
INQUEST
User and Reference

Manual

t==' SGS-DiOMSON
II.'YI ~D©OO@rn[b[~©uOO@~D©~

72 TOS 405 05 - October 1995

© SGS-THOMSON Microelectronics Limited 1995. This document may not be copied, in whole or in part,
without prior written consent of SGS-THOMSON Microelectronics.

•
® 0 .®,orrumos ,IMS, occam and DS-Link@ are trademarks of SGS-THOMSON Microelectronics

Limited.

~~~~~;m~~grf is a registered trademark of the SGS-THOMSON Microelectronics Group.

Windows is a trademark of Microsoft Corporation.

X Window System is a trademark of MIT.

OSF/Motif is a trademark of the Open Software Foundation, Inc.

This product incorporates innovative techniques which were developed with support from the European
Commission under the ESPRIT Projects:

• P2701 PUMA (Parallel Universal Message-passing Architectures)

• P5404 GPMIMD (General Purpose Multiple Instruction Multiple Data Machines).

• P7250 TMP (Transputer Macrocell Project).

• P7267 OMI/STANDARDS.

• P6290 HAMLET (High Performance Computing for Industrial Applications)

FLEXlm is a trademark of Highland Software, Inc.

Document Number: 72 TDS 405 05



Contents

Contents ........................................•...................•

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1

2

3

4

Introduction ................................•.........•..........

1.1 Debugging .
1.2 Execution analysis .

1.3 Network analysis .

Debugging ..................................•....................

2.1 Introduction .
2.2 Preparing a program for interactive debugging .
2.3 Running interactive debugging .
2.4 Post-mortem debugging .
2.5 Debugging multi-threaded programs .
2.6 Debugging facilities .
2.7 The debugger display .
2.8 The browser .
2.9 Debugger operations .

Debugger command language ...............•....................

3.1 Specifying an object .
3.2 Command scope arguments .
3.3 Command descriptions .

Command language programming ............•.........•..........

4.1 Comments .
4.2 Variables .
4.3 Operators .

4.4 Sequencing .
4.5 Conditional commands .
4.6 Looping commands .
4.7 Procedures .
4.8 Event arrival .
4.9 Built-in procedures .
4.10 Example debugging scripts .
4.11 Start-up scripts .

1

1
1

2

5

5
7

9
11
16

20
24
28
32

41

41
45
46

55

55
55
55
56
56
56
57

58
59

60
63

----------- i.,~~~lIDmsl~.-----------



Contents

5 Debugging libraries 65

5.1 Debugging support library 65

5.2 Dynamic code loading support 67

5.3 Dynamic thread creation 70

6 Execution analysis 75

6.1 The execution profiler iprof 75

6.2 The utilization monitor imon 80

6.3 The test coverage and block profiling tool iline .. . . . . . . . . . . . . . 82

7 Network analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1 Running the network analyzer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Network analyzer output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 IMS C004 link switch support 94

7.4 Memory 96

7.5 User supplied • rae code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 101

A Debugger command language syntax 103

B Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 105

Index................................................................. 111

ii ~SGS-1HOMSON----------- ..",!£ ~O©@@rglbrn©'ITrnKQ1RlJO~ -----------



Preface

The INQUEST Development Environment is a collection of powerful software develop­
ment tools designed to help you build fast, bug-free code, including a debugger and
performance monitors. This document contains user guides and reference material
about the INQUEST tools.

Chapters 2 to 4 describe the INQUEST debugger. Chapter 2 describes the structure of
the debugger and how to use the buttons, menus and mouse features. Chapter 3
describes the underlying command language which extends and complements the
buttons, menus and mouse features for the advanced user. Scripts can be written in the
command language using the programming constructs described in chapter 4.

For a tutorial introduction to the INQUEST debugger, see the INQUEST Debugger
Tutorial.

Chapter 5 describes the libraries supplied with INQUEST to assist with debugging.
Chapter 6 describes the three execution analysis tools. Chapter 7 describes the network
analyzer.



Preface

_iv ~~itml31lll-----------



1 Introduction

The INQUESTdevelopment environment is a set of software tools consisting of a hosted
debugger and performance analysis tools.

1.1 Debugging

The debugger consists of a host-based symbolic debugger and target-resident debug­
ging kernels which are added to the application program by the configurer.

The debugger provides the following features:-

• a window-based user interface that displays source code and enables the user
to interact with the debugger by means of a mouse, buttons and menus;

• a break point facility that can be used on particular threads of execution;

• a single stepping facility that allows a thread of execution to be single stepped
at the source level or at the assembly code level;

• a watch point facility that allows the program to be stopped when selected
variables are to be written to or read from;

• a stack trace facility;

• a facility to find the threads of execution of a program and set break points on
them;

a facility to monitor the creation of threads of execution;

commands to print the values of variables and display memory;

• a simple interpreter to enable structured C and occam variables to be
displayed;

• a programmable command language that allows complex break points and
watch points to be set and enables debugging scripts to be generated;

post-mortem debugging on the target or from a dump file.

The mouse, button and menu features are described in chapter 2. The command
language commands are described in chapter 3 and the programming language
constructs are described in chapter 4. Chapter 5 describes the libraries provided with
INQUEST which may be used in an application to aid debugging.

1.2 Execution analysis

The execution analysis tools comprise an execution profiler, a utilization monitor and a
test coverage and block profiling tool. With these tools the execution of the user program



1.2 Execution analysis

can be monitored after the user program has completed. The monitoring output is stored
locally in the memory of each target processor, so that the profiling tools have little
execution overhead on the application. After the program has completed execution, the
monitoring data is extracted from the target and processed to provide reports on the
program execution.

1.2.1 Execution profiler

The execution profiler tool provides the following information on program execution:­

the percentage time spent executing each low priority procedure or function per
configuration-level process;

an analysis of time spent in each call of each function or procedure and where
it was called from;

• the percentage time spent executing at high priority;

the percentage idle time of each processor in the network;

the percentage time spent executing each configuration-level process.

1.2.2 Utilization monitor

The utilization monitor tool provides the following information on program execution:­

when each target processor was busy and when it was idle over the time of the
program execution. This is displayed in the form of an interactive window-based
Gantt chart of processor execution against time.

1.2.3 Test coverage and block profiler

The test coverage and block profiling tool provides the following information on program
execution:-

how many times each statement of the application code was executed;

an analysis of test coverage;

feedback information for optimization by the compiler;

accumulation of results from multiple runs.

The execution analysis tools are described in chapter 6.

1.3 Network analysis

The network analyzer is used to determine the configuration of a transputer network and
generate part of a configuration description of the hardware. It also resets a transputer
network and clears any error flags.

-2-----------l:1iILlt\Y&~JI------------



1 Introduction

The network analyzer tests the types of transputers in a network and how they are
connected together. It recognizes direct connections between transputers and connec­
tions via IMS C004 link crossbar switches. When used in this manner rspy produces
textual output showing the transputer types and their connections.

rspy can also be used to generate the hardware description in a form suitable for use
in C (icconf) and occam (occonf) configuration files.

------------ ~~i©mMll9l------------3



1.2 Execution analysis

-4-----------Iiii~~@my&~JI-----------



2 Debugging

2.1 Introduction

This chapter describes the INQUEST debugger, which debugs application software
running on a target transputer network from a host. It consists of a debugger program
and a debugging kernel. It uses a host computer communicating with the target hard­
ware, as shown in figure 2.1. The hardware serial communications link between the host
and the target is called the host link.

The debugger can be run either interactively or post-mortem. In both cases, the
debugger allows the user to explore the state of the application.

The debugger can be controlled either using a mouse, buttons and menus or using the
command language. The command language is described in chapter 3.

2.1.1 Interactive debugging

The debugger runs with the application and controls its execution. The user controls,
through the debugger, when the application runs and when it stops.

iserver
service

debugger
program

user i/o

debug services

trace
information

Host Target hardware

Figure 2.1 Interactive debugging system

The target hardware runs the user program (which is to be debugged) plus a debugging
kernel which may be distributed over a network. The host runs the host services for the
application plus the debugger program, which provides the debugger's user interface,
displaying the nominal state of the program and passing commands to the debugging
kernel as requested by the user.

The host must be able to control and monitor the target hardware. On T2rr4fT8-series
transputers, the host must be able to reset and analyze the entire target network. It is

------------ i:i;l~~m1f'91-----------5



2.1 Introduction

preferable that the host can detect errors from all the target processors, so it is not
desirable to use a root processor with a subsystem port. On T9000-series transputers,
the control network must be connected to the host control port provided by the host
interface hardware. If the host cannot detect errors then the full post-mortem capability
cannot be used.

The user program may be a parallel program, consisting of many tasks or threads of
execution, as described in section 2.5. At any time, some threads of the user program
may be running and other threads may be stopped. The debugger keeps a copy of the
last stopped state of each thread. The display uses this copy of the state, not the actual
state of the target hardware.

A running thread will execute until it is interrupted, hits a breakpoint or watchpoint or the
thread terminates. A request from the user to interrupt a running thread will cause a
temporary breakpoint to be inserted in the code of that thread which is removed when
the breakpoint has been hit. The copy of the state of the thread held by the debugger
will then be updated.

Interactive debugging is discussed in more detail in sections 2.2 to 2.3.

2.1.2 Post-mortem debugging

In post-mortem debugging, the debugger is run after the application has terminated or
crashed, and will automatically give information about where and why the application
halted. INQUEST analyzes the target hardware, copying some target memory to the
host, loading a post-mortem kernel and exploring the state of the target.

debugger
program

debug services

/-- .........."
/ \

/ user \
I program ~
\ crashed J

_~ state /
\ /" /,_../

Host Target hardware

Figure 2.2 Post-mortem debugging system

Post-mortem debugging may be used at the end of an interactive debugging session.
The session may end when the processor error flag is set or when an interactive
command is timed out. It may also be ended directly by the user. In each of these cases,
the debugger offers the user the option of entering a post-mortem debugging session.

Post-mortem debugging may also be used when an application running without the
debugger has halted. This may occur when the processor error flag is set or when the

_6 LYl~~~@IlfII1I-----------



2 Debugging

program has terminated. The debugger extracts the final state of the application, which
can be displayed and explored by the user.

It may also be used after normal execution when the host server is interrupted by the
user, for example by the user typing Control-C. In this case only the host server is
interrupted, so the application code will continue until it has to wait for communication
with the host. Starting the post-mortem debugger will halt all low priority processes at
the next deschedule point.

The facilities to explore the program and data state are all available in post-mortem
debugging, including inspecting variables, inspecting call stacks, finding threads and
jumping down channels. However the application cannot resume execution, so step­
ping, interrupting, breakpointing and watchpointing do not apply.

Normally, post-mortem debugging is carried out by directly exploring the state of the
target hardware after the application has halted. Sometimes it may be preferred to save
the post-mortem state of the application in a dump file. The state may then be explored
by reading the dump file without using the target.

Post-mortem debugging is discussed in more detail in section 2.4.

2.1.3 Transputer versions

This document describes the behavior of the debugger when used with transputer
versions which provide the debugger support instructions, e.g. IMS T22S, IMS T400,
IMS T42S, IMS T426, IMS T801, IMS T80S, ST20450 (T4S0) and IMS T9000. These
transputer versions are known as breakpointing transputers. Earlier transputers (Le.
IMS T212, IMS M212, IMS T222, IMS T414 and IMS T800), known as non-break­
pointing transputers, may not be debugged interactively. If code is to be debugged on
a mixed network of breakpointing and non-breakpointing transputers then code for the
non-breakpointing transputers must be marked in the configuration as not debuggable,
as described in section 2.2.

2.2 Preparing a program for interactive debugging

Code which is to be interactively debugged must be compiled for the correct processor,
since debugging is performed differently on different processor models. Compiling for
the wrong version may cause the wrong debugging kernel to be used which can cause
a start-up error. Code for debugging should not be compiled for processor classes.

For example, when using imakef to build for an IMS T801 or IMS T80S, the configura­
tion code must refer to a •c9h or • t9h file in the use or #USE statement. If imakef is
not being used then code for an IMS T801 or IMS T80S should be compiled with the T9
or T80S option.

In order to use the debugger, the code should be prepared as follows:

ANSI C code for debugging should be compiled with the full debugging data
option, G, selected on the ANSI C compiler icc. occam code should be

___________ E;i~it_' 7_



2.2 Preparing a program for interactive debugging

compiled for debugging using occam compiler oc, without the minimal debug­
ging data option, D. This instructs the compiler to add symbolic debugging
information to the output file. Code compiled with minimal debugging informa­
tion is capable of providing a stack trace but cannot provide other symbolic
information. In particular, source code cannot be displayed in the code window.

For processes written in ANSI C, link the processes to be debugged with the
start-up file cdebug. Ink in place of startup • Ink and cdebugrd. Ink in
place of startrd.Ink. This links in the debugging run-time libraries. C
processes which are not to be debugged should use the normal C run-time
start-up files startup. Ink and startrd.lnk. C code linked with the normal
start-up files may cause the debugger to behave strangely unless the process
is marked as not debuggable in the configuration file. occam processes should
be linked in the normal way. Code for post-mortem debugging only can be linked
with the normal libraries.

• Code to be used with the INQUEST debugger must be configured. For interac­
tive debugging, configure with the INQUEST debugging option GA, selected on
icconf, occonf, inconf or onconf, to add in the debugging kernels. The GD
option places a kernel on each processor being used. The GA option places
kernel processes only on processors which have processes to be debugged.
Processes may be marked as not to be debugged using the nodebug configura­
tion attribute.

Code configured with a debugging option will automatically run under interactive
debugging. Code configured without a debugging option cannot be run under
interactive debugging.

When using the GA option, the default value for nodebug is FALSE. Unmarked
processes will be debugged and processes not to be debugged must be marked
with nodebug set to TRUE.

When using the GD option, the default value for nodebug is TRUE. Unmarked
processes will not be debugged and processes to be debugged must be marked
with nodebug set to FALSE.

When using the C configurer, icconf or inconf, add the following attribute
statement to set the nodebug attribute to TRUE:

nodebug = TRUE

When using the occam configurer, occonf, add the following attribute state­
ment to set the nodebug attribute to TRUE:

set(nodebug := TRUE)

Any processes to be run on non-breakpointing transputers (e.g. IMS T222, IMS
T414 and IMS T800) must be marked as not debuggable by setting the nodebug
attribute to TRUE.

Collect using icollect.

_8 Eii~e@m?E©' _



2 Debugging

If imakef is used to build code for interactive debugging, the makefile generated must
be altered as follows:

• The CONFOPT macro should include the GA option.

2.3 Running interactive debugging

The debugger is run using the command inquest, which loads the application onto the
target hardware using irun, which then acts as a host server for the application. For
details of the irun command line and the associated parameters, see the Toolset
Reference Manual.

On Microsoft Windows systems, inquest is run in the same way as other applications.
For example, an inquest icon can be double clicked in the inquest program group
in the Program Manager. The command line associated with an icon can be changed
by selecting the icon and using Properties... in the File menu. New icons can be created
using New••• in the File menu.

The command line to start inquest has the form:

~ inquest {options} boatable_file {options}

where: bootable_file is the path name of a collected bootable application file.

options is a list of one or more options from table 2.1 . Other options not listed
in the table may not be used with interactive debugging.

Options may be entered in upper or lower case.

Options can be given in any order, but the order of the options can affect the
meaning of the command.

Options must be separated by spaces.

If inquest is invoked with no options and no bootable file, then help information is
displayed, briefly explaining the command line arguments.

Option Description

-C'MD Create command language only interface to the debugger.

-DS Do not stop the program at the beginning of the user code.

-LOG filename Log operations to the file filename.

-NR Do not assert reset on the target hardware.

-se filename Load the bootable file filename onto the target T2If41T8-series network.

-S:I Switch on the display of extra information.

-SL resource Use the target host link connection resource, overriding the TRANSPUTER

parameter.

-SN niLfile Initialize the T9000 network with niLfile.

-z:Iisearch Use isearch as the search path, overriding :ISEARCH parameter.

Table 2.1 inquest interactive debugging command options

____________ Eii~Im~I£Y©' 9_



2.3 Running interactive debugging

The order of some of the inquest options in the command line is significant. Each
inquest option implies one or more actions by irun and the actions are carried in the
order described in the irun chapter of the Toolset Reference Manual.

2.3.1 Example inquest command lines

The following command resets the target hardware specified by TRANSPUTER and
loads it with the bootable file app. btl. The interactive debugging session begins with
the program stopped at the beginning of the user code. This is the normal command line
to debug the program app.btl interactively.

inquest app.bt1

The following command resets the target hardware mytarget, loads it with the memory
configuration file memconf . bt1 and then loads the bootable file app •bt1. The interac­
tive debugging session begins with the program stopped at the beginning of the user
code. This is the normal command line to debug the program app.bt1 interactively.

inquest -sl mytarget -sc memconf.btl app.btl

The following command loads the skip loader onto a T2IT4fTS-series network then
loads app . bt1 onto the network found down link 2 from the root processor and interac­
tively debugs it.

inquest -sc skip2.bt1 app.bt1

2.3.2 Errors detected by the processor

Target processors will trap certain types of errors which may occur during execution of
an application, such as arithmetic overflow in occam or an abort function call in ANSI
C. If this happens during interactive debugging then the response of the debugger
depends on the type of processor being used.

T2lT41T8-series except T450

On T2fT4fTS-series transputers except the T450, an error will cause the processor to
halt and the post-mortem debugger to be initiated. The state of the processor can then
be explored. The processor cannot resume, but can only be restarted from the begin­
ning of the code.

ST20450 (T450)

On the ST20450 (T450), if an error occurs the behavior is similar to a breakpoint hit. The
thread with the error will halt and the debugger will signal an error event. A message is
displayed saying that an error event has occurred and describing the type of error. The
thread can be restarted in the same way as after a breakpoint hit, but the subsequent
behavior of the application mayor may not be meaningful, depending on the nature of
the error.

-10-----------Ii;i~@mlf£9©'-----------



2 Debugging

The debugger traps 5T20450 errors using the ST20450's error and breakpoint trap
handling. For this reason, application code which uses these trap handlers may not be
interactively debugged with INQUEST. Applications may safely use a scheduler trap
handler, which is not used by INQUEST.

If an ST20450 application sets the trap handler to null then the behavior is similar to a
T2fT4fT8-series transputer. A subsequent error will cause the processor to halt and the
post-mortem debugger to be initiated. The state of the processor can then be explored.
The processor cannot resume, but can only be restarted from the beginning of the code.
The ANSI C library function halt---l)rocessor uses the null trap handler and will cause
the processor to halt even if the application is being interactively debugged.

T9000-series

On T9000-series transputers, if an error occurs the behavior is similar to a breakpoint
hit. The process with the error will halt and the debugger will signal an error event. A
message is displayed saying that an error event has occurred and describing the type
of error. The process can be restarted in the same way as after a breakpoint hit, but the
subsequent behavior of the application mayor may not be meaningful, depending on
the nature of the error.

The debugger traps IMS T9000 errors and interrupts using the IMS T9000's trap
handling mechanism. For this reason, application code which uses trap handlers may
not be interactively debugged with INQUEST. If the user sets a trap handler then
breakpoints, watchpoints and interrupts will trap to the user's trap handler instead of the
debugger kernel.

If an IMS T9000 application sets the trap handler to null then the behavior is similar to
a T2fT4fT8-series transputer. If a subsequent error occurs then the processor will halt
and the post-mortem debugger will be initiated. The ANSI C library function
halt-processor uses the null trap handler and will cause the processor to halt even
if the application is being interactively debugged.

2.4 Post-mortem debugging

Post-mortem debugging is used after an application has halted because of an error or
because the user has halted it. This may occur during an interactive debugging session
or during normal execution of an application. In the latter case, the code must have been
compiled with full debugging data, Le. with the G option for ANSI C or without the D option
for occam.

Normally, post-mortem debugging is carried out by directly exploring the state of the
target hardware after the application has halted. Sometimes it may be preferred to save
the post-mortem state of the application in a dump file. This facility is provided by the
idump tool. The state may then be explored by reading the dump file without using the
target. Debugging from a dump file is described in section 2.4.5.

2.4.1 Debugging after an interactive session

The interactive debugger can initiate post-mortem debugging in any of three situations:



2.4 Post-mortem debugging

During interactive debugging when the T2ff41T8-series transputer error flag is
set or a T9000-series or ST20450 unmasked error occurs, for example if the null
trap-handler is set. In this case a dialog box appears with three options,
Analyse, Quit or Restart. Analyse will initiate post-mortem debugging; Quit
will exit from the debugger; Restart will reload and start the application from the
beginning.

2 When an interactive debugger operation or command is timed-out. The time-out
period is set by the environment variable HKTimeout and is about 20 seconds
by default. Commands and operations will time-out after this time. This allows
recovery from deadlocks, loops and catastrophic errors which do not set the
error flag. A dialog box appears with three options, Analyse, Quit or Restart.
Analyse will initiate post-mortem debugging; Quit will exit from the debugger;
Restart will reload and start the application from the beginning.

3 When the Analyse operation in the Execution menu is selected or the analyse
command is entered.

If Analyse is selected in any of these cases, the target hardware will be analyzed, so
all low priority threads will be halted at deschedule points.

2.4.2 Debugging after normal execution

Post-mortem debugging can be initiated by the user from a command line by the
command inquest. This allows the debugger to be used after normal execution of an
application when the application has been halted by setting. the error flag or user
interruption. The application must have been compiled with the options for full debug­
ging data and the compiled code files (extension • teo) and libraries must be on the
search path given by ISEARCH. On pes, the ISEARCH path may be held in a Windows
initialization file and modified using the ilaunch tool or the iset tool, which are
described in the Toolset Reference Manual. The application need not have been linked
with the debugging libraries.

The debugger will analyze the target hardware, which means that all low priority threads
on all processors will be halted at deschedule points.

On Microsoft Windows systems, inquest is run in the same way as other applications.
For example, an inquest icon can be double clicked in the inquest program group
in the Program Manager. The command line associated with an icon can be changed
by selecting the icon and using Properties... in the File menu. New icons can be created
using New... in the File menu.

_12 ~I~myl£~lj _



2 Debugging

The command line to start inquest in post-mortem mode has the form:

~ inquest bootable_file -pm {options}

where: bootable_file is the path name of a collected bootable application file.

options is a list of one or more options from table 2.2. The -pm option is to
indicate post-mortem mode.

Options may be entered in upper or lower case.

Options can be given in any order, but the order of the options can affect the
meaning of the command.

Options must be separated by spaces.

Option Description

-DF dumpfile Debug from dumpfile instead of a target (see section 2.4.5).

-NA Do not assert analyse on the T2/T4ITS-series network.

-PM Post-mortem mode.

-sc filename Load the bootable file filename onto the target T2/T4/TS-series hardware.

-S1 Switch on display of extra information.

-SL resource Use the target host link connection resource, overriding the TRANSPUTER
parameter.

-z1isearch Use isearch as the search path, overriding 1SEARCH parameter.

Table 2.2 inquest post-mortem command options

Running inquest with no parameters causes it to display its version number, build date
and brief help information.

The order of some of the inquest options in the command line is significant. Each
inquest option implies one or more actions by irun and the actions are carried out
in the order described in the irun chapter of the Toolset Reference Manual.

2.4.3 Example inquest command lines

The following command analyses the target hardware and post-mortem debugs the
application using the bootable file app. btl. This is the normal command line to debug
the program app.btl post-mortem:

inquest app.btl -pm

The following command loads the skip loader on a T2rr4rrS-series network then post­
mortem debugs the network found down link 2 from the root processor, using the
bootable file app.btl.

inquest app.btl -se skip2.btl -pm

------------ LT£5tnl.~©' 13_



2.4 Post-mortem debugging

2.4.4 Proceeding after analyzing

After analyzing the target hardware, the debugger explores the state of the target
hardware. The state of the system can then be examined by the user, but the application
cannot continue, so operations such as Continue, Step, Break and Watch are
disabled.

If the error flag was set, then a message will appear in the output window giving the
source line at which the error occurred. The debugger will be located to this line. The
process causing the error can then be explored and other threads located using Jump.

The displayed state will be the last known state before the post-mortem debugging was
started. The type of state of each thread will be one of the states listed in section 2.5.3
or haltedon error flag. The full state of a thread will be updated to the final analyzed state
when the debugger locates or finds that thread.

In post-mortem debugging the Find Threads operation will find scheduled threads,
threads waiting for timers and threads waiting for channels defined at configuration
level. It cannot find threads waiting for unconfigured channels, Le. channels defined in
the ANSI C source code. If necessary, these threads can be located by Jumping down
channels.

Information about the processor and the processor queues is displayed in the attribute
window and the memory window.

2.4.5 Debugging using a dump file

Sometimes it may be desirable to save the post-mortem state of the application rather
than exploring it on the target. SaVing the state keeps a record for future inspection or
reference. Saving the state also frees the target hardware so that, for example, it may
be used by other users while the application is being debugged. It may also be used if
the host development system is not available when the application halts or if the target
hardware is not available to the host development system.

Creating a dump file

The idump tool is provided to save the post-mortem state of the application in a host
file. The dump file contains the contents of the memory and the registers used for
debugging. The default name for the dump file is core. dmp.

The idump tool must be used immediately after the application has halted. If idump fails
or the post-mortem debugger has been used then the state has been lost and cannot
be dumped. Similarly, the post-mortem debugger cannot be used on the target once the
state has been dumped.

idump must have access to the configuration binary file. It expects this file to have the
same filename root as the bootable file, but with the extension. cfb. For example, if the
application bootable is app. btl then idump will look for a configuration binary named
app. cfb. This file must be in the current directory or on the ISEARCH path.

14 ~ SGS-DiOMSON----------- ...,£ ~O©~@~~@RI]n~-----------



2 Debugging

The command line to run idump is:

-.. idump bootable_file {options}

where: bootable_file is the path name of the collected boatable application file.

options is a list of one or more options from table 2.3.

Options may be entered in upper or lower case.

Options can be given in any order, but the order may be significant.

Options must be separated by spaces.

Option Description

-SJ: Display extra run-time information.

-SL resource Use the target host link connection resource, overriding the TRANSPUTER
parameter.

-se filename Load the bootable file filename onto the target T2If4ITS-series hardware.

-DF dumpfile Write the output to the dump file dumpfile.

-NA Do not assert analyse on the T2/T41T8-series network.

-w Show a busy sign.

-E Dump only the processors with the error flag set.

-F Dump free memory as well as allocated memory.

-R Dump only the register state.

Table 2.3 idump command line options

Normally idump only saves the memory allocated by the build tools for code and work
space. The -F option forces idump to dump the whole of the physical memory, including
the 'free' memory.

Examples:

The follOWing command line dumps the used memory space and registers of the target
hardware specified in app.cfb that is accessed by the host link given by the TRANS­
PUTER parameter:

idump app.btl

The follOWing command line dumps all of the memory (including the free memory) and
the registers of the target hardware specified in app. cf8 accessed by the host link
connection mytarget and displays a busy sign:

idump app.btl -81 mytarget -f -w

The following command line dumps only the processors that have the error flag set:

idump app.bt1 -e

------------ Eii~~DlmI91-----------15-



2.5 Debugging multi-threaded programs

The following command line dumps just the register state of the processor that has the
error flag set:

idump app.btl -e -r

Using the dump file

The dump file may be read by the debugger in post-mortem mode by using the inquest
option -DF. The debugger uses only the host when debugging from a dump file, so
access to the target is not needed.

For example, to debug the application app. bt1 from the dump file core. dmp, use the
following command line:

inquest -pm -df core.dmp app.btl

2.5 Debugging multi-threaded programs

The debugger supports debugging of single thread or multi-threaded programs running
on the target hardware. Debugging multi-threaded code is different from debugging
single thread code in that, for example, hitting a breakpoint might stop only one thread
of execution while the rest of the program may be able to continue.

The debugger is not synchronous with the user code, so the user has fuJi access to the
debugger while code is running on the target hardware. The user may browse through
the code and inspect variables while some or all of the threads are either running or
stepping. For running threads, the state shown is the last known state. The last known
state is the state when the thread was last stopped or an interrupt was requested.

Multiple debugging windows may be opened, and each may display a different part of
the state of the program. However, the state being inspected by all the windows is the
same. For example, if a thread is interrupted from one window then that thread will
become stopped in all windows. Similarly, a breakpoint or watchpoint set in one window
will be set in all windows.

In the debugger, we need to distinguish between two different types of task, so the
terminology in this document is slightly different from that used in the ANSI C Toolset
and the occam 2 Toolset documentation and elsewhere. In this document, when
referring to C programs, we use the term process only for configuration-level processes
defined in the configuration source code, and the term thread is used for program-level
tasks defined in the C source code. When referring to occam programs, we use the
term process for the entire code running on one processor and we use the term thread
to mean any other sub-process. The functional difference between a process and a
thread is that a process is static, defined at the build time, while a thread is created
dynamically while the program is running.

2.5.1 Shared code

When code is shared between threads of execution, the debugger can treat the code
of each thread as distinct and distinguish between shared code executed by different

_1_6 ~11@mY.~©~ _



2 Debugging

threads of execution. For example, a breakpoint may be set in one thread so that only
that thread can hit the breakpoint, while another thread executing the same code will
not be stopped. Alternatively, a breakpoint may be set so that it stops any thread
executing that line of code.

The debugger can also distinguish between instances of automatic variables declared
in shared code. An automatic variable is a C variable which is declared inside a function,
so multiple executions of the function code give rise to multiple instances of the variable.
In occam, all variables behave like C automatic variables. Each thread that executes
the shared code will have a different instance of any variable declared in the shared
code. Each instance will be in a different memory location and may have a different
value. In this case the user must be careful when inspecting the value of a variable that
the correct thread is being inspected. A thread may be selected by using the browser.
A watchpoint set on such a variable may apply to one thread or all of them.

In C, a function that is called recursively may also cause multiple instances of automatic
variables. The debugger is able to distinguish these instances by their frames, Le. their
locations on the stack. The user may inspect or set watchpoints on any instance by
selecting a particular frame using the browser.

C static variables have only one instance within a process and are not associated with
a particular thread. If a watchpoint is set on a C static variable then any thread accessing
that variable will stop.

2.5.2 Processes

A debugging process is an instantiation of a program that is executed on a target
processor. An ANSI C process has a single main function and so a single entry point.
It is compiled and linked into a single linked unit. A C process is declared as a node in
the C configuration code and the linked unit is attached to this declaration by a use
statement in the configuration code. A process consists of a code region and data
regions, is statically allocated and is uniquely identified by the process name used in the
configuration program or a number called its process identifier or pid.

The fragment of C configuration code below declares and places the process facs:

node (element="process",
interface(input in, output out),
stacksize=20k,heapsize=40k,priority=low) facs;

use "facs.lku" for facs;
place facs on t3;

An occam process is all the code for one processor. It is identified by the name of the
processor with the suffix 'J:>' or a number called its process identifier or pid.

The fragment of occam configuration code below declares and places the process
tlJ:>:

PROCESSOR tl
PAR

app (fs, ts, square.to.app, app.to.facs)
facs (app.to.facs, facs. to. square)
square (facs.to.square, square.to.app)

___________ ,...,£ ~itmYl:9©' 1_7



2.5 Debugging multi-threaded programs

A process is marked as debuggable if it does not have the configuration attribute
nodebug set to TRUE (see section 2.2). A module of a linked unit may have full or
minimal debugging data depending on the compiler options. The source code can only
be displayed if the process has been compiled with full debugging data. If a code module
has only minimal debugging information then only the stack trace can be seen. A code
module will have no debugging data if the user has written assembly code or the source
or compiled (. teo) code file is not on the search path given by ISEARCH. If there is no
debugging data then debugging can only be at assembly code level.

2.5.3 Threads

Within a given debugging process there are one or more threads of execution. Each
thread of execution is sequential, though it may generate other threads which subse­
quently run at the same time, using the processor's built-in micro-kernel.

In ANSI C, a thread of execution has its own stack region but can share the static and
heap regions of the process in which the thread was created. The creation of threads
is dynamic and performed by the ANSI C functions ProePar, ProeParList,
ProePriPar, ProeRun, ProeRunHigh and ProeRunLow. While a process is running,
there is always at least one thread of execution running in the process. When the last
thread terminates then the process terminates. The following fragment of ANSI C
declares and creates a thread p_sum:

Process *p_sum;
p_sum = ProcAlloc(sum, 0, 1, pi);
ProcRun (p_sum) ;

In occam, a thread of execution has its own stack space allocated at compile time. The
creation of threads is dynamic and performed by the occam PAR construct at program
or configuration level. While a process is running, there is always at least one thread of
execution running. When the last thread of a process terminates then the process
terminates. The following fragment of occam declares and creates three new threads.
In this example, the thread which contains the PAR hangs in a running or stepping state
and cannot continue until all three new threads have terminated.

PAR
sum (from. square, sum. to. control)
control (fs,ts,sum.to.eontrol,eontrol.to.feed)
feed (control. to. feed, to.facs)

When a thread of execution is stopped, the execution state of the thread is saved by the
debugger. The execution state includes the contents of all the relevant processor regis­
ters when the thread was stopped. This includes the Iptr, which is used to indicate (in
the code window) where the thread has reached, and the Wptr, which is used to
calculate the addresses of local variables and the frame stack.

The debugger determines the memory range that the thread is using as its workspace
and assigns a unique identity to that workspace range, called a thread identifier or tid.
This thread identifier can then be used to denote the thread for the rest of its life. The

_18 E;l~itmg.~I-----------



2 Debugging

thread identifier is displayed in the attribute window when the thread is selected using
the browser.

The debugger may show a thread as being in one of seven different thread states ­
stopped, alt-waiting, chan-waiting, timer-waiting, scheduled, stepping and running, as
described below. The state of a thread may be shown in the browser window or the
attribute window.

In interactive debugging, the state displayed is the thread state when the thread was last
sampled. A sample occurs when one of the following occurs:

an Interrupt, Find Threads, Continue, Step or Next operation is requested;

• an equivalent command is entered;

the thread stops because of an interrupt, watchpoint, breakpoint or thread
monitor.

In each case, the register state is sampled, which enables the printing of the values of
variables and other state information.

Stopped threads

A thread is stopped when it has hit a breakpoint or watchpoint or a thread monitor or
when an Interrupt on the thread has been completed. Initially all debuggable threads
are stopped. Watchpoints and breakpoints can be set in a stopped thread and the values
of variables can be printed.

In interactive debugging, a thread can resume after it has been stopped. The Continue
operation will cause it to start running, while Next or Step operations will cause it to start
stepping.

Alt-waiting, chan-waiting, timer-waiting and scheduled threads

Interrupt and Find Threads set temporary breakpoints after the current statement or
instruction. If a Find Threads has been requested or a thread has been Interrupted but
it has not yet reached the temporary breakpoint then the thread will be in one of the
following states:

• alt-waiting if the thread is waiting for an alternative.

chan-waiting if the thread is waiting for a channel other than in an alternative.

• timer-waiting if the thread is waiting for a timer other than in an alternative.

• scheduled if the thread is waiting on a queue for processor time.

The displayed state of the thread is the state when the Interrupt or Find Threads was
requested. If the thread has been Interrupted then the values of variables can be
printed and the thread will become stopped when it hits the Interrupt breakpoint.

----------- LT£litniI&YI-----------19
-



2.6 Debugging facilities

The debugger can perform other operations while one or more threads are in any of
these states.

Stepping

A stepping thread is executing a Step or Next operation. It may have to wait for a timer
or channel communication and will continue to be stepping while it waits. When the step
is completed the thread becomes stopped. A stepping thread can also be changed to
alt-waiting, chan-waiting, timer-waiting or scheduled by an Interrupt operation.

The debugger can perform other operations while a thread is stepping. For example,
several threads may be stepping at the same time.

Running

A thread is running if it is not prevented from executing by the debugger and it is not
stepping, alt-waiting, chan-waiting, timer-waiting or scheduled. A running thread may
be executing on the processor or waiting for a timer or channel communication,
including host input and output. In the code window display, a running thread is shown
in the state at which it was last stopped. A running thread can be stopped by an Interrupt
operation.

The debugger can perform other operations while a thread is running. For example,
several threads may be running at the same time.

2.5.4 Initial process states

The initial state of each process depends on how it was built and the irun command
line. If the irun option -DS is used then the application will start and keep running until
interrupted or an errot or termination occurs.

Without the -DS option, a C process which is marked as debuggable and is compiled
with full debugging data will stop at the start of its main function after the initialization
code. A C process which is debuggable but does not have full debugging data cannot
find the start of the main function. Such a process is initially stopped at the process
entry point, i.e. at the start of its initialization code. A C process which is not marked as
debuggable executes normally without being stopped by the debugger.

An occam process which is marked as debuggable and is compiled with full debugging
data will stop in the initialization code. An occam process which is debuggable but does
not have full debugging data is initially stopped at the process entry point, Le. at the start
of its initialization code. An occam process which is not marked as debuggable
executes normally without being stopped by the debugger.

2.6 Debugging facilities

2.6.1 Breakpoints

A breakpoint may be set during interactive debugging on a source statement or at a
processor instruction address. When a thread hits the breakpoint it will be stopped
immediately before executing that statement or instruction.

_20 EU~~~m~~~lj _



2 Debugging

A breakpoint can be set for a process, in which case any thread of the process that
attempts to execute the statement or instruction is stopped. A breakpoint can also be
set for a specific thread or frame in which case only that thread or frame will stop when
it attempts to execute the statement or instruction. A statement can have more than one
breakpoint set on it.

When a breakpoint is set, an event number is returned. This number is displayed
whenever the breakpoint is hit or listed to identify the event. It may be used as a
parameter to the when or wait command in order to wait for a specific event.

Breakpoints are set by the user with the Break operation or break command. Hidden
breakpoints may also be set by INQUEST during Step To, Step Out, Interrupt, Next
and Find Threads operations. The hidden breakpoints do not appear in the list of
breakpoints and are deleted automatically when the operation completes.

2.6.2 Single stepping

During interactive debugging, a stopped thread can be made to execute the next
statement or instruction. This facility is called single stepping. If a thread single steps
at a function or procedure call, it may optionally step through the function or procedure
or step over it. Stepping through means that the thread executes as far as the first
statement or instruction within the function or procedure. Stepping overmeans that the
thread executes as far as the return from the function or procedure.

A single step may include a communication or timer wait, in which case the thread may
have to wait and the single step will not complete until the communication or timer wait
has completed. The debugger can perform operations on other threads while one or
more threads are single stepping.

2.6.3 Watchpoints

A watchpoint may be set during interactive debugging on a program variable and may
watch for read accesses, write accesses or any accesses. When a thread tries to make
an access of the watched type to that variable it will be stopped. Hitting a watchpoint
results in the thread being stopped immediately before the access is made.

A watchpoint may be set on a variable for a process. If the variable is a C static then any
thread that accesses it will be stopped. If the variable is a C automatic or an occam
variable then every future instance of that variable has a watchpoint set on it.

If a watchpoint is set for a thread on a C automatic variable or an occam variable then
the watchpoint is on every existing and future instance of the variable in that thread. Only
that thread can hit that watchpoint. A variable can have more than one watchpoint set
on it.

A temporary watchpoint may also be set which will automatically be removed after it has
been hit for the first time.

When a watchpoint is set an event number is returned. This number is displayed
whenever the watchpoint is hit or listed to identify the event.

____________ ~~i@-&~JI-----------2-1



2.6 Debugging facilities

Internal channels and external channels may have watchpoints set on them. Virtual
channels cannot have watchpoints set on them.

2.6.4 Interrupting

One or more running threads can be stopped by interrupting during an interactive
debugging session. The debugger 'interrupts' the threads by setting temporary break­
points on them. The breakpoint is inserted before the next statement or instruction. The
breakpoints are removed automatically when the thread stops. This facility may be used
if, for example, a thread is stuck in a loop.

If an Interrupt has been requested on a thread but the thread has not reached the
interrupt breakpoint then the thread may be alt-waiting, chan-waiting, timer-waiting or
scheduled. The displayed state of the thread is the state when the Interrupt was
requested, which enables a set of deadlocked threads to be found and explored.

2.6.5 Thread monitors

During interactive debugging, if a running thread creates a new thread then the new
thread is not visible to the debugger until it is stopped or a Find Threads operation has
been completed. Similarly, the debugger does not normally indicate when a thread has
terminated. The debugger provides thread monitors so that ·the creation or termination
of a thread can be monitored.

A thread monitor can be placed on a process. A thread birth monitor stops a thread as
soon as it is created. Birth monitors are only available for C threads. A thread death
monitor informs the user when a thread has terminated.

When a thread monitor is set an event number is returned. This number is displayed
whenever the thread monitor is hit or listed to identify the event.

2.6.6 Stack tracing

When a thread has been selected, a call stack trace can be displayed which gives details
of the nested function and procedure calls of the thread which have not returned. Each
function or procedure call of a stack trace is called a frame and is allocated a number
known as the frame identifier or fide The frame identifiers are shown in the stack trace
in the browser window. In the stack trace, the frame that created the current thread is
marked with an asterisk (*).

Breakpoints and watchpoints can be set that are local to a particular function or proce­
dure call, so allowing recursive programs to be debugged interactively.

2.6.7 Examining variables

The values of C static variables can be displayed at any point in the program execution.
The values of C automatic variables and occam variables can be displayed if the thread

22 ~SeiS-lIIOMSON----------- ..'T£~o©[fJ@rn~n~-----------



2 Debugging

is stopped or an Interrupt or Find Threads has been requested. A simple expression
syntax is supported to enable the values of structured variables to be displayed, as
described in sections 2.9.4 and 3.1.

2.6.8 Jumping down a channel

The value of a channel variable can be used to switch the debugging context to a thread
or process waiting for communication on that channel. This is known as jumping down
a channel.

Channels are one-to-one and synchronous, so anyone channel has only three states:

empty - Le. not being used;

2 pointing to one thread waiting for communication on the channel;

3 communicating between two threads.

If a channel is in state 2 then the debugger can jump to the thread that is waiting, since
the channel points to it. The debugger selects the waiting thread as if it had been
selected using the browser.

2.6.9 Low level features

A memory viewing function allows segments of memory to be viewed in various formats.
A low level view of a thread can be selected allowing its code to be disassembled, its
workspace to be examined and facilitating instruction level breakpointing and single
stepping.

____________ ...,£ ~ilIDma&~©~ 2_3_



:::il::::l.rlP:~:f,j~:~~!~·::~;;::;·:~:::·:.\·:;·~::;:· ~ :.: .~:: "/;::':; ~ .:.:JJ.~":~~' iPP~~~f.r·.··.:: ..~::: ": '.:' '; .
:::t@: ::.:..: .

2.7 The debugger display

2.7 The debugger display

The debugger display consists of a set of windows. On X-Windows systems the display
looks like figure 2.3. On Microsoft Windows systems the display looks as shown in
figure 2.4. The windows are used for browsing around the program, displaying attrib­
utes of the program, displaying the source code, displaying the debugger messages and
interacting with the user by means of a mouse, buttons, menus and the command
language.

- - - - - - - - - - - _.
'. :"-:';:"-: ..:::::... :.::.::.:::.:::.:-:::: .... :.. 4(Menubar

A. 4( Attribute window
.. ,,:: ·i~:·:·:::-::···

Code window

4(Output window
.j: .;;:.:

4( Command windo

Figure 2.3 The X-Windows debugger display

_24 ~li~@I!I&~JI-----------



2 Debugging

~ Menu bar

)
} Code window

)
}

Operation
buttons
window

Inquest ..... Crndllne
I

}
Output
window

T
""'0-0->-;::::================~:U.AJt Command

-q window

square
facs
app

node (element=-process-,
interface(input stdin, output stdout,

input in, output out).
stacksize=20k. heapsize=40k. priority=low)

app;
use -app.lku- for app;
place app on t1;

Inquest - Browser

1 node (element=-processor-,
2 type=-TBOS- ,memory=lM) tl;
3
4"
5
6
7
B
9

10

file execution Events Xarlables Options Window .Help

ISEARCH: c:\lnquest\lIbs\;c:\lnque! ~ ~ :.c:.a::a,::,a:~~~:O"l:I;~~~fa~~~OC>19 0~
3 1 app main: breakpoint 3 at <app.c 260>"""

##I Program: C:\INQUEST\EXAMPLES\APP_C\APP•BTL 1*1",
C:\INQUES1\EXAMPLES\APP_C\app.cfs

§! Inquest

Browser ~
window ~

Attribute ~
window IP'

~~~~~~~~

Figure 2.4 The Microsoft Windows debugger display

Instructions can be given to the debugger either in the form of operation requests or
commands. Operations are requested by clicking on a button, clicking on a pull-down
menu or by using accelerator keys. Commands are typed in the command window or
a sequence of commands may be written in a file and used as a script. A command script
may be run by a single load command or automatically on start-up.

The browser enables the user to browse through the program and select an object to
be examined, which may be the whole program, a process, a thread or a frame. The
attribute window gives information on the object that has been selected. The code
window displays source code or disassembled code that is appropriate to the state of
the browser. The output window displays the responses of the debugger to user opera­
tions and commands.

The debugger display can be duplicated using the Open Window operation to provide
as many displays as needed. Each display can be set to a different browser state or may
display a different section of code as required by the user.

2.7.1 The browser window

The browser window is used to select the context for operations and the display in other
windows and to display the state of the threads.

------------ L"1£1~n'r911?1-----------25_

2.7 The debugger display

The types of objects which can be debugged in a program are arranged into the
hierarchy of program, processes, threads and frames. The browser is used to select a
particular level of the hierarchy to enable debugging to be performed at that level and
to select a particular object at that level. The browser is described in section 2.8.

The browser window consists of two regions; a button region and a list of objects at the
current level. The button region is on the left of the browser window and on the right is
the list of objects.

The objects at the current level are represented by a list of names, e.g. process names
or thread names. If the list is too long to be displayed in its entirety then a scroll-bar is
provided allowing the visible portion to be altered. An object can be selected by clicking
on it with the left mouse button.

The button region contains up to three buttons which provide movement to other levels
of the hierarchy.

2.7.2 The attribute window

The attribute window displays detailed information about the object selected in the
browser window. If there is too much information to be displayed in its entirety then a
scroll-bar is provided allowing the visible portion to be altered.

2.7.3 The code window

The code window displays the contents of source files or disassembled code files. It is
possible for the user to change the file that is displayed in the code window as described
in section 2.8.5. The user has a choice of possible files to view, depending on the current
process, thread and frame. The restrictions are intended to limit the files that can be
selected to those that are pertinent to the current context.

A sub-window is displayed at the top of the code window which displays the full path­
name of the file currently displayed in the code window.

The following markers are shown on Sun systems in the left margin of the code in the
code window to indicate various locations in the code:

Selected line

Next statement or instruction to be executed at the last known state

Breakpoint set

Watchpoint set

_26 E;i~itnl.I-----------

2 Debugging

The corresponding markers shown on PC systems in the code window are as follows:

Selected line

Next statement or instruction to be executed at the last known state

Breakpoint set

Watchpoint set

2.7.4 The output window

The output window is used to display messages from the debugger. Some messages
are prefixed by the process identifier and thread identifier (see section 3.2) to indicate
the context.

There are a number of different types of message that may appear in this window, as
follows:

Confirmations

When an operation has been selected, the command language equivalent of the opera­
tion is displayed, prefixed by the process and thread identifier context. When a
command is entered, the command is echoed in the output window and the output from
the command language interpreter will be displayed. Confirmations are displayed in all
debugging windows.

Output and error messages

When an operation has been selected or a command entered, there may be output or
an error message as a direct consequence of that operation or command. Output and
error messages are displayed only in the debugging window where the operation was
selected or the command was entered.

Events

When an event occurs, such as a breakpoint or watchpoint hit, a message will be
displayed announcing its occurrence prefixed by the process and thread identifier
context. The message is displayed in all debugging windows.

2.7.5 The command window

The command window provides access to the debugger command language inter­
preter. Commands may be entered at any time. The command language is described
in Chapter 3. The browser and the command language interpreter maintain the same
current context. If the context is changed in one then the other will change with it. The

------------ E;lf~Irr9.~~I-----------2-7

2.8 The browser

current process identifier and thread identifier are displayed to the left of the command
window.

2.7.6 Hexadecimal numbers

Hexadecimal numbers are generally displayed preceded by a hash (#), e.g.
#80000A70. Hexadecimal numbers may be entered in any of the following formats:

With a leading #, e.g. #5ab67

With a leading ox, e.g. OxSab67

With a leading %, indicating that the sign bit is set. For example, %70 means
hexadecimal 80000070 on a 32-bit processor. There must not be a space
between the % and the number.

2.8 The browser

The browser allows the user to navigate through the hierarchy of executing objects (i.e.
processes, threads and frames) in a structured way. It also allows the scope of opera­
tions to be changed. The current state of the browser is shown in the browser window.
The browser and the command language interpreter maintain the same current context;
if the context is changed in one then the other will change with it.

A current process, thread and frame may be selected using the browser. If a frame is
selected then the current thread and process are the thread that contains the selected
frame and the process that contains that thread. If a thread is selected then the current
process is the process that contains the selected thread. The current process identifier
and thread identifier are displayed to the left of the command window.

If code is shared between parallel threads of execution then the browser may be used
to select one thread. The values of variables in that thread may then be inspected and
breakpoints and watchpoints set in that thread.

If a function is called recursively then the browser may be used to select one call of the
function, i.e. one frame. The values of variables in that frame may then be inspected and
breakpoints and watchpoints set in that frame.

The browser has four levels: program level, process level, thread level and frame level.
For each level there is a different browser window display. Figure 2.5 shows the browser
window states and the transitions when the user clicks on a button or object name.

The browser level affects which debugger operations can be performed and may
change their effect. In general, the level affects the scope of an operation. At program
level an operation will generally affect all processes. At process level a process is
selected and an operation will generally affect all the threads in the selected process.
At thread level, a thread is selected and an operation will generally affect all the frames
in the selected thread. At frame level, a frame may be selected in which case an
operation will affect only that frame.

28 ~SeiS-DiOMSON------------ ...,£ ~O©!fd@rn~©~-----------

2 Debugging

Program level

Process level

Figure 2.5 Browser states and displays

Certain debugger operations cause the debugger to select an object without using the
browser. The Jump operation makes the debugger select the thread that is waiting for
a channel communication. The Last Event operation makes the debugger select the
thread in which the last event occurred.

2.8.1 Program level

At the program level the list of processes in the application is displayed in the browser
window. The attribute window displays the name of the bootable program and the code
window displays the configuration source code.

------------ L'T£ ~itnwl&~©' 2_9_

2.8 The browser

Clicking on a process from the list in the browser window will cause the browser to move
to the process level, showing the threads in the selected process.

2.8.2 Process level

At process level, one process has been selected. The browser window display shows
a list of threads currently known in the selected process and a Processes button. The
attribute window displays the attributes of the process, namely:

the process name, process identifier and starting priority;

the name of the file that contains the linked unit code of the process and its entry
point;

the identifier, type and memory size of the processor on which the process is
executing;

the locations and sizes in memory of the stack, static and heap.

Clicking on the Processes button moves the browser to the program level. Clicking on
a thread moves the browser to the thread level, with the selected thread as the current
thread.

2.8.3 Thread level

At the thread level, a list of the threads that exist within the current process is displayed
in the browser window, with the current thread highlighted. At this level the browser
window shows Processes, Call Stack and Deselect buttons.

When a thread has been selected then the attribute window displays the attributes of
the thread, namely:

the process name, thread name, thread starting point and status;

the range of the workspace of the thread in memory and the priority of the thread;

the values of the Iptr and Wptr;

the processor identifier;

the values in the evaluation register stacks.

At thread level, the code window may display the source code of the thread or the
disassembled machine code. The Assembly operation toggles between these two
displays. If the thread is stopped then its current location in the code is displayed. If an
interrupt has been requested then the state when the interrupt was requested is
displayed. If the thread is running, then the location displayed is where the code last
stopped. If the thread has not started then its entry point in the code will be displayed.

All events set at thread level are removed when the thread terminates.

30 ~SCiS-mOMSON----------- IiJ.-"£ !rAlD©~@rnlbrn©'TI'OO@ROO©@) -----------

2 Debugging

From the thread level, clicking on the Processes button moves the browser to the
program level and clicking on the Deselect button moves the browser to the process
level. Clicking on the Call Stack button moves the browser to the frame level in the
current thread. Clicking on a thread which is not already selected selects that thread.
Clicking on a thread which is selected, moves the browser to the frame level in the
selected thread.

2.8.4 Frame level

At the frame level, a stack of the frames of the current thread is displayed in the browser
window, which shows the current state of a stopped thread or otherwise the most recent
stopped state. The first element of the list is the 'current' execution frame of the thread,
the next its caller, and so on. The browser window also shows a Processes button and
a Threads button and, if a frame is selected, a Deselect button. Clicking on the
Processes button moves the browser to the program level. Clicking on the Threads
button moves the browser to the thread level. Clicking on the Deselect button deselects
the current frame.

All events set at frame level on a function or procedure are removed when the function
or procedure returns.

When a frame has been selected then the attribute window displays the attributes of the
frame, namely:

• the name of the function or procedure called;

• the thread identifier;

• the line where the function or procedure was called and the current line;

• the values of the Iptr and Wptr and the processor identifier;

• the actual parameters to the function or procedure call.

2.8.5 Code display

The code display is the section of source or assembly code visible in the code window
using the scrolling facilities, plus the next statement marker (C3 on Suns or t> on PCs)
and the file pathname in the filename window. A debugger display is said to locate when
it updates the code display to show the appropriate source code file or section of
disassembled code for the currently selected context.

When a thread or frame is selected or the Locate operation is performed, the code
window locates to the appropriate code. If Assembly is off and no frame is selected then
the highest frame with full debugging data is used for the display. If Assembly is off and
a frame is selected which does not have full debugging data then the code display
becomes blank. A summary of the effects of locating in various states is shown in
table 2.4.

___________ E;if£mal£9©~ 3_1

2.9 Debugger operations

Level Locate to

Program Beginning of configuration code

Process Process entry point

Thread, with Assembly off Highest frame with full debugging data

Thread, with Assembly on Top frame

Frame, deselected, with Assembly off Highest frame with full debugging data

Frame, deselected, with Assembly on Top frame

Frame, selected Selected frame

Table 2.4 Effect of locating

Normally, when an event occurs or an operation is performed on a selected thread the
windows displaying the thread locate. Since this happens automatically, this effect is
called auto-locate.

Auto-locate is turned off in any window when a Function, Module, Enter Include or
Exit Include operation is used in that window. While auto-locate is turned off, the code
display will not change. This facility may be used to hold a particular code display in one
window while browsing and executing in another window. Auto-locate is turned on again
by any other execution operation, a browser selection or the Locate operation.

2.9 Debugger operations

The debugger operations have been divided into groups of related operations. Each
group of operations appears in its own pull-down menu in the menu bar. The menus are
pulled down by clicking on the required menu name with the left mouse button. The
operation within the menu is selected by clicking the left mouse button again on the
name of the operation or by entering the underscored letter at the keyboard. Menus and
operations may also be selected by means of accelerator keys, which are keyboard
dependent but related to the letter underlined on the menu bar or in the menu.

At a particular browser level, only a subset of the operations may be available. Opera­
tions that do not apply to a given browser level are 'greyed-out' and cannot be selected.
The effect of some operations differs slightly between levels.

A subset of the debugging operations is available via a set of operation buttons that is
displayed in the code window.

2.9.1 File menu

Module

List in a pop-up window all the modules (Le. compilation units) used. All the
modules in the current process are listed. Selecting a module and clicking on the
Apply button will cause the source code corresponding to the compilation unit
to be displayed in the code window. Clicking on the Cancel button will close the

32 ~ SGS-1HOMSON------------ ..~£ ~o©OO@rnllJEiJooooo©~------------

2 Debugging

pop-up window. Clicking on the OK button is the same as clicking on Apply then
Cancel. The Module operation turns off the auto-locate.

Function

List in a pop-up window all the functions defined in the linked unit that the current
process is running. Selecting one of the functions and clicking on the Apply
button will make the code window locate to the selected function. Clicking on the
Cancel button will close the pop-up window. Clicking on the OK button is the
same as clicking on Apply then Cancel. The Function operation turns off the
auto-locate.

Enter Include

Display an included file in the code window. An included file is selected by
clicking on an #include or #INCLUDE directive in the source code in the code
window before clicking on Enter Include. The Enter Include operation turns off
the auto-locate.

Exit Include

Undo Enter Include. The Exit Include operation turns off the auto-locate.

Search

Search forward or backward within the source file currently displayed in the code
window. If a string has been selected in the code window then it will be used as
the search string and the search will be forwards. Otherwise a pop-up dialog box
will appear, allowing the string to be searched for to be entered, and forwards
or backwards to be selected.

Locate

If text is highlighted then the debugger will interpret this as a function name and
try to locate to it. If nothing is highlighted, the debugger will display the code
location of the current thread. If the thread is stopped then its current position
in the code is displayed. If the thread is executing, the code position at which it
last stopped is displayed. If this operation is used at process level, the process
entry point is displayed. At program level the start of the configuration file is
displayed. The Locate operation turns on the auto-locate. This operation is not
equivalent to the locate command.

Open Window

Create a new debugger display window in the same state as the current
debugger display window. Once created the new and old displays may be
changed independently of each other and any other displays which may exist.
On Microsoft Windows systems, only a new code window appears, and the other
windows apply to whichever code window is selected.

Close Window

Remove the current debugger display window, unless there is only one display
window in which case it will not be removed.

----------- ~~i®nitl~JI-----------33-

2.9 Debugger operations

Exit

Quit from the debugger. A pop-up dialog box will appear asking for confirmation.
Clicking on the Yes button causes INQUEST to exit. Clicking on the Cancel
button returns to the debugger.

2.9.2 Execution menu

All the execution menu commands except Find Threads switch on auto-locate. Of
these operations, only Find Threads is available during post-mortem debugging.

Continue

Resume execution of stopped threads. At program level, resume all stopped
threads of the program. At process level, resume all stopped threads of the
process. At thread level, resume the current thread. Continue cancels any
pending interrupts.

Interrupt

Interrupt debuggable running threads. At program level, interrupt all debuggable
running threads of the program. At process level, interrupt all running threads
of the process. At thread level, interrupt the current thread. Interrupting a thread
means setting a breakpoint on the next instruction the thread will execute and
removing the breakpoint when it is hit.

If a thread is waiting for a timer or a channel then the breakpoint will not be hit
until the wait has completed. The debugger considers a thread to be stopping
if the breakpoint has not been hit, in which case its state can be examined but
not modified. High priority threads can only be interrupted when they are in a
waiting state, for example waiting for a channel communication to complete.

In order to interrupt a thread, the debugger must be able to find its descriptor by
looking on the scheduling queues, timer queues, or by searching known and
identifiable channels. If a thread is not in such a state it cannot be interrupted
by the debugger.

Step

Continue execution of the current stopped thread until a single step has been
executed. Function and procedure calls are stepped into unless they are
compiled with minimal debugging information (e.g. printf or
so. write. string) in which case the function or procedure call is stepped
over. With no debugging information, the thread will be repeatedly stepped until
it reaches code with debugging information.

In occam, stepping an unreplicated PAR statement causes every thread
created by the PAR to be created and then stop. The parent process remains
'stepping' until all the new processes have been terminated. Stepping a repli-

-34-----------liii~I@_I-----------

2 Debugging

cated PAR causes all the threads it creates to run until they terminate or hit a
breakpoint or watchpoint.

Next

Continue execution of the current stopped thread until the next function, proce­
dure or statement has been executed. Function and procedure calls are stepped
over.

In occam, Next on a replicated or unreplicated PAR statement causes all the
threads it creates to run until they terminate or hit a breakpoint or watchpoint.

Step Out

Continue execution of the current stopped thread until the current function or
procedure returns. At frame level, if a frame is selected execution is continued
until the selected frame becomes the current execution frame.

Step To

Continue execution of the current stopped thread until the specified source
position has been reached.

Find Threads

Find all the threads that exist in the program or current process. The debugger
updates its state so that it knows about all of the debuggable threads. This
operation is intended for use when the thread monitors have not been set or
threads have deadlocked.

Analyse

Put the debugger into analyse mode for post-mortem debugging.
T2fT4fTS-series transputer target hardware is reset with analyse high and
T9000-series transputers are Halted. This halts all low priority threads at the
next deschedule pointand preserves the state. Memory is copied to the host and
exploratory code is then loaded onto the hardware so that the state can be
interrogated.

Restart

Reboot and restart the program being debugged. A pop-up dialog box will
appear asking for confirmation. If the action is confirmed then the hardware will
be rebooted and the program being debugged will be reloaded and restarted as
if the last irun command had been re-entered. All debugger windows being
displayed will be kept open but will return to the initial window state.

2.9 Debugger operations

2.9.3 Events menu

Of these operations, only Last Event is available during post-mortem debugging.

Last Event

Switch context to the thread in the program that stopped most recently. A thread
will stop executing when an ordinary debug event occurs (Le. a breakpoint,
watchpoint, or thread monitor event) and there is a null or true when condition
for that event, or when an Interrupt or Step completes, or Program error or
Process exit occurs.

Whenever a thread stops executing an appropriate message is output to each
output window and its identity is recorded globally. Last Event uses this global
value to change the context of the current window to the most recently stopped
thread.

Break

Set a breakpoint at the selected source statement or instruction of a stopped
process, thread or frame. A source statement can be selected by clicking on a
line of source code in the code window or alternatively by highlighting the name
of a function that is defined in a source module. An assembly level instruction
can be selected by highlighting the address of the instruction.

If the breakpoint is successfully set, a breakpoint marker symbol, 0 on Suns or
/} on pes, will appear next to the appropriate statement and the event number
of the breakpoint (to be returned when the breakpoint occurs) will be displayed
in the output window. If the breakpoint could not be set then an error message
will be appear in the output window. A breakpoint set on a thread is deleted when
the thread dies. A breakpoint set at frame level is removed when the frame
returns.

Breakpoints may be deleted using the Delete operation and may be examined,
enabled, disabled or deleted using the List Breakpoints operation.

Watch

Set a write watchpoint on the selected variable of a stopped process, thread or
frame. A variable can be selected by highlighting any reference to it in the source
code. If the selected variable is a static then one watchpoint will be set. At
process level, each present and future instantiation of an automatic variable will
have a watchpoint set on it. At thread level, selecting an instantiated C automatic
variable or occam variable will cause a watchpoint to be set on all existing and
all future instantiations. At frame level with a frame selected, the watchpoint will
be set only on the instantiation in that frame. Selecting a C automatic variable
or occam variable which is not instantiated will cause a watchpoint to be set on
all future instantiations. All watchpoints set on a thread are deleted when the
thread dies. At frame level, the watchpoint will be removed when the frame has
finished. A watchpoint set on a C automatic or occam variable is removed when
the variable passes out of scope and is removed.

_36 Eiilil@m~/~~©~ _

2 Debugging

If the watchpoint is successfully set then a watchpoint marker symbol,~ on Suns
or (» on PCs, will appear next to the definition of the variable and the event
number of the watchpoint (to be returned when the watchpoint occurs) will be
displayed in the output window. If the watchpoint could not be set then an error
message will appear in the output window.

Watchpoints may be deleted using the Delete operation and may be enabled,
disabled or deleted using the List Watchpoints operation. A read or read/write
watchpoint may be set using the command language command watch.

Internal channels and external channels may have watchpoints set on them.
Virtual channels cannot have watchpoints set on them.

Watch Once

Set a temporary write watchpoint on the selected variable of a stopped process,
thread or frame, cancelling the watchpoint after the first hit. Otherwise, this
operation is the same as Watch.

Delete

Cancel a selected breakpoint or watchpoint. The breakpoint or watchpoint is
selected by selecting the code line that has the breakpoint or watchpoint marker.
Breakpoints and watchpoints may be set using the Break and Watch operations
and may be enabled, disabled or deleted using the List Breakpoints and List
Watchpoints operations.

Thread Birth Monitor

Set monitoring of the generation of new threads. Any new thread in the program
or process will stop as soon as it is created. Thread monitors may be deleted,
enabled or disabled using List Thread Monitors.

Thread birth monitoring is only available for threads written in ANSI C.

Thread Death Monitor

Set monitoring of the termination of threads. Information will be displayed about
any thread in the program or process that is terminated. Thread monitors may
be deleted, enabled or disabled using List Thread Monitors.

List Breakpoints

List in a pop-up dialog box all the breakpoints that have been set in the current
process or thread. A breakpoint may be deleted, enabled or disabled by
selecting it within the list, selecting the required operation and then clicking on
the Apply button. Clicking on the Cancel button will close the pop-up window.
Clicking on the OK button is the same as clicking on Apply then Cancel.

Breakpoints may be set using Break and deleted using Delete.

2.9 Debugger operations

List Watchpoints

List in a pop-up dialog box all the watchpoints that have been set in the current
process or thread. A watchpoint may be deleted, enabled or disabled by
selecting it within the list, selecting the required operation and then clicking on
the Apply button. Clicking on the Cancel button will close the pop-up window.
Clicking on the OK button is the same as clicking on Apply then Cancel.

Watchpoints may be set using Watch and deleted using Delete.

List Thread Monitors

List in a pop-up dialog box all the thread monitors that have been set on the
current process or thread. A thread monitor may be deleted, enabled or disabled
by selecting it within the list, selecting the required operation and then clicking
on the Apply button. Clicking on the Cancel button will close the pop-up window.
Clicking on the OK button is the same as clicking on Apply then Cancel.

2.9.4 Variables menu

Print

Display the value of a variable or simple expression. If a variable or simple
expression is highlighted in the code window then the value of that variable or
expression is displayed. Highlighted expressions may include any of the
following constructs:

o variable, e.g. abc

o constant subscript, e.g. x [0]

o variable subscript, e.g. x [i]

o dereferenced pointer, e.g. *p

o address of a variable, e.g. &y

o fields of structures and unions, e.g. z. angle

o fields of dereferenced structures and unions, e.g. p- >angle.

If nothing is highlighted in the code window a pop-up window will appear that can
be used to type in a variable name or expression. Expressions may be entered
in a simple C-like expression language. The expression language is the same
as that used to specify a variable in the command language, as described in
section 3.1 .

The value of a C process static variable may be displayed at process level or
below in any process. The value of a C automatic variable or occam variable
can only be displayed in a stopped or stopping thread at thread level. At frame

-38-----------li;i~i~@~~I-----------

2 Debugging

level, the value of a specified C automatic or occam frame variable may be
displayed.

In occam code, the index variable of a replicated constructor is not in scope in
the line which contains the constructor. If the variable is not used elsewhere,
then the Print operation cannot be used to display its value. However, the print
command can be used, as it does not require the variable name to appear in the
text.

If an address of a variable is used at assembly level, then decimal numbers (Le.
literals not preceded by #, % or Ox) are treated as word offsets from the Wptr.

Print *

Display the value stored at the location given by a highlighted pointer variable
or expression. The pointer variable or expression must be highlighted. Other­
wise, Print * behaves like Print.

.,. : ... : '. '.

• ••.••~.•.•.•••...~. ·gptiOlliJtt· .••........ ···•• ·wi] .. · .

• :N~WN W~ .

Figure 2.6 Displaying memory contents using X-Windows

------------ E;i~itn'~I.I-----------3-9-

2.9 Debugger operations

Memory

Display the contents of a segment of the memory of the processor on which the
currently selected process is running. A window appears, similar to figure 2.6.
Three pull-down menus are given, plus two buttons to allow the user to select
the format of the display (e.g. hexadecimal or ASCII characters) and the type of
the data (e.g. the size of the data objects).

Jump

Change the browser state to the thread waiting for a specified channel which is
in scope. The channel variable must be specified by highlighting the name of the
channel variable in the source text.

2.9.5 Options menu

Command Buttons

Toggle on or off the display of the operation buttons in the code window. In
X-Windows displays, when the buttons are not displayed the code area of the
code window is expanded to use the space vacated by the buttons.

Line Numbers

Toggle on or off the display of line numbers in the code window.

Assembly

Toggle the code window between displaying the source code and displaying
assembly code with the workspace of the thread.

2.9.6 Windows menu

This menu is only available on Microsoft Windows and is similar to Windows menus on
other applications. Apart from the three operations listed below, the code windows are
listed so that anyone can be selected.

Tile

Tile the code windows so that they are all fully visible.

Cascade

Overlay the code windows so they appear stacked with the current window on
top.

Arrange Icons

Line up the code window icons.

40 ~SGS.1HOMSON----------- AaT£ ~O©~Ibrn©'iTI~KQ1~O©~ -----------

41

3 Debugger command language

The debugging command language provides an alternative interface to the debugger
which complements the button and menu operations. The button and menu operations
are described in chapter 2. Command language uses include:

• the definition of complex conditional events;

the display of specific parts of structured variables;

• the creation of scripts that enable debugging scenarios to be quickly reached;

• the generation of customized debugging commands.

Programming constructs are provided, as described in chapter 4. Commands may be
typed directly into the command window or sequences of commands written in a file may
be used for customizing the debugger as macros or start-up routines.

The formal definition of the syntax of the command language is given in Appendix A.

3.1 Specifying an object

There are several types of item that need to be specified as arguments to the debugger
commands, namely statements, processors, processes, threads, frames, symbols,
variables and addresses. Each of these items and the syntax used to denote the item
is defined in this section.

3.1.1 Specifying a statement

A statement reference is an identification of a unique statement in the source text. A
statement reference consists of a file specification, a list of line numbers and, for C
programs, an optional statement position within the line, all separated by spaces. A
statement reference is enclosed by chevrons « >).

<file_specification line_number_/ist [statement_position]>

The line_number_/ist is a list of one or more line numbers separated by commas (,).
The first line number is a line number within the file given by file_specification. All but
the last line number are the line numbers of #include or # INCLUDE statements giving
the file to which the following line number refers. The statement_position is zero for the
first statement on the line, 1 for the second statement and so on.

For example, in figure 3.1, <app.c 13> specifies line number 13 of the file app.c,
which states x [0] = 76;. Similarly, <app •c 16 2> specifies the third statement
(statement 2) of line 16, Le. the statement x=7.

~SGS-THOMSON----------- 1IIt.",,!£ ~o©OO@rnl1rn@'iirn@~O©® ------------

static int x;
x = 87;

static int x;
x = 3; x = 5; x = 7; x = 8;

static int x[20);
#include "incode.h"
x[O) = 76;
{

3.1 Specifying an object

Line 12 of app. c is a #include statement referring to the file incode .h.lf incode.h
contains the code shown in figure 3.2. Then <app. c 12, means the file incode. h,
so <app. c 12,3 1> specifies the second statement (statement 1) on line 3 of
incode •h, that is the statement x=4 5.

3.1.2 Specifying a processor, process, thread or frame

A processor is specified by the processor identifier, or procid, which is an integer. The
current processor is the processor on which the current process is executing. The
processor identifier is displayed in the attribute window.

7 void fn() {
8 int static x[40);
9 x[O) = 43;

10 {
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Figure 3.1 Part of file app •c

1
2 int x;
3 x = 24; x=45; x=98;
4

Figure 3.2 File incode.h

A process is specified by the process identifier or pid, which is an integer. The pid may
be derived from the process name by using the id command, so id app would return
the process identifier of the process app. The process name is defined in the configura­
tion code. Using zero as the process identifier specifies all the processes in the program.

A thread is specified by the thread identifier or tid, which is an integer. The thread
identifier is displayed by the browser and is displayed in the attribute window when the
thread is selected. Using zero as the thread identifier specifies all the threads in a
process.

A frame is specified by a frame identifier or f id, which is an integer. The frame identifier
is displayed in the attribute window when the frame is selected. Using zero as the frame
identifier specifies all the frames in a thread.

42 ~SGS.1HOMSON------------ "'T£ ~D©~@rn!brn©~n~ ------------

3 Debugger command language

3.1.3 Specifying a symbol

A symbol is a name or identifier, Le. the name of a variable, channel, function or
procedure. A symbol may be specified either by a symbol reference or a nested name.
Either method may be used to refer to a unique symbol in the source text.

A symbol reference uses source file line numbers. It consists of a statement reference,
a symbol name and, optionally, an occurrence within the line. A symbol reference is
enclosed by chevrons « >).

<file_specification line_number_/ist [statement_position] symbol>

The file_specification, line_number_/ist and statemenLposition are the same as for
statement references.

For example, in figure 3.1 :

<app. c 8 x> refers to the symbol x declared on line 8 of app. c.

<app.c 11 x> refers to the symbol x declared on line 11 of app.c.

<app. c 12, 2 x> refers to the symbol x declared on line 2 of incode. h, which
is included on line 12 of app.c.

<app. c 15 x> refers to the symbol x declared on line 15 of app. c.

<app. c 20 x> refers to the symbol x declared on line 20 of app. c.

A nested name is an alternative to a symbol reference. A nested name specifies a
symbol by means of a list of nested scopes that must be traversed to find a symbol.

A scope is shown in C source code by a pair of braces ({ }). In occam source code,
a scope is an occam process, Le. a single statement or a construction. A scope may
be named if it is the executable part of a function or procedure, in which case its name
is the name of the function or procedure.

The scopes are separated by commas (,). The first scope is a file and the last is the
symbol. Each unnamed scope is referred to by its position in the scope in which it is
nested; the first scope is 1, the second is 2 and so on. A nested name is enclosed by
chevrons «».

< file_specification, [scope_list,] symbol>

For example, in figure 3.1 :

<app •c, fn, x> refers to the symbol x declared at the beginning of the function
fn, Le. the symbol x on line 8.

<app.c, fn, 1,x> refers to the symbol x declared at the top of the first set of
braces within the function fn, Le. the symbol x on line 11.

<app. c, fn, 1, 1, x> refers to the symbol x declared at the top of the first set
of braces within the first set of braces within the function fn, Le. at the top of the
set of braces within incode •h, Le. the symbol x on line 2 of incode •h.

------------lFil~~Irr9I'~I-----------43-

3.1 Specifying an object

<app. c, fn, 1, 2, x> refers to the symbol x declared at the top of the second
set of braces within the first set of braces within the function fn, Le. the symbol
x on line 15.

<app. c, fn, 1, 3, x> refers to the symbol x declared at the top of the third set
of braces within the first set of braces within the function fn, Le. the symbol x
on line 20.

3.1.4 Specifying a variable

A variable reference is a means of referring to a simple variable or part of a data
structure. It consists of an optional type expression and a reference to a symbol. A
symbol can be denoted simply by using the name of the variable or by using a symbol
reference or a nested name. A simple symbol may be used to refer to a program variable
in the currently selected program process, thread or frame.

[type] symbol

[type] symbol reference

[type] nested name

C-like syntax may be added to dereference pointers and specify the address of a
variable, an element of an array or a field of a structure. For example:

*x refers to the location pointed to by x.

&y refers to the address of the variable y.

<app. c 13 x> [5] refers to element 5 of the subscripted array x.

<app • c 13 x> [i] refers to element i of the subscripted array x, where i is
a program variable in the currently selected program process, thread or frame.

z •angle. bar refers to field bar of field angle of z.

p- >angle refers to the field angle of the structure pointed to by p.

A segment of an array may also be specified:

x [5 •• 25] refers to the segment of the array x from element 5 to element 25
inclusive.

<app. c, fn, x> [i .. j] refers to the array segment from element i to element
j inclusive of the array <app •c, fn, x>, where i and j are program variables
in the currently selected program process, thread or frame.

3.1.5 Specifying an address

An address can be specified in any of the following formats:

44 ~ SGS-DIOMSON------------ ..",£ ~O©rnJ@lli~1Jillm©® ------------

3 Debugger command language

• A decimal number, e.g. 23

An octal number, indicated by a leading zero, e.g. 0765

A hexadecimal number indicated by a leading Ox e.g. OxSab67

A hexadecimal number with the sign bit set is indicated by %at the front, e.g. %70
means hexadecimal 80000070 on a 32-bit processor. There must not be a
space between the % and the number.

3.2 Command scope arguments

Many commands have slightly different actions depending on their scope, which may
be the entire program, a process, a thread or a frame. These commands have optional
process, thread and frame identifier arguments. If one or more of these arguments is
supplied then they are said to define the scope of the command. If none of these
arguments is given then the scope is defined by the current browser state.

If a command has scope arguments and no arguments are supplied then the browser
state is used. If one or more scope arguments are supplied then scope arguments not
supplied are assumed to be zero, Le. to be clear.

3.2.1 Browser state

The state of the browser can be accessed and updated by using and assigning values
to the variables given in Table 3.1. See section 4.2 for how to assign values to command
language variables. The current values of pid and tid are shown to the left of the
command window.

Variable name Meaning

pid the browser process

tid the browser thread

fid the browser frame

Table 3.1 Browser state variables

Assigning a positive, non-zero value to pid moves the browser to process level. The
values of tid and fid will remain but point to a thread and frame within the process
pid. Assigning a positive, non-zero value to tid moves the browser to thread level. The
value of f id will remain but point to a frame within the thread tid. Assigning a positive,
non-zero value to fid moves the browser to frame level. When the browser changes
levels, pid, tid or fid may be cleared by assigning the value O. They may be cleared
explicitly by a command assigning the value O.

3.2.2 Effect of command scope

The action of some commands is affected by the scope, either given by the arguments
or the browser state. For example, the definition of the continue command is

------------ E;i!~tmg.~~I-----------45-

3.3 Command descriptions

continue [pid [tid]]. continue can be used to start all stopped threads of a process
or a single stopped thread depending on the scope. If the scope is a process then
continue will start all stopped threads of the process. If the scope is a thread in a
process then continue will start that thread.

For example:

continue starts the currently selected browser thread or all the threads in the
currently selected browser process.

pid=4; continue changes the browser state to process 4 at process level
and starts all the threads in process 4.

pid=4; tid=l; continue changes the browser state to thread 1 in process
4 at thread level and starts thread 1 in process 4.

continue 4 starts all the threads of process 4, leaving the browser state
unchanged.

continue 4 1 starts thread 1 of process 4, leaving the browser state
unchanged.

3.2.3 Processor identifier

Some commands have the processor identifier as argument. The current processor
identifier is displayed in the attribute window. If the processor identifier is not given as
an argument then the command uses the value held in the variable procid. A value
may be assigned to procid at any time. The value of procid does not affect and is
not affected by the browser. The default value of procid is zero which is always a valid
processor.

3.3 Command descriptions

The command descriptions that follow use teletype to define actual values that are
to be typed by the user and italics to denote values that must be supplied to the
command. Options to commands are denoted by a preceding minus sign (-) and may
be given in any order. Arguments other than options must be given in the order shown.
Commands, arguments and options are all case sensitive.

Some commands return results. If the command is executed as a complete statement
then these results are displayed in the output window. If the command returns an integer
value, it may be used in an expression, in which case the result is inserted in the
expression in place of the command.

3.3.1 Stopping and starting

quit

Exit from the debugger.

_46 Efi~~@mYI&~lf _

3 Debugger command language

restart [-sJ

Reboot and restart the program being debugged. The target hardware will be
rebooted and the program being debugged will be reloaded and restarted as if
the last irun command had been re-run, except that all debug windows being
displayed will be kept open but will return to the initial window state. By default,
any breakpoints and watchpoints will be deleted. restart cannot be called
from a script.

-s Keep process events (breakpoints, watchpoints and monitors) set on the
program.

analyse

Put the debugger into analyse mode for post-mortem debugging.
T2rr4rrS-series transputer target hardware are reset with analyse high and
T9000-series transputers are Halted. This halts all low priority threads at the
next deschedule pointand preserves the state. Memory is copied to the host and
exploratory code is then loaded onto the hardware so that the state can be
interrogated.

3.3.2 Showing and setting state

threads [pid [tidJJ [-rJ

Return details of the threads in the scope. The default details are the process
identifier, thread identifier, thread origin, processor identifier and process name.
If a thread is stopped then the statement reference where the thread is stopped
is also returned.

-r Return the processor identifier and workspace range of each thread
together with the register state if the thread is stopped.

running [pid [tidJJ [-rJ

Return details of the running threads in the scope. The default details are the
process identifier, thread identifier and the execution position of each thread are
returned.

- r Return the processor identifier, workspace range and register state of each
thread.

id processName

Return the process identifier number of the named process.

name pid

Return the process name of the specified process identifier.

so 47----------- kfil~m?I@~~I------------

3.3 Command descriptions

processes [pid] [-p]

Display information about the process.

-p Display information about the processor.

3.3.3 Thread control

continue [pid [tid]]

Continue execution of all stopped threads in the scope.

step [pid tid] [-m] [-t] [-i]

Start execution of one step of the thread. By default a step is a source statement.
Function calls are stepped into unless they are compiled with minimal debugging
information (e.g. printf) in which case the function call is stepped over. With
no debugging information, the thread will continue until it reaches code with
debugging information. Step returns the event number. Step is asynchronous,
so in a script, to continue after the step has completed, the script mustwait until
the event has occurred.

In occam, stepping an unreplicated PAR statement causes every thread
created by the PAR to be created and then stop. The parent process remains
'stepping' until all the new processes have been terminated. stepping a repli­
cated PAR causes all the threads it creates to run until they terminate or hit a
breakpoint or watchpoint.

-m Step into code that is compiled with minimal debugging information.

-t Single step any function that is compiled with minimal debugging until code
is encountered that is compiled with full debugging information.

-i Step a single machine instruction.

next [pid tid]

Start execution of one statement of the thread, stepping over function calls.
next returns the event number. Next is asynchronous, so in a script, to continue
after the step has completed, the script must wait until the event has occurred.

In occam, next on a replicated or unreplicated PAR statement causes all the
threads it creates to run until they terminate or hit a breakpoint or watchpoint.

stepout [pid tid tid]

Step out to the specified frame. Execution will stop at the first statement encoun­
tered of the specified frame. stepout returns the event number. Stepout is

_48 l5ii~~~~©, _

3 Debugger command language

asynchronous, so in a script, to continue after the stepout has completed, the
script must wai t until the event has occurred.

interrupt [pid [tid]]

Interrupt all the debuggable running threads in the scope. Interrupting a low
priority thread means that a temporary breakpoint is put before the next instruc­
tion to be executed by the thread. High priority threads can only be interrupted
when they are in a waiting state, for example waiting for a channel communica­
tion to complete. If a thread is waiting to complete an instruction (e.g. a timer
wait) when the interrupt is sent then the thread will complete that instruction.
When a thread is interrupted while waiting, it is still considered by the debugger
to be stopping, so the state of the thread can be examined, but its state cannot
be modified until it leaves the waiting state.

3.3.4 Setting, listing and cancelling events

When a breakpoint, watchpoint or thread monitor is set, an event number is returned
that can be used to delete or disable the event.

break [pid [tid [tid]]] statement [-0] [-p] [-8]

Set a breakpoint at the specified statement for all the frames in the scope.
statement can be a statement reference, the nested name of a function, a
symbol reference of a function or an instruction address (see section 3.1). If the
breakpoint is successfully set, the event number of the breakpoint is returned.

-0 Remove the breakpoint the first time it is hit.

-p Interrupt all debuggable threads of the process.

-8 Interrupt all debuggable threads on the processor.

watch [pid [tid [tid]]] varRet [-0] [-r] [-a]

Set a watchpoint on the specified variable. The default is to set a write watch­
point.

If the specified variable is a C static variable then one watchpoint will be set. If
a process identifier only is specified, each present and future instantiation of a
C automatic or occam variable in the process will have a watchpoint set on it.
If a process identifier and thread identifier are specified, selecting a C automatic
or occam variable will cause a watchpoint to be set on al present and future
instantiations. At thread level, selecting a C automatic or occam variable that
has not been instantiated will cause a watchpoint to be set on each future
instantiation of the variable. At frame level, selecting a C automatic or occam
variable that will cause a watchpoint to be set on the instantiation of the variable

___________ JJ;l~~Iralcll©~ 4_9_

3.3 Command descriptions

in that frame. At frame level, the watchpoint will be removed when the frame has
finished. A watchpoint set on a C automatic or occam variable is removed when
the variable passes out of scope and is removed.

Internal channels and external channels may have watchpoints set on them.
Virtual channels cannot have watchpoints set on them.

If the watchpoint is successfully set then the event number of the watchpoint is
returned.

-0 Remove the watchpoint the first time it is hit.

-r Set a read watchpoint.

-a Set an access (i.e. read or write) watchpoint.

monitor [pid} [-b} [-d}

Monitor the specified process for thread terminations and ANSI C thread
creations.

-b Monitor only ANSI C thread births.

-d Monitor only thread deaths.

events [pid [tid}} [-w} [-b} [-m}

List the events set on the all the threads in the scope.

-w Show watchpoint events.

-b Show breakpoint events.

-m Show monitor events.

delete eventNumber

Delete the event denoted by eventNumber, where eventNumber has been
returned by one of the events, break, watch or monitor command.

disable eventNumber

Disable the event denoted by eventNumber.

enable eventNumber

Enable the event denoted by eventNumber.

50 ~SGS.THOM50N
----------- ..~£lr:iJo©~@rn~@R!I~-----------

3 Debugger command language

3.3.5 Examination and update of variables

print [pid [tid [fidJJJ varRef [-pJ [-uJ [-xJ [-oj [-cJ [-sJ [-fJ [-a valJ [-j]

Return the value of the variable, channel or data object denoted by varRefin the
scope.

-p Do not 'pretty print' structured variables.

-u Do not return fields of unions.

-x Display integers in hexadecimal base.

-0 Display integers in octal base.

-c Display integers as ASCII characters.

-s Do not display char pointers as null terminated strings.

-a Return no more than the first val elements of an array.

- j Set the browser process and thread to the thread waiting for the channel
denoted by varRef.

assign [pid [tid [fidJJJ varRef int

Update the specified variable reference varRef in the scope to the new integer
value into See also modify.

3.3.6 Stack examination

where [pid tidJ [-aJ [-rJ [-f valueJ

Generate a stack trace of the specified thread. A stack trace has for each call
a frame number, the name of the function and the position within the function
where the call occurred.

-a Return the values of the arguments to the function.

- r Return the values of the Iptr and Wptr.

- f Return no more than the top value frames of the stack.

3.3.7 Low level commands

alter [pid tidJ [-f frame I-w wptrJ [-s stment I-i iptrJ [-a aregJ [-b bregJ [-c cregJ

Alter the specified thread to have a new frame, next statement and/or register
state.

___________ E;l~l©nll'9©' 5_1

3.3 Command descriptions

- f Change the frame identifier to frame.

-w Change the workspace pointer to wptr.

- s Change the next statement to be executed to the statement reference
stment.

- i Change the instruction pointer to iptr.

-a Change the Areg register to areg.

-b Change the Breg register to breg.

-c Change the Creg register to crego

If the f option is used then the woption cannot be used. If the s option is used
then the i option cannot be used. The new value of a register should be an ANSI
C integer constant.

memory [processor/d] address length [dataType} [format] [-I}

Return the memory region from address for length elements using the specified
dataType and format. The default dataType is to return memory as integers that
are the same size as the word length of the processor (i .e. 2-byte integers for
16-bit processors and 4-byte integers for 32-bit processors). The default format
is hexadecimal. The memory command returns the contents of the last memory
address. If one of the format options -b, -h or -w is used then memory may be
used in an expression.

-1 Display in order of increasing addresses

The supported dataTypes are:

-b Bytes

- h 2-byte integers

-w 4-byte integers

- g a-byte integers

- f 4-byte floating point number

- k a-byte floating point number

-a ASCII characters

-c

-i

Channels with waiting processes

Disassembled instructions

_52 E;i~~~@mYl&~©~ _

3 Debugger command language

The supported formats for displaying numbers are:

-d Decimal

-u Unsigned decimal

-0 Octal

-z numco/s Display numco/s columns

modify [processor/d} address [-b} integer

Modify the word at the specified address on the processor denoted by
processor/d to the specified integer value. See also assign.

-b Modify the byte at the specified address to the specified integer value.

ibreak [processor/d} address [-oj

Set a breakpoint at the specified address on the processor denoted by
processor/d. The address must be an integer. The event number is returned.

-0 Remove the breakpoint the first time it is hit.

3.3.8 Mapping commands

statement [processor/d} address

Return the statement reference that corresponds to the specified address. See
also addressof.

locate [processor/d} iptr wptr [-u}

Retum the thread and statement reference that corresponds to the specified Iptr
and Wptr values. This is not the same as the Locate operation.

-u Update the browser state to the corresponding thread.

addressof [pid} statement

Give the processor and start address of the specified statement. A statement
can be a statement reference, a nested name of a function or a symbol reference
of a function. The processor identifier is assigned to the variable procid and
the statement address is returned for use in an expression or assignment. See
also statement.

_________ L•• SCiS-1HOMSON 5_3
·J.@~O~~OO@IR!ID©®

3.3 Command descriptions

_54 Iiii~~@ml~y14 _

4 Command language programming

The debugging command language provides an alternative interface to the debugger
which complements the button and menu operations. Single line unconditional
commands are described in Chapter 3. This chapter describes the programming
constructs.

Commands may be typed directly into the command window or sequences of
commands written in a file may be used for customizing the debugger as macros or
start-up routines. The formal definition of the syntax of the command language is given
in Appendix A.

The debugger command language supports several programming constructs to enable
users to create customized debugging functionality. A command language script can be
written as ASCII text in a file using a normal text editor and then executed on demand
using the load procedure typed in the command window.

load filename

On Sun systems, a script may also be executed automatically on starting up the
debugger by placing the script in a file named. inquestrc (see Section 4.11).

The formal definition of the syntax of the command language is given in Appendix A.

4.1 Comments

Comments are introduced with two hash signs (ii). Anything following the ii up to the
end of the line is ignored by the command interpreter.

4.2 Variables

The command language supports the use of integer-valued variables. A variable name
consists of a sequence of alphanumeric characters starting with an alphabetic char­
acter. A variable is assigned a value using the =operator, e.g. x = 4 or y = 16. The
default value of a variable is zero.

The following variables are reserved for use by the debugger: pid, tid, fid, procid,
eid, etype.

4.3 Operators

The following "C-like" operations on variables are supported:

Relational operators: == (is equal to), ! = (is not equal to),
>, >=,<, <=

------------Ii;i~i~mal&Y©' 5_5

4.4 Sequencing

Arithmetic operators:

Logical operators:

• Bitwise operators:

+, -, *, /, % (remainder), », «,
++ (increment), -- (decrement)

&& (and), I I (or), ! (not)

& (and), I (or), A (exclusive or)

The operands must be separated from the operator by spaces.

4.4 Sequencing

The command language is not free format. Newlines may be inserted only after a
command, construct or opening brace ({). A set of commands can be sequenced by
enclosing the commands in braces. The end of a command is either a newline or a
semicolon.

command1
command2
command3

and

command1; command2; command3 }

are equivalent.

4.5 Conditional commands

A conditional command can be achieved using an if construct. The if construct can
take an else construct.

if (condition) command [else command]

The condition is true if its value is non-zero.

If a sequence of commands is used then the command in the if or else construct can
start on a new line

if (condition)
command
command
else {
command
command

4.6 Looping commands

Loops can be achieved using a while or a for construct.

_5_6 i:ii~~~@nfl&~I------------

4 Command language programming

while (condition) command

The while construct executes the command until the condition is zero.

for (command1; condition; command2) command3

This for loop executes command3 until the condition is zero. command1 is executed
once before the condition is tested for the first time and command2 is executed before
the condition is tested but after command3 is executed each time around the loop.

4.7 Procedures

Procedures can be defined to enable new commands to be created. The syntax for
defining a procedure is:

proc name local_vars { command1; command2 }

This defines a procedure called name which is equivalent to command1; command2.
local_vars is a sequence of variable declarations that declare variables that are local to
the procedure, so they descope global variables of the same name. For example:

proc foobar
x = 3; y 2 {
command1
command2

declares x and y as local variables in the procedure foobar.

4.7.1 Arguments and returned values

String type arguments can be passed to a procedure and are referenced using $1, $2
etc. The number of arguments given to the procedure is available in the pseudo-variable
$#. All of the arguments can be referenced using the pseudo-variable $*. An argument
may be specified using the value of a variable; for example if the variable i had the value
4, the expression $ (i) would be equivalent to $4.

When an argument is used in an operation that requires an integer (e.g. x=$4) the
argument is considered to be an integer expression and is evaluated when it is refer­
enced. It is an error to use an argument in an integer operation when the value of the
argument is not an integer expression.

Integer values can be returned from procedures by assigning to the pseudo-variable $$.

4.7.2 Invoking procedures

A procedure is invoked by the name of the procedure followed by its actual arguments,
as follows:

------------ I.filitR'rnYlcf9I-----------5-7

4.8 Event arrival

name actuaiArgument1 actualArgument2 ...

Procedures may be invoked recursively.

Using such calls, a built-in command, such as break, can be used in a command
language program where a procedure would be used.

Each actual parameter to a procedure is a string. If a string with spaces or tabs is to be
passed to a procedure then the string must be enclosed by double quotes (II}. If a string
is to be evaluated before being passed to a procedure then that string should be
bracketed. For example, the value of the variable k may be passed to a procedure called
enter as follows:

enter (k)

If, however, the string "k" is to be passed to enter then the command should be:

enter k

If the string" (k) " is to be passed to enter then the command should be:

enter "(k)"

4.8 Event arrival

A command sequence can be set up to be executed on receipt of an event such as a
breakpoint hit. A flag is put on the event to indicate that the command sequence should
be executed whenever the event occurs. This is programmed using the when construct.

when ([eventNumber]) local { command1; command2 }

The eventNumber is the number returned from setting a breakpoint, watchpoint or
monitor event. Awhen construct can be set to be executed on any event by omitting the
event number. local is a sequence of variable assignments. This declares the variables
to be local to the when command.

In the command sequence of the when construct, the variables pid, tid and procid
have values appropriate to the thread that caused the event which caused the when
construct to be completed. The variable eid is set to the event number of the event that
has invoked the when. The variable etype is set to a number that denotes the type of
the event, using the encoding shown in Table 4.1.

When an event is deleted, each when that is set on the event is removed. A when
construct returns a number which can be used to remove the when but leave the event
set.

The wai t construct causes the debugger to wait until an event occurs.

wait [eventNumber]

58 ~SGS.1HOMSON------------ ...,£ ~D©OO@rnl1rn©'[j'rnKQx~~------------

4 Command language programming

Value of etype Meaning

0 Breakpoint hit

1 Watchpoint hit

2 Step To completed

3 About to create a thread

4 Thread has just been created

5 Thread terminated

6 Program debug message

8 Process exit

9 Interrupted

10 Process has just been created

11 Process terminated

12 Error event

Table 4.1 Event type codes

The eventNumber is the number returned from setting a breakpoint, watchpoint or
monitor event. A wai t construct can be set to be executed on any event by omitting the
event number.

The debugger cannot perform any other actions while a wait is outstanding.

4.9 Built-in procedures

The following standard procedures are available.

pwd

Display the current working directory.

cd directory

Change the working directory to directory.

eye command

Send command to the shell.

write [-nJ string1 string2 .. stringn

Display the list of strings, followed by a newline.

-n The list of strings is not followed by a newline.

___________ E;i~tnll. 5_9_

4.10 Example debugging scripts

fwrite filename string1 string2 .. stringn

Write the list of strings to the named file.

load filename

Execute the script that is in the file filename.

remove name

Remove the variable or procedure name from the debugger.

remove [whenNumber]

Remove the specified when. If no whenNumber is specified and the remove is
part of a when construct then it will remove the enclosing when when it has
completed execution.

4.10 Example debugging scripts

4.10.1 Example 1

This example creates a synonym, p, for the print command.

proc p {print $*}

4.10.2 Example 2

This example creates a command to display the values of several variable expressions
for a given process and thread.

proc vp
i {

for (i = 3; i <= $#; i++) {
print $1 $2 $(i)

4.10.3 Example 3

Stop thread 1 of process rndserver after the tenth hit of a break point at line
<app.c 15>.

p = (id rndserver)
when (break (p) 1 <app.c 15»

x = 10 {
x--
if (x > 0) {

continue (p) 1
else {
write process (p) 1 broken

_60 ri;i~~@.~ ------ _

4 Command language programming

4.10.4 Example 4

A generalized version of example 3 can be created using a procedure.

proc breakafter {
when (break $1 $2 $3)

x = $4 {
x--
if (x > 0) {

continue $1 $2
else {
write process $1 $2 broken
remove

This can be used as follows:

breakafter 5 1 <app.c 15> 10

4.10.5 Example 5

Set a watchpoint on a variable until a value has been reached.

when (watch 1 1 i) {
when (step -i) {

if «print i) ! = 8) {
continue
else {
write i is 8

remove

Note the use of instruction stepping, because the watchpoint occurs before the variable
is updated and the use of remove to delete the step when.

4.10.6 Example 6

A generalized version of example 5 can be created using a procedure.

____________ ~~~~m.y~ 6_1_

4.10 Example debugging scripts

proc watchfor {
when (watch $1 $2 $3) {

when (step -i $1 $2) {
if «print $1 $2 $3) 1= $4) {

continue
else {
write i is ($4)

remove

This can be used as follows:

watchfor 1 1 <app.c 87 i> 8

4.10.7 Example 7

Count the number of times the procedure blab is called by process rndserver.

when (break (idrndserver) <apP.c , blab» { blabcalls++}

4.10.8 Example 8

Count the number of threads that have been created by a given process.

when (monitor -b 6) {
kids6++

4.10.9 Example 9

Let a process execute until thread 6 has been created.

when (monitor -b 5)
if (tid == 6) {

write "thread 6 is alive"
else {
continue

Notice that the continue refers to the current thread each time that the when statement
executes.

4.10.10 Example 10

Move up the stack of a process.

_6_2 ~~itI!lI~~I-----------

4 Command language programming

proc up
fid++

4.10.11 Example 11

Move down the stack of a process.

proc down
if (fid 0)

write can't move down any further
else

fid--

4.10.12 Example 12

Select a current process by name.

proc process {
pid = id $1

4.11 Start-up scripts

When the debugger starts up on a Sun, the following command language scripts are
executed:

the system. inquestrc,

2 the. inquestrc in the home directory and

3 the. inquestrc in the working directory.

Command language scripts placed in these files will be executed whenever the
debugger starts up.

____________ ~~~mY.9©' 6_3_

4.11 Start-up scripts

_64 ~~i~@~~~ _

5 Debugging libraries

INQUEST includes debugging versions of the normal run-time libraries plus some extra
ANSI C functions. This chapter describes the use of the extra functions. These functions
are provided to:

assist with debugging (see section 5.1);

• allow interactive debugging of dynamically loaded code (see section 5.2);

• allow interactive debugging of threads started without using the normal
processes library (see section 5.3).

All the functions mentioned in this chapter are listed for reference purposes in the
appropriate Language and Libraries Reference Manual.

5.1 Debugging support library

Three routines are provided as a library to assist with debugging. These provide the
functions stop, assert, and message. The routines have different names for each
language and are described in more detail in the appropriate Language and Libraries
Reference Manual. Table 5.1 summarizes the routines.

Function C function occam procedure Description

assert debug_assert DEBUG.ASSERT
If the parameter evaluates to false then stop the
process and inform the debugger.

stop debug_stop DEBUG. STOP Stop the process and inform the debugger.

message debug_message DEBUG.MESSAGE Insert a debugging message in the program.

Table 5.1 Debug support routines

For ANSI C, these functions are included in the debug libraries cdebug. Ink and
cdebugrd.lnk which are incorporated at link time. The user must #include the
header file debug. h in the source. For occam programs, the library debug .lib must
be referenced with a #uSE in the source code and also included as an input to the linker.

The stop and assertfunctions are used to stop a process, the latter on the failure to meet
a specified condition. Such events are treated by the debugger as if an error had
occurred. assertand stop allow a process to be stopped at any point in the code, where
it can then be inspected and possibly resumed. stop always stops the process whereas
assert only stops the process if the parameter evaluates to false or zero.

assert can be used to monitor for unexpected values of variables or to halt a loop at a
specific iteration. stop can be used to monitor for unexpected branches in the code, such
as defaults in switch statements.

The message function is used to insert messages that will only be displayed when the
program is run under the interactive debugger. Messages are relayed back to the host

------------ ii;ilitnrl~~I-----------6-5

5.1 Debugging support library

from any point in the program. It can be used to monitor the activity of outlying processes
which are not directly connected to the host.

If the debugger is present then message will stop the thread, giving the event type code
6. The command language when can be used to resume execution whenever an event
type 6 occurs, for example with the command:

when () {
if (etype 6) {

continue;
else {
write event occurred

Code stopped by assert, stop or message may be resumed from the line following the
call of the debug function using the debugger Continue operation.

5.1.1 Examples

The use of the debug support functions in ANSI C is illustrated in the example below:

#include <stdio.h>
#include <stdlib.h>
#include <misc.h>
#include <debug.h>

int
main (void)

/* 0 will cause assertion to fail */
int x = 0;

printf ("Program started\n");

debug_message("A message only within the debugger");

printf ("Program being halted by debug_assert\n");
debug_assert (x);

printf ("program being halted by debug_stop()\n");
debug_stop ();

exit (EXIT_SUCCESS);

In this example, if x is 1 or TRUE then the argument to assert evaluates to true, so the
program continues until it encounters stop. If x is 0 or FALSE then the argument to assert
evaluates to false and the process stops before it reaches stop.

The following is an occam version with a similar structure:

66 ~SGS-1HOMSON------------- ~.,£ ~o~~rnKQXR!llJ©~-------------

5 Debugging libraries

IINCLUDE "hostio.inc"
IUSE "hostio.lib"
IUSE "debug. lib"

PROC debug.entry (CHAN OF SP fs, ts, [lINT free.memory)
BOOL x:
SEQ

-- FALSE will cause DEBUG.ASSERT to fail assertion test
x := FALSE

so.write.string.nl (fs, ts, "Program started")

DEBUG.MESSAGE ("A message only within the debugger")

so.write.string.nl (fs, ts, "Program being halted by DEBUG_ASSERT")
DEBUG_ASSERT (x)

so.write.string.nl(fs, ts, "Program being halted by DEBUG_STOP()")
DEBUG. STOP ()

so.exit (fs, ts, sps.success)

5.1.2 Action when not debugging

If the application is running without interactive debugging then the debug library proce­
dures have the actions given in table 5.2.

Function Action

assert
If the parameter evaluates to false then stop the process. Also stops the processor if
configured in HALT mode. If true then execution continues.

stop Stop the process. Also stops the processor if configured in HALT mode.

message No action.

Table 5.2 Debug routine actions when the debugger is absent

5.2 Dynamic code loading support

An ANSI C process has a single main function and so a single entry point and is
compiled and linked into a single linked unit. A process consists of a code region and
data regions, is normally statically allocated and is uniquely identified by the process
name used in the configuration program or a number called its process identifieror pid.
ST20 applications do not normally have more than one process, so a process is gener­
ally the same as a program.

Normally INQUEST uses the output from the configuration stage of the build process
to find the application processes. If however additional code is dynamically loaded at
run-time then that becomes a new process and INQUEST needs to be informed in order
to be able to interactively debug it. This section describes the use of the functions
IMSRTL_J:nformDynamicLoad and J:MSRTL_InformDynamicUnLoad so that user
applications with dynamically loaded code can be debugged.

____________ i.Tl~i~~'i. 67_

5.2 Dynamic code loading support

A program calling these functions must include the line:

#include <dyninf.h>

The calling program must be linked with the library rtlinf .lib.

5.2.1 Loading processes

For each new process, INQUEST needs to know the start and size of the stack, static,
heap and vector space regions, the code entry point, details of any channels and a name
for the process. When a dynamic process has been loaded, the function IMSRTL_
InformDynamicLoad must be used to inform INQUEST. The prototype for this func­
tion is:

void IMSRTL_InformDynamicLoad (void *code_area_base,
int code_area_size,
void *stack_area_base,
int stack_area_size,
void *static_area_base,
int static_area_size,
void *heap_area_base,
int heap_area_size,
void *vector_area_base,
int vector_area_size,
void *iptr,
int num_chans,
chanDetails *cdetails,
char *processname,
char *lkuname,
int *pidptr);

The meanings of the parameters are given in table 5.3. If any of the data regions are
not used, a null pointer and a size of zero should be given to the function call.

The details of the channels in the external interface of the process are provided as an
array of structures of type chanDetai18 defined by:

typedef struct {
Channel *chan;
chanDir dir;
chanType type;
chanDetails;

The channel information for each channel that is passed must define the channel chan,
the direction of the channel chanDir and type of the channel chanType. chanDir
gives the channel direction and whether the channel is a software virtual channel, which
is coded by one of the values given in table 5.4.

chanType gives the type of channel, which is coded by one of the values given in
table 5.5.

68 ~SCiS.1HOMSON------------ III.'T£ ~n~©'ITOO@Rl]~ ------------

5 Debugging libraries

Parameter Description

void *code_area_base The start of the code region

int code_area_size The size of the code region

void *stack_area_base The start of the stack region

int stack_area_size The size of the stack region

void *static_area_base The start of the static region

int static_area_size The size of the static region

void *heap_area_base The start of the heap region

int heap_area_size The size of the heap region

void *vector_area_base The start of the vector space region

int vector_area_size The size of the vector space region

void *iptr The entry point of the code

int num_chans The number of channels in the external interface of the process

chanDetails *cdetails Details of the channels in the external interface of the process

char *processname A name that will be displayed in the INQUEST program browser

char *lkuname The file name of the linked unit that the code region corresponds to

int *pidptr A pointer to an integer where the process identifier will be written

Table 5.3 IMSRTL_InformDynamicLoad parameters

Channel direction Code Value

Input not on a software virtual channel CHAND:IR_:INPUT 15

Output not on a software virtual channel CHAND:IR_OUTPUT 16

Input on a software virtual channel input CHAND:IR_V:INPUT 0

Output on a software virtual channel input CHAND:IR_VOUTPUT 1

Table 5.4 Channel direction codes

Channel type Code Value

Internal channel, implemented by a memory word CHANTYPE_SOFT 0

Hardware link or virtual link channel CHANTYPE_HARD 1

Software virtual channel CHANTYPE_V:IRTUAL 2

Table 5.5 Channel type codes

Software implemented virtual channels are channels defined in the configuration
between processors that are not IMS T9000 transputers or are not directly connected.
They can be identified because they have bit 1 set in the channel word. The channels
to and from the host are normally software virtual channels. If a virtual channel is
software implemented then its direction must be either CHANDIR_VINPUT or
CHANDIR_VOUTPUT. Other types of channel must have direction either INPUT or
OUTPUT.

5.2.2 Unloading processes

If code is being dynamically loaded, then a process may be overwritten by dynamically
loading a new process. In this case, INQUEST must be informed that the old process

------------li;il~~.~©' 6_9

5.3 Dynamic thread creation

is to be dynamically 'unloaded', using the function IMSRTL_InformDynamicUnload.
The prototype of this function is:

void IMSRTL_InformDynamicUnLoad (int pid);

The process identifier that was returned from the IMSRTL_InformDynamicLoad call
should be passed to the IMSRTL_InformDynamicUnload function as the parameter
pid.

If only a thread of a dynamically loaded process is being unloaded then the parameter
pid should be set to IMSRTL_UnLoadPidMe to indicate that the thread needs to be
unloaded itself. This constant is defined as:

#define IMSRTL_UnLoadPidMe (-1)

5.2.3 INQUEST behavior with dynamically loaded code

The INQUEST browser assumes that an application has a hierarchical structure, with
each thread 'belonging' to a process. The browser identifies which thread belongs to
which process by identifying which stack is being used.

This means that if a thread t in process pi jumps into dynamically loaded code p2, then
the thread still belongs to process pi, even if the code it is executing is part of a different
process. Threads created by t after jumping into p2 will be recognized by the browser
as part of p2. At thread and frame levels, breakpoints, watchpoints and variable printing
behave normally.

At process level, breakpoints, watchpoints and variable printing are based on the
process to which the code belongs. In the above case, trying to use breakpoints,
watchpoints or variable printing from process pi on the code in p2 will result in an error
to the effect that the statement does not exist. A breakpoint set at process level in
process p2 can be hit by the thread t.

5.3 Dynamic thread creation

The INQUEST debugger needs to be aware of threads of execution in the application
program. INQUEST is normally automatically informed of the birth or death of a thread
by the library routines ProcRun, ProcPar etc. This means that there is no need take
additional action provided that:

the standard thread creation routines (such as ProcRun) are used and

2 the user code is linked with a debugging version of the ANSI C run-time library
(Le. cdebug. Ink or cdebugrd. Ink).

If the application program creates different thread contexts using other mechanisms,
then it should explicitly inform the debugger of thread births and deaths. This should be
done by calling the functions IMSRTL_InformThreadBirth and IMSRTL_Inform­
ThreadDeath. This section describes these routines and how to use them.

_70 E;l~I@m.a - _

5 Debugging libraries

A program calling these functions must include the line:

#include <dyninf.h>

The calling program must be linked with the library rtlinf .lib.

5.3.1 Thread birth

The function IMSRTL_InformThreadBirth should be used to inform the INQUEST
interactive debugger immediately before a thread is created. If the debugger is not
present then no action is taken by this function.

void IMSRTL_InformThreadBirth (void *child_iptr,
void *parent_wptr,
void *lws,
void *uws);

The parameters comprise the information that needs to be passed to INQUEST before
a thread of execution is started.

child_iptr is either the address of the first instruction of the code for the new
thread or the null pointer minint.

The child_iptr is used by INQUEST for thread monitoring. If child_iptr
is not the null pointer and thread monitoring has been enabled for the process
then INQUEST places a breakpoint in order to stop the thread at its first instruc­
tion.

• parent_wptr is the Wptr of the creating thread.

parent_wptr is used by INQUEST to determine which process that thread
belongs to. This Wptr must be of a process that is known to INQUEST.

lws is the lowest address of the stack space of the new thread.

• uws is the address of the word immediately above the top of the stack space of
the new thread.

5.3.2 Death

The function IMSRTL_InformThreadDeath should be used to inform the INQUEST
interactive debugger immediately before a thread terminates. If the debugger is not
present then no action is taken by this function. The prototype for
IMSRTL_InformThreadDeathis:

void IMSRTL_InformThreadDeath (void);

5.3.3 Example: creating a thread of execution

In the following example, a thread is created and stopped using assembly inserts. The
debugger is informed of the thread creation just before the new thread is started with

5.3 Dynamic thread creation

runp. The code of the new thread simply informs the debugger that it is about to
terminate and then terminates with stapp.

int stack[128];
void *iptr;
void *wptr;

__asm {
ldlabeldiff start - here;
ldpi iptr;
here:;
st iptr;
ldlp 0;
st wptr;

IMSRTL_InformThreadBirth(iptr,
wptr,
stack,
(void *)(stack + 128»;

stack[126] = iptr;
__asm {

ld stack + 127;
adc 1;
runp;

/* code of main thread */

main_thread();

/* code of dynamic thread */

start:

IMSRTL_InformThreadDeath();
__asm {

stopp;

5.3.4 Example: installing an 8120450 interrupt handler

In the following example, an interrupt handler is set up using init_interrupt and
install_interrupt_handler. Since the interrupt-handler is implemented as a
thread, the debugger must be informed of its creation before it is created.
install_interrupt_handler does not automatically inform the debugger.

void *int2_ws;
void *wptr;

init_interrupt();
int2_ws = malloc(INTERRUPT_WS_SIZE);
__asm {

ldlp 0;
stl wptr;

_72 ii;i~itl!llcf9©~ _

5 Debugging libraries

IMSRTL_Info~ThreadBirth«void *)INT_MIN,
wptr,
int2_ws,

(void *)«int *)int2_ws + INTERRUPT_WS_SIZE»;
install_interrupt_handler(2,

interrupt_trigger_mode_any,
default_status_register,
int2_ws,
INTERRUPT_WS_SIZE,
interrupt_handler_2);

~SGS-THOMSON 73-------------- "'T£ ~D©~Ib~'fi'OO~D©~ --------------

5.3 Dynamic thread creation

-74-----------IJfi~~~©mg!&~I------------

6 Execution analysis

This chapter describes three profiling tools for analyzing the behavior of application
programs. The tools provided are the execution profiler iprof, the utilization monitor,
imon and the test coverage and block profiling tool iline. The execution profiler
estimates the time spent in each function and procedure, the processor idle time and
various other statistics. The utilization monitor displays a Gantt chart of the CPU activity
of each processor as time progresses. The test coverage and block profiling tool counts
how many times each block of code is executed.

The execution profiling and utilization monitoring are performed by profiler kernel
processes added to the application program by the configurer. Each tool has a different
kernel added by a different configurer option. The monitoring results are stored locally
to each target processor, so that the profiling tools have little execution overhead on the
application. The presence of the profiler kernel will slow the execution of the program
by less than 50/0. The profiler kernel processes write the results into the memories of the
target processors. When execution is terminated, imon or iprof is run to extract the
results from the target processor memories and display the results of the profiling.

The test coverage and block profiling is performed by code inserted by the compiler. The
results are stored in locations in the code locally to each target processor. When
execution is terminated, iline is run to extract the results from the target processor
memories and display the results of the profiling.

For T2/T4rrS-series networks, the host must be able to reset and analyze all the target
processors. For T9000-series networks, the control network must be connected to the
control port of the host, provided by the interface hardware.

The profiling tools must be used immediately after the application has halted. If the
profiling tool fails or the post-mortem debugger has been used then the results have
been lost and cannot be extracted. Similarly, the post-mortem debugger cannot be used
on the target once the results have been extracted.

6.1 The execution profiler iprof

The execution profiler iprof provides a post-mortem estimate of how much CPU time
has been spent executing each configuration-level process and procedure or function
in the program. This is done using sampling techniques.

Since the profiler works using a sampling method, quantization errors are possible,
especially if the program does not run for very long. The results should always be treated
as estimates. For example, a procedure showing a zero count may have been executed
many times but finished too quickly for the profiler to detect. The CPU time does not
include time when the process is communicating via a hardware serial link.

The profiler does not profile processes running at high priority, because it is impossible
to interrupt a process running at high priority. An estimate is made of the total time taken

------------ !fi1fi~nm.~9J1---------_-7-5-

6.1 The execution profiler iprof

by all high priority processes. It is good programming practice to keep high priority
processes short.

The sampling interval of 1 millisecond cannot be altered by the user.

6.1.1 How it works

The profiler kernel works by interrupting the processor periodically. It then examines the
workspace pointer, Wptr, and the instruction pointer, Iptr, of the interrupted process. It
uses the Wptr to identify which process was running, and then uses the Iptr to find out
which section of code was running. The code space of the program is divided into equal
blocks of memory, and a counter (a 'bin') is allocated for each block. When the Iptr is
found to be in a particular block, the counter corresponding to that block is incremented.

The resolution is the size of the code blocks in bytes. In the example in figure 6.1 the
resolution is 4, so there is one counter for every 4 bytes of code. A lower resolution
means more accurate information but the profiler needs more memory to store the
counters. The profiler uses all the free memory area, i.e. the memory left over after the
code, static, stack and heap have been allocated. The free memory available deter­
mines the number of counters and hence the resolution. The resolution can be
increased by decreasing the size of the stack and heap which frees more memory for
storing counters.

If there is no process found to be running when the interrupt occurs, then the idle count
is incremented.

The above techniques can estimate only low priority process time. High priority
processes cannot be interrupted, so if a high priority process is running the profiler must
wait. Any high priority processes running or waiting on the scheduling queue ahead of
the profiler must complete or be descheduled to wait for a communication or timer before
the profiler can run. The profiler records the time it wakes up, i.e. the time at which it is
placed on the scheduling queue and would have interrupted if no high priority process
had been running. When it starts running on the processor, it compares the current time
with the wake time to see if it was delayed by a high priority process. If it was, it then
increments the high priority count time by an appropriate amount.

6.1.2 Preparing programs

The program to be profiled should be compiled and linked with startrd. lnk or
startup .lnk in the usual way. The program can be compiled for full or minimal
debugging information, Le. with or without the G option for C programs or with or without
the D option for occam. The profiler will run faster with minimal debugging information.

Programs to be profiled must be configured. The configurer must be invoked with the
-PRE option.

A process may be marked by the configurer as not to be profiled. This is done by setting
the attribute noprof i le to TRUE in the configuration code for the process. When using

_76 Efi~~@mg.~I------------

6 Execution analysis

a C configurer, ieeonf or ineonf, add the following attribute statement to processes
which are not to be profiled:

noprofile = TRUE

When using the occam configurer, oeeonf, add the following attribute statement to
processors which are not to be profiled:

set(noprofile := TRUE)

The noprof i Ie attribute on a process makes the profiler kernel ignore that process.
If none of the processes on a processor are to be profiled then a kernel will be placed
on that processor but the kernel will not start and there will be no results from that
processor. Samples found to be executing noprofile processes will be added to the
count of Wptr misses.

6.1.3 Running iprof

To profile an application, the configured and collected boatable program is run as usual.
After the program has finished executing or has been interrupted by the user, the
program is terminated and the results are extracted and displayed by running iprof.
iprof analyzes the target hardware and must be used immediately after the application
has halted.

When iprof is run, the compiler output files (. teo files) of any code to be profiled
should be included on the ISEARCH path. On PCs, the ISEARCH path may be modified
using the Windows launch tool.

On Microsoft Windows systems, iprof is a Windows application and is run in the same
way as other Windows applications. Two possible methods are:

Double click on an iprof icon in the inquest program group in the Program
Manager. The command line associated with the icon can be changed by
selecting the icon and using Properties... in the File menu. New icons can be
created using New••. in the File menu.

Select the Run... command in the File menu of the File Manager and enter the
command line.

On all systems, iprof can be run with the -lEX option to just extract and save the
results in a dump file. iprof can then be run again with the -F option to read the dump
file and display the results.

----------- E;i~cl;~.1-----------77-

6.1 The execution profiler iprof

The command line to start iprof has the form:

~ iprof bootable_file {options}

where: boatable_file is the name of the boatable application.

options is a list of one or more options from table 6.1 .

Options may be entered in upper or lower case.

Options can be given in any order.

Options must be separated by spaces.

Option Description

-A Present the function names in alphabetical order.

-F dumpfile Read from the dump file dumpfilecreated using the -lEX option.

-I Display information as profiling takes place.

- lEX dumpfile Dump the results to the file dumpfile to read later using the -F option.

-NA Do not assert analyze (Txxx-series transputers only).

-0 filename Redirect output display to the file filename.

-pz Display functions with zero samples.

-se filename Copy file filename to link before extracting. Useful with the skip loaders
(Txxx-series transputers only).

-SL resource Select the target connection resource. Overrides the TRANSPUTER parameter.

-v Display information as profiling takes place.

Table 6.1 iprof command options

6.1.4 Example iprof command line sequences

The following example extracts results from the boatable program example .btl and
then displays those results. This is the normal command line to profile example. btl.

iprof example.btl

The following example saves the extracted results in the file profi Ie and then displays
those results.

iprof example.btl -iex profile
iprof example.btl -f profile

The following example displays the extracted results from example.btl, which was
running on the network found down link 2 from the root transputer of a Txxx-series
network.

iprof example.btl -sc skip2.btl

_7_8 i~£ ~i~~I~~I------------

6 Execution analysis

6.1.5 Output

This section describes the output from the profiler. An example of profiler output from
a C program is shown in figure 6.1.

Processor "Root"
Idle time 35.3% (19516)
High time 0.1% (37)
Wptr Misses 0
Iptr Misses 0
Resolution 4

Process "example" (99.9% processor) (35.666s)
Stack 100.0% (35666) Heap 0.0% (0) Static 0.0% (0) Vector 0.0% (0)
Function Name I Process 1 Processor ISamples

libc.lib/getc
cc/pp.c/pp_rdchO
cc/bind.c/globalize_memo
cc/pp.c/pp-process
cc/pp.c/pp_rdch3
cc/pp.c/pp_rdch2
cc/pp.c/pp_rdchl
cc/pp.c/pp_rdch
cc/pp.c/pp_nextchar
cc/pp.c/pp_checkid
cc/lex.c/next_basic_sym
libc.lib/strcmp
libc.lib/Dumm¥SemWait
libc.lib/sub_vfprintf

11.4
10.1

6.9
4.3
4.2
3.9
3.8
3.5
3.3
3.2
2.7
2.3
2.2
1.7

11.4 14081
10.1 13605

6.9 12467
4.3 11525
4.2 11497
3.9 11380
3.8 11354
3.5 11252
3.3 11189
3.2 11150
2.7 1979
2.3 1812
2.2 1784
1.7 1617

Figure 6.1 Sample output from the execution profHer

The name of each processor is displayed, together with the following data:

• Idle time is defined to be when the processor is not performing any computation,
though the processor may be communicating via a link or suspended for some
other reason.

• High time is an estimate of the amount of time the processor spent in high priority.

• Wptr Misses shows the number of samples in which the workspace pointer was
pointing outside any of the expected workspace memory areas. This may be an
indication that the stack has grown too large or that some processes were
marked with the attribute noprofile set to TRUE in the configuration code.

Iptr Misses shows the number of samples in which the instruction pointer was
not pointing to the code segment of the program.

Resolution is the size of the data blocks in bytes, as described in section 6.1.1.

Detailed statistics are then given for each process, i.e. for each C configuration-level
process or occam processor. The configuration name of the process is displayed,
together with the percentage of CPU time spent on that process and the length of time
spent in that process in seconds.

------------ L",/£~~tm£'f£~I-----------79-

6.2 The utilization monitor imon

The entries for stack, heap, static and vector space give the relative amount of time that
the program was found to be in each area. Threads created in the heap, static and vector
space areas will have their time added to the parent.

The statistics are then given for each function or procedure used by the process. The
filename is given first, followed by the nested name. In C programs, there will only be
one name after the filename. In occam programs there may be any number of nested
names as occam supports procedure nesting. This allows each function or procedure
to be uniquely identified. The percentage time is given for that function or procedure for
that process and for the processor. The final count for that function or procedure is also
given as a gauge of the statistical significance of the information.

If no debugging information is available for an object file then the total time spent in that
module is displayed. This may happen either because the object file does not include
debugging information or because the compiler output file (the • teo file) was not found
on the ISEARCH path. In the case of libraries, if there is a mixture of modules with
minimal or full debugging information and modules with no debugging information, then
the modules with no debugging information will be gathered together into one entry in
the profiling results.

6.2 The utilization monitor imon

The utilization monitor, imon, provides a post-mortem graphical representation of the
utilization of the target processors, showing the blocks of time when each CPU was
busy.

The information displayed is derived from sampling the activity of each processor
periodically. The sampling period is not controllable by the user. For each sample, the
monitor interrupts the CPU and inspects the workspace pointer, Wptr, to determine
whether the CPU was idle. Any serial links may be busy even when the CPU is idle.

When the application halts, the profiler keeps going, even if all the tasks have termi­
nated. The profiler only halts when the monitor, imon, is started, so there may be a large
block of idle time at the end of the application. imon analyzes the target hardware and
must be used immediately after the application has halted.

6.2.1 Preparing programs

The program to be profiled may be compiled with full, minimal, or no debugging informa­
tion. The utilization monitor can only be used on programs that have been configured.
The configurer must be invoked with the -PRU option.

If the noprofile option is set on any process on a processor then the monitor is
switched off for that processor.

6.2.2 Running imon

The configured and collected bootable program is run as usual. After the program has
finished executing or has been interrupted by the user, the program is terminated and
the results are extracted and displayed by running imon.

80 ~SGS-THOMSON----------- IIJ.'T£ ~O©!lli@§Ibrn©'iJ'rnlCQE!lO©~ -----------

6 Execution analysis

On Sun systems, imon can be started by a command line.

On PC systems, imon is a Windows application and is run in the same way as other
Windows applications. Two possible methods are:

• Double click on an imon icon in the inquest program group in the Program
Manager. The command line associated with the icon can be changed by
selecting the icon and using Properties... in the File menu. New icons can be
created using New... in the File menu.

Select the Run... command in the File menu of the File Manager and enter the
command line.

On all systems, the command line to start imon has the form:

~ imon bootable_file {options}

where: boatable_file is the name of the bootable application.

options is a list of one or more options from table 6.2.

Options may be entered in upper or lower case.

Options can be given in any order.

Options must be separated by spaces.

Option Description

-F dumpfile Read from the dump file dumpfile created using the -IEX option.

-IEX dumpfile Dump the results to the file dumpfile to read later using the -F option.

-NA Do not assert analyze (Txxx-series transputers only).

-se filename Copy file filename to link before extracting. Useful with the skip loaders
(Txxx-series transputers only).

-SL resource Select target connection resource. Overrides the TRANSPUTER parameter.

-v Display information as profiling takes place.

Table 6.2 imon command options

For X-Windows users, the standard X-toolkit options are supported.

6.2.3 Example imon command line sequences

The following example extracts results from the bootable program example. btl and
then displays those results. This is the normal command line to monitor example. btl.

imon example.btl

The following example saves the extracted results in the file monf i Ie and then displays
those results.

____________ 1I;l~~n'~.1-----------8-1

6.3 The test coverage and block profiling tool i 1 ine

imon example.btl -iex monfile
imon example.btl -f monfile

The following example extracts results from example. btl which was running on the
network found down link 2 from the root transputer. It then displays those results.

imon example.btl -sc skip2.btl

The following X-Windows example sends the display output to terminal term.

imon example.btl -display term:O.O

6.2.4 Output

Figure 6.2 Sample output from the utilization monitor

Figure 6.3 shows an example of the output from the utilization monitor for a network of
six processors.Iilt.i;~ii;~~i;~i ,'.r WAi

:oft":';'il';;i. ''''IN ·'y

.'P1T /; 'rii;.'·i' '. ··,····;;[(l;~i;i;::::.:.,t.·.; % "F..};

:.:!.:..::.:.::::::..:i:.:: ::: :.::.:::.::.::.:..::..::::.::.::'b.:::::.::.:.:::!:~JP...::.'.::':::::.::..:'~.~:.:::.:".:.·.:::::.t:.::=.::.:..::::::.,..:.::.t.·.:::..::..·.::..:..:.:..:: :.::.::: ::~.:.. :.:.. ':: ..: :.:..::..:::.:..:::..:' :.. :::.:.:.: ::.: ::..::.:.: :.:::.:::..:.'.;..::.:.:' ~:;:.:::.:::.,::.' .::::;.;:::: ':::::.::':., :::.::::').:::?,/ :.: :::(.. :::::'..f::: ' :" .':" '::,j'" ::.: .:::/ ::!) L.:::·:.-:.\:::.:.2:::.:::::::.:. ::. }:: ::::::: .::::::..:\::: :::::::'r::~!li;.l~f .::::: .:::::: ..:.......... ": '::'.:::':-::" ·:-:·:::{:I:·,x··.. · '::::-:::.:::::' ::.:":'::'::'::=::::::::':::.-:,. ':'::'. ::-:::::-::: ::C:='::::='::

Figure 6.3 Sample output from the utilization monitor

On the vertical axis are the names of the processors. On the horizontal axis is time in
seconds. The percentage busy time is represented by the height of the graph. The
horizontal scroll bar is used to move along the time line. Clicking on the Zoom In button
allows more detail to be shown over a shorter time range. The Zoom Out button allows
less detail to be shown over a longer time range. On X-Windows systems, the user may
zoom into a region by holding down any mouse button and dragging a box in the display.
The vertical scroll bar scrolls up and down the list of processors.

6.3 The test coverage and block profiling tool i 1 ine

The purpose of the iline tool is to monitor test coverage and perform block profiling
for an application which has been run on target hardware.

_82 Eii~~l!I.~JI-----------

6 Execution analysis

This tool is able to:

• provide an overall test coverage report;

provide per module test coverage reports;

• accumulate a single report from multiple test runs;

provide a detailed basic block profiling output by creating an annotated program
listing;

provide output that can be fed back into the compiler as a part of its optimization
process.

The application program (compiled with the appropriate compiler option) is run and
accumulates the counts in the memory of the target processor. The iline tool is used to
extract the results and save or display them. The application writes the counts into the
code area, so the tool cannot be used with code running from ROM.

6.3.1 Preparing for profiling

Each module that is to be profiled should be compiled with the -PL compiler option.
Otherwise, the application is built and run on the target hardware in the normal way. The
profiling information is stored in the memory of the target hardware as the application
runs.

When the application terminates or is halted, iline is run to extract and display or save
the results. i 1 ine analyzes the target hardware and must be used immediately after
the application has halted.

The .lku, • cfb, •btl files are required by iline to be able to produce test coverage
and compiler feedback. The directories containing these files must be included on the
ISEARCH path when iline is run. If annotated source output is required then the
source files are also required and should be on the ISEARCH path.

6.3.2 Command line

~ iline {file} {options}

where: file is a bootable file or a summation file;

options is a list of one or more options from table 6.3.

Options may be entered in upper or lower case.

Options can be given in any order.

Options must be separated by spaces.

----------- E;i~~mY!&~I-----------83-

6.3 The test coverage and block profiling tool i 1 ine

Option Description

-Q Suppress information messages.

-NA Do not assert analyse on the target hardware.

-SL resource Use the target hardware connection resource, which is the name of a
resource in the AServer database. This overrides the TRANSPUTER
parameter.

-sc bootable_file Load bootable_file onto the target hardware after any analyzing is done.

-FEED Produce compiler feedback files.

-TCQV Produce coverage files.

-MERGE summation_file Merge results into summation_file.

-P processor Results from this processor only. Multiple - P options may be used.

Table 6.3 iline command line options

6.3.3 ANSI C compiler feedback

When the ANSI C compiler is optimizing, it can make better decisions if it has access
to information about which branches are taken most frequently. The -feed option
causes iline to create this information, which is written to a file with extension. d. This
file can then be given to the compiler on subsequent builds using the -feedback
compiler option. For example, for an application app.btI:

irun app.btl
iline -feed app.btl
icc -feedback app.d app.c

For further details, see the compiler chapter of the Toolset Reference Manual.

6.3.4 Test coverage

The -tcov option creates annotated listings of the analyzed modules. For each module
one listing, called a coverage file, is produced, with the file name extension •v.

For the purposes of this tool, the code is divided into blocks. Each block is a section of
code with no conditional branches, loops or labels. Every statement in a block is
executed the same number of times.

A summary report is written to standard output showing the overall test coverage and
the files produced, similar to that shown in figure 6.4. In this report, each module has
its coverage shown as a percentage of blocks executed to blocks that exists in the
module. An average coverage of all the modules that were appropriately compiled is
shown as the last line.

The following are the commands to run the application and then produce a coverage
report for each module compiled with -pI, and an annotated listing of each source file:

irun app.btl
iline -tcov app.btl

84 ~SCiS-1HOMSON------------ ...,£ ~D~@rn[b1~©'ITI~KQ1~O©@)------------

6 Execution analysis

Writing coverage file "square.v" - 40% coverage
Writing coverage file ·"comms.v" - 14% coverage
Writing coverage file "app.v" - 75% coverage
Writing coverage file "control.v" - 36% coverage
Writing coverage file "feed.v" - 33% coverage
Writing coverage file "sum.v" - 40% coverage
Total coverage for bootable 39% over 1 run

Figure 6.4 Example summary report with the -tcov option

If the -tcov option is used then the file parameter on the command line may be either
a bootable file or a summation file. If the file is a boatable file then new results are
extracted from the target and used to generate reports. If the file is a summation file then
the results in that file are used to generate reports. Summation files are described in
section 6.3.5.

Each coverage file listed in the summary report contains two columns:

For each code block a count of the total number of times that block was
executed. The counts are shared between all threads that are executing the
code.

2 The source code for the block.

At the end of a coverage file is a summary that lists

information about the module and the test run;

the 10 most frequently executed blocks;

• the total number of blocks;

• the number of blocks that have not been executed;

the coverage.

The following is an example of the contents of a coverage file:

/*
* facs.c

** generate factorials

*
*/

#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include <channel.h>
#include <misc.h>
#include "comms.h"

----------- E;l~itn'r9!~I-----------85-

6.3 The test coverage and block profiling tool iline

I#define TRUE 1
#define FALSE 0

/*
* compute factorial

*
*/

96

74

22

1

27

22

4

1

int factorial(int n)
{

if (n > 0)
return (n * factorial(n-l»;

else
return (1);

int maine)
(

Channel *in, *out;
int going = TRUE;

in = get-param(l);
out = get-param(2);

while (going)
{

int n, tag;

tag = read_chan (in, &n);
switch (tag)
{

case DATA: {
send_data (out, factorial(n»;
break;

}
case NEXT: { /* start a new sequence */

send_next (out);
break;

}

case END: { /* te~inate */
going = FALSE;
send_end (out);

1##################111
I Summary of results #
1#####1#########1#1#1#
Source file facs.c
Number of runs : 1
Processors : All
>From linked unit : facs.lku

_8_6 ~~i~@mgl&~~ _

6 Execution analysis

Top 10 Blocks!!

Line 25 - 96 times
Line 27 - 74 times
Line 42 - 27 times
Line 29 - 22 times
Line 49 - 22 times
Line 53 - 4 times
Line 34 - 1 time
Line 57 1 time

Total number of basic blocks 8
Basic blocks not executed 0
Coverage 100%

6.3.5 Summation files

If iline is run without the -tcov or -feed options, then a summation file is produced.
A summation file contains a binary summary of the results of the application run. The
default name for the summation file is the stem of the bootable file name with the
extension • sum.

For example, the following are the commands to produce a summation file app. sum.
The application is run, followed by iline with the bootable file as parameter:

irun app.btl
iline app.btl

The results in the summation file may be displayed by running iline again using the
-tcov option with the summation file, for example:

iline -tcov app.sum

6.3.6 Accumulating results

Summation files may be used to accumulate the results of several runs. If iline is run
with the -merge option then the results will be added to the summation file named in
the -merge option. If the file does not exist then a new file is created of that name. For
example, to add the results of a run to the existing summation file runtotal. sum or
to save the results into a new file runtotal. sum:

irun app.btl
iline -merge runtotal.sum app.btl

If the -merge option is used then the file parameter on the command line may be either
a bootable file or a summation file. If the file is a bootable file then new results are
extracted from the target. If the file is a summation file then the results in that file are
simply accumulated into the summation file given in the -merge option.

------------li;lI~m.~I-----------87-

6.3 The test coverage and block profiling tool i 1 ine

The following are the commands to use the -merge option to create named summation
files runn. sum for a sequence of runs, accumulate those results into the summation
file runtotal. sum and then display the accumulated results:

irun app.btl
iline -merge runl.sum app.btl
irun app.btl
iline -merge run2.sum app.btl
irun app.btl
iline -merge run3.sum app.btl
iline -merge runtotal.sum runl.sum
iline -merge runtotal.sum run2.sum
iline -merge runtotal.sum run3.sum
iline -tcov runtotal.sum

6.3.7 Selecting processors

For multi-processor targets, the default is to profile all the processors. The -p option can
be used to specify one processor that should be profiled; if several processors are to
be profiled then several -p options may be given.

The following are the commands to create annotated coverage for the modules that are
placed on the processor t2:

irun app.btl
iline -tcov -p t2 app.btl

_88 ~li~@IIf~~AI-----------

7 Network analyzer

This chapter describes the network analyzer, rspy. The network analyzer is used to test
the configuration and memory of a transputer network and generate part of a configura­
tion script describing the hardware. It can set connections on an IMS C004 link switch.
It also resets a transputer network and clears any error flags. rspy is not supplied with
IMS T9000 versions of INQUEST.

The network analyzer, rspy, is used to test the types of transputers in a network and
how they are connected together. It recognizes direct connections between transputers
and connections via IMS C004link switches. When used in this manner rspy produces
textual output showing the transputer types and their connections.

rspy can also be used to generate a hardware description in a form suitable for use in
C (icconf) and occam (occonf) configuration files.

rspy can only detect transputers that can be reset by the host.

7.1 Running the network analyzer

7.1.1 Environment variables

An environment variable ISEARCH must be set to point to the directory where the rspy
tool and its associated files are located. This should include a trailing separator (' I' for
Suns or '\' for PCs) since the value will be directly pre-pended to the program name.

On Suns, this environment variable is set by running the setup script. On pes it is set
by using the ilaunch tool from the Program Manager.

7.1.2 Starting rspy

On Suns, rspy can be started by a command line.

On PC systems, rspy is a Windows application and may be run in the same way as
other Windows applications. Two possible methods are:

• Double click on an rspy icon in a program group in the Program Manager. The
command line associated with the icon can be changed by selecting the icon and
using Properties... in the File menu. New icons can be created using New... in
the File menu.

• Select the Run... command in the File menu of the File Manager and enter the
command line.

7.1.3 The rspy command line

On all systems, the following command line is used to run the network analyzer:

----------- ~1~ll'.91-----------89-

7.2 Network analyzer output

~ rspy {options}

where: options is a list of one or more options from Table 7.1.

Options may be entered in upper or lower case.

Options can be given in any order.

Options must be separated by spaces.

Option Description

-C4 Give link switch connections in output.

-CC Output icconf style hardware description.

-CL Only output link switch connections in switch file format.

-co Output eccenf style hardware description.

-CR Reset any link switches that are found.

-cs switch_file Set link switches connections from switch file switch_file.

-H Display the help page.

-:I: Display information as rspy runs.

-14 Do memory sizing.

-142 Memory size IMS T2xx transputers only.

-144 Memory size IMS T4xx and T8xx transputers only.

-MC Do memory sizing including IMS T2xx transputers connected to link switches.

-ME kbytes Do memory sizing, stopping after testing kbytes of memory per transputer.

-ML Do memory sizing, logging progress of testing.

-MT processor Do memory sizing for the processor processor only.

-NR Do not reset network at startup.

-SL resourceName Use resource resourceName rather than that defined in the environment
variable TRANSPUTER.

-w Show that rspy is still working.

-xprogname Use additional user-supplied •rsc code file progname.

-XTO seconds Set user •rsc timeout to seconds. Default is 5 seconds.

-y Do not run part detection.

Table 7.1 rspy command line options

The link switch options are described in section 7.3. The memory options (-M*) are
described in section 7.4.

For X-Windows users, the standard X-toolkit options are supported.

7.2 Network analyzer output

The following sections describe the output from rspy when used without link switch
operations or memory testing. The output when memory testing is described in section
7.4.2.

-90-----------liii~~tmgI£Ylf------------

7 Network analyzer

7.2.1 Hardware connection description

To obtain a description of the transputers and their inter-connections use:

rspy

Figure 7.1 shows an example of the default output produced by running rspy on the
network in Figure 7.2.

Part-rt
o T425-25
1 T2 -17
4 T414-20
5 T2 -20
6 T800-25
7 T805-20
8 T425-25

LinkO
HOST
C004

0-3
4-3
5-3
6-3
7-3

Link1
1-1
0-1
0-2
4-2
5-2
6-2
7-2

Link2 Link3
4-1 4-0

C004
5-1 5-0
6-1 6-0
7-1 7-0
8-1 8-0

Figure 7.1 Sample default output from network analyzing tool

Figure 7.2 Analyzed transputer network

The first line of output contains the following column headings, which are described in
Table 7.2:

Part-rt LinkO Linkl Link2 Link3

Each subsequent line of the network description describes a transputer or IMS C004link
switch and its connections to other transputers or IMS C004 link switches or both. Only
the configuration links of link switches are listed; a link passing through a link switch is
not detectable by the software, although the configuration of the link switch may be
listed, as described in section 7.3.

----------- LT£~~ma.~JI-----------9-1

7.2 Network analyzer output

Column Heading Meaning

Node number.

Part-rt INMOS part number and (for transputers) the clock speed in MHz.

Linkn Device connected to Link n. See Table 7.3.

Table 7.2 rspy output columns

Link description Meaning

n-m Connected to node n link m.

HOST Connected to the host.

COO4 Connected to the configuration link of an IMS C004 link switch.

... Unconnected

Table 7.3 rspy output link descriptions

The node numbers are allocated in the order in which the transputers and/or IMS C004
link switches are found. The numbering does not relate to motherboard slots, which are
invisible to rspy.

The meaning of the link device connections is shown in Table 7.3.

/* Hardware description created by rspy */
/* Remember to declare memory sizes */

T425 nodeO;
T212 nodel;
T414 node4;
T212 node5;
T800 node6;
T805 node7;
T425 node8;

connect host to nodeO.link[O];
connect nodeO.link[l] to nodel.link[l];
connect nodeO.link[2] to node4.link[1];
connect nodeO.link[3] to node4.link[O];
connect node4.link[2] to node5.link[1];
connect node4.link[3] to node5.link[O];
connect node5.link[2] to node6.link[1];
connect node5.link[3] to node6.link[O];
connect node6.1ink[2] to node7.1ink[1];
connect node6.link[3] to node7.link[O];
connect node7.link[2] to node8.link[l];
connect node7.1ink[3] to node8.link[O];

Figure 7.3 Example C configurer-style output from network analyzer

7.2.2 C configurer-style hardware description

rspy can also produce a description of the transputers and their inter-connections in
a form suitable for use in an icconf configuration hardware description. The output lists

_92 !Ti~i~@mY!I9I------------

7 Network analyzer

the nodes and connections in the correct syntax. The user would need to add memory
sizes and define any edges other than the host.

On Suns, the output is written to the standard output, which may be redirected to a file
in the usual way. For example, the command line to write an ieeonf script to net. efs
would be:-

rspy -ee > net.efs

On PCs, the output may be saved by clicking on Save Buffer... in the File menu. A dialog
box will appear, which requests a file name.

Figure 7.3 shows an example of the C configurer-style output.

7.2.3 occam configurer-style hardware description

rspy can also produce a description of the transputers and their inter-connections in
a form suitable for use in an oeeonf configuration hardware description. The output lists
the nodes and connections in the correct syntax. The user would need to add memory
sizes and define any edges other than the host.

On Suns, the output is written to the standard output, which may be redirected to a file
in the usual way. For example, the command line to write an ieeonf script to net. efs
would be:-

rspy -ee > net.efs

Hardware description created by rspy
Remember to declare memory sizes

NETWORK
DO

SET nodeO (type ·- "T425")
SET node1 (type ·- "T212")
SET node4 (type · - "T414")
SET node5 (type .- "T212")
SET node6 (type ·- "T800")
SET node7 (type .- "T805")
SET node8 (type .- "T425")

CONNECT nodeO[link] [0] TO HOST WITH hostlink
CONNECT nodeO[link] [1] TO node1[link] [1]
CONNECT nodeO[link] [2] TO node4[link] [1]
CONNECT nodeO[link] [3] TO node4[link] [0]
CONNECT node4[link] [2] TO node5[link] [1]
CONNECT node4[link] [3] TO node5[link] [0]
CONNECT node5[link] [2] TO node6[link] [1]
CONNECT node5[link] [3] TO node6[link] [0]
CONNECT node6[link] [2] TO node7[link] [1]
CONNECT node6[link] [3] TO node7[link] [0]
CONNECT node7[link] [2] TO node8[link] [1]
CONNECT node7[link] [3] TO node8[link] [0]

Figure 7.4 Sample occam configurer-style output from network analyzer

~SCiS.1HOMSON 93
------------- AT~~o©OO@rnl1rn©'iirn@~o~-------------

7.3 IMS C004link switch support

On PCs, the output may be saved by clicking on Save Buffer... in the File menu. A dialog
box will appear, which requests a file name.

Figure 7.4 shows an example of the occam configurer-style output.

7.3 IMS C004 link switch support

rspy can reset link switches and list and set their connections. Link switches may be
reset by using the option CR. Option C4 causes rspy to list the configured connections
of each link switch it finds as part of the normal network display. Option CL can be used
to write the configured connections of each link switch in the format of a switch file.

rspy can set the link connections of one or more IMS C004 link switches in a network.
This is requested by the option -cs on the rspy command line:

rspy -cs switch_file

The switch_file is an ASCII switch file, as described in the sections 7.3.1 and 7.3.2.

7.3.1 Switch file example

This section describes an example of a switch file. The folloWing is an example of a
switch file describing the connections for two switches, as shown in figure 7.5:

/* Example switch file */

switch
name "my_cO 04_1"
type C004
path 1 0
connect 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16

switch
name "my_c004_2"
type C004
path 1 3
connect 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16

This switch file relates to the two link switches named my_cO 04_1 and my_cO 04_2.
Each switch is of type IMS C004. The path is the route from the host to the switch
configuration link, given by the exit link on each transputer encountered. Thus the
configuration link of the switch board. cOO 4 [0] is connected to link 0 of the transputer
connected to link 1 of the root transputer. connect lists the switch connections which
are required to be set. For each switch in the example, link 1 is to be connected to link
2, link 3 to link 4 and so on, as shown in figure 7.5

_94 L.,£l~l!Ir'~~I-----------

7 Network analyzer

Figure 7.5 Example link switch connections

7.3.2 Switch file syntax

A switch file is an ASCII text file defining one or more switches, where they may be found
and the connections set or to be set.

Each separate link switch has a switch declaration block. The first statement of a switch
declaration block is a switch statement, which has the syntax:

switch

Each switch statement must be followed by a name statement, a type statement, a
path statement and a connect statement.

name statement

name "name"

The name statement defines a user-defined name (name) for the link switch. The name
is used in error reporting.

type statement

type C004

The type statement defines the type of the switch. The only type currently defined is
C004.

path statement

path Iink_number_/ist

------------ ~~itnl.91-----------9-5

7.4 Memory

The path statement tells rspy where in the network to find the link switch which is to be
programmed. The path link_number_list is a list of link numbers which defines a chain
of transputers from the host to the configuration link of the link switch. Each link number
defines the link from one transputer in the chain to the next, except for the last link
number which is the link to the link switch. The first transputer in the chain is the root
transputer, which is the first transputer found by the host. Each link number in the list
must be in the range 0 to 3. The link numbers must be separated by spaces.

For example, the path 1 0 defines the path from the host to the root transputer, then
down link 1 of the root transputer to the second transputer and finally down link 0 to the
configuration link of the link switch.

connect statement

connect connection_list

The connect statement states the connections to be made by the link switch. The
connection_list is a list of connections. Each connection is a pair of link numbers
separated by a direction. The direction may be either - or >, to specify a connection in
both or one direction respectively. Each pair defines a connection between the two links
given by the link numbers. For the IMS C004 they must be in the range 0 to 31.

link_number - link_number specifies a bi-directional connection, Le. connecting the
input of each of the two links to the output of the other. For example 7 -8 connects the
input of link 7 to the output of link 8 and the output of link 7 to the input of link 8.

inpuLlink_number > output_link_number specifies a connection in one direction only,
from the input of the input_link_number to the output of the output_link_number. For
example 7 > 8 connects the input of link 7 to the output of link 8.

Spaces and new lines are not significant in a switch file, and C-style comments style can
be used.

7.4 Memory

rspy provides memory sizing capabilities for investigating the internal and external
memory of the transputers in a network. rspy only detects contiguous memory starting
at the bottom of the address space. The results of each memory sizing are appended
to the default output line for the appropriate transputer. Memory sizing is performed by
rspy whenever one of the -M* options is used, as listed in table 7.1.

Care must be taken when using memory sizing on some boards. This is because on
some boards, accessing addresses beyond the top of memory can cause problems,
including possibly crashing the host. Use the -ME option for such boards to avoid these
problems.

The default operation is to size the memory on all transputers that rspy has found,
except for those T2s that rspy has discovered have the control links of IMS C004 link
switches connected to their links.

_96 Eii~i~@~I&'1-----------

7 Network analyzer

7.4.1 How it works

The memory sizing starts 2 Kbytes above the bottom of the address space (Le. at
#80000800 for 32-bit processors and #8800 for 16-bit processors) and checks whether
memory is present every 512 words up the address space. When it finds no memory
the sizing stops.

At each test address, rspy tests for memory by writing to an address and then reading
back and comparing the result with the value written. It also performs a speed test to
determine the speed of the memory.

7.4.2 Output

Memory sizing normally adds the information it obtains to the default output from rspy.
For each transputer that has its memory sized, the results of the sizing are given at the
end of the line describing that transputer.

Each memory description lists the blocks of memory followed by a termination char­
acter. The descriptions of the memory blocks are separated by plus signs (+) and are
listed in the order they are found, starting at the bottom of the memory space. Each block
of memory is described by the size of the block (in Kbytes) followed by the letter K , a
comma, and then the number of memory cycles needed to access that memory.

rspy only sizes memory that is contiguous from the bottom of memory.

7.4.3 Termination characters

The following table lists the meanings of the termination characters used at the end of
each line of memory description.

Termination character Meaning

; Memory wraps around.

I ME option ceiling has been reached.

? Other error.

Table 7.4 Memory description termination characters

7.4.4 Example memory sizing output

The following is an example of the output from rspy when sizing the memory of a
network with the -M option:

Part rate Mb Bt
o T800d-25 0.18 0
1 T2 -20 1.00 1
3 T800c-20 1.75 1
4 T425a-20 1.41 0
5 T800c-17 1.75 1

LinkO Linkl Link2 Link3
HOST 1:1 3:1 4:0

0:1 C004
0:2 5:1

0:3 5:2
3:2 4:1

RAM, cycle
4K,1+28K,3+2016K,5+4K,3;

4K,1+1024K,3;
4K,1+1024K,3;
4K,1+28K,3+2016K,4+4K,3;

------------liiilitrn'rII.I-----------9-
7

7.4 Memory

This shows the description of the memory of processor 0, a T800d-25, as

4K,1+28K,3+2016K,S+4K,3;

This indicates that the processor has:

• 4Kbytes of 1 cycle memory (the internal RAM),

28Kbytes of 3 cycle memory,

2016Kbytes of 5 cycle memory,

4Kbytes of 3 cycle memory.

The final semicolon (;) indicates that the memory then wraps around.

7.4.5 Command line options

Option M2 - Size IMS T2xxs only

The M2 option causes rspy to perform memory sizes only on IMS T2xx transputers.

Unless the Me option is used, rspy does not size the memory of IMS T2xx transputers
that have the control links of IMS C004 link switch(s) attached to their links.

Using both the M2 and M4 options is allowed and is equivalent to omitting both options.
This because the default operation is to size both types.

Option M4 - Size T4s and T8s only

The M4 option causes rspy to perform memory sizing only on IMS T4xx and IMS T8xx
transputers.

Using both the M2 and M4 options is allowed and is equivalent to omitting both options.
This is because the default operation is to size both types.

Option Me - Include T2s with IMS C004 link switches on links

If this option is not used then the memory will not be sized for any IMS T2xxxs that are
connected to the configuration links of IMS C004 link switches. The Me option forces
rspy to size the memories of these transputers as well.

Caution: The Me option should be used with care, as it may reset any link switches it
finds.

Some motherboards have a facility to perform a hardware reset of the IMS C004 link
switch or switches on the board; see the board documentation to discover whether the
board or boards in use have this facility. On these boards the IMS T2xx that controls the
IMS C004 link switch or switches can perform a hardware reset of the IMS C004(s) by
writing certain values to any external memory address. Clearly if a memory sizing is

-9-8-----------lifi5~@m.~I-----------

7 Network analyzer

performed on such an IMS T2xx then the IMS C004 link switch will be reset thus losing
the settings in the IMS C004 link switch. In general this is not desirable.

On the IMS 8014 motherboard, using this option will cause the IMS C004link switches
to be reset and so the TRAMs other than slot 0 will no longer be reachable. This may
confuse rspy.

Option ME - Set memory size ceiling

The ME option is followed by a decimal integer, which is a ceiling, Le. the maximum
amount of memory, in Kbytes, that will be sized. For each transputer, the memory sizing
stops the sizing when the ceiling is reached or the top of memory is found, or an error
is detected. If more memory is found then the sizing will be terminated and the pipe
symbol (I) will be displayed at the end of the memory description. The default ceiling
is 256 Mbytes.

Option ML - Log progress

The ML option causes rspy to log the progress of the memory sizing.

Option MT - Sizing a specific transputer

The MI option is followed by a decimal number. The number is the number of the
transputer, as found by rspy, to be sized. Only that transputer is sized. If the MT option
is used then the M2, M4 and Me options are ·ignored. The NT option can be used to size
an IMS T2xx that has the configuration links of one or more IMS C004 link switches
attached to its links.

7.5 User supplied. ree code

rspy can load a user supplied block of code onto each transputer, using the -x option.
The code might carry out a test and can send a message for display, for example giving
the contents of memory locations or the state of a peripheral. The code must be in the
form of a •rse-type code file, which is generated by the collector, as described in the
Toolset User Guide for dynamic code loading. rspy looks for a code file with extension
.r2h to load onto any IMS T2xx transputer or a code file with extension .rah to load
onto any IMS T4xx or T8xx transputers or both.

For example, the rspy command line might be:

rspy -x testeode

In this case the code in testeode. r2h will be loaded onto any IMS T2xxs and the code
in file testeode. tah will be loaded onto any IMS T4xxs and IMS T8xxs. The
appropriate code file is loaded by rspy onto each processor and executed. The code
is passed, as parameters, the following integer items:

the number of the parent link, Le. the link from which the transputer was booted.
This link may be used to send a message for display.

----------- ~litnl&~I-----------99-

7.5 User supplied. ree code

the id number that rspy has assigned to the transputer. This number may be
used to perform different actions on different transputers.

The code may send a message of up to 512 bytes to the host by writing to the parent
link. The message must be preceded by the size of the message as a 16 bit integer. Any
message sent down the parent link is routed to the host and displayed in hexadecimal
with the rspy output at the end of the display line for the transputer that sent it.

The following is an example of message passing code:

#INCLUDE "linkaddr.inc"
PROC part(INT parent, my.id)

[4]CHAN OF INT16::[]BYTE outlink:
PLACE outlink AT linkO.out:

to.parent IS outlink[parent]:

VAL buff.size IS 11:
[buff.size]BYTE buffer:
SEQ

buffer:= [BYTE my.id,1,2,3,4,5,6,7,8,9,10l

to.parent ! INT16 buff.size :: buffer

This would produce the following output:

rspy
Part rate Mb Bt LinkO Linkl Link2 Link3
o T800d-25 0.18 0 HOST 1:1 3:1 0 1 2 3 4 5 6 7 8 9 A
1 T2 -20 1.00 1 0:1 C004 1 1 2 3 4 5 6 7 8 9 A
3 T800c-20 1.75 1 0:2 4:1 3 1 2 3 4 5 6 7 8 9 A
4 T800c-17 1.65 1 3:2 5:1 4 1 2 3 4 5 6 7 8 9 A
5 T42Sa-20 1.64 1 4:2 5 1 2 3 4 5 6 7 8 9 A

100 ~SGS-THOMSON------------ ..~£ ~U©~m©'ITrnlOOO©®----'-----------

I Appendices

~SCiS.1HOMSON 101
--------,£~o©~rnl1~'iirn~o©~--------

Appendices

_1o_2 ii;i~~@nlE©' _

A Debugger command language
syntax

The syntax of the debugger command language is defined in this appendix. In the
syntactic description terminal symbols are shown in Courier bold and non-terminals
are shown in italics. Production rules end with a newline or a comma character (,).

integer "- a number

string "- sequence of non blank characters, " sequence of characters"

variable "- sequence of alphanumeric characters

terminator ::= ;, newline

separator ::= a sequence of spaces and tabs

procname ::= a sequence of alphanumeric characters

parameter ::= $non-zero positive number
$ (expr)

result

args

binop

preop

postop

expr

vardec

cmdlist

"- $$

"- E, args separator string, (expr)

"- ==,=, >,<,>=,<=,+, -, *, /, », «,&&, I I, I, &

"- I --,

"- ++,--

"- integer
variable
parameter
result
(expr)
expr binop expr
preop expr
exprpostop
(procname args)

"- E, variable = expr terminator vardec

"- E, cmd terminator cmdlist, {cmdlist}

cmd "- expr
proc procname vardec cmdlist

------------li;l~it~I'. 1o_3_

A Debugger command language syntax

when (expr) vardec cmdlist
while (expr) cmdlist
for (cmd; expr ; cmd) cmdlist
if (expr) cmdlist
if (expr) cmdlist else cmdlist
procname args

B Glossary

analyse

Put the debugger into analyse mode for post-mortem debugging. T21T4rrS-series
transputer target hardware is reset with analyse high and T9000-series transputers
are Halted. This halts all low priority threads at the next deschedule point and
preserves the state. Memory is copied to the host and exploratory code is then loaded
onto the target hardware so that the state can be interrogated.

AServer

A system for portable communication between processes, generally between
processes on ST20s or transputers and processes on devices external to the ST20
or transputer network.

attribute window

Debugger: A window of the INQUEST debugger display features of the process,
thread or frame currently selected by the INQUEST browser.

auto-locate

Debugger: When an event occurs or an operation is performed on a selected thread
the windows displaying that thread automatically locate.

automatic variable

Debugger: A C variable which is declared inside a function, so multiple executions
of the function code give rise to multiple instances of the variable. Any occam
variable.

bin

Profiler: A range of code space used by the profiler to identify which part of the
program is being executed. A counter of the number of occasions the bin is hit.

block

Profiler: A section of code with no jumps or branches.

block profiling

Profiler: Analyzing how many times each block of code has been executed.

breakpoint

Debugger: A point in the code where execution will stop when using the INQUEST
debugger. Only the thread which hits the breakpoint will be stopped.

breakpointing transputer

A transputer model with the extra breakpointing instructions, Le. IMS T225, T400,
T425, T426, T450, TS01, TS05 or later.

___________ ~1~llf&\9I----------1-0-5

B Glossary

browser

Debugger: Part of the INQUEST debugger for navigating through the object hierarchy
and selecting a processor, process, thread or frame.

browser window

Debugger: A window of the INQUEST debugger display showing the state of the
browser, the state of one or more processes, threads or frames and the browser
control buttons.

call stack

Debugger: The stack of current function calls (or frames) for the current thread.

channel

An unbuffered one-way point-to-point communication path between two tasks or
threads on the same or different processors.

code window

Debugger: A window of the INQUEST debugger display showing source or disas­
sembled code.

command

Debugger: An instruction to the debugger typed in the command window or executed
from a file.

debuggable process

Debugger: Any process not marked as not debuggable in the configuration source,
Le. a process which does not have the configuration attribute nodebug set to true.

deschedule point

A point in transputer code where a timeslice or deschedule can occur, such as a loop
end, a communication or a timer wait.

dump file

Debugger: A file created by idump containing the post-mortem state of an applica­
tion.

Profiler: A file containing profiling results created by a profiling tool.

dynamic code loading

Loading code during execution of an application, sometimes used to save memory.

event

Debugger: A hit on a watchpoint, breakpoint or thread monitor.

event number

Debugger: The number assigned by the debugger to a future event when it is set up
which is returned when that event occurs.

_1_06 Eii~~~m~l£yJl-----------

B Glossary

execution profiling

See profiling.

fid

Debugger: Frame identifier. A predefined INQUEST debugger command language
variable holding the identifier of the current frame.

frame

Debugger: The state associated with a function or procedure call.

frame level

Debugger: A browserstate in which a thread is selected. A list of frames in the thread
is displayed in the browser window, one of which may be selected. Also displayed are
the Processes button to go up to the program level, the Threads button to go up to
thread level and possibly the Deselect button to deselect any selected frame.

free memory

Memory not allocated by the build tools for code or variables, which may be used
explicitly by the application.

host

A programmable device capable of resetting, analyzing and communicating with the
target hardware.

idump

The tool for saving the post-mortem state of an application for later debugging.

iline

The test coverage and block profiling tool.

imon

The execution monitoring tool.

INQUEST debugger

A windowing debugger.

inquest

The command to start post-mortem debugging.

interactive debugging

Debugger: Debugging a system while it is running code under the control of the
debugger. See also post-mortem.

interrupt

Debugger: Stop one or more threads after their current instructions.

B Glossary

iprof

The profiling tool.

iserver protocol

A protocol for communication between a host and target hardware, used by the i/o
libraries.

link

A hardware serial communication port provided on-chip on ST20s and transputers.

AServer: a hardware communication connection between the target and another
device using a hardware serial link and any necessary interfacing.

locate

Debugger: To update the code display to show the appropriate source code file or
section of disassembled code for the currently selected context.

minint

The lowest possible address, which is #80000000 on 32-bit processors, #8000 on
16-bit processors.

monitoring

See utilization monitoring.

See thread monitoring.

nested name

Debugger command language: A means of referring to a program identifier or symbol
in terms of the program structure.

null pointer

The pointer to minint which cannot be a code, process or variable address.

operation

Debugger: An instruction given to the debugger by means of a pull-down menu or one
of the operation buttons.

packet

The data sent in a single transmission.

pid

Debugger: Process identifier. A predefined INQUEST debugger command language
variable holding the identifier of the current process.

post-mortem

Debugging: Using the debugger to explore the final state of an application after a fatal
error or non-recoverable event. See also interactive debugging.

_10_8 ~~i~@.m~~I------------

B Glossary

process

A task. A sequential section of code with its own memory and resources running in
parallel with the rest of the program.

Debugger and profiler: When debugging or profiling C code - a linked unit of code
placed on a processor in the configuration. When debugging or profiling occam
code: all the code on a single transputer.

AServer: A section of code run in parallel with the rest of the program which communi­
cates using the AServer protocol.

process level

Debugger: A browser state in which a process is selected but not a thread. A list of
threads in the process is displayed in the browser window with the Processes button
to go up to the Program level.

procid

Debugger: Processor identifier. A predefined INQUEST debugger command
language variable holding the identifier of the current processor.

profiling

Recording how busy each process, procedure and function is.

program level

Debugger: A browser state in which no process is selected. A list of processes in the
program is displayed in the browser window.

protocol

The format of possible communications.

scope

Debugger: The section of code to which a declaration applies.

service

AServer: A process to which a client can open an AServer connection.

statement reference

Debugger command language: A means of referring to a program statement in terms
of files and line numbers.

stack

Debugger: See call stack.

static variable

Debugger: A C variable which is declared as static at process level outside any
function. It has only one instance within a process and is not associated with a
particular thread.

------------ i.Ti~~tmalll!l----------1-0-9

B Glossary

step

Debugger: In C or occam, a single statement or part of a statement. In assembly
code, a single instruction. To execute a single step.

summation file

Profiler: A file used to hold profiling results in a form suitable for accumulating the
results of multiple runs.

symbol reference

Debugger command language: A means of referring to a program identifier or
symbol.

test coverage

Profiler: The proportion of blocks of application code executed by the application.

thread

Debugger: A sequential part of a process which is running or waiting to run in parallel
with the rest of the program.

thread level

Debugger: A browser state in which a thread is selected but not a frame. A list of
threads in the process is displayed in the browser window with one selected. The
Processes button to go up to the program level, the Call Stack button to go down
to frame level and the Deselect button to go up to the process level are also
displayed.

thread monitoring

Debugger: The detection by the debugger of the creation or death of threads.

tid

Debugger: Thread identifier. A predefined INQUEST debugger command language
variable holding the identifier of the current thread.

tile

Debugger: To display all the open sub-windows so that they do not overlap.

toolset

A collection of tools for building application programs.

utilization monitoring

Recording when each target processor CPU is busy.

watchpoint

Debugger: A marker on a variable that causes execution to stop when that variable
is read or written to. Only the thread reading or writing to the variable will be stopped.

_11_0 IFiiI~@l!fI~~JI _

Index

Symbols
<> chevrons, use in commands, 41 , 43

{} braces, use in commands, 43, 56

#,28

%,28

Numbers
Ox, 28

A
Accelerator keys, 32

Accumulating test runs, 87-88

Address
of statement, 53
specifying an, 44

addressof command, 53-54

alter command, 51-52

Alt-waiting thread, 19-20

Analyse, 105

analyse command, 47

Analyse operation, 12,35

Arguments to debug procedures, 57

Arithmetic, in command language, 56

Arrange Icons operation, 40

AServer, 105

Assembly level debugging, 23-25

Assembly operation, 30,40

assert, 65-67

assign command, 51

Attribute window, 25, 26, 105
frame level display, 31
process level display, 30
thread level display, 30

Auto-locate, 32, 105

Automatic variables, 17,22,36,105

B
Bin, 105

Birth thread monitor, 22, 37

Block, 84, 105

Block profiling tool, 82-88

Braces in command language, 43, 56

break command, 49

Break operation, 36

Breakpoint, 20-21, 105
commands

break, 49
delete, 50
disable, 50
enable, 50-51
events, 50
ibreak,53

marker, 26, 27
operations

Break, 36
Delete, 37
List Breakpoints, 37

Breakpointing transputers, 7, 105

Browser, 25, 27, 28-32, 106
frame level, 31, 107
process level, 30, 109
program level, 29-30, 109
state, 45
thread level, 30-31, 110
window, 25-26, 106

Building code. See Preparing code

Buttons
in browse window, 28-32
operations, 32

Command Buttons, 40

c
C004

detect, 91
read connections, 94-96
set connections, 94-96

Call stack. See Stack

Call Stack button, 30,31

Calling a debug procedure, 57

----------- LT£~~Il'I.JI-----------1-1-1

Index

Cascade operation, 40

cd procedure, 59

Change
browser state, 28-32,45-46
context, Jump operation, 40
memory, modify command, 53
register state, alter command, 51-52
value of variable, assign command, 51

Channel, 106
jump down, 23, 40
watchpoints, 22

Chan-waiting thread, 19-20

Chevrons «», use in commands, 41,43

Close Window operation, 33

Code
See also Code window
disassembled, 26
display, 31-32
event type, 59
source, 26

Code window, 25, 26-27, 106
line markers, 26
line numbers, 40
operations on, 40
thread level display, 30

Command, 25, 106
See also Command language
line

idump,15
iline,83
imon,81
inquest, 9, 13
iprof, 78

scope, 45--46
window, 25, 27-28

Command Buttons operation, 40

Command language, 27
See also Command; Command procedures
<>,41,43
0,43,56
address reference, 44-45
built-in procedures, 59
constructs

else, 56
for, 56-57
if, 56
proc,57
procedures, 57-58
wait, 58
when, 58
while, 56-57

formal syntax, 103-104

nested name, 43
operators, 55-56
programming, 55-64
script. See Command language, programming
statement reference, 41-42,109
symbol reference, 43-44, 110
variable reference, 44
variables, 55

Command line, rspy, 91

Command procedures
cd, 59
fwrite,60
load, 60
pwd,59
remove, 60
sys,59
write, 59

Commands
addressof,53-54
alter, 51-52
analyse, 47
assign, 51
break, 49
continue, 48
delete, 50
disable, 50
enable, 50-51
events, 50
ibreak,53
id,47
interrupt, 49
locate, 53
memory, 52-53
modify, 53
monitor, 50
name, 47
next, 48
print, 51
processes, 48-54
quit, 46
restart, 47
running, 47
statement, 53
step, 48
stepout,48-49
threads, 47
watch, 49-50
where, 51

Compilation units, 32

Compiler
feedback, 84
options, 18

for debugging, 7, 8
for test coverage, 84

Configuration

112 ~SGS.1HOMSON-------------- ..:.,£ IfAJD©ffd@mrn©'i1rnM©® --------------

attributes
for debugging, 8
for execution profiling, 76, 77

automatic generation, 3, 89
C style, 92-100
occam style, 93-100

options
for debugging, 8
for execution profiling, 76
for utilization monitoring, 80

Connections, of link switch, 94-96

continue command, 48

Continue operation, 19,34

Coverage file, 84

D
Death thread monitor. See Thread monitors

DEBUG.ASSERT,65

DEBUG.MESSAGE,65

DEBUG. STOP, 65

debug_assert, 65

debug_message, 65

debug_stop,65

Debuggable process, 18,106

Debugger, 5-40, 41-54, 107
display, 24-28

Close Window operation, 33
Open Window operation, 33

multiple displays, 16
operations, 32-40
program, 5
running, 9-11
support instructions, 7

Debugging
compiler option, 7,8,18
data, 18
environment, 5-7
interactively, 5-6, 7-10
kernel, 5, 8
library functions, when not debugging, 67
post-mortem, 6, 11-16
preparing program, 7-9
support routines, 65-67

Debugging libraries, 65-74

delete command, 50

Delete operation, 36, 37

Deschedule point, 106

Index

Deselect button, 30, 31

disable command, 50

Disassembled code, 26, 30
Assembly operation, 40

Display, 24-28
See also Inspecting
disassembly I source code, 40
imon, 82
iprof, 79-80
line numbers, 40
memory contents, 40
print command, 51
Print operation, 38-39
stack trace, 51
state, 47-48
value of expression, 38-39, 51
variables, 22-23

Dump file, 106

Dump tool, 14-16

Dynamic
code loading, 67-70, 106
thread creation, 70-74

E
Early transputers, 7

eid, 58

else construct, 56

enable command, 50-51

Enter Include operation, 33

Environment variable, ISEARCH, 89-100

Error
behavior after, 10-11
event, 10, 11
flag, of transputer, 6, 12

etype, 58

Event, 106
See also Breakpoint; Thread monitor; Watch-

point
commands, 49-50
delete command, 50
disable command, 50
enable command, 50-51
events command, 50
number, 21, 106
type codes, 59

events command, 50

Examining
See also Display

____________ Iiil~~ma~SJ?©' 1_13_

Index

channels, 23
variables, 22-23

Examples, debugging support functions, 66

Execution operations, 34

Execution profiler, 75-80

Exit
Exit operation, 34
quit command, 46

Exit Include operation, 33

Expressions
displaying the value, 38-39, 51
in command language, 55-56

F
False, 56

Feedback to optimizer, 84

fid, 107
See also Frame, identifier

File menu, 32-34

Find Threads operation, 22, 35

for construct, 56-57

Frame, 17, 28, 107
identifier, 22, 42, 45,107
level of browser, 29, 31, 107
stack tracing, 22

Free memory, 107

Function operation, 33

fwrite procedure, 60

H
Halted on error flag, 14

Halting
ST20 processor, 11
T9000 processor, 11

Hash, 28

Hexadecimal numbers representation, 28-29

Host, 107
debugging from,S
Iink,5

ibreak command, 53

icc, debugging option, 7

id command, 47

Identifier
of frame, 42
of process, 42
of processor, 42, 46
of thread, 42
use to give scope, 45-46

idump, 107
command, 15

idump, 14-16

if construct, 56

iline, 82-88, 107

imakef, 7-40

imon, 80-82, 107

IMS C004, 98
detect, 91
read connections, 94-96
set connections, 94-96

IMSRTL_Info~ThreadBirth,71

IMSRTL_Info~ThreadDeath, 71

Included files, 42

Index variable of replicator, 39

Initial state of debugger, 20

Inputting, hexadecimals, 28-29

inquest
command, 9,13,107
command line, examples, 10, 13

INQUEST debugger. See Debugger

Inspecting
See also Display
channels, 23
variables, 22-23

Interactive debugging, 5-6, 7-10,107

Interrupt operation, 19,20,34

Interrupting, 6, 22, 107
interrupt command, 49

iprof, 75-80, 108

irun, 9-11
Restart operation, 35

iserver, 108

J
Jump down channel, 23

See also Jump operation

_11_4 ii;i~i~@m.£y©' _

Jump operation, 29, 40

K
Kernel

debugging, 5, 8
profiler,75

L
Last Event operation, 29, 36

Levels
frame, 31, 107
process, 30,109
program, 29-30,109
thread, 30-31, 110

Library
debugging, 65-74
debugging support, 65-67
dynamic process loading, 67-70

Line markers, 26

Line Numbers operation, 40

Link, 108

Link switch
detect, 91
read connections, 94-96
set connections, 94-96

Linking, start-up files, 8

List Breakpoints operation, 36, 37

List Thread Monitors operation, 38

List Watchpoints operation, 38

load procedure, 55,60

Locate, 31, 108

locate command, 53

Locate operation, 33

Looping, in command language, 56-57

Low level debugging, 23-25

M
Makefiles,9

Markers in code window, 26

memory command, 52-53

Memory operation, 40

Index

Memory testing, 96-99

Menu, 24,32-40

Merging results, 87-88

message, 65-67

Minint, 108

modify command, 53

Module operation, 32-33

Monitor. See Monitor threads; Utilization monitor

monitor command, 50

Monitor threads, 22, 110
monitor command, 50
operations, 38

Multi-tasking programs, 16-20

Multiple test runs, 87-88

N
name command, 47

Nested name, 43,108

Network utilities, 89-100

next command, 48

Next operation, 19,35

Next statement marker, 26, 27

nodebug,8,18

Non-breakpointing transputers, 7

noprofile, 76, 77

null pointer, 108

o
oc, debugging option, 8

Open Window operation, 25, 33

Operations, 25,32-40,108
Analyse, 35
Arrange Icons, 40
Assembly, 30, 40
Break,36
Cascade, 40
Close Window, 33
Command Buttons, 40
Continue, 19, 34
Delete, 36, 37
Enter Include, 33
Exit, 34
Exit Include, 33
Find Threads, 22, 35

----------- iillfitml~C?I----------1-1-5

Index

Function, 33
Interrupt, 19, 20, 34
Jump, 29, 40
Last Event, 29, 36
Line Numbers, 40
List Breakpoints, 36
List Thread Monitors, 38
List Watchpoints, 38
Locate, 33
Memory, 40
Module, 32-33
Next, 19,35
Open Window, 25, 33
Print, 38-39
Print *,39
Restart, 35-36
Search, 33
Step, 19,34-35
Step Out, 35
Step To, 35
Thread Birth Monitor, 37
Thread Death Monitor, 37
Tile, 40
Watch, 36-37
Watch Once, 37

Operations buttons, 32

Options
See also Parameters
compiler, 7, 8, 18
configurer, 8
execution profiler, 78, 81
idump, 15
inquest, 9-11, 13-17
network analyzer, 90
test coverage tool, 84

Output
from execution profiler, 79-80
from network analyzer, 91-100
from utilization monitor, 82

Output window, 25, 27

p

Packet, 108

Parameters. See Options

Performance, effect of profiler, 75

Performance analysis, 75-88

pid. See Process, identifier

Post-mortem debugging, 6,11-16,108

Preparing code
for debugging, 7-9

for execution profiling, 76-77
for utilization monitoring, 80

Print * operation, 39

print command, 51

Print operation, 38-39

proc construct, 57

Procedures
load,55
of command language, 57-58

Process, 16, 17-18,28, 109
debuggable, 18, 106
dynamic loading, 67-70
identifier, 17,28,42,45,67,108

id command, 47
name command, 47

level of browser, 29,30,109

Processes button, 30, 31

processes command, 48

Processor, version, compiling, 7

Processor identifier, 42, 46, 109

procid. See Processor identifier

Profiler
kernel, 75
resolution, 76

Profiling, 75-88, 109

Program level of browser, 29-30, 109

Programming, with command language, 55-64

Protocols, 109

pwd procedure, 59

Q

Quit
Exit operation, 34
qui t command, 46

R
Recursive functions, 17, 22

Reference
to a process, thread or frame, 42
to a statement, 41-42
to a symbol, 43-44

remove procedure, 60

Replication index variable, 39

Resolution, of profiler, 76

116 ~SCiS."DIOMSON-------------- AT~ ~o©~@rn!brn©'ITOOCQmo~--------------

restart command, 47

Restart operation, 35-36

rspy, command options, 90

Running
debugger, 9-11
execution profiler, 77-78
network analyzer, 89-100
thread, 6, 16, 20-27
utilization monitor, 80-81

running command, 47

s
Sampling interval, of profiler, 76

Saving post-mortem state, 14-16

Scheduled thread, 19-20

Scope of a command, 43, 45-46, 109

Script, debugging. See Command language,
programming

Search operation, 33

Selected line marker, 26, 27

Server, 9

Service, 109

Setting up. See Start-up

Shared code, 16

Single step, 21
commands

next, 48
step,48
stepout, 48-49

instruction level, 23
operation

Next, 35
Step, 34-35
Step Out, 35
Step To, 35

thread, 16,20

Source code, 26

Stack, 17, 106, 109
trace, 8,22

where command, 51

Starting
initial state, 20
restart command, 46-47

Start-up
See also Command line
debugging script, 25, 55, 63-64

Index

linking file, 8

State
of browser, 45
stopped thread, 6

statement command, 53

Statement reference, 41-42, 109

Static variables, 17,22,36,109

step command, 48

Step operation, 19,34-35

Step Out operation, 35

Step To operation, 35

stepout command, 48-49

Stepping, 21,110
commands

next,48
step,48
stepout,48-49

instruction level, 23
operation

Next, 35
Step, 34-35
Step Out, 35
Step To, 35

over, 21
thread, 16,20
through, 21

stop, 65-67

Stopped, thread, 6, 19

Stopping
See also Alt-waiting; Chan-waiting; Inter­

rupting; Scheduled; timer-waiting
QUi t command, 46

Summation file, 87, 110

Switch file, 94-95

Symbol reference, 43-44,110

Syntax, of command language, 103-104

sys procedure, 59

T
Target hardware, 16

Task. See Thread

Termination characters, 97

Test coverage, 84-87, 110

Test coverage tool, 82-88

Testing memory, 96

EOSGS-1HOMSON 117
------------- .J.@ ~O©OO@~I1rn©'ii'OO@~O©®-------------

Index

Thread, 6, 16, 18-20, 28, 110
control commands, 48-49
dynamic creation, 70-74
Find Threads operation, 35
identifier, 18,28,42,45
level of browser, 29,30-31,110
monitors, 22, 110

List Thread Monitors operation, 38
monitor command, 50
Thread Birth Monitor operation, 37
Thread Death Monitor operation, 37

running, 6, 16, 20-27
running command, 47

stepping, 20
stopped, 6, 19

Thread Birth Monitor operation, 37

Thread Death Monitor operation, 37

Thread identifier, 110

Threads button, 31

threads command, 47

tid. See Thread, identifier

Tile operation, 40,110

Time-waiting thread, 19-20

Toolset, 110

Trace of stack. See Stack trace

Transputer, version
breakpointing, 7-40, 105
compiling, 7

Trap handlers, 11

True, 56

Types, of event, 59

u
Update variable. See assign command

Utilization monitor, 80-82, 110

v
Variables

alter command, 51-52
automatic, 17,22,36, 10S
displaying the value, 22-23, 38-39, 51
of command language, 55
reference, 44
specifying, 44
static, 17,22,36,109

Version of processor, compiling, 7

Version of transputer, debugging, 7-40

w
wait construct, 58

watch command, 49-50

Watch Once operation, 37

Watch operation, 36-37

Watchpoints, 21-22, 110
commands

delete, SO
disable, 50
enable,So-S1
events,50
watch,49-50

line marker, 26, 27
operations

Delete, 37
List Watchpoints, 38
Watch, 36-37
Watch Once, 37

when construct, 58

where command, 51

while construct, S6-57

Window, 24-28
See also Attribute window; Browser window;

Code window

Windowing operations, 40

Worm. See Network analyzer

write procedure, 59

_1_18 ~~~lIDDlI9 - _

	Contents
	Preface
	1 Introduction
	2 Debugging
	2.1 Introduction
	2.1.1 Interactive debugging
	2.1.2 Post-mortem debugging
	2.1.3 Transputer versions

	2.2 Preparing a program for interactive debugging
	2.3 Running interactive debugging
	2.3.1 Example inquest command lines
	2.3.2 Errors detected by the processor
	T2/T4/T8-series except T450
	ST20450 (T450)
	T9000-series

	2.4 Post-mortem debugging
	2.4.1 Debugging after an interactive session
	2.4.2 Debugging after normal execution
	2.4.3 Example inquest command lines
	2.4.4 Proceeding after analyzing
	2.4.5 Debugging using a dump file
	Creating a dump file
	Using the dump file

	2.5 Debugging multi-threaded programs
	2.5.1 Shared code
	2.5.2 Processes
	2.5.3 Threads
	Stopped threads
	Alt-waiting, chan-waiting, timer-waiting and scheduled threads
	Stepping
	Running

	2.5.4 Initial process states

	2.6 Debugging facilities
	2.6.1 Breakpoints
	2.6.2 Single stepping
	2.6.3 Watchpoints
	2.6.4 Interrupting
	2.6.5 Thread monitors
	2.6.6 Stack tracing
	2.6.7 Examining variables
	2.6.8 Jumping down a channel
	2.6.9 Low level features

	2.7 The debugger display
	2.7.1 The browser window
	2.7.2 The attribute window
	2.7.3 The code window
	2.7.4 The output window
	Confirmations
	Output and error messages
	Events

	2.7.5 The command window
	2.7.6 Hexadecimal numbers

	2.8 The browser
	2.8.1 Program level
	2.8.2 Process level
	2.8.3 Thread level
	2.8.4 Frame level
	2.8.5 Code display

	2.9 Debugger operations
	2.9.1 File menu
	2.9.2 Execution menu
	2.9.3 Events menu
	2.9.4 Variables menu
	2.9.5 Options menu
	2.9.6 Windows menu

	3 Debugger command language
	3.1 Specifying an object
	3.1.1 Specifying a statement
	3.1.2 Specifying a processor, process, thread or frame
	3.1.3 Specifying a symbol
	3.1.4 Specifying a variable
	3.1.5 Specifying an address

	3.2 Command scope arguments
	3.2.1 Browser state
	3.2.2 Effect of command scope
	3.2.3 Processor identifier

	3.3 Command descriptions
	3.3.1 Stopping and starting
	3.3.2 Showing and setting state
	3.3.3 Thread control
	3.3.4 Setting, listing and cancelling events
	3.3.5 Examination and update of variables
	3.3.6 Stack examination
	3.3.7 Low level commands
	3.3.8 Mapping commands

	4 Command language programming
	4.1 Comments
	4.2 Variables
	4.3 Operators
	4.4 Sequencing
	4.5 Conditional commands
	4.6 Looping commands
	4.7 Procedures
	4.7.1 Arguments and returned values
	4.7.2 Invoking procedures

	4.8 Event arrival
	4.9 Built-in procedures
	4.10 Example debugging scripts
	4.10.1 Example 1
	4.10.2 Example 2
	4.10.3 Example 3
	4.10.4 Example 4
	4.10.5 Example 5
	4.10.6 Example 6
	4.10.7 Example 7
	4.10.8 Example 8
	4.10.9 Example 9
	4.10.10 Example 10
	4.10.11 Example 11
	4.10.12 Example 12

	4.11 Start-up scripts

	5 Debugging libraries
	5.1 Debugging support library
	5.1.1 Examples
	5.1.2 Action when not debugging

	5.2 Dynamic code loading support
	5.2.1 Loading processes
	5.2.2 Unloading processes
	5.2.3 INQUEST behavior with dynamically loaded code

	5.3 Dynamic thread creation
	5.3.1 Thread birth
	5.3.2 Death
	5.3.3 Example: creating a thread of execution
	5.3.4 Example: installing an ST20450 interrupt handler

	6 Execution analysis
	6.1 The execution profiler iprof
	6.1.1 How it works
	6.1.2 Preparing programs
	6.1.3 Running iprof
	6.1.4 Example iprof command line sequences
	6.1.5 Output

	6.2 The utilization monitor imon
	6.2.1 Preparing programs
	6.2.2 Running imon
	6.2.3 Example imon command line sequences
	6.2.4 Output

	6.3 The test coverage and block profiling tool iline
	6.3.1 Preparing for profiling
	6.3.2 Command line
	6.3.3 ANSI C compiler feedback
	6.3.4 Test coverage
	6.3.5 Summation files
	6.3.6 Accumulating results
	6.3.7 Selecting processors

	7 Network analyzer
	7.1 Running the network analyzer
	7.1.1 Environment variables
	7.1.2 Starting rspy
	7.1.3 The rspy command line

	7.2 Network analyzer output
	7.2.1 Hardware connection description
	7.2.2 C configurer-style hardware description
	7.2.3 occam configurer-style hardware description

	7.3 IMS C004 link switch support
	7.3.1 Switch file example
	7.3.2 Switch file syntax

	7.4 Memory
	7.4.1 How it works
	7.4.2 Output
	7.4.3 Termination characters
	7.4.4 Example memory sizing output
	7.4.5 Command line options

	7.5 User supplied .rsc code

	Appendices
	A Debugger command language syntax
	B Glossary

	Index

