststat);

/*
* If either the host or nodes reported an error give up now.
*/

if(stat < 0 I I hoststat < 0) {
fprintf(stderr,"Something went wrong: %d %d\n",

stat, hoststat);
return;

}

/*
* Figure out how many bytes we actually got. This is either
* the number we asked for or the number sent, whichever is
* smaller.
*/

ngot = (ngot < sizeof(indat» ? ngot : sizeof(indat);
/*

* If everything seemed to be OK we can add up the numbers
* returned by the host. Note that we might have to swap some
* bytes here ••••..
*/

#ifdef SWAP

71

callhost

_ex_swaw(indat, inctat, ngot);
#endif

tot = 0;
for(i=O; i<ngot/sizeof(indat[O]); i++)

tot += indat[i];
}

It is important to note that the data buffer being transmitted to the host is sufficiently small
to fit into the 512 byte restriction. This allows us to use the callhost interface. Further
we take care to calculate·correctly the·amount of data re~ed to the node program and to
(potentially)· swap bytes. Since the· data sent to the host is. in the form of a character string
we should not.have to swap it's bytes. Were it any other data structure, however, the code
shown within the #i f def SWAP in the later part of this code might need to be added
earlier too.

HOST INTERFACE

The previous sections described the interface to the system from· the perspective of the node
program. As well as incorporating one or more of the node system calls in your program
you must also arrange for the host program to be linked with your host routineso

The linking of host routines into the cubix server process is controlled by the source file
userlink. c supplied with the "Cubix user-link kit"o This file contains an array of
function pointers .the indices of which correspond to the func argument passed to
callhost or starthost .. By default the top part of this file contains the following

int (*user_funcs[]) () = {
user_no_op,

} ;

This code shows that a single host function is defined by default: user_no_ Ope This
function doesn't actually do anything and is merely provided as a place holder to simplify
the introduction of new user routines. If, for example, two additional user functions are
required called, search_DB and sort_DB for example, we could modify the above part
of the userlink. c file to read

extern int search_DB(), sort_DB();

int (*user_funcs[]) () =
searchDB,
sort_DB,

} ;

72

caUhost

Notice that we elected to delete the user_no_ op function and made the two new routines
take indices 0 and 1. Also note that we changed the definition from static to extern
since these routines are probably defined outside the userlink. c file.

Having initialized the data structures used by Cubix to find user host routines it remains
only to discuss the calling sequence used when·invoking them.

When a user host routine is called it is passed three arguments and is expected to return an
integer value. The three arguments passed to the user routine are:

• A pointer to the buffer containing data sent to the host as the odat argument to
starthost or eallhost.

• The number of bytes contained in this buffer. This value will be the same as that
specified as oent when calling the host routine from the nodes.

• A pointer to an integer which should be set to the number of bytes to be returned
to the node program as idat. This data should be placed in the buffer pointed
to by the frrst argument, overwriting whatever values were sent there from the
nodes. The value written to this argument will be returned to the node program
through the psent argument of callhost or rethost.

As an example, therefore, the skeleton of the search_DB function should be similar to

int seareh_DB(buffer, in_bytes, pout_bytes)
char *buffer;
int in_bytes;
int *pout_bytes;
{

*pout_bytes =
return ... ;

... .,

Notice that we finish the function by making sure that the pout bytes argument is
initialized. Finally we return a value which will be passed to the nodeprogram through the
pstat argument.

DIAGNOSTICS

The node routines described here indicate error conditions by returning -1 and setting the
external variable errno to a value indicating the source of the error. The possible error
conditions are as follows:

ETOOBIG An attempt was made to either send too much data to the host or return
too much to the nodes. The maximum amount of data that can be
transmitted through the system invocation mechanism is 512 bytes.

EBADPTR The func argument indicated a function with an index outside those

73

callhost

defined in the host's function table.

It is important to note that if an error occurs in a call to starthost no call to rethost
should be made.

FORTRAN SYNOPSIS

INTEGER FUNCTION KCALHO(FUNC, ODAT, CeNT,
IDAT, leNT, PSENT, PSTAT)

INTEGER FUNe, ODAT(*), OCNT, IDAT(*), rCNT, PSENT, PSTAT

INTEGER FUNCTION KSTRHO(FUNC, ODAT, OeNT)
INTEGER FUNe, ODAT(*), OCNT

INTEGER FUNCTION KRETHO(IDAT, rCNT, PSENT, PSTAT)
INTEGER IDAT(*), leNT, PSENT, PSTAT

SEE ALSO

syncmodeo

74

clipper

NAME

clipper - Enable/Disable clipping.

SYNOPSIS

setclip(xO, yO, xl, yl)
double xO, .yO, xl, yl;

endclip ()

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These two calls are used to enable and disable the clipping primitives. The setclip
routine defines a two-dimensional clipping window relative to either the default user
coordinate range or that set by the most recent call to space. Further lines, points, markers
and polygons will be "clipped" relative to this window and portions lying outside the
indicated range will be removed.

The endclip routine disables the clipper.

It is important to note that clipping is performed with respect to each "vport" and that the
clipping window is specific to the active viewport at the time when setclip is invoked.
Each call to setvport alters the clipping window to that associated with the particular
"vport" selected.

Note that while clipping is typically expensive this process is supported on the nodes of a
distributed machine rather than on the graphics device itself. As a result all clipping is
performed in parallel leading to increased performance.

EXAMPLE

In the absence of the call to setclip the following code would draw a diamond shaped
polygon on the display surface. After clipping only a portion of the figure remains.

space(D.,D.,4., 4.);/* Define coordinate system */
setclip(l., 1.,3.,3.);

initpanel(l, 1);
panelpoint(D., 2.);
panelpoint(2., 4.);
panelpoint(4., 2.);
panelpoint(2., D.);
endpanel();

sendplot();

7S

clipper

FORTRAN SYNOPSIS

SUBROUTINE KSETCL(XO, YO, Xl, Yl)
REAL*4 XO, YO, Xl, Yl

SUBROUTINE KENDCL

SEE ALSO

point,panel,move,marker,cont

76

color

NAME

color - Change color attribute of graphical objects.

SYNOPSIS

color (index)
int index;

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.·

DESCRIPTION

This routine modifies the color used in drawing all subsequent lines and markers. The
index argument is typically device-dependent but one can safely use the following on
"color" devices.

o Background color for device. ("Black")
1 Foreground color for device. ("White")
2 Red.
3 Green.
4 Blue.
S Cyan.
6 Purple.
7 Yellow.

Monochrome devices, by default, support only two of these indices, 0 and 1.

The background color is often useful for selectively erasing previous symbols.

This function interacts with the greyscale and rainbow routines providing full color
on devices capable of supporting such models.

EXAMPLE

The following code defines an 8 x 8 coordinate system and draws a simple box in the
foreground color. It then overwrites the lower right hand comer of the box in the
background color, erasing part of the image.

space (0 . , 0 . , 8 ., 8.) i

color(l)i
move(l.,l.)i
cont(7.,1.)i
cont(7.,7.)i
cont(1.,7.)i
cont(l.,l.)i

/* Define coordinate system */

/* Foreground color */

77

color

color(O)i
move(4e,le)i
cont(7e,lo);
cont(7o,4o);

sendplot();

1* Background color */

FORTRAN SYNOPSIS

SUBROUTINE KCOLOR(ICOL)
INTEGER rCOL

SEE ALSO

cont,move,linemod,rainbow,greyscale

78

console

NAME

console - Redirect system calls.

SYNOPSIS

console_node (node)
int node;

DOMAIN

Available to node programs using the Cubix file server and linked with the Cubix or Plotix
libraries.,

DESCRIPTION

This function is provided to support systems with more than one attached host. By default
all Cubix system calls are directed to the processor which originally loaded and executed
the user application. On occasion, however, it may be necessary to perform certain system
tasks on other nodes in the system.

The console_node function has as its argument a processor number. All further (non
I/O) operating system requests will be directed to this node. To obtain suitable node
numbers for use in this call we take the host identifier from the configuration utility,
cnftool, and OR in the highest bit. Ifcnftool designated a particular host as "HI" then
the appropriate node number to use is 0x 80 01.

It is important to note that I/O related system requests are directed to the host which actually
has the appropriate fue, independent of the status of the console_node function.

EXAMPLE

Let us assume that three "host" processors are attached to our system. The frrst is the
original system console which can be addressed through the value HOST from
express. h. The others have the identifiers HI and H2 as defined in the system
configuration utility, cnftool. The following code executes a rather simple operation; it
merely determines the "date" on each host in tum, returning overall control to the system
console.

console_node(HOST);
system ("date") ; /* Main console */

console_node(Ox8001)i
system ("date") ; /* Host serverl * /

console_node(Ox8002)i
system (" date") i / * Host server2 * /

console_node(HOST)i /* Switch back to main */

79

console

Note that different nodes are allowed to maintain distinct consoles with these calls although
one must then use asynchronous requests to avoid deadlock.

FORTRAN SYNOPSIS

SUBROUTINE KCONND(NODE)
INTEGER NODE

SEE ALSO

s yncmode, in "Cubix: Programming parallel computers without programming hostso" and
"Using Express on systems with multiple hosts"o

80

coot

NAME

cont - Move and draw a lineo

SYNOPSIS

cont (x, y)

double X, y;

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

Moves the current plotting position to (x,y) and draws a line in the current color from the
previous plotting position. x and y are specified relative to the coordinate system defined
by the most recent call to space.

EXAMPLE

The following code draws a broken diagonal line across the display sUIface.

space(O.,O.,4., 4.);/* Define coordinate system */

move(O.,O.);
cent (1 . , 1 •) ;
meve(2.,2.);
cent(3.,3.);

sendplot();

FORTRAN SYNOPSIS

SUBROUTINE KCONT(XO, YO, Xl, Yl)
REAL*4 XO, YO, Xl, Yl

81

coot

SEE ALSO

move,color,linemoct

82

contour

NAME

contour - Contouring functions

SYNOPSIS

contour (func, gx, gy, levrnin, levrnax, nlev, panels)
double (*func) (), levmin, levrnax;
int gx, gy, nlev, panels;

initlevel(func, gx, gy, level, panels)
double (*func) (), level;
int gx, gy, panels;

int getpoint(px, py)
double *px, *py;

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

The contour routine makes a two-dimensional contour map of the supplied function
funco Rather than provide an array of values spec~fying the function to be contoured a
function is supplied which will be called repeatedly with pairs of integer arguments
representing the position at which a value is required. The range of values is specified by
the gx and gy arguments; the user function will be called as func (i, j) with i and j in
the ranges 0 s i < gx and 0 s j < gy.

Contours are drawn at nlev positions equally spaced between levmin and levrnax.
Optionally levrnin and levrnax can both be set to zero in which case suitable values are
selected internally. .

The final argument, panels, selects the type of contouring to be perfonned. If non-zero
then the contours will be drawn as fIlled polygons while a zero value selects the more
conventional style in which the contours are represented by lines. In the case of filled
regions the lowest nlev indices of the color map will be used. The functions rainbow
and greyscale can be used to re-map the appropriate color table entries.

Since this routine calls usendplot internally it must be called in all nodes together.
Failure to do so will result in communication deadlock. Note, however, that no internode
communication is done in perfonning the contouring. It is the responsibility of the user to
distribute boundary values to processors that require them before calling the contour
routine.

The contouring utility described here assumes that the data lie in a rectangular domain - i.e.,
that the mesh underlying the data is a Cartesian grid. In order to contour data specified in
other coordinate systems, such as polar coordinates, the lower level initlevel and
getpoint routines are available.

The fonner specifies a function to be contoured and a range of i and j values just as in

83

contour

panels-= 1

= 2panels

All interior points are returned. The surrounding box is
treated as a true rectangle and only the vertices are returned.
This option is designed for simple line contouring of
rectangular regions.

The contour map is cut into horizontal strips and coordinates
are returned in such a way that the resulting polygonal
regions are simply connected. The bounding box is treated as
in option O. Designed for color fill panels.

The interior points are treated as in option 1 but the boundary
is also divided into many points which are returned
individually. This option is designed for cases where the
actual domain to be contoured is not rectangular and hence
the boundary values need to be transformed in some manner.

The getpoint function is used, once a contour has been initialized, to return coordinates
which lie on the contour. As well as returning an (x,y) coordinate pair under.the supplied
pointers the returned value indicates the nature of the returned point as follows

status = 0 This contour level is finished. Ignore returned coordinatese

status = 1 The coordinates are valid for the current contour.

contour. The level argument selects the contouring level and the panels argument
indicates the style of contouring to be performed. The interpretation of this value is not so
straightforward as in the contour routine. Essentially the purpose is to control exactly
what type of points are returned by the getpoint function. The allowed values and their
interpretations are

panels = 0

status = 2 A segment of the current contour line is fmished. Ignore the
coordinates returned and call getpoint again in which
case it will either return 0 indicating that no more points exist
at this contour level or 1 indicating that another disjoint piece
of the current contour exists.

A complete example of the use of these functions to contour a function supplied in polar
coordinates is shown in the Express documentation.

EXAMPLE

The following code demonstrates the elementary use of the contouring function.

double circles();
contour (circles, 10, 10, 0.0, 25.0, 6, 0);

The support routine which is invoked by the contouring package is defined as follows:

double circles(i,j)
int i,j;

84

double retval, xO, yO;

xO = (double) (i-S);
yO = (double) (j-S),;
retval = xO*xO + yO*yO;
return retval;

FORTRAN SYNOPSIS

SUBROUTINE KCNTOR(FUNC,NX,NY,LEVMIN,LEVMAX,NLEV,IPAN)
REAL*4 FUNC, LEVMIN, LEVMAX

. INTEGER NLEV, IPAN, NX, NY
EXTERNAL FUNC

SUBROUTINE KINITL(FUNC, NX, NY, LEVEL, IPAN)
REAL*4 FUNC, LEVEL
INTEGER NX, NY, IPAN
EXTERNAL FUNC

INTEGER FUNCTION KGETPT(X, Y)
REAL*4 X, Y

SEE ALSO

cOlor,greyscale,rainbow.

contour

85

cprof

NAME

cprof_on, cprof_off-ConttolconununkationprofdeL

SYNOPSIS

cprof_off ()

DOMAIN

These routines may only be called from the nodes.

DESCRIPTION

cprof_on is used to enable and start the conununication profiler. After this call all
subsequent calls to the conununication system result in entries being made in an internal
log-file. cprof off reverses this process - until a subsequent call to cprof on no- -
conununication profiling will be perfonned.

Por applications which· have user·programs running in the host computer the profiler is
initially off and must be explicitly enabled with aeall to cprof on. For applications
running in the Cubix environment the initial state of the profiler is controlled by a runtime
switch in the cubix conunand. (See cprof_end).

The log of profiling information is written to the host file system with cprofcp or
cprof_end.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
conununication profiler.

main ()
{

. / * Start off profiler * /

cprof_on();

/* Application Phase 1., profiler running */

/* Phase 1 complete, dump data with cprofcp/elt or
prof_end */

/* Application Phase 2., profiler turned off by previous
* call to cprofelt or cprof_end

86

cprof

*/

/* Application phase 3., turn on profiler again */

/* Program over, dump data again and exit */

exit(O);

Notice that we can selectively profile pieces of code. In this mode it makes sense to dump
out the profile data independently to separate files for simplicity in later analysis.

FORTRAN SYNOPSIS

SUBROUTINE KCPON

SUBROUTINE KCPOFF

SEE ALSO

ctool (command), cprofcp, cprof_end

87

NAME

cprof_ inq, cprof_end - Manipulate communication profiler under Cubix

SYNOPSIS

int cprof_inq ()

cprof_end ()

DOMAIN

These routines may only be called from the nodes.

DESCRIPrION

These routines provide a simple control interface to the communication profiler for
applications running in the Cubix environment.

cprof_ inq returns an integer value representing the state of the "-me" runtime switch
on the cubix command line. This can be used to conveniently enable/disable the profiling
system at runtime. Consider a typical command

cubix -n 4 toyland 1024.1024 <noddy.dat

Since no "-m" switch is present a call to cprof_inq will return zero. If we modify the
above command to

cubix -rnce -n 4 toyland 1024 1024 <noddy.dat

then the return value would be 1 since the character 'c' appears in the monitoring switch,
"-ro".

cpro f _ end is used to dump profiling data to the host computer file system. A file called
"cprof. out" is created for later analysis with the ctool utility. In addition the profiler
is disabled and its internal state reset to zero so that further profiling leads to distinct, non
overlapping datao

The operating system itself perfonns a check for the communication monitoring switch in
the Cubixcommand and, if present, turns on the protiler with a call to cpr 0 f _ 0 n. It also
arranges to call cprof_end at program termination with the atexit function 0 As a
result a typical Cubix application need contain no explicit calls to the communication
profiling routines - they are all made by the kemelo The only case in which such calls are
needed is when more careful control is required over the profiler and the data it dumps.

EXAMPLE

The following code is a skeleton of that which might be used to control the communication
profiler in a Cubix application.

main ()
{

/* Start off profiler */

88

if(cprof_inq(»cprof_on()i

/* Application Phase 1~, profiler running */

/* Phase 1 complete, dump data with cprof_end,
rename file */

if(cprof_inq(» {
cprof_end()i
renarne("cprof.out", "phasel.cprof")i

/* Application Phase 2., profiler off since cprof_end
called */

/* Application phase 3., turn on profiler again */

if(cprof_inq(» cprof_on();

/* Program over, dump data again and exit */

if(cprof_inq(» {
cprof_end()i
rename ("cprof.out", "phase3.cprof")i

}

exit(O)i

Notice that we can selectively profile pieces of code. In this mode it makes sense to dump
out the profile data independently to separate files for simplicity in later analysis. The calls
to rename in the above are necessary to prevent the second call to cprof_ inq from
overwriting the file created by the frrst call.

FORTRAN SYNOPSIS

INTEGER FUNCTION KCPINQ()

SUBROUTINE KCPEND

89

SEE ALSO

ctool (command), cprofcp, cprof

90

eprofep

NAME

cprofcp, cprofelt - Dump communication profile data.

SYNOPSIS

cprofcp ()

cprofelt(filename)
char *filenamei

DOMAIN

cprofcp may only be called in the host processor and cprofelt may only be called in
the nodes.

DESCRIPTION

These routines are used to dump the communication profiling data collected with the
cprof functions. For each call to cprofelt on the nodes there must be a call to
cprofcp in the host processor. The profiling data will be written to a file on the host with
the name file.name supplied in the node program.

Each call to cprofelt turns off the communication proftlerand resets its internal
counters so that further profiling starts from the zero state. This allows distinct
communication profl1es to be obtained for different regions of an application.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
communication profile.

1. Host Program

main ()
{

/* Allocate nodes, load programs */

/* Execute algorithm phase "1 and then dump data to
"phasel.cprof" */

cprofcp();

/* Execute phase 2, profiler off */

/* Execute phase 3, profiler on, dump data to

91

cprorcp

"phase3ocprof" */

cprofcp();
exit(O);

}

2. Node Program

main()
{

/* Start off profiler */

cprof_on();

/* Application Phase 1., profiler running */

/* Phase 1 complete, dump data with cprofcp/elt */

cprofelt("phasel.cprof");

/* Application Phase 2., profiler off since cprofelt
called */

/* Application phase 3., turn on profiler again */

/* Program over, dump data aga~n and exit */

cprofelt("phase3.cprof n
);

exit(O);

Notice that we can selectively profile pieces of code.. In this mode it makes sense to dump
out the profile data independently to separate files for simplicity in later analysis.

FORTRAN SYNOPSIS

SUBROUTINE KCPCP

92

SUBROUTINE KCPELT(FNAME)
CHARACTER*80 FNAME

SEE ALSO

ctool (command), cprof, cprof_end

cprofcp

93

display

NAME

display - Redirect graphical output.

SYNOPSIS

display__node(node)
int node;

DOMAIN

Available only to node programs linked with the Plotix library.

DESCRIPTION

This function is provided to support systems with more than one attached display device.
By default all Plotix system calls are directed to the processor which originally loaded and
executed the user application. On occasion, however, it may be necessary to perform
certain tasks on other nodes in the system.

The display_node function has as its argument a processor number. All further Plotix·
requests will be directed to this node. To obtain suitable node numbers for use in this call
we take the host identifier from the configuration utility and OR in the highest biL If
enft 001 designated a particular host as "Hl" then the appropriate node number to use is
Ox8001. /

EXAMPLE

Let us assume that three "host" processors are attached to our system. The first is the
original system console which can be addressed through the value HOST from
express .h. The others have the identifiers Hl and H2 as defined in the system
configuration utility, cnftool. The following code sketches the most common usage.

display_node(HOST);
sendplot(); /* Send graphical data */

/* More PLOTIX calls ••• */

display_node(Ox8001);
usendplot(); /* Send more data */

/* More PLOTIX calls ... */

display_node(Ox8002);
usendplot();/* Send more data */

display_node(HOST);/* Switch back to main */

94

display

It is important to remember that Plotix has no "retained" capability which means that the
sendplot routines really do completely flush the graphical data. To plot the same image
on all three display surfaces requires that it be drawn each time.

Note that different nodes are allowed to maintain distinct displays with these calls although
one must then use asynchronous plotting requests (e.g., asendplot) to avoid deadlock.

FORTRAN SYNOPSIS

SUBROUTINE KDISND(NODE)
INTEGER NODE

SEE ALSO

syncmode, "Cubix: Programming parallel computers without programming hosts." and
"Using Express on systems with multiple hosts".

9S

dotext

NAME

dotext - Dmw text with complex alignment.

SYNOPSIS

dotext<text, x, y, angle, hjust, vjust)
char *text;
double x, Yi
int angle, hjust, vjusti

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIFfION

This routine draws the characters contained in the text string at the position (x,y). The
text is rotated through angle degrees. The two "justification" parameters are used to
position the string with respect to the indicated coordinates as follows

hjust = -1 Text is positioned entirely to the right of (x,y).

hjust = 0 The text is centered about (x,y).

h just = 1 The text is placed entirely to the left of the indicated point.

vjust = -1 The text lies totally above (x,y).

vjust = 0 Text is centered vertically on (X,Y)e

vjust = 1 Text lies below (x,y).

Using various combinations of these parameters is it possible to align text in fairly arbitrary
manners. Using the particular combination hjust = vjust = aallows one to draw
"markers" from the AScn chameter seL

EXAMPLE

The following calls are used to position the phrase "The End" around a particular point.

dotext("The", x, y, 0, 0, -1);
dotext("End", x, y, 0, 0, 1);

96

dotext

WARNING

The current plotting position is undefined after this call. In order to perfonn reliable
graphical operations move should be used before any further drawing is perfonned.

FORTRAN SYNOPSIS

SUBROUTINE KDOTEX(TEXT, X, Y, lANG, IHJUST, IVJUST)
CHARACTER*80 TEXT
REAL*4 X, Y
INTEGER lANG, IHJUST, IVJUST

SEE ALSO

marker, label

97

eprof

NAME

eprof_on,eprof_off,eprof_init,eprof_label,eprof_add-Eventdriven
profilere

SYNOPSIS

iinclude "express.h"

eprof_init(numlog, numlab)
int numlog, numlab;

eprof_label(index, title, format_str)
int index;
char *title, *format_str;

eprof~add(index, datum)
int index;
int datum;

DOMAIN

These routines may only be called from the nodes.

DESCRIPTION

These routines make up the interface to the user specified event driven profiling facility.
eprof_on and eprof_off enable and disable the system respectively. While disabled
no events are logged even if calls are made to eprof_add.

The routine eprof__init must be called before any of the other profiling calls. The
arguments indicate the mount of space to reserve for "title" and "event" entries - each
corresponds to a single call to the eprof label and eprof add functions. The special- -
values DONTCARE may be given for either argument indicating that a system selected
default should be used. The current overheads for log entries and labels are 12 and 68 bytes
respectively.

eprof_add is the heart of the event system. It makes a new entry in the log file. Three
items are logged; the event "index" and "datum" as given in the function call and the time
at which the call is made. The index argument is used to differentiate between events at
the highest level. This index corresponds to an optional t it Ie string in a call to
eprof_label. The datum argument is used to identify events at the lowest level. This
value is any 32-bit integer value which will be used in conjunction with the format_ str
argument in a call to eprof_label.

The function eprof_label is used to facilitate event recognition when the log-file is
subsequently analyzed. Its use is optional. If no calls to eprof_label are made then

98

eprof

events will be identified by their "index" argument in the subsequent analysis and the
datum value will be assumed to be an integer. Making a call such as

eprof_label(3, "After return from crunch_func",
"Energy = %d");

builds in extra information. Together with the event "index" a legend will be presented
which connects type 3 with the string "After return from crunch_func"o Further, when the
value of the dat urn argument is shown it will be formatted according to the fonnat string
- a typical result would be

Energy = 23

In applications which have a user written program running in the host computer the profiler
is initially off and must be explicitly enabled with calls to eprof init and eprof on.
In applications in the Cubix environment the initial state of the system is controlledby a
runtime switch on the cubix command.

The log of profiling information is written to the host file system with eprofcp or
eprof_end.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the event
profiler.

tinclude "express.h"

main ()
{

float Energy, resid, grind(), crunch();
int iter, i;

/* Start profiler, make labels for indices 1-3, use
default sizes */

eprof_init(DONTCARE, DONTCARE);
eprof_label(l, "Outer loop", "Iteration %d");
eprof_label(2, "After crunch", "Energy = %d n);
eprof_label(3, "Inner loop", nresid = %d n);
eprof_on();

/* Start application code, then go into main loop */

for(iter=O; iter<100; iter++)
eprof_add(1, iter);
Energy = crunch(iter);

99

eprof

eprof_add(2, (int)Energy);

for(i=O; i<4; i++) {
resid = grind(Energy);
eprof_add(3,(int)resid);

}

}

/* Program over, dump profile data and exit */

exit(O);
}

The insertion of events like these above can provide significant information about an
application. The time between events 1 and 2, for example, indicates the duration of a call
to the crunch function. Similar information is available about grind from events 2 and
3, averaged over the four calls per iteration.. The auxiliary datum fields will show the
interaction between the variables and the program execution rate. It may also show up bugs
and/or unexpected behavior which could the key to understanding the failings of a
particular parallelization scheme. .

FORTRAN SYNOPSIS

SUBROUTINE KEPON

SUBROUTINE KEPOFF

SUBROUTINE KEPINI(LABBUF, LABSIZ, LOGBUF, LOGSIZ)
INTEGER LABBUF(*), LABSIZ, LOGBUF(*), LOGSIZ

SUBROUTINE KEPLAB(INDEX, TITLE, FORMAT)
INTEGER INDEX
CHARACTER*80 TITLE, FORMAT

SUBROUTINE KEPADD(INDEX, DATUM)
INTEGER INDEX
INTEGER*4 DATUM

FORTRAN DESCRIPTION

The Fortran equivalents of the above C functions operate in the obvious way with the
exception of the KEP LAB and KEP I NI subroutine. The former serves to initialize the event
profiling system. The user provides two workspace buffers, LABBUF and LOGBUF for
storing labels and log entries respectively. The size, in bytes, of each buffer is given by the
following S I Z parameter. As a guide to appropriate sizes a label entry currently requires

100

eprof

68 bytes while a log entry needs 12.

The KEPLAB function assigns a label to a user "event". The fonnat string which must be
provided must be in the notation of the C function printf. While the details are complex
one only needs to note that the string is printed as specified except that the special sequence
"%d" is replaced by the value of the DATUM argument.

A suitable FORTRAN call which corresponds to that shown earlier in C is

CALL KEPLAB(3, 'After return from crunch_func',
'Energy = %d'.)

SEE ALSO

etool (command), eprofcp, eprof_end

101

NAME

eprof_ inq, eprof_end - Manipulate Event profl1e under Cubix

SYNOPSIS

int eprof_inq()

eprof_end()

DOMAIN

These routines may only be called from the nodes.

DESCRIPTION

These routines provide a simple control interface to the event proftler for applications
running in theCubix environmento

eprof_inq returns an integer value representing the state of the "-m" runtime switch on
the cubix command line. This can be used to conveniently enable/disable the profiling
system at runtime. Consider a typical command

cubix -n 4 toyland 1024 1024 <noddy.dat

Since no "-m" switch is present a call to eprof_ inq will return zero. If we modify the
above command to

cubix -mee -n 4 toyland 1024 1024 <noddy.dat

then the return value would be 1 since the character 'e' appears in the monitoring switch,
"-m""

eprof_end is used to finally dump profiling data to the host computer file system. A file
called "eprof . out" is created for later analysis with the etool utility. In addition the
profiler is turned off and the internal state reset to its initial, zeroed, condition"

The operating system itself performs a check for the communication monitoring switch in
the Cubix command and, if present, turns on the profiler with a call to eprof_ init and
eprof_on. The parameters passed to eprof_init are both DONTCARE. It also
arranges to call eprof end at program tennination with the atexit function. As a
result a typical Cubix application need only contain explicit calls to eprof_add and
eprof_label- all control functions are performed by the kernel. The only case in which
such calls are needed is when more careful control is required over the profiler and the data
it dumps.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the event
profiler.

#include "express.h"
ETOGGLE mytog;

102

main ()
{

eprof_init(DONTCARE, DONTCARE);
eprof_label(l, "Outer Loop", "Iteration %d");
eprof_toginit(mytog, "Timing inner loop"');

if (eprof_inq())
eprof_is_on = 1;

}

/*
* Start first part of program using stuff initialized above.
*/

/* First phase is over. If the profiler was enabled, dump
* the data to a file so that we can restart afresh
*/

/*
* Start the second phases of the program with everything
* reinitialized
*/

/*
* When program finally finishes we can let the call to
* "exit" take care of dumping any data that might be
* left over.
*'/

exit(O);

FORTRAN SYNOPSIS

INTEGER FUNCTION KEPINQ()

SUBROUTINE KEPEND

SEE ALSO

etool (command), eprofcp, eprof

103

eprofcp

NAME

eprofcp, eprofelt .., Dump event log.

SYNOPSIS

eprofcp ()

eprofelt(filename)
char *filenamei

DOMAIN

eprofcp may only be called in the host processor while eprofelt may only be called
in the nodes.

DESCRIPTION

These routines are used to dump the event profiling data collected with the eprof
functions. For each call to eprofelt on the nodes there must be a call to eprofcp in
the host processor. The profiling data will be written to a file on the host with the name
filename supplied in the node program~

Each call to eprofelt turns off the profiler and resets its state so that future profiling
commands begin with the system in its initial state.

EXAMPLE

The following code is a skeleton of that which might typically be use4 to control the event
profiler.

1. Host Program

main ()
{

/* Allocate node, load programs, etc. */

/* Dump out profile data to "eprof.out" */

eprofcp()i
exit(O)i

}

2. Node Program

#include "express.h"

main ()

104

eprofcp

float Energy, resid, grind(), crunch();
int iter, i;

/* Start profiler, make labels for indices 1-3, use default
sizes */

eprof_init(DONTCARE, DONTCARE);
eprof_label(l, "Outer loop", "Iteration %d");
eprof_label(2, "After crunch", "Energy = %f");
eprof_label(3, "Inner loop", "resid = %f");
eprof_on();

/* Compute, compute, compute */

/* Program over, dump profile data and exit */

eprofelt("eprof.out");
exit(O);

}

Note that these functions may be called repeatedly - the only constraint is that each call to
eprofelt in the nodes must have a corresponding call to eprofcp in the host.

FORTRAN SYNOPSIS

SUBROUTINE KEPCP

SUBROUTINE KEPELT(FNAME)
CHARACTER*80 FNAME

SEE ALSO

etool (command), eprofcp, eprof_end

105

erase

NAME

erase, aerase - Clear the display surface.

SYNOPSIS

erase ()

aerase ()

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These routines are used to clear the display surface. erase must be called at the same time
in all nodes while aerase may be called asynchronously in any node at any time. Note
that this latter option can cause rather unpredictable results unless used with some care
since 1000 nodes all calling aerasemakes the screen "blink" rather a lot!

It is important to note that neither of these routines flushes the graphics buffer to the output
device. Rather they just reset the internal data structures to reflect empty buffers. All data
that is required to appear, however briefly, on the display surface must be flushed explicitly
with one of the sendplot routines before calling erase.

Hardcopy devices handle these functions in device specific ways. Some, for example, can
only print on a single sheet at once and so the erase commands are handled by switching
to a new output ftIe. Eventually several fues may be printed one at a time. Others, such as
laser printers, merely switch to new pages.

EXAMPLE

The following is typical of the general use of the erase functions.

#include "express.h"
#include <stdio.h

{

/* Start up graphics system */

if (openpl (DONTCARE, (FILE *)0) < 0) {
fprintf(stderr, "Failed to start up graphics\nn);
exit(l);

}

/* Grind away graphics, graphics, graphics */

/* Finished with first image, erase and go again */

106

erase()i

FORTRAN SYNOPSIS

SUBROUTINE KERASE

SUBROUTINE KAERAS

SEE ALSO

sendplot

erase

107

etoggle

NAME

eprof_toginit, eprof_toggle - Statistical analysis of code sections.

SYNOPSIS

linclude "expressoh"

eprof_toginit(togptr, label)
ETOGGLE *togptr;
char *label;

eprof_toggle(togptr)
ETOGGLE *togptr;

DOMAIN

These routines may only be called from the nodes.

DESCRIPTION

These routines allow selective analysis of particular sections of code. By surrounding code
segments with calls to the eprof_toggle one can obtain statistics relating to the number
of times the particular code section was called and the average and total times spent in these
sections. The data is collected in exactly the same manner as the "event profiling"
infonnation obtained through calls to eprof_add. The same commands are available to
dump the profiling data and/or rename the file containing it as are used by the. other
"eprof" utilities.

Each "toggle" data structure must be initialized with a call to eprof_ togini t before it
can be used for data collection. This function expects to be passed a pointer to a structure
of type ETOGGLE, defined in "express. h", and a string that will later be used to identify
the collected statistics when analyzed with etoolo

The log of profiling information is written to the host file system with eprofcp or
eprof_end.

EXAMPLE

The following example demonstrates the use of the "toggle" ideas.

#include "express.h"

ETOGGLE looptog, grindtog;

main ()
{

float Energy, grind_away();
int iter, i;

/* Initialize toggle data structures. */

108

etoggle

eprof_toginit(&looptog, "Main iteration loop");
eprof_toginit(&grindtog, "Calls to grind_away");

/* Start application code, then go into main loop */

for (iter=O; iter<100; iter++)
eprof_toggle(&looptog);

/* Other processing going on here~ ... */

for(i=Oi i<4i i++) {
eprof_toggle(&grindtog);
grind_away (Energy, i)i
eprof_toggle(&grindtog);

}

eprof_toggle(&looptog);
}

/*
* Dump data to host for later analysis
*/

exit(O)i

The "toggle" data will be stored in a file with the name "eprof . out" (unless overridden
by some other function call) together with the nonnal "event" data which may have also
been collected with calls to eprof_add.

To analyze this data we execute the "etool" command with

etool -p -t

This combination of switches both suppresses the nonnal graphical output and also restricts

109

etoggle

attention to the "toggle" data. The output for the above example might appear as follows

Node 0

Descript~on

Main iteration loop
Calls to grind_away

Node 1

Total

478.32
363.96

tCalls

100
400

Avge.

4.78
0.91

Var.

.28

.03

Description

Main iteration loop
Calls to grind_away

etc...

Total iCalls

478.32 100
363.96 400

Avge.

4.78
0.91

Var.

For each node is displayed the list of initialized toggles together with the number of times
each code section was used, the total time elapsed in this section, the average time per call
and the variance of these times. Using this infonnation it is possible to build up a very
accurate picture of the perfonnance of a parallel program.

FORTRAN SYNOPSIS

SUBROUTINE KEPTGI(TQGGLE, TEXT)
INTEGER TOGGLE(16)
CHARACTER*80 TEXT

SUBROUTINE KEPTOG(TOGGLE)
INTEGER TOGGLE (16)

FORTRAN·DESCRIPTION

The Fortran equivalents of the above C functions operate in the obvious way with the
exception that no header file is available in FORTRAN to define the "togglen data
structure. Instead FORTRAN programs should use arrays of 16 integer values as the
appropriate variables.

SEE ALSO

etool (command), eprofcp, eprof_end

110

exaccess

NAME

exaccess - Share a processor group with another process

SYNOPSIS

tinclude "express.h"

int exaccess(device, pnodes)
char *devicei
int *pnodesi

DOMAIN

Host processor only.

DESCRIPTION

This routine provides a "brute-force" mechanism by which a host program can obtain
access to every node in the network irrespective of whether or not that node is currently
executing a program - even if allocated to another user. This often useful for providing
overall system monitoring or when only a single application is to run on the entire network.

The frrst argument specifies the particular parallel computer to which access is desired and
is interpreted in the same manner as the corresponding argument to exopen. The last
argument is returned to the caller containing the number of nodes in the system.

RETURN VALUE

The value returned by exaccess is the processor group index which must be used in
future references to the shared processors.

If some error occurs or nodes are accessible to the host processor -1 is returned.

FORTRAN SYNOPSIS

INTEGER FUNCTION KXACCS(DEVICE, NODES)
CHARACTER*80 DEVICE
INTEGER NODES

WARNINGS

Communicating with shared processor groups is complicated by interactions between
source and type fields specified using the DONTCARE wildcard. This situation can be eased
somewhat through the extype mechanisms which restrict the ranges indicated by
wildcard values. It should further be noted that subsequent to this call the host must
communicate with the processors using the node numbers indicated by cnftool rather
than according to the logical mapping which results from exopen or exshare.

SEE ALSO

exopen, exshare, extype, "Cnftool: Configuring Express".

111

exbreak

NAME

exbreak - Halt program at breakpoint

SYNOPSIS

exbreak ()

DOMAIN

.This routine may only be called in node programso

DESCRIYfION

The exbreak function causes the program to halt as though it had encountered a
breakpoint of the ytpe normally associated with the debugger, ndb. Examination of the
process state with ndb will show the process to be in state Breakpoint.

FORTRAN SYNOPSIS

SUBROUTINE KXBREA

SEE ALSO

expause.

112

exbroadcast

NAME

exbroadcast - Interprocessor broadcast.

SYNOPSIS

int exbroadcast(buffer, origin, nbytes, Nnodes,
nodelist, ptype)

char *buffer;
int origin, nbytes.I Nnodes, *nodelist, *ptype;

DOMAIN

exbroadcast may be called in both host and node processors.

DESCRIPTION

exbroadcast is used to perfonn broadcasting operations among the processors.

The broadcast starts from processor origin which attempts to broadcast the nbytes of
data in the indicated buffer. The processors to which the broadcast will be sent are
indicated by the Nnodes and nodelist arguments in the following way: nodelist is
an array ofprocessor numbers which should receive the broadcast message. Nnodes is the
number of elements in the array. Further the special value Nnodes = ALLNODES
indicates that the broadcast should go to all processors. In this case the value ofnode1 i st
is ignored - even the NULL pointer may be specified. The receiving nodes deposit the
incoming data at buffer, up to a maximum of nbytes ..

The broadcast operation carries a "type" field in common with all other communication
primitives so that overlapping broadcasts may be distinguished. This parameter is supplied
under the pointer argument ptype and may be any positive quantity - neither NULLPTR
nor DONTCARE arguments may be used.

A call to exbroadcast in the originating node must have corresponding calls to
exbroadcast in all target nodes. A corresponding call in other nodes which are not
target nodes is not necessary, but will be handled without error. All calls must specify the
same values of the origin, Nnodes and nodelist arguments or communication
deadlock will occur. A receiving node must specify nbytes greater than or equal to that
specified in the originating node. When nodelist is not NULL, the contents arrays must
be exactly identical in each processor. The origin mayor may not appear in the
nodelist, at the convenience of the calling routine. When no errors occur, the value
returned is the number of bytes written by the originating node, or the number read by a
receiving node.

EXAMPLE

In the following code we use the exgrid tools to find the processor number of the
processor at the origin of a three dimensional processor decomposition. This processor then
broadcasts a set of data values to all other nodes.

#include "express.h"

113

exbroadcast

extern float datbuf[1024];

main ()
{

int nprocs[3], coord[3], corner, type=33i

/* Initiate a three-dimensional decomposition of eight
processors */

nprocs[O] = nprocs[l] = nprocs[2] = 2;
if (exgridinit (3, nprocs) < 0) {

abort(l);
}

/* Now find the processor in the (0,0,0) spot in the user
topology */

coord[O] = coord[l] = coord[2] = 0;
corner = exgridproc(coord);

exbroadcast(datbuf, corner, 32*sizeof(float),
ALLNODES, NULLPTR, &type);

Note that, since the broadcast operates totally within the node processors it is valid to use
the sizeof operator. If the host included the host processor one would have to be more
careful since variable types, especially int are often of different sizes on the two
processors.

FORTRAN SYNOPSIS

INTEGER FUNCTION KXBROD(BUFFER, ORIGIN, NBYTES,
NNODES, NODEL, TYPE)

INTEGER BUFFER(*), ORIGIN, NBYTES, NNODES, NODEL(*),TYPE

DIAGNOSTICS

Ifany error occurs in exbroadcast -1 is returned. Possible sources oferror are: an illegal
buffer, a preposterous value of nbytes or invalid values of origin, Nnodes or
nodelist. If no error occurs the number of bytes broadcast is returned in the originating
processor and the number read in the receiving nodes. An error condition is also indicated
in any node which reads less bytes than were originally transmitted by the originating
processor. In this case errno is set to ENOTREAD, errcnt records the number of bytes
actually sent and the unread bytes are discarded.

SEE ALSO

excombine,exconcat

114

exchan

NAME

exchan - Hardware dependent communication primitives.

SYNOPSIS

exchanon(chan)
int chan;

exchanoff(chan)
int chan;

int exchanrd(chan, buffer, nbytes)
int chan, nbytes;
char *buffer;

int exchanwt(chan, buffer, nbytes)
int chan, nbytes;
char *buffer;

DOMAIN

These routines are available only to node programs. Their availability is further subject to
hardware restrictions on the system in use.

DESCRIPTION

These routines implement a message passing strategy which directly accesses the hardware
present on the parallel processing system in use. As such their use is highly non-portable.
Since, however, these routines have a very trivial syntax they can provide communication
at the full speed of the underlying hardware. In most cases this affects the asymptotic
communication rate only slightly but may reduce the start-up time (latency) by as much as
an order of magnitude. They are most applicable, therefore, when the application needs to
send many short messages.

Before attempting to use the message passing routines exchanoff must have been called
for every channel on which the low level functions will be used. this function serves to
disable the normal Express processing for that channel. Note that the user is responsible
for ensuring that no internode communication traffic will be disrupted by the sudden
removal of one of the message paths normally used by Express. In practice this usually
means that the application should force a synchronization through some operation before
disabling any of the communication channels. Note that while a channel is disabled none
of the higher level Express functions may be used. In particular this means that the
debugger, ndb, will be unable to operate.

exchanon performs the opposite function, causing Express to once again become active
on the indicated channel. Again it is the user's responsibility to ensure that no Express
messages are transmitted along channels that are still disabled.

The channel read function, exchanrd, reads nbytes bytes of data into the supplied
buffer from the channel indicated by the chan argument. It will not return until exactly
nbytes have been read. The node from which data is read depends on the interpretation

115

exchan

of the chan argument, which is hardware dependent.

Similarly the exchanwt function sends nbytes bytes of data into the channel indicated
by the chan argument. The data to be transmitted is taken from the user supplied buffero
This function will not return until all data has been read by a corresponding call· to
exchanrd.

EXAMPLES

The following schematic code shows a typical sequence involving the exchan primitiveso
We assume that some routine, nearest_neighbor requires heavy internode message
traffic between processors directly connected to each other in· hardware. As such they are
able to make use of the exchan functions.

/*
* Assume that we can work here with the full Express system.
*/

/*
* For the next function we will disable. Express.
*/

exsync(); /* Force synchronization */
for(i=O; i<nchans; i++) exchanoff(i);

nearest_neighbor();
/*

* Assume that this routine terminates fully synchronized
* so that we can enable Express.
*/

for(i=O; i<nchans; i++) exchanon(i);
/*

* Proceed with Express functioning .
*/

Notice that we have used a variable nchans to indicate how many channels should be
modified. The value of this variable is also somewhat machine dependent - on a transputer
system it might be four for all the hardware links, for example, while on a hypercube it will
usually be the base 2 logarithm on the number of nodes.

FORTRAN SYNOPSIS

SUBROUTINE KXCHON(CHAN)
INTEGER CHAN

SUBROUTINE KXCHOF(CHAN)
INTEGER CHAN

116

excban

INTEGER FUNCTION KXCHRD(CHAN, BUFFER, NBYTES)
INTEGER CHAN, BUFFER(*), NBYTES

INTEGER FUNCTION KXCHWT(CHAN, BUFFER, NBYTES)
INTEGER CHAN, BUFFER(*), NBYTES

WARNING

These routines perfonn extremely hardware dependent operations and as such should be
used with caution. The "nearest neighbor" communication model that they represent has
however, been shown by a number of researchers to be adequate (if not optimal) for a wide
class of algorithms. (An excellent reference is the book "Solving Problems on Concurrent
Processors" by G.e.Fox et al., published by Prentice-Hall, 1988.)

If these routines seem appropriate for your algorithm we suggest that the full Express
routines be used during development, since this enabl~s use of the other system tools such
as the debugger, and then these routines be substituted in the final product.

SEE ALSO

exread,exwrite,exsync.

117

exchange

NAME

exchange, e.xvchange - Synchronous scalar/vector exchange primitive.

SYNOPSIS

int exchange(ibuf, ilen, isrc, itype, obuf, olen,
odest, otype)

char *ibuf, *obufi
int ilen, *isrc~ *itype, olen, *odest, *otype;

int exvchange(ibuf, isize, ioff, iitems, isrc, itype,
obuf, osize, ooff, oitems, odest, otype)

char *ibuf, *obufi
int isize, ioff,iitems, *isrc, *itype,
osize, ooff, oitems, *odest, *otype;

DOMAIN

These functions may be called in either host or node processors.

DESCRlYfION

These functions are used to implement "synchronous" communication between two
processors; a call to exchange in one processor will not return until the corresponding
call has been made in the sending and receiving processors.

This function essentially perfonns a similar task to successive calls to exwrite and
exread - i.e., data is fIrst sent and then read from (possibly) different nodes. One
advantage of this function are that its extra constraint (synchronicity) allows optimizations
to be made for both speed and reliability. The fonner can be achieved because data
transmission in the two directions can be overlapped while the latter is enhanced because
low level "handshaking" can be perfonned to ensure that no intermediate buffers overflow.
A second advantage is that the exchange of information can be considered to be
simultaneous - the user is freed from any worry about which node should read frrst and
which write~ As a result these functions should be preferred to the analogous pair of
exread/exwrite operations whenever the synchronous constraint can be met.

A further advantage is that the user is freed from any concern about "deadlock" conditions
whi~h can arise on certain types of hardware where it is important that reads and writes
come in the correct order.

exchange causes olen bytes of data to be sent to the node denoted by odest in a
message of type otype (which may not have the DONTCARE value). The data is taken
from memory at obuf. It is not guaranteed that olen will be read by the reading
processor; the actual number of bytes read depends on the number specified in the
corresponding call to exchange. If no error occurs, the actual number of bytes written is
returned to the calling program. The interpretation of the destination and type fields is
exactly as in exwrite.

exchange also causes at most ilen bytes of data to be read from the source denoted by

118

exchange

isrc from a message of a type matching i type. The data is placed in memory at ibuf.
It is not guaranteed that i 1en bytes will be read; the actual number of bytes read depends
on the number written by the transmitting processor. If no error occurs, the actual number
ofbytes read is returned to the calling program. The interpretation of the is r c and i type
arguments is exactly as in exread.

A call to exchange must be complemented by calls to exchange in the processors
denoted by odest and isrc in order to prevent communication deadlock. Similarly the
message types in these processors must be compatible.

Note that the exchange of data is conceptually simultaneous - data is written to the output
processor at the same time as it is received from the sender. This allows, for example, the
buffer arguments to be identical. The kernel maintains the integrity of the data and handles
any read/write synchronization problems.

The above discussion holds equally well for the exvchange function. The difference
between the two is analogous to the difference between exread and exvread) . While
the former is used to transmit contiguous blocks of memory the latter is able to send
messages made up of several disjoint memory areas.

The arguments to exvchange are interpreted in the same way as their counterparts in
exvread. The message is specified by defining a number of "objects" to be sent. Each is
of length size bytes and is separated from the next by offset bytes. In total items
objects will be transmitted. This description applies to both the input and output arguments
of exvchange.

EXAMPLE

Consider a simple model of a two-dimensional tenninal screen. We assume that the data
currently displayed is represented by an 80 x 24 array ofcharacters. Using the exgrid and
exchange primitives it is easy to construct routines which, for example, scroll the data in
different directions when decomposed in parallel.

#include "express.h lt

#define HORIZ 0
#define VERT 1

/* Defines nodenv structure */

/* The amount of the display in each node is found by
* decomposing the 80 x 24 total over the processors
*/

char screen[20] [12];/* The displayed data */

main ()
{

int nprocs[2];

nprocs[HORIZ] = 4;

119

exchange

nprocs[VERT] = 2;

if (exgridinit (2, nprocs) < 0) {
abort (-1);

}

The macros HORI Z and VERT are defined for our convenience and just serve to label the
two axes on the screeno We assign four processors to the horizontal dimension and two to
the vertical. (A more flexible assignment scheme is easily devised using the exparam and
e xgr i dsp1 i t system calls to detennine at runtime the number of processors available.)

Now consider a simple scrolling operation in which data is to be passed to the righto We
need to figure out the processor numbers necessary to communicate in this direction using
exgridnode.

struct nodenv nodedata;
int recpnum[2], perbc[2], type=12;

exparam(&nodedata);/* Get runtime parameters */

perbc[O] = perbc[1] = 0;/* Make non-periodic system */
exgridbc(perbc);

upnode = exgridnode(nodedata.procnum, VERT, 1);
downnode = exgridnode(nodedata.procnurn, VERT, -1);
leftnode = exgridnode(nodedata.procnum, HORIZ, -1);
rightnode = exgridnode(nodedata.procnum, HORIZ, 1);

Note that we have made the additional step of dealing with the boundaries of the screen
correctly. If a processor is on the extreme left edge of the display and it tries to
communicate with a processor to its left then the value of leftnode will be correctly
assigned the value NONODE which will, in turn, direct exchange to omit communication
with this non-existent processor.

Now in order to "scroll" the data over to the left we merely use the following call to
exchange.

exchange (screen, 12, &leftnode, &type,
&screen[19] [0], 12, &rightnode, &type);

Notice that at no point in these calculations did the topology of the hardware enter.
Everything is specified in the user domain - i.e., screen coordinates, and exgrid and
exchange do the rest..Notice the appearance of the "magic" number 12 in the above call.
To arrive at this value we divided the height of the screen (24) by the number of processors

120

exchange

in that direction (2). We could do much better by using the exgridsize function which
would also allow the possibility of changing the number of process9rs allocated to each
dimension at runtime.

In order to scroll data vertically instead of horizontally we would just use the call

exvchange(screen, 1, 12, 20, &downnode, &type,
&screen[O] [11], 1, 12, 20, &upnode, &type);

The arguments here are arrived at in a similarly simple manner. If each processors piece of
the display surface is 20 x 12 then we need to take every twelfth byte when we scroll
upward. Also there are twenty bytes to transmit. (Again this can be made more flexible
using the exgridsize function.)

FORTRAN SYNOPSIS

INTEGER FUNCTION KXCHAN(IBUF, reNT, ISRC, ITYPE,
OBUF, OCNT, ODEST, OTYPE)

INTEGER IBUF(*), lCNT, rSRC, lTYPE
INTEGER OBUF(*), OCNT, ODEST, OTYPE

INTEGER FUNCTION KXVCHA(IBUF,ISZ,IOFF,IITMS,ISRC,ITYPE,
OBUF,05Z,OOFF,OITMS,ODEST,OTYPE)

INTEGER IBUF(*), ISZ, IOFF, IITMS, ISRC, ITYPE
INTEGER OBUF(*), OSZ, OOFF, OITMS, ODEST, OTYPE

DIAGNOSTICS

If any error occurs in exchange or exvchange -1 is returned. Possible sources of error
are: an illegal source or destination, an illegal buffer or a preposterous value of length, size,
offset or item arguments. If no error occurs exchange returns the number of bytes read
and exvchange the number of items read.

SEE ALSO

exread, exwrite, exvread, exvwrite, exgrid, exparam.

121

exclose

NAME

exclose - Deallocate processors$

SYNOPSIS

tinclude "expressoh"

int exclose(pgind)
int pgind;

DOMAIN

Available to host programs only.

DESCRIPTION

This routine is used to tenninate a connection between the host and a processor group..

This routine should be called at the end of an application's use of a processor group to
ensure that system resources are correctly reseto The sole argument, pgind, is the
Processor group index originally returned by the exopen call6

EXAMPLES

The following schematic code should be the general template of any host process which
allocates and uses processor groups.

#include <stdio.h>
#include "express.h lt

main (argc, argv)
int argc;
char *argv[];
{

int pgl;

/* Allocate a processor group */

pgl = exopen(It/dev/transputer", 4, DONTCARE» < 0);

if(pgl < 0) {
fprintf (stderr,

"Failed to allocate processor group\n");
exit(-l);

}

/* Load progs, send/receive messages to processors */

122

/* Application finished. Clean up by deallocating
processors */

exclose(pgl);

exit(O);
}

FORTRAN SYNOPSIS

INTEGER FUNCTION KXCLOS(PGIND)
INTEGER PGIND

SEE ALSO

exopen, exshare, exinit (command).

exclose

123

excombiDe

NAME

excombine - Apply global operation to distributed data.

SYNOPSIS

int excombine (buffer, func', size, nitems,Nnodes,
nodelist, ptype)

char *bufferi
int (*func) (), size, nitems, Nnodes, *nodelist, *ptypei

DOMAIN

excombine .may be called in the node processors only.

DESCRIPTION

This function provides one of the most powerful facilities in Express - the ability to apply
a global operation to a dataset distributed across the node of the parallel computer.

This routine is used to perfonning "combining" operations on data within the node
processors. An example of such an operation is the sum of a set of values distributed over
the nodes of the parallel machines. Other example combining functions are products,
maximum and minimum functions.

nitems of data, each of size bytes and taken from buffer are individually combined
across the specified node processors. The final vector of results will overwrite buffer in
each node.

In the nodes the user-supplied combining function will be called for each of the niterns
to be combined. In each case three arguments will be supplied to the routine. The fIrst two
are pointers to objects to be combined and the third is the s i z e argument supplied in the
call to excombineo The combining function's responsibility is to perfonn whatever
operation is required and write the result at the address of the fIrst operand. The value
returned by the combining function is used to detect errors in the excombine routineo If
a negative value is returned the current call to excombine is aborted and an errorretumed
to its caller.

The nodes involved in the combining operation are specified by the Nnodes and
nodelist arguments. The latter is an array of processor numbers listing those nodes on
which the combining operation is to take place. Nnodes is the number of elements in this
list. The special value Nnodes = ALLNODES is allowed and performs the combining
operation on all processors. In this case the value of nodelist is ignored and may even
be the NULL pointer.

The ptype argument is used to specify a "type" for the combine operation. This is used to
distinguish between potentially overlapping communication operations. Any positive value
is legal. (You may not use the DONTCARE or NULLPTR mechanisms for this argument.)

All processors involved in the combining operation must call excombine together with
identical values for both Nnodes and nodelist - otherwise communication deadlock
will occur.

124

excombine

EXAMPLE

The fIrSt example merely calculates the global sum of the components of a vector
distributed over all processors. We assume that the values are supplied in an array,
values, passed to this routine.

tinclude "express.h"

double get_sum(values, Npts)
doube values[];
int Npts;
{

int i, type = 37;
extern int sum_up()i
double result;

/* First compute the subtotal in each node. */

result = 0.0;
for(i=O; i<Npts; i++) result += values[i];

/* Now combine these values with the sum_up function */

excombine(&result, sum_up, 8, 1,
ALLNODES, NULLPTR, &type);

return result;

int surn_up(p1, p2, size)
double *p1, *p2;
int size;
{

*p1 += *p2;
return 0;

Notice how the combining function replaces its fIrst argument with the result of the
combining operation and returns zero to indicate successful combination.

In the second example processors 0 thru 3 have obtained a vector of Npt s floating point
values, myvec. The purpose of the call is to calculate, for each array slot, the maximum
value distributed over the nodes.

Note that we are assuming that more than four processors are involved in this calculation
if all nodes were taking part in the operation we would use the ALLNODES macro in the
call to excombine instead of the nodelist argument.

125

excombine

find_max (myvec, Npts)
float myvec[]i
int Nptsi
{

int i, Nnodes, nodelist[4], type=48;
extern intmaxflt();

/* Setup nodelist array to specify combining nodes */

Nnodes = 4;
for(i=O; i<Nnodes; i++f nodelist[i] = i;

/* Combine values with the maxflt function */

excombine(myvec, maxflt, sizeof(float), Npts,
Nnodes, nodelist, &type);

}

int maxflt(pl, p2, size)
float *pl, *p2;
int size;

if(*p2 > *pl) *pl = *p2;
return 0;

This example points out another important point. The purpose of the ni terns field is to
allow multiple data items to be combined and left separate - it is not to perform "on-node"
combination operations before the global operation.. This is the reason why we explicitly
coded the subtotal operation in the first example. In this last example Npt s values will be
left in each node corresponding to the maximum value among all processors of
myvec [0] , the maximum ofmyvee [1] and so on.

FORTRAN SYNOPSIS

INTEGER FUNCTION KXCOMB(BUFFER, FUNC, SIZE, NITEMS,
NNODES, NODEL, TYPE)

INTEGER BUFFER(*), FUNe,SIZE, NITEMS
INTEGER NNODES, NODEL(*), TYPE
EXTERNAL FUNe

DIAGNOSTICS

If any error occurs in excombine -1 is returned. Possible sources of error are: an illegal
buffer, preposterous values ofniterns or size and the return of a negative value from
the combining function. If no error occurs the number of items combined is returned.

126

excombine

WARNING

The combining function must be both commutative and associative in order to give results .
which are independent of the underlying hardware topology. If we denote the operation of
the combining function on two elements A and B by A op B then the requirements can be
written as

Commutativity: A op B =B op A

Associativity: (A op B) op C = A op (B op C)

Useful functions which satisfy these constraints are: addition, multiplication, maximum,
minimum, logical AND, logical OR, logical XQR. Operations which do not satisfy the
constraint are: subtraction (3-1! =1-3) and division (4/2! =2/4)

One particularly nasty problem which can be encountered is the use of this function with
floating point values. Because of the manner in which truncation and rounding are applied
to such values when perfonning arithmetic operations it cannot be guaranteed that every
node will receive exactly the same answer when combining floating point numbers. While
the difference is extremely small it can be sufficient to cause Cubixto abort with a violation
of the "loosely synchronous" constraint if the resulting numbers are output in "singl" mode.
No solution to this problem is known at this time.

BUGS

There is an implementation specific upper limit on the s i ze of each individual item that
can be combined. In most applications this should be an unimportant restriction. If the limit
is exceeded excornbine will return -1 and set errno to ETOOBIG.

SEE ALSO

exbroadcast, exconcat.

127

exconcat

NAME

exconcat - Collect distributed data into each node.

SYNOPSIS

int exconcat(mybuf, mybytes, resbuf, ressize, sizes,
Nnodes, nodelist, ptype)

char *mybuf, *resbuf;
int mybytes, ressize, *sizes;
int Nnodes, *nodelist, *ptype;

DOMAIN

exconcat may only be called in the node processors.

DESCRIPTION

This routine is used to collect and concatenate data in a set of node processors.

Each node contributes mybytes bytes of data from the artay mybuf to be placed in each
node's reshuf. The individual blocks ofdata are sorted into order of increasing processor
number and placed in the resbuf buffer, separated by ressize bytes. If any node
contributes more than ressize bytes to the global vector then the excess are discarded.
If the pointer sizes is not the special value NULLPTR then the amount of data
contributed by each processor is stored in the appropriate slot of the sizes array.

If resbuf takes the special value NULLPTR then the concatenation operation is
perfonned but no data are stored in the node memory.

The group of nodes participating in the concatenation operation is specified by the Nn0 des
and nodelist arguments. The latter is an array of processor numbers; Nnodes specifies
the number of processors in the list. IfNnodes has the special value ALLNODES then the
concatenation is performed by all nodes irrespective of the value of the nodelist
argument which may even be the NULL pointer.

The ptype argument is used to specify a "type" for the concatenation operation which will
distinguish it from other active communicatione Any positive value may be supplied - you
may not use the DONTCARE or NULLPTR mechanisms for this argument

All nodes involved in the concatenation operation must call exconcat together and with
identical values for the Nnodes and nodelist arguments or communication deadlock
willoccure

EXAMPLE

Consider a simple case with four processors which have buffers as follows

Processor 0: int mybuf[] = {12, 13, 14)
Processor 1: int mybuf[] = {32, 33, 34}
Processor 2: int mybuf[] = {52, 53, 54}
Processor 3: int mybuf[] = {72, 73, 74}

In the simplest case we can concatenate all four buffers with the code

128

exconcat

exconcat(mybuf, 3*sizeof(int), ibuf, 3*sizeof(int),
NULLPTR, ALLNODES, NULLPTR, &type);

which would result in each processor obtaining the following result in ibuf

ibuf[] = {12,13,14,32,33,34,52,53,54,72,73,74}

and the value returned by the call would be 12 times the size of an int in each node. Since
the s i z e s argument is NULLPTR no attempt is made to store the number of bytes sent by
each node.

Another simple case is obtained by sending different amounts of data from each processor.
Consider the following code:

int sizes[4], type = 56;
struct nodenv nodedata;

exparam(&nodedata);
exconcat(mybuf, nodedata.procnum*sizeof(int), ibuf,

3*sizeof(int),sizes, ALLNODES, NULLPTR, &type);

In this case the "result" buffers on each node would be

ibuf[] = {O, 0, 0, 32, 0, 0, 52, 53, 0, 72, 73, 74}
sizes[] = {O, 4, 8, 12}

where we have assumed 4-byte integers. If we now change the arguments again by reducing
the ressize parameter to 8 then the resulting buffers would be

ibuf[] = {O, 0, 32, 0, 52, 53, 72, 73}
sizes[] = {O, 4, 8, 8}

In each node the call to exconcat would now return an error, setting errcnt to 12 and
errno to ENOTREAD to reflect the fact that node 3 attempted to send more data than was
to be read.

In the final example we perform the concatenation only in processors 0,1 and 3.

#include "express.h"

do_cone (mybuf, ibuf)
int *mybuf, *ibuf;
{

/* Defines NULLPTR, etc. */

int Nnodes, nodelist[4] , type = 12;

Nnodes = 3;
nodelist[O] = 0;

129

exconcat

nodelist[l] = 1;
nodelist[2] = 3;

exconcat(mybuf, 3*sizeof(int), ibuf, 3*sizeof(int),
NULLPTR, Nnodes, nodelist, &type);

FORTRAN SYNOPSIS

INTEGER FUNCTION KXCONC(MYBUF, MYSZ, RES, RESSIZ,
SIZES, NNODES, "NODEL, TYPE)

INTEGER MYBUF(*), MYSZ, RES(*), RESSIZ, SIZES(*)
INTEGER NNODES, NODEL(*), TYPE

DIAGNOSTICS

Ifany error occurs in exconcat -1 is returned. Possible sources oferror are: illegal values
of mybuf or resbuf and preposterous values of mybytes or ressize. If no error
occurs the total number of bytes stored in memory is returned. An error condition can also
be generated if the value of ressize on a node is smaller than the amount of data which
is being sent by a processor (including the node itselt).. In this case errno is set to
ENOTREAD, errcnt indicates the number of bytes which were actually sent and all
excess bytes are discarded.. If two or more processors both exceed· the requested limit then
the error conditions reflect the data sent by the offender with the highest processor number.

SEE ALSO

exbroadcast,excombine

130

excustom

NAME

excustom - Indicate an alternative system configuration file.

SYNOPSIS

int excustom(file_name)
char *file_namei

DOMAIN

Only available to host programs.

DESCRIPTION

excustom indicates that Express should use system configuration infonnation from the .
named rue rather than the system default. This allows applications to maintain their own
customization programs independent of any other user or system requirements.

To complete the customization process the exinit command has an optional argument
which names the customization file which should be used while loading Express into the
transputer system. Similarly cubix has an additional '-E' switch allowing an alternative
file to be named at runtime. In both cases the excustom function is invoked with the
named file as argument.

The excustom call must be made before any other Express system calls.

RETURN VALUE

The returned value indicates whether or not the indicated customization file was found.
Non-zero values indicate a failure to locate the named file.

EXAMPLES

The following code fragment could be used to allow a program the option of using an
alternative customization file based on command line arguments.

#include "express.h"

main (argc, argv)
int argci
char **argvi
{

int pgind;
/*
* If any command line argument is given use it as the
* name of the EXPRESS customization file.
*/

if (argc > 1) {
if (excustom (argv [1]) ! = 0) {

fprintf (stderr, "Problems with file: O%s\n",

131

excustom

argv[l]);
exit(l);

}

}

/*
* 'Carry on and use EXPRESS as usual.
*/

if((pgind=exopen("/dev/transputer", 4, DONTCARE» < 0) {

FORTRAN SYNOPSIS

INTEGER FUNCTION KXCUST(FILE)
CHARACTER*80 FILE

SEE ALSO

excustom (command).

132

exec

NAME

execve - Overlay a node application with another program.

SYNOPSIS

execve(name, argp, envp)
char *name, **argp, **envp;

aexecve(name, argp, envp)
char *name, **argp, **envp;

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

I)ESCRIPfION

This routine overlays (and therefore terminates) the calling program by loading a new
application from the file name. This routine immediately begins execution from its main
entry point. Unless an error occurs the call to execve will not return; if an error occurs
1 will be returned and the external variable errno will indicate the appropriate error.

argp and envp are pointers to NULL tenninated vectors of strings which will be passed
to the new process through the argv and environ mechanism in the usual manner.
Conventionally the first argv should be the name of the new program. In this manner the
old process may communicate values to its successor.

By default execve causes the overlay to occur in all nodes. It must, therefore, be a loosely
synchronous operation. If, however, the default Cubix mode is asynchronous then each
node performs the overlaying operation independently. This is also the case for the
aexecve system call.

Since memory is not re-initialized across calls to these routines it is possible to share large
blocks of data in each node. To do this it is merely necessary for the data to be placed in a
region of memory where none of the intended programs will overwrite it.

EXAMPLE

The following code section causes the program pass 2 to be loaded on top of the currently
executing routine. The new program is passed a string argument which contains the address
of the variable passl_var.

tinclude <stdio.h>

int passl_var;/* To be passed to the second phase */

exec_second_pass()
{

char *args[3], tmpstr[128];

133

exec

/* Build argument list for new program */

args[O] = "pass2";
sprintf(tmpstr, "%lx", (long)&passl_var);
args[l] = tmpstr;
args[2] = (char *)0;

if (execve("pass2", args, (char **)0) < 0) {
fprintf(stderr, "Failed to exec second pass\n");
return -1;

}

/* NOTREACHED */
}

FORTRAN SYNOPSIS

SUBROUTINE KEXEC(PROGNM)
CHARACTER*80 PROGNM

SUBROUTINE KAEXEC(PROGNM)
CHARACTER*80 PROGNM

WARNINGS

This function is only available to programs running under Cubix. If you are running with
a host program the same effect can be achieved by simply using the exload routines to
download another node application.

BUGS

The current implementation does not respect the "close-on-exec" flags associated with
open files; all files remain open across the exec call.

SEE ALSO

exhandle, fcntl.

134

exgrid

NAME

exgrid - Automatic domain decomposition tools

SYNOPSIS

int exgridinit(griddim, nprocs)
int griddim, *nprocs;

exgridsplit(nodes, griddim, nsplit)
int nodes, griddim, *nsplit;

int exgridcoord(procnum, coord)
int procnum, *coord;

int exgridproc(coord)
int *coord;

int exgridsize{procnum, global, size, start)
int procnum, *global, *size, *start;

int exgridbc{perbc)
int *perbc;

int exgridnode{procnum, dir, dist)
int procnum, dir, dist;

DOMAIN

The exgrid routines may be called from both host and node programs.

DESCRIPTION

exgrid collectively refers to a set of utilities that perform automatic decompositions of
user domains onto the underlying machine topology. A user specification for a problem
domain which has the topology of a Cartesian grid in N dimensions is mapped onto the
hardware topology and routines are available to enable processors (defined relative to the
user topology) to communicate through the primitive system calls.

exgridinit is the routine which perfonns the elementary mapping and must be called
before any of the other exgrid routines (except exgridsplit). The arguments are the
number of dimensions in the user topology and the number of processors to be assigned to
each dimension. If the requested topology is successfully mapped to the hardware zero is
returned; otherwise the value returned is -1.

The function exgridsplit is used to divide up the nodes processors between the
griddim dimensions in as even a way as possible consistent with the requirement that all
processors be used. The number in each dimension will be returned in the array n s pI it.
A simple example would be that of two dimensional decompositions: for eight nodes we
would obtain an 4 x 2 decomposition while nine processors yields 3 x 3.

135

exgrid

Having set up the exgrid system in this way the other function calls are available to
inquire about specific details of the decomposition. Particularly useful is infonnation
concerning where, in the user defined topology, a certain processor is to be found. The
exgridcoord function call takes a processor number as argument and returns the
coordinates in the Cartesian grid of this processor. The inverse transformation is provided
by the function exgridproc which takes as arguments an array of coordinates and
returns the processor number of the node at that position in the user grido

The interface to the underlying communication structure is provided by the exgridnode
and exgridbc functions. The arguments to the fonner area processor number, a direction
in the user grid and a distance. The returned value is a "node" suitable for use in calls such
as exchange and exvchange which contains the necessary infonnation for
communication in that direction. The distance parameter specifies the offset from the
current node in the direction indicated so that a value of +1 implies the next node along the
positive axis while -1 indicates the next node in the negative direction. Magnitudes greater
than 1 are also possible and correspond to multiple hops in the given direction.

The exgridbc function is provided to alter the boundary conditions at the edges of the
user domain0 By default exgr i dnode assumes that boundaries are connected periodically
so that the processor to the "left" of the leftmost is the one on the extreme right hand edgee
To suppress this feature one uses exgridbc. The sole argument is an array of integers,
one for each dimension in the user domain. A non-zero value indicates that this dimension
is to be considered periodic while a zero value causes exgridnode to return a NONODE
at the boundary.

The last function in the exgrid collection, exgridsize, is used to distribute an array
over the user grid. The frrst argument is again a processor number and the second is an array
containing the global sizes of the array to be decomposed. After the call the third argument
will be an array containing the number of entries in each dimension of the array which lie
in the processor specified. The final argument will be an array containing the global index
that corresponds to an index of zero in the local array.

A final point to note is that these routines are very useful in conjunction with the low level
I/O primitives mread, mwrite, mread2d and mwrite2d which require arguments
easily calculated by the exgrid functions.

EXAMPLE

As a simple example consider a problem involving two dimensional images to be executed
on eight processors. A suitable call to initialize the system might be

#include "express.h"/* Defines nodenv structure */

#define HORIZ 0
#define VERT 1
struct nodenv nodedatai

start_ decomp ()
{

136

exgrid

int nprocs[2];
int type = 33;/* Use same type for all messages */

exparam(&nodedata);
exgridsplit(nodedata.nprocs, 2, nprocs);
if (exgridinit (2, nprocs) < 0) {

abort(-l);
}

The macros HORIZ and VERT are defined for our convenience and just serve to label the
two axes in the grid. We assign processors to the horizontal and vertical directions of our
grid by using exgridsplit to divide up the processors.

Now consider a simple scrolling operation in which data is to be passed to the right. We
need to figure out the processor numbers of the appropriate nodes in order to communicate
in this direction. The simple thing to do in this case is to use exgri dnode to calculate the
appropriate values. However, one must fIrSt consider the boundary values; What should
happen when data is scrolled off the right hand edge of he display? The two options are to
have it appear on the left hand edge, or to disappear completely. We adopt the latter
approach which entails altering the default assumption of exgridnode that boundaries
are periodic. The following code uses exgridbc to override this default and
exgridnode to assign suitable processor values for the four directions we will be
interested in. (We assume that the variables defined and initialized in the previous code
segment are still available.)

int perbc[2];

perbc[O] = perbc[l] = 0;
exgridbc(perbc);

/* Suppress periodic boundary conditions */

upnode = exgridnode(nodedata.procnum, VERT, 1);
downnode = exgridnode(nodedata.procnum, VERT, -1);
leftnode = exgridnode(nodedata.procnum, HORIZ, -1);
rightnode = exgridnode(nodedata.procnum, HORIZ, 1);

Now all the "nodes" are valid. If a processor is on the extreme left edge of the domain and
it tries to communicate with a processor to its left then the value of leftnode has been
correctly assigned the value NONODE which will, in turn, direct the communication system
to omit communication with this non-existent processor. Note how simple it would be to
adopt the alternative strategy and have data scroll off the right edge and re-appear on the
left. We simply omit the call to exgridbc (or else change the zero values to ones) and the
correct masks would be returned.

To- show the actual use of these processor numbers assume that we wish to "scroll" 512
bytes along to the right. In each processor the data is to be taken from an array obuf and

137

exgrid

the data coming in from the left is to be read into an array ibuf. The following call to
exchange is all that is required

exchange (ibuf, 512, &leftnode, &type,
obuf, 512, &rightnode, &type);

Notice that at no point in these calculations did the topology of' the hardware entere
Everything is specified in the user domain - i.ee, that of the image, and exgrid does the
rest.

To demonstrate the use of the exgridsize function assume that the image 'to be
"scrolled" is not 1024 bytes tall as was implicitly assumed in the previous code (We
scrolled 512 ·bytes left in each processor and there are two processors in the vertical
direction for a total of 1024 bytes.) Instead we will make the strange choice of an image
which is 767 bytes high, and 1024 bytes widee The exgridsize routine can then be used
to tell us how many elements are in each processor through the following code

int global[2], sizes[2], start[2];

/* Decompose the array over the processor ring */

global [HORIZ] = 1024;
global [VERT] = 767;
exgridsize(nodedata.procnum, global, sizes, start);

At the completion of this call the values sizes [HORIZ] and sizes [VERT] contain the
sizes of the subregions assigned to each processor. Further, the values start [HORIZ]
and start [VERT] contain the horizontal and vertical index of the frrst byte that is stored
in this processor. In the case described here every processor would have the value 256 for
s i z e s [HORI Z] since the horizontal size is divided exactly by the number of processors
in that direction. In the vertical direction, however, the division does not work out correctly
and so the processors whose responsibility is the lower half of the display would have
sizes [VERT] = 384 while those in the upper half would have 383. Similarly, the
processors in the upper half have start [VERT] = 0 while those in the lower half have
start [VERT] = 384. The modified call to exchange which scrolls the data to the
right is

exchange (ibuf, sizes [VERT] , &leftnode, &type,
obuf, sizes[VERT], &rightnode, &type);

FORTRAN SYNOPSIS

INTEGER FUNCTION KXGDIN(GRIDIM, NUM)
INTEGER GRIDDIM, NUM(*)

138

· exgrid

INTEGER FUNCTION KXGDSP(NODES, GRIDIM, NSPLIT)
INTEGER NODES, GRIDIM, NSPLIT(*)

INTEGER FUNCTION KXGDCO(PROC, COORD)
INTEGER PROC, COORD(*)

INTEGER FUNCTION KXGDPR(COORD)
INTEGER COORD(*)

INTEGER FUNCTION KXGDSI(PROC, GLOBAL, SIZE, START)
INTEGER PRoe, GLOBAL(*), LOCAL(*), SIZE(*), START(*)

INTEGER FUNCTION KXGDBC (PERBC).
INTEGER PERBC(*)

INTEGER FUNCTION KXGDNO(PROC, DIR, SIGN)
INTEGER PRoe, DIR, SIGN

RETURN VALUE

If any error occurs in the exgrid routines they return -1. Particular errors include failing
to call exgridinit before using the other functions and a failure of exgridinit to
match the user requested topology onto that of the hardware.

SEE ALSO

exparam, mread, mread2d, forder

139

exhandle

NAME

exhandle - Asynchronous message handler.

SYNOPSIS

int exhandle(function, psrc, ptype)
int (*function) (), *psrc, *ptype;

DOMAIN

exhandle may be called in the node processors only.

DESCRlPfION

This routine is used to initialize a "handler" for messages ofcertain types' and sourceso The
idea is that whenever a message arrives that matches the psrc andptype parameters the
user-supplied procedure function is invoked to process the data. This process occurs
immediately upon receipt of the message with as little overhead as possible and can be used
to implement a totally asynchronous processing style in which messages can be handled
transparently without the intervention of the main application code.

The function is invoked immediately a message has arrived in the internal node buffers
with the following arguments

function (ptr, length, psrc, ptype)
char *ptr;
int length,*psrc, *ptype;

i.e., it looks just like a call to exreado Note however, that the supplied ptr argument
actually points to a buffer within the Express kernel. If the application needs to keep the
message for later processing memory must be allocated and the buffer copied. Otherwise
the data becomes unavailable when the user function completes.

The src and type fields reflect the actual source and type of the message being handled
in cases where "DONTCARE" values were originally supplied to the exhandle function.

The user supplied function must return an integer value to its caller. This value will
determine the future behavior of the system; a negative value will terminate the association
between the message source/type and the function while positive (and zero) values
maintain the status quo. In this way it is possible to have a message handler that is invoked
only once, several times until a particular message arrives, or pennanently.

EXAMPLE

The following example shows how this function can be used to implement a global, "read
only" memory. A handler is set up which intercepts all messages of type MEMREAD and
responds by sending back a message containing the memory requested. Obviously one
could implement a writable shared memory in a similar manner although problems
concerning mutual exclusion would probably have to be addressed.

#include "express.h"

140

exhandle

#define MEMREAD(Ox7001)/* Type for memory requests */
#define MEMORY (Ox7002)-/* Type for memory response */

struct memreq {
int addr;/* Address to read from */
int length;/* Number of bytes to read */

} ;

main ()
{

int mern_handler()i
int type, src;

/* Allow anyone to send memory requests */

type = MEMREAD;
src = DONTCARE;
exhandle(mem_handler, &src, &type);
exsync();

/* This is the function that fields requests for
* memory. The first argument will point to a request
* structure and the third to the requesting node.
* NOTE: we return 0 so that the handler continues to
* operate.
*/

int mem_handle(req, length, src, type)
struct memreq *req;
int length;
int *src, *type;
{

int rtype.= MEMORY;

exwrite(req->addr, req->length, &src, &rtype);
return 0;

Having set up this message handler we can access memory on another node by simply
sending a message of type MEMREAD. Notice that the message handler sends back the data
in a message of a different type that it reacl. This is an important point - if the routine
adopted the simpler strategy of returning the same type message as it received then that

141

exhandle

message would be trapped by the message handler on the original node and treated as a
memory request. In this way an infinite chain of requests would be generated!

The following routine reads length bytes of memory from processor node and stores it
in the specified buf fer. The routine returns the number of bytes read.

read_memory (node, address, length, buffer)
int node, address, length;
char *buffer;
{

struct memreq req;
int stype = MEMREAD;
int rtype = MEMORY;

req.addr = address;
req.length = length;
exwrite(&req, sizeof(req), &node, &stype);
return exread(buffer, length, &node, &rtype);

}

This function forms the basis of an extremely elegant multitasking system under Express
which is discussed in more detail in the accompanying manual, "Multitasking under
ExpresS' '0

FORTRAN SYNOPSIS

INTEGER FUNCTION KXHAND(FUNC, SRC, TYPE)
INTEGER FUNC, SRC, TYPE
EXTERNAL FUNC

DIAGNOSTICS

If the kernel is unable to install the message handler -1 is returned. Otherwise the return
value will be O.

WARNING

The current implementation restricts the length of a message that can be sent to a handler
to the size of the Express buffers as defined in excustom.

SEE ALSO

exread,exreceive

142

exload

NAME

exload, exloadl, exloadv, exloadle, exloadve - Load a program.

SYNOPSIS

int exload(pgind, nodeprog)
int pgind;
char *nodeprog;

int exloadl(pgind, nodeprog,
argvO, argvl, eee, argvN, NULLPTR)

int pgind;
char *nodeprog, *argvO, *argvl, ee., *argvN;

int' exloadv(pgind, nodeprog, argv)
int pgind;
char *nodeprog, *argv[];

int exloadle(pgind, nodeprog,
argvO, argvl, ... , argvN, NULLPTR, envp)

int pgind;
char *nodeprog, *argvO, *argvl, ... , *argvN, *envp[]i

int exloadve(pgind, nodeprog, argv, envp)
int pgind;
char *nodeprog, *argv[], *envp[];

DOMAIN

The exload subroutines may only be called in the host computer.

DESCRIYfION

exload in all its forms loads the program nodeprog into a set of processors previously
allocated with exopen. The pgind argument is the processor group index returned by
the exopen call.

The exload package provides the simplest interface to allocating processors and loading
application programs. A single application code is loaded into all processors and identical
arguments are passed to each. The alternative expload (This routine has its own manual
page.) is provided if either different arguments or different programs are to be loaded into
different processors.

When a conventional C program is entered on a sequential computer it starts as though
called with arguments:

rnain(argc, argv)
int ·argc;

143

exload

char *argv[];

where argc counts arguments and argv [] is a vector of pointers to the character strings
that make up the arguments. The exload routines allow host programs to initiate
execution of node programs with arguments in a similar manner.

exload is the simplest of the loading routines. It simply loads the node program to all
processors (in parallel) and begins execution. No arguments are passed to the node code.

exloadl allows the user to explicitly list the arguments that should be passed to the node
program. This list must be tenninated by the special pointer NULLPTR, defined in the
header file express .h.

exloadv is useful when the pointers to the arguments have already been formed into a
vector such as is the case with arguments passed to a·host program. As always the vector
must be tenninated by a NULLPTR value (note that this is different from a pointer to a null
string).

Traditionally the frrst argument, (argvO or argv [0]), is the name of the program being
run., i.e., nodeprog, although the user is free to disregard this convention..

The routines exloadle and exloadve supply an environment string to the nodes as
well as the command line arguments. An environment string is a vector of character strings
much like argv. Usually, each string consists of a sequence of alphanumeric characters9

optionally followed by '=' and another sequence of alphanumerics. The vector is
tenninated by a NULLPTR. In regular C programs (such as that running in the host
processor), the environment is passed to the running program in the external variable

extern char **environ;

Similarly, the environment that is passed to the node program by the host processor can be
found in the same external variable and queried with the system call getenv.

EXAMPLES

The following code loads a program (called myprog) into four processors. The main
routine is called with argc set to 2, argv [0] set to the character string "myprog" and
argv [1] set to the character string "horse." Note that the argument "myprog" appears
twice in the argument list - the frrst time it is the name of the program to load into the
machine while the second occurrence ensures that argv [0·] in thenooe program contains
the same string as is the conventional practice.

#include "express~h"

main ()
{

int pgind;

if ((pgind=exopen (" /dev/transputer" , 4, DONTCARE» < 0) {

fprintf(stderr, "Failed to allocate processors\n U
);

144

exload

exit(l)i
}

exloadl(pgind, "myprog", "myprog", "horse", NULLPTR);

The following is an example of how to relay to the node program the same argument vector
and environment that are received by the host program. The host program is called
mycpprog, and looks something like:

#include "express.h lt

extern char **environ;

main (cpargc, cpargv)
int cpargc;
char *cpargv[];
{

int pgindi

if ((pgind=exopen (" / dev/transputer" ,
atoi(cpargv[l]),DONTCARE»<O) {

fprintf(stderr, "Failed to allocate nodes\n"};
exit(l);

}

exloadve(pgind, cpargv[2], &cpargv[2], environ};

The node program, which is called mynodeprog looks like

#include "express.h"

extern char **environ;

main (nodeargc, nodeargv)
int nodeargci
char *nodeargv[]i
{

Finally, after the two programs are linked properly, the host program is executed with the

145

exload

command

mycpprog 8 mynodeprog horse dog

which loads the node program into eight processors and passes the arguments
"mynodeprog", "horse" and "dog" to the node program. The environment of the host
process is also passed to the nodes.

FORTRAN SYNOPSIS

INTEGER FUNCTION KXLOAD(PGIND, PRGNAM)
INTEGER PGIND
CHARACTER*80' PRGNAM

FORTRAN DESCRIPrION

KXLOAD may only be called from the host processor, and upon being called loads the
named program into the group of nodes indicated by the PGIND argument This routine is
the equivalent of the C routine exload. Since Fortran programs do not have command line
arguments the other C loading primitives have no Fortran partners.

DIAGNOSTICS

If any error occurs during loading -1 is returned. Possible sources of error are: an illegal
value of pgind or the failure of the system to allocate a the correct number of processors.
Errors are also returned if a routine fails to find an appropriate executable to load or if a
communication error occurs during loading.

SEE ALSO

expload

146

exopen

NAME

exopen - Allocate a processor group.

SYNOPSIS

tinclude "expresseh"

int exopen(device, nodes, start_node)
char *device;
int nodes, start_node;

DOMAIN

Only available to host programs.

DESCRIPTION

exopen allocates a processor group containing nodes processors in the device pointed
to by the character string device.

The nodes argument indicates the number of nodes to be allocated and the last argument
optionally requests a specific set of nodes within the parallel machine. The default value
DONTCARE allows any group of nodes to be selected.

The exopen call must be used before attempting to access any processor group.

RETURN VALUE

The returned value is a processorgroup index which must be used in all further references
to the allocated processors. In cases where no processor group of the appropriate size is
available or some other hardware error occurs the value returned is -1.

EXAMPLES

The following code allocates a group of 4 processors anywhere in the parallel machine

#include <stdio.h>
#include "express.h"

main ()
{

int pgind;

if«pgind=exopen("/dev/transputer", 4, DONTCARE)) < 0) {
fprintf(stderr, "Failed to allocate processors\nn);
exit(l);

}

147

exopen

If we wanted to allocate a particular set ofprocessors in the machine then we could replace,
for example, the DONTCARE argument in the exopen call:

exopen("/dev/transputer", 4, 8)

which attempts to allocate nodes 8 thru 110 In this case it is even more important that the
value returned by exopen be checked since there is a larger chance of failureo

FORTRAN SYNOPSIS

INTEGER FUNCTION KXOPEN (DEVICE, N~ODES,· STARTN)
CHARACTER*80 DEVICE
INTEGER NNODES, STARTN

WARNINGS

In current implem~ntationsthe DEVICE parameter will be one of

/dev/transputer Transputer based devices

/ dev/ ncube NCUBE systemsc

/ devI symul t Symult 52010, 68000 based nodes

/ dev/ symfpa Symult 52010, Weitek VFPA nodes

Note that this list is not necessarily exhaustive. It is complete at the time of writing but may
be extended at future dateso

Some systems are unable to support the start_node argument to this function.

SEE ALSO

exshare,exload,expload, exread,extest,extype,exwrite

148

exparam

NAME

exparam - Runtime parameters.

SYNOPSIS

iinclude "expressoh"

struct nodenv {
int procnum;
int nprocs;
int groupid;
int taskid;

} ;

exparam(nodedata)
struct nodenv *nodedata;

DOMAIN

exparam may be called in either the host or node processors.

DESCRIPTION

This routine is used when an application program r~uires to know the details of its runtime
environment. The infonnation available and its correspondence to the structure elements
defmed above is

procnum Processor number of the calling node. Nodes are numbered
consecutively from (and including) O.

nprocs Number of processors allocated in this processor group.

groupid Specifies the processor group index containing this node.

taskid Specifies the process identifier of the process making the call.

The last two pieces of infonnation are currently unused.

The use of this infonnation and the exgrid utilities is the key to writing reconfigurable
applications since they allow the program to adapt to different processor configurations at
runtime.

EXAMPLE

Assume that we wish to use the exgrid tools to map the parallel machine to a two
dimensional mesh of processors. The following code supplies the necessary parameters to
the exgrid routine.

iinclude "express.h"/* Defines nodenv structure */

idefine MESH 2/* Mesh has two dimensions */
main ()

149

exparam

{

struct nodenv nodedata;
int nprocs[MESH]; /* No. procs in each dimension */

exparam(&nodedata); /* Get runtime parameters */
/* Divide up processors */

exgridsplit(nodedata.nprocs, MESH, nprocs);

if (exgridinit (MESH, nprocs) < 0) {
abort(l);

}

Note that we use the exgridsplit function to divide up the processors between the
physical dimensions.

FORTRAN SYNOPSIS

INTEGER FUNCTION KXPARA(ENV)
INTEGER ENV(4)

FORTRAN DESCRIPTION

The KXPARA call fills in the entries of the ENVarray with runtime parameters describing
the processor configuration. The correspondence between the array elements and the C
structure fields is as follows

ENV (1)
ENV (2)

ENV (3)

ENV (4)

SEE ALSO

exgrid

150

procnum
nprocs
groupid

. procid

expause

NAME

expause - Arrange for programs to be loaded "stopped".

SYNOPSIS

int expause ()

DOMAIN

Only available to host programs.

DESCRIPTION

This routine is used to control the initial state of a program or programs being loaded into
groups of processors. By default node programs start immediately. If expause is used
before the appropriate exload call then the programs will halt at their fIrSt instruction
after loading. This is useful when using the debugger, ndb, since it allows the user to
control the entire course of execution by setting breakpoints etc.

EXAMPLE

Consider the case where debugging is occasionally required. The following code segment
illustrates the use of expause to load programs in a stopped state if more than three
runtime arguments are supplied to the host program. Otherwise programs will be loaded in
the (default) running state.

#include "express.h"

main (argc, argv)
int argc;
char *argv[];
{

int pgind;

/* Allocate 4 processors to run node program */

if«pgind=exopen("/dev/transputer", 4, DONTCARE)) < 0) {
fprintf(stderr, "Failed to allocate processors\nn);
exit(l);

}

/* If user supplied more than three runtime args, load
* stopped.
*/

if(argc > 3) expause();

/* Finally load application program into nodes */

151

expanse

if (exload(pgind, "nodeprog") < 0) {
fprintf(stderr, "Failed to download program\n")i
exit(2)i

}

FORTRAN SYNOPSIS

SUBROUTINE KXPAUS

SEE ALSO

exopen, exshare, exinit (command).

152

expload

NAME

expload, exargldl, exargldv, exenvld - Load a program into individual nodes.

SYNOPSIS

int expload(pgind, nodeprog, node)
int pgind, node;
char *nodeprog;

int exargldl(pgind,~node,
argO, argl, ... , argN, NULLPTR)

int pgind, node;
char *argO, *argl, ... , *argN;

int exargldv(pgind, node, argv)
int pgind, node;
char *argv[];

int exenvld(pgind, node, envp)
int pgind, node;
char *envp[];

DOMAIN

These routines may only be called in the host processor.

DESCRIPTION

These rOlltines provide a complementary interface to the exload routines for loading
programs into groups of processors. Instead of loading the entire array with a single node'
program these routines allow different applications to be loaded into individual nodes of
the machine.

In each case a previous call to exopen must have allocated a set of processors into which
we are attempting to load programs. The processor group index returned by this call must
be supplied to the expload functions as the argument pgind.

Having allocated a group of nodes user applications are loaded with the expload
primitive which loads the named code into the processor specified by the node argument.
In this call and the ones for loading arguments the special value ALLNODES defined in
express. h specifies that all processors are to be loaded with the same item.

Arguments and an environment string can also be passed to individual node programs using
the exargld and exenvld primitives. The difference between the two fonns of the
exargId routine concerns whether the arguments are listed in the subroutine call or given
as a vector of pointers. The description of the corresponding exload calls should clarify
this point. These routines are optional and may be omitted ifno arguments are to be passed.

Before execution of the node program can begin calls must be made to the exstart and
exmain functions.

153

expload

EXAMPLES

The following calls -allocate, load and start a program in four processors

iinclude "express.h"

main ()
{

int pgind;

if ((pgind=exopen (tt /dev/transputer", 4, DONTCARE) < 0) {
fprintf(stderr, "Failed to allocate processors\n")i
exit(l);

}

expload(pgind, "myprog", ALLNODES);
exstart(pgind, ALLNODES);
exmain(pgind, ALLNODES);

Note that the particular arguments chosen here make this code functionally equivalent to a
call to exload.

In the following example we load the programs "progl" into nodes 0 through 3 and
"prog2" into nodes 4 through 15 of a sixteen processor group.

iinclude "express.h"

main ()
{

int pgind;

if ((pgind=exopen (" /dev/ncube", 16, DONTCARE» < 0) {
fprintf(stderr, "Failed to allocate processors\n tl

);

exit(l);
}

for(i=O; i<4 ; i++) expload(pgind, "progl", i);
for(i=4; i<16; i++) expload(pgind, "prog2", i);

exargldl(pgind, ALLNODES,
"horse", "donkey", "cat", NULLPTR);

exstart(pgind, ALLNODES);
exmain(pgind, ALLNODES);

Notice that we also pass a list of arguments to the loaded programs - the same list to each

154

expload

processor.

FORTRAN SYNOPSIS

INTEGER FUNCTION KXPLOA(PGIND, PRGNAM, NODE)
INTEGER PGIND, NODE
CHARACTER*80 PRGNAM

FORTRAN DESCRIPfION

This routine loads the named program into the processor specified by the NODE argument.
The special value NODE=IALNOD causes all processors to receive the same program. The
IALNOD value is found in the XPRESS common block which is initialized by the call to
KXINIT. The PGIND argument indicates the group ofprocessors and is the value returned
by a successful call to KXOPEN.

DIAGNOSTICS

expload returns zero upon successful loading of the executable program. If the
executable file is not found, or is invalid in some way the value -1 is returned.

SEE ALSO

exload, exstart.

ISS

exread

NAME

exread - Read a message

SYNOPSIS

linclude "express~h"

int exread(buf, length, psrc, ptype)
int length, *psrc, *ptype;
char *buf;

DOMAIN

exread is available to both host and node programs with identical calling sequences.

DESCRIPTION

This call is used to read messages in the Express system. This routine provides the
simplest interface to the message system - a blocking read; the function only returns when
a suitable message has been read.

The accepted message is read into the buffer pointed to by the buf argument and is
truncated to size length bytes if necessary. The source and type of the message to be read
can be specified by the pointer arguments psrc and ptype as described below.

This routine blocks until a message with suitable parameters has been received.

OPTIONS

Under Express messages have both destinations and types which are used by reading
processes to distinguish between various available messages. A message will only be read
if it matches, in both source and type, the parameters supplied in the read call. However,
several options are available to allow the user extra flexibility. Both source and type fields
are treated equivalently at this level so the following discussion applies equally to both.

*psrc = DONTCARE A message will be read from any node. The particular
node will be indicated by modifying the value under the
pointer psrc. Note that the original DONTCARE value
is overwritten by this call.

psrc = (char *) NULL If the NULL pointer is specified then a message will be
accepted from any of the nodes included in the above
case but no attempt will be made to indicate where the
message came from.

*psrc = number Any positive numeric value will restrict attention to
messages with that particular source.

These same considerations apply to the type field, ptype, except that the interpretation of
the wildcard value, DONTCARE, is subject to modification through the extype system
calls.

The special value HOST is used by nodes wishing to send messages to the host processor.

156

exread

RETURN VALUE

The value returned is the length of the received message, after any necessary truncation has
been performed. If some sort of hard error occurs then -1 is returned.

EXAMPLES

In the following examples we consider a case in which the following four messages have
arrived on our node in the order given.

1. Source 1 Type 12 Length 32
2. Source HOST Type 2 Length 512
3. Source 1 Type 15 Length 1024
4. Source 2 Type 0 Length 0

The simplest case is where both source and type are explicitly stated as in the call

int src=l, type=15;
stat = exread(buffer, 512, &src, &type);

In this case message three will be accepted for reading. Note, however, that the actual
message is longer than the request length so only the first 512 bytes will be read and the
rest discarded. The returned value, stat will be 512.

In the next case we give wildcard values to both arguments

stat = exread(buffer, 512, (char *) 0, (char *) 0);

This will result in the reading of the frrst message. Since its actual length is less than or
equal to the length requested the entire message will be read and the returned value, stat
= 32, the number of bytes read.

The next example uses the wildcard value, DONTCARE, to read a message but retain
infonnation about its source.

source = DONTCARE;
type = 0;
stat = exread(buffer, 512, &source, &type);

In this case the type is explicitly given and so message 4 will be read. The returned value
will be 0, the length of the message read and the source variable will contain 2, the source
of the message.

In the last example a wildcard value is given for the type field

source = 1;
type = DONTCARE;

157

exread

stat = exread(buffer, 512, &source, &type);

In this case the source is given explicitly and the type allowed to take any valueo With the
parameters shown message 1 will be read and the value 12 stored in the type variable. 32
bytes will be copied into the user buffer and the same value returned as stat. Note that
types are subject to extra processing through the extype commands0 If we had
specifically excluded type 12 from consideration then message 3 would have been read
instead since it has the correct source and has not been excludedo If we had excluded both
types 12 and 15 then the call to exread would block until a more suitable message arrivect.

FORTRAN SYNOPSIS

INTEGER FUNCTION KXREAD(BUFFER, LENGTH, SOURCE, TYPE)
INTEGER BUFFER(*), LENGTH, SOURCE, TYPE

WARNINGS

Types are restricted to be positive integers less than 163840 Other message types are
reserved for use within the Express kernele

A common "bug" introduced by the DONTCARE value is to write code similar to the
following

node = DONTCARE;
type = 123;
for(i=O; i<nprocs; i++) {

stat = exread(buf, sizeof(buf), &node, &type);
}

when trying to read a response from every node, in any ordere The error here is. that the frrst
call to exread overwrites the DONTCARE value for node with the actual processor
number of the node which responded. As a result the second call to exread specifies the
same processor as sent the frrst message - probably not the intention of the program. The
simple correction is to either use the NULLPTR value or else reset the node variable to
DONTCARE at each loop iteration.

SEE ALSO

exopen,exshare,extest,exwrite,extype,exgrid.

158

exreadfd

NAME

exreadfd, exwritefd - Write a message to/from a file

SYNOPSIS

#include "express.h"

int exreadfd(fd, length, psrc, ptype)
int fd, *psrc, *ptype;
long length;

int exwritefd(fd, length, pdest, ptype)
int fd, *pdest, *ptype;
long length;

DOMAIN

These routines are only available on the host computer.

DESCRIPTION

These routines perfonn a very similar function to exread and exwrite with the
exception that the appropriate message is not buffered but comes from or goes to a file.
Another slight difference is that the length parameter is a long integer allowing fIle
operations on large amounts of data.

exreadfd reads a message with the indicated source and type and places it into the file
indicated by the fIle descriptor f d.

exwritefd writes a message to the specified destination. The message is taken from the
file indicated by the file descriptor f d.

In both cases the interpretation of the src, dest and type arguments is exactly as in the
corresponding call exread or exwrite.

Appropriate flie descriptors for use with these functions are those obtained from the open,
creat, etc. system calls.

RETURN VALUE

These functions return the number of bytes read (exreadfd) or written (exwritefd).
If an error occurs in writing to or reading from the disk -1 is returned and the external
variable errno reflects the problem.

EXAMPLES

The following code fragment sends 64 Kbyte blocks of data to each of 16 processors taken
from the file "noddy. dat".

#include <fcntl.h>/* Defines 0 RDONLY flag */
#include <stdio.h>

159

exreadfd

main ()
{

int fd, type=28;
long length = 64*1024L;

1* Code here to allo'cate nodes and download programs
etc •• 0 0 * 1

1* Open file and distribute data */

if ((fd=open ("noddy. dat", 0_RDONLY» < 0) {

fprintf(stderr,
"Failed to open file for reading\n");

exit(O);
}

for(node=Oi node<16i node++) {
if (exwritefd(fd, length, &node, &type) < 0) {

fprintf(stderr, "File error: %d\n", errent);
exit(2);

}

}

WARNINGS

These routines have long integer parameters for message length distinct from the standard
exread and exwrite routines. This allows large files to be created but may cause a little
confusion on machines where int and long are different sizes.

SEE ALSO

exread,exwrite

160

exreceive

NAME

exreceive - Non-blocking read function.

SYNOPSIS

int exreceive(buffer, length, psrc, ptype, status)
int length, *psrc, *ptype, *status;
char *buffer;

DOMAIN

exreceive may be called in only the node processors.

DESCRIPTION

This function provides a non-blocking read function for Express messages. It is intended
for use in applications such as "double-buffering" in which one wishes to process some data
while waiting for another message to arrive.

When called it looks for a message in the buffers that matches the supplied psrc and
ptype parameters. If such a message exists it is read as though by a nonna! call to
exread and the value pointed to by status will contain the message length.

If no message exists which matches the requested parameters the value -1 is written under
the status flag and the function immediately returns to its caller. When a message of the
correct type and source subsequently arrives it will be read into memory at the address
buffer and the length will be written under the status variable replacing the -1. The
psrc and ptype variables will also be updated at that time to reflect the newly read
message.

The interpretation of the frrst four arguments is exactly as in the corresponding call to
exread. The last argument, status, is a mechanism by which one can poll for the arrival
of the requested message; while negative, no message has been received.

EXAMPLE

The following example is a sketch of a typical "double-buffered" application. We assume
that processor source is sending messages of type PROCESS which must be passed to the
function grind_away for processing. When all messages for such treatment have been
received a message of type FINISHED will be sent. We assume that each of the PROCESS
messages will be of no more than 1024 bytes.

4f:include "express.h"

4f:define PROCESS (Ox7001)
4f:define FINISHED (Ox7002)

/* Type for grinding on */
/* Type for "done" */

char buffer[2] [1024];/* For buffering data */

do_grind (node)

161

exreceive

int node;
{

/* Source of data for processing */

int done, type, this, next;
int stat[2];

done = 0;/* Not done yet */
this = 0;/* Start using "slot" 0 */
next = 1;

/* Get first buffer, blocking read this time */

type = DONTCARE; .,
stat [this] = exread(buffer[this], 1024, &node, &type);

do {
if(type != FINISHED) {/* Read another block */

type = DONTCAREi
exreceive(buffer[next], 1024,

&node, &type, stat+next);
}

else done = TRUE;
/* Finish after pr9cessing this block */

grid_away (buffer [this] , stat[this]);

/* If we're not done wait for next buffer */

if (! done) {
while (stat [next] < 0);
next = (next + 1) % 2;
this = (this + 1) % 2;

}

while(done != TRUE);

There are several points to note in this code. We assume that we must process the buffer
with the FINISHED type - this saves us a message since we can send valid data and still
use the type field to convey the important infonnation. We also save the length of the
message we are going to process in the s tat variable - this could be important in the
grind_away functione Note that it would be dangerous to use a single variable here since
it would get overwritten whenever the second buffer arrived - possibly before the call to
grind_away had been passed the value. Finally note that we have to keep setting type
= DONTCARE since its value is overwritten whenever a message comes. Failing to do this
is quite a common error and would result in the failure to read the FINI SRED message.

162

exreceive

FORTRAN SYNOPSIS

INTEGER FUNCTION KXRECV(BUFFER, LENGTH,
SRC, TYPE, STATUS)

INTEGER BUFFER(*), LENGTH, SRC, TYPE, STATUS

RETURN VALUE

This function returns zero unless insufficient memory is available to register the read
function. In this case -1 is returned.

SEE ALSO

exread,exhandle

163

exsem

NAME

exsem - Various semaphore operations.

SYNOPSIS

#include <express.h>

EXSEM *exsemalloc()

void exsemfree(semptr)
EXSEM *semptr;

void exsemwait(semptr)
EXSEM *semptr;

void exsemsig(semptr)
EXSEM *semptr;

DOMAIN

These routines may only be called in node programs.

DESCRIPTION

These routines implement a semaphore mechanism essential to protect critical sections of
code in a multitasking environmento

exsemalloc allocates a new semaphore and sets it so that the frrst call to exsemwait
will not block. If no more semaphores are available a NULL pointer will be returned.

exsemfree returns a semaphore to the available pool for reuse.

Each call to exsemwait checks the status of the associated semaphore. If locked the
calling task sleeps until another process unlocks the semaphore. While sleeping no CPU
time is expended allowing other tasks to proceed.

The exsemsig call unlocks the indicated semaphore allowing other processes to enter a
critical section of code.

EXAMPLE

The following code could be used to implement a global shared memory system for a
distributed memory machine. We will assume that the data being accessed is such that only
one process can be allowed access at anyone time. This would be the case where, say,
extended records are being written to memory in which case the integrity of any particular
record is crucial. We would not, for example, allow two processes to both write records
simultaneously since they may each write half leaving inconsistent data.

To implement these ideas we need to register a message handler which will field the read!
write requests. For simplicity we will use only one handler for both purposes and let the
data sent indicate the requested operation. For our own convenience· we define a simple
data structure to encode these requests.

164

exsem

The necessary message handler is as follows

tinclude <express.h>

tdefine MEM READ
tdefine MEM WRITE
tdefine MEM ACCESS
tdefine MEM RESP
tdefine MEM DATA

(97)
(98)
(99)
(100)
(101)

/* Request to read memory */
/* Request to write memory */
/* Message type for mem access */
/* Message type for replies */
/* Data to be written */

extern EXSEM *rnem_sem; /* Memory protection semaphore */

struct mem_req {
int code;
int address;
int nbytes;

} ;

/* Which operation to perform */
/* Memory address */
/* Number of bytes */

mem_access(ptr, length, src, type)
struct mem_req *ptr;
int length, *src, *type;
{

int rtype;

exsemwait(mem_sem);/* Wait for unique access */

switch (ptr.code) {
case MEM READ:

rtype = MEM_RESP;
exwrite(mem_req.address, mem_req.nbytes,

src, &rtype);
break;

case MEM WRITE:
rtype = MEM_DATA;
exread(mem_req.address, mem_req.nbytes,

src, &rtype);
break;

}

exsemsig(mem_sem);
return 0;

We have assumed in the above code that the call to exhandle which sets up this handler
is made elsewhere. Similarly the mem_ sem semaphore should be allocated before any use
will be made of this routine.

165

exsem

To use these routines it is merely necessary to add the following calls. (Assume that the
previous macros are defined here also.)

mem_read(ptr, length, node, address)
char *ptr;
int length, node;
long address;
{

struct mem_req mem_task;
int type = MEM~REQ, rtype = MEM_RESP;

mem_task.code = MEM_READ;
mem_taskeaddress = address;
mem_task.nbytes = length;

exwrite(&mem_task, sizeof(mem_task), &node, &type);
return exread(ptr, length, &node, &rtype);

}

mem_write(ptr, length, node, address)
char *ptr;
int length, node;
long address;
{

struct mem_req mem_task;
int type = MEM_REQ, rtype = MEM_RESP;

mem_task.code = MEM_WRITE;
roem_task.address = address;
mem_task.nbytes = length;

exwrite(&rnem_task, sizeof(mem_task), &node, &type);
return exwrite(ptr, length, &node, &rtype);

Notice that several potential improvements could be made to this code. In particular we
could speed up the writing process by sending short amounts of data in the same message
as invokes the mem access handler. (exhandle can only deal with messages up to the
system packet size defined in excustom, so any extra could be sent in a second message.)
A further bottleneck is due to the fact that we have a single semaphore protecting a large
memory space on each node. It might be more practical to have separate semaphores
protecting disjoint areas of memory so that fewer processes would have to "sleep".

FORTRAN SYNOPSIS

INTEGER FUNCTION KXSEMA(ISEM)

166

exsem

INTEGER I SEM (2)

SUBROUTINE KXSEMW(ISEM)
INTEGER ISEM(2)

SUBROUTINE KXSEMS(ISEM)
INTEGER ISEM(2)

FORTRAN DESCRIPTION

The Fortran functions perfonn the same functions as their C counterparts with the
exception that memory for the semaphore structure must be explicitly provided by the user.
This should consist of two integers as shown in the above synopsis. Note that there is no
need for a "free" function in this case.

SEE ALSO

exsleep, exhandle, excustorn (command) and the discussion of Express
buffering mechanisms in the excustorn chapter of the users guide.

167

exsend

NAME

exsend - Non-blocking write functiono

SYNOPSIS

int exsend(buffer, length, psrc, ptype, status)
int length, *psrc, *ptype, *status;
char *buffer;

DOMAIN

exsend may be called in only the node processors.

DESCRIPTION

This function provides a non-blocking write function for Express messages. It is intended
for use in applications such as "double-buffering" in which one wishes to process some data
while waiting for another message to arrive or be sent.

This routine provides a mechanism by which a node can transmit a message and then carry
on processing reganlless of whether or not the message has actually been sento Upon return
from the kernel the status variable is set to ... 10 When the message is finally processed
this value will be changed to the number of bytes sent. Until this has happened the user
should (probably) not alter the data in the message since it is unknown which bytes have
been transmitted to the receiving node and which have yet to be sent.

The interpretation of the fIrst four arguments is exactly as in the corresponding call to
exwritee The last argument, status, is a mechanism by which one can poll for the final
dispatch of the requested message; while negative, the message has still to be sent.

EXAMPLE

The following example is a sketch of a typical "pipelined" applicationo We assume that
processor source is sending messages of type PROCESS which must be passed to the
function grind_away for processing, and then forwarded to node dest for further
processing. When. all messages for su~h treatment have been dealt with a message of type
FINISHED will be sent. We assume that each of the PROCESS messages will be of no
more than 1024 bytes.

#include "express.h"

#define PROCESS (Ox7001)
#define FINISHED (Ox7002)

char buffer[3] [1024];

/* Type for grinding on */
/* Type for "done" */

/* For buffering data */

pipeline (src, dest)
int src; /* Source of data for processing */
int dest; /* Destination of data */
{

168

exsend

int done, this, next;
int stat[3], type[3]i

done = 0; /* Not done yet */
last = -1; /* Last buffer written */
this = 0; /* Start using "slot" 0 */
next = 1;

/* Get first buffer, blocking read this time */

type [this]=DONTCAREi
stat[this]=exread(buffer[this],1024,&src,&type[this])j

do {
if(type[this] != FINISHED) {/* Read another block */

type [next] = DONTCARE;
if(last >= 0)

while (stat [last] < 0);
exreceive(buffer[next], 1024,

&src, type+next, stat+next);
}

else done = TRUE;
/* Finish after processing this block */

grid_away(buffer[this], stat[this]);
exsend(buffer[this], stat[this], &dest, &type[this],

stat+this);

/* If we're not done wait for next buffer */

if (! done) {
while (stat [next] < 0);
last = (last + 1) % 2;
next = (next + 1) % 2;
this = (this + 1) % 2;

}

while(done != TRUE);

There are several points to note in this code. We assume that we must process the buffer
with the FINISHED type - this saves us a message since we can send valid data and still
use the type field to convey the important infonnation. We also save the length of the
message we are going to process in the s tat variable - this could be important in the
grind_away function. Note that it would be dangerous to use a single variable here since

169

exsend

it would get overwritten whenever the second buffer ~ved - possibly before the call to
grind_away had been passed the value. Finally note ttli we have to keep setting type
= DONTCARE since its value is overwritten whenever a message comes. Failing to do this
is quite a common error and would result in the failure to read the FINISHED message.

FORTRAN SYNOPSIS

INTEGER FUNCTION KXSEND(BUFFER, LENGTH,
SRC, TYPE, STATUS)

INTEGER BUFFER(*), LENGTH, SRC, TYPE, STATUS

RETURN VALUE

This function returns zero unless insufficient memory is available to register the write
function. In this case -1 is returned.

SEE ALSO

exwrite,exhandle,exreceive

170

exshare

NAME

exshare - Share a processor group with another process

SYNOPSIS

#include "express.h"

int exshare(device, pid, pnodes)
char *devicei
int pid, *pnodesi

int expid(unix_ID)
int unix_1Di

DOMAIN

Host processor only.

DESCRIPTION

The exshare routine allows two or more host processes to share access to the same
processor group. The fIrSt argument, device, specifies which array contains the processor
group to be shared and is interpreted exactly as in the exopen call. The process ID of the
process with which the processor group is to be shared must be specified by pid. Upon
return the number of nodes in the shared processor group is written under the pointer
pnodes.

The most reliable source of infonnation about process ID's is provided by the exopen
system call which reports the appropriate value. Similar information is often available from
the exstat function. On UNIX machines the function expid is available whose
argument is the UNIX process ID. The returned value is the Express process I.D, suitable
for giving to the exshare function.

RETURN VALUE

The value returned by exshare is the processorgroup index which must be used in future
references to the shared processors.

If the indicated process has tenninated or is not using any processors itself the value -1 is
returned.

EXAMPLE

The following code would be used if a second process wished to share the processor group
currently assigned to the process withprocess-ID 349.

#include <stdio.h>
#include "express.h"

main ()

171

exshare

{

int Nnodes, msg_type, msg_src, pgind;

if«pgind=exshare("/dev/transputer",
expid(349), &Nnodes» < 0) {

fprintf(stderr,
"Failed to share nodes, job may have e~ded\n");

exit(-l);
}

else fprintf(stderr, "Sharing %d nodes\n", Nnodes);

/* Successfully shared nodes, restrict wildcard message
* types and start reading
*/

exinctype(123, 125);

msg_type = msg_src = DONTCARE;
exread(buffer, 512, &msg_src, &msg_type);

Note that having successfully shared the nodes with process 349 we use the extype
functions to restrict attention to the message types from 123 to 125. This allows us the
freedom to use the wildcard DONTCARE values in reading without clashing with the
process whose nodes we are sharinge

FORTRAN SYNOPSIS

INTEGER FUNCTION KXSHAR(DEVICE, PROCID, NODES)
CHARACTER*80 DEVICE
INTEGER PROCID, NODES

INTEGER FUNCTION KXPID(IPID)
INTEGER IPID

WARNINGS

Communicating with shared processor groups is complicated by interactions between
source and type fields specified using the DONTCARE wildcard. This situation can be eased
somewhat through the extype mechanisms which restrict the ranges indicated by
wildcard values.

SEE ALSO

exopen, extype.

172

exsleep

NAME

exsleep - Pause process.

SYNOPSIS

exsleep(msecs)
int msecs;

DOMAIN

This routine may be called in any node program.

DESCRIPTION

This routine is used when a process needs to wait for an event without using CPU resources.
The supplied argument is the minimum time to wait in microseconds. This routine should
be used in multitasking applications where one task needs to wait for an event which will
potentially be generated by another task on this node.

EXAMPLE

The following code makes use of the exsleep function to implement a global semaphore
- i.e., a semaphore that can be used from any node. For definiteness we assume that the
physical semaphore is located on node O. In this node we should register the following
function with a call to exhandle.

#include "express.h lt

#define WAIT (1) /* Wait on global semaphore */
#define SIGNAL (2) /* Signal global semaphore */
#define OPEN (3) /* Global semaphore "open" */
#define CLOSED (4) /* Global semaphore "closed" */

#define SEM_REQ (801) /* Req for sem wait or signal */
#define SEM RESP (800) /* Replies to callers */

extern EXSEM *gbl_sem;
extern int gbl_flag;

gbl_semaphore(msg, length, src, type)
int *rnsg, length, *src, *type;
{

int resp, rtype = SEM_RESP;

if(*msg == WAIT) {
exsemwait(gbl_sem);
if(gbl_flag == OPEN) {

gbl_flag = CLOSED;

173

exsleep

174

resp = OPEN;
}

else resp = CLOSED;
exsemsig(gbl_sem);
exwrite(&resp, sizeof(resp), src, &rtype)i

}

if(*msg == SIGNAL) {
exsemwait(gbl_sem);
gbl_flag = OPEN;
exsemsig(gbl_sem);

}

J;:eturn 1;
}

Note that we implement the global semaphore with a simple variable, gbl_flag to which
access is restricted with the local semaphore, gbl_seme If the semaphore is "locked" a
message is sent bac~ to the requesting node indicating that it should sleep. The code which
implements the "signal" and "wait" requests for this global semaphore is shown below. For
simplicity we assume that the same macros are defined as in the previous code segment.

gbl_signal ()
{

int req = SIGNAL, dest = 0, type = SEM_REQ;

exwrite(&req, sizeof(req), &dest, &type);

{

int req = WAIT, dest = 0, type = SEM_REQ;
int rtype = SEM_RESP, status;

status = CLOSED;
while (status == CLOSED) {

exwrite(&req, sizeof(req), &dest, &type);
exread(&status, sizeof(status), &dest, &rtype);

if(status == CLOSED) exsleep(lO)i
}

}

The important point to note in this code is the call to exsleep in the last routine. This

exsleep

allows other processes on a node to proceed even though the calling process is blocked
waiting for the global semaphore.

FORTRAN SYNOPSIS

SUBROUTINE KXSLEE(MSECS)
INTEGER MSECS

SEE ALSO

exsem, exhandle.

175

exstart

NAME

.exstart, exmain ... Start execution of program

SYNOPSIS

iinclude "expressoh"

exstart(pgind, node)
int pgind, node;

exmain(pgind, node)
int pgind, node;

DOMAIN

Available to host processes onlYe

DESCRIPTION

These routines begin execution of a program previously loaded into a node with the
expload system calle Programs loaded with exload do not need to use these routines.

The two routines perfonn subtly different roles in starting up the user program. exstart
is called after expload but before arguments are loaded with the exenvld or exargld
routines. exmain is called after all arguments are loaded and actually starts up the user
applicatione

The special value node = ALLNODES may be specified to either routine to perform the
action on all allocated nodes.

EXAMPLE

The following example shows the correct use of exstart to begin execution of a job
successfully loaded into the nodes.

#include <stdio.h>
iinclude "express.h"

main ()
{

int pgind;

pgind = exopen("/dev/ncube", 4, DONTCARE)i
if(pgind < 0) {

fprintf(stderr, "Failed to allocate processors\n");
exit(l);

/* Load program into processor group using index returned */

176

exstart

if (expload(pgind, "noddy", ALLNODES) < 0) {
fprintf(stderr, "Failed to load program\n")i
exit(2)i

/* Start application running */

exstart(pgind, ALLNODES)i
exmain(pgind, ALLNODES)i

Note that the calls to exstart and exmain can be used to explicitly control when a
process begins executing. It may be important, for e~ample, that certain actions be
performed on the host before execution begins. In this case the "start" calls can be deferred
until an appropriate time.

FORTRAN SYNOPSIS

INTEGER FUNCTION KXSTAR(PGIND, NODES)
INTEGER PGIND, NODES

INTEGER FUNCTION KXMAIN(PGIND, NODES)
INTEGER PGIND, NODES

SEE ALSO

exload,expload,exopen

177

exswap

NAME

_ex_swab, _ ex_swaw, _ ex_ swad - Byte swapping routines

SYNOPSIS

void _ex_swab (from, to, nbytes)
char *from, *to;
int nbytes;

void _ex_swaw(from, to, nbytes)
char *from, *to;
int nbytes;

void _ex_swad(from, to, nbytes)
char *from, *to;
int nbytes;

DOMAIN

These routines may be called in any Express programe

DESCRIPrION

An unfortunate problem with many parallel processing systems is that the host machines
and node processors have different CPU typese It is often then the case that the binary
representation of various data types is different. Typical examples are Sun workstations
hosting transputer or NCUBE systems. The fonner has a Motorola CPU with the most
significant byte of a word having the lowest memory address while the node processors
store the least significant byte first.

To aid with these problems Express provides a set of byte swapping primitives for
transfonning data between "big" and "little" endian machines. Each routine has a pair of
pointer arguments which denote the buffers from which data should be taken and into
which it should be placed after swapping. These two pointers may be the same. The last
argument, in each case, is the number of bytes in the buffer to be swapped. This should be
a multiple of the size of each item being swapped.

The three routines each serve a different swapping style as follows:

ex swab Swaps adjacent bytes in2-byte quantities

ex swaw Reverses the bytes in 4-byte quantities - i.e., the original order
{O,1,2,3} becomes {3,2,1,0}.

ex swad Reverses the bytes in 8-byte quantities - the original order
{O,1,2,3,4,5,6,7} becomes {7,6,5,4,3,2,1,O}e

Note that these routines are sufficient to transform data items between Motorola byte
ordered machines (Sun workstations, etc.) and INTEL byte ordered machines (NCUBE,
transputers, etc.)

178

exswap

EXAMPLE

When necessary, byte swapping typically occurs in one of two places depending on the
programming model in use.

In "Host-node" programs it is typical to have to swap all data items that are transmitted to
\ or received from the nodes. The issue of which processor should perfonn the byte swapping

is one of pure convenience - either the host or the nodes can swap the bytes. Often this
decision is made according to who has to further use the data being swapped - the following
code fragment represents a typical bug

/*
* Byte swapping in a "host-node" program - INCORRECT
*/

#include "express.h lt

iterate (ntimes)
long ntimes;

int i, type = 123;
#ifdef SWAP

_ex_swaw(&ntimes, &ntimes, sizeof(ntimes);
#endif

exbroadcast(&ntimes, HOST, sizeof(ntirnes), ALLNODES,
NULLPTR, &type);

/*
* This is a BUG ntimes just had its bytes swapped!
*/

for(i=O; i<ntimes; i++) {

}

This code shows some typical features in a byte-swapping environment. We have a pre-
, processor symbol, SWAP, controlling the byte swapping routine - only if this is defined will
the byte swapping primitives be called allowing the same source code to be used on all
types of machines. The "bug" in the above code is that the host program swaps the bytes in
the ntimes value and sends it to the nodes (correct) but then attempts to use the value in
the following loop - without swapping the bytes back. As a result the loop will probably run
for an extremely long time!

Among several possible "fixes" are:

• Adding another call to _ex_ swaw after the call to exbroadcast to restore
the ntimes variable to its proper state.

• Making a temporary variable, swapping ntimes into it and sending the
temporary value to the nodes.

179

exswap

• Having the nodes do the byte swapping in this case.

Cubix programs should only have byte swapping problems when perfonning binary I/O.
Regular text fues should pose no problems since the internal protocols take care of all
appropriate byte swapping. Arguments to system calls that will be sent to another host are
also byte swapped automatically. For binary files, however, the problem remains and the
only viable solution seems to be the insertion of many calls to the appropriate swapping
routine.

FORTRAN SYNOPSIS

SUBROUTINE KXSWAB(FROM, TO, NBYTES)
INTEGER*2 FROM(*), TO(*)
INTEGER NBYTES

SUBROUTINE KXSWAW (FROM, TO, NBYTES')
INTEGER*4 FROM(*), TO(*)
INTEGER NBYTES

SUBROUTINE KXSWAD(FROM, TO, NBYTES)
REAL*8 FROM(*), TO(*)
INTEGER NBYTES

FORTRAN DESCRIPfION

These routines perform byte swapping in the same way as their C counterparts. Note that
although the arguments above indicate that the KXSWAW routine expects INTEGER* 4
arrays REAL* 4 arrays are also acceptable.,

SEE ALSO

mread,mread2d,mwrite.

180

exsync

NAME

exsync - Synchronization primitive

SYNOPSIS

int exsync ()

DOMAIN

exsync may only be called from the nodes.

DESCRIPrION

This routine is used to implement synchronization points in applications. It is guaranteed
that no processor will proceed past the call to exsync until all are ready to do so.
Furthermore the processors emerge from the exsync calls on their respective nodes as
synchronized as can be arranged.

A call to exsync in one processor must be complemented by a call to exsync in all other
processors.

EXAMPLE

In the following code we assume that it is important that all processors be synchronized
between two phases of an algorithm.

tinclude "express.h"

main ()
{

/* PHASE 1 of application */

/* Before beginning second phase make sure all processors
in sync */

exsync()i/* Block till called in all nodes */

/* PHASE 2 of application - all processors synchronized */

Another good place for this function is after installing message handlers with the
exhandle system call. Synchronizing all processors is a good idea since it prevents any
one processor sending a message to another which has yet to install its signal handler.

181

exsync

FORTRAN SYNOPSIS

INTEGER FUNCTION KXSYNC()

DIAGNOSTICS

If an unrecoverable hardware error is detected exsync returns -10

SEE ALSO

exchan,ge

182

extest

NAME

extest - Test for an incoming message, non-blocking

SYNOPSIS

#include "express.h lt

int extest(psrc, ptype)
int *psrc, *ptype;

DOMAIN

extest is available to both host and node programs. The calling sequence is identical in
both cases.

DESCRIPTION

This function looks for an incoming message in a non-blocking fashion. It is intended for
use in implementing strategies which require non-blocking read capabilities. The pointer
arguments psrc and ptype are interpreted just as in the exread call with the same
wildcard interpretations.

The useful feature of the "test" function is that it returns immediately indicating by the
return value whether or not a message currently exists which matches the supplied
parameters. If no such message is found -1 is returned. Otherwise the return value is the
length of the matching message.

EXAMPLES

In the following examples we consider a case in which the following four messages have
arrived on our node in the order given.

1. Source 1 Type 12 Length 32
2. Source HOST Type 2 Length 512
3. Source 1 Type 15 Length 1024
4. Source 2 Type 0 Length 0

The simplest case is where both source and type are explicitly stated as in the call

source = 1;
type = 15;
stat = extest(&source, &type);

In this case message three will be accepted. The returned value, stat will be 1024, the
length of the acceptable message.

In the next case we give wildcard values to both arguments

stat = extest«char *)0, (char *)0);

183

extest

This will result in the acceptance of the first message. The returned value, s tat will be 320

The next example uses the wildcard value, DONTCARE, to look for any message but retain
information about its source.

source = DONTCARE;
type = 0;
stat = extest(&source, &type);

In this case the type is explicitly given and so message 4 will be matched. The returned
value will be 0, the length of the message and the source variable will contain 2, the
source ofthe message.

In the last example a wildcard value is given for the type field

source = 1;
type = DONTCARE;
stat = extest(&source, &type)i

In this case the source is given explicitly and the type allowed to take any value. With the
parameters shown message 1 will be accepted and the value 12 stored in the type variableG
The value 32 will be returned. Note that types are subject to extra processing through the
extype commands. If we had specifically excluded type 12 from consideration then
message 3 would have been used instead since it has the correct source and has not been
excluded. If we had excluded both types 12 and 15 then the call to extest would return
-1 to indicate that no suitable message had yet arrived.

RETURN VALUE

The return value is the length of the matching message or -1 if no message can be found
which fits the indicated parameters.

FORTRAN SYNOPSIS

INTEGER FUNCTION KXTEST(SOURCE, TYPE)
INTEGER SOURCE, TYPE

SEE ALSO

exopen,exread,extype.

184

extime

NAME

extirne, extick - Time measurement

SYNOPSIS

linclude "express.h"

long extime ()

int extick ()

DOMAIN

These functions are available to all node programs.

DESCRIPfION '

ext irne returns the number of microseconds since a fixed reference point.

extick returns the number of hardware clock ticks since a fixed reference point.

Both routines are intended to be used for timing measurements. ext ime provides
measurements in convenient units but suffers from the fact that its accuracy may depend on
some "unknown" constant such as the hardware's clock speed. It may further require
significantly longer than ext i ck to return a result since one or more arithmetic operations
will nonnally be required to convert the machine clock ticks to microseconds.

Note that the availability of a routine which returns time in microseconds should not be
taken to imply the existence of hardware with this resolution. In most cases the hardware
timers will have intervals of many microseconds.

FORTRAN SYNOPSIS

INTEGER*4 FUNCTION KXTIME()

INTEGER FUNCTION KXTICK()

185

extype

NAME

exinctype, exexctype - Include or exclude certain message
types in interpreting wildcardso

SYNOPSIS

'include "express~h~

int exinctype(lotype, hitype)
int lotype, hitype;

int exexctype(lotype, hitype)
int lotype, hitype;

DOMAIN

exinctype and exexctype are available in both host and node processors.

DESCRIPTION

These routines are used to modify the behavior of the "DONTCARE" wildcard value used
in the ptype field of the calls exread, extest, etc. In particular the user can specify
that certain types be excluded or included among those that match the "any type" condition.

exexctype specifies a low and high type value defining an (inclusive) range of types
which should not be considered when processing the wildcard value~ All the other types
will remain acceptable.

exinctype specifies the low and high end of an (inclusive) range of types which can be
accepted by the program. All other types of messages will be excluded.

These routines are of most use when two or more processes share the same processor group
with the exshare call or when message handlers are being used (if exhandle). In this
case the use of wildcards is dangerous, without previously calling these routines, since
otherwise the recipient of any given message ·is unpredictable. Using these routines it is
possible to allow one process access to only a restricted range of types while the other
process can safely use all the other types and BOTH may still be pennitted the use of
wildcards.

EXAMPLES

In the following code we limit attention to types in the range 123 thru 125.

#include <stdio.h>
#include "express.h"

main ()
{

186

extype

/* Code to allocate nodes and load programs */

/* Restrict attention to only a small range of message
types */

exinctype(123, 125);

/* Now read messages with these types */

msg_src = DONTCAREi
msg_type = DONTCARE;
exread(buffer, 128, &rnsg_src, &msg_type);

After including only the specific types the wildcard values may be used freely but with their
meanings restricted to a smaller range. In the above example the call to exread will only
ever read messages whose types lie in the range 123-125.

As mentioned above this technique is most useful when two or more processes wish to
share access to a particular set ofnodes. If the above call had been made in one process then
the other one might wish to make a call such as

exexctype(99, 125);

in which we explicitly delete the message type range 99-125 from consideration. (This
would be useful if yet another process were sharing the same nodes and using types 99
100.) All other message types will remain valid.

The include/exclude mechanism can be turned off by supplying two DONTCARE arguments
to the appropriate function.

FORTRAN SYNOPSIS

INTEGER FUNCTION KXINCT(LOTYPE, HITYPE)
INTEGER LOTYPE, HITYPE

INTEGER FUNCTION KXEXCT(LOTYPE, HITYPE)
INTEGER LOTYPE, HITYPE

SEE ALSO

exread,extest,exshare

187

exvread

NAME

exvread, exvwrite - Vectorreadlwrite functions

SYNOPSIS

int exvread(buffer, size, offset, items, psrc, ptype)
char *buffer;
int size, offset, items, *psrc, *ptype;

int exvwrite(buffer, size, offset, items, pdest, ptype)
char *buffer;
int size, offset, items, *pdest, *ptype;

DOMAIN

exvread and exvwrite may be called in both host and node processors.

DESCRIPTION

These routines implement direct read and write functions. Additionally they allow non
contiguous blocks of data to be transmitted as a single message.

These functions correspond directly to exread and exwri te except in the interpretation
of the actual bytes to be transmitted.. In the exread function a single block of contiguous
data is transmitted while the exvread functions allow messages to be built up from non
contiguous memory blocks.

The manner in which the blocks are specified to e xvwr i t e is as follows: items objects,
each of size bytes are taken starting from buffer. In addition each block is separated
from the next by offset bytes.

The specification is similar for exvread except that objects are read into distinct memory
blocks separated by offset bytes.

In all other regards the arguments to exvread and exvwr i te perfonnjust as they would
in exread and exwrite.

EXAMPLE

The most useful application of these functions is to deal with multi-dimensional arrays in
which we are required to pass data across a dimension in which the array data is not
contiguous. (In C the last array dimension is the one that indexes contiguous memory
locations while it is the first in Fortran). Consider an example in which we have a 10 x 10
array of values in each node corresponding to a two-dimensional image. The fIrst
dimension refers to the horizontal axis while the second refers to the vertical.
(array [1] [1] is thus near the bottom left-hand corner, for example). If we now consider
a simple scrolling operation in which data is to be moved from left to right then we see that
the data lies correctly (in C) and a suitable call to exread, for example, would be

exread(array, lO*sizeof(int), &leftnode, &type);

assuming that leftnode had been correctly assigned and a suitable call to exwrite had

188

exvread

been made in some processor. Ifthe scroll were to be in the vertical direction, however, then
exread is not appropria~; the operation can be coded as

exvread(array, sizeof(int), lO*sizeof(int), 10,
&downnode, &type);

which specifies that each array element has the size of an int and that the total distance
between elements array [i] [j] and array [i+1] [j] is 10 times the size of an
individual element. Finally ten items should be transmitted. Notice that we can also use a
call to exvread for the horizontal shiftby merely changing the offset field in the above
call from 10*sizeof (int) to sizeof (int). This allows the code to have a uniform
structure for both axes.

FORTRAN SYNOPSIS

INTEGER FUNCTION
KXVREA(BUFFER, SIZE, OFFSET, ITEMS, SRC, TYPE)

INTEGER BUFFER(*), SIZE, OFFSET, ITEMS, SRC, TYPE

INTEGER FUNCTION
KXVWRI(BUFFER, SIZE, OFFSET, ITEMS, DEST,TYPE)

INTEGER BUFFER(*), SIZE, OFFSET, ITEMS, DEST, TYPE

DIAGNOSTICS

Hany error occurs in exvread or exvwri te -1 is returned. Possible sources oferror are:
an illegal source or destination, an illegal buffer or a preposterous value of s i ze ,
offset or items. H no error occurs exvread returns the number of items read and
exvwr i te the number written. Note that it is an error to attempt to send a message of type
DONTCARE with the exvwrite function.

SEE ALSO

exread, exwrite, exchange

189

exwrite

NAME

exwrite - Write a message

SYNOPSIS

tinclude "express.h"

int exwrite(buf, length, pdest, ptype)
int length, *pdest, *ptype;
char *buf;

DOMAIN

exwr i te is available to both host and node programs with· identical calling sequences.

DESCRIPTION

This routine sends a message to the processor indicated by the pdest argument. The
message will consist of length bytes taken from the supplied buf pointer. The message
has the type specified by the ptype parameter. Both ptype and pdest are supplied as
pointers for compatibility with the exread functions.

The special value DONTCARE is not allowed as either destination or type arguments to this
function.

The special value HOST may be used to give the host processor as destination.

RETURN VALUE

exwrite returns the number of bytes written, or cool upon unrecoverable errors.

EXAMPLES

The following code is used to send 15 bytes taken from the address my_ buf to processor
12. The message will have type 99.

main ()
{

int dest = 12;
int type = 99;

exwrite(rny_buf, 15, &dest, &type);

The next code sends a 128 byte message to the host p!ocessor. The message type will be 10.

tinclude "express.h"/* Defines HOST */

190

exwrite

main ()
{

int dest = HOST;
int type = 10i

exwrite(data, 128, &dest, &type);

FORTRAN SYNOPSIS

SUBROUTINE KXWRIT(BUFFER, NBYTES, DEST, TYPE)
INTEGER BUFFER(*), NBYTES, DEST, TYPE

WARNINGS

Certain message types are restricted to the Express kernel. User message types must be
less than 16384. It is illegal to transmit a message of type DONTCARE or to attempt to send
a message to processor DONTCARE.

SEE ALSO

exopen, exread.

191

fmulti

NAME

fmulti, fsingl, ismulti, forder .. Parallel I/O characteristics offilese

SYNOPSIS

,fmulti (fp)
FILE *fp;

fsingl(fp)
FILE *fp;

fasync(fp)
FILE *fp;

int ismulti(fp)
FILE *fp;

int isasync(fp)
FILE *fp;

forder(fp, order)
FILE *fPi
int order;

DOMAIN

These routines may only be called in programs compiled with the Cubixor Plotix libraries.

DESCRIPTION

These routines provide an interface to the parallel features of buffered file I/O .. i.e.,
printf, scanf, fopen etc. As well as their usual characteristics Cubix "FILE"s are
either in singular, multiple or asynchronous mode. This mode detennines the
exact behavior of read and write (or equiv~lently printf and scanf) calls on that file
with regard to the distribution of data.

If a file is in singular mode then any read operation on it must be made loosely
synchronously and exactly the same data is transferred to each node. Similarly, write
operations must be made loosely synchronously and only node zero actually transmits any
data to the fue. This has the effect of allowing all nodes to apparently write but only one
copy appears in the output file. In this mode it is an error if any node attempts to read or
write different data from the others. This error normally causes internode communication
to "hang" or abort with error status -1.

In multiple mode read requests are satisfied from the file independently. Thus each node
can read its own data. Output requests can also be made independently with each node
writing its own data to the file. Note that in multiple mode no implicit flushing of buffers
is perfonned and it is the responsibility of the user to call f flu shin order to cause data
to appear in the indicated fue. In co~nection with this point the routine setvbuf is

192

fmulti

available to alter the size and behavior of the internal I/O buffers. This allows an application
to perfonn more output between calls to f flu sh.

In asynchronous mode, I/O requests are handled independently on the processors on which
they occur. No interprocessor synchronization is perfonned. Each processor maintains its
own state variables recording the last byte it read or wrote in the fue, and each request to
read or write implicitly returns the ftIe to that location before proceeding.

The routines frnul ti, fsingl and fasync switch files between multiple, singular and
asynchronous modes. frnulti puts a file into the multiple mode and fsingl restores a
file to singular mode. fasync places a file in asynchronous mode. All three flush any data
in the file's buffers prior to the call, and'all must be made loosely synchronously in all
nodes 0

By default both input and output operations on "multi" mode files occur in order of
increasing processor number ... i.e., node 0 gets the first crack followed by node 1, node 2
and so ono The forder system call is available to alter this default. The frrst argument
indicates the stream for which a new ordering is desired and the second is an integer in the
range 0 • •• nprocs-l. Further "rnulti" mode operations on this file will result in the
processor which specified order=O being fIrSt, followed by that which gave order=l
etc. From this it should be obvious that the order parameters given in the call to forder
must form a permutation of the set {O, ..• , nprocs-l} - i.e., each value must be
specified exactly once in one of the nodes. Failure to observe this rule results in deadlock
whenever I/O is attempted on the affected stream. (Examples of the use of this parameter
in the lower-level mread and rnwri te system calls can be found on the respective manual
pages).

The routine i smu I t i returns 1 if its argument is in multiple mode and zero otherwise.

The routine isasync returns 1 if its argument is in asynchronous mode, and zero
otherwise.

EXAMPLES

The following code segment demonstrates the effect of the fmulti call

#include <stdio.h>

main ()
{

printf(nHello world\nn)i
frnulti(stdout)i
printf(nThis is one of the processors ... \nn)i
fsingl(stdout)i
printf(" .. that's all for now folks !!\nn)i
exit(O)i

When executed on four processors this would produce the output

193

fmulti

Hello world
This is one of the processors
This is one of the processors
This is one of the processors
This is one of the processors
.. that's all for now folks !!

showing that only one line of output results from each call to printf in single mode
while each processor generates it own output while the file is in multi-mode.

Asynchronous mode typically arises in one of two situations. Either a code is truly
asynchronous - it's behavior is too unpredictable in advance to allow use of the
synchronous I/O modes or one might want to use this mode for reporting runtime errors that
may only occur within a single node. A particularly good example is that of heap storage
when rnalloc fails to return more memory it may be appropriate to write out some
diagnostic comment and yet it cannot be guaranteed that all nodes will fail at the same time,
or even that all nodes will have to call rna110c at the same time. The following code is an
example of this situation

fasync(stderr);

if(ptr=malloc(8192» == (char *)0) {
fprintf(stderr, "Ran out of memory!!\n");
abort(123);

}

FORTRAN SYNOPSIS

INTEGER FUNCTION KMULTI(UNIT)
INTEGER UNIT

INTEGER FUNCTION KSINGL(UNIT)
INTEGER UNIT

INTEGER FUNCTION KASYNC(UNIT)
INTEGER UNIT

INTEGER FUNCTION ISASYN(UNIT)
INTEGER UNIT

INTEGER FUNCTION ISMULT(UNIT)
INTEGER UNIT

INTEGER FUNCTION KORDER(UNIT, ORDER)
INTEGER UNIT, ORDER

SEE ALSO

fasync,forder,mread,mwrite.

194

ropen

NAME

f open - Open files for buffered I/O.

SYNOPSIS

#include <stdio.h>

FILE *fopen(name, mode)
char *name, *modei

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

This function serves the identical purpose to the standard C runtime library routine of the
same name - to open a file for buffered I/O through such system calls as fprintf,
fscanf, fseek, etc.

The nonnally acceptable values of the "mode" have their normal meanings with the
addition that the "t" and "b" flags for "text" and "binary" files are understood on all
systems irrespective of whether or not they are actually implemented on the host.

Calls to this routine must nonnally satisfy the "loosely synchronous" constraint in that all
nodes must attempt to open the same file with the same "mode" argument. The exception
to this rule is if the character 'A' appears in the "mode" string. In this case every invoking
node will attempt to open the file independent of all others. In this case not all nodes need
make the system call and the arguments can be different in each calling node. This allows
individual nodes to open different, or indeed no files. Note that the file, once open, is still
in multi-mode even if it has been opened by only a single processor. To make effective use
a call to "fasync" is required to switch to "multi"-mode.

EXAMPLE

The following code allows each node to open a file whose name contains its processor
number.

#include <stdio.h>
#include <express.h>
struct nodenv nodedatai

main ()
{

FILE *fPi
char name[80];

/*
* First get our processor number, and make sure that errors
* can be reported asynchronously.
*/

194.1

ropen

fasync(stderr);
exparam(&nodedata);

/*
* Create the filename to USee
*/

sprintf(name, "node%d", nodedata.procnum);
if«(fp=fopen(name, "wA"» == (FILE *)0) {

fprintf(stderr,"Node %d fails to open file %s\n",
nodedata.procnum, name);

abort(nodedata.procnum);
}

fprintf(fp, "This is node %d\n", nodedata.procnum);
printf("Done\n");
exit(O);

}

Note how we switch the diagnostic stream stderr to "async" mode before attempting to
open the fileso This allows individual nodes to report errors if their fue cannot be openedo
If stderr were left in "single" mode and only a few of the nodes failed then the program
would abort, violating the loosely synchronous constraint, rather than because of the failure
of"fopen"!

After executing this program on N processors there should be a separate output file for each
node such that the fue with name "node#" will contain the text

This is node #

SEE ALSO

aopen,fmulti,syncmode.

194.2

gethost

NAME

gethost - Determine host specific characteristics

SYNOPSIS

void gethost(node, buffer, buflen)
int node;
char *buffer;
int buflen;

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPf10N

This routine is used to determine host-specific characteristics. The current implementation
is restricted to returning, in buffer, the name of the operating system running on the host
whose node identified is node. Up to buflen characters of this infonnation will be
transferred to the indicated buffer, any extra will be discarded.

No attempt is made to differentiate between minor versions of operating systems, or
between the various "unix-like" machines.

EXAMPLE

In the following code we determine the type of operating system running on our standard
host in order to find the character used to separate components of filenames.

4tinclude "express.h"l* Defines HOST *1

char get_separator()
{

char osbuf[32];

gethost(HOST, osbuf, sizeof(osbuf));
if(!strcmp(osbuf, "unix") return '1';
else if(!strcmp(osbuf, "dos")) return '\\';
else if(!strcmp(osbuf, "macintosh")) return' :';
else if(!strcmp(osbuf, "vms")) return'.';
else {

fprintf(stderr,"Don't recognize OS %s\n", osbuf);
return '\0';

}

FORTRAN SYNOPSIS

SUBROUTINE KGETHO(NODE, OSBUF)

195

getbost

INTEGER NODE
CHARACTER*80 OSBUF

SEE ALSO

syncmode

196

gin

NAME

gin, agin - Graphical input operations

SYNOPSIS

int gin(pbutton, px, py)
int *pbuttoni
double *px, *PYi

int agin(pbutton, px, PY)
int *pbuttoni
double *px, *PYi

DOMAIN

These routines may only be called in programs compiled with the Plotix libraries.

DESCRIPrION

These routines are used to perfonn graphical input operations usually tenned "locator
input". Upon execution a cursor appears on the screen and is positioned and triggered in a
device specific manner. After triggering the g in calls return and the specific trigger and
position are returned under the pointers supplied as arguments.

The gin routine must be called in eac~ processor simultaneously while the agin function
may be executed by any processor at any time. In this latter case it is the responsibility of
the user to ensure that sufficient information is present to allow the operator to know which
processor is requesting input. Further, no flushing is perfonned by these functions. It is up
to the user to ensure that the display surface actually contains up-to-date data before
requesting graphical input.

The coordinates returned to the user are expressed relative to those set up by the last call to
space in each processor. Further a status value is returned to indicate the result of the gin
operation. A negative value is returned by devices which are not capable of performing
input. A zero return value implies that the gin operation completed successfully but that
the cursor position was outside the window selected by the most recent call to vport in
this processor. A positive return means that the coordinates selected lay within the
processor window. This last mechanism can be used to select processors with a mouse, for
example.

EXAMPLE

In the following we assign different halves of the display to two processors; node 0 gets the
left half and node 1 the right. We then use the input routines to select one or the other node
for some processing task.

#include "express.h"/* Defines nodenv structure */

197

gin

struct nodenv nodedata;
double x,y;
int stat, key;

/* Divide up the screen on the basis of processor number */

exparam(&nodedata); /* Get runtime parameters */

if(nodedata.procnum -- 0) vport(O., 0., .5, IG);
else vport (.5,. 0., 1 0' 1.);

/* Now assign coordinates. Each processor's window will be
* mapped indi~idually to the unit square
*/

space(O.,O.,l.,l.);

do {
if«stat = gin(&key, &x, &y» < 0) break;
if(stat != 0) grind_away (x, y);

} while(key != 0);

Having set up the windows and· coordinate systems we loop until the key parameter is
returned as zero and the processor whose region we indicated with the mouse calls the
grind_away function with the selected points as argumentso Note that we can perform
similar operations on more processors by using the exgrid routines to set up and
coordinate the distribution of processors to screen areas.

FORTRAN SYNOPSIS

INTEGER FUNCTION KGIN(KEY , X, Y)
INTEGER KEY
REAL*4 X, Y

INTEGER FUNCTION KAGIN(KEY, X, Y)
INTEGER KEY
REAL*4 X, Y

. SEE ALSO

vport

198

greyscale

NAME

greyscale - Change color attributes.

SYNOPSIS

greyscale(from to)
int from, to;

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine changes the association of color indices to device colors used by Plotix. By
default a limited color map is used which can be extended with the greyscale and
rainbow function calls.

greyscale extends the Plotix color map by adding a smoothly varying grey-scale
between the two selected values. The lower value will be white and the upper black. The
number of distinct grey levels available is hardware dependent but in any case Plotix will
map the indicated range in as smooth a manner as possible.

EXAMPLE

The following code draws a set of 6 boxes of varying grey shades along the diagonal of the
screen image.

int i;
double V;

space (0 ., 0., 6., 6.);

greyscale(10, 15);

for(i=O; i<6; i++)
v = i;
box (v, v, v+1., v+1., 10+i, 0);

}

sendplot();

199

greyscale

FORTRAN SYNOPSIS

SUBROUTINE KGREYS(LO, HI)
INTEGER LO, HI

SEE ALSO

color, rainbow

200

label

NAME

label - Add text.

SYNOPSIS

label (text, x, y)
char *text;
double x, y;

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine draws the characters contained in the text string at the position (x,y). The
frrst character of the string is placed above and to the right of the indicated point. Other
methods of justification can be obtained with the dotext function.

EXAMPLE

The following code defines a 12x12 coordinate system and writes a string at several
positions on the screen.

int i;
char lab[32];

space(O~,O.,12., 12.); /* Define coordinate system */

for(i=l; i<12; i+= 2) {
sprintf(lab, "At pos (%d, 2)", i);
label (lab, 2.0, (double) i) ;

}

sendplot();

201

label

FORTRAN SYNOPSIS

SUBROUTINE KLABEL(TEXT, X, Y)
CHARACTER*80 TEXT
REAL*4 X, Y

WARNING

The current plotting position is undefined after this calle In order to perform reliable
graphical operations move should be used before any further drawing is performede

SEE ALSO

dotext, marker.

202

linemod

NAME

1inemod - Modify drawing style for lines

SYNOPSIS

linemod(index)
int index;

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

Modifies the style in which all further lines are drawn. The index argument is an integer
which specifies, in a device dependent manner, the actual linestyle to use. The value 0 will
always create solid lines.

EXAMPLE

The following code defmes a lOx 10 coordinate system and draws a box with a dashed edge
and a solid diagonal.

space(0.,0.,10., 10.);/* Define coordinate system */

linemod(l);
move(1.,1.);
cont(9.,1.);
cont(9.,9.);
cont(1.,9.);
cont(1.,1.);

linemod(O);

cont(9.,9.);
move(1.,9.);
cont(9.,1.);

sendplot();

203

linemod

FORTRAN SYNOPSIS

SUBROUTINE KLINEM(INDEX)
INTEGER INDEX

SEE ALSO

cont, color.

204

NAME

malloc_debug - Monitor behavior of memory allocator

SYNOPSIS

malloc_debug(level)
int level;

malloc_verify()

malloc_print(fp)
FILE *fp;

long malloc_avail()

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

These functions are supplied to aid in diagnosing and finding errors associated with the
standard memory allocation functions malloe, free etc. A common problem for C
programmers occurs when a pointer not previously obtained from malloc is freed or
when data in the internal structures controlled by the memory allocator is corrupted.

The function malloc_ debug controls debugging within the memory allocation software
by specification of the level argument interpreted in the following manner.

level = 0 No runtime debugging perfonned (The default)

level = 1 Abort if any problem is detected within the internal data structures.
Only a minimal number of checks are perfonned and the impact on
performance is slight.

level = 2 Check all internal data structures whenever one of the memory
allocation routines is called. This option can be extremely slow.

level = 3 Same style of checking as in option 1 but additionally abort if a
memory allocation routine would return the NULL pointer.

level = 4 Same style of checking as in option 2 but additionally abort if a
memory allocation routine would return the NULL pointer.

The last two options are especially useful to application programmers who do not always
check return codes from the memory management functions. In these cases an unexpected
NULL return may cause grave effects in a program and the ability to have the system abort
rather than corrupt data may be important.

The function malloe_verify may be called at any time to perform a single check of the
. memory allocator's internal data structures. It returns zeroif all is well and non-zero if there
is an inconsistency.

205

The function malloc_print prints a rather extensive map of the memory allocated by
malloc on the stream pointed to by its argument

The function malloc_avai1 returns the number of bytes as yet unallocated in memory.
It does not account in any way for memory fragmentation, so it may not be possible to
acquire all this memory in a single chunk.

EXAMPLE

The insertion of the call

malloc_debug(3);

at the beginning of a buggy program may be a life-saver. As well as looking for memory
corruptions an abort will also occur if non memory is available for a particular operation.
In serious circumstances increasing the level to 4 may also be justified although this may
slow program execution significantly if a lot of memory allocation/freeing is being
perfonned.

206

marker

NAME

marker - Draw marker symbol.

SYNOPSIS

marker (symbol, X, y, size)
int symbol;
double x, y, size;

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine ~ws a marker symbol at the position (x,y) expressed relative to the
coordinate system most recently defmed with the space function. The marker is drawn
with the given size, expressed in the same units as the coordinates. The symbol
argument is used to distinguish the various markers as follows

o point
1 diamond
2 square
3 triangle
4 inverted triangle
5 cross
6 plus
7 star

Some attempt is made to compensate for the fact that "squares" look bigger than "triangles"
- the s i ze argument is not strictly interpreted as the height of the triangle, for example.

EXAMPLE

The following code defines an 9 x 9 coordinate system and draws different marker symbols
along the diagonal.

do_markers ()
{

int i;

space(O.,O.,8., 8.); /* Define coordinate system */
for (i=O; i<6; i++) {

marker (i, (double) (i+1), (double) (i+1), .5);
}

sendplot();

207

marker

FORTRAN SYNOPSIS

SUBROUTINE KMARKE(INDEX, X, Y, SIZE)
INTEGER INDEX
REAL*4 X, Y, SIZE

SEE ALSO

label, dotext.

208

move

NAME

move .- Move without drawing.

SYNOPSIS

move (x, y)
double x, y;

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRlPfION

Moves the current plotting position to (x,y). Nothing is drawn on the display surface. x and
y are specified relative to the coordinate system defined by the most recent call to space.

EXAMPLE

The following code draws a broken diagonal line across the display surface.

space(O.,O.,4., 4.);/* Define coordinate system */

move(O.,O.);
cont(l.,l.);
move(2.,2.);
cont(3.,3.);
sendplot();

FORTRAN SYNOPSIS

SUBROUTINE KMOVE(X, Y)

209

move

REAL*4 X, Y

SEE ALSO

cont,color,linemod.

210

mread

NAME

mread - Read independent data into each node.

SYNOPSIS

int mread(fd, buf, length, order)
int fd, length, order;
char *buf;

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPfION

mread reads data into the nodes from the fue indicated by thejile descriptor fd which
should have been obtained by an earlier call to open. Independent data is read into each
node; the length arguments need not all be the same.

The call to mread must be made loosely synchronously in all nodes.

The 0 rder argument determines in what order the data from the input file are to be placed
in the nodes. The simplest case, obtained by setting order = PROCNUM_ORDER, is for
the input to appear in order of increasing processor number so that node 0 receives the frrst
block followed by node 1 and so on. Other cases are obtained by setting the value to be an
integer between 0 and the number of processors. The node which specified order = 0
receives the fIrSt block and then the node which gave order = 1 and so on. Note that it
is an error if a value between 0 and the number of processors is not specified in some node.
This condition is indicated by mread returning -1 and setting the external variable errno
to -1.

EXAMPLE

Suppose that we have decomposed our domain into a two dimensional mesh with NX and
NY processors in the two dimensions. If we now want to read data blocks in the
conventional manner for such a grid - i.e., along the rows, then the exgrid routines of
Express can be used as follows

tinclude "express.h"

do_read (NX, NY)
int NX, NY;
{

int ndim[2], coord[2];
struct nodenv nodedata;

exparam(&nodedata);

ndim[O] = NX;
ndim[l] = NY;

/* Get runtime parameters */

211

mread

exgridinit(2, ndim);

exgridcoord(nodedata.procnum, coord);

mread(fd, buffer, length, coord[l]*NX + coord[O]);

This will order the input according to the row and column coordinates of the processor in
the two dimensional mesh.

WARNING

Reading and writing binary files is complicated by the fact that the host and nodes of the
parallel processing system may not have the same type of processor (CPU) and may not
share the same byte ordering properties. An example might be a·Sun workstation hosting a
transputer or NCUBE machine. In this case the· host processor is a Motorola based system
which has the most significant byte at the lowest memory address while the nodes have the
opposite ordering. To cover these cases Express provides a set of byte swapping
primitives: exswap .

RETURN VALUE

mread returns the number of bytes read, or -1 upon unrecoverable errors. In the latter case
the external variable errno is set to signify the exact error which occurred. In the special
case where the error is· due to incorrect specification of the order parameter errno will
be set to -1 e A return value of zero indicates an "end of file" condition.

FORTRAN SYNOPSIS

INTEGER FUNCTION KMREAD(UNIT, BUFFER, NBYTES, ORDER)
INTEGER UNIT, BUFFER(*), NBYTES, ORDER

SEE ALSO

mwrite,mread2d,mwrite2d,exswapo

212

mread2d

NAME

mread2d, mwr i te2d - Read/write two dimensional data sets.

SYNOPSIS

int mread2d(fd, buf, tot cols, tot rows, item_size,
cola, call, rowO, row!, skip_dist)

int fd, tot_cols, tot_rows, item_size;
int cola, call, rowO, row!;
int skip_dist;
char *buf;

int mwrite2d(fd, buf, tot cols, tot rows, item_size,
cola, coIl, rowO, row!, skip_dist)

int fd, tot_cols, tot_rows, item_size;
int cola, call, rowO, row!;
int skip_dist;
char *buf;

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix libraries.

DESCRIPTION

These functions provide a primitive interface to a two-dimensional file access mode for
Cubix programs. The basic idea is that data sets decomposed over a two dimensional array
of processors can be read and written with a single function call.

Both functions operate on a file descriptor, f d, such as might be obtained through a call to
open. Data is either read to or written from the array pointed to by buf and consists of
some number of "items" each of size item_size. This concept is used instead of the
more obvious "byte" notation so that the other arguments to these functions may be
assigned as row or column indices.

The disk data set is treated as an array of tot_rows by tot_cols items of which a
subset is to be, read or written by each node. The particular piece of the global data set
required by a given node is specified by the rowO, row!, colO and col! arguments
which are inclusive parameters indexed from zero - the specification

colO = 0
coIl = 9
rowO = 0
row! = 9

would access the 10 x 10 block in the upper left hand comer of the array.

The skip_dist parameter specifies the offset in the buf array between successive
"row" entries again in "items". This can be used to leave a boundary strip around the edge
of the data as is common in two dimensional decompositions and is illustrated in the
example below.

213

mread2d

EXAMPLE

Suppose we have a two dimensional array of integers of size NX by NY which we wish to
decompose over the processors. The following code can be used to setup the decomposition
with the exgrid functions.

#include <express.h>

int ndim[2];
int gbl_size[2], lcl_size[2], lcl_start[2];
struct nodenv nodedata;

main ()
{

/* Get runtime parameters, processor number etcoo */

exparam(&nodedata);

/* Divide the nodes up among the two dimensions of the data
* and initialize the exgrid system$
*/

exgridsplit(cparmonprocs, 2, ndim);
exgridinit(2, ndim);

1* Figure out how much of the data fits in each node */

gbl_size[O] = NX;
gbl_size[l] = NY;
exgridsize(cparm.procnum~ gbl_size,lcl_size,lcl_start);

Notice how we use exgr i dsp1it to evenly divide up the number of processors between
the data dimensions and exgridsize to divide" up the array between the processors. The
parameters returned by exgridsize can be used to read in a two-dimensional data set as
follows. (We assume that fd is a file descriptor corresponding to some previously opened
file and that the global variables defmed in the previous program fragment are still
available.

/*
* Read data into nodes, no overlap allowed.
*/

read_data (fd)
int fd;
{

mread2d(fd, data, NX, NY~ sizeof(data[O]),
lcl_start[O], lcl_start[O]+lcl_size[O]-l,

214

mread2d

lcl_start[l], lcl_start[l]+lcl_size[l]-l,
lcl_size[O]);

return;
}

This strategy uses the values returned by exgridsize to figure out exactly which data to
request from the input data set. In this case each node gets a distinct piece of data, divided
as evenly as possible between the processors but with no overlap and no space for any. The
mapping is as shown in the following figure.

Processor decomposition Data array

A common situation is that in which the input data set is required to be read into the center
of a block which contains, around its edges, space for one or more entries from a neighbor
node. This is a common situation in image processing, for example, where some local
convolution is to be applied. To achieve this effect.with the above parameters we change
the call to mread2d as follows:

/*
* Read data into nodes, overlap allowed but not performed.
*/

read_data (fd)
int fd;
{

mread2d(fd, data+lc_size[O]+3, NX, NY, sizeof(data[O]),
lcl_start[O], lcl_start[O]+lcl_size[O]-l,
leI_start [1] , lel_start[l]+lcl_size[l]-l,
lel_size[O]+2);

return;

This call performs the mapping shown in the next figure. Note that the skip_di s t

215

mread2d

parameter has been modified to place a gap around each "row" of the data with one space
at the beginning and one at the end. This would be suitable for a nearest neighbor
interaction in which a single strip of data is required· from each neighbor node.

Processor decomposition
Data array

A last option which is interesting is one in which the data being read is overlapped at the
time it is originally taken from the data set. This is merely a variation on the last call which
provided space for the overlapped data but did not·initialize it. The call required to read in
overlapping data is as follows

/*
* Read data into nodes with overlapping strip one "item"
* wide.
*/

read_data (fd)
int fdi
{

mread2d(fd, data, NX, NY, sizeof(data[O]),
leI_start [0]-1, IeI_start[O]+leI_size[O],
leI_start [1]-1, lel_start[l]+lel_size[l],
lcl_size[O]+2)i

return;

216

mread2d

This mapping is shown in the next figure.

Processor decomposition

WARNING

Data array

Reading and writing binary files is complicated by the fact that the host and nodes of the
parallel processing system may not have the same type of processor (CPU) and may not
share the same byte ordering properties. An example might be a Sun ~orkstation hosting a
transputer or NCUBE machine. In this case the host processor is a Motorola based system
which has the most significant byte at the lowest memory address while the nodes have the
opposite ordering. To cover these cases Express provides a set of byte swapping
primitives: exswap .

RETURN VALUE

mread2d returns the number of bytes read, or -1 upon unrecoverable errors. In the latter
case the external variable errno is set to signify the exact error which occurred. Similarly
mwr i t e 2d returns the number of bytes written by the calling node or -1 upon disastrous
errors.

FORTRAN SYNOPSIS

INTEGER FUNCTION KMRD2D(UNIT,BUFFER,TCOLS,TROWS, ISIZE,
COLO, COLl, ROWO, ROWl, ISKIP)

INTEGER UNIT, BUFFER(*), TCOLS, TROWS, ISIZE
INTEGER COLO, COLl, ROWO, ROWl, ISKIP

INTEGER FUNCTION KMWT2D(UNIT,BUFFER,TCOLS,TROWS,ISIZE,
COLO, COLl, ROWO, ROWl, ISKIP)

INTEGER UNIT, BUFFER(*), TeOLS, TROWS, ISIZE
INTEGER COLO, COLl, ROWO, ROWl, ISKIP

SEE ALSO

mread,mwrite, exswap

217

mwrite

NAME

mwrite - Write independent data from each nodeo

SYNOPSIS

#include "express.h"

int mwrite(fd, buf, length, order)
int fd, length, order;
char *buf;

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix librarieso

DESCRIPTION

mwrite writes data from the nodes to the file indicated by thejile descriptor fd which
should have been obtained by an earlier call to openo Independent data is written from each
node; the length arguments need not all be the sameo

The call to mwrite must be made loosely synchronously in all nodeso·

The order argument detennines in what order the data from the various nodes are to be
placed in the .output fileo The simplest case, obtained by setting order =
PROCNUM_ ORDER, is for the output to appear in order of increasing processor number.
Other cases are obtained by setting the value to be an integer between 0 and the number of
processors. First in the output appears the data from the node which specified order = 0
then that from the node with order = 1 and so on.. Note that it is an error if a value
between 0 and the number of processors is not specified in some node. This condition is
indicated by mwrite returning -1 and setting the external variable errno to -1.

EXAMPLE

Suppose that we have decomposed our domain into a two dimensional mesh with NX and
NY processors in the two dimensions. If we now want to write out data blocks in the
conventional manner for such a grid - Le., along the rows then the exgrid (4) routines of
Express can be used as follows

#include "express.h"

do_write (NX, NY)
int NX, NYi
{

int ndim[2] , coord[2]i
struct nodenv nodedatai

218

exparam(&nodedata)i

ndim[O] = NXi

/* Get runtime parameters */

mwrite

ndim[l] = NY;

exgridinit(2, ndim);

exgridcoord(nodedata.procnum, coord);

mwrite(fd, buffer, length, coord[l]*NX + coord[O]);

This will order the output according to the blocks in the two dimensional gride

WARNING

Reading and writing binary files is complicated by the fact that the host and nodes of the
parallel processing system may not have the same type of processor (CPU) and may not
share the same byte ordering properties. An example might be a Sun workstation hosting a
transputer or NCUBE machine. In this case the host processor is a Motorola based system
which has the most significant byte at the lowest memory address while the nodes have the
opposite orderinge To cover these cases Express provides a set of byte swapping
primitives: exswap .

RETURN VALUE

mwri t e returns the number of bytes written, or -1 upon unrecoverable errors. In the latter
case the external variable errno is set to signify the exact error which occurred. In the
special case where the error is due to incorrect specification of the 0 rder parameter
errno will be set to -1.

FORTRAN SYNOPSIS

INTEGER FUNCTION KMWRIT(UNIT, BUFFER, NBYTES, ORDER)
INTEGER UNIT, BUFFER(*), NBYTES,. ORDER

SEE ALSO

mread,mread2d, exswap

219

openp.

NAME

openpl, aopenpl, closepl- Begin and tenninate graphics systeme

SYNOPSIS

tinclude <stdioeh>
tinclude "express.h"

int openpl(bufsize, fp)
int bufsizei
FILE *fPi

int aopenpl(bufsize, fp)
int bufsizei
FILE *fPi

closepl ()

DOMAIN

This routine may only be calle~ in programs compiled with the Plotix libraries.

DESCRIPTION

These routines initialize and tenninate the graphics system.

One of the openpl functions must be the first Plotix function called in any graphics
application. The first argument denotes the size of the internal buffer to be allocated for
storing graphical infonnation between calls to the sendplot functions. The special value
DONTCARE can be used to allocate a default sized buffer. As a guide to appropriate sizes a
call to move or cont requires 5 bytes. The second argument describes the disposition of
the graphical outputQ If a non-zero value is given then graphical data is written in metafile
fonnat to the indicated stream. The NULL value is used to perfonn on-line graphics
output is sent directly to the selected device.

aopenpl perfonns the same function as openpl but asynchronously - that is any node
may call this routine independent of the others with no synchronization constraints.

openpl returns a status code indicating the success or failure of the setup procedures.
Negative values indicate errors and it is unwise to proceed if an error condition.exists since
tenninals, for example, may be sent into strange states.

The last graphical routine to be called by an application should be closepl. This serves
to close any open files and reset interactive devices to their nonnal states.

Both openpl and closepl must be called loosely synchronously in all nodes, while
aopenpl may be called independently at any time by any node.

EXAMPLE

The following skeleton code should provide the basis for all graphics applications

220

iinclude <stdio.h>
iinclude "express.h"

main ()
{

/* Defines DONTCARE */

openpl

if (openpl (DONTCARE, (FILE *)NULL) < 0) {
fprintf(stderr,

"Failed to initialize graphics system\n");
exit(l);

}

/* Application code •......•.• */

/* Application finished, clear up graphics system */

closepl();
exit(O);

}

FORTRAN SYNOPSIS

INTEGER FUNCTION KOPENP(BUFFER, ISIZE)
INTEGER BUFFER(*), ISIZE

INTEGER FUNCTION KAOPEN(BUFFER, ISIZE)
INTEGER BUFFER(*), ISIZE

SUBROUTINE KCLOSP

FORTRAN DESCRIPTION

Since FORTRAN programs do not generally have access to the dynamic memory
management function of C the calling sequence of the KOPENP and KAOPEN calls differs
slightly from the C equivalents. The FORTRAN functions require that a buffer be passed
directly to the system together with its length. No FILE argument is required

SEE ALSO

sendplot.

221

panel

NAME

panel- Draw and fill polygons.

SYNOPSIS

initpanel(color, edge)
int color, edge;

panelpoint(x, y)
double x, y;

endpanel ()

polgn(npts, xpts, ypts, color, edge)
int npts, color, edge;
double *xpts, *ypts;

DOMAIN

These routines may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

These routines are used to draw and fill polygonal regions of the display surfaceo polgn,
the most straightforward of the routines takes two arrays each containing npts values as
the x and y coordinates of the vertices of the polygon to be drawn. The coordinates need
not close - the first and last points are joined by the system. The resulting polygon will be
filled according to the color argument and will have its outline drawn in the current color
if edge is non-zero.

Positive values of color translate into solid colors in the same manner as the arguments
to the line color primitive, color. Negative values yield device dependent shading
patterns.

All coordinates are expressed relative to the most recent call to space.

An alternative interface to the polygon routines is provided by initpanel,
panelpoint and endpanel. The first routine initializes the system so that the
following polygon will be drawn and filled according to the color and edge arguments,
interpreted as above. This routine must be called to initialize each polygon. Successive calls
to panelpoint then add vertices to the current polygon and the figure is closed and filled
by the endpane1 call. This interface is often superior to po1gn since it does not have the
memory overhead of storing points in arrays.

Note that filling with color = 0 and edge = 0 results in a "selective erase" - specific
areas of the screen can be erased.

EXAMPLE

The following code draws a simple box in the foreground color using the polgn primitive
and then takes a "bite" out of it with the alternate routines by drawing and filling in the

222

panel

background color.

broken_square ()
{

double xpts[4], ypts[4];

space(0.,0.,10., 10.); /* Define coordinate system */

xpts[O] = 1.0; ypts[O] = 1.0;
xpts[1] = 9.0; ypts[l] = 1.0;
xpts[2] = 9.0; ypts[2] = 9.0;
xpts[3] = 1.0; ypts[3] = 9.0;

polgn(4, xpts, ypts, 1, 1);
/* Draw edge and fill */

initpanel(O, 0); /* Fill background color */

panelpoint(5., 1.);
panelpoint(9., 1.);
panelpoint(9., 5.);
panelpoint(5., 5.);
endpanel(); /* Erase part of square */

sendplot();

FORTRAN SYNOPSIS

SUBROUTINE KINITP(ICOL, lEDGE)
INTEGER ICOL, lEDGE

SUBROUTINE KPANLP(X, Y)

223

panel

REAL*4 X, Y

SUBROUTINE KENDPA

SUBROUTINE KPOLGN(NPTS, XPTS, YPTS, IeOL, lEDGE)
INTEGER NPTS, reOL, lEDGE
REAL*4 XPTS(*), YPTS(*)

SEE ALSO

box, color

224

plothwm

NAME

plothwm - Analyze usage of system buffers.

SYNOPSIS

int plothwm ()

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

Graphics commands are buffered internally on each node until flushed by one of the
sendplot commands. This necessitates assigning a fixed size buffer for graphics. In
order to "tune" the size of this buffer and ensure that neither graphics gets lost nor too much
memory is devoted to this system the function plothwm returns the "high water mark"
from the graphics system - i.e., the maximum number of bytes that were present between
any two calls to the sendplot primitives. Using this function allows the user to exactly
detennine system memory requirements.

EXAMPLE

Assuming that the default system buffer size (8192 bytes) is currently in use the following
code might be used to warn of impending overflows.

usendplot(); /* Make display' "current" * /

fasync(stderr);
if (plothwm() > 8000)

fprintf(stderr,
"WARNING: graphics buffer tight !!\n");

}

Notice that we use the asynchronous Cubix mode for the warning message since it is not
guaranteed that all processors will have filled their buffers to the~same extent.

FORTRAN SYNOPSIS

INTEGER FUNCTION KPLOTH

SEE ALSO

openpl,sendplot

225

plxopt

NAME

getpl'xopt, setplxopt - Manipulate hardware dependencies in Plotixprograms.

SYNOPSIS

int getplxopt(option, pvalue)
char *option;
void *pvalue;

int setplxopt<option, value)
char *option;
long value;

DOMAIN

These routines may only be called in programs compiled with the Plotix librarieso

DESCRIPTION

Plotix attempts to provide device-independent graphical capabilities to Express programso
Due to the simple nature of the underlying graphics model this can usually be achieved to
a large degree. To deal with those cases where either more capabilities are available or
where more infonnation is required about a particular Plotix implementation these two
functions are provided.

getplxopt accesses the value of some internal property described by the character string
option and stores it under the supplied pointer variable. The particular values ofoption
supported on any particular device vary according to device capabilities and are listed in
the device specific section of the Plotix chapter of the User's Guide. If the indicated
property is not supported on the device in use -1 is returned.

The opposite function is provided to set internal state of some Plotix system with
setplxopt. This routine takes a character representation of the required property and a
single 32-bit value to which the indicated property will be set. If the named property is not
supported on the device in use -1 will.be returned.

When successful both routines return O.

EXAMPLE

The following code segment initializes a Plotix system and also attempts to perfonn the
following three tasks:

• Inquire how many distinct colors are available for drawing lines.

• Request output in "landscape" rather than the default "portrait" mode.

• Install a named "redraw" function which will be used in windowing versions of
Plotix to repaint the screen under certain well-defined circumstances.

Note that anyone of these requests may fail because the device currently in use may not be
able to support them. In the code segment below we imagine that the calling program is able
to deal with such failures without having to tell the user. In other situations we could look

226

plxopt

for a 0 return value from the calls to indicate failure and issue diagnostics.

tinclude <stdio.h>

extern int my_repaint();

start_graph (pncols)
long *pncols;
{

setplxopt("redraw", my_repaint);
setplxopt("landscape", 0);

if (openpl (8192, (FILE *) 0) < 0) {

fprintf (stderr,
"ERROR: Failed to initialize graphics\n");

exit(-l);
}

if (getplxopt ("nlcolors", pncols) < 0) {
fpr int f (stderr ,

"Information unavailable, assume monochrorne\n");
*pncols = 2;

}

We make the calls to setplxopt before the call to openpl while the call to
getplxopt follows it. This is common practice - in many Plotiximplementations the call
to openpl is responsible for setting up a lot of the default behavior of the system and so
it makes sense to make our preferences known before starting the system. This is one of the
few cases in which openpl should not be the fIrSt call made to Plotix. Similarly we wait
until after the device has. been initialized before asking how many colors are available. This
allows for systems which must be initialized before they can know how many colors are
available.

FORTRAN SYNOPSIS

INTEGER FUNCTION KPXGOP(OPTION, VALUE)
CHARACTER *80 OPTION
INTEGER VALUE

INTEGER FUNCTION KPXSOP(OPTION, VALUE)
CHARCTER*80 OPTION
INTEGER VALUE

SEE ALSO

openpl

227

profit

NAME

profil - Low level execution profiler

SYNOPSIS

profil(buffer, buflen, start, scale)
char *buffer;
void *start;
int buflen, scale;

DOMAIN

profil may only be called in the nodes.

DESCRIPTION

This routine serves to initialize the execution profI1ereEvery few milliseconds the program
counter of the user application is examined and a histogram entry in the memory area
denoted by bu f fer is incrementedo The size of the histogram is bu f 1en bytes and its fIrst
bin starts at the address specified as start .. normally the name of some program
subroutine.

In order to decide which histogram entry to increment a "mapping function" is applied to
the program counter discovered by the system. First start is subtracted and then the
result is multiplied by scale and divided by OxlOOOO .. i.e., the complete mapping is

bin_number = (PC - start)*scale/OxlOOOO

The overall effect of the sea1e parameter is· to map groups of adjacent program locations
into the same histogram bin. The value sea1 e = 0x 1 0 0 00 maps every program location
into a separate histogram bin, sea1 e = 0x 80 0 0 maps each pair of locations into a single
bin, scale = Ox4000 every group of four, and so on.

Using combinations of the buflen, start and scale parameters it is possible to
allocate various memory ranges to be profiled. Note that no errors are incurred if the range
is not large enough resulting in a calculated bin_number which is out of the histogram
range. In this case a special "misses" counter is incremented. This latter feature also
provides some diagnostic information concerning the success of the profiling attempt ... if
an incorrect profiling range i,s selected most of the histogram entries will be in the "miss"
bin allowing easy diagnosis.

profil does not enable the profiler. An explicit call to xprof on must be made to begin
gathering profile data.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
execution profile.

228

#define PROFSIZE (8192)
#define PROFSCALE (Ox2000)

/* Size of profiler buffer */
/* Map eight bytes per bin */

protil

int profbuf[PROFSIZE]i

main ()
{

/* Start off profiler */

extern int myfunc(); /* Low address for profiling */
/* Found from the compiler map */

profil(profbuf, sizeof(profbuf), myfunc, PROFSCALE);
xprof_on();

/* Application Phase 1., profiler running */

The choice of the start argument is most conveniently made in conjunction with the
"linker map" provided by the compiler. This usually contains a list of the addresses of all
the functions in an application and can be used to find the minimum.

FORTRAN SYNOPSIS

SUBROUTINE KPROFI(PRBUF, PRLEN, START, SCALE)
INTEGER PRBUF(*), PRLEN, START, SCALE
EXTERNAL START

SEE ALSO

xtool (command), xprof.

229

rainbow

NAME

rainbow - Change color attributes.

SYNOPSIS

rainbow(from to)
int from, to;

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

This routine changes the association of color indices to device colors used by Plotix. By
default a limited color map is used which can be extended with the greyscale and
rainbow function calls.

rainbow extends the Plotix color map by adding a smoothly varying color spectrum
between the indicated values. The "rainbow" starts with red and varies, with full saturation
and value, through the different hues; red, magenta, blue, yellow, cyan and back to red. The
number of distinct colors available is hardware dependent but in any case Plotix will map
the indicated range in as smooth a manner as possible.

On devices incapable of providing color output this function is treated exactly as a call to
greyscale.

EXAMPLE

The following code draws a set of6 boxes ofvarying colors along the diagonal of the screen
image. Since the manual is printed on a monochrome device the output is exactly as if the
call to rainbow were replaced with one to greyscale.

make_rainbow ()
{

int i;
double V;

space (0 ., 0., 6., 6.);

rainbow(10, 15);
for(i=Oi i<6; i++)

v = i;
box (v, v, v+l.O, v+l.O, lO+i, 0);

}

sendplot();

230

FORTRAN SYNOPSIS

rainbow

SUBROUTINE KRAINB(LO, HI)
INTEGER LO, HI

SEE ALSO

color,greyscale

231

ramofpen

NAME

r amfopen - Create a RAM file.

SYNOPSIS

#include <stdio.h>

FILE *ramfopen(address, length)
char *address;
int length;

DOMAIN

This routine may only be called in programs compiled with the Cubix or Plotix librariese

DESCRIPTION

The r amfopen function creates an "in-memory" or RAM file which may subsequently be
accessed in an equivalent manner to any file opened with the f open system call - i..e., the
functions fprintf, fscanf, fread, etc. may be used. The significant difference
between this FILE and others is that no data is ever transferred to the host file system,
instead the data is merely retained on the node making the I/O calls.

This facility is useful for maintaining tempo~ scratch data and/or debugging. In the latter
case it has been found to be extremely powerful for debugging asynchronous or real-time
applications where the overhead of writing to a file on the. host processor causes too much
distortion in the behavior of the algorithm being debugged. The use of the RAM file
together with the exdump command and the advanced options of excustom which
prevent Express from overwriting memory when initialized make this a very powerful
tool.

The address argument is the actual memory location which should be used for the RAM
file. This is typically a statically declared array or a physical address in the memory of the
particular processor in USCo The RAM file will be truncated after length bytes have been
placed in it. Further data will "wrap" in the file, overwriting the contents from the
beginning.

EXAMPLE

The following code shows an important use of the RAM files as debugging aids. We
assume that an asynchronous application is being developed around the exhandle
routine. By inserting very simple code in the interrupt handling routine we can later
examine the timing of the interrupts while controlling exactly how much we affect the real
time behavior of the algorithm.

tinclude <stdio.h>
tinclude "express.h"

FILE *ramfp, *ramfopen();

232

ramorpen

main ()
{

int src = DONTCARE, type = DONTCARE;
int my_intr();

1*
* Initialize the RAM file to some machine dependent physical
* address. Print a cheery message.
*/

ramfp = ramfopen«char *)Ox80069000, 4096);
fprintf(ramfp, "Here is the RAM file ! !\n");

1*
* Set up the interrupt handler and ensure that no races
* occur by forcing the nodes to synchronize.
*/

exhandle(my_intr, &src, &type);
exsync()i

1*
* Start program .
*/

for (i=O; i<1024; i++) {
fprintf(ramfp, "This is iteration %d\n", i);
grid_away();

}

Now we set up the interrupt handling routine as follows:

int my_intr(buffer, len, psrc, ptype)
char *buffer;
int len, *psrc, *ptype;
{

fputc('+', ramfp);
process_interrupt();
return 0;

/* Short and sweet !! */

Notice that the main routine, whose progress we might understand contains calls to
fprintf, a relatively slow function while the interrupt handler uses the much faster
fput c. This means that the timing of the interrupts is affected relatively little by the extra
overhead of the I/O to the RAM file. Of course, we could add more information during the
course of the interrupt processing but this may distort the performance of the application
enough to actually make the bug disappear!

233

ramofpen

To retrieve the data from the file we typically wait for the program to finish, or crash and
then use the exdump utility. If the machine crashed badly we may have to reload Express
again before exdump will work. In this case we should take care to select a physical
address at which to load the kernel, using the excustom tool so that the contents of our
RAM rue are preserved. (Be careful to choose an address which will not clash with the one
chosen for the RAM file.)

Assuming that Express either sUlVived the program or was reloaded successfully we can
now retrieve the RAM file data with the command

exdump -BOx80069000 -n 4

In our case this may I?rint something along the lines of

Here is the RAM file !!
This is iteration 1
Thi++s is+ iteration 2
+This ++is+ iter+ation 3

and so OD. Note that the asynchronous behavior of the program is at once apparent - we can
see the interruption ofeven the call to fprintf in the main loop. Of course, there may not
be enough infonnation in this display to find the cause of a very mysterious problem but
the amount of data dumped into the RAM ftIe can be increased by simple I/O calls.

FORTRAN SYNOPSIS

This utility is currently unavailable in FORTRAN due to limitations in the I/O models of
current compilers. We hope to make it available in the near future.

SEE ALSO

exdump (command), exinit (command), excustom (command).

234

sendplot

NAME

sendplot - Flush graphical data to display surface.

SYNOPSIS

sendplot ()

usendplot ()

asendplot ()

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIPTION

In the implementation ofPlotix for parallel computers output is "buffered". This means that
each move, cont, panelpoint, etc. command merely stores its parameters in an area
of memory rather than immediately attempting to draw the associated object. This strategy
is dictated by the fact that typical parallel computers have large computing power but little
I/O bandwidth. As a result it makes no sense to send lots of small messages about graphical
objects to the device since this would result in spending all ones time communicating rather
than computing. Instead we store up a large number of objects and then send them all at
once.

This method introduces the "flushing" concept to the graphical system. No data actually
appears on the display surface until one of the three sendplot commands is executed.
The differences between the three commands are typified by the following observations of
common situations

sendplot All the nodes have been simultaneously drawing the same part of an
image. This situation is quite common - it costs nothing to duplicate the
same sequential effort in all processors. All nodes make the call to
sendplot together but the data is only flushed to the display once.

usendplot The nodes have been working separately on their own pieces of the
image and are now ready to ship it out to the display. All processors call
usendplot together and the set of objects from each node appear in
order of increasing processor number.

asendplot The nodes are working totally independently and asynchronously. A
particular node wishes to send some data to the display and has no way
of knowing the status of the other processors. Any node may call
asendplot at any time.

The effect of these calls is to empty the buffer on the calling node ready for more graphical
objects.

The buffer size required for graphical objects varies quite significantly from application to
application. In some codes it may be possible and efficient to call the sendplot functions

23S

sendplot

quite regularly and so only a small buffer is required. Others may operate for long periods
without flushing data and, as a result, need large buffers. The size of the graphics buffer is
set in the call to openpl.

EXAMPLE

The following code segment illustrates one of the less obvious bugs possible under Plotixc
We use the system calls to draw a "menu" and then accept selections from it with gino

/* Use of PLOTIX - WRONG !! */

space(O.,O.,4.,4.);

/* Draw simple menu on left hand edge of display */

label ("QUIT", .1, 05); /* Option 0 */
label ("ITERATE", ~1, 1.5); /* Option 1 */
label ("RESET" , .1, 2."5); / * Option 2 * /
label ("OUTPUT", 01, 3.5); /* Option 3 */

/* Use gin to get user option from menu */

gin (&key, &x, &y);
option = (int)y;

The error here is that data is not flushed before the call to 9 in. As a result the user is asked
to make a selection from an invisible menu. Not very friendly. The solution is, however,
very straightforward; insert a call to sendplot before the call to gin. Note that this
illustrates another aspect of the flushing commands - since all processors have been
drawing the same thing and we only want to see one copy of it on the display the
appropriate flushing function is sendplot.

FORTRAN SYNOPSIS

SUBROUTINE KSENDP

SUBROUTINE KASEND

SUBROUTINE KUSEND

SEE ALSO

openpl

236

setvbuf

NAME

setvbuf - Modify buffering character of file

SYNOPSIS

tinclude <stdio.h>

int setvbuf(fp, buffer, mode, size)
FILE *fp;
char *buffer;
int mode, size;

DOMAIN

This routine may only be called, with the arguments discussed here, in programs compiled
with the Cubix or Plotix libraries. This function is nonnally also available to programs
running on the host processor but with other arguments.

DESCRIPfION

This function is used to control the buffering characteristics of a file stream. Several types
of buffering exist, indicated by the different values of the mode argument.

IOFBF Full buffering - the system allocates a fixed size buffer and
automatically flushes whenever it becomes full.

IOLBF Line buffering - the system allocates a fixed size buffer and flushes it at
the same points as in the full-buffered case and additionally whenever a
carriage return is output and whenever input is requested from any other
stream.

IONBF No buffering - each character is flushed to the file as soon as it is written.

IOCBF Circular buffering - a fIXed size buffer is allocated an no automatic
flushing performed. Whenever the buffer fills data is overwritten from
the beginning.

IOEBF Extensible buffering - an initial buffer is allocated and extended
whenever it fills. No automatic flushing is performed.

The last two buffering modes are Cubix extensions to the standard I/O library and are used
to support fmul tie By default multi-mode files are assigned the _IOEBF mode while
single mode fues have _IOLBF if they are attached to tenninals or _IOFBF for disk files.

While the default buffering modes should suffice it is occasionally necessary to switch to
another option or to alter the buffer sizes assigned by the system.

The setvbuf call performs these functions on the file denoted by the argument fp. If the
bu f argument in non-NULL then it will be used in place of the system assigned buffer. The
size should be given as the last argument. If the buf is (char *) 0 then a buffer will be
assigned by the system whenever necessary - it's size will be that of the s i ze argument

Note that the characteristics set by the setvbuf call are distinct for the "single" and

237

setvbuf

"multi" modes. Calling setvbuf for a file in single mode has no effect on that file once
it is switched over to multi-mode$

setvbuf may only be called while the file is in an "idle" state - i.eo, immediately after
opening or a call to fflush but before data is read or written to the fileo

EXAMPLE

One of the most common uses of ·setvbuf is to reclaim storage used in "extensible"
mode. If a large file has been processed then the system has probably allocated a large
internal buffer for the data. By default this is not returned when the data is flushed but may
be reclaimed with the call

setvbuf(fp,(char *) 0, IOEBF, 1024);

which makes the system free up any buffer. c'urrently associated with the fue fp and assign
a new one of size ·1024 whe':1ever it becomes necessary.

SEE ALSO

fmulti

238

space

NAME

space - Defme user coordinate system.

SYNOPSIS

space (lowx, lowy, highx, highy)
double lowx, lowy, highx, highy;

ortho_space(lowx, lowy, highx, highy, justify)
double lowx, lowy, highx, highy;
int justify;

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRIYfION

These routines define a coordinate system to be mapped onto the current window. By
default all plotting commands take place in a coordinate system which has (0., 0.) at its
lower left comer and (1., 1.) at the upper right. After this call all future plotting commands,
including the input request commands, will operate in the new coordinate system.

While the space routine covers the entire viewport with the selected coordinate range the
ortho_space function can be used to preserve the aspect ratio of the indicated
coordinate system. A mapping is created so that objects will actually appear with the
correct shape independent of the specific characteristics of a particular output device
circles will be circular not elliptical.

Since a correctly nonnalized region may not completely fill the current viewport the
justify parameter is used to indicate exactly where the region should be place. The
value -1 implies that the new region should be placed either to the left or at the bottom of
the viewport while +1 indicates the right or top. A zero value centers the region within the
viewport.

EXAMPLE

This example shows the effect of space transformations on simple objects. The routine
mybox draws a unit square on the screen.

rnybox ()
{

mave (0 ., 0.);
cant (1 ., 0.);
cant (1 ., 1.);
cant (0 ., 1.);
cent (0 ., 0.);

239

space

240

To see the effect of the space call consider the following sequence

mybox(); /* Default coords ==> full screen */
space (0 ., 0., 2., 2 0) ;

mybox(); /* After spac~ ==> quadrant only */

sendplot();

As can be seen the resulting "square" is not! To correct this we could instead use the
ortho_space function as shown below. Note that we chose the justification that the used
area should be to the left of the viewport~

mybox(); /* Default coords ==> "full" screen */
ortho_space(O., 0., 2., 2., -1);
mybox()i /* After space ==> quadrant only */

sendplot();

The Plotix manual cqntains a complete example program in which the exgrid routines
are used to map processors to their own individual windows on the display surface and
space is used to map each individual processor region to its own coordinate range. Note

that it is possible to have different coordinate ranges in separate processors.

FORTRAN SYNOPSIS

SUBROUTINE KSPACE(XO, YO, Xl, Yl)
REAL*4 XO, YO, Xl, Yl

SUBROUTINE KORTHO(XO, YO, Xl, Yl)
REAL*4 XO, YO, Xl, Yl

SEE ALSO

vport

space

241

syncmode

NAME

syncmode - Specify synchronous or asynchronous system calls

SYNOPSIS

int syncmode(flag)
int flag;

This call provides a system override which controls the overall synchronous or
asynchronous behavior of all non I/O Cubix system calls.

By default the system is in "synchronous mode" which means that all function calls must
be made loosely synchronously. Furthermore each node must address its system requests
to the same system console. (Note, however, that asynchronous I/O is still supported in this
mode on a file by file basis).

Calling syncmode with a zero argument places the system in asynchronous mode. All
further operating system requests are made on a node by node, fIrSt come-fIrSt served, basis.
In this mode any node may address any host processor with impunity but the responsibility
for maintaining "sensible" ordering lies with the user. It is important to note, however, that
I/O requests will occur with the synchronization implied by the individual fue modes, and
not by the status of the syncmode function.

The value returned by this call is the previous value of the synchronization flag - it can be
used in subsequent calls to syncmode to restore the mode altered by the call.

EXAMPLE

The asynchronous mode is rather difficult to control not the least because the inherent
asynchronicity introduced into applications make them harder to debug. It can, however,
be useful in system with multiple consoles, each under the control of a different group of
nodes. In the following example we suppose that nodes with even processor numbers
should communicate with host processor "HI" (in the naming system used by cnftool)
while those with odd processor numbers remain connected to the main system console.

struct nodenv nodedata;

exparam(&nodedata); /* Get processor numbers */

if«nodepata.procnum % 2) != 0) {
console_node(Ox8001)i

}

242

syncmode(O)i

syncmode

/* Go "asynchronous" */

/* Nodes 0 and 1 execute a (hypothetical) command
* called "reboot" on their respective hosts
*/

if(nodedata.procnum < 2)
system("reboot")i

FORTRAN SYNOPSIS

INTEGER FUNCTION KCBXSY(MODE)
INTEGER MODE

SEE ALSO

console_node.

243

vport

NAME

vport - Specify area of display to hold image.

SYNOPSIS

int vport(lowx, lowy, highx, highy)
double lowx, lowy, highx, highy;

setvport(window)
int window;

DOMAIN

This routine may only be called in programs compiled with the Plotix libraries.

DESCRlYfION

This routine allocates a certain area of the display surface to an image. The supplied
parameters are expressed as fractions of the total view surface so that the default O.O<x<1.0
and O.O<y<1.0 is the entire display. By selecting smaller regions in x and y it is possible
to confine an image to a smaller region of the display. This is useful if the final image is
required to have a certain aspect ratio or in parallel processing applications where each·
processor is to be assigned a piece of the view surface.

Plotix allows several viewports to be present on the same display. Each is indicated by a
number returned by the corresponding call to vport and is selected by a call to
setvport. Note that each viewport or window has its own coordinate range specified by
a call to space and that clipping is perfonned independently in each window. Further,
since the call to vport selects the new viewport a call to space to set up a coordinate
system must come after the corresponding call to vport.

EXAMPLE

This example shows the effect of vport transformations on simple objects. The routine
mybox draws a unit square on the screen.

mybox ()
{

move (0 ., 0.);
cont (1 ., 0.);
cont (1 ., 1.);
cont (0 ., 1.);
cont (0 ., 0.);

To see the effect of the vport call consider the following sequence

mybox();/* Default coords ==> full screen */

244

vport

vport (0 ., 0., .5, .5);
mybox();/* After vport ==> quadrant only */

sendplot();

To see the effect of multiple viewports consider the following code segment. We create
three windows. The left window has a call to space which means that the "box" fills only
the bottom part of the viewport. The second window has no call to space so its coordinate
range will have the usual default The last window uses ortho_space to make a
viewport with the correct aspect ratio - the square actually comes out square!

setup_vports ()
{

/* Left window, scaling range (0,0) --> (1,2) */

left win = vport(O.O, 0.0, 0.2, 1.0);
space (0 . 0, O. 0, 1. 0, 2. 0) ;

/* Top window, default scaling range (0,0) --> (1,1) */

top_win = vport(0.2, 0.5, 1.0, 1.0);

/* Lower window, scaled (0,0) --> (1,1), correct
* aspect ratio
*/

low_win = vport(0.2, 0.0, 1.0, 0.5);
ortho_space(O.O, 0.0, 1.0, 1.0, 0);

/* Set up windows, draw the squares */

24S

vport

setvport(left_win);
mybox()i

setvport(top_win);
mybox();

setvport(low_win);
mybox();

sendplot();
}

FORTRAN SYNOPSIS

INTEGER FUNCTION KVPORT(XO, YO, Xl, Yl)
REAL*4 XO, YO, Xl, Yl

SUBROUTINE KSETVP(IVPORT)
INTEGER IVPORT

SEE ALSO

space

246

xprof

NAME

xprof_on, xprof_off - Control execution profiler.

SYNOPSIS

xprof_on ()

xprof_off ()

DOMAIN

These routines may only be called. from the nodes.

DESCRIPTION

xprof on is used to enable and start the execution profiler which must have been
previously initialized.with a call to pro f i 1. Subsequently a periodically scheduled event
occurs which causes the program counter of the user application to be "logged" in an
internal structure. xprof off reverses this process - until a subsequent call to
xprof_on no execution profiling will be perfonnedo

The proftler is initially off and must be explicitly enabled with calls to profil and
xprof_on.

The log of profiling information is written to the host file system with xprofcp or
xprof_end.

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
execution profiler.

#define PROFSIZE (8192)
#define PROFSCALE (Oxlfff)
int profbuf[PROFSIZE]i

extern int myfunc()i

main ()
{

/* Start off profiler */

/* Low address for profiling */
/* Found from the compiler map */

profil(profbuf, sizeof(profbuf), myfunc, PROFSCALE)i
xprof_on()i

/* Application Phase 1., profiler running */

/* Phase 1 complete, dump data with xprofcp/elt or

247

xprof

* xprof_end
*/

/* Application Phase 2., profiler off since data dumped */

/* Application phase 3., turn on profiler again */

/* Program over, dump data again and exit */

exit(O);
}

Notice that we can selectively profile pieces of code. In this mode it makes sense to dump
out the profile data independently to separate files for simplicity in later analysis.

FORTRAN SYNOPSIS

SUBROUTINE KXPON

SUBROUTINE KXPOFF

SEE ALSO

xtool,profil, xprofcp, xprof_end.

248

NAME

xprof_inq, xprof_end - Manipulate execution profiler under Cubix

SYNOPSIS

int xprof_inq()

xprof_end ()

DOMAIN

These routines may only be called from the nodes in programs compiled with either the
Cubix or Plotix libraries.

DESCRIPTION

These routines provide a simple control interface to the execution profiler for applications
running in the Cubix environment.

xprof_ inq returns an integer value representing the state of the "-m" runtime switch on
the cubix command linee This can be used to conveniently enable/disable the profiling
system at runtime. Consider a typical command

cubix -n 4 toyland 1024 1024 <noddy.dat

Since no "-m" switch is present a call to xpr 0 f _inq will return zero. If we modify the
above command to

cubix -mcxe -n 4 toyland 1024 1024 <noddy.dat

then the return value would be 1 since the character 'x' appears in the monitoring switch,
"-m".

xprof_end is used to finally dump profiling data to the host computer file system. A file
called "xprof . out" is created for later analysis with the xtool utility. In addition the
profiler is disabled and its initial state reset to zero. This allows distinct phases of an
application to be profiled totally independently.

EXAMPLE

The following code is a skeleton of that which might typically be' used to control the
execution profiler.

#define PROFSIZE (8192)
#define PROFSCALE (Ox1fff)
int profbuf[PROFSIZE];

extern int myfunc();

main ()
{

/* Start off profiler */

/* Low address for profiling */
/* Found from the compiler map */

249

if(~prof_inq() {
profil(profbuf, sizeof(profbuf), myfunc, PROFSCALE);
xprof_on();

}

/* Application Phase 101 prafiler running */

/* Phase 1 complete, dump data with xprof_end, rename
* output file.
*/

if(xprof_inq() {
xprof_end()i
rename ("xprof.out", "phaselexprof lt

);

}

1* Application Phase 2., profiler off since xprofelt
* called
*/

/* Application phase 3., turn on profiler again */

if(xprof_inq(» xprof_on();

/* Program over, dump data again and exit */

if(xprof_inq(» {
xprof_end()i
rename ("xprof.out", "phase3.xprof");

}

exit(O)i

Notice that we can selectively profile pieces of code. In this mode it makes sense to dump
out the profile data independently to separate files for simplicity in later analysis. Note that
the output files are preserved with the rename function calls. Without this the second call
to cprof_end would overwrite the file produced by the first call.

250

FORTRAN SYNOPSIS

INTEGER FUNCTION KXPINQ()

SUBROUTINE KXPEND

SEE ALSO

xtool,profil, xprofcp, xprof.

251

xprofcp

NAME

xprofcp, xprofelt - Dump execution profile data.

SYNOPSIS

xprofcp ()

xprofelt(filename)
char *filename;

DOMAIN

xprofcp may only be called in the host processor while xprofelt may only be called
in the nodes.

DESCRIYfION

These routines are used to dump the execution profile data collected with the xprof
functionso For each call to xprofelt on the nodes there must be a call to xprofcp in
the host processoro The profiling data will be written to a file on the host with the name
filename supplied in the node program.

In addition to dumping out the profile data xpr 0 f e 1t also turns off the profiler and resets
its internal state so that further invocations of the execution profI1er will begin from the zero
state and hence be totally independent..

EXAMPLE

The following code is a skeleton of that which might typically be used to control the
execution profiler.

1. Host Program

main ()
{

/* Allocate nodes, load programs */

/* Execute algorithm phase 1 and then dump data to
* "phasel.xprof"
*/

xprofcp();

/* Execute phase 2, profiler off */

252

xprofcp

/* Execute phase 3, profiler on, dump data to
* "phase3.cprof"
*/

xprofcp();
exit(O);

}

2. Node Program

#define PROFSIZE (8192)
#define PROFSCALE (Ox1fff)
int profbuf[PROFSIZE];

extern int myfunc();

main ()
{

/* Start off profiler */

/* Low address for profiling */
/* Found from the compiler map */

profil(profbuf, sizeof(profbuf), myfunc, PROFSCALE);
xprof_on();

/* Application Phase 1., profiler running */

/* Phase 1 complete, dump data with xprofcp/elt */

xprofelt("phasel.xprofn)i

/* Application Phase 2., profiler off since xprofelt
* called
*/

/* Application phase 3., turn on profiler again */

/* Program over, dump data again and exit */

xprofelt("phase3.xprof n)i

253

xprofcp

exit(O);
}

FORTRAN SYNOPSIS

SUBROUTINE KXPCP

SUBROUTINE KXPELT(FNAME)
CHARACTER*80 FNAME

SEE ALSO

xtool,profil,xprof,xprof_end.

254

xprofcp

255

Classification of routines

A listing of the Express routines,
broken down by functionality

This section lists the various functions and routines available to Express programs
grouped according to functionality. While no exact division between routines is possibl~

this information may serve as a useful guide to "related" functions.

User Commands (Man page)

acctool
cnftool
ctool
cubix
etool
exeustom
exdump
exinit
exreset
exstat
ndb

xtool

Compilers

nee
nf77
symce
symf77
tee
tcc3L
tfc

Analyze accounting data ••••••••.• 0 ••••••••••••• acctool
Configure Transputer systems •••..•••••••••••.••. enftool
Analyze communication profile data ••••••••••• 0 •••••• etool
Download and execute Cubix programs, I/O server •...•.•. eubix
analyze event profile data and "toggles" • 0 ••••••••• " ••• etool
Modify Express system parameters •.••••••••••.••• exeustom
Retrieve data from RAM files ••••...••••••••.••••• exdump
Reboot and reload Express kernel .•..•••••••••••••• exinit
Reset transputer system •.••.••...•••••••••••••.• exinit
Display node usage infonnation . 0 •••••••••••••••••• exstat
Source level debugger • • • • • . • " • • • . • • • . n db

Analyze execution profile data ••.....•.•••.•••••.•. xtool

(Man page)

C compiler and linker for NCUBE ...•...•............. nee
FORTRAN compiler and linker for NCUBE •••..•..•••.. nf77
C compiler and linker for SYMULT ..•.••..•.••.•.••• symee
FORTRAN compiler and linker for SYMULT•• symf77
Logical Systems C compiler and linker for transputers ••••.•.. tee
3L C compiler and linker for transputers ..••••..•.••.•. tee3L
3L FORTRAN compiler and linker for transputers ••....•... t f e

Processor Allocation and Control (Man page)

exargldl
exargldv
exelose
exenvldl
exload
exloadl
exloadle
exloadv
exloadve
exmain

Load an argument list into a single node . . . • •• expload
Load an argument vector into a single node • • •. expload
Deallocate processor group. • • • . • . . .• exelose
Load an environment vector into a single node. • • . . • .• expload
Load program into all nodes • • • . • . .. exload
Load program into all nodes with argument list. exload
Load program with argument list and environment exload
Load program into all nodes with argument vector ••.••. exload
Load program with argument vector and environment exload
Start execution of main program exstart

257

exopen
expause
expid
expload
exshare
exstart

Allocate a group of processors •••• 0 •• 0 0 •••••••••• 0 exopen
Arrange for program to be loaded "stopped" 0 ••• CD ••• 0 expause
Translate UNIX process ID to Express process ID 0 • • • •• exshare
Load a program into a single node • 0 CD •• 0 •• CD 0 •• ~ • 0 0 expload
Share a processor group between multiple host programs. exshare
Start execution of a node program ••••• 0 •• G • ., • CD • •• exstart

(Man page)

exexctype
exinctype
exread
exreadfd
extest
exvread
exvwrite
exwrite
exwritefd

Define meaning of "read/write" wildcards ••••• 0 •••• 0.. extype
Define meaning of "read/write" wildcards • • • • • • • • • • .. extype
Read a message ••• 0 0 • • • • • • • • • • CD 0 • 0 • • • • 0 0 0 • •• exread

Read a message and place contents into file •• 0 • • • • •• exreadfd
Test for an incoming message - non-blocking ••••••• 0 •• extest
Read a vector message •.. 0 0 ••••• 0 •• 0 •• CD CD 0 • • • •• exvread
Send a vector message .. eo •• 0 0 •• 4> C> CD 0 • 4) 0 co ••• e CD exvread
Send a message 0.0 •••••• 0.0 ••••• 00 ••••••••• exwrite
Send a message, data taken from a file •••••••••••• exreadfd

"Global" Communication System (Man page)

exbroadcast
exchange
excornbine
exconcat
exsync
exvchange

Interprocessor broadcast 0 0 •••• 0 • • • • •• exbroadcast
Synchronous multi-node data exchange •• 0 • • • • • • • •• exchange
Apply user supplied operation to distributed data set.. excombine
Transfer distributed data to local memory ••.•. 0 ~ • •• exconcat
Synchronize processors . 0 ••• ~ eo. e ••••• 0 I> exsync
Synchronous multi-node vector exchange • eo ••••• 0 0 exchange

Asynchronous Communication System (Man page)

exhandle
exreceive
exsend

Install asynchronous message handler. . . • • • . •. exhandle
Read a message - non-blocking . • • • . • . . • . . • . • •• exreceive
Send a message - non-blocking•. C> •••••••••••• exsend

Hardware Dependent Communication System (Man page)

exchanon
exchanoff
exchanrd
exchanwt

258

Re-enable Express processing on a channel•... 0 • exchan
Disable Express processing on a channel •...........• exchan
Read bytes from disabled channel ..•.........••.... exchan
Write bytes to disabled channel •..•.••.•.•....•.... exchan

Decomposition Tools (Man page)

exgridbc
exgridcoord
exgridinit
exgridnode
exgridproc
exgridsize
exgridsplit
exparam

Define boundary conditions on user domain. • • • • • • • • •• exgrid
Detennine position in user domain • • • • • • • • • • • • • • • •• exg rid
Initialize decomposition system. • • • • • • • • • • . • • • . • •• exgrid
Determine communication parameters from user domain •• exgri d
Map user domain coordinates to processor number . • . . •• exgrid
Distribute data among processors .••••• 0 • • • • • • • • • •• exgrid
Distribute processors on user domain ~ • • • • • • . • . • • . .• exgrid
Determine run-time configuration ••••••••••••.••• exparam

Customization (Man page)

exeustom

I/O

abort
aopen
fasyne
fentl
fmulti
fsingl
isasync
ismulti
mread
mread2d
mwrite
mwrite2d
setvbuf
syncmode

Debugging

Modify Express system parameters .•.. 0 ••••••••••• exeustom

(Man page)

Immediately tenninate node program ••.••.•....•••••• abort
Asynchronously open a file ••.•••..•••••..••.•••••• aopen
Switch fue I/O mode to "async" ••••. e •••••••••••••• fmu 1t i

Modify the synchronous/asynchronous file character• fcntl
Switch file I/O mode to "multi" •.....•....•.•.••.•• fmul ti
Switch file I/O mode to "single"•.•..•..••.•. fmul t i

Inquire fIle I/O mode •...••..••.....•........... fmulti
Inquire fIle I/O mode •.•.•..........•.....•..... fmul t i
Read independent data into nodes ...•..•....•...•...mread
Read two-dimensional data set into nodes •••.....•.•. mread2d
Write independent data from node••.•...•.•.• mwr i t e
Write two-dimensional data set into nodes .•........•• mread2d
Assign buffering modes to files••••.....•. setvbuf
Assign overall synchronous/asynchronous mode syncmode

(Man page)

abort Immediately tenninate node program ...••..•.....•... abort
exbreak Halt program at breakpoint ••.•......•....•....•. exbreak
expause Load node program "stopped" at a breakpoint•. expause
malloc_debug Internal consistency checking for malloc/free . malloc_debug
ramfopen Create in-memory RAM file •.........•...•..... ramfopen

. 259

Multi-Host systems (Man page)

console_node Indicate an alternative host for system calls 0 • 0 e •• console_node
display_node Indicat~analternativehostforgraphicaloutput0 display_node
exaccess Override access to all nodes in system 0 • e • exaccess
exshare Share a group of nodes with another host program 0 exshare

Multit~sking

exec
exhandle
exsemalloc
exsemfree
exsemsignal
exsemwait
exsleep

Graphics

(Man page)

Overlay a node program with another e • «> ~ 0 e e ... e •••• exec
Install asynchronous message handler. 0 0 0 e 0 • •• exhandle
Allocate and initialize a semaphore . 0 0 0 9 • eo 0 exsem

, Deallocate a semaphore structure. 0 • 0 0 • 0 0 •• 0 exsem
Exit a critical section and "signal" any waiting processes .. 0 0 exsem
Attempt to enter a critical section, sleeping if necessary «> exsem
Suspend process for indicated time .. 0 0 0 0 e e 0 4) •• " 0 exsleep

(Man page)

aerase Erase display asynchronously «> .. «> .. eo e • GO" 0 0 erase
agin Perform asynchronous graphical input operations 0 4) e •••• gin

aopenpl Initialize Plotix asynchronously 0 •• 0 " • 4) openpl
asendplot Flush graphical data to display surface asynchronously e .. sendplot
aspect Inquire device aspect ratio 0 0 e ••.•• 0 aspect
box Draw, and optionally fill, rectangle " box
closepl Tenninate Plotix c •••••••••••••••• 0 openpl
color Set line drawing color .. 0 e color
cont Draw visible line in current color 0 cont
contour Draw a contour plot of a user supplied function contour
display_node Indicate an alternative host for graphical output display_node
dotext Draw and justify text e •••••••••••••••••••••• dotext
endc1 ip Disable clipping c 1 ippe r
endpane1 Close and optionally fill polygon pane1

erase Erase display surface erase
getplxopt Inquire hardware dependent parameter•. e plxopt
g in Perform "locator" input gin

greyscale Modify color look-up table, create greyscale e greyscale
initpane1 Begin polygon pane1

1 abe1 Draw text 1abe1
1 inemod Set line style 1 inemod

260

marker
move
openpl
ortho_space
panelpoint
plothwm
polgn
rainbow
sendplot
setclip
setplxopt
setvport
space
vport
usendplot

~wmmkers~bol....•.•.•....•..••.••...... marker
Move current position without drawing .••.••.•..•....•. move
Initialize Plotix ..•...•.••..••....••••.•.•..•.• openp1

~fineu~rcoormna~r~ge •.......••.••• o •••••••• space
Defme point in polygon •.••... 0 •••••• 0 ••••••••••• pane1

Monitor graphics buffer usage ..•••..•••••.••..•.• plothwm
Draw polygon •.•••.•.•........•..•••.••...••• pane1

Modify color look-up table, create HSV table ••..••...•. rainbow
Flush graphical data to display surface synchronously ... sendplot
Enable clipping against rectangular region • • • • . • . • . . . • c 1 i pper
Indicate hardware dependent option ..•••.••.•••••••• plxopt
Switch between "windows" •.........••..••••••••• vport
~fineu~r coordinate r~ge •...........••..•.••••. space
Define a region of the display as a "window" •......••.•". vport
Flush independent data to display synchronously• sendplot

Performance Analysis (Man page)

cprof_end Tenninate communication profiler and dump data .. 0 •• cprof_inq
cprof_inq Inquire setting of runtime '-me' switch •.....•..•.• cprof_inq
cprof_on Enable communication profiler•.....• cprof
cprof_off Disable communication profiler•. cprof
cprofcp Receive communication profile data in host processor .•.. cprofcp
cprofelt Send communication profile data to host processor cprofcp
eprof_add Indicate a "user" event eprof
eprof_end Tenninate event profiler ~d dump data eprof_ inq
eprof_init Initialize memory for event profiler eprof
eprof_inq Inquire setting of runtime '-me' switch eprof_inq
epro f _label Assign a label to a user specified "event" eprof
eprof_ on Enable event profiler eprof
eprof_off Disable event profiler eprof
eprof_toggle Enable/disable timing for a region of source code etoggle
eprof_ toginitInitialize memory for a "toggle" etoggle
eprofcp Receive event profile data in host processor eprofcp
eprofelt Send event profile data to host processor•....... eprofcp
pro f i 1 Assign memory for execution profiler prof i 1

xprof_end Tenninate execution profiler and dump data xprof_ inq
xprof_inq Inquire setting of runtime '-mx' switch xprof_inq
xprof_on Enable execution profl1er xprof
xprof_off Disable execution profiler xprof

261

xprofcp
xprofelt

Receive execution profile data in host processor. 0 •••••• xprofcp
Send execution profile data to: host processor 00 • 0 0 0 0 0 0 0 xpr 0 f cp

Host Interface Utilities (Man page)

callhost
gethos.t
rethost
starthost

Call host routine from Cubixnode program ••••••• 0 •• callhost
Inquire host capabilities 0 0 • 0 •• 0 • 0 •• e ••• 0 0 0 •• 0 ••• gethost
Return from host routine in .Cubix node programs •••••• callhost
Start host routine in Cubix node program 0 0 •••• 0 •••• callhost

Utility Routines (Man page)

ex swab
ex swact
ex swaw

extick
extime

262

Reverse bytes in 16-bit quantities. 0 ••• 0 0 • 0 0 • 0 0 • 0 ••• e exswap

Reverse bytes in 64-bit quantities •. 0 G • 0 •• 0 0 0 • 0 e 0 0 ••• exswap

Reverse bytes in 32-bit quantities. 0 •••••• 0 •••••• 0 eo •• exswap

"Measure time in hardware "ticks" • I) ••••• 0 0 •• 0 6) •••• e ext ime
Measure time in microseconds ..••.••••• 0 •• 0 • 0 e e 0 0 • extime

263

Library Availabilify

The correspondence between C and FOR
TRAN libraries and the synchronization
properties of Express functions

1 Correspondence between C and FORTRAN

The fIrSt two columns of the following table list the equivalent C and FORTRAN routines. A blank
entry indicates that no such routine exists.

2 Synchronization Rules

The third column of the table indicates the synchronization modes associated with each function.
The various codes are:

a These routines may be called with no regard to any synchronization constraints
any node may make such a call at any time.

Is, all These routines must be made "loosely synchronously" in all processors. When a
node calls one of these routines it will halt until all other nodes have called the same
routine. Arguments mayor may not be different in each node according to the
particular function involved.

Is, group These routines must be made "loosely synchronously" in all participating
processors. Typically this means that two processors will be involved in some
transaction in which case the fIrst to arrive will halt until the others arrive at the
synchronization point.

mode The synchronization req~irements of these calls depend on the global
synchronization state of the system, as modified with the syncrnode or KCBXSY
system calls. If the global synchronization mode is "on" (the default) then these
routines behave as though their synchronization constraint were "Is, all". If the
global state is "off' they behave as "a".

3 Libraries and Programming Models

The last column in the table indicates the libraries and/or programming model combinations which
support the named routines. These latter are coded as follows:

h Routine is available to programs running on the host processor, linked with the
Express library.

n Available to programs running on the parallel computer nodes in the "Host-Node"
programming style. Such programs should NOT be linked with either the Cubix or
Plotix libraries.

c These routines are part of the Cubix I/O library and may only be linked with
programs using the Cubix programming model. Usually a compiler switch is
available to indicate this programming model and the associated libraries.

p These routines are to be found in the Plotix library which can be linked to programs
running under the Cubix programming model. In some cases a compiler switch is
available which links both the Cubix and Plotix libraries. If this is not so on your
system the Cubix switch should be used supplemented by the pathname of the
Plotix library.

265

4 NOTES

(i) While no corresponding routine is available in FORTRAN the effect can be
achieved by modifying the parameters to an OPEN statemente See the section on
"open rue modes" in the Cubix chapter for more details.

(ii) These calls may be made asynchronously but they have no subsequent effect on the
objects they access. The graphical open fun~tions, for example, may be made
asynchronously but the mode in which data is flushed to the output device is still
determined by the flushing function used. Similarly a file opened with one of the
asynchronous "open" functions still has as·its default the "singl" access mode.

(iii) These functions can be called asynchronously be will usually be used in a mode
similar to "Is, group". Once invoked they leave the affected nodes in a state which
will almost certainly function in a an unpredictable manner until the corresponding
action has been perfonned on other members of the group. .

(iv) These functions can be called asynchronously but should be used with extreme care
when so doing. Because of their nature it is easy to introduce "race conditions"
when using these routines asynchronously. In most cases it is easy (and safer) to
force a synchronization after using one of these routines.

(v) The synchronization behavior of these routines depends upon the "mode" of the
associated file. For "singl" and "multi" mode files the constraint is "Is, group"
while it becomes "a" for "async" mode files..

--~ 266

C FORTRAN Synchronization Library

KXEXIT Is, all n
KXINIT Is, all .h,n,c,p

ex swab KXSWAB a h,n,c,p
ex swad KXSWAD a h,n,c,p
ex swaw KXSWAW a h,n,c,p

abort KABORT a C,p
aerase KAERAS a p
aexecve KAEXEC a C,p
agin KAGIN a p
aopen (i) a, (ii) c,p
aopenpl KAOPEN a, (ii) p
asendplot KASEND a, p
aspect KASPEC a, p
box KBOX a, p
callhost KCALHO mode c,p
closepl KCLOSP Is, all p
color KCOLOR a p
console node KCONND a, (ii) C,p-
cont KCONT a p
contour KCNTOR Is, all p
cprof_end KCPEND Is, all C,p
cprof_inq KCPINQ mode c,p
cprof_off ·KCPOFF a n,c,p
cprof_on KCPON a n,c,p
cprofcp KCPCP h
cprofelt KCPELT Is, all n
display~node KDISND a, (ii) p
dotext KDOTEX a p
endpanel KENDP a p
eprof_add KEPADD a n,c,p
eprof_end KEPEND Is, all c,p
eprof_init KEPINI Is, all n,c,p
eprof_inq KEPINQ mode c,p
eprof_label KEPLAB a n,c,p
eprof_off KEPOFF a n,c,p
eprof_on KEPON a n,c,p
eprof_toggle KEPTOG a n,c,p
eprof_toginit KEPTGI a n,c,p
eprofcp KEPCP h
eprofelt KEPELT Is, all n
erase KERASE Is, all p
exaccess KXACCS h
exargldl h
exargldv h

267

268

C FORTRAN Synchronization Library

exbreak KXBREA a n,c,p
exbroadcast KXBROD Is, group h,n,c,p
exchange KXCHAN Is, group h,n,c,p
exchanoff KXCHOF a, (iii) n,c,p
exchanon KXCHON at (iii) n,c,p
exchanrd KXCHRD Is, group n,c,p
exchanwt KXCHWT Is, group n,c,p
exclose KXCLOS h
excombine KXCOMB Is, group n,c,p
exconcat KXCONC Is, group n,c,p
excustom KXCUST h
execve KEXEC mode c,p
exenvld h
exexctype KXEXCT a, (iv) h,n,c,p
exgridbc "KXGDBC a h,n,c,p
exgridcoord KXGDCO a h,n,c,p
exgridinit KXGDIN a h,n,c,p
exgridnode KXGDNO a h,n,c,p
exgridproc KXGDPR a h,n,c,p
exgridsize KXGDSI a h,n,c,p
exgridsplit KXGDSP a h,n,c,p
exhandle KXHAND a, (iv) n,c,p
exinctype KXINCT a, (iv) h,n,c,p
exload KXLOAD h
exloadl h
exloadle h
exloadv h
exloadve h
exmain KXMAIN h
exopen KXOPEN h
exparam KXPARA a h,n,c,p
expause KXPAUS h
expid KXPID h
expload KXPLOA h
exread KXREAD a h,n,c,p
exreadfd h
exreceive KXRECV a n,c,p
exsemalloc KXSEMI a n,c,p
exsemfree a n,c,p
exsemsig KXSEMS a n,c,p
exsemwait KXSEMW a n,c,p
exsend KXSEND a n,c,p
exshare KXSHAR h
exsleep KXSLEE a n,c,p

C FORTRAN Synchronization Library

exstart KXSTAR h
exsync KXSYNC Is, all n,c,p
extest KXTEST a h,n,c,p
extick KXTIME a n,c,p
extime KXTIME a n,c,p
exvchange KXVCHA Is, group h,n,c,p
exvread KXVREA a h,n,c,p
exvwrite KXVWRI a h,n,c,p
exwrite KXWRIT a h,n,c,p
exwritefd h
fasync KASYNC Is, all c,p
fmulti KMULTI IS,all c,p
forder KORDER a, (ii) c,p
fsingl KSINGL Is, all c,p
gethost KGETHO mode c,p
getplxopt KPXGOP mode p
getpoint KGETPT a p
gin KGIN mode p
greyscale KGREYS a p
initlevel KINITL a p
initpanel KINITP a p
isasync KISASY a c,p
ismulti KISMUL a C,p
label KLABEL a p
linemod KLINEM a p
malloc avail a C,p
malIoc_debug a C,p
malIoc_print Is, group (v) C,p
malloc_verify a C,p
marker KMARKE a p
move KMOVE a p
mread KMREAD Is, all C,p
mread2d KMRD2D IS,all C,p
mwrite KMWRIT IS,all C,p
mwrite2d KMWT2D IS,all C,p
openpl KOPENP mode p
ortho_space KORTHO a p
panelpoint KPANLP a p
plothwrn KPLOTH a p
polgn KPOLGN a p
profil KPROFI a n,c,p
rainbow KRAINB a p
ramfopen (i) a c,p
rethost KRETHO mode c,p

269

270

C FORTRAN Synchronization Library

sendplot KSENDP mode p
setclip KSETCL a p
setplxopt KPXSOP mode p
setvbuf a, (ii) C,p
space KSPACE a p
starthost KSTRHO mode c,p
syncmode KCBXSY a, (ii) c,p
usendplot KUSEND Is, all p
vport KVPORT a p
xprof_end KXPEND Is, all c,p
xprof_inq KXPINQ mode c,p
xprof_off KXPOFF a n,c,p
xprof_on KXPON a n,e,p
xprofcp KXPCP h
xprofelt KXPELT Is, all n

271

Index of Routines

An alphabetical listing of routines,
variables, commands and macros

Index to Routines

Index to Routines

This index contains an alphabetical list of the various subroutines, macros and variables which may
be of use to Express programs. Each routine has an indication of the page on which its definition
and arguments can be found.

ex swab 178 cprofcp 91
ex swad 178 cprofelt 91
ex swaw 178 ctooll0

A
cubix 12

abort 63 D
acctoo17 display_node 94
aerase 106 DONTCARE 59, 156, 186
aexecve 133 dotext 96
agin 197

EALLNODES 60
ALLPROCS 60 endclip 75
aopen 64 endpanel222
aopenp1220 eprof_add 98
asendplot 235 eprof_end 102
aspect 66 eprof_init 98

B eprof_inq 102
eprof_labe198

box 68 eprof_off 98

C
eprof_on 98
eprof_toggle 108

callhost 70 eprof_toginit 108

closep1220 eprofcp 104

cnftool9 eprofel t 104

color 77 erase 106

console node 79 ETOGGLE 60

cont 81 etool15

contour 83 exaccess 111

cprof_end 88 exargldl 153

cprof_inq 88 exargldv 153

cprof_off 86 exbreak 112

cprof_on 86 exbroadcast 113
exchange 118

273

Index to Routines

exchanoff 115
exchanon 115
exchanrd 115
exchanwt 115
exclose 122
excombine 124
exconcat 128
excustom 16, 131
exdump 18
execve 133
exenvld 153
exexctype 186
exgridbc 135
exgridcoord 135
exgridinit 135
exgridnode 135
exgridproc 135
exgridsize 135
exgridsplit 135
exhandle 140
exinctype 186
exinit 21
exload 143
exloadl143
exloadle 143
exloadv 143
exloadve 143
exmain 176
exopen 147
exparam 149
expause 151

. expid 171
expload 153
exread 156
exreadfd 159
exreceive 161
exreset 23
EXSEM60
exsemalloc 164
exsernfree 164
exsemsig 164
exsemwait 164
exsend 168
exshare 171
exsleep 173
exstart 176

274

exstat 24
exsync 181
extest 183
extick 185
extime 185
exvchange 118
exvread 188
exvwrite 188
exwrite 190
exwritefd 159

F
fasync 192
fmulti 192
forder 192
fsingl192

G
gethost 195
getplxopt 226
getpt 83
gin 197
greyscale 199

H
HOST 60
HOSTMASK 60

I
initleve183
initpanel 222
ISASYN 194
isasync 192
ISMULT 194
ismulti 192

K
KABORT 63
KAERAS 107
KAEXEC 134
KAGIN 198
KAOPEN 221
KASEND 236
KASPEC 67
KASYNC 194

KBox69
KCALHO 74
KCBXSY 243
KCLOSP 221
KCNTOR85
KCOLOR 78
KCONND 80
KCONT 81
KCPCP 92
KCPELT 93
KCPEND 89
KCPINQ 89
KCPOFF 87
KCPON 87
KDISND 95
KDOTEX 97
KENDCL 76
KENDPA224
KEPADD 100
KEPCP 105
KEPELT 105
KEPEND 103
KEPINl100
KEPINQ 103
KEPLAB 100
KEPOFF 100
KEPON 100
KEPTGI 110
KEPTOG 110
KERASE 107
KEXEC 134
KGETHO 195
KGETPT 85
KGIN 198
KGREYS 200
KINITL 85
KINITP 223
KLABEL 202
KLINMD 204
KMARKE 208
KMOVE 209
KMREAD 212
KMULTI194
KMWRIT 219
KOPENP 221
KORDER 194

KORTHO 241
KPANLP 223
KPLOTH 225
KPOLGN 224
KPROFI229
KPXGOP 227
KPXSOP 227
KRAINB 231
KRETH074
KSENDP 236
KSETCL 76
KSETVP 246
KSINGL 194
KSPACE 241
KSTRHO 74
KUSEND 236
KVPORT 246
KXACCS 111
KXBREA 112
KXBROD 114
KXCHAN 121
KXCHOF 116
KXCHON 116
KXCHRD 117
KXCHWT 117
KXCLOS 123
KXCOMB 126
KXCONC 130
KXCUST 132
KXEXCT 187
KXGDBC 139
KXGDCO 139
KXGDIN 138
KXGDNO 139
KXGDPR 139
KXGDSI139
KXGDSP 139
KXHAND 142
KXINCT 187
KXLOAD 146
KXMAIN 177
KXOPEN 148
KXPARA 150
KXPAUS 152
KXPCP 254
KXPELT 254

Index to Routines

275

Index to Routines

KXPEND 251
KXPID 172
KXPINQ251
KXPLOA 155
KXPOFF 248
KXPON248
KXRD2D 217
KXREAD 158
KXRECV 163
KXSEMA 166·
KXSEMS 167
KXSEMW 167
KXSEND 170
KXSHAR 172
KXSLEE 175
·KXSTAR 177
KXSWAB 180
KXSWAD 180
KXSWAW 180
KXSYNC 182
KXTEST 184
KXTICK 185
KXTIME 185
KXVCHA 121
KXVREA 189
KXVWRI189
KXWRIT 191
KXWT2D 217

L
label 201
linemod203

M
malloe avail 205
malloc_debug 205
malloc_print 205
malloc_verify 205
marker 207
move 209
mread211
mread2d213
mwrite 218
mwrite2d 213

276

N
ndb25
NONODE 59
NULLPTR59

o
openp1220
ortho_space 239

p
panelpoint 222
plothwm225
polgn222
PROCNUM_ORDER59
profi1228

R
rainbow 230
ramfopen 232
rethost 70

s
sendplot 235
setclip 75
setplxopt 226
setvbuf 237
setvport 244
space 239
starthost 70
struct nodenv 60, 149
syncmode 242

T
tee 39
tee3l43
tic 47

u
usendplot 235

v
vport 244

x
xprof_end 249
xprof_inq 249
xprof_off 247
xprof_on 247
xprofcp 252
xprofel t 252
xtoo150

Index to Routines

277

[
Index

General index to Express and the ex
amples from the text

General Index

General Index

This index is the general reference for all the topics discussed in this manual. It lists not only the
various functions/routines but also the examples and other points of note. Index entries referring
solely to subroutines have their page numbers in typewriter font: exwrite 1 7 8, for exampleo

A
accounting 7
ANSI standard library 58
argc, argv 143, 153
arguments 143

ordering 54
type 54

aspect ratio 66
asynchronous I/O 192, 242
automatic decomposition 135

B
breakpoints 112, 151
buffering

files 237
graphics 225, 235

byte swapping 178

c
clear display surface 106
clipping 75
color 77

color maps 199, 230
communication

basic 53-54, 156, 159, 183, 188, 190
global 113, 118, 124, 128
hardware dependent 115
overlapped,asynchronous 161, 168

communication profiler 10, 86, 88, 91

compilers
3LC43
3L FORTRAN 47
Logical Systems C 39

configuration 9, 16, 79, 131
contour plots 83
coordinate systems 239, 244
customization 16, 131

D
debugging 151

assembly code 35-37
asynchronous programs 232
breakpoints 112
interactive 25
malloc/free 205
post mortem 18
real-time applications 232
source code 27-35

decomposition 135, 213
disk fanns 79
disk I/O, on host 159
domain decomposition 135, 213, 214
DONTCARE 156
double buffering 161, 168
downloading

data 113
programs 143, 153

dynamic memory 205

279

General Index
...J~

}.....

E
errors

asynchronous runtime 63
event driven pr~filer 15, 98, 102, 104, 108
examples

" 133
argc, argv 154
asynchronous programs 161, 168
asynchronous system calls 242
basic communication 157, 159, 188, 190
broadcast 113 ,
byte swapping 179
communicating arrays 188
communication

hardware dependent 116
data base 71
debugging 232
debugging malIoc/free 206
decomposition 119, 149

examples
exgrid 136

display processing 136
DONTCARE 183
double buffering 161, 168
exgrid 113, 119, 214, 218
fue I/O 159
file modes 64, 238
global block 181
global communication 119, 125, 128
global maximum 125
global memory 140
global semaphores 173
global sum 125
global to local data transfonnation 128
graphics

aspect ratio 66
buffer control 225
clipping 75
color 77, 199, 230
contouring 84
coordinate systems 239, 244
erase 106
flushing 236
hardware dependencies 226
initialization 220

input 197
line drawing 81, 203, 209
markers 207
multiple hosts 94
polygons 68, 222
text 96, 201, 236

hardware dependencies 226
host capabilities 195
I/O modes 242
image analysis 214
message types 157, 183, 186
multiple hosts 79
multitasking 133, 140, 173
parallell/O 193, 211, 214, 218
performance

evaluation
xtool252

performance evaluation
ctool 86, 88, 91
etool99, 102, 104
toggles 108
xtoo1228,247,249

preparation for debugging 151
processor· (de)allocation 122, 144, 147~

154, 176
processor control 176
processor sharing 171
program loading 144
runtime configuration 131
runtime errors 63, 225
shared memory 164
synchronization 181
user host routines 71
wildcard processing 157
wildcards 183

execution profiler 50, 228, 247, 249, 252
express.h 59

F
file I/O, parallel 192
file server 12, 79
flushing

files 237
graphics 235

G
global block 181
global communication 113,118, 124, 128, 181
global memory 164
global operations 124, 128
graphical input 197
graphics

buffering 225, 235
clipping 75
color 230
coordinate systems 239, 244
device dependencies 226
initialization 220
line drawing 81, 209
polygons 222
symbols 207
text 96,201

graphics servers 94

H
hardware communication 115
hardware reset 23
hardware specific graphics 226
header files 59
help

ndb26
host capabilities 195
host programs

interface to cubix programs 70
Hostless programming 12

I
I/O 58-59

parallel 211, 213, 218
I/O modes 237

asynchronous 242
installation 16
interrupt handling 140

L
libraries 53
linestyle 203
load individual nodes 153
load program "stopped" 151

loading programs 143, 153

M
macros 59
message types 54, 156

process specific 186
restrictions 158, 191

messages 54
multiple host programs 111, 171
multiple hosts 9, 23, 79, 94, 186
multitasking 56, 133, 140, 164, 173
multiuser systems 24, 111, 171
mutual exclusion 164

N
node processes 24
nodes

allocation 147
non-blocking communication 161, 168, 183

o
open file

asynchronously 64
overlapped communication 118
overlaying programs 133

p
perfonnance

analysis 10, 15, 50
ctool86
etool98
statistics 108

evaluation
ctool 88, 91
etool 102, 104
xtool 228,247, 249, 252

optimization 16, 131
polygons 68
process ID 171
processor

(de)allocation 57, 122, 147
control 176
synchronization 181

program
startup 176

281

.Ge~~ral IDd~x
·i~,.f~:tY'·' i

• '}f~ ..

programming models 53

R'
PRAM fues 18, 232
read message 156
rebooting Express 21
rectangle 68
runtime configuration 149
runtime parameters 149

s
semaphores 164

global 173
send message 190
shared memory 164
sharing processor groups 111, 171
statistics 24, 108
suspend process 173
system calls 58
~system constants 59

ALLNODES60
ALLPROCS60
DONTCARE59
HOST 60
HOSTMASK60
~NONODE59

NULLPTR59
PROCNUM_ORDER 59

system data structures
ETOGGLE60
EXSEM60
struct nodenv 60

·system variables 59

T
time measurement 185

u
UNIX calls 58

wildcards 54, 156, 183, 186

282

	Table of Contents
	Chapter 1: System Commands - Tools providing services in support of Express applications
	1 Executing Express commands in ''non-windowing'' operating systems
	2 Executing Express commands in ''windowing'' systems
	3 Specifying numeric data in switches
	4 Manual Page Layout
	5 Tools
	acctool - Analyze parallel computer usage under Express
	cnftool - Configure Transputer systems
	ctool - Analyze Communication ProfIle
	cubix - Host slave process for node programs
	etool - Analyze Event Profile
	excustom - Reconfigure Express
	exdump - Retrieve data from node RAM files
	exinit - Reboot and reload Express kernel
	exreset - Reset a group of nodes
	exstat - Display node usage information
	ndb - Symbolic, source and assembly level debugger for parallel computers
	1 Help
	2 Sets
	3 Displaying Source Code
	4 Stack Operations
	5 Displaying data
	6 Expressions
	7 The "show" command
	8 Arrays
	9 High level job control
	10 Miscellaneous commands
	11 The ndbenv command
	12 Assembly Level Debugging
	13 Assembly Level Job Control
	14 Assembly Level System control

	tcc - Compile and link Express C and C++ programs for Transputers
	tcc3l - Compile and link Express C Transputer node programs
	tfc - Compile and link Express FORTRAN Transputer node programs
	xtool - Analyze Execution Profile

	Chapter 2: C runtime library - Library routines available to Express programs written in C
	1 High Level Communication System
	2 Hardware Dependent Communication System
	3 Synchronization
	4 Decomposition Tools
	5 Multitasking Support
	6 Processor Allocation and Control
	7 I/O Services
	8 Graphics
	9 Header files, macros, variables, etc.
	10 Manual Page Layout
	11 Library routines
	A
	abort - Immediately abort program
	aopen - Open a file asynchronously
	aspect - Inquire device aspect ratio

	B
	box - Draw and fill rectangles

	C
	callhost - Interface to user host routines from Cubix program
	clipper - Enable/Disable clipping
	color - Change color attribute of graphical objects
	console - Redirect system calls
	cont - Move and draw a line
	contour - Contouring functions
	cprof_on, cprof_off - Control communication profiler
	cprof_ inq, cprof_end - Manipulate communication profiler under Cubix
	cprofcp, cprofelt - Dump communication profile data

	D
	display - Redirect graphical output
	dotext - Draw text with complex alignment

	E
	eprof_on, eprof_off, eprof_init, eprof_label, eprof_add - Event driven profiler
	eprof_ inq, eprof_end - Manipulate Event profile under Cubix
	eprofcp, eprofelt - Dump event log
	erase, aerase - Clear the display surface
	eprof_toginit, eprof_toggle - Statistical analysis of code sections
	exaccess - Share a processor group with another process
	exbreak - Halt program at breakpoint
	exbroadcast - Interprocessor broadcast
	exchan - Hardware dependent communication primitives
	exchange, exvchange - Synchronous scalar/vector exchange primitive
	exclose - Deallocate processors
	excombine - Apply global operation to distributed data
	exconcat - Collect distributed data into each node
	excustom - Indicate an alternative system configuration file
	execve - Overlay a node application with another program
	exgrid - Automatic domain decomposition tools
	exhandle - Asynchronous message handler
	exload, exloadl, exloadv, exloadle, exloadve - Load a program
	exopen - Allocate a processor group
	exparam - Runtime parameters
	expause - Arrange for programs to be loaded "stopped"
	expload, exargldl, exargldv, exenvld - Load a program into individual nodes
	exread - Read a message
	exreadfd, exwritefd - Write a message to/from a file
	exreceive - Non-blocking read function
	exsem - Various semaphore operations
	exsend - Non-blocking write function
	exshare - Share a processor group with another process
	exsleep - Pause process
	exstart, exmain - Start execution of program
	_ex_swab, _ex_swaw, _ex_swad - Byte swapping routines
	exsync - Synchronization primitive
	extest - Test for an incoming message, non-blocking
	extirne, extick - Time measurement
	exinctype, exexctype - Include or exclude certain message types in interpreting wildcards
	exvread, exvwrite - Vector read/write functions
	exwrite - Write a message

	F
	fmulti, fsingl, ismulti, forder - Parallel I/O characteristics of files
	fopen - Open files for buffered I/O

	G
	gethost - Determine host specific characteristics
	gin, agin - Graphical input operations
	greyscale - Change color attributes

	L
	label - Add text
	linemod - Modify drawing style for lines

	M
	malloc_debug - Monitor behavior of memory allocator
	marker - Draw marker symbol
	move - Move without drawing
	mread - Read independent data into each node
	mread2d, mwrite2d - Read/write two dimensional data sets
	mwrite - Write independent data from each node

	O
	openpl, aopenpl, closepl - Begin and terminate graphics system

	P
	panel - Draw and fill polygons
	plothwm - Analyze usage of system buffers
	getplxopt, setplxopt - Manipulate hardware dependencies in Plotix programs
	profil - Low level execution profiler

	R
	rainbow - Change color attributes
	ramfopen - Create a RAM file

	S
	sendplot - Flush graphical data to display surface
	setvbuf - Modify buffering character of file
	space - Define user coordinate system
	syncmode - Specify synchronous or asynchronous system calls

	V
	vport - Specify area of display to hold image

	X
	xprof_on, xprof_off - Control execution profiler
	xprof_inq, xprof_end - Manipulate execution profiler under Cubix
	xprofcp, xprofelt - Dump execution profile data

	Appendix A: Classification of routines - A listing of the Express routines, broken down by functionality
	User Commands
	Compilers
	Processor Allocation and Control
	Basic Communication System
	"Global" Communication System
	Asynchronous Communication System
	Hardware Dependent Communication System
	Decomposition Tools
	Customization
	I/O
	Debugging
	Multi-Host systems
	Multitasking
	Graphics
	Performance Analysis
	Host Interface Utilities
	Utility Routines

	Appendix B: Library Availabilify - The correspondence between C and FORTRAN libraries and the synchronization properties of Express functions
	1 Correspondence between C and FORTRAN
	2 Synchronization Rules
	3 Libraries and Programming Models
	4 NOTES

	Appendix C: Index of Routines- An alphabetical listing of routines, variables, commands and macros
	Appendix D: Index - General index to Express and the examples from the text

