
ANSI C toolset
reference manual

INMOS Limited

72 TDS 225 00 August 1990

Copyright © INMOS Limited 1990

e ,Ilnmos, IMS and occam are trademarks of INMOS Limited.

INMOS is a member of the SGS-THOMSON Microelectronics Group.

The C compiler implementation was developed from the Perihelion Software "C"
Compiler and the Codemist Norcroft "C" Compiler.

UNIX is a trademark of AT&T.

INMOS document number: 72 TDS 225 00

Contents overview
Preface

Runtime Library

1

2

Introduction and
Runtime Library

summary

Alphabetical list of
functions

An introduction to the Runtime Library with
summaries of the header files.

Detailed descriptions of each library function,
listed in alphabetical order.

Language Reference

3

4

5

New features in
ANSIC

Language
extensions

Implementation
details

Describes the new features in the ANSI stan­
dard.

Describes the ANSI C toolset language ex­
tensions.

Contains data for implementation-defined
characteristics.

Appendices

A

B

Syntax of language
extensions

ANSI compliance
data

The Index

Defines the language extensions.

Lists implementation data required by the
ANSI standard.

72 TDS 225 00 August 1990

ii

'12 TDS 225 00

Contents overview

August 1990

Contents
Contents overview

•

1

Contents

Preface

Runtime Library

Introduction and Runtime Library summary
1.1 Introduction

1.1.1 Reduced library
1.1.2 Accessing library functions
1.1.3 Linking libraries with programs
1.1.4 ISERVER protocols
1.1.5 Functions which require static

1.2 Header files
1.3 ANSI functions

1.3.1 Diagnostics <assert .h>
1.3.2 Character handling <ctype. h>
1.3.3 Error handling <errno .h>
1.3.4 Floating point constants <float .h>
1.3.5 Implementation limits <limits .h>
1.3.6 Localisation <locale. h>
1.3.7 Mathematics library <math.h>
1.3.8 Non-local jumps <set jmp . h>
1.3.9 Signal handling <signal. h>
1.3.10 Variable arguments <stdarg. h>
1.3.11 Standard definitions <stddef . h>
1.3.12 Standard i/o <stdio. h>

Characteristics of file handling
1.3.13 Reduced library i/o functions <stdiored.h>
1.3.14 General utilities <stdlib. h>
1.3.15 String handling <string. h>
1.3.16 Date and time <time. h>

1.4 Concurrency functions
1.4.1 Process control <process .h>
1.4.2 Channel communication <channel.h>
1.4.3 Semaphore handling <semaphor. h>

1.5 Other functions

iii

v

3
3
3
4
4
4
5
5
7
7
7
8
9

10
11
12
13
13
14
15
15
18
19
19
21
23
24
25
26
27
28

72 TDS 225 00 August 1990

iv

2

3

4

1.5.1 I/O primitives <ioentr1 . h>
1.5.2 float maths <mathf . h>
1.5.3 Host utilities <host. h>
1.5.4 DOS system functions <dos .h>
1.5.5 Miscellaneous functions <mise. h>

Alphabetical list of functions
2.1 Format

2.1.1 Reduced library
2.1.2 Macros

2.2 List of functions

Language Reference

New features In ANSI C
3.1 Summary of new features In the ANSI standard
3.2 Details of new features

3.2.1 Function declarations
3.2.2 Function prototypes
3.2.3 Declarations
3.2.4 Types and type qualifiers
3.2.5 Constants
3.2.6 Preprocessor extensions

Compiler directives
Predeflned macros:

3.2.7 Structures and unions
3.2.8 Trlgraphs

Trlgraph escape codes

Language extensions
4.1 Concurrency support
4.2 Pragmas
4.3 Predeflned macros
4.4 Assembly language support

4.4.1 Directives and operations
4.4.2 size option
4.4.3 Labels
4.4.4 Notes on transputer code programming
4.4.5 Useful predefined variables
4.4.6 Transputer code examples

Setting the transputer error flag
Loading constants using literal operands

Contents

28
28
30
31
32

33
33
33
33
34

325

327
327
330
330
330
331
331
333
334
334
334
334
335
336

337
337
337
338
339
339
340
340
341
341
342
342
342

•

72 TDS 225 00 August 1990

Contents v

Labels and jumps 342
Jump tables 343
Loading floating point registers 343
Using align/word to return an element of a table 344
Inserting raw machine code 344

5 Implementation details
5.1 Data type representation

5.1.1 Scalar types
5.1.2 Arrays
5.1.3 Structures
5.1.4 Unions

5.2 Type conversions
5.2.1 Integers
5.2.2 Floating point

5.3 Complier diagnostics
5.4 Environment

5.4.1 Arguments to main
5.4.2 Interactive devices

347
347
347
348
348
349
349
349
349
350
350
350
350

5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

Identifiers
Source and execution character sets
Integer operations
Registers
Enumeration types
Bit fields
volatile qualifier
Declarators
Switch statement
Preprocessing directives
Runtime library

351
351
352
352
352
352
353
353
353
354
354

A

B

Appendices

Syntax of language extensions
A.1 Notation
A.2 #pragma directive
A.3 _asm statement

ANSI compliance data
B.1 Translation
B.2 Environment
B.3 Identifiers

355

357
357
357
358

359
359
359
360

72 TDS 225 00 August 1990

vi

8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15

Index

Characters
Integers
Floating point
Arrays and pointers
Registers
Structures, unions, enumerations, and bit-fields
Qualifiers
Declarators
Statements
Preprocessing directives
Library functions
Locale-specific behaviour

Contents

360
361
362
362
363
363
364
364
364
365
366
371

373

72 TDS 225 00 August 1990

Preface
About this Manual

This manual contains information about the Runtime Library functions and the
implementation of ANSI C.

The manual is divided into two main parts plus appendices: The two main parts
are as follows:

1 Runtlme Library. Details of the INMOS C runtime library induding sum­
maries of all the header files and reference information about each of the
library functions listed in alphabetical order.

2 Language Reference. Reference material for the C language and its
implementation in the ANSI C toolset. Contains a summary of the new
features in the ANSI standard, details about language extensions, and
implementation data.

The Appendices describe the syntax of the language extensions and furnish
ANSI compliance data.

Host versions

The manual is designed to cover the following products which represent different
host versions of the toolset:

07214 - IBM and NEC PC running MS-DOS.
05214 - Sun 3 systems running SunOS
04214 - Sun 4 systems running SunOS
06214 - VAX systems running VMS

72 TDS 225 00 August 1990

viii

Documentation conventions

The following typographical conventions are used in this manual:

Bold type Used to emphasize new or special terminology.

Preface

Teletype Used to distinguish command line examples, code fragments,
and program listings from normal text.

Italic type In command syntax definitions, used to stand for an argument
of a particular type. Used within text for emphasis and for book
titles.

Braces { } Used to denote an optional items in command syntax.

Brackets [] Used in command syntax to denote optional items on the com­
mand line.

Ellipsis. . . In general terms, used to denote the continuation of a series.
For example, in syntax definitions denotes a list of one or more
items.

In command syntax, separates two mutually exclusive alterna­
tives.

72 TDS 225 00 August 1990

Runtime Library

72 TDS 225 00 August 1990

2

72 TDS 225 00

Runtlme Library

August 1990

1 Introduction and
Runtime Library
summary

This chapter introduces the ANSI C Runtime Library. It describes the library
header files that contain the function declarations, explains how to use them,
and lists the contents of each file.

1.1 Introduction

The ANSI C Runtime Library is a library of predefined functions which per­
form common programming operations such as file i/o and mathematical trans­
formations. The library supplied with the toolset is a full ANSI standard li­
brary with additional support for parallel processing, channel communication, and
semaphore handling. Some additional non-ANSI functions are also provided,
including float versions of common maths functions, low level file handling
functions, and a variety of miscellaneous operations.

Library functions are declared in a number of header files which contain functions
that are closely related with their supporting constants. The grouping of functions
into a number of files makes their declaration in a program easier and ensures
the correct format for declarations.

1.1.1 Reduced library

A reduced form of the library is provided for programs which do not require com­
munication with the host system, for example, programs that run independently
within embedded systems and processes on nodes which communicate only
with other nodes on a transputer network.

The reduced library omits all those functions which require interaction with the
server. All other functions are present, including concurrency and most non-ANSI
functions. Any program that does not call any of the i/o functions or functions
which depend on them, can be linked with the reduced library. Programs linked
with the reduced library cannot be bootstrapped by the collector and must be
configured onto a transputer network.

Three string formatting functions from the standard i/o library are separately
declared in the header file stdiored. h, to allow them to be used in programs
linked with the reduced library. Further details can be found in section 1.3.13.

72 TDS 225 00 August 1990

4 1 Introduction and Runtime Library summary

Note: Programs linked with the reduced library must be collected from a config­
uration binary file, that is, the programs must be configured.

1.1.2 Accessing library functions

Library functions must be declared like any other C function, and is simply per­
formed by including the appropriate header file; the correct file to include can
be determined from the function synopsis (see chapter 2). By using the header
file the co-declaration of the correct constants and macros for the function is
assured.

1.1.3 Linking libraries with programs

Function code is incorporated with the program by linking in the appropriate
library file.

The runtime library functions are provided in two main object files, libc. lib
for the full library, libcred. lib for the reduced library, which must be linked
with any application program that uses them. The file centry .lib is also
provided for linking with programs written in mixtures of languages.

The file collc .lib is also supplied to support the entry points used by the
earlier 3L Parallel C toolset. This system is described in appendix G '3L functions
supported' of the accompanying User Manual.

The full and reduced libraries contain function code compiled for different trans­
puter types and error modes. The correct code for the transputer target and
program error mode is selected at link time.

Two link startup files are provided for single and multitransputer C programs
which use the full library (startup .lnk) and for multitransputer C programs
which use the reduced library (startrd .lnk). The startup files contain com­
mands to direct the Iinker to select code from the correct library file, and the
libraries do not need to be specified on the linker command line.

Library files are indexed to assist module selection by the linker.

1.1.4 ISERVER protocols

All functions in the library use the communication protocols of the the host file
server to perform program i/o. These protocols are invisible to the C applications
programmer. ISERVER protocol and its underlying functions are described in
appendix D '/SERVER protocol' of the accompanying User Manual.

72 TDS 225 00 August 1990

1.2 Header files 5

The library function server_transaction provides access to low level IS­
ERVER functions.

1.1.5 Functions which require static

Certain fu~nctions in the Runtime Library require static values. If these functions
are called simultaneously by two concurrent processes there may be contention
for the same data area and return values may be unpredictable.

Functions which should be used with great care in concurrently executing pro­
cesses are as follows:

asctime
signal

getenv
stdlib

localtime
strerror

rand
strtok

set_abort_action
tmpnam

More information about the the use of these functions can be found under the
detailed function descriptions in chapter 2.

The global variable errno should also be used with great care in a concurrent
environment since there is no protection on its assignment.

1.2 Header files

Header files contain functions declarations, macros, and other definitions grouped
together for convenient reference in a program. Header files generally contain
declarations of related functions along with definitions of supporting constants
and other declarations. Header files may consist only of macros and constant,
for example, limits. h.

Header files supplied with the ANSI C toolset are listed in Table 1.1.

The rest of this chapter describes the contents of the header files and is divided
into three sections covering the three main groups of files: ANSI standard func­
tions; Concurrency functions; and Other functions. Header files in each main
group are described under generic subheadings, <stdio. h> is described un­
der the heading "Standard i/o".

72 TDS 225 00 August 1990

6 1 Introduction and Runtime Library summary

Header file Description

assert.h Diagnostics.

channel.h Channel handling.

ctype.ht Character handling and manipulation.

dos.h DOS specific operations.

errno.ht Error handling.

float.ht Real number arithmetic.

host.h Host system information.

iocntrl.h Low level file handling.

limits.ht Language implementation limits.

locale.ht Locale specific data.

math.ht Maths and trig functions.

mathf.h float versions of maths and trig functions.

misc.h Miscellaneous functions.

process.h Process startup, handling, and control.

semaphor.h Semaphore handling.

setjmp.ht Non-local jumps.

signal.ht Signal handling.

stdarg.ht Variable argument handling.

stddef.ht Standard definitions.

stdio.ht Standard i/o and file handling.

stdiored.ht Reduced library string formatting functions.

stdlib.ht General programming utilities.

string.ht String handling and manipulation.

time.ht System clock date and time.

tANSI standard files

Table 1.1 ANSI C toolset header files

72 TDS 225 00 August 1990

1.3 ANSI functions

1.3 ANSI functions

7

ANSI functions are contained in a series of header files defined in the ANSI
standard. They encompass standard function sets such as file i/o, maths and
trig functions, character and string handling, error handling, and many other
functions in common usage within existing non-ANSI environments.

1.3.1 Diagnostics <assert.h>

The header file assert.h contains a single macro definition:

Description

Inserts a diagnostic line into a program.

The definition of assert depends upon the value of the macro NDEBUG, which
is not itself defined in assert. h.

1.3.2 Character handling <ctype. h>

The header file ctype. h declares a set of functions for character identification
and manipulation. The file also contains character range macros, not listed here.

Function Description
isalnum Determines whether a character is alphanumeric.
isalpha Determines whether a character is alphabetic.
iscntrl Determines whether a character is a control character.
isdigit Determines whether a character is a decimal digit.
isgraph Determines whether a character is a printable non-space char-

acter.
islower Determines whether a character is a lower-case letter.
isprint Determines whether a character is a printable character (includ-

ing space).
ispunct Determines whether a character is a punctuation character.
isspace Determines whether a character is one which affects spacing.
isupper Determines whether a character is an upper-case letter.
isxdigit Determines whether a character is a hexadecimal digit.
tolower Converts an upper-case letter to its lower-case equivalent.
toupper Converts a lower-case letter to its upper-case equivalent.

72 TDS 225 00 August 1990

8 Introduction and Runtime Library summary

1.3.3 Error handling <errno. h>

The header file errno . h declares the error variable errno and defines codes
for the values to which it may be set. The file also contains a number of other
error codes, not listed here, which are included for compatibility with earlier
INMOS compiler toolsets.

Variable Description

errno A variable of type volatile into Set to a positive error codes
by several library routines.

Error code

EDOM

ERANGE

ESIGNUM

EIO

EFILPOS

72 TDS 225 00

Description

The argument to a floating point function is out of range.

Overflow or underflow in a floating point function.

Illegal signal number supplied to signal.

Error in low level ilo function used to communicate with the
server.

Error in file positioning functions ftell, fgetpos, or
fsetpos.

August 1990

1.3 ANSI functions

1.3.4 Floating point constants <float. h>

9

Macro Description

FLT....RADIX Radix of exponent representation.

FLT...ROUNDS Rounding mode for floating point addition.

FLT...MANT-DIG Number of digits in a float mantissa.

DBL...MANT-DIG double form of FLT...MANT-DIG.

LDBL...MANT-DIG long double form of FLT...MANT-DIG.

FLT-.EP S ILON Minimum number of type float such that 1.0 + x !=
1.0

DBL-.EPSILON double form of FLT--EPSILON.

LDBL--EP S ILON long double form of FLT--EPSILON.

FLT-.DIG Number of decimal digits of precision for float pa-
rameters.

DBL-.DIG double form of FLT-.DIG.

LDBL-DIG long double form of FLT-DIG.

FLT...MIN--EXP Minimum float exponent.

DBL...MIN--EXP double form of FLT...MIN--EXP.

LDBL...MIN--EXP long double form of FLT...MIN--EXP.

FLT...MIN Min normalised positive number of type float.

DBL...MIN double form of FLT...MIN.

LDBL...MIN long double form of FLT...MIN.

FLT...MIN_IO--EXP Minimum negative integer such that 10 raised to that
power is a normalised float number.

DBL...MIN_1O-EXP double form of FLT...MIN_IO-EXP.

LDBL...MIN_IO-EXP long double form of FLT...MIN_IO-EXP.

FLT...MAX-EXP Max integer such that FLT-RADIX raised to that
power minus 1 is a valid float number.

DBL...MAX--EXP double form of FLT...MAX_EXP.

LDBL...MAX--EXP long double form of FLT...MAX_EXP.

FLT...MAX Maximum representable number of type float.

DBL...MAX double form of FLT...MAX.

LDBL...MAX long double form of FLT...MAX.

FLT...MAX_l 0--EXP Maximum integer such that 10 raised to that power is
a valid float number.

DBL...MAX_l 0--EXP double form of FLT...MAX_IO--EXP.

LDBL...MAX_IO-EXP long double form of FLT...MAX_IO-EXP.

72 TDS 225 00 August 1990

10 1 Introduction and Runtime Library summary

1.3.5 Implementation limits <limits .h>

limits. h defines a number of implementation constants in ANSI C.

Macro Description

CHAR-BIT The number of bits in a byte.

SCHAR....MIN Min value for an object of type signed char.

SCHAR....MAX Max value for an object of type signed char.

UCHAR....MAX Max value for an object of type unsigned char.

CHAR....MIN Min value for an object of type char.

CHAR....MAX Max value for an object of type char.

SHRT....MIN Min value for an object of type short into

SHRT....MAX Max value for an object of type short into

USHRT....MAX Max value for an object of type unsigned short into

INT....MIN Min value for an object of type into

INT....MAX Max value for an object of type into

UINT....MAX Max value for an object of type unsigned into

LONG....MIN Min value for an object of type long into

LONG....MAX Max value for an object of type long into

ULONG....MAX Max value for an object of type unsigned long into

MB_LEN....MAX Max number of bytes in a multibyte character.

72 TDS 225 00 August 1990

1.3 ANSI functions

1.3.6 Localisation <locale. h>

11

The header file locale. h defines two functions, some macros for use by
setlocale, and a single structure.

Function Description

setlocale Sets or interrogates part of the program's locale.

localeconv Assigns appropriate values to components in objects of type
struct lconv for the formatting of numeric quantities, ac-
cording to the rules of the current locale.

Macro Description

LC...ALL Names the entire locale (that is, all of the following macros).

LC_COLLATE Used in the string locale functions strcoll and strxfrm.

LC_CTYPE Used in the character handling functions.

LC-NUMERIC Selects the decimal point.

LC_TIME Used in the locale dependent time functions.

LC....MONETARY Affects monetary formatting information returned by the
localeconv function.

Structure Description

lconv A structure which describes a complete locale. Components
of lconv are those of the standard ANSI C locale, which is
the only locale supported by the ANSI C toolset.

ANSI C supports only the standard "C" locale, which has the following features:

• The execution character set comprises all 256 values 0-255. Values
0-127 represent the ASCII character set.

• The collation sequence of the execution character set is the same as for
plain ASCII.

• Printing is from left to right.

• The decimal point character is ' • '.

No other locales are permitted.

72 TDS 225 00 August 1990

12 1 Introduction and Runtime Library summary

1.3.7 Mathematics library <math . h>

math. h declares general maths functions and their associated constants.

Note: All functions declared in math. h return the value 0.0 on domain errors
and set errno to ERANGE on underflow errors.

Function Description

acos Calculates the arc cosine of the argument.

asin Calculates the arc sine of the argument.

atan Calculates the arc tangent of the argument.

atan2 Calculates the arc tangent of argument 1/argument 2.

ceil Calculates the smallest integer which is not less than the argu-
ment.

cos Calculates the cosine of the argument.

cosh Calculates the hyperbolic cosine of the argument.

exp Calculates the exponential of the argument.

tabs Calculates the absolute value of a floating point number.

floor Calculates the largest integer which is not greater than the ar-
gument.

fmod Calculates the floating point remainder of argument 1/argument
2.

frexp Separates a floating point number into a mantissa and an integral
power of 2.

ldexp Multiplies a floating point number by an integer power of 2.

log Calculates the natural logarithm of the argument.

log10 Calculates the base 10 logarithm of the argument.

modf Splits the argument into fractional and integral parts.

pow Calculates x to the power y.

sin Calculates the sine of the argument.

sinh Calculates the hyperbolic sine of the argument.

sqrt Calculates the tangent of the argument.

tan Calculates the tangent of the argument.

tanh Calculates the hyperbolic tangent of the argument.

Value

A constant value returned if overflow or underflow occurs.

72 TDS 225 00 August 1990

1.3 ANSI functions

1.3.8 Non-local jumps <setjrnp.h>

13

The header file set jrnp . h declares two functions used to perform non-local
gotos, and a single variable used by them.

Function Description

longjrnp Performs a non-local jump to a given environment.

setjrnp Sets up a non-local jump.

The two functions are used in conjunction to first set a position (setjrnp), then
jump to this position (longjrnp). When longjrnp executes, it appears to the
user as if the program had just returned from the call to setjrnp. The setjrnp
must always be at a higher level than the corresponding longjrnp.

Variable Meaning

An array type used to save a calling environment.

1.3.9 Signal handling <s ignal . h>

The header file signal. h defines two functions for signal handling, one type,
and several constants.

Function Description

raise Forces a pseudo-exception via the signal handler.

signal Defines the way in which errors and exceptions are han-
dled.

Type Description
sig_atornic_t Defines an atomic variable. This is a variable whose

state is always known, and which cannot be confused
by asynchronous interrupts.

72 TDS 225 00 August 1990

14 1 Introduction and Runtime Library summary

Constant Description
SIG-DFL Uses the default system error/exception handling for the pre-

defined value.
SIG_IGN Ignores the error/exception.
SIG.-ERR Returned when the signal handler is invoked in error.
SIGABRT Abort error.
SIGFPE Arithmetic exception.
SIGILL Illegal instruction.
SIGINT Attention request from user.
SIGSEGV Bad memory access.
SIGSTERM Termination request.
SIGIO Input/output possible.
SIGURG Urgent condition on I/O channel.
SIGPIPE Write on pipe with no corresponding read.
SIGSYS Bad argument to system call.
SIGALRM Alarm clock.

SIGWINCH Window changed.
SIGLOST Resource lost.
SIGUSRl User defined signal.
SIGUSR2 User defined signal.
SIGUSR3 User defined signal.

1.3.10 Variable arguments <stdarq. h>

The header file stdarq. h contains a three functions and a type definition. The
functions are implemented as macros.

Function Description

va_arq Accesses a variable number of function arguments in a func-
tion definition.

va_end Clears up after accessing variable arguments.

va_start Initialises a pointer to a variable number of function arguments
in a function definition.

Type Description

va_list A type used to hold information required by the variable argu-
ment functions.

72 TDS 225 00 August 1990

1.3 ANSI functions

1.3.11 Standard definitions <stddef . h>

15

The header file stddef . h defines a number of commonly used data types and
macros.

Type Description

ptrdiff_t The signed integral type of the result of subtracting
two pointers.

size_t The unsigned integral type of the result of the
s izeof operator.

wchar_t An integral type whose range of values can represent
distinct codes for all members of the largest extended
character set amongst the supported locales.

Macro Description

NULL A null pointer constant which is returned by many li-
brary routi nes.

offsetof(type, Expands to an integral constant expression that has
identifier) type size_to The value is the offset in bytes from

the beginning of a structure, designated by type of
identifier.

For example:

struct item
{

long int x;
long int y;

} ;

offsetof(struct item, y) = 4 /* 2 for 16-bit machines */

1.3.12 Standard ito <stdio. h>

The header file stdio . h defines the main i/o and file handling functions, three
types, and several macros.

72 TDS 225 00 August 1990

16

Function

clearerr

fclose

feof

ferror

fflush

fgetc

fgetpos

fgets

fopen

fprintf

fputc

fputs

fread

freopen

fscanf

fseek

fsetpos

ftell

fwrite

getc

getchar

gets

perror

printf

putc

putchar

puts

remove

rename

rewind

1 Introduction and Runtime Library summary

Description

Clears the error and end-of-file indicators for a file stream.

Closes a file stream.

Tests the state of the end-of-file indicator.

Tests the state of the file error indicator.

Flushes an output stream.

Reads a character from a file stream.

Gets the position of the read/write file pointer.

Reads a line from a file stream.

Opens a file.

Writes a formatted string to a file.

Writes a character to a file stream.

Writes a string to a file stream.

Reads records from a file.

Closes an open file, and re-opens it in a given mode.

Reads formatted input from a file stream.

Sets the read/write file pointer to a specified offset in a file
stream.

Sets the read/write file pointer to a position obtained from
fgetpos.

Gives the position of the read/write pointer in the file stream.

Writes records from an array into a file.

Gets a character from a file.

Reads a character from st~ndard input.

Gets a line from standard input.

Writes an error message to the standard error output.

Writes a formatted string to standard output.

Writes a character to a file stream.

Writes a character to standard output.

Writes a Iine to standard output.

Removes access to a file.

Renames a file.

Sets the file stream's read/write position pointer to the start of
the file.

72 TDS 225 00 August 1990

1.3 ANSI functions 17

Function Description

scanf Reads formatted data from standard input.

setbuf Controls file buffering.

setvbuf Defines the way that a file stream is buffered.

sprintf Writes a formatted string to a string.

sscanf Reads formatted data from a string.

tmpfile Creates a temporary file.

tmpnam Creates a unique filename.

ungetc Pushes a character back onto a file stream.

vfprintf Writes a formatted string to a file (alternative form of fprintf).

vprintf Writes a formatted string to standard output (alternative form
of printf).

vsprintf Writes a formatted string to a string (alternative form of sprintf).

Type Description

size_t The unsigned integral type of the result of the sizeof oper-
ator.

Macro Description

FILE Defines a structure used for recording all the information that
the system needs to control a file stream. The structure con-
tains the following data:

The current position in a file.
A read/write error indicator.
An end-of-file indicator.
Information about the file buffer.
A semaphore to prevent concurrent access to the file.

fpos_t Defines a structure able to hold a unique specification of every
position within a file.

NULL A null pointer constant that is returned by many routines.

The first group of three macros in the following list define integral constants which
may be used to control the action of setvbuf; the next three macros define
integral constants which may be used to control the action of fseek, and the
remainder in the list are used throughout the I/O library:

72 TDS 225 00 August 1990

18 1 Introduction and Runtime Library summary

Macro Description

_IOFBF Full I/O buffering required.

_IOLBF Line buffering required.

_IONBF No I/O buffering required.

SEEK_SET Start seek at start of file stream.

SEEK_CUR Start seek at current p~sition in file stream.

SEEK-END Start seek at end of file stream.

BUFSIZ The buffer size given by setbuf.

EOF End of file.

L_tmpnam The size of an array used to hold temporary file names
generated by tmpnam.

TMP...MAX The maximum number of unique file names generated by
tmpnam.

FOPEN...MAX The minimum number of files that can be open simultane-
ously.

FILENAME...MAX Maximum length of filename.

Characteristics of file handling

File handling by works on streams and has the following features:

• File naming follows the conventions of the host system.

• Zero length files can exist if they are permitted by the host system.

• The same file can be opened multiple ti mes. However, because there
is no support for shared access within stdoio. h the results may be
unpredictable.

• In append mode the file position indicator is initially positioned at the end
of the file.

• Spaces written out to a file before the newline character are also read in.

• The last line of a text stream does not require a terminating newline
character.

• A write on a text stream does not cause the associated file to be truncated
beyond that point.

72 TDS 225 00 August 1990

1.3 ANSI functions 19

• No NULL characters are appended to data written to a binary stream.

• The features of file buffering are as follows:

- In unbuffered streams characters appear from the source or des­
tination as soon as possible. Transmission of characters also
occurs if input is specifically requested.

- In line-buffered streams a block of characters is built up and then
sent to the host system when a newline character occurs. Trans­
mission also occurs if input is specifically requested.

- In fully buffered streams a block of characters is sent to the host
system when the buffer becomes full.

In all buffering modes characters are also transmitted if the buffer be­
comes full, or if the stream is explicitly flushed.

1.3.13 Reduced library ilo functions <stdiored. h>

The file stdiored. h contains declarations of three print formatting functions
from stdio. h. They are for use in programs linked with the reduced runtime
library.

Macro Description

sprintf Writes a formatted string to a string.

sscanf Reads formatted data from a string.

vsprintf Writes a formatted string to a string (alternative form of
sprintf.

1.3.14 General utilities <stdlib. h>

The header file stdlib. h contains general programming utilities and associ­
ated data types, constants, and macros. Many of the functions are implemented
as macros.

72 TDS 225 00 August 1990

20

Function

abort

abs

atexit

atof

atoi

atol

bsearch

calloc

div

exit

free

getenv

labs

Idiv

malloc

rnblen

rnbtowc

rnbstowcs

qsort

rand

realloc

srand

strtod

strtol

strtoul

system

wctornb

wcstornbs

1 Introduction and Runtime Library summary

Description

Causes the program to abort. The abort is equivalent to an
abnormal termination of the program.

Calculates the absolute value of an integer.

Specifies a function to be called when the program ends.

Converts a string of characters to a double.

Converts a string to an int.

Converts a string to a long int.

Searches a sorted array for a given object.

Allocates memory space for an array of items and initialises the
space to zeros.

Calculates the quotient and remainder of a division.

Causes normal program termination.

Frees an area of memory.

Searches an environment list for a matching string.

Calculates the absolute value of a long integer.

Calculates the quotient and remainder of a long division.

allocates a specified area of memory.

Determines the number of bytes in a multibyte char.

Converts a multibyte char to a code of type wchar_to

Converts a sequence of multibyte characters to a to a sequence
of codes of type wchar_t

Sorts an array of objects.

Generates a pseudo-random number.

Changes the size of an object in memory.

Sets the seed for pseudo-random numbers generated by rand.

Converts the initial part of a string to a double and saves a pointer
to the rest 'of the string.

Converts the initial part of a string to a long int and saves a
pointer to the rest of the string.

Converts the initial part of a string to an unsigned long int and
saves a pointer to the rest of the string.

Passes a string to the host environment for execution as a host
command.

Converts a code of type wchar_t to a multibyte character.

Opposite of rnbstowcs. Converts a sequence of codes of type
wchar_t to a sequence of multibyte characters.

72 TDS 225 00 August 1990

1.3 ANSI functions 21

Type Description

size_t The unsigned integral type of the result of the sizeof
operator.

wchar_t An integral type whose range of values can represent
distinct codes for all members of the largest extended
character set amongst the supported locales.

div_t The type returned by div.

Idiv_t The type returned by Idiv.

Macro Description

NULL A null pointer constant which is returned by many library
routines.

EXIT-FAILURE An integral expression which may be used as an argu-
ment to the exit function to return unsuccessful termina-
tion status to the Host environment.

EXIT_SUCCESS As EXIT-FAILURE but for successful termination.

RAND-MAX Maximum value returned by rand function.

MB_CUR-MAX Maximum number of bytes in a multibyte character.

1.3.15 String handling <string.h>

The header file string. h declares a number of string handling functions, one
type, and string constants.

72 TDS 225 00 August 1990

22

Function

..memcpy

_strcpy

memchr

memcmp

memcpy

memmove

memset

strcat

strchr

strcmp

strcoll

strcpy

strcspn

strerror

strlen

strncat

strncmp

strncpy

strpbrk

strrchr

strspn

strstr

strtok

strxfrm

72 TDS 225 00

1 Introduction and Runtime Library summary

Description

In line version of memcpy.

In line version of strcpy.

Finds the first occurrence of a character in the first n charac­
ters of an area of memory.

Compares the first n characters of two areas of memory.

Copies characters from one area of memory to another (no
memory overlap allowed).

Copies characters from one area of memory to another (the
areas can overlap).

Fills a given area of memory with the same character.

Appends one string onto another.

Finds the first occurrence of a character in a string.

Compares two strings.

Compares two strings (transformed according to the pro­
gram's locale).

Copies one string to another.

Counts the number of characters at the start of one string
which do not match any of the characters in another string.

Converts an error number into an error message string.

Calculates the length of a string.

Appends one string onto another (up to a maximum number
of characters).

Compares the first n characters of two strings.

Copies one string to another (up to a maximum number of
characters).

Finds the first character in one string that is present in another
string.

Finds the last occurrence of a given character in a string.

Counts the number of characters at the start of a string which
are also in another string.

Finds the first occurrence of one string in another.

Converts a string consisting of delimited tokens into a series
of strings with the delimiters removed.

Transforms a string according to the locale and copies it into
an array (up to a maximum number of characters).

August 1990

1.3 ANSI functions 23

Type Description

size_t The unsigned integral type of the result of the sizeof oper-
ator.

Macro Description

NULL A null pointer constant which is returned by many library rou-
tines.

1.3.16 Date and time <time. h>

The header file time. h declares a number of functions for manipulating time,
four types, and some time and date constants.

In all the following functions the local time zone is defined by the host system.
Daylight Saving Time is not available.

Function Description

asctime Converts the values in a tm structure to an ASCII string.

clock Calculates the amount of processor time used.

ctime Converts a calendar time to a string.

difftime Calculates the difference between two calendar times.

qmtime Converts a calendar time to a broken down time, ex-
pressed as coordinated universal time (UTC time). Al-
ways returns NULL, because UTC time is not available
in this implementation.

localtime Converts a calendar time into a tm structure format.

mktime Converts a tm structure into a time_t value.

strftime Does a formatted conversion of a tm structure to a string.

time Reads the current time.

Type Description
size_t The unsigned integral type of the result of the sizeof

operator.

clock_t Used to store times in the form of ticks per second.

time_t Used to store times in a fixed format.

struct tm A calendar time structure.

72 TDS 225 00 August 1990

24 1 Introduction and Runtime Library summary

Macro Description

NULL A null pointer constant which is returned by many li-
brary routines.

CLOCKS-PER_SEC The number of clock ticks per second.

The tm structure has the following definition:

struct tm {

int tm_sec; /* Secs after min [0,61] */
int tm_min; /* Mins after hour [0,59] */

int tm_hour; /* Hours since midnight [0,23] */

int tm_mday; /* Day of month [1,31] */

int tm_mon; /* Months since Jan [0,11] */

int tm_year; /* Years since 1900 */

int tm_wday; /* Days since Sunday [0, 6] */

int tm_yday; /* Days since Jan 1 [0,365] */

int tm_isdst; /* Daylight saving flag */
}

1.4 Concurrency functions

Concurrency support en the runtime library is separated into three header files:
process. h which contains functions to set up, run, and control concurrent
processes with associated constants; channel. h which contains functions for
communicating along channels with associated channel constants such as link
addresses; and semaphor . h which contains the semaphore support functions.

72 TDS 225 00 August 1990

1.4 Concurrency functions

1.4.1 Process control <process. h>

25

Function Description
ProcAfter Delays execution of a process until after a specified

time.

ProcAlloc Allocates stack space and initialises a process.

ProcAllocClean Frees space allocated by ProcAlloc.

ProcAlt Causes a process to wait for a ready input from a se-
ries of channels. Channels are referenced by point-
ers.

ProcAltList As ProcAlt but references an array of channel
pointers.

ProcGetPriority Returns the priority of the current process. '.

Proclnit Initialises a process.

ProclnitClean Frees space allocated by Proclnit.

ProcPar Starts two or more processes in parallel.

ProcParam Alters process parameters.

ProcParList As ProcPar takes an array of processes.

ProcPriPar Starts two processes in parallel, the first being exe-
cuted at high priority and the second at low priority.

ProcReschedule Reschedules a process, that is, places it on the end
of the process queue.

ProcRun Starts a process at the same priority as the calling
process (the current priority).

ProcRunHiqh Starts a high priority process.

ProcRunLow Starts a low priority process.

ProcSkipAlt Checks specified channels for readiness to input.

ProcSkipAltList As ProcSkipAlt but takes an array of pointers to
channels.

ProcStop Stops a process.

ProcTime Reads the transputer clock.

ProcTimeAfter Determines the sequence of two transputer clock
times.

ProcTimerAlt As ProcAlt but uses a timeout.

ProcTimerAltList As ProcAltList but uses a timeout.

ProcTimeMinus Gives the difference between two transputer clock
times.

ProcTimePlus Gives the result of adding two transputer clock times.

ProcWait Delays execution of a process for a specified time.

72 TDS 225 00 August 1990

26 1 Introduction and Runtime Library summary

Type Description

Process A structure that holds all the information about a
concurrent process.

Constant Description

PROCJiIGH The value returned by ProcGetPriority for a
high priority process.

PROC_LOW The value returned by ProcGetPriority for a
low priority process.

1.4.2 Channel communication <channel. h>

Function Description

ChanAlloc Allocates and initialises a channel.

Chanln Inputs a message on a channel.

ChanlnChanFail As Chanln but incorporates the ability to reset a
channel on receipt of a message sent on another
channel (such as a link failure condition).

ChanlnChar Inputs a byte on a channel.

Chanlnit Initialises a channel.

Chanlnlnt Inputs an integer on a channel.

ChanlnTimeFail As Chanln but incorporates a timeout after which
the channel is reset if no communication occurs.

ChanOut Outputs a message on a channel.

ChanOutChanFail As ChanlnChanFail but for output channels.

ChanOutChar Outputs a byte on a channel.

ChanOutlnt Outputs an integer on a channel.

ChanOutTimeFail As ChanlnTimeFail but for output channels.

ChanReset Resets a channel.

72 TDS 225 00 August 1990

1.4 Concurrency functions 27

Type

Channel

Description

The channel type.

Constant Description

Not-Process-P A special value used in process communication and
scheduling. Returned by ChanReset.

LINKOOUT Link zero output address.

LINK10UT Link one output address.

LINK20UT Link two output address.

LINK30UT Link three output address.

LINKOIN Link zero input address.

LINK1IN Link one input address.

LINK2IN Link two input address.

LINK3IN Link three input address.

EVENT Event line address.

1.4.3 Semaphore handling <semaphor. h>

Function Description

Semlnit Initialises a semaphore.

SemAlloc Allocates and initialises a semaphore.

SemSiqnal Releases a semaphore.

SemWait Acquires a semaphore.

Type

Semaphore

Description

Defines a semaphore type.

Macro Description

SEMAPHOREINIT Initialises a semaphore (same action as Semlnit but
implemented as a macro.

72 TDS 225 00 August 1990

28 1 Introduction and Runtlme Library summary

1.5 Other functions

The header files iocntrl. h, mathf . h, host. h, dos. h, and misc. h con­
tain some further extensions to the ANSI runtime library. These include UNIX-like
ito primitives; short maths functions; host system utilities; DOS specific functions:
and miscellaneous functions including debugging support.

1.5.1 1/0 primitives <iocntrl.h>

Function Description

close Low level file close.

creat Low level file create.

filesize Returns the size of a given file.

getkey Gets the next character from the keyboard.
Waits indefinitely for the next key press. Does
not echo the character to the screen.

isatty Checks for standard terminal streams stdin,
stderror and stdout.

lseek Low level file seek.

open Low level file open.

pollkey Gets the next character from the keyboard. Re-
turns immediately if no key press is available.
Does not echo the character to the screen.

read Low level read-from-file.

server_transaction Allows access to ISERVER functions in a con-
trolled way.

unlink Low level file remove (corresponds to ANSI stan-
dard function remove).

write Low level write-to-file.

1.5.2 float maths <mathf . h>

The header file mathf. h contains declarations of the short maths functions.
Short maths functions are identical to ANSI standard functions except that all
arguments and results are of type float rather than double. Errors which
generate the error code HUGE_VAL (out of range) in the ANSI functions return
HUGE_VAL-F in the short maths functions.

72 TDS 225 00 August 1990

1.5 Other functions 29

Note: All functions declared in mathf . h return the value 0.0 on domain errors
and set errno to ERANGE on underflow errors.

Function Description

acosf Calculates the arc cosine of the float argument.

asinf Calculates the arc sine of the float argument.

atanf Calculates the arc tangent of the float argument.

atan2f Calculates the arc tangent of a fraction where the numerator and
denominator arguments are both floats.

ceilf Calculates the smallest integer which is not less than the float
argument.

cosf Calculates the cosine of the float argument.

coshf Calculates the hyperbolic cosine of the float argument.

expf Calculates the exponential function of the float argument.

fabsf Calculates the absolute value of the float argument.

floorf Calculates the largest integer which is not greater than the float
argument.

fmodf Calculates the floating point remainder of a fraction where the nu-
merator and denominator arguments are both floats.

frexpf Separates a floating point number into a mantissa and integral
power of two.

ldexpf MUltiplies a floating point number by an integral power of two.

logf Calculates the natural logarithm of the float argument.

10g10f Calculates the base-10 logarithm of the float argument.

modff Splits the float argument into fractional and integral parts.

powf Calculates x to the power of y where both x and y are floats.

sinf Calculates the sine of the float argument.

sinhf Calculates the hyperbolic sine of the float argument.

sqrtf Calculates the square root of the float argument.

tanf Calculates the tangent of the float argument.

tanhf Calculates the hyperbolic tangent of the float argument.

72 TDS 225 00 August 1990

30 1 Introduction and Runtime Library summary

1.5.3 Host utilities <host. h>

The header file host. h contains one function that returns host system informa­
tion and a number of host system constants.

Function Description

host_info Returns information about the host system and
transputer board.

Constant Description

_IMS-HOST-PC Standard PC host.

_IMS-HOST-.NEC NEC PC host.

_IMS-HOST_VAX VAX host.

_IMS-HOST_SOO3 Sun 3 host.

_IMS-HOST_SOO4 Sun 4 host.

_IMS-HOST_SOO386i Sun 386i host.

_IMS-HOST....APOLLO APOLLO host.

_IMS_OS-DOS DOS operating system.

_IMS_OS-HELIOS HELlOS operating system.

_IMS_OS_VMS VMS operating system.

_IMS_OS_SUNOS SunOS operating system.

_IMS_OS_CMS CMS operating system.

_IMS-BOARD-BOO4 IMS 8004 PC transputer board.

_IMS-BOARD-BOO8 IMS 8008 transputer module (TRAM) Mother-
board.

_IMS.-BOARD.-B010 IMS 8010 4-TRAM NEC PC Motherboard.

_IMS.-BOARD.-B011 IMS 8011 2-TRAM VME board.

_IMS.-BOARD.-B014 IMS 8014 8-TRAM VMEbus slave card.

_IMS.-BOARD-DRX11 INMOS VAX link interface board.

_IMS.-BOARD_QTO Caplin QTO VAXNMS link interface board.

_IMS.-BOARD-B015 IMS 8015 NEC 9800 PC TRAM motherboard.

_IMS.-BOARD_CAT IBM CAT transputer board.

_IMS.-BOARD.-BO 16 IMS 8016 VMEbus master/slave motherboard.

_IMS.-BOARD_UDP-LINK IMS UDP Link support product.

72 TDS 225 00 August 1990

1.5 Other functions

1.5.4 DOS system functions <dos. h>

31

The header file dos. h contains a number of functions for performing DOS sys­
tem operations, plus one type. The file also contains definitions of associated
structures, not documented here.

All the DOS specific functions return an error if they are used on operating
systems other than DOS.

Function Description

alloc86 Allocates a block of host memory for use with the to86
and from86 functions.

bdos Performs a DOS function call interrupt.

free86 Frees a block of host memory previously allocated with
alloc86.

from86 Copies a block of host memory to transputer memory.

int86 Raises a software interrupt. Segment registers are un-
touched.

int86x As int86 but also sets the processor segment registers.

intdos As int86 but specific for a DOS function call.

intdosx As intdos but also sets the segment registers.

segread Reads the segment registers.

to86 Copies a block of transputer memory to host memory.

Type

pcpointer

72 TDS 225 00

Description

A type that can be used to hold a standard PC pointer.

August 1990

32 1 Introduction and Runtime Library summary

1.5.5 Miscellaneous functions <mise. h>

The header file mise. h declares some additional non-ANSI functions, including
three debugging support functions, plus three constants that control the operation
of set_abort_aetion.

Function Description

debug_assert Stops a process on a specified condition.

debug...message Inserts a debugging message.

debug_stop Stops a process.

exit_repeat Program termination with restart. As exit but al-
lows the program to be restarted on the processor.

exit_terminate Terminates the server. Used for configured pro-
grams, otherwise like exit.

get_param Reads interface parameters for a configured
process.

max_staek_usage Estimates runtime stack usage in a program.

set_abort_aetion Sets or queries the action to be taken by abort.
The possible actions are: exit without clearing files;
or halt the transputer.

Constant Description

ABORT-EXIT Directs set_abort_aetion to cause a normal
program exit on abort.

ABORT-HALT Directs set_abort_aetion to halt the trans-
puter on abort.

ABORT_QUERY Directs set_abort_aetion to return the current
abort action without resetting it.

72 TDS 225 00 August 1990

2 Alphabetical list of
functions

This chapter contains detailed reference information for the runtime library func­
tions and their operation.

2.1 Format

Function descriptions are laid out in a standard format. First, the function name
is given, highlighted in large type, followed on the same line by a brief summary
of its action. A function synopsis follows which specifies the name of the header
file to be included and describes the function prototype.

The function synopsis is followed by detailed information about the function under
the followi ng headings:

Heading Information given

Synopsis: The file to be included and the function declaration.

Arguments: A list of the function's parameters and their meanings.

Results: The result(s) returned.

Errors: The action(s) taken on error.

Description: A detailed description of the function with examples and hints on
usage.

Example: An example of the function's use, where appropriate.

See also: A list of related functions, where appropriate.

2.1.1 Reduced library

Where functions are not available in the reduced library, this is indicated in the
function description.

2.1.2 Macros

Where functions are implemented as macros, or as both macros and regular Ce functions, this is also indicated in the detailed description.

72 TDS 225 00 August 1990

34 2 Alphabetical list of functions

For these functions the version used by the compiler depends on the syntax of
the calling statement. If the call uses parentheses around the function name (as
in (putchar) (ch»), the regular function is used; if parentheses are omitted
(as in putchar (ch»), the macro form is used instead.

2.2 List of functions

-.memcpy Optimised version of memcpy.

Synopsis:

#include <strinq.h>
void *Jnemcpy(void *sl, const void *s2, size_t n);

Arguments:

void *sl
const void *s2
size_t n

Results:

A pointer to the destination of the copy.
A pointer to the source of the copy.
The number of characters to be copied.

Returns the unchanged value of s 1.

Errors:

The behaviour of Jnemcpy is undefined if the source and destination overlap.

Description:

Jnemcpy copies n characters from the area of memory pointed to by s2 (the
source) to the area of memory pointed to by sl (the destination). It is identical
to the ANSI defined function memcpy in every way except that it is compiled
directly in line as transputer code if certain conditions are met. Further details
can be found in section 11.4 in the accompanying User Manual.

See also:

memcpy memmove

72 TDS 225 00 August 1990

2.2 List of functions

_strcpy Optimised version of strcpy.

Synopsis:

'include <strinq.h>
char *_strcpy(char *sl, const char *s2);

Arguments:

char *sl A pointer to the array used as the copy destination.
const char *s2 A pointer to the string used as the copy source.

Results:

Returns the unchanged value of s 1.

Errors:

35

The behaviour of _strcpy is undefined if the source and destination overlap.

Description:

_strcpy copies the source string (pointed to by s2) into the destination array
(pointed to by sl). It is identical to the ANSI defined function strcpy except
that it is compiled directly in line as transputer code if certain conditions are met.
Further details can be found in section 11.4 in the accompanying User Manual.

See also:

strcpy strncpy

72 TDS 225 00 August 1990

36

abort Aborts the program.

Synopsis:

#include <stdlib.h>
void abort (void) ;

Arguments:

None.

Results:

abort does not return.

Errors:

None.

Description:

2 Alphabetical list of functions

abort causes immediate termination of the program. It does not flush out­
put streams, close open streams, or remove temporary files. abort passes
SIGABRT to the signal handler, to show that the program has terminated ab­
normally.

The default action is to abort the program without halting the processor. The
function can be set to halt the processor by first calling set-abort_action
with the appropriate parameter.

If set to halt abort forces the processor to halt even if the program is not in
HALT mode, by explicitly setting the Halt-On-Error and Error flags.

See also:

set_abort_action exit exit_terminate signal

72 TDS 225 00 August 1990

2.2 List of functions

abs Calculates the absolute value of an integer.

Synopsis:

#include <stdlib.h>
int abs(int j);

Arguments:

int j An integer.

Results:

Returns the absolute value of j.

Errors:

If the result cannot be represented the behaviour of abs is
undefined.

Description:

abs calculates the absolute value of the integer j.

See also:

labs

72 TDS 225 00

37

August 1990

38 2 Alphabetical list of functions

acos Calculates the arc cosine of the argument.

Synopsis:

#include <math.h>
double acos(double x)i

Arguments:

double x A number in the range [-1 ..+1].

Results:

Returns the arc cosine of x in the range [O ..pi] radians.

Errors:

A domain error occurs if x is not in the range [-1 ..+1]. In this case errno is set
to EDOM.

Description:

acos calculates the arc cosine of a number.

See also:

acosf

72 TDS 225 00 August 1990

2.2 List of functions

acosf Calculates the arc cosine of a float number.

Synopsis:

#include <mathf.h>
float acosf(float X)i

Arguments:

float x A number in the range [-1 ..+1].

Results:

Returns the arc cosine of x in the range [O..pi] radians.

Errors:

39

A domain error occurs if x is not in the range [-1 ..+1]. In this case errno is
set to EDOM.

Description:

float form of acos.

e See also:

acos

72 TDS 225 00 August 1990

40 2 Alphabetical list of functions

alloc86 Allocates a block of host memory. DOS only.

Synopsis:

#include <dos.h>
pcpointer alloc86(int n)j

Arguments:

int n The number of bytes of host memory to be allocated.

Results:

Returns a pointer to the allocated block of host memory.

Errors:

Returns zero (0) if the allocation fails and sets errno to the value EDOS. Any
attempt to use from86 on systems other than DOS also sets errno to EDOS.
Failure of the function also generates the server error message:

[Encountered unknown primary tag (50)]

Description:

alloc86 allocates a block of memory on the DOS host and returns a pointer
to it. If the memory cannot be allocated, a NULL pointer is returned. The
allocated memory cannot be accessed directly by the transputer program but
only by means of the functions to86 and from86.

Note: Intel BOxB6 architecture limits the amount of memory which can be con­
tained in a single segment to 65536 bytes; alloc86 cannot allocate more than
this architectural limit.

See also:

from86 to86

72 TDS 225 00 August 1990

2.2 List of functions

asctime Returns time from the tm structure as an ASCII string.

Synopsis:

#include <time.h>
char* asctime(const struct tm *timeptr);

Arguments:

const struct tm *timeptr A pointer to the time structure
to be converted.

~Results:

Returns a pointer to the ASCII time string.

Errors:

None.

Description:

41

asctime returns the values in the timeptr structure as an ASCII string in the
form:

Thu Nov 05 18:19:01 1987

The string pointed to may be overwritten by subsequent calls to asctime.

Example:

/* Displays the current time */

#include <time.h>
#include <stdio.h>

int main ()
{

struct tm *now;
time t clck;

time(&clck); /* Get current time in secs */

now = localtime(&clck);
/* Convert time to

a structure (tm) */

72 TDS 225 00 August 1990

42 2 Alphabetical list of functions

printf("The time is: %s\n", asctime(now»;

Note: Care should be taken when calling asctime in a concurrent environment.
Calls to the function by independently executing, unsynchronised processes may
corrupt the returned time value.

See also:

ctime localtime strftime clock difftime mktime time

72 TDS 225 00 August 1990

2.2 List of functions

asin Calculates the arc sine of the argument.

Synopsis:

#include <math.h>
double asin(double X)i

Arguments:

double x A number in the range [-1 ..+1].

Results:

Returns the arc sine of x in the range [-pi/2..+pi/2] radians.

Errors:

43

A domain error occurs if x is not in the range [-1 ..+1]. In this case errno is set
to EDOM.

Description:

asin calculates the arc sine of a number.

See also:

asinf

72 TDS 225 00 August 1990

44 2 Alphabetical list of functions

asinf Calculates the arc sine of a float number.

#include <mathf.h>
float asinf(float X)i

Arguments:

float x A number in the range [-1 ..+1].

Results:

Returns the arc sine of x in the range [-pi/2..+pi/2] radians.

Errors:

A domain error occurs if x is not in the range [-1 ..+1]. In this case errno is
set to EDOM.

Description:

float form of asin.

See also:

asin

72 TDS 225 00 August 1990

2.2 List of functions

assert Inserts diagnostic messages.

Synopsis:

#include <assert.h>
void assert(int expression);

Arguments:

int expression The condition to be asserted.

Results:

Returns no value.

Errors:

None.

Description:

45

assert is a debugging macro. If it is called with expression equal to zero,
assert terminates the program by calling abort. The action of abort when
called by assert depends on the most recent call to set_abort_action.

If expression is non-zero, no action is taken.

If the function is linked with the full runtime library the following message is written
to stderr:

*** assertion failed: condition, file filename, line Iinenumber

If the function is linked with the reduced runtime library then no message is
displayed.

The definition of the assert macro depends upon the definition of the NDEBUG
macro. If NDEBUG is defined before the definition of assert then assert is
defined as:

#define assert(ignore) «void)O)

If assert is defined first the definition is honoured and NDEBUG is ignored.

72 TDS 225 00 August 1990

46

Example:

#include <stdio.h>
#include <assert.h>

2 Alphabetical list of functions

float divide (float a, float b)
{

assert(b == 0.0);
return a/b;

int main(void
{

float res;

res = divide(1.OF,2.0F);
printf("l.O divided by 2.0 is: %f\n",res);
res = divide(l.OF,O.OF);
printf("l.O divided by 0.0 is: %f\n",res);

}

/*
*
*

Output:

* *** assertion failed: b 0.0,
* file assert.c, line 6

*
*/

See also:

abort debug_assert

72 TDS 225 00 August 1990

2.2 List of functions

atan Calculates arc tangent.

Synopsis:

#include <math.h>
double atan(double x);

Arguments:

double x A number.

Results:

Returns the arctan of x in the range [-pi/2..+pi/2] radians.

Errors:

None.

Description:

atan calculates the arc tangent of a number.

See also:

atanf

72 lOS 225 00

47

August 1990

48 2 Alphabetical list of functions

atan2 Calculates the arc tangent of y/x.

Synopsis:

#include <math.h>
double atan2(double y, double x);

Arguments:

double y The y value.
double x The x value.

Results:

Returns the arc tangent of y/x in the range [-pi ..+pi] radians.

Errors:

A domain error occurs if x and y are zero. In this case errno is set to EDOM.

Description:

atan2 calculates the arc tangent of y/x.

See also:

atan2f

72 TDS 225 00 August 1990

2.2 List of functions

atan2 f Calculates arc tangent of y/x where both are floats.

Synopsis:

#include <mathf.h>
float atan2f(float y, float X)i

Arguments:

float y The numerator.
float x The denominator.

Results:

Returns the arc tangent of y/x in the range [-pi. .+pi] radians.

Errors:

49

A domain error occurs if x and y are zero. In this case errno is set to EDOM.

Description:

float form of atan2.

See also: atan2

72 TDS 225 00 August 1990

50 2 Alphabetical list of functions

atanf Calculates the arc tangent of a float number.

Synopsis:

#include <mathf.h>
float atanf(float X)i

Arguments:

float x A number.

Results: Returns the arc tangent of x in the range [-pi/2..+pi/2] radians.

Errors:

None.

Description: float form of atan.

See also:

atan

72 TDS 225 00 August 1990

2.2 List of functions

atexit Specifies a function to be called when the program ends.

Synopsis:

'include <stdlib.h>
int atexit(void (*func) (void»;

Arguments:

void (*func) (void) A pointer to the function to be called.

Results:

Returns zero if atexit is successful and non-zero if it is not.

Errors:

None.

Description:

51

atexit records that the function pointed to by func is to be called (without
arguments) at normal termination of the program.

A maximum of 32 functions can be recorded for execution on exit. They will be
called in reverse order of their being recorded (that is, last in, first out).

Note: In the parallel environment atexit works on program termination rather
than process termination. A maximum of 32 functions can be registered as .exit
functions per program.

Example:

'include <stdlib.h>
'include <stdio.h>

void first exit(void
(-

print:f(nFirst_exit called on exit\nn);

void second_exit(void)
(

printf(nSecond_exit called on exit\nn);

72 TDS 22500 August 1990

52 2 Alphabetical list of functions

int main(void)
{

atexit(second_exit);
atexit(first exit);
printf(IIAbout to exit from program\n");
return 0;

/*
* Output:
*
*
*
*
*
*/

About to exit from program
First exit called on exit
Second exit called on exit

See also:

exit

72 TDS 225 00 August 1990

2.2 List of functions

atof Converts a string of characters to a double.

Synopsis:

#include <stdlib.h>
double atof(const char *nptr);

Arguments:

const char *nptr A pointer to the string to be converted.

Results:

Returns the converted value.

Errors:

53

If the string cannot be converted, atof returns 0 (zero). If the conversion would
cause overflow or underflow in the double value, the behaviour is undefined.

Description:

atof converts the string pointed to by nptr to a double precision floating point
number. atof expects the string to consist of:

1. Leading white space (optional).
2. A plus or minus sign (optional).
3. ~ sequence of decimal digits, which may contain a decimal

point.
4. An exponent (optional) consisting of an 'E' or le' followed

by an optional sign and a string of decimal digits.
5. One or more unrecognised characters (including the NULL

string terminating character).

atof ignores the leading white space, and converts all the recognised charac­
ters. If there is no decimal point or exponent part in the string, a decimal point
is assumed after the last digit in the string.

The string is invalid if the first non-space character in the string is not one of the
following characters: + - 0 1 2 3 4 5 6 7 8 9

72 TDS 225 00 August 1990

-4.235120
-7.354924e+05

54

Example:

'include <stdio.h>
'include <stdlib.h>

int main ()
{
char *array;
double x;

array =" -4235.120E-3";
x = atof(array);
printf ("Float = %f\n", x);

array =" -735492.45";
x = atof(array);
printf("Float = %e\n", x);

}
/*
Prints Float

Float
*/

See also:

atoi atol strtod

72 TDS 225 00

2 Alphabetical list of functions

August 1990

2.2 List of functions

atoi Converts a string to an int.

Synopsis:

#include <stdlib.h>
int atoi(const char *nptr)i

Arguments:

const char *nptr A pointer to the string to be converted.

Results:

Returns the converted value.

Errors:

55

If the string cannot be converted, atoi returns O. If the conversion would
overflow or underflow, the behaviour is undefined.

Description:

atoi converts the string pointed to by nptr to an integer. atoi expects the
string to consist of:

1. Leading white space (optional).
2. A plus or minus sign (optional).
3. A sequence of decimal digits.
4. One or more unrecognised characters (including the NULL

string terminating character).

atoi ignores the leading white space, and converts all the recognised charac­
ters.

The string is invalid if the first non-space character in the string is not one of the
following characters: + - 0 1 2 3 4 5 6 7 8 9

Example:

#include <stdlib.h>
#include <stdio.h>

int main(void)
{

char *array;
int x;

72 TDS 225 00 August 1990

56 2 Alphabetical list of functions

array =" -4235";
x = atoi(array);
printf("Integer is: %d\n", x);

array = "-735492 and some rubbish text";
x = atoi (array) ;
printf("Integer is: %d\n", x);

/*
* Output:

*
*
*
*
*/

Integer is: -4235
Integer is: -735492

See also:

atof atol strtol

72 TDS 225 00 August 1990

2.2 List of functions

atol Converts a string to a long integer.

Synopsis:

#include <stdlib.h>
long int atol(const char *nptr);

Arguments:

const char *nptr A pointer to the string to be converted.

Results:

Returns the converted value.

Errors:

57

If the string cannot be converted, atol returns O. If the conversion would
overflow or underflow, the behaviour is undefined.

Description:

atol converts the string pointed to by nptr to a long integer. atol expects
the string to consist of:

1. Leading white space (optional).
2. A plus or minus sign (optional).
3. A sequence of decimal digits.
4. One or more unrecognised characters (including the

NULL string terminating character).

atol ignores the leading white space, and converts all the recognised charac­
ters.

The string is invalid if the first non-space character in the stri ng is not one of the
following characters: + - 0 1 2 3 456 789

Example:

#include <stdio.h>
#include <stdlib.h>

int main ()
{
char *array;
long 1;

72 TDS 225 00 August 1990

58

array =" -735492.45";
1 = atol (array) ;
printf("Lonq = %ld\n", 1);

}

2 Alphabetical list of functions

/*
Prints "Lonq
*/

See also:

-735492"

atof atoi strtod strtol

72 TDS 225 00 August 1990

2.2 List of functions

bdos Performs a simple DOS function. DOS only.

Synopsis:

#include <dos.h>
int bdos(int dosfn, int dosdx, int dosal);

Arguments:

59

int dosfn
int dosdx
int dosal

Results:

Value to assign to the ah register.
Value to assign to the dx register.
Value to assign to the al register.

Returns the value of the ax register.

Errors:

Returns zero (0) on error and sets errno to the value EDOS. Any attempt to use
bdos on operating systems other than DOS also sets errno to EDOS. Failure
of the function also generates the server error message:

[Encountered unknown primary tag (50)]

Description:

bdos p'erlorms a DOS function call interrupt on the host with the ah register
(specifying the DOS function call number) set to dosfn, and with the dx and
al registers set to dosdx and dosal respectively. It is a shorthand form of
int86 for the very simplest DOS function calls only.

bdos is not included in the reduced library.

See also:

intdos int86

72 TDS 225 00 August 1990

60 2 Alphabetical list of functions

bsearch Searches a sorted array for a given object.

Synopsis:

#include <stdlib.h>
void *bsearch(const void *key,

const void *base,
size t nmemb, size t size,
int (*compar) (const void *,

const void *»;

Arguments:

const void *key
const void *base
size_t nmemb
size_t size
int (*compar)
(const void *,
const void *)

Results:

A pointer to the object to be matched.
A pointer to the start of the array.
The number of objects in the array.
The size of the array objects.
A pointer to the comparison function.

Returns a pointer to the object if found; otherwise bsearch returns a null
pointer. If more than one object in the array matches the key, it is not defined
which one the return value points to.

Errors:

None.

Description:

bsearch searches the array pointed to by base for an object which matches
the object pointed to by key. The array contains nmemb objects of size bytes.

The objects are compared using the comparison function pointed to by compar.
The function must return an integer less than, equal to, or greater than zero,
depending on whether the first argument to the function is considered to be less
than, equal to, or greater than the second argument.

The base array must already be sorted in ascending order (according to the
comparison performed by the function pointed to by compar).

72 TDS 225 00 August 1990

2.2 List of functions

Example:

/*
* Receives a list of arguments from the
* terminal, and searches them for the
* string "findme".
*/

61

#include
#include
#include

<stdio.h>
<stdlib.h>
<string.h>

int compare(const void *argl, const void *arg2)
{

return(strncmp(*(char **)argl, *(char **)arg2,
strlen(*(char **)argl»);

int main(int argc, char *argv[])
{

char **result;
char *key = "findme";

/* sort the command line arguments according
to the string compare function 'compare' */

qsort(argv, argc, sizeof(char *), compare);

/* Find the argument which starts with
the string in 'key' */

result = (char **)bsearch(&key, argv, (size t)argc,
sizeof(char *), compare);

if (result != NULL)
printf("\n'%s' found\n", *result);

else
printf("\n'%s' not found\n", key);

See also:

qsort

72 TDS 225 00 August 1990

62 2 Alphabetical list of functions

calloc Allocates memory space for an array of items and initialises
the space to zeros.

Synopsis:

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Arguments:

size_t nmemb The number of items in the array to be allocated.
size_t size The size of the array items.

Results:

Returns a pointer to the allocated space if the allocation is successful: otherwise
calloc returns a null pointer. If either argument is zero calloc returns a
NULL pointer.

Errors:

calloc returns a null pointer if there is not enough free space in memory.

Description:

calloc allocates space in memory for an array containing nmemb items, where
each item is size bytes long. The allocated memory is initialised to zeros.

Programming note: On the T2 family of transputers pointers should always be
initialised explicitly, because the NULL pointer on these machines is represented
by a non-zero bit pattern.

See also:

free malloc realloc

72 TDS 225 00 August 1990

2.2 List of functions

ceil Calculates the smallest integer not less than the argument.

Synopsis:

'include <math.h>
double ceil(double X)i

Arguments:
1

double x A number.

Results:

63

Returns the smallest integer (expressed as a double) which is not less than x.

Errors:

None.

Description:

ceil calculates the smallest integer which is not less than x.

See also:

floor ceilf

72 TDS 225 00 August 1990

64

ceilf float form of ceil.

Synopsis:

#include <mathf.h>
float ceilf(float x);

Arguments:

float x A number.

Results:

2 Alphabetical list of functions

Returns the smallest integer (expressed as type float) which is not less than
x.

Errors:

None.

Description:

float form of ceil.

See also:

ceil

72 TDS 225 00 August 1990

2.2 List of functions 65

ChanAlloc Allocates and initialises a channel.

Synopsis:

#include <channel.h>
Channel *ChanAlloc(void);

Arguments:

None.

Results:

Returns a pointer to an initialised channel, or NULL if the space could not be
allocated.

Errors:

Returns NULL if space could not be allocated.

Description:

Allocates and initialises a channel.

Note: All channels must be allocated (by a call to ChanAlloc or or by specific
allocation of memory space) before use.

See also:

ChanReset

72 TDS 225 00 August 1990

66

Chanln Inputs data on a channel.

Synopsis:

2 Alphabetical list of functions

'include <channel.h>
void Chanln(Channel *c, void *cp, int count);

Arguments:

Channel *c A pointer to the input channel.
void *cp A pointer to the array where the data will be stored.
int count The number of bytes of data.

Results:

Returns no result.

Errors:

None.

Description:

Inputs count bytes of data on the specified channel and stores them in the
array pointed to by cp.

See also:

ChanOut Chanlnlnt ChanlnChar ChanlnChanfail
ChanlnTimeFail

72 TDS 225 00 August 1990

2.2 List of functions 67

ChanlnChanFail Inputs data on a link channel or aborts.

Synopsis:

#include <channel.h>
int ChanlnChanFail(Channel *chan, void *cp,

int count, Channel *failchan);

Arguments:

Channel *c A pointer to the input channel.
void *cp A pointer to an array where the data will be stored.
int count The number of bytes of data.
Channel *failchan A pointer to the channel on which the failure mes­

sage is received.

Results:

Returns zero (0) if communication completes, one (1) if communication is aborted
by a message on the failure channel.

Errors:

None.

Description:

ChanlnChanFail is used to perform reliable channel communication on a
link. The function inputs count bytes of data on the specified channel into the
array pointed to by cp. It can be aborted by an integer, and only an integer,
passed on failchan. Typically failchan will be a channel from a process
which is monitoring the integrity of the link.

See also:

Chanln ChanlnTimeFail

72 TDS 225 00 August 1990

68 2 Alphabetical list of functions

ChanlnChar Inputs one byte on a channel.

Synopsis:

#include <channel.h>
char ChanlnChar(Channel *c);

Arguments:

Channel *c A pointer to the input channel.

Results:

Returns the input byte.

Errors:

None.

Description:

Inputs a single byte on a channel.

See also:

ChanOutChar Chanln

72 TDS 225 00 August 1990

2.2 List of functions 69

Chanlnlnt Inputs an integer on a channel.

Synopsis:

#include <channel.h>
int Chanlnlnt(Channel *c);

Arguments:

Channel *c A pointer to the input channel.

Results:

Returns the input integer.

Errors:

None.

Description:

Inputs a single integer on a channel.

See also:

ChanOutInt ChanIn

72 TDS 225 00 August 1990

70 2 Alphabetical list of functions

Chanlnit Initialises a channel pointer.

Synopsis:

#include <channel.h>
void Chanlnit(Channel *chan)j

Arguments:

Channel *chan A pointer to a channel.

Results:

Returns no result.

Errors:

None.

Description:

Initialises the channel pointed to by chan to the value NotProcess_p.
NotProcess_p is defined in channel. h.

Example:

#include <channel.h>
#include <stdlib.h>

Channel cl, *c2j

Chanlnit(&cl)j
c2 = (Channel *)malloc(sizeof(Channel»j
Chanlnit(c2)j

See also:

ChanReset

72 TDS 225 00 August 1990

2.2 List of functions 71

ChanInTimeFail Inputs data on a channel or times out.

Synopsis:

#include <channel.h>
int ChanlnTimeFail(Channel *chan, void *cp,

int count, int time);

Arguments:

Channel *c A pointer to the input channel.
void *cp A pointer to an array where the data will be stored.
int count The number of bytes of data.
int time The time after which the communication is aborted if no

input occurs.

Results:

Returns zero (0) if the communication is successful, one (1) if timeout occurs
before the communication completes.

Errors:

None.

Description:

ChanlnTimeFail is used to timeout channel communication on a link. It
inputs count bytes of data on the specified channel and stores them in the
array pointed to by cp, or aborts if the transputer clock reaches the specified
time. Typically it is used to notify delay on a link so that the communication can
be routed elsewhere.

See also:

Chanln ChanlnChanFail ChanOutTimeFail

72 TDS 225 00 August 1990

72 2 Alphabetical list of functions

ChanOut Outputs data on a channel.

Synopsis:

#include <channel.h>
void ChanOut(Channel *c, void *cp, int count);

Arguments:

Channel *c A pointer to the output channel.
void *cp A pointer to an array containing the output data.
int count The number of bytes of data.

Results:

Returns no result.

Errors:

None.

Description:

Outputs count bytes of data on the channel c. The data is taken from the array
pointed to by cp.

See also:

Chanln ChanOutlnt ChanOutChar

72 TDS 225 00 August 1990

2.2 List of functions 73

ChanOutChanFail Outputs data or aborts on failure.

Synopsis:

'include <channel.h>
int ChanOutChanFail(Channel *chan, void *cp,

int count, Channel *failchan)i

Arguments:

Channel *c A pointer to the output channel.
void *cp A pointer to an array containing the output data.
int count The number of bytes of data.
Channel *failchan A pointer to the channel on which the failure

message is received.

Results:

Returns zero (0) if communication completes normally, one (1) if communication
is aborted by a message on the failure channel.

Errors:

One.

Description:

ChanOutChanFail is used to perform reliable channel communication on a
link. It outputs count bytes of data on the specified channel from the array
pointed to by cp. The function can be aborted by an integer, and only an integer,
passed on the channel failchan. Typically failchan will be a channel from
a process which is monitoring the integrity of the link.

See also:

ChanOut ChanOutTimeFail

72 lDS 22500 August 1990

74 2 Alphabetical list of functions

ChanOutChar Outputs one byte on a channel.

Synopsis:

#include <channel.h>
void ChanOutChar(Channel *c, char ch);

Arguments:

Channel *c A pointer to the output channel.
char ch The byte to be output.

Results:

Returns no result.

Errors:

None.

Description:

Outputs a single byte on a channel.

See also:

ChanlnChar ChanOut

72 TDS 225 00 August 1990

2.2 List of functions 75

ChanOutlnt Outputs an integer on a channel.

Synopsis:

'include <channel.h>
void ChanOutlnt(Channel *0, int n)i

Arguments:

Channel *0 A pointer to the output channel.
int n The integer to be output.

Results:

Returns no result.

Errors:

None.

Description:

Outputs a single integer on a channel.

See also:

ChanOutlnt Chanln

72 TDS 225 00 August 1990

76 2 Alphabetical list of functions

ChanOutTimeFai1 Outputs data on a channel or times out.

Synopsis:

'include <channel.h>
int ChanOutTimeFail(Channel *chan, void *cp,

int count, int time);

Arguments:

Channel *c A pointer to the output channel.
void *cp A pointer to an array containing the output data.
int count The number of bytes of data.
int time The time after which the communication is aborted if

no output occurs.

Results:

Returns zero if the communication is successful, one (1) if timeout occurs before
the communication completes.

Errors:

None.

Description:

ChanOutTimeFail is used to timeout channel communication on a link. It
outputs count bytes of data on the specified channel from the array pointed to
by cp. The functions aborts if the transputer clock reaches the specified time
before the communication takes place. Typically it is used to notify delay on a
link so that the communication can be routed elsewhere.

See also:

ChanOut ChanOutChanFail

72 TDS 225 00 August 1990

2.2 List of functions 77

ChanReset Resets a channel.

Synopsis:

#include <channel.h>
int ChanReset(Channel *c);

Arguments:

Channel *c A pointer to the channel to be reset.

Results:

Returns either NotProces s _p, or a process descriptor.

Errors:

None.

Description:

Resets a channel to the value NotProcess_p and returns the process de­
scriptor of the channel waiting to communicate, or NotProcess_p. If the value
returned is NotProcess_p, no process was waiting on the channel, and any
communication on that channel had completed successfully.

NotProcess_p is defined in channel.h.

See also:

Chanlnit

72 TDS 225 00 August 1990

78 2 Alphabetical list of functions

clearerr Clears error and end-at-file indicators tor a file stream.

Synopsis:

#include <stdio.h>
void clearerr(FILE *stream};

Arguments:

FILE *stream A pointer to a file stream.

Results:

Returns no value.

Errors:

None.

Description:

clearerr clears the error and end-at-tile indicators tor a file stream.

See also:

rewind

72 TDS 225 00 August 1990

2.2 List of functions

clock Determines the amount of processor time used.

Synopsis:

#include <time.h>
clock_t clock(void);

Arguments:

None.

Results:

79

Returns the time used by the program since it started. If the processor time
is not available or the value cannot be represented, the value (clock_t)-1 is
returned.

Errors:

If the processor time is not available or the value cannot be represented, the
value (clock_t)-1 is returned.

Description:

clock returns the processor time used by the program since it started. The
exact interval returned extends from the time the main function was called until
program termination.

To obtain the time in seconds the return value should be divided by
CLOCKS-PER_SEC.

See also:

asctime ctime localtime strftime difftime mktime time

72 TDS 225 00 August 1990

80 2 Alphabetical list of functions

close Closes a file. File handling primitive.

Synopsis:

#include <iocntrl.h>
int close(int fd);

Arguments: int fd File descriptor of the file to be closed.

Results:

Returns 0 if successful or -1 on error.

Errors:

If an error occurs close sets errno to the value EIO.

Description:

close is the low level file close function used by fclose. It takes a file
descriptor as a parameter instead of a FILE pointer. The file descriptor will
usually have been returned by the open or creat functions.

close is not included in the reduced library.

72 TDS 225 00 August 1990

2.2 List of functions

COS Calculates the cosine of the argument.

Synopsis:

'include <math.h>
double cos(double X)i

Arguments:

double x A number in radians.

Results:

Returns the cosine of x in radians.

Errors:

None.

Description:

cos calculates the cosine of a number.

See also:

cosf

72 TDS 225 00

81

August 1990

82 2 Alphabetical list of functions

cosf Calculates the cosine of a float number.

Synopsis:

#include <mathf.h>
float cosf(float x);

Arguments:

float x A number in radians.

Results:

Returns the cosine of x in radians.

Errors:

None.

Description:

float form of cos.

See also:

cos

72 TDS 225 00 August 1990

2.2 List of functions

cosh Calculates the hyperbolic cosine of the argument.

Synopsis:

#include <math.h>
double cosh(double x);

Arguments:

double x A number.

Results:

Returns the hyperbolic cosine of x.

Errors:

83

A range error will occur if x is so large that cosh would result in an overflow. In
this case cosh returns the value HUGE_VAL (with the same sign as the correct
value of the function) and errno is set to ERANGE.

Description:

cosh calculates the hyperbolic cosine of a number.

See also:

coshf

72 TDS 22500 August 1990

84 2 Alphabetical list of functions

coshf Calculates the hyperbolic cosine of a float number.

Synopsis:

#include <mathf.h>
float coshf(float x)i

Arguments:

float x A number.

Results:

Returns the hyperbolic cosine of x.

Errors:

A range error will occur if x is so large that coshf would result in an overflow.
In this case coshf returns the value HUGE_VAL-F (with the same sign as the
correct value of the function) and errno is set to ERANGE.

Description:

float form of cosh.

See also:

cosh

72 TDS 225 00 August 1990

2.2 List of functions

creat Creates a file for writing. File handling primitive.

Synopsis:

#include <iocntrl.h>
int creat(char *name, int flag);

Arguments:

85

char *name
int flag

Results:

The name of the file to be created.
A number which specifies the mode in which the file is
opened.

Returns a file descriptor for the file, or -1 on error.

Errors:

If an error occurs creat sets errno to the value EIO.

Description:

creat creates a file with filename name and opens it in 'write' and 'truncate'
modes. If the file already exists, and if the host system permits, the file is
overwritten.

The value of flag determines how the file is opened. It can take two values,
as follows:

O-BINARY Open file in binary mode.
O_TEXT Open file as a text file.

The default is to open the file as a text file.

creat has the same effect as a call to open with the following parameters:

open (name, O_WRONLY I O_TRUNC I flag);

creat is not included in the reduced library.

See also:

open

72 TDS 22500 August 1990

86 2 Alphabetical list of functions

ctime Converts a time_t value to a string.

Synopsis:

#include <time.h>
char *ctime(const time_t *timer);

Arguments:

const time_t *timer A pointer to a location containing a time.

Results:

Returns a pointer to a string describing the local time.

Errors:

None.

Description:

asctime converts the value pointed to by timer to a tm structure, and then
writes the contents of the structure into a string in the following form:

Thu Nov 05 18:19:01 1987

Example:

/* Displays the current time */
#include <time.h>
#include <stdio.h>

int Maine void
{

time_t now;

time(&now);
printf(nThe time is: %s\n",ctime(&now»;

ctime is ·equivalent to the following call to asctime:

asctime (localtime(timer»;

See also: asctime localtime strftime clock difftime
mktime time qmtime

72 TDS 225 00 August 1990

2.2 List of functions 87

debug_assert Stops process/alerts debugger if condition fails.

Synopsis:

#include <misc.h>
void debug_assert(const int exp)i

Arguments:

const int exp

Results:

Returns no result.

Errors:

.None.

Description:

An integer expression for the condition to be asserted.

debug_assert replaces assert for programs that will be debugged in break­
point mode. If expression evaluates FALSE debug_assert stops the pro­
cess and sends process data to the debugger. If expression evaluates TRUE
no action is taken.

If the program is not being run within the breakpoint debugger and the assertion
fails, then the function behaves like debug_stop.

See also:

assert debug~essage debug_stop

72 TDS 225 00 August 1990

88 2 Alphabetical list of functions

debug-Inessage Inserts a debugging message.

Synopsis:

#include <misc.h>
void debugJnessage(const char *message);

Arguments:

const char *message The text of the message.

Results:

Returns no result.

Errors:

None.

Description:

debug....message sends a message to the debugger which is displayed along
with normal program output.

If the program is not being run within the breakpoint debugger the function has
no effect.

See also:

72 TDS 225 00 August 1990

2.2 List of functions 89

debug_stop Stops a process and notifies the debugger.

Synopsis:

#include <misc.h>
void debug_stop(void);

Arguments:

None.

Results:

Returns no result.

Errors:

None.

Description:

debug_stop stops the process and sends process data to the debugger. If the
program is in HALT mode the processor halts and any other processes running
on that processor are also stopped.

If the program is not being run within the breakpoint debugger then the func­
tion stops the process or processor, depending on the error mode in which the
processor is executing.

See also:

debug_assert debug~essage

72 TDS 225 00 August 1990

90 2 Alphabetical list of functions

difftime Calculates the difference between two times.

Synopsis:

#include <time.h>
double difftime(time_t timel, time_t timeD);

Arguments:

time_t timel The first time.
time_t timeD The second time.

Results:

Returns the difference, in seconds, between timel and timeO.

Errors:

None.

Description:

difftime calculates the difference in time between timel and timeD
(timel - timeD).

See also:

asctime ctime localtime strftime clock mktime time
gmtime

72 TDS 225 00 August 1990

2.2 List of functions

diV Calculates the quotient and remainder of a division.

Synopsis:

#include <stdlib.h>
div_t div(int numer, int denom);

Arguments:

int .numer The numerator.
int denom The denominator.

Results:

91

Returns a structure of type div _t which consists of the quotient and remainder.
The structure contains:

int quot The quotient.
int rem The remainder.

Errors:

If the result cannot be represented the behaviour of div is undefined.

Description:

div calculates the quotient and remainder formed by dividing the numerator
num by the denominator denom.

See also:

ldiv

72 TDS 225 00 August 1990

92

exit Terminates a program.

Synopsis:

#include <stdlib.h>
void exit (int status);

Arguments:

2 Alphabetical list of functions

int status A value to be passed back to the calling environment.

Results:

exit does not return.

Errors:

None.

Description:

exit causes normal program termination. The actions taken are as follows:

1. The functions recorded by atexit are called in re-
verse order.

2. All open output streams are flushed.
3. All open streams are closed.
4. All files created by tmpfile are removed.
5. Control is returned to the host environment.

The value of status signals success or failure of the termination operation to
the the host environment. If status is zero or equal to EXIT_SUCCESS the
termination was successful; if status is equal to EXIT....FAILURE the termina­
tion was unsuccessful. If status is other any value than zero, EXIT_SUCCESS
or EXIT....FAILURE, the status returned is the numerical value of the argu­
ment. EXIT_SUCCESS and EXIT....FAILURE are declared in the header file
stdlib.h.

When used in a configured process exit does not terminate the server. To
terminate the server from a configured process use exit_terminate.

Caution: exit should not be called from a C function that is running in parallel
with any other function. The effect on the program may be unpredictable.

72 TDS 225 00 August 1990

2.2 List of functions

Example:

93

#include
#include

<stdlib.h>
<stdio.h>

int main(void)
{

printf ("About to do an exit \n") ;
exit(EXIT SUCCESS);
printf("Not printed\n");

See also:

atexit exit_repeat exit_terminate

72 TDS 225 00 August 1990

94 2 Alphabetical list of functions

exit_repeat Terminates a program so that it can be restarted.

Synopsis:

#include <misc.h>
void exit_repeat(int status);

Arguments:

int status A value to be passed back to the calling environment.

Results:

Returns no result.

Errors:

None.

Description:

exit_repeat terminates the C program and returns its argument to the calling
environment. Unlike exit, exit_repeat retains the program and allows it to
be rerun without rebooting the transputer.

Only programs which consist of a single C program running on a single trans­
puter, and which have been made bootable using the collector 'T' option, can
be repeat invoked. In all other cases exit_repeat acts like exit.

Caution: exit_repeat should not be called from a C function that is running in
parallel with any other function. The effect on the program may be unpredictable.

The first element of the argv array is lost in the process of calling
exit_repeat. Therefore programs that read the program name from the first
element of the array will need to be rebooted.

Note: If use is made of the predefined constants EXIT-FAILURE or
EXIT_SUCCESS then the header file stdlib. h must be included.

See also:

exit

72 TDS 225 00 August 1990

2.2 List of functions 95

exit_terminate Version of exit for configured processes.

Synopsis:

#include <misc.h>
void exit_terminate(int status);

Arguments:

int status A value to be passed back to the calling environment.

Results:

Returns no result.

Errors:

None.

Description:

exit_terminate is the equivalent of exit for a configured process (one
which has been placed on a processor by icconf).

exit_terminate works in the same way as exit by passing a single argu­
ment back to the calling environment. The argument only reaches the calling
environment if the server is terminated.

exit_terminate only works for configured programs linked with the full run­
time library. In all other cases it acts like exit.

Note: If use is made of the predefined constants EXIT-FAILURE or
EXIT_SUCCESS then the header file stdlib. h must be included.

See also:

exit exit_repeat

72 TDS 225 00 August 1990

96 2 Alphabetical list of functions

exp Calculates the exponential function of the argument.

Synopsis:

#include <math.h>
double exp(double x)i

Arguments:

double x A number.

Results:

Returns the exponential function of x.

Errors:

A range error occurs if the result of raising e to the power of x would cause
overflow. In this case exp returns the value HUGE_VAL (with the same sign as
the correct value of the function) and errno is set to ERANGE.

Description:

exp calculates the value of the constant e (2.71828...) raised to the power of a
number.

See also:

expf

72 TDS 225 00 August 1990

2.2 List of functions

expf Calculates the exponential function of a float number.

Synopsis:

'include <mathf.h>
float expf(float X)i

Arguments:

float x A number.

Results:

Returns the exponential function of x.

Errors:

97

A range error occurs if the result of raising e to the power of x would cause
overflow. In this case expf returns the value HOGE_VAL-F (with the same sign
as the correct value of the function) and errno is set to ERANGE.

Description:

float form of expo

See also:

exp

72 TDS 225 00 August 1990

98 2 Alphabetical list of functions

fabs Calculates the absolute value of a floating point number.

Synopsis:

#include <math.h>
double fabs(double x);

Arguments:

double x A number.

Results:

Returns the absolute value of the argument.

Errors:

None.

Description:

fabs calculates the absolute value of a number.

See also:

fabsf

72 TDS 225 00 August 1990

2.2 List of functions

fabsf Calculates the absolute value of a float number.

Synopsis:

#include <mathf.h>
float fabsf(float X)i

Arguments:

float x A number.

Results:

Returns the absolute value of the argument.

Errors:

None.

Description:

float form of fabs.

See also:

fabs

99

72 TDS 225 00 August 1990

100

fclose Closes a file stream.

Synopsis:

#include <stdio.h>
int fclose(FILE *stream};

Arguments:

2 Alphabetical list of functions

FILE *stream A pointer to the file stream.

Results:

Returns zero if the close was successful and EOF if it was not.

Errors:

None.

Description:

fclose closes the file stream pointed to by stream. The stream and any
associated buffers are flushed. Any buffer which was allocated by the I/O system
is deallocated.

Buffer data which is waiting to be written is sent to the host environment for
writing to the file. Buffer data which is waiting to be read is ignored.

fclose is called automatically when exit is called.

fclose is not included in the reduced library.

See also:

fopen

72 lDS 225 00 August 1990

2.2 List of functions

feof Tests tor End-Ot-File.

Synopsis:

#include <stdio.h>
int feof(FILE *stream);

Arguments:

FILE *stream A pointer to a tile stream.

Results:

101

Returns zero it the End-Ot-File indicator tor stream is clear, non-zero it it is
set.

Errors:

None.

Description:

feof tests the state ot the End-Ot-File indicator tor the tile stream stream. It
returns zero it the indicator is clear, and non-zero it it is set.

feof is not included in the reduced library.

See also:

ferror

72 TDS 225 00 August 1990

102

ferror Tests for a file error.

Synopsis:

#include <stdio.h>
int ferror(FILE *stream);

Arguments:

2 Alphabetical list of functions

FILE *stream A pointer to a file stream.

Results:

Returns zero if the error indicator for stream is clear, and non-zero if it is set.

Errors:

None.

Description:

ferror tests the state of the error indicator for the file stream stream. It
returns zero if the error indicator is clear, and non-zero if it is set.

ferror is not included in the reduced library.

See also:

feof

72 TDS 225 00 August 1990

2.2 List of functions

fflush Flushes an output stream.

Synopsis:

'include <stdio.h>
int fflush(FILE *stream);

Arguments:

FILE *stream A pointer to the stream to be flushed.

Results:

Returns EOF if a write error occurred, otherwise O.

Errors:

If a write error occurs, fflush returns EOF.

Description:

103

If stream points to an output stream, fflush causes any outstanding data
for the stream to be written to the file. The behaviour is undefined for a stream
which is neither open for output nor update.

If stream is NULL fflush flushes all streams that are open for output.

fflush is not included in the reduced library.

See also:

unqetc

72 TDS 225 00 August 1990

104 2 Alphabetical list of functions

fgetc Reads a character from a file stream.

Synopsis:

#include <stdio.h>
int fqetc(FILE *stream);

Arguments:

FILE *stream A pointer to a file stream.

Results:

Returns the next character from the file stream.

Errors:

If the stream is at End-Ot-File, the end-ot-file indicator for the stream is set and
fqetc returns EOF. If a read error occurs, the error indicator for the stream is
set and fqetc returns EOF.

Description:

fqetc returns the next character from the opened file identified by the file
stream pointer stream, and advances the read/write position indicator for the
file stream.

fqetc is not included in the reduced library.

See also:

fqets fputc qetc unqetc

e.

72 TDS 225 00 August 1990

2.2 List of functions

fgetpos Gets the position of the read/write file pointer.

Synopsis:

'include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

Arguments:

FILE *stream A pointer to a file stream.
fpos_t *pos A pointer to an object where the current value of

the read/write file pointer can be stored.

Results:

105

Returns zero if the operation was successful. If the operation fails fgetpos
sets errno to EFILPOS and returns non-zero.

Errors:

If the operation was unsuccessful, fgetpos returns a non-zero value.

Description:

fgetpos stores the position of the read/write pointer of the file stream stream
in the object pointed to by pos. This information is in a form usable by the
fsetpos function.

fgetpos is not included in the reduced library.

See also:

fsetpos

72 TDS 225 00 August 1990

106 2 Alphabetical list of functions

fgets Reads a line from a file stream.

Synopsis:

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Arguments:

char *s A pointer to a buffer to receive the string.
int n The size of the array.
FILE *stream A pointer to a file stream.

Results:

Returns s if successful. If end-of-file is encountered before a character is read,
or a read error occurs, fgets returns a NULL pointer.

Errors:

fgets returns a NULL pointer if end-of-file is encountered before a character
is read, or a read error occurs.

Description:

fgets reads a string of a maximum (n-1) characters from the file stream iden­
tified by stream. fgets stops reading when it encounters a newline character
or an end-of-file character. A string terminating character is written into the array
after the last character read. The newline character forms part of the string.

fgets is not inclUded in the reduced library.

See also:

fgetc fputs gets

72 TDS 225 00 August 1990

2.2 List of functions

filesize Determines the size of a file. File handling primitive.

Synopsis:

'include <iocntrl.h>
long int filesize(int fd);

Arguments:

int fd A file descriptor.

Results:

Returns the size of the file in bytes or -1 on error.

Errors:

If an error occurs filesize sets errno to the value EIO.

Description:

107

filesize takes a file descriptor and returns the size of the file in bytes. If the
file is open for writing, filesize returns the current size of the file.

filesize is not included in the reduced library.

72 TDS 225 00 August 1990

108 2 Alphabetical list of functions

floor Calculates the largest integer not greater than the argument.

Synopsis:

#include <math.h>
double floor(double x);

Arguments:

double x A number.

Results:

Returns the largest integer (expressed as a double) which is not greater than x.

Errors:

None.

Description:

floor calculates the largest integer which is not greater than x.

See also:

ceil floorf

. 72 TDS 225 00 August 1990

2.2 List of functions

floorf float form of floor.

Synopsis:

#include <mathf.h>
int floorf(float x)j

Arguments:

float x A number.

Results:

109

Returns the largest integer (expressed as a float) which is not greater than x.

Errors:

None.

Description:

float form of floor.

See also:

ceilf floor

72 TDS 225 00 August 1990

110 2 Alphabetical list of functions

fmod Calculates the floating point remainder of xly.

Synopsis:

#include <math.h>
double fmod(double x, double y);

Arguments:

double x The dividend.
double y The divisor.

Results:

Returns (with the same sign as x) the floating point remainder of x/y. If y is
zero errno obtains the value EDOM and fmod returns zero.

Errors:

A domain error occurs if y is zero, and the function then returns zero. A range
error occurs if the result is not representable.

Description:

fmod calculates the floating point remainder of x/y.

See also:

fmodf

72 TDS 225 00 August 1990

2.2 List of functions

fmodf Calculates the floating point remainder of xly.

Synopsis:

#include <mathf.h>
float fmodf(float x, float y);

Arguments:

float x The dividend.
float y The divisor.

Results:

111

Returns (with the same sign as x) the floating point remainder of x/y. If y is
zero errno obtains the value EDOM and fmodf returns zero.

Errors:

A domain error occurs if y is zero and a range error occurs if the result is not
representable.

Description:

float form of fmod.

See also:

fmod

72 TDS 225 00 August 1990

112

fopen Opens a file.

Synopsis:

2 Alphabetical list of functions

#include <stdio.h>
FILE *fopen(const char *filename,

const char *mode);

Arguments:

char *filename
const char *mode

Results:

The name of the file to be opened.
A string which specifies the mode in which
the file is to be opened.

Returns a file pointer to the stream associated with the newly opened file. fopen
returns a null pointer if it cannot open the file.

Errors:

If a file opened for reading does not exist or the open operation fails for any
other reason, fopen returns a null pointer.

Description:

fopen opens the file named by the string pointed to by filename, in the mode
specified by the mode string.

fopen is not included in the reduced library.

The following are valid mode strings:

72 TDS 225 00 August 1990

2.2 List of functions 113

"r" Opens a text file for reading.

"w" Opens a text file for writing. If the file already exists it is
truncated to zero length. If the file does not exist, it is created.

"a" Opens a text file for appending. If the file does not exist, it is
created.

"rh" Opens a binary file for reading.

"wb" Opens a binary file for writing. If the file already exists it is
truncated to zero length. If the file does not exist, it is created.

"ab" Opens a binary file for appending. If the file does not exist, it
is created.

"r+" Opens a text file for reading and writing.

"w+" Creates a text file for reading and writing. If the file exists, it
is truncated to zero length.

"a+" Opens a text file for reading, and writing at the end of the file.
If the file does not exist, it will be created.

"r+b" or "rb+" Opens a binary file for reading and writing.

"w+b" or "wb+" Creates a binary file for reading and writing. If the file exists,
it is truncated to zero length.

"a+b" or "ab+" Opens a binary file for reading and writing at the end of the
file. If the file does not exist, it will be created.

File output must not be followed by file input without an intervening call to
fflush or one of the file positioning functions fseek, fsetpos and rewind.
Similarly, input must not be followed by output without an intervening call to one
of these functions unless EOF is encountered.

If a file is opened with a "+" in the mode string (opened for update), the file can
be read from and written to without closing and reopening the file. However,
you must call fflush, fseek, fsetpos or rewind between read and write
operations.

Example:

'include <stdio.h>

int main(void)
{

FILE *stream;

stream = fopen("data.dat","r");

if (stream == NULL)
printf("Can't open data.dat file for

72 TDS 225 00 August 1990

114

See also:

2 Alphabetical list of functions

read\nn) ;
else

printf("data.dat opened for read\nn);

fclose fflush freopen fseek fsetpos rewind

72 TDS 225 00 August 1990

2.2 List of functions

fprintf Writes a formatted string to a file.

Synopsis:

#include <stdio.h>
int fprintf(FILE *stream, const char *format , ...);

Arguments:

FILE *stream A pointer to an output file stream.
const char *format An array of characters specifying the format.

Subsequent arguments to the format string.

Results:

115

Returns the number of characters written, or a negative value if an output error
occurs.

Errors:

Returns a negative value if an output error occurs.

Description:

fprintf writes the string pointed to by format to the file stream stream.
When fprintf encounters a percent sign % in the string, it expands the cor­
responding argument into the format defined by the format tokens after the sign.

fprintf is not included in the reduced library.

The format tokens consist of the following items:

72 TDS 225 00 August 1990

116

1. Flags (optional):

2 Alphabetical list of functions

+

(blank
space)

#

causes the output to be left-justified in its field.

causes the output to start with a '+' or i_'.

causes the output to start with a space if positive,
and a '-' if negative. If the space and + flags appear
together, the space flag is ignored.

causes:

- an octal number to begin with o.

- a hex number to begin with Ox, or OX for the
x or X conversion specifiers.

- a floating point number to contain a decimal
point in (e, E, f, G, g,).

o For d,i,o,u,x,X,e,E,f,g,G, conversions (see below),
leading zeros are used to pad the fieldwidth. If both
o and - flags both appear, the 0 is ignored. For
d,i,o,u,x,X conversions, if a precision is specified the
o flag is ignored.

2. Minimum width (optional):

The width is an integer constant which defines the minimum number of charac­
ters displayed. If the integer constant is replaced by an asterisk ('*'), an int
argument supplies the width.

3. Precision (optional):

The precision is specified by a decimal point followed by an integer constant
which defines:

• The maximum number of characters to be written in an's' conversion

• The number of digits to appear after the decimal point in an le', 'E' or If'
conversion

• The maximum number of significant digits for a 'g' or 'G' conversion

• The minimum number of digits to appear in a Id', '0', 'u ', 'x' or 'X' conver­
sion.

If the integer constant is replaced by an asterisk ('*'), an int argument supplies
the precision. If the integer constant is omitted the value is taken to be zero.

72 TDS 225 00 August 1990

2.2 List of functions

4. Type specifier (optional):

h Specifies that a following Id', ai', '0', 'u', 'x' or 'X' conversion
applies to a short int or unsigned short int, or
a following 'n' conversion applies to a pointer to a short
into

1 Specifies that a following Id', ai', '0', 'u', 'x' or 'X' conver­
sion applies to a long int or unsigned long int,
or a fol/owing 'n' conversion applies to a pointer to a long
into

L Specifies that a fol/owing le', 'E', If', 'g' or 'G' conversion
applies to a long double.

5. A single conversion character:

117

d,i The int argument is converted to signed decimal format.
o The int argument is converted to unsigned octal format.
u The int argument is converted to unsigned decimal format.

x The int argument is converted to unsigned hexadecimal format,
using the letters 'a' to 'f'.

x The int argument is converted to unsigned hexadecimal format,
using the letters 'A' to 'F'.

f The double argument is converted to the decimal format [-]
xxx.xxxx. The number of characters after the decimal point is
equal to the precision. The default precision is six.

e, E The double argument is converted to the decimal format
x.xxxxe±xx. The exponent is introduced with the conversion
character. The number of characters after the decimal point is
equal to the precision. The default precision is six.

g, G The double argument is converted to an 'f' format if the expo­
nent is less than -4 or greater than the precision. Otherwise
'g' is equivalent to 'e', and 'G' is equivalent to 'E'. Trailing zeros
are removed from the result.

c The int argument is written as a single character.
s Characters are written from the string pointed to by the argu­

ment, up to the string terminating character.
p The argument must be a pointer to a void and is converted to

hex. format for printing.
n The number of characters written so far will be put into the

integer pointed to by the argument.
% The Ok character is written.

72 TDS 225 00 August 1990

118

Example:

#include <stdio.h>

int main(void
{

2 Alphabetical list of functions

int i = 99;
int count 0;
double fp 1.5e5;
char *s = "a sequence of characters";
char nl = ' \n' ;
FILE *stream;

if ((stream = fopen("data.dat", "w"» == NULL)
printf("Error opening data.dat for write\n");

else
{

count+ fprintf(stream,
"This is %s%c", s, nl);

count+ fprintf(stream,
"%d\n%f\n", i, fp);

printf("Number of characters written to file
was: %d\n", count);

See also:

fscanf printf

72 TDS 225 00 August 1990

2.2 List of functions

fputc Writes a character to a file stream.

Synopsis:

#include <stdio.h>
int fputc(int C, FILE *stream);

Arguments:

int c The character to be written.
FILE *stream A pointer to a file stream.

Results:

119

Returns the character written if successful. If a write error occurs, fputc returns
EOF and sets the error indicator for the stream.

Errors:

fputc returns EOF if a write error occurs.

Description:

fputc converts c to an unsigned char, writes it to the output stream pointed to
by stream, and moves the read/write position for the file stream as appropriate.

fputc is not included in the reduced library.

See also:

fqetc putc

72 TDS 225 00 August 1990

120 2 Alphabetical list of functions

fputs Writes a string to a file stream.

Synopsis:

#include <stdio.h>
int fputs(const char *s, FILE *stream);

Arguments:

const char *s
FILE *stream

Results:

A pointer to the string to be written.
A pointer to a file stream.

Returns non-negative if successful, and EOF if unsuccessful.

Errors:

fputs returns EOF if unsuccessful.

Description:

fputs writes the string pointed to by s to the file stream stream. The write
does not include the string terminating character.

fputs is not included in the reduced library.

See also:

fputc

72 TDS 225 00 August 1990

2.2 List of functions

fread Reads records from a file.

Synopsis:

#include <stdio.h>
size_t fread(void *ptr, size t size, size t nmemb

FILE *stream);

Arguments:

void *ptr A pointer to a buffer that the records are read into.
size_t size The size of an individual record.
size_t nmemb The maximum number of records to be read.
FILE *stream A pointer to a file stream.

Results:

121

Returns the number of records read. This may be less than nmemb if an error
or end-of-file occurs. fread returns zero if size or nmemb is zero.

Errors:

None.

__ Description:

fread reads nmemb records of length size from the file stream stream into
the array pointed to by ptr. The read/write file pointer is incremented by the
number of characters read.

fread is not included in the reduced library.

Example:

'include <stdio.h>

FILE *stream;

int main ()
{

int i;
int numout, numin;
int buffin[10], buffout[10];
FILE *stream;

/* Write 10 integers to the file data.dat */

72 TDS 225 00 August 1990

122 2 Alphabetical list of functions

stream = fopen ("data. dat", "wb");
if (stream == NULL)

printf("error\) ;
else
{

for (i = 0; i < 10; ++i)
buffout[i] = i * i;

/* Put values in buff */

numout = fwrite«char *)buffout,
sizeof(int), 10, stream);

printf(
"number of integers written = %d\n", numout);

}
fclose(stream);

/* Read 10 integers from the file data.dat */
stream = fopen ("data. dat", "rb");
if (stream == NULL)

printf("Error opening data.dat for binary
write\n") ;

else
{

numin = fread«char *)buffin,
sizeof(int), 10, stream);

printf("number of integers read = %d\n", numin);
for (i = 0; i < 10; ++i)

printf("int %d is %d\n", i, buffin[i]);
}
fclose (stream};

See also:

feof ferror fwrite

72 TDS 225 00 August 1990

2.2 List of functions

free Frees an area of memory.

Synopsis:

#inelude <stdlib.h>
void free(void *ptr);

Arguments:

void *ptr A pointer to the area of memory to be freed.

Results:

Returns no result.

Errors:

123

If ptr does not match any of the pointers previously returned by ealloe,
malloe, or realloe, or if the space has already been freed by a call to free
or realloe, a fatal runtime error occurs and the following message is displayed:

Fatal-C_Llbrary-Error in free(), bad pointer or heap corrupted

Description:

free frees the area of memory pointed to by ptr if it has been previously
allocated by ealloe, malloe, or realloe. If ptr is a NULL pointer, no
action occurs.

See also:

ealloe malloe realloe

72 TDS 225 00 August 1990

124 2 Alphabetical list of functions

free 8 6 Frees host memory space allocated by allocS 6. DOS only.

Synopsis:

#include <dos.h>
void freeS6(pcpointer p)i

Arguments:

pcpointer p A pointer to the host memory block to be freed.

Results:

Returns no result.

Errors:

If an error occurs freeS 6 sets errno to the value EDOS. Any attempt to use
freeS 6 on operating systems other than DOS also sets errno to EDOS. Failure
of the function also generates the server error message:

[Encountered unknown primary tag (50)]

Description:

freeS6 returns the block of host memory identified by p to DOS for re-use. p
must be a pcpointer previously returned by allocS 6.

freeS 6 is not included in the reduced library.

See also:

allocS6

72 TDS 225 00 August 1990

2.2 List of functions

freopen Closes an open file and reopens it in a given mode.

Synopsis:

#include <stdio.h>
FILE *freopen(const char *filename, const char

*mode, FILE *stream)j

Arguments:

const char *filename The name of the file td be opened.
const char *mode A string which specifies the mode in

which the file is to be opened.
FILE *stream A pointer to a file stream.

Results:

125

Returns the value of stream is associated with the newly opened file, or a
NULL pointer if the file cannot be opened.

Errors:

If the open fails freopen returns a NULL pointer.

Description:

freopen attempts to close the file associated with the file stream stream.
Failure to close the file is ignored, error and end-of-file indicators for the stream
are cleared, and freopen then opens the file referenced by filename and
associates the file with the file stream stream.

The file is opened in the mode specified by the string mode. Valid modes are
the same as for fopen.

freopen is not included in the reduced library.

freopen is normally used for redirecting the stdin, stdout and stderr
streams.

72 TDS 225 00 August 1990

126

Example:

#include <stdio.h>

int main(void)
{

FILE *stream;

2 Alphabetical list of functions

/* assign stdout to a named file */
printf("This text goes to stdout\n");

stream = freopen("data.dat", "w", stdout);
if (stream == NULL)

printf("Couldn't freopen stdout to
data.dat\n");

else
{

printf("This text goes to data.dat\n");
fclose(stream);

See also:

fopen

72 TDS 225 00 August 1990

2.2 List of functions 127

f rexp Separates a floating point number into a mantissa and an integral
power of 2.

Synopsis:

#include <math.h>
double frexp(double value, int *exp)i

Arguments:

double value The floating point number.
int *exp A pointer to an integer where the exponent is

stored.

Results:

Returns the mantissa part of value. The mantissa is returned in the range [0.5
... 1) or zero. The exponent is stored in the int pointed to by expo

Errors:

A domain error may occur.

Description:

frexp separates the floating point number value into a mantissa and an integral
power of 2. The exponent is stored in the int pointed to byexp. The mantissa
is returned by the function.

If x is the value returned by frexp and y is the exponent stored in *exp then:

value = x * 2**y

If value is zero then both x and y will be zero.

Example:

#include <math.h>
#include <stdio.h>

int Maine void
{

double x;
double mantissa;
int exponent;

72 TDS 225 00 August 1990

128 2 Alphabetical list of functions

x = 3.141;
mantissa = frexp(x,&exponent);
printf(nx = %f, mantissa = %f, exponent

x, mantissa, exponent);
}
/*
* Output:

%d\nn,

*
*
*
*
*/

See also:

ldexp frexpf

72 TDS 225 00

x = 3.141000, mantissa
exponent = 2

0.785250,

August 1990

2.2 List of functions 129

frexpf Separates a floating point number into a mantissa and an in­
tegral power of 2.

Synopsis:

'include <mathf.h>
float frexpf(float value, int *exp);

Arguments:

float value The floating point number.
int *exp A pointer to the int into which the exponent is put.

Results:

Returns the mantissa part of value. The mantissa is returned in the range [0.5... 1)
or zero. The exponent is stored in the int pointed to by expo

Errors:

None.

Description:

e f10at form of frexp.

See also:

ldexpf frexp

72 TDS 225 00 August 1990

130 2 Alphabetical list of functions

f rom8 6 Transfers host memory to the transputer. DOS only.

Synopsis:

'include <dos.h>
int from86(int len, pcpointer there, char *here)i

Arguments:

int len The number of bytes of host memory to be
transferred.

pcpointer there A pointer to the host memory block.
char *here A pointer to the receiving block in transputer

memory.

Results:

Returns the actual number of bytes transferred.

Errors:

Returns the number of bytes transferred until the error occurred and sets errno
to the value EDOS. Any attempt to use from86 on systems other than DOS
also sets errno to EDOS. Failure of the function also generates the server error
message:

[Encountered unknown primary tag (50)]

Description:

from86 transfers len bytes of host memory starting at there to a corre­
sponding block starting at here in transputer memory. The function returns the
number of bytes actually transferred. The host memory block used will normally
have been previously allocated by a call to alloc86.

from86 is not included in the reduced library.

See also:

to86 alloc86

72 TDS 225 00 August 1990

2.2 List of functions

f scanf Reads formatted input from a file stream.

Synopsis:

#include <stdio.h>
int fscanf(FILE *stream, const char *format, ...)i

Arguments:

FILE *stream An input file stream.
const char *format A format string.

Subsequent arguments to the format string.

Results:

131

Returns the number of inputs which have been successfully converted. If an end­
of-file character occurred before any conversions took place, fscanf returns
EOF.

Errors:

If an end-of-file character occurred before any conversions took place, fscanf
returns EOF. Other failures cause termination of the procedure.

Description:

fscanf matches the data read from the input stream stream to the specifi­
cations set out by the format string. The format string can include white space,
ordinary characters, or conversion tokens:

1. Whitespace causes the next series of white space characters read to be
ignored.

2. Ordinary characters in the format string cause the characters read to be
compared to the corresponding character in the format string. If the characters
do not match, conversion is terminated.

3. A conversion token in the format string causes the data sequence read in
to be checked to see if it is in the specified format. If it is, it is converted and
placed in the appropriate argument following the format string. If the data is not
in the correct format, conversion is terminated.

The conversion tokens consist of the following items:

1. Token signifier:

72 TDS 225 00 August 1990

132

% (percent character)

2. Assignment suppressor (optional):

2 Alphabetical list of functions

* (asterisk). This causes the data sequence to be read in but not assigned
to an argument. Tokens that use the assignment suppressor should not
have a corresponding argument in the argument list.

3. Maximum width (optional):

The width is a decimal integer constant defining the maximum number
of characters to be read.

4. Type specifier (optional):

h Specifies that a following 'd', 'i', 'n', '0', 'u', or 'x' conversion
applies to a short int or unsigned short into

1 Specifies that a following 'd', 'i', 'n', '0', 'u' or 'x' conversion
applies to a long int or unsigned long int, and
a following 'e', 'f' or 'g' conversion applies to a double.

L Specifies that a following 'e', 'f' or 'g' conversion applies to
a long double.

5. A single conversion character:

d Expects an (optionally signed) decimal integer. Requires a
pointer to an integer as the corresponding argument.

i Expects an (optionally signed) integer constant. Requires a
pointer to an integer as the corresponding argument.

o Expects an (optionally signed) octal integer. Requires a
pointer to an integer as the corresponding argument.

u Expects an (optionally signed) decimal integer. Requires a
pointer to an unsigned integer as the corresponding argument.

x Expects an (optionally signed) hex integer (optionally pre­
ceded by an Ox or OX). Requires a pointer to an integer as
the corresponding argument.

72 TDS 225 00 August 1990

2.2 List of functions 133

e, f, q Expects an (optionally signed) floating point character con­
sisting of the following sequence of characters:

1. A plus or minus sign (optional).

2. A sequence of decimal digits, which may contain a decimal
point.

3. An exponent (optional) consisting of an 'E' or 'e' followed
by an optional sign and a string of decimal digits. Requires a
pointer to a double as the corresponding argument.

s Expects a string. Requires a pointer to an array large enough
to hold (size of the string plus a terminating null char) charac­
ters as the corresponding argument.

[Signifies the start of a scanset.
[set] Expects a string made up of the characters included between

the square brackets.
[A set] expects a string made up of characters which are not included

between the square brackets. The right bracket character can
be included in the match set by beginning the scan set as
follows: [] or [A].

[- set] Treated as any other character, no matter where it appears in
the scan set.

Requires a pointer to an array large enough to hold the size
of the string plus a terminating null character, (which will be
added automatically) as the corresponding argument.

p Expects a hexadecimal string. Requires a pointer to a void
pointer as the corresponding argument.

n The number of characters received so far will be put into the
integer pointed to by the argument. This does not increment
the assignment count returned.

% Matches the % character.

Any mismatch between the token format and the data received causes an early
termination of fscanf.

fscanf is not included in the reduced library.

Example:

#include <stdio.h>

int main(void)
{

72 TDS 225 00 August 1990

134 2 Alphabetical list of functions

FILE *stream;
int numin;
int numout;
float fp;
int i;

/* Create a file containing a number of items */
stream = fopen ("data.dat", "w");

if (stream == NULL)
printf("Couldn't open data.dat for write\n");

else
{

numout fprintf(stream, "%f %d",
3.141, 1024);

printf(
"Number of characters written: %d\n",
numout) ;

fclose (stream) ;

/* Read a number of items from the file */
stream = fopen("data.dat", "r");
if (stream == NULL)

printf("Couldn't open data.dat for read\n");
else
{

numin 0;
numin numin + fscanf(stream, n%f", &fp);
numin numin + fscanf(stream, "%d", &i);
printf ("Number of fields read: %d\n", numin);
printf("Items read were: %f %d\n",fp, i);

/* Output:

*
* Number of characters written: 13
* Number of fields read: 2
* Items read were: 3.141000, 1024
*/

See also:

fprintf

72 TDS 225 00 August 1990

2.2 List of functions

f seek Sets the file pointer to a specified offset.

Synopsis:

#include <stdio.h>
int fseek(FILE *stream, long int offset,

int whence);

Arguments:

135

FILE *stream
long int
offset
int whence

Results:

A pointer to a file stream.
The distance the read/write pointer is moved.

The start position for the read/write pointer.

Returns non-zero if called incorrectly, otherwise fseek returns zero.

Errors:

fseek returns non-zero on error.

Description:

fseek is used to move the read/write position pointer of a file to a specified
offset within the file stream stream. The offset is measured from a position
defined by whence and can take the following values:

1 SEEK_SET is the start of the file stream.
2 SEEK_CUR is the current position in the file stream.
3 SEEK_END is the end of the file stream.

If the file stream is a text stream the offset should either be zero or whence
should be set to SEEK_SET, and offset should be a value returned by a
ftell.

fseek clears the end-of-file indicator for stream and undoes the effects of
ungetc. The file stream may be both read from and written to after fseek has
been called, provided the stream has been opened in an appropriate mode.

Example:

'include <stdio.h>

72 TDS 225 00 August 1990

136 2 Alphabetical list of functions

int main(void)
{

FILE *stream;
int result;
stream = fopen("data.dat", "wb+");

if (stream == NULL)
printf("couldn't open data.dat for write\n");

else
{

fprintf(stream,"%s","123456789");

/* Reset to beginning of file */
result = fseek(stream, OL, SEEK_SET);

if (result)
printf("couldn't do fseek\n");

else
printf("first char in file is: %c\n",

getc(stream»;

/* Reset to beginning of file */
result = fseek(stream, OL, SEEK_SET);

/* Move to third byte in file */
result = fseek(stream, 2L, SEEK_CUR);

if (result)
printf("couldn't do fseek\n");

else
printf("third char in file is: %c\n",

getc(stream»;

/* Move to last byte in file */
result = fseek(stream, -lL, SEEK_END);

if (result)
printf("couldn't do fseek\n");

else
printf("last char in file is: %c\n",

getc (stream)) ;

See also:

fsetpos, ftell,unqetc

72 TDS 225 00 August 1990

2.2 List of functions 137

f setpos Sets the read/write file pointer to an fpos_t value obtained
from fgetpos.

Synopsis:

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Arguments:

FILE *stream A pointer to a file stream.
const fpos_t *pos A pointer to an object containing the new value

of the read/write file pointer.

Results:

Returns zero if the operation was successful, and nOrJ-zero on failure.

Errors:

If the operation was unsuccessful, fsetpos sets errno to EFILPOS and
returns a non-zero value.

Description:

fsetpos sets the read/write position pointer of the file stream stream to the
value in pos. pos shall contain a value previously returned by fgetpos.

A successful call to fsetpos clears the end-of-file indicator for the stream and
will undo the effects of an ungetc operation on the same stream. The file
stream may be both read from and written to after fsetpos has been called,
provided it has been opened in an appropriate mode.

fsetpos is not included in the reduced library.

'include <stdio.h>

int main(void)
{

FILE *stream;
fpos t filepos;
int ch;

stream = fopen("data.dat","w+");
if (stream == NULL)

printf("Couldn't open data.dat for read\n");

72 lDS 225 00 August 1990

138 2 Alphabetical list of functions

else
{

fprintf(stream, "123456789");
rewind (stream) ;
ch = getc(stream);
printf("l'irst char in file is '%c'\n",ch);

/*
* Remember: getc() advances file pointer,
* so it now points
* to the second character in the file.
*/

if (fgetpos(stream,&filepos) != 0)
printf("Error with fgetpos\n");

ch = getc(stream);
printf("Second char in file is '%c'\n",ch);
ch = getc(stream);
printf("Third character in file is '%c'\n",ch);

if (fsetpos (stream, &filepos) !=O)
printf ("Error with fsetpos \n") ;

ch = getc(stream);
printf(
"Reset file ptr and read 2nd char which is '%c'\n",
ch);

fclose(stream);

See also:

fqetpos fseek unqetc

72 TDS 225 00 August 1990

2.2 List of functions 139

ftell Returns the position of the read/write pointer in a file stream.

Synopsis:

#include <stdio.h>
long int ftell(FILE *stream);

Arguments:

FILE *stream A pointer to a file stream.

Results:

Returns the current value of the read/write position indicator for the file stream
stream, or -1 on error.

Errors:

ftell returns -1 on error and sets errno to EFILPOS.

Description:

ftell returns the current value of the read/write position indicator for the file
stream stream. For a binary stream the value is the number of characters from
the beginning of the file. For a text stream the value is unspecified but can be
used by fseek to reposition the file position indicator to its original position at
the time of the call to ftell.

ftell is not included in the reduced library.

See also:

fseek

72 TDS 225 00 August 1990

140 2 Alphabetical list of functions

fwrite Writes records from an array into a file.

Synopsis:

#include <stdio.h>
size t fwrite(const void *ptr, size_t size,

- size t nmemb, FILE *stream};

Arguments:

void *ptr A pointer to a buffer that the records are read from.
size_t size The size of an individual record.
size_t nmemb The maximum number of records to be written.
FILE *stream A pointer to a file stream.

Results:

Returns the number of records written. This may be less than nmemb if a write
error occurs.

Errors:

fwrite returns zero if size or nmemb is zero.

Description:

fwrite writes nmemb records of length size from the array pointed to by ptr
into the file stream stream. The read/write file pointer is incremented by the
number of characters written. If an error occurs, the value of the file position
indicator is indeterminate.

fwrite is not included in the reduced library.

See also:

fread

72 TDS 225 00 August 1990

2.2 List of functions 141

get_param Reads parameters for a configured process.

Synopsis:

#include<misc.h>
void *get_param(int n);

Argumerits:

int n The index of the required parameter in the interface list.

Results:

Returns no result.

Errors:

The function returns NULL on error. Possible errors are:

1 Using the function when it is not valid, Le. from a program not configured
using icconf.

2 Using a value of n less than 1.

3 Using a value of n which is greater than the number of available param­
eters.

Description:

get_param reads parameters from the list specified in the interface at­
tribute for a configured process. It can only be used from a program which has
been configured using icconf and has not been linked with the entry points
MAIN. ENTRY, PROC. ENTRY or PROC. ENTRY. RC (used only for compatibility
with code generated by previous toolsets, as described in appendix F 'occam
interface code' of the accompanying User Manual).

get_param is used to access the parameters given to a process in the interface
list at configuration level. It returns the nth parameter in the parameter list (n is
a non-zero positive integer). If the parameter is a scalar then a pointer to the
parameter is returned. If the parameter a channel or array then the channel or
array pointer itself is returned.

The following example shows how a C program can use get_param to obtain
the value of a variable defined in the interface parameter list of a process defined
at configuration level. The configuration description includes all the placements
necessary to configure the process on a single processor.

72 TDS 225 00 August 1990

142

C program:

#include <stdio.h>
#include <stdlib.h>
#include <misc.h>

int main ()
{

int *value;

2 Alphabetical list of functions

value = (int *)qet-param(3);
printf("value = %d\n", *value);
exit_terminate(EXIT_SUCCESS);

Configuration description:

/* Hardware description */
T414 (memory = 2M) B403;

connect B403.link[0], host;

/* Software description */
process(stacksize = 20k, heapsize 20k,

interface(input in,
output out,
int value» test;

test (value 427);

input from_host;
output to_host;

connect test.in, from_host;
connect test.out, to_host;

/* Network mapping */
use "testl.lku" for tes'b;
place test on B403;

place to host on host;
place from host on host;

place test.in on B403.link[0];
place test.out on B403.link[0];

72 TDS 225 00 August 1990

2.2 List of functions 143

The C program obtains the value 427 by reading the third interface parameter to
the configured process test and then displays it.

72 TDS 225 00 August 1990

144

getC Gets a character from a file.

Synopsis:

#inelude <stdio.h>
int gete(FILE *stream};

Arguments:

2 Alphabetical list of functions

FILE *stream A pointer to a file stream.

Results:

Returns the next character from the file stream.

Errors:

If the next character is the end-of-file character, or a read
error occurs, gete returns EOF.

Description:

gete returns the next character from the opened file identified by the file stream
pointer, and advances the read/write position indicator for the file stream.

gete is not included in the reduced library.

See also:

fgete getchar pute

72 TDS 225 00 August 1990

2.2 List of functions

getenv Returns the name of a host environment variable.

Synopsis:

'include <stdlib.h>
char *qetenv(const char *name)i

Arguments:

145

const char *name A pointer to the host variable name to be matched.

Results:

Returns a pointer to the matched string in the host environment variable list. If
no match is found, a NULL pointer is returned.

Errors:

None.

Description:

qetenv returns the string associated with the host environment variable name.
The string must not be modified by the program but can be overwritten try a
subsequent call to qetenv.

qetenv is not included in the reduced library.

Note: Care should be taken when calling qetenv in a concurrent environment.
Calls to the function by independently executing, unsynchronised processes may
corrupt the returned char pointer.

Example:

'include <stdlib.h>
'include <stdio.h>

int main(void)
{

char *envvar;
envvar = getenv("IBOARDSIZE");
if (envvar == NULL)

printf("IBOARDSIZE variable not set\n");
else

printf("IBOARDSIZE is : %\n",envvar);

72 TDS 225 00 August 1990

146 2 Alphabetical list of functions

getkey Reads a character from the keyboard.

Synopsis:

#include <iocntrl.h>
int getkey(void)i

Arguments:

None.

Results: Returns the ASCII value of the character, or -1 on error.

Errors: Returns -1 if an error occurs.

Description: getkey returns the value of the next character typed at the key­
board. The routine waits indefinitely for the next keystroke and only returns when
a key is available. The effect on any buffered data in the standard input stream
is host-defined. The character read is not echoed at the terminal.

getkey is not included in the reduced library.

See also:

pollkey

72 TDS 225 00 August 1990

2.2 List of functions

gmtime Returns a UTC time.

Synopsis:

#include <time.h>
struct tm *gmtime(const time_t *timer)i

Arguments:

const time_t Calendar time pointed to by timer.
*timer

Results:

147

Returns a pointer to a broken-down time expressed as UTC time, or NULL if
UTC time is unavailable.

Errors:

Returns NULL if UTC time is not available.

Description:

gmtime converts a calendar time into a standard time format. The standard
format used is Coordinated Universal Time (UTC).

Note: UTC is unavailable in this implementation and gmtime always returns
NULL.

See also:

asctime ctime difftime localtime strftime clock mktime
time

72 TDS 225 00 August 1990

148 2 Alphabetical list of functions

host_info Gets data about the host system.

Synopsis:

#include <host.h>
void host_info(int *host, int *os, int *board)j

Arguments:

int *host A pointer to an int where the host type code will be stored.
int *os A pointer to an int where the operating system type code

will be stored.
int *board A pointer to an int where the board type code will be stored.

Results: Returns no result. Writes host system attributes into host, os, and
board.

Errors: If any host attribute is unavailable it is given the value O.

Description: host_info returns information about the host environment. It
stores codes for the host type, host operating system and transputer board in
the locations pointed to by host, os, and board respectively.

host_info is not included in the reduced library.

The values that host can take are defined in the header host. h and are as
follows:

1 _IMS-HOST-PC

2 _IMS-HOST-.NEC

4 _IMSJlOST_SUN3

6 _IMS-HOST_SUN386i

7 _IMS-HOST...APOLLO

72 TDS 225 00 August 1990

2.2 List of functions

The values that os can take are as follows:

1 _IMS_OS-DOS

2 _IMS_OS-HELIOS

3 _IMS_OS_VMS

4 _IMS_OS_SUNOS

5 _IMS_OS_CMS

The values that board can take are as follows:

1 _IMS-BOARD-B004

2 _IMS-BOARD-B008

3 _IMS.J30ARD.J3010

4 _IMS.J30ARD.J3011

5 _IMS.J30ARD.J3014

6 _IMS.J30ARD-DRX11

7 _IMS-BOARD_QTO

8 _IMS-BOARD-B015

9 _IMS-BOARD_CAT

10 _IMS-BOARD.J3016

11 _IMS.J30ARD_UDP _LINK

72 TDS 225 00

149

August 1990

150 2 Alphabetical list of functions

int8 6 Performs a DOS software interrupt. DOS only.

Synopsis:

#include <dos.h>
int int86(int intno, union REGS *inregs,

union REGS *outregs);

Arguments:

int intno
union REGS *inregs
union REGS" ~Q,utregs

Results:

The host software interrupt ID.
Values to be placed in processor registers.
Register values after the interrupt.

Returns the value of the ax register after the interrupt.

Errors:

Returns zero (0) on error and sets errno to the value EDOS. Any attempt to
use int86 on operating systems other than DOS also sets errno to EDOS.
Failure of the function also generates the server error message:

[Encountered unknown primary tag (50)]

Description:

int86 calls the host software interrupt identified by intno with the registers
set to inregs. Register values after the interrupt are returned in outregs and
the contents of the ax register is returned as the function result.

Segment registers cs, ds, ex, and ss are not set.

int86 is not included in the reduced library.

See also:

int86x intdos

72 TDS 225 00 August 1990

2.2 List of functions 151

int8 6x Software interrupt with segment register setting. DOS only.

Synopsis:

#include <dos.h>
int int86x(int intno, union REGS *inregs,

union REGS *outregs,
struct SREGS *segregs);

Arguments:

int intno The DOS software interrupt ID.
union REGS *inregs Values to be placed in processor register~.

union REGS *outregs Register values after the interrupt.
struct SREGS *segregs Values to be placed in segment registers.

Results:

Returns the value of the ax register after the interrupt.

Errors:

Returns zero (0) on error and sets errno to the value EDOS. Any attempt to
use int86x on operating systems other than DOS also sets errno to EDOS.
Failure of the function also generates the server error message:

[Encountered unknown primary tag (50)]

Description:

int86x calls the host software interrupt identified by intno with the registers
set to inregs and the segment registers set to segregs. Register values
after the interrupt are returned in outregs and the contents of the ax register
is returned as the function result.

int86x is useful for DOS calls which take pointers to objects, normally specified
by combining a 16-bit register with a segment register. If only some of the
segment registers are modified, segread should be used to read values from
the others. Failure to do so can produce unpredictable results.

See also:

int86 intdosx

72 TDS 225 00 August 1990

152 2 Alphabetical list of functions

intdos Performs a DOS interrupt. DOS only.

Synopsis:

#include <dos.h>
int intdos(union REGS *inregs,

union REGS *outregs);

Arguments:

union REGS *inregs
union REGS *outregs

Results:

Values to be placed in processor registers.
Register values after the interrupt.

Returns the value of the ax register after the interrupt.

Errors:

Returns zero (0) on error and sets errno to the value EDOS. Any attempt to
use intdos on operating systems other than DOS also sets errno to EDOS.
Failure of the function also generates the server error message:

[Encountered unknown primary tag (50)]

Description:

As int86 but calls the specific host software interrupt identified by hexadecimal
21 (DOS function call).

See also:

int86 intdosx

72 TDS 225 00 August 1990

2.2 List of functions

intdosx DOS interrupt with segment register setting. DOS only.

Synopsis:

'include <dos.h>
int intdosx(union REGS *inregs,

union REGS *outregs,
struct SREGS *segregs);

Arguments:

153

union REGS *inregs Values to be placed in processor registers.
union REGS *outregs Register values after the interrupt.
struct SREGS *segregs Values to be placed in segment registers.

Results:

Returns the value of the ax register after the interrupt.

Errors:

Returns zero (0) on error and sets errno to the value EDOS. Any attempt to
use intdosx on operating systems other than DOS also sets errno to EDOS.
Failure of the function also generates the server error message:

[Encountered unknown primary tag (50)]

Description:

As intdos but also sets segment registers.

See also:

intdos int86x

72 TDS 225 00 August 1990

154 2 Alphabetical list of functions

isalnum Tests whether a character is alphanumeric.

Synopsis:

#include <ctype.h>
int isalnum(int c);

Arguments:

int c The character to be tested.

Results:

Returns non-zero (true) if the character is alphanumeric and zero (false) if it is
not.

Errors:

None.

Description:

isalnum tests whether the character c is in one of the following sets of alpha­
betic and numeric characters:

'a' to 'z' 'A' to 'z' '0' to '9'

isalnum is implemented both as a macro and a function.

See also:

isalpha isdigit

72 TDS 225 00 August 1990

2.2 List of functions

isalpha Tests whether a character is alphabetic.

Synopsis:

#include <ctype.h>
int isalpha(int c);

Arguments:

int c The character to be tested.

Results:

155

Returns non-zero (true) if the character is alphabetic and zero (false) if it is not.

Errors:

None.

Description:

isalpha tests whether c is in one of the following sets of alphabetic characters:
'a' to 'z' 'A' to 'Z'

isalpha is implemented both as a macro and a function.

See also:

isalnum isdiqit

72 TDS 225 00 August 1990

156 2 Alphabetical list of functions

isatty Tests for a standard stream.

Synopsis:

#include <iocntrl.h>
int isatty(int fd)i

Arguments:

int fd A file descriptor.

Results:

Returns 1 (true) if the file descriptor refers to a standard stream, otherwise returns
o (false).

Errors:

None.

Description:

isatty determines whether a given file descriptor refers to one of the default
terminal files stdin, stdout, and stderr.

isattty is not included in the reduced library.

72 TDS 225 00 August 1990

2.2 List of functions

iscntrl Tests whether a character is a control character.

Synopsis:

#include <ctype.h>
int iscntrl(int C)i

Arguments:

int c The character to be tested.

Results:

157

Returns non-zero (true) if the character is a control character and zero (false) if
it is not.

Errors:

None.

Description:

iscntrl determines whether c is a control character (ASCII codes 0-31 and
127).

iscnrtl is implemented both as a macro and a function.

72 TDS 225 00 August 1990

158 2 Alphabetical list of functions

isdigit Tests whether a character is a decimal digit.

Synopsis:

#include <ctype.h>
int isdigit(int C)i

Arguments:

int c The character to be tested.

Results:

Returns non-zero (true) if the character is a digit and zero (false) if it is not.

Errors:

None.

Description:

isdigit tests whether c is one of the following decimal digit characters:

'0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

isdigit is implemented both as a macro and a function.

See also:

isalnum isalpha

72 TDS 225 00 August 1990

2.2 List of functions

isgraph Tests whether a character is printable (non-space).

Synopsis:

'include <ctype.h>
int isqraph(int C)i

Arguments:

int c The character to be tested.

Results:

159

Returns non-zero (true) if the character is a printable character (other than space)
and zero (false) if it is not.

Errors:

None.

Description:

isqraph tests whether c belongs to the set of printable characters excluding
the space character (' '). The space character is considered in this test to be
non-printable.

isqraph is implemented both as a macro and a function.

See also:

iscntrl isprint isspace

72 TDS 225 00 August 1990

160 2 Alphabetical list of functions

islower Tests whether a character is a lower-case letter.

Synopsis:

#include <ctype.h>
int islower(int C)i

Arguments:

int c The character to be tested.

Results:

Returns non-zero (true) if the character is a lower-case letter and zero (false) if
it is not.

Errors:

None.

Description:

islower tests whether c is a character in the set of lower case characters:

'a' to 'z'

islower is implemented both as a macro and a function.

See also:

isupper

72 TDS 225 00 August 1990

2.2 List of functions

isprint Tests whether a character is printable (includes space).

Synopsis:

'include <ctype.h>
int isprint(int c);

Arguments:

int c The character to be tested.

Results:

161

Returns non-zero (true) if the character is printable and zero (false) if it is not.

Errors:

None.

Description:

isprint tests whether c is a printable character (ASCII character codes 32­
126).

Note: Unlike isgraph, isprint considers the space character (' ') to be
printable.

isprint is implemented both as a macro and a function.

See also:

isgraph

72 TDS 225 00 August 1990

162 2 Alphabetical list of functions

i spunet Tests to see if a character is a punctuation character.

Synopsis:

'include <ctype.h>
int ispunct(int c);

Arguments:

int c The character to be examined.

Results:

Returns non-zero (true) if the character is a punctuation character and zero
(false) if it is not.

Errors:

None.

Description:

ispunct tests whether c is a punctuation character. For the purposes of this
test a punctuation is any printable character other than an alphanumeric or space
(' ') character.

ispunct is implemented both as a macro and a function.

See also:

iscntrl isgraph isprint

72 TDS 225 00 August 1990

2.2 List of functions

isspace Tests to see if a character is one which affects spacing.

Synopsis:

#include <ctype.h>
int isspace(int C)i

Arguments:

int c The character to be tested.

Results:

163

Returns non-zero (true) if the character is a space character and zero (false) if
it is not.

Errors:

None.

Description:

isspace tests whether c belongs to the set of characters which produce white
space. Characters which generate white space are as follows:

TAB (escape sequence '\t')

LINE FEED/NEWLINE ('\n')

FORM FEED (,\f')

SPACE (' ')

Vertical TAB ('\v')

RETURN ('\r').

isspace is implemented both as a macro and a function.

72 TDS 225 00 August 1990

164 2 Alphabetical list of functions

isxdigit Tests to see if a character is a hexadecimal digit.

Synopsis:

#include <ctype.h>
int isxdigit(int c);

Arguments:

int c The character to be tested.

Results: Returns non-zero (true) if the character is a hexadecimal digit and zero
(false) if it is not.

Errors:

None.

Description: isxdigit tests whether c belongs to the set of hexadecimal
digits. These are as follows:

'a' 'b' 'c' 'd' 'e' '1' 'A' 'B' 'e' '0' 'E' 'F' '0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

isxdigit is implemented both as a macro and a function.

72 TOS 225 00 August 1990

2.2 List of functions

J.abs Calculates the absolute value of a long integer.

Synopsis:

#include <stdlib.h>
long int labs (long int j)i

Arguments:

long int j A long integer.

Results:

Returns the absolute value of j as a long into

Errors:

If the result cannot be represented the behaviour of labs is
undefined.

Description:

labs calculates the absolute value of the long int j.

See also:

abs

72 TDS 225 00

165

August 1990

166 2 Alphabetical list of functions

ldexp Multiplies a floating point number by an integer power of two.

Synopsis:

#include <math.h>
double ldexp(double x, int exp)i

Arguments:

double x The floating point number.
int exp The exponent.

Results:

Returns the value of: x * 2 * *exp.

Errors:

A range error will occur if the result of ldexp would cause overflow or underflow.
In this case errno is set to ERANGE.

Description:

ldexp calculates the value of: x * 2 * *exp.

See also:

frexp

72 TDS 225 00 August 1990

2.2 List of functions

Idexpf Multiplies a float number by an integral power of two.

Synopsis:

'include <mathf.h>
float ldexpf(float x, int exp);

Arguments:

float x The floating point number.
int exp The exponent.

Results:

Returns the value of: x * 2**exp

Errors:

167

A range error will occur if the result of ldexpf would cause overflow or under..
flow. In this case errno is set to ERANGE.

Description:

float form of ldexp.

See also:

ldexp frexp

72 TDS 225 00 August 1990

168 2 Alphabetical list of functions

ldiV Calculates the quotient and remainder of a long division.

Synopsis:

'include <stdlib.h>
ldiv_t ldiv(long int numer, long int denom)i

Arguments:

long int numer The numerator.
long int denom The denominator.

Results:

Returns a structure of type ldiv _t which consists of the quotient and remainder.
The structure contains:

-long int quot The quotient.
long int rem The remainder.

Errors:

If the result cannot be represented the behaviour of ldiv is undefined.

Description:

ldiv calculates the quotient and remainder formed by dividing the numerator
num by the denominator denom. All values are of type long into

See also:

div

72 TDS 225 00 August 1990

2.2 List of functions 169

localeconv Gets numeric formatting data in the current locale.

Synopsis:

'include <locale.h>
struct lconv *localeconv(void)i

Arguments:

None.

Results:

Returns a pointer to a structure of type lconv which defines components of the
current locale.

Errors:

None.

Description:

The components of the lconv structure are set according to the current locale
(defined in locale. h), and a pointer to this structure is returned. Previous
values in lconv are overwritten.

The lconv structure should not be overwritten by the program but may be
altered by a call to setlocale.

ANSI C supports only the standard "C" locale.

See also:

setlocale

72 TDS 225 00 August 1990

170

localtime
Synopsis:

2 Alphabetical list of functions

Converts the local time into a tm structure format.

'include <time.h>
struct tm *localtime(const time_t *timer);

Arguments:

const time_t *timer A pointer to a location containing a time.

Results:

Returns a pointer to a tm calendar structure, containing the value of the timer in
a specific format.

Errors:

None.

Description:

localtime is used to convert a time stored in the value pointed to by timer
to the tm structure format.

Example:

/*
Prints the current date and time in a

default format
*/

'include <time.h>
'include <stdio.h>

int main ()
{
time t current;
struct tm *calendar;

time(¤t);
calendar == localtime(¤t);
printf ("\n

Date and time == %s\n",
asctime(calendar»;

72 TDS 225 00 August 1990

2.2 List of functions 171

Note: Care should be taken when calling localtime in a concurrent en­
vironment. Calls to the function by independently executing, unsynchronised
processes may corrupt the returned time value.

See also:

asctime ctime strftime clock difftime mktime time

72 TDS 225 00 August 1990

172 2 Alphabetical list of functions

log Calculates the natural logarithm of the double argument.

Synopsis:

#include <math.h>
double log(double X)i

Arguments:

double x A number.

Results:

Returns the natural log of x.

Errors:

A domain error occurs if x is negative. In this case errno is set to EDOM.

A range error occurs if x is zero. In this case log returns the value HUGE_VAL
(with the same sign as the correct value of the function) and errno is set to
ERANGE.

Description:

log calculates the natural (base e) logarithm of a number.

See also:

log10 logf

72 TDS 225 00 August 1990

2.2 List of functions

10g£ Calculates the natural logarithm of a float number.

Synopsis:

#include <mathf.h>
float loqf(float x);

Arguments:

float x A number.

Results:

Returns the natural log of x.

Errors:

A domain error occurs if x is negative. In this case errno is set to EDOM.

173

A range error occurs if x is zero. In this case logf returns the value
HUGE_VAL-F (with the same sign as the correct value of the function) and
errno is set to ERANGE.

Description:

float form of log.

See also:

log log10f

72 TDS 225 00 August 1990

174 2 Alphabetical list of functions

10g10 Calculates the base-10 logarithm of the double argument.

Synopsis:

'include <math.h>
double 10g10(double x);

Arguments:

double x A number.

Results:

Returns the base ten log of x.

Errors:

A domain error occurs if x is negative. In this case errno is set to EDOM.

A range error occurs if x is zero. In this case 10g10 returns the value HUGE_VAL
(with the same sign as the correct value of the function) and errno is set to
ERANGE.

Description:

10g10 calculates the base 10 logarithm of a number.

See also:

log 10g10£

72 TDS 225 00 August 1990

2.2 List of functions

10g10 f Calculates the base-10 logarithm of a float number.

Synopsis:

'include <mathf.h>
float loql0f(float X)i

Arguments:

float x A number.

Results:

Returns the base ten log of x.

Errors:

A domain error occurs if x is negative. In this case errno is set to EDON.

175

A range error occurs if x is zero. In this case loqlOf returns the value
HUGE_VAL-.F (with the same sign as the correct value of the function) and
errno is set to ERANGE.

Description:

float form of loqlO.

See also:

loqlO loqf

72 TDS 225 00 August 1990

176

longjmp

Synopsis:

2 Alphabetical list of functions

Performs a non-local jump to the given environment.

#include <setjmp.h>
void longjmp(jmpJbuf env, int val)i

Arguments:

jmpJbuf env An array holding the environment to be restored.
int val The value to be returned by longjmp.

Results:

When longjmp returns, the effect is as if the corresponding set jmp had re­
turned the value of val. If val is zero, set jmp returns 1 (this is because
set jmp is only allowed to return zero the first time it is called).

Errors:

None.

Description:

longjmp performs a non-local jump to the environment saved in env, by a
previous call to setjmp. It returns in such a way that, to the program, it appears
that the set jmp function has returned the value val.

Example:

'include <setjmp.h>
'include <stdio.h>
'include <stdlib.h>

int sub_function()
{

/*
..... */

longjmp(envl, 3);

int main ()
{

72 TDS 225 00 August 1990

2.2 List of functions

int a;

switch(a=setjmp(envl»
{
case 0: printf(nlst time in top level\nn);

break;
default: printf(nlongjmp to top level

- code %d\nn, a);
exit(EXIT_\/\/SUCCESS);

)
sub function();

) -
See also:

setjmp

177

72 TDS 225 00 August 1990

178

1 seek Repositions a file pointer.

Synopsis:

2 Alphabetical list of functions

#include <iocntrl.h>
int lseek(int fd, long int offset, int origin);

Arguments:

int fd A file descriptor.
long int offset The offset by which the file position will move.
int origin The start position for the seek.

Results:

Returns the new file position, or -1 on error.

Errors:

If an error occurs Iseek sets errno to the value EIO.

Description:

lseek moves the current position within the file with file descriptor fd. The
offset is measured from a position specified by origin:

L_SET The start of the file.
L_INCR The current position in the file.
L_CUR The end of the file.

lseek is not included in the reduced library.

72 TDS 225 00 August 1990

2.2 List of functions

malloe Allocates a specified area of memory.

Synopsis:

#include <stdlib.h>
void *malloc(size_t size);

Arguments:

size_t size The size of the space to be allocated in bytes.

Results:

179

Returns a pointer to the allocated space if the allocation was successful. Other­
wise a null pointer is returned. If size is zero malloc returns a NULL pointer.

Errors:

If there is not enough free space a null pointer is returned.

Description:

malloc allocates an area of memory of size bytes. The allocated space is
not initialised.

Example:

/* Allocate 500 bytes pointed to by arrayl */

char *arrayl;

arrayl = (char *)malloc(500);

See also:

calloc free realloc

72 TDS 225 00 August 1990

180 2 Alphabetical list of functions

max_stack_usage Calculates runtime stack usage.

Synopsis:

#include <misc.h>
long max_stack_usage(void);

Arguments:

None.

Results:

Returns the number of bytes of stack space used by the program.

Errors:

If stack checking is not enabled in the compiler the function returns zero.

Description:

max_stack_usage returns the approximate number of stack bytes used by the
program up to the point where the function is called. A leeway of 150 words is
included in the returned value to account for library usage, in which there is no
stack checking.

Note: This function can only be used when stack checking is enabled. If stack
checking is disabled the function returns 0 (zero).

72 TDS 225 00 August 1990

2.2 List of functions 181

memchr Finds first occurrence of a character in an area of memory.

Synopsis:

#include <string.h>
void *memchr(const void *s, int c, size_t n);

Arguments:

const void *s
int c
size_t n

Results:

A pointer to the area of memory to be searched.
The character to be searched for.
The size of the area of memory to be searched.

If the character is found, memchr returns a pointer to the matched character. It
returns a null pointer if the character c is not in the first n characters of the area
of memory.

Errors:

None.

Description:

memchr finds the first occurrence of c in the first n characters of the area of
memory pointed to by s. c is converted to an unsigned char before the
search begins.

Example:

char buffer[100];
char *pointer_to-p;

/*
Find the first occurrence of "p"
in the buffer

*/

memchr(buffer, 'p', 100);

See also:

strchr

72 TDS 225 00 August 1990

182 2 Alphabetical list of functions

memcmp Compares characters in two areas of memory.

Synopsis:

#include <strinq.h>
int memcmp(const void *sl, const void *s2,

size_t n);

Arguments:

const void *s 1 A pointer to one of the areas of memory to be compared.
const void *s2 A pointer to the other area of memory to be compared.
size_t n The number of characters to be compared.

Results:

Returns the following:

A negative integer if the s 1 area of memory is numerically less than the
s2 area of memory.

A zero value if the two areas of memory are numerically the same.

A positive integer if the s 1 area of memory is numerically greater than
the s2 area of memory.

Errors:

None.

Description:

memcmp compares the first n characters of the areas of memory pointed to by
sl and s2.

The comparison is of the numerical values of the ASCII characters.

See also:

strcmp

72 TDS 225 00 August 1990

2.2 List of functions 183

memcpy Copies characters from one area of memory to another (no
memory overlap allowed).

Synopsis:

'include <string.h>
void *memcpy(void *sl, const void *s2, size_t n);

Arguments:

void *sl A pointer to the destination of the copy.
const void *s2 A pointer to the source of the copy.
size_t n The number of characters to be copied.

Results:

Returns the unchanged value of sl.

Errors:

The behaviour of memcpy is undefined if the source and destination overlap.

Description:

memcpy copies n characters from the area of memory pointed to by s2 (the
source) to the area of memory pointed to by sl (the destination). The behaviour
of memcpy is undefined if the source and target areas overlap.

char source[200]i
destination[200]i

memcpy(destination, source, 200)i

Calls to memcpy can be replaced by the compiler predefine -rnemcpy by redefin­
ing the function name. -rnemcpy is implemented directly as transputer assembly
code in selected cases. For details see section 11.4 in the accompanying User
Manual.

See also:

memmove -rnemcpy

72 TDS 225 00 August 1990

184

memmove

Synopsis:

2 Alphabetical list of functions

Copies characters from one area of memory to another.

#include <strinq.h>
void *memmove(void *sl, const void *s2, size_t n)i

Arguments:

void *sl A pointer to the destination of the copy.
const void *s2 A pointer to the source of the copy.
size_t n The number of characters to be copied.

Results:

Returns the unchanged value of s 1.

Errors:

None.

Description:

memmove copies n characters from the area of memory pointed to by s2 (the
source) to the area of memory pointed to by sl (the destination). The copying
is carried out even if the areas of memory overlap.

See also:

memcpy

72 TDS 225 00 August 1990

2.2 List of functions

memset Fills a given area of memory with the same character.

Synopsis:

'include <strinq.h>
void *memset(void *s, int c, size_t n)i

Arguments:

void *s A pointer to the area of memory to be filled.
int c The character to be used for filling.
size_t n The number of characters in the area of memory

be filled.

Results:

Returns the unchanged value of s.

Errors:

None.

Description:

185

memset fills the first n characters of the area of memory pointed to by s with
the value of the character c. c is converted to an unsigned char before the
filling takes place.

Example:

/*
Zero the first hundred bytes of a buffer

*/

char buffer[200];

memset(buffer,'\O', 100);

72 TDS 225 00 August 1990

186 2 Alphabetical list of functions

mkt ime Converts a tm structure into a time_t value.

Synopsis:

#include <time.h>
time_t mktime (struct tm *timeptr);

Arguments:

struct tm *timeptr A structure containing a calendar time.

Results:

Returns the value of timeptr as a number of seconds.

Errors:

If the time in timeptr cannot be represented as a time_t type, mktime
returns -1, cast to time_to

Description:

mktime converts the values given in the tm structure pointed to by timeptr
into a time of type time_to The values of the structure components tm-wday
and tm_yday are ignored, all elements in tm are set to appropriate values, and
the time value time_t represented by the tm structure is returned.

Values processed by mktime from the structure timeptr are not restricted
to the ranges specified on page 24. Values outside the specified ranges are
converted automatically by mktime to produce a valid time_t value.

Example:

'include <time.h>
'include <stdio.h>

/* Initialise broken down time,
omitting weekday atc */

int main(void)
{

{O, 0, 11, 2, 0,
93, 0, 0, O};

time t cal time;
cal_time =-mktime(&broken_down time);

72 TDS 225 00 August 1990

2.2 List of functions

printfCnWeekday is %d\nn,
broken_down_time.tm_wday);

See also:

asctime ctime localtime clock difftime time

72 TDS 225 00

187

August 1990

188 2 Alphabetical list of functions

modf Splits a double number into fractional and integral parts.

Synopsis:

#include <math.h>
double modf(double value, double *intptr)i

Arguments:

double value The number to be split.
double *intptr A pointer to the recipient of the integral part.

Results:

Returns the fractional part of value (the integral part is stored in * intptr).

Errors:

None.

Description:

modf splits value into a fractional and integral part. Each part has the same
sign as value. The integral part is stored in *intptr and the fractional part
is returned by modf. .

See also:

modff

72 TDS 225 00 August 1990

2.2 List of functions

modff Splits the float argument into fractional and integral parts.

Synopsis:

#include <mathf.h>
float modff(float value, float *intptr);

Arguments:

float value The number to be split.
float * intptr A pointer to the recipient of the integral part.

Results:

189

Returns the fractional part of value (the integral part is stored in *intptr).

Errors:

None.

Description:

float form of modf.

See also:

modf

72 TDS 225 00 August 1990

190 2 Alphabetical list of functions

open Opens a file stream. File handling primitive.

Synopsis:

#include <iocntrl.h>
int open(char *name, int flags);

Arguments:

char *name
int flags

Results:

The name of the file to be opened.
Bit values which specify the mode in which the file is to be
opened.

Returns a file descriptor for the file opened or -1 on error.

Errors:

If an error occurs errno is set to EIO.

Description:

open opens the low level file name in a mode specified by flags. open is
the low level file function used by fopen.

open is not included in the reduced library.

The flags parameter is a combination of bit values joined using the 'bitwise or'
(I) operator. The bit values that can be specified are as follows:

Read/write Modes:

Flag Meaning
O-RDONLY Read only mode (priority 3).
O_WRONLY Write only mode (priority 2).
O-RDWR Read/write mode (priority 1).

File creation modes:

Flag Meaning
O-APPEND Characters appended to file (priority 1).
O_TRUNC File truncated before writing (priority 2).

72 TDS 225 00 August 1990

2.2 List of functions

File Types:

Flag Meaning
O-BINARY File opened in binary mode (priority 2).
O_TEXT File opened as a text file. (priority 1).

191

The flags parameter should combine values from each of the three sections
above. For example, to open a binary file for writing in append mode the call
would be as follows:

To avoid conflicts between the various combinations of modes, the flag values
are assigned priority levels and are decoded accordingly. Priority increases with
increasing number. For example, if both O_WRONLY (priority 2) and O-RDONLY
(priority 3) are specified in the same call O_WRONLY is ignored.

Priority levels also imply a default setting for open, namely: Read onlylText
mode (O-RDONLY I O_TEXT). (File create modes have no significance on a
read only file).

If a file which already exists is opened using O_TRUNC (open for writing in trun­
cate mode), and if the host system permits it, the file will be overwritten.

See also:

creat

72 TDS 225 00 August 1990

192 2 Alphabetical list of functions

perror Writes an error message to standard error.

Synopsis:

#include <stdio.h>
void perror(const char *s);

Arguments:

const char *s A pointer to an error message string.

Results:

No value is returned.

Errors:

None.

Description:

perror writes the string s to the standard error output, followed by a colon,
space, and the error message represented by the value in errno. The entire
message is followed by a newline.

Message strings are the same as those returned by strerror given the argu­
ment errno.

perror is not included in the reduced library.

See also:

strerror

72 TDS 225 00 August 1990

2.2 List of functions

pollkey Gets a character from the keyboard.

Synopsis:

#include <iocntrl.h>
int pollkey(void);

Arguments:

None.

Results:

193

pollkey returns the ASCII value of a key pressed on the keyboard. It imme­
diately returns with -1 if no keystroke is available.

Errors:

None.

Description:

pollkey gets a single character from the keyboard. If no keystroke is available
the routine returns immediately with -1. The effect on any buffered data in the
standard input stream is host-defined. The character read from the keyboard is
not echoed at the terminal.

pollkey is not included in the reduced library.

See also:

getkey

72 TOS 225 00 August 1990

194

pow Calculates x to the power y.

Synopsis:

2 Alphabetical list of functions

#include <math.h>
double pow(double x, double Y)i

Arguments:

double x A number.
double y The exponent.

Results:

Returns the value of x to the power y.

Errors:

A domain error will occur in the following situations:

1.
2.

x == 0
x<O

AND

AND
Y <= 0
Y is not an integer

In these cases errno is set to EDOM.

A range error will occur if the result of pow is too large to fit in a double. In this
case pow returns the value HUGE_VAL (with the same sign as the correct value
of the function) and errno is set to ERANGE.

Description:

pow calculates the value of x raised to the power y.

See also:

powf

72 TDS 225 00 August 1990

2.2 List of functions

powf Calculates x to the power of y where both x and y are floats.

Synopsis:

#include <mathf.h>
float powf(float X, float y);

Arguments:

float ~ A number.
float y The exponent.

Results:

Returns the value of a number to the power y.

Errors:

A domain error will occur in the following situations:

195

1.
2.

x == 0
x<O

AND
AND

Y <= 0
Y is not an integer

In these cases errno is set to EDOM.

A range error will occur if the result of powf is too large to fit in a double. In this
case powf returns the value HOGE_VAL.J (with the same sign as the correct
value of the function) and errno is set to ERANGE.

Description:

float form of pow.

See also:

pow

72 TDS 225 00 August 1990

196 2 Alphabetical list of functions

printf Writes a formatted string to standard output.

Synopsis:

#include <stdio.h>
int printf(const char *format , ...);

Arguments:

const char *format A format string.
Subsequent arguments to the format string.

Results:

Returns the number of characters written, or a negative value if an output error
occurred.

Errors:

printf returns a negative value if an output error occurred.

Description:

printf writes the string pointed to by format to standard output. When
printf encounters a percent sign Ok in the string, it expands the equivalent
argument into the format defined by the format tokens after the 0/0. The meaning
of the format string is as described for fprintf.

printf is not included in the reduced library.

See also:

fprintf

72 TDS 225 00 August 1990

2.2 List of functions 197

ProcAfter Blocks a process until a specified time.

Synopsis:

#include <process.h>
void ProcAfter(int time);

Arguments:

int time The time at which the process will restart.

Results:

Returns no result.

Errors:

None.

Description:

Delays execution of the current process until a specified time. Time is expressed
as an integer clock value.

See also:

ProcWait

72 TDS 225 00 August 1990

198 2 Alphabetical list of functions

ProcAlloc Allocates process space and initialises its structure.

Synopsis:

'include <process.h>
Process *ProcAlloc(void (*func) (),

int sp, int nparam, ...);

Arguments:

*func
int sp

int nparam

Results:

A pointer to the function to be created as a parallel process.
The amount of stack space required for the process. sp
must be specified in bytes.
The number of parameters to the process (if all parameters
are 'word-sized), or the number of words taken up by the
parameters.
A list of word-sized parameters to the process.

Returns a pointer to the process structure, or a NULL pointer if the allocation is
unsuccessful.

Errors:

Returns NULL if the allocation is unsuccessful.

Description:

ProcAlloc allocates memory space for a process and initialises the allocated
structure.

Note: All processes must be allocated (by a call to ProcAlloc or Proclnit)
before use.

ProcAlloc takes as parameters a pointer to a function which is to be spawned
as a process, the size of workspace required by the process, and parameters
to the function. It returns a pointer to an initialised process structure describing
the process. The pointer is used to start the process by passing it to one of the
process execution functions.

If sp is specified as zero, stack sizes of 4Kbytes for 32-bit transputers and 1Kbyte
for 16-bit transputers is used.

nparam specifies the number of words required on the stack initially for the

72 TDS 225 00 August 1990

2.2 List of functions 199

function's parameters. If parameters are all word-sized (after default promotions
have taken place) then nparam should equal the number of parameters in the
list. If parameters are not all word-sized then nparam must be the same as the
number of words occupied. For example, if a structure is passed that occupies
four words, and all other parameters are word-sized, then nparam must be
increased by four.

ProeAlloe must have as its first parameter a pointer to a process structure.
nparam must not include this process pointer.

Note: When using parameters larger than one word, allowance must be made for
any default type promotions performed by the compiler by rounding up aggregate
types to the nearest word.

float variables cannot be passed directly as parameters because the promo­
tion is to type double. In this case, and in all others where the parameter is
larger than a word, pointers should be used.

ProeAlloe uses malloe to allocate stack space (allocated from the heap).
If the call to malloe is unsuccessful, ProcAlloe returns a NULL pointer. All
calls to ProcAlloe should be followed by a check for successful allocation and
secure handling of a NULL result. The consequences of running an unallocated
process are undefined.

ProeAlloe calls the lower level function Proelnit to initialise the process
structure.

Example:

/* To set up fred as a concurrent process
with default workspace */

#include <process.h>

void fred(Process *p, int a, int b, int c)
{

/* code for fred */

Process *p;

p = ProcAlloc(fred, 0, 3, 1, 2, 3);

if (p = NULL)
abort();

/* p is a process structure for fred. Actual

72 TDS 225 00 August 1990

200

See also:

2 Alphabetical list of functions

parameters for the process will be:
a = 1; b = 2; c = 3. */

Proclnit malloc

72 TDS 225 00 August 1990

2.2 List of functions 201

ProcAllocClean Frees space allocated by ProcAlloc.

Synopsis:

#include <process.h>
void ProcAllocClean(Process *p);

Arguments:

Process *p A pointer to a process structure.

Results:

None.

Errors:

If an invalid pointer is passed to ProcAllocClean a fatal runtime error occurs
and the following message is displayed:

Fatal-C_Llbrary-Bad pointer to process clean function

and the processor is halted. If the reduced library is used no message is dis­
played.

Description:

ProcAllocClean is used to clean up after a process when it is known to
have terminated. The process is denoted by the process pointer passed in as
the argument and must have been initially set up using ProcAlloc. It will not
work correctly for processes set up using Proclnit and if used in such a case
may produce undefined behaviour.

ProcAllocClean removes the process structure pointed to by its argument
from the list of initialised processes and frees any heap space used for the
process structure and workspace.

Caution: ProcAllocClean can onty be used with synchronous processes,
Le. those started using ProcPar or ProcParList, and can be safely used
only after the call to ProcPar or ProcParList has returned. ,Any other use
of this function may give rise to undefined behaviour.

See also:

Pro~loc ProclnitClean

72 TDS 225 00 August 1990

202 2 Alphabetical list of functions

ProcAlt Waits for input from multiple processes.

Synopsis:

#include <process.h>
int ProcAlt(Channel *c1, ...);

Arguments:

Channel *c1 The first in a NULL terminated list of pointers to channels.
The remainder of the list.

Results:

Returns an index into the parameter list for the ready channel.

Errors:

None.

Description:

ProcAlt blocks the calling process until one of the channel parameters is ready
to input. The index returned for the ready channel is an integer which indicates
the position of the channel in the parameter list. The index numbers begin at
zero for the first parameter.

ProcAlt only returns when a channel is ready to input. It does not perform the
input operation, which must be done by the code following the call to ProcAlt.

Example:

/* select from channels cl, c2, c3 */

#include <process.h>

Channel *c1, *c2, *c3;
int i;

/* allocate all channels */

i = ProcAlt(c1, c2, c3, NULL);
switch (i)
{

case 0: /* cl selected */
/* consume input from cl */

72 TDS 225 00 August 1990

2.2 List of functions

break;
case 1: /* c2 selected */

/* consume input from c2 */
break;

case 2: /* c3 selected */
/* consume input from c3 */
break;

See also:

ProcAltList

72 TDS 225 00

203

August 1990

204 2 Alphabetical list of functions

ProcAltList Waits for inputs from a list of processes.

Synopsis:

'include <process.h>
int ProcA1tList(Channel **clist);

Arguments:

Channel **clist An array of pointers to channels terminted by NULL.

Results:

Returns an index into the clist array for the ready channel, or -1 if the first
element in the array is NULL (the array is empty).

Errors:

Returns -1 if clist is empty.

Description:

As ProcA1t but takes an array of pointers to channels. Returns -1 if the
clist array is empty.

See also:

ProcAlt

72 TDS 225 00 August 1990

2.2 List of functions 205

ProcGetPr ioritY Returns the priority of the process.

Synopsis:

#include <process.h>
int ProcGetPriority(void);

Arguments:

None.

Results:

Returns zero (0) for a high priority process and one (1) for a low priority process.

Errors:

None.

Description:

Determines the priority level (high or low) of the process from which it is called.
The macros PROC-HIGH and PROC-LOW are defined for use with this function.

See also:

ProcReschedule

72 TDS 225 00 August 1990

206

Proclnit Initialises a process.

Synopsis:

2 Alphabetical list of functions

#include <process.h>
int Proclnit(Process *p, void (*func) (), int *ws,

int wssize, int nparam, ...);

Arguments:

Process *p
int *func
int *ws
int wssize

int nparam

Results:

A pointer to a process structure.
A pointer to the function to be expressed as a process.
A pointer to the stack space to be used.
The size of the stack space. wssize must be specified in
bytes.
The number of parameters to the process (if all parameters
are word-sized), or the number of words taken up by the
parameters.
A list of word sized parameters to the process.

Returns zero (0) if successful, non-zero otherwise.

Errors:

If insufficient space has been allocated for parameters to the function, the routine
returns a non-zero value. If the workspace pointed by ws has not been been
allocated from the heap, a fatal runtime error occurs and the following message
is displayed:

Fatal-C_Library-lncorrect allocation of process workspace

Description:

Proclnit () takes as input a pointer to an existing Process structure and a
pointer to the stack space to be used, and initializes the process structure and
workspace for the function according to its workspace and parameter space re­
quirements. Proclnit () is called by ProcAlloc () to initialise the process
structure.

As with ProcAlloc. nparam specifies the number of words required on the
stack initially for the function's parameters. If parameters are all word-sized (after
default promotions have taken place) then nparam should equal the number of
parameters in the list. If parameters are not all word-sized then nparam must

72 TDS 225 00 August 1990

2.2 List of functions 207

be the same as the number of words occupied. For example, if a structure is
passed that occupies four words, and all other parameters are word-sized, then
nparam must be increased by four.

Note: When using parameters that consist of more than one word, take care to
allow for any default type promotions performed by the compiler, and be sure to
round up aggregate types to the nearest word.

float variables cannot be passed directly as parameters because the promo­
tion is to type double. In this case, and in all others where the parameter is
larger than a word, pointers should be used.

ProcInit checks that enough space has been allocated for the function pa­
rameters, and that space has been allocated from the heap.

Example:

/* To set fred up as a concurrent process
with 4k of stackspace

*/

'include <process.h>
'include <stdlib.h>
'define SIZE 4096

void fred(Process *p, int a, int b, int c)
{

/* code for fred */

/* code fragment */

Process *p;
char *ws;

p = (Process *)malloc(sizeof(Process»;

/* check whether p is NULL */

vs = (int*)malloc(SIZE);

/* check whether ws is NULL */

if (ProcInit(p, fred, ws, SIZE, 3, 1, 2, 3»
{

/* error */

72 TDS 225 00 August 1990

208 2 Alphabetical list of functions

/* P is a process structure for fred.
When the process is started the parameters
will be: a = 1; b = 2; c = 3. */

See also:

ProcAlloc

72 TDS 225 00 August 1990

2.2 List of functions 209

ProclnitClean Frees space allocated by Proclnit.

Synopsis:

#include <process.h>
void ProclnitClean(Process *p);

Arguments:

Process *p A pointer to a process structure.

Results:

None.

Errors:

If an invalid pointer is passed to ProclnitClean a fatal runtime error occurs
and the following message is displayed:

Fatal-C_Llbrary-Bad pointer to process clean function

and the processor is halted. If the reduced library is used no message is dis­
played.

Description:

ProclnitClean is used to clean up after a process when it is known to have
terminated. The process is denoted by the process pointer passed in as the
argument and must have been initially set up using Proclnit. It will not work
correctly for processes set up using ProcAlloc and if used in such a case
may produce undefined results.

ProclnitClean removes the process structure pointed to by its argument
from the list of initialised processes. After ProclnitClean has been called
the memory space allocated for the process structure and workspace may be
safely freed. If this space is freed before a call to ProclnitClean then the
behaviour is undefined. Note that ProclnitClean does not itself free the
workspac8, which must be performed by the programmer.

Caution: ProclnitClean can only be used with synchronous processes, Le.
those started using ProcPar or ProcParList, and can be safely used only
after the call to ProcParList or ProcPar has returned. Any other use of
this function may give rise to undefined behaviour.

See also: Proclnit ProcAllocClean

72 TDS 225 00 August 1990

210 2 Alphabetical list of functions

ProcPar Starts a group of processes in parallel.

Synopsis:

#include <process.h>
void ProcPar(Process *pl, ...);

Arguments:

Process *pl The first in a list of pointers to process structures.
The remainder of the'list. Terminated by NULL.

Results:

Returns no result.

Errors:

None.

Description:

ProcPar takes a NULL terminated list of pointers to processes and starts them
in parallel with each other at the priority of the calling process. Control is re­
turned to the calling process when all the processes in the list terminate. The
process pointers are either returned from ProcAlloc or are pointers to existing
processes initialised by Proclnit.

ProcParam should be used before the process is executed. If it is used while
the process is running the results may be unpredictable.

/* start the four processes denoted by process
pointers pl, p2, p2, p4 in parallel. */

'include <process.h>

Process *pl, *p2, *p3, *p4;

/* Set up and allocate processes */

ProcPar(pl, p2, p3, p4, NULL);

See also:

ProcParList

72 TDS 225 00 August 1990

2.2 List of functions

ProcParam Changes process parameters.

Synopsis:

'include <process.h>
void ProcParam(Process *p, ...);

Arguments:

Process *p A pointer to a process structure.
A list of parameters to the process.

Results:

Returns no result.

Errors:

None.

Description:

211

ProcParam alters parameters in an already allocated process. The number of
parameters specified should be the same as the number required by the process.
Any extra parameters given are ignored. If fewer than the required number are
specified the unspecified parameters remain undefined.

The process pointers are either returned from ProcAlloc, or are pointers to
existing processes initialised by Proclnit.

Example:

/* P is the process pointer for a function
which takes three parameters */

Process *p;

ProcParam(p, 1, 2, 3);

/* This call to ProcParam sets the parameters of
the process associated with p to 1, 2, 3. */

See also:

ProcAlloc

72 TDS 225 00 August 1990

212 2 Alphabetical list of functions

ProcParList Starts a group of parallel processes.

Synopsis:

#include <process.h>
void ProcParList(Process **plist);

Arguments:

Process **plist A array of pointers to processes terminated by NULL.

Results:

Returns no result.

Errors:

None.

Description:

As ProcPar but takes an array of pointers to processes. The pointers are
either returned directly from ProcAlloc or are pointers to processes initialised
by Proclnit.

See also:

Procpar

72 TDS 225 00 August 1990

2.2 List of functions 213

ProcPriPar Starts a pair of processes at high and low priority.

Synopsis:

#include <process.h>
void ProcPriPar(Process *phigh, Process *plow)

Arguments:

Process *phigh A pointer to the high priority process.
Process *plow A pointer to the low priority process.

Results:

Returns no result.

Errors:

Any attempt to call ProcPriPar from a high priority process generates a run­
time fatal error and the following message is displayed:

Fatal-C_Library-Nested Pri Pars are illegal

Description:

Starts two processes in parallel, one at high priority and one at low priority. Pro­
cess pointers will have been returned directly from ProcAlloc, or are pointers
to processes initialised by Proclnit.

ProcPriPar cannot be called from a high priority process.

See also:

ProcPar

72 TDS 225 00 August 1990

214 2 Alphabetical list of functions

ProcReschedule Reschedules a process.

Synopsis:

#include <process.h>
void ProcReschedule(void)i

Arguments:

None.

Results:

Returns no result.

Errors:

None.

Description:

Causes the current process to be rescheduled, that is, placed at the end of the
active process queue.

See also:

ProcGetPriority

72 TDS 225 00 August 1990

2.2 List of functions

ProcRun Starts a process at the current priority.

Synopsis:

#include <process.h>
void ProcRun(Process *p)i

Arguments:

Process *p A pointer to a process.

Results:

Returns no result.

Errors:

None.

Description:

215

Executes a process in parallel with the calling process and at the same priority.
The two processes run independently and any interaction between them must be
specifically set up using channel communication routines. The process pointer
is returned directly from ProcAlloc or is a pointer to a process initialised by
Proclnit.

Care should be taken that unsynchronised processes do not attempt to com­
municate with the server when it has been terminated by the main program.
Synchronising channels can be used to guard against this. For more details see
section 4.7.4 in the accompanying User Manual.

See also:

ProcRunHigh ProcRunLow ProcPar ProcParList ProcPriPar

72 TDS 225 00 August 1990

216 2 Alphabetical list of functions

ProcRunHigh Starts a high priority process.

Synopsis:

#include <process.h>
void ProcRunHigh(Process *p);

Arguments:

Process *p A pointer to a process.

Results:

Returns no result.

Errors:

None.

Description:

As ProcRun but starts the process at high priority. Process pointers will have
been returned directly from ProcAlloc, or are pointers to processes initialised
by Proclnit.

As with ProcRun care should be taken that processes started with this function
terminate before the main program.

See also:

ProcRun ProcRunLow ProcPar ProcParList ProcPriPar

72 TDS 225 00 August 1990

2.2 List of functions

ProcRunLow Starts a low priority process.

Synopsis:

'include <process.h>
void ProcRunLow(Process *p);

Arguments:

Process *p A pointer to a process.

Results:

Returns no result.

Errors:

None.

Description:

217

As ProcRun but starts the process at low priority. As with ProcRun care
should be taken that processes started with this function terminate before the
main program.

See also:

ProcRunHiqh ProcRun ProcPar ProcParList ProcPriPar

72 TDS 225 00 August 1990

218 2 Alphabetical list of functions

ProcSkipAlt Checks specified channels for ready input.

Synopsis:

#include <process.h>
int ProcSkipAlt(Channel *c1, ...);

Arguments:

Channel *c1 The first in a list of pointers to channels.
The remainder of the list. Terminated by NULL.

Results:

Returns an index into the parameter list for the channel ready to input, or -1 if
no channel is ready.

Errors:

None.

Description:

As ProcAlt but does not wait for a ready channel. If no channel is ready
ProcSkipAlt returns immediately with the value -1.

Example:

/* select from channels cl, c2, c3 */

'include <process.h>

Channel *c1, *c2, *c3;
int i;

/* set up channels */

i = ProcSkipAlt(c1, c2, c3, NULL);
switch (i)
{

case -1: /* no channel ready */
case 0: /* cl selected */

/* consume input from cl */
break;

case 1: /* c2 selected */

72 TDS 225 00 August 1990

2.2 List of functions

/* consume input from c2 */
break;

case 2: /* c3 selected */
/* consume input from c3 */
break;

See also:

Pro~t ProcSkip~tList

72 TDS 225 00

219

August 1990

220- 2 Alphabetical list of functions

ProcSkipAltList Checks a list of channels for ready input.

Synopsis:

'include <process.h>
int ProcSkipAltList(Channel **clist);

Arguments:

Channel **clist An array of pointers to channels terminated by NULL.

Results:

As ProcSkipAlt.

Errors:

None.

Description:

As ProcSkipAlt but takes a list of pointers to channels.

See also:

ProcSkipAlt

72 TDS 225 00 August 1990

2.2 List of functions

ProcStop Deschedules a process.

Synopsis:

'include' <process.h>
void ProcStop(void)i

Arguments:

None.

Results:

Returns no result.

Errors:

None.

Description:

Stops the current process.

72 TDS 225 00

221

August 1990

222 2 Alphabetical list of functions

ProcTime Determines the transputer clock time.

Synopsis:

'include <process.h>
int ProcTime()i

Arguments:

None.

Results:

Returns the value of the transputer clock.

Errors:

None.

Description:

Determines the transputer clock time. The value of the high priority clock is
returned for high priority processes and the value of the low priority clock is
returned for low priority processes. Values returned by this function can be used
by ProcTimeAfter, ProcTimePlus, and ProcTimeMinus.

See also:

ProcTimeAfter ProcTimePlus ProcTimeMinus

72 TDS 225 00 August 1990

•
2.2 List of functions 223

ProcTimeAfter Determines relationship of clock values.

Synopsis:

#include <process.h>
int ProcTimeAfter(const int timel, const int time2);

Arguments:

int timel A transputer clock value returned by ProcTime.
int time2 A transputer clock value returned by ProcTime.

Results:

Returns 1 if timel is after time2, otherwise O.

Errors:

None.

Description:

Determines the relationship between two transputer clock values. Remember
that the transputer clock is cyclic.

See also:

ProcTime ProcTimePlus ProcTimeMinus

72 TDS 225 00 August 1990

224 2 Alphabetical list of functions

ProcTimeMinus Subtracts two transputer clock values.

Synopsis:

#include <process.h>
int ProcTimeMinus(const int timel, const int time2);

Arguments:

int timel A transputer clock value returned by ProcTime.
int time2 A transputer clock value returned by ProcTime.

Results:

Returns the result of subtracting time2 from timel.

Errors:

None.

Description:

Subtracts one clock value from another using modulo arithmetic. No overflow
checking takes place and the clock values are cyclic.

See also:

ProcTime ProcTimeAfter ProcTimeMinus

72 TDS 225 00 August 1990

2.2 List of functions 225

ProcTimePlus Adds two transputer clock values.

Synopsis:

'include <process.h>
int ProcTimePlus(const int timel, const int time2);

Arguments:

timel/time2 Clock values returned by ProcTime.

Results:

Returns the result of adding timel to time2.

Errors:

None.

Description:

Adds one clock value to another using modulo arithmetic. No overflow checking
takes place and the values are cyclic.

e See also:

ProcTime ProcTimeAfter ProcTimeMinus

72 TDS 225 00 August 1990

226 2 Alphabetical list of functions

ProcTimerAlt Checks input channels or times out.

Synopsis:

#include <process.h>
int ProcTimer~t(int time, Channel *cl, ...);

Arguments:

int time The time after which the function aborts if no communica­
tion occurs. Represented by a specific clock value.

Channel *cl The first in a list of pointers to channels.
The remainder of the list. The list must be terminated by
NULL.

Results:

Returns an index to the parameter list, or -1 if the routine times out.

Errors:

None.

Description:

As ProcAlt but controlled by a timeout. If time is exceeded before any
communication occurs the routine terminates and returns the value -1.

Example:

/* select from channels cl, c2, c3 */

'include <process.h>

Channel *c1, *c2, *c3;
int i;

/* set up channels */

i = ProcTimerAlt(ProcTimePlus(ProcTime(), 50000),
cl, c2, c3, NULL);

switch (i)
{

case -1: /* timed out */
case 0: /* cl selected */

/* consume input from cl */;

72 TDS 225 00 August 1990

2.2 List of functions

break;
case 1: /* c2 selected */

/* consume input from c2 */
break;

case 2: /* c3 selected */
/* consume input from c3 */
break;

See also:

Proc~t ProcTimerAltList

72 TDS 225 00

227

August 1990

228 2 Alphabetical list of functions

ProcTimerAltList Checks a list of channels or times out.

Synopsis:

#include <process.h>
int ProcTimer~tList(inttime, Channel **clist)

Arguments:

int time The time after which the function aborts if no com­
munication occurs. Represented by a specific clock
value.

Channel **clist An array of pointers to channels terminated by NULL.

Results:

Returns no result.

Errors:

None.

Description:

As ProcTimer~t. but takes an array of pointers to channels.

See also:

ProcTimerAlt

72 TDS 225 00 August 1990

2.2 List of functions

ProcWait Suspends a process for a specified time.

Synopsis:

#include <process.h>
void ProcWait(int time);

Arguments:

int time The time delay measured in transputer clock ticks.

Results:

Returns no result.

Errors:

None.

Description:

229

Suspends execution of a process for a specified period of time. When the period
expires, the process starts.

See also:

ProcAfter

72 TDS 22500 August 1990

230 2 Alphabetical list of functions

putc Writes a character to a file stream.

Synopsis:

#include <stdio.h>
int putc(int c, FILE *stream};

Arguments:

int c The character to be written.
FILE *stream A pointer to a file stream.

Results:

Returns the character written if the write is successful, or EOF if a write error
occurs.

Errors:

putc returns EOF if a write error occurs.

Description:

putc converts c to an unsigned char, writes it to the output stream pointed to
by stream, and advances the read/write position indicator for the file stream.

putc is not included in the reduced library.

See also:

fputc

72 TDS 225 00 August 1990

2.2 List of functions

putchar Writes a character to standard output.

Synopsis:

#include <stdio.h>
int putchar(int c);

Arguments:

int c The character to be written.

Results:

231

Returns the character written if successful. If a write error occurs, putchar
returns EOF.

Errors:

putchar returns EOF if a write error occurs.

Description:

putchar converts c to an unsigned char, writes it to the standard output stream,
and 'advances the read/write position indicator for the file stream.

putchar is not included in the reduced library.

See also:

fputc qetchar putc

72 TDS 225 00 August 1990

232 2 Alphabetical list of functions

puts Writes a line to standard output.

Synopsis:

#include <stdio.h>
int puts(const char *s);

Arguments:

const char *s A pointer to the string to be written.

Results:

Returns non-negative if successful, EOF if unsuccessful.

Errors:

puts returns EOF if unsuccessful.

Description:

puts writes the string pointed to by s to the standard output file stream, fol­
lowed by a newline character. The write does not include the string terminating
character.

puts is not included in the reduced library.

See also:

fputs getchar gets putchar

72 TDS 225 00 August 1990

2.2 List of functions

qsort Sorts an array of objects.

Synopsis:

233

#include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size,

int (*compar) (const void *, const void *»;

Arguments:

void *base
size_t nmemb
size_t size
int (*compar) (const
void *, const void *)

Results:

Returns no value.

Errors:

None.

Description:

A pointer to the start of the array.
The number of objects in the array.
The size of the array objects.
A pointer to the comparison function.

qsort sorts objects in the array pointed to by base into ascending order,
according to comparisons performed by the function pointed to by compar.
The array contains nmemb objects of size bytes.

The comparison function must return an integer less than, equal to, or greater
than zero, depending on whether the first argument to the function is considered
to be less than, equal to, or greater than the second argument.

Example:

'include <stdio.h>
'include <stdlib.h>

int sort_compare(const void *argl,
const void *arg2)

return (int) (* «int *) argl) - * «int *) arg2)) ;

int main ()

72 TDS 225 00 August 1990

234

See also:

2 Alphabetical list of functions

int i [10] = {1, 4, 6, 5, 2, 7, 9, 3, 8, O};
int j;

qsort(i, 10, sizeof(int), sort_compare);
for (j = 0; j < 10; ++j)

printf("%d\n", i[j]);

bsearch

72 TDS 225 00 August 1990

2.2 List of functions

raise Sends a signal to the executing program.

Synopsis:

#include <signal.h>
int raise(int sig);

Arguments:

int sig A signal number, as defined in signal. h.

Results:

Returns zero (0) if successful, non-zero if unsuccessful.

Errors:

235

If raise is called with an unrecognised signal number, it returns a non-zero
value.

Description:

raise is used to send a signal to the running program. The actual function
called in response to a raise call depends on the function specified in signal.

Signals which can be raised are listed under the signal handling setup function
signal.

See also:

signal

72 TDS 225 00 August 1990

236 2 Alphabetical list of functions

rand Generates a pseudo-random number.

Synopsis:

#include <stdlib.h>
int rand (void) ;

Arguments:

None.

Results:

Returns a positive pseudo-random integer.

Errors:

None.

Description:

rand generates a pseudo-random integer in the range 0 to RAND...MAX.

Note: Successive calls to the function by unsynchronised parallel processes will
each produce a new number from the pseudo-random sequence.

See also:

srand

72 TDS 225 00 August 1990

2.2 List of functions

read Reads bytes from a file stream. File handling primitive.

Synopsis:

#include <iocntrl.h>
int read(int fd, char *buf, int n);

237

Arguments:

int fd A file descriptor.
char *buf A pointer to a buffer where the bytes will be stored.
int n The maximum number of bytes that read will attempt to ob­

tain.

Results:

Returns the number of bytes read or -1 on error.

Errors:

If an error occurs read sets errno to the value EIO.

Description:

read attempts to read n bytes from the file described by fd into the buffer
pointed to by buf. read may return a value less than n if an end of file
occurred. n may be zero or negative but in these cases no input will occur.

Note: Care should be taken when calling localtime in a concurrent en­
vironment. Calls to the function by independently executing, unsynchronised
processes may change the return value.

read is not included in the reduced library.

See also:

write

72 TDS 225 00 August 1990

238

realloc

Synopsis:

2 Alphabetical list of functions

Changes the size of an object in memory.

#include <stdlib.h>
void *realloc(void *ptr, size_t size);

Arguments:

void *ptr
size_t size

Results:

A pointer to the area of memory.
The new size of the area of memory.

Returns a pointer to the allocated space. If it was not possible to allocate
size bytes, or if the size requested is zero and the pointer parameter is NULL,
realloc returns a NULL pointer.

Errors:

If it is not possible to allocate size bytes, realloc returns a NULL pointer.
If ptr does not point to an area of memory which was previously allocated by
calloc, malloc, or realloc and which has not been deallocated by a call
to free or realloc, a fatal runtime error occurs and the following message
is generated:

Fatal-C_Library-Error In realloc(), bad pointer or heap corrupted

Description:

realloc allocates an area of memory of size size, and copies the previously
allocated area of memory pointed to by ptr into the newly allocated area. If the
previous area is larger than the new area, the overflow will be lost.

If ptr is NULL, realloc behaves like a call to malloc.

If size is zero and ptr is not a NULL pointer, the object pointed to by ptr is
freed. If ptr is invalid a runtime error from free may be generated.

See also:

calloc free malloc

72 TDS 225 00 August 1990

2.2 List of functions

remove Removes a file.

Synopsis:

#include <stdio.h>
int remove(const char *filename);

Arguments:

const char *filename A pointer to the filename string.

Results:

Returns zero (0) if successful and non-zero if unsuccessful.

Errors:

239

If the remove operation was unsuccessful, remove returns a non-zero value.

Description:

remove deletes the file identified by the string pointer filename. If the file is
open it will be deleted only if this is permitted by the host system.

remove is not included in the reduced library.

See also:

rename

72 TDS 225 00 August 1990

240

rename Renames a file.

Synopsis:

2 Alphabetical list of functions

#include <stdio.h>
int rename(const char *old, const char *new);

Arguments:

const char *old A pointer to the old filename.
const char *new A pointer to the new filename.

Results:

Returns zero if rename was successful and non-zero if it was not.

Errors:

If the rename was unsuccessful, rename returns a non-zero value.

Description:

rename changes the name of the file from old string to new string. If a file
with the new name already exists the existing file will only be overwritten if this
is permitted by the host operating system.

rename is not included in the reduced library.

See also:

remove

72 TDS 225 00 August 1990

2.2 List of functions

rewind Sets the read/write pointer to the start of a file stream.

Synopsis:

'include <stdio.h>
void rewind(FILE *stream};

Arguments:

FILE *stream A pointer to a file stream.

Results:

No value is returned.

Errors:

None.

Description:

241

rewind sets the read/write position pointer of the file stream stream to the
start of the file. The error indicators for the stream are cleared.

rewind is not included in the reduced library.

Example:

'include <stdio.h>

int main(void)
{

FILE *stream;

stream = fopen("data.dat","w+");

if (stream == NULL)
printf("Couldn't open data.dat for write.\n");

else
{

fprintf(stream, "01234");
rewind (stream) ;
printf("First character in data.dat is:

'%c'\n", getc(stream»;

72 TDS 225 00 August 1990

242

/*
* Output:

*
*/

See also:

fsetpos

72 TDS 225 00

2 Alphabetical list of functions

First character in data.dat is '0'

August 1990

2.2 List of functions

scanf Reads formatted data from standard input.

Synopsis:

#include <stdio.h>
int scanf(const char *format , ...);

Arguments:

const char *format A format string.
Subsequent arguments to the format string.

Results:

243

Returns the number of inputs which have been successfully converted. If an
end-of-file character occurred before any conversions took place, scanf returns
EOF.

Errors:

If an end of file character occurred before any conversions took place, scant
returns EOF. Other failures cause termination of the procedure.

Description:

scanf matches the data read from the standard input to the specifications set
out by the format string, format. The format string can include white space,
ordinary characters, or conversion tokens:

1. White space causes the next series of white space characters read to be
ignored.

2. Ordinary characters in the format string cause the characters read to be
compared to the corresponding character in the format string. If the characters
do not match, conversion is terminated.

3. A conversion token in the format string causes the data sequence read in
to be checked to see if it is in the specified format. If it is, it is converted and
placed in the appropriate argument following the format string. If the data is not
in the correct format, conversion is terminated.

The meaning of the format string is as described for fscanf.

Any mismatch between the token format and the data received causes an early
termination of scanf.

72 TDS 225 00 August 1990

244 2 Alphabetical list of functions

scanf is not included in the reduced library.

See also:

fscanf

72 TDS 225 00 August 1990

2.2 List of functions

segread Reads host processor segment registers. DOS only.

Synopsis:

#include <dos.h>
void segread(struct SREGS *segregs);

Arguments:

245

struct SREGS *segregs The read-in values of the segment registers.

Results:

Returns no result.

Errors:

Any error sets errno to the value EDOS. Any attempt to use segread on
operating systems other than DOS also sets errno. Failure of the function also
generates the server error message:

[Encountered unknown primary tag (50)]

Description:

segread reads the current values of the host BOxBS processor's segment reg­
isters into segregs.

segread is not included in the reduced library.

See also:

intdos intdosx

72 TDS 225 00 August 1990

246 2 Alphabetical list of functions

SemAlloc Allocates and initialises a semaphore.

Synopsis:

#include <semaphor.h>
Semaphore *SemAlloc(int value);

Arguments:

int value The initial value of the semaphore.

Results:

Returns a pointer to an initialised semaphore.

Errors:

If space cannot be allocated SemAlloc returns a NULL pointer.

Description:

Allocates space for a semaphore and returns a pointer to it. The semaphore is
set to the value parameter.

See also:

Semlnit

72 TDS 225 00 August 1990

2.2 List of functions

Semlnit Initialises an existing semaphore.

Synopsis:

#include <semaphor.h>
void Semlnit(Semaphore *sem, int value);

Arguments:

Semaphore *sem A pointer to a semaphore.
int value The initial value of the semaphore.

Results:

Returns no result.

Errors:

None.

Description:

247

Semlnit initialises the semaphore pointed to by sem and assigns to it the initial
value value.

See also:

SemAlloc

72 TDS 225 00 August 1990

248 2 Alphabetical list of functions

SemSignal Releases a semaphore.

Synopsis:

#include <semaphor.h>
void SemSiqnal(Semaphore *sem);

Arguments:

Semaphore *sem A pointer to a semaphore.

Results:

Returns no result.

Errors:

None.

Description:

Releases the semaphore pointed to by sem and runs the next process on the
semaphore's queue. If no processes are waiting on the queue the semaphore
value is incremented.

See also:

SemWait

72 TDS 225 00 August 1990

2.2 List of functions

SemWait Acquires a semaphore.

Synopsis:

#include <semaphor.h>
void SemWait(Semaphore *sem);

Arguments:

Semaphore *sem A pointer to a semaphore.

Results:

Returns no result.

Errors:

None.

Description:

249

Blocks the current process if the semaphore is already set to zero (acquired),
otherwise acquires the semaphore, decrements it, and continues the process.
Blocked processes do not continue until the semaphore is released by a call to
SemSignal by another process.

See also:

SemSignal

72 TDS 225 00 August 1990

250 2 Alphabetical list of functions

server_transaction Calls any ISERVER function.

Synopsis:

#include <iocntrl.h>
int server_transaction(char *message, int length,

char *reply);

Arguments:

char *message The server packet to be sent.
int length The length of the server packet.
char *reply A pointer to an array where the reply packet is to be

stored.

Results:

Returns the length in bytes of the server reply packet, or -1 if an error occurs.

Errors:

Error codes returned are as follows:

1 Length is less than the minimum server transaction of 8 bytes.

2 Length is greater than 510.

3 Length is not an even number.

Description:

The runtime library provides functions which access a defined subset of IS­
ERVER functions. Some server functions are therefore not directly accessible
by C function calls.

server_transaction allows controlled access to any ISERVER function
from a C program. It allows the full functionality of the supplied ISERVER to be
used from C and supports the calling of user-defined functions and alternative
servers. A list of callable functions supplied with the standard toolset ISERVER
can be found in appendix D 'ISERVER protocol' of the accompanying User
Manual.

server_transaction sends the packet pointed to by message, of length
length, to the server. The server reply is stored in the array pointed to by
reply.

72 TDS 225 00 August 1990

2.2 List of functions 251

For those familiar with occam, server_transaction performs the equiva­
lent of the following occam output and input statements:

ToServer ! length::message
FromServer? replylen::reply

where: ToServer and FromServer are the server channels.

length and replylength are the packet lengths and message and
reply are the data packets themselves.

replylen is the value returned by the function if no error occurs.

server_transaction provides low level access to the server in a secure
manner. The user constructed packet is forwarded to the server, and the reply
sent, via protected channels.

Note: There is no protection against the message and reply pointers being the
same, in which case the original message packet is overwritten.

The following example uses server_transaction to obtain the transputer
board size by calling the Getenv server function.

The structure of the packet to request the boardsize environment variable is
given below. Numbers along the top row are Byte numbers.

o 1 2 3 4 5 6 7 8 9 10 11 12

32 10 00 I BOA R D S I Z E

Byte 0 is the tag of the Getenv function. Bytes 1 and 2 make up a 16 bit number
which represents the length of the string IBOARDSIZE. The string follows from
byte 3 onwards.

The reply packet is similar except that byte 0 is the result byte and the string
contains the value of the environment variable.

Example:

'include <misc.h>
'include <stdio.h>

int main C)
{

char message[512], reply[512];
/* 512 byte buffers */
char *name = "IBOARDSIZE";

72 TDS 225 00 August 1990

252 2 Alphabetical list of functions

/* The env variable of interest */
int length, i;

/* set up packet to send */
message [0] = 32; /* getenv tag */
message [1] = strlen(name);
/* length of env variable name */
message [2] = 0;
strcpy(&message[3], name);
/* calculate total length of packet */
length = 3 + strlen(name);
/* make sure length is an even number */
length = (length + 1) & -1;
/* perform the transaction */
length = server transaction(message, length, reply);
/* process reply */
if (length == -1)

printf("error in server transaction\n");
else
{

/* print out result byte */
printf("result = %d\n", reply[O]);
/* print out length of env variable value */
printf("length of result string = %d\n",reply[l]);
/* terminate the result string */
reply[(int)reply[l] + 3] = '\0';
/* print out the result string */
printf("string = [%s]\n", &reply[3]);

72 TDS 225 00 August 1990

2.2 List of functions 253

set_abort_action Sets/queries action taken by abort.

Synopsis:

'include <misc.h>
int set_abort_action(int mode);

Arguments:

int mode The mode to be set.

Results:

Returns the previous termination mode (the mode in operation before
set_abort_action was called).

Errors:

None.

Description:

Sets, or queries, the mode of termination for abort. mode can have any of the
following values:

ABORT-EXIT Causes a normal abort (without halting the transputer).
ABORT-HALT Causes abort to halt the transputer.
ABORT_QUERY Returns the current abort mode. Leaves the mode un­

changed.

If ABORT-HALT is used abort first enables HALT mode by setting the Halt­
On-Error flag and then sets the processor Error flag. When the transputer halts
the following message is displayed by the server:

Error: Transputer error flag has been set.

Note: Care should be taken when calling set_abort_action in a concurrent
environment. Calls to the function by independently executing, unsynchronised
processes may change the abort action. set-abort_action should normally
be called at the start of the program to set the action of abort for the entire
program.

See also:

abort

72 TDS 225 00 August 1990

254

setbuf Controls file buffering.

Synopsis:

2 Alphabetical list of functions

#include <stdio.h>
void setbuf(FILE *stream, char *buf)i

Arguments:

FILE *stream A pointer to a file stream.
char *buf A pointer to an array of size BUFSIZ.

Results:

Returns no value.

Errors:

None.

Description:

setbuf may be called after the file associated with stream has been opened,
but before it has been read from or written to. setbuf causes stream to be
fully buffered in the array buf. It is equivalent to a call to setvbuf with the
values _IOFBF for mode and BUFSIZ for size. If buf is a NULL pointer, the
stream will not be buffered.

setbuf is not included in the reduced library.

See also:

setvbuf

72 TDS 225 00 August 1990

2.2 List of functions

set jmp Sets up a non-local jump.

Synopsis:

#include <setjmp.h>
int setjmp(jmpJbuf env)i

Arguments:

jmpJbuf env An array into which a copy of the calling environment
is put.

Results:

255

When first called, set jmp stores the calling environment in env and returns
zero. After a subsequent call to longjmp it returns a value set by longjmp,
which is always non-zero.

Errors:

The set jmp function should only appear in one of the following contexts:

• The entire controlling expression of a selection or iteration statement.

• One operand of a relational or equality operator with the other operand
being an integral constant expression. The resultant expression controls
a selection or iteration statement.

• The operand of a unary ! operator. The resultant expression controls a
selection or an iteration statement.

• The complete expression of an expression statement.

Description:

setjmp is used to set up a non-local goto by saving the calling environment in
env. This environment is used by the longjmp function.

When first called, set jmp stores the calling environment in env and returns
zero. A subsequent call to longjmp using env will cause execution to continue
as if the call to set jmp had just returned with the value given in the call to
longjmp. This value will always be non-zero.

See also:

lonqjmp

72 TDS 225 00 August 1990

256

setlocale

Synopsis:

2 Alphabetical list of functions

Sets or interrogates part of the program's locale.

#inc1ude <10ca1e.h>
char *set10ca1e(int category, const char *10ca1e);

Arguments:

int category A specification of which part of the locale is to
be set or interrogated.

const char *10ca1e A pointer to the string which selects the environ­
ment of the locale.

Results:

Returns "C" if locale is NULL, if *10ca1e is NULL, or if *10ca1e is "C".
Otherwise returns NULL.

Errors:

Returns NULL if the parameters are invalid.

Description:

set10ca1e sets or interrogates part of the program's locale according to the
values of category (the part to be set) and locale (a pointer to a string
describing the environment to which it is to be set).

category can take the following values:

1 LC-ALL
2 LC_COLLATE

3 LC_CTYPE

4 LC...NUMERIC

5 LC_TIME

6 LC.-MONETARY

All categories.
Affects strco11 and strxfrm.
Affects character handling
Affects the format of the decimal point
(e.g., '.' ',', etc).
Affects the strftime function.
Affects monetary formatting information.

If locale is a null string, set10ca1e returns the current locale for the given
category. In the current implementation the only acceptable locale is "C".

See also:

10ca1econv

72 TDS 225 00 August 1990

2.2 List of functions

setvbuf Defines the way that a file stream is buffered.

Synopsis:

#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int mode,

size_t size);

Arguments:

FILE *stream A pointer to a file stream.
char *buf A pointer to a file buffer.
int mode The way the file stream is to be buffered.
size_t size The size of the file buffer.

Results:

setvbuf returns zero if successful, and non-zero if the operation fails.

Errors:

257

If mode or size is invalid, or stream cannot be buffered, setvbuf returns a
non-zero value.

Description:

setvbuf may be called after the file associated with stream has been opened,
but before it has been read from or written to. setvbuf causes stream to be
buffered in the format specified by mode. Valid formats are:

1 _IOFBF Fully buffered I/O
2 _IOLBF Line buffered output
3 _IONBF Unbuffered I/O

The buffer used is of size bytes. If buf is not a NULL pointer, it is used as
the buffer, otherwise an internally allocated array is used.

setvbuf is not included in the reduced library.

See also:

setbuf

72 TDS 225 00 August 1990

258 2 Alphabetical list of functions

signal Defines the way that errors and exceptions are handled.

Synopsis:

#include <signal.h>
void (*signal(int sig, void (*func) (int») (int);

Arguments:

int sig A signal number (a predefined value. describing
an error/exception type).

void (*func) (int) A function which is invoked on reception of sig.

Results:

If the signal number is recognised a pointer to the function previously associated
with the signal number sig is returned. otherwise SIG-ERR is returned.

Errors:

If the predefined error/exception value is not recognised by signal. signal
returns SIG-ERR and sets errno to the value ESIGNUM.

Description:

signal specifies the functions to be called on reception of particular. predeter­
mined signal values.

func can be any user-defined function. or one of the following two predefined
functions which are implemented as macros in the signal. h header file:

SIG...DFL Uses the default system error/exception handling for the pre­
defined value.

SIG_IGN Ignores the error/exception.

The functions will then be called in response to a "raise" or other invocation
of the signal handler. using a signal number as a parameter. If the second
parameter is a function other than SIG...DFL or SIG_IGN. SIG...DFL will be
called. and then the function.

When a signal is raised the default signal handling is reset by a call of the form
signal (sig, SIG-DFL) and then the signal handler function is called. If
sig takes the value SIGILL then the default resetting still occurs.

The available signal numbers are as follows:

72 TDS 225 00 August 1990

2.2 List of functions

1 SIGABRT

2 SIGFPE

3 SIGILL

4 SIGINT

5 SIGSEGV

6 SIGSTERM

8 SIGIO

9 SIGORG

10 SIGPIPE

11 SIGSYS

12 SIGALRM

13 SIGWINCH

14 SIGLOST

15 SIGUSRl

16 SIGUSR2

17 SIGUSR3

Abort error

Arithmetic exception

Illegal instruction

Attention request from user

Bad memory access

Termination request

Input/output possible

Urgent condition on I/O channel

Write on pipe with no corresponding read

Bad argument to system call

Alarm clock

Window changed

Resource lost

User defined signal

User defined signal

User defined signal

259

The default handling and handling at program startup for all signals except
SIGABRT and SIGTERM is no action. For SIGABRT the handling depends
on set_abort_action, and for SIGTERM the program is terminated via a
call to exit with the parameter EXITJ'AILURE.

Example:

/*
* To arrange that an interrupt by the user
* should not go through the default exception
* handling system, call

*
*
*

signal(SIGILL, SIG_IGN

* If the signal is then raised in a
* later part of the program:

** raise(SIGILL
*"
* the signal will be ignored.
*/

Note: Care should be taken when using signal in a concurrent environment.
Although simultaneous access to the function is controlled through a semaphore,

72 TDS 225 00 August 1990

260 2 Alphabetical list of functions

the registration of a function with the same signal number, for example by inde­
pendent parallel processes overrides the previous value.

See also:

raise

72 TDS 225 00 August 1990

2.2 List of functions

s in Calculates the sine of the argument.

Synopsis:

#include <math.h>
double sin(double x);

Arguments:

double x A number in radians.

Results:

Returns the sine of x in radians.

Errors:

None.

Description:

sin calculates the sine of a number (given in radians).

72 TDS 225 00

261

August 1990

262 2 Alphabetical list of functions

sinf Calculates the sine of a float number.

Synopsis:

#include <mathf.h>
float sinf(float x);

Arguments:

float x A number in radians.

Results: Returns the sine of x in radians.

Errors:

None.

Description: float form of sin.

See also:

sin

72 TDS 225 00 August 1990

2.2 List of functions

s inh Calculates the hyperbolic sine of the argument.

Synopsis:

#include <math.h>
double sinh(double x);

Arguments:

double x A number.

Results:

Returns the hyperbolic sine of x.

Errors:

263

A range error will occur if x is so large that sinh would result in an overflow. In
this case sinh returns the value HUGE_VAL (with the same sign as the correct
value of the function) and errno is set to ERANGE.

Description:

sinh calculates the hyperbolic sine of a number.

72 TDS 225 00 August 1990

264 2 Alphabetical list of functions

sinhf Calculates the hyperbolic sine of a float number.

Synopsis:

#include <mathf.h>
float sinhf(float x);

Arguments:

float x A number.

Results: Returns the hyperbolic sine of x.

Errors: A range error will occur if x is so large that sinhf would result in an
overflow. In this case sinhf returns the value HUGE_VAL-.F (with the same
sign as the correct value of the function) and errno is set to ERANGE.

Description: float form of sinh.

See also:

sinh

72 TDS 225 00 August 1990

2.2 List of functions 265

sprintf

Synopsis:

Writes a formatted string to a string.

'include <stdio.h>
int sprintf(char *s, const char *format , ...);

Arguments:

char *s A string that the output is written to.

const char *format A format string.

Subsequent arguments to the format string.

Results:

Returns the number of characters written, excluding the string terminating char­
acter.

Errors:

None.

Description:

sprintf writes the string pointed to by format to s. When sprintf encoun­
ters a percent sign (%) in the format string, it expands the equivalent argument
into the format defined by the tokens after the 0/0.

For the meaning of the format string see the description of fprintf.

Each token acts on the equivalent argument, that is, the third token relates to
the third argument after the format string. There must be a single argument for
each token. If the token or its equivalent argument is invalid, the behaviour is
undefined.

To use sprintf in the reduced library include the header file stdiored. h.

See also:

fprintf

72 TDS 225 00 August 1990

266 2 Alphabetical list of functions

sqrt Calculates the square root of the argument.

Synopsis:

#include <math.h>
double sqrt(double x);

Arguments:

double x A number.

Results:

Returns the non-negative square root of x.

Errors:

A domain error will occur if x is negative. In this case errno is set to EDOM.

Description:

sqrt calculates the square root of a number.

72 TDS 225 00 August 1990

2.2 List of functions

sqrtf float form of sqrtf.

Synopsis:

#include <mathf.h>
float sqrtf(float x);

Arguments:

float x A number.

Results:

Returns the non-negative square root of x.

Errors:

267

A domain error will occur if x is negative. In this case errno is set to EDON.

Description:

float form of sqrt.

See also:

sqrt

72 TDS 225 00 August 1990

268 2 Alphabetical list of functions

srand Sets the seed for pseudo-random numbers generated by rand.

Synopsis:

#include <stdlib.h>
void srand(unsigned int seed);

Arguments:

unsigned int seed The new seed to be used by rand.

Results:

No value is returned.

Errors:

None.

Description:

srand causes rand to be seeded with the value seed. Subsequent calls to
rand will start a new sequence of pseudo-random numbers. If srand is called
again with the same value of seed the random number sequence will be re­
peated.

If rand is called before any calls to srand have been made the effect will be
the same as if srand had been called with a seed value of 1.

See also:

rand

72 TDS 225 00 August 1990

2.2 List of functions

sscanf Reads formatted data from a string.

Synopsis:

#include <stdio.h>
int sscanf(const char *s, const char *format , ...);

Arguments:

const char *s The string the data is read from.

const char *format A format string.

SUbsequent arguments to the format string.

Results:

269

Returns the number of inputs which have been successfully converted. If a string
terminating character occurred before any conversions took place, sscanf re­
turns EOF.

Errors:

If a string terminating character occurred before any conversions took place,
sscanf returns EOF. Other failures cause termination of the procedure.

Description:

sscanf matches the data read from the string s to the specifications set out by
the format string. The format string can include white space, ordinary characters,
or conversion tokens, which are interpreted as follows:

• White space causes the next series of white space characters read to be
ignored.

• Ordinary characters in the format string cause the characters read to
be compared to the corresponding character in the format string. If the
characters do not match, conversion is terminated.

• A conversion token in the format string causes the data sequence read in
to be checked to see if it is in the specified format. If it is, it is converted
and placed in the appropriate argument following the format string. If the
data is not in the correct format, conversion is terminated.

The conversion tokens are those described in fscanf.

Each token acts on the equivalent argument, that is, the third token relates to

72 TDS 225 00 August 1990

270 2 Alphabetical list of functions

the third argument after the format string. There must be a single conversion
sequence received for each token. If the token is invalid, the behaviour is unde­
fined.

Any mismatch between the token format and the data received causes an early
termination of sscanf.

To use sscanf in the reduced library include the header file stdiored. h.

See also:

fscanf

72 TDS 225 00 August 1990

2.2 List of functions

strcat Appends one string to another.

Synopsis:

#include <strinq.h>
char *strcat(char *sl, const char *s2);

Arguments:

char *s 1 A pointer to the string to be extended.

const char *s2 A pointer to the string to be appended.

Results:

Returns the unchanged value of sl.

Errors:

None.

Description:

271

strcat appends the string pointed to by s2 (including the null terminating
character) onto the end of the string pointed to by s 1. The first character of s2
overwrites the null terminating character of sl.

See also:

strncat

72 TDS 225 00 August 1990

272 2 Alphabetical list of functions

strchr Finds the first occurrence of a character in a string.

Synopsis:

#include <strinq.h>
char *strchr(const char *s, int C)i

Arguments:

const char *s

int c

Results:

A pointer to the string to be searched.

The character to be searched for.

If the character is found, strchr returns a pointer to the matched character. It
returns a null pointer if the character c is not in the string.

Errors:

None.

Description:

strchr finds the first occurrence of c in the string pointed to by s. The search
includes the null terminating character. c is converted to a char before the
search begins.

Example:

char strinq[SO] = "fdakjrejnij"i
char *nyointer;

nyointer = strchr(strinq, 'n')i

See also:

memchr strpbrk strrchr

72 TDS 225 00 August 1990

2.2 List of functions

strcmp Compares two strings.

Synopsis:

#include <strinq.h>
int strcmp(const char *sl, const char *s2);

Arguments:

const char *sl A pointer to one of the strings to be compared.

const char *s2 A pointer to the other string to be compared.

Results:

Returns the following :

273

A negative integer if the sl string is numerically less than the s2 string.

A zero value if the two strings are numerically the same.

A positive integer if the s 1 string is numerically greater than the s2 string.

Errors:

None.

Description:

strcmp compares the two strings pointed to by sl and s2. The comparison is
of the numerical values of the ASCII characters.

See also:

memcmp strcoll strncmp

72 TDS 225 00 August 1990

274

strcoll

Synopsis:

2 Alphabetical list of functions

Compares two strings (transformed according to the pro­
gram's locale).

#include <strinq.h>
int strcoll(const char *sl, const char *s2);

Arguments:

const char *sl A pointer to one of the strings to be compared.

const char *s2 A pointer to the other string to be compared.

Results:

Returns the following:

A negative integer if the s 1 string is numerically less than the s2 string.

A zero value if the two strings are numerically the same.

A positive integer if the s 1 string is numerically greater than the s2 string.

Errors:

None.

Description:

strcoll compares the two strings pointed to by s 1 and s2. Before compari­
son takes place the two strings are transformed according to the LC_COLLATE
category of the program's locale. Since the only permissible locale in the current
implementation is "C", strcoll is equivalent to strcmp.

The string comparison is of the characters' numerical ASCII codes.

See also:

memcmp strcmp strncmp

72 TDS 225 00 August 1990

2.2 List of functions

strcpy Copies a string into an array.

Synopsis:

'include <strinq.h>
char *strcpy(char *sl, const char *s2);

Arguments:

275

char *sl

const char *s2

Results:

A pointer to the array used as the copy destination.

A pointer to the string used as the copy source.

Returns the unchanged value of s 1.

Errors:

The behaviour of strcpy is undefined if the source and destination overlap.

Description:

strcpy copies the source string (pointed to by s2) into the destination array
(pointed to by sl). The copy includes the null terminating character. The be­
haviour of strcpy is undefined if the source and destination overlap.

Calls to strcpy can be replaced by the compiler predefine _strcpy by redefin­
ing the function name. _strcpy is implemented directly as transputer assembly
code in selected cases. For further details see section 11.4 in the accompanying
User Manual. .

See also:

strncpy _strcpy

72 TDS 225 00 August 1990

276

strcspn

Synopsis:

2 Alphabetical list of functions

Counts the number of characters at the start of a string
which do not match any of the characters in another
string.

int main (void)

#include <string.h>
size_t strcspn(const char *sl, const char *s2);

Arguments:

const char *sl A pointer to the string to be measured.

const char *s2 A pointer to the string containing the characters to be
checked.

Results:

Returns the length of the unmatched segment.

Errors:

None.

Description:

strcspn counts the characters in the string pointed to by si which are not in
the string pointed to by s2. As soon as strcspn finds a character present in
both strings it stops and returns the number of characters counted.

The null terminating character is not considered to be part of the s2 string.

Example:

#include <stdio.h>
#include <string.h>

/* Print string up to any
numeric characters. */

char *dec string = "1234567890";
char *given string = "Hello there 123hello";
size t no chars;
no chars ~ strcspn(given string, dec string);
gi;en string[no chars] =-'\0'; -
puts(given_string); /* prints "Hello there" */

72 TDS 225 00 August 1990

2.2 List of functions

See also:

strspn strtok

72 TDS 225 00

277

August 1990

278 2 Alphabetical list of functions

strerror Converts an error number into an error message string.

Synopsis:

#include <string.h>
char *strerror(int errnum)i

Arguments:

int errnum The error number to be converted.

Results:

Returns a pointer to the error message string.

Errors:

None.

Description:

strerror generates one of the following error messages according to the value
of errnum:

Value of errnum Message

EDOM EDOM • function argument out of range

ERANGE ERANGE • function result not representable

ESIGNUM ESIGNUM • illegal signal number to signal()

EIO EIO • error in low level server I/O

EFILPOS EFILPOS • error In file positioning functions

0 No error (errno =O)

If errnum is not one of the above values the following error is generated:

Error code (errno) errnum has no associated message

Note: Care should be taken when calling strerror in a concurrent environ­
ment. Calls to the function by independently executing, unsynchronised pro­
cesses may corrupt the returned error string.

See also:

perror

72 TDS 225 00 August 1990

2.2 List of functions 279

strftime Does a formatted conversion of a tm structure to a
string.

Synopsis:

#include <time.h>
size_t strftime(char *s, size t maxsize,

const char *format ,
const struct tm *timeptr);

Arguments:

char *s

size_t maxsize

const char *format

const struct tm *timeptr

Results:

A pointer to the buffer where the string
is written.

The maximum number of characters to
be written into the string.

A pointer to the format string.

A pointer to a calendar time structure.

If the number of characters written is less than maxsize, strftime returns
the number of characters written, otherwise strftime returns zero (0).

Errors:

If the number of characters to be written exceeds maxsize, strftime returns
zero, and the contents of the string pointed to by s are undefined.

Description:

strftime is used to convert the values in a time structure according to the
demands of a format string, and to write the resulting string to a string. The
format string consists of ordinary characters and tokens. Normal characters are
written directly to s, and tokens are expanded. Tokens are single characters,
preceded by the percent character %.

72 TDS 225 00 August 1990

280 2 Alphabetical list of functions

Token Meaning Range

o/oa Abbreviated day (Mon - Sun).

%A Full day (Monday - Sunday).

°lob Abbreviated month (Jan - Dec).

°108 Full month (January - december).

°loc Date and time in form of a string of decimal (e.g. Sun Jul 23
numbers. 11 :27:32 1989).

°lod Day of the month as a decimal number. 01 - 31

%H Hours using twenty-four hour clock. 00 - 23

°10 Hours using twelve hour clock. 01 -12

%j Day of the year. 001 - 366

°lom Month as a decimal number. 01 -12

%M Minutes. 00 -59

%p AM or PM.

°loS Seconds. 00 - 61

°loU Week number, counting Sunday as first day 00 - 53.
of week one.

%w Day of week, counting from Sunday. 0-6

%W Week number, counting Monday as first 00 - 53.
day

%x Date in default format. (e.g. Sun Jul 23 1989).

°loX Time in default format. (e.g. 11 :27:32).

°loy Year without century. 00 - 99

°loY Year with century. e.g. 1989

°loZ Time zone if one exists.

0/00/0 '°10'.

72 TDS 225 00 August 1990

2.2 List of functions

Example:

'include <stdio.h>
'include <time.h>

/* Display the day in different ways */

int main(void
{

char day line[300];
struct tm *calendar;
time_t current;

281

time('current);
calendar = localtime('current);
strftime (day line, 300,

"Different days are %a, %A, %j, %d, %w",
calendar);

printf(day_line);

See also:

asctime ctime localtime clock difftime mktime time

72 TDS 225 00 August 1990

282 2 Alphabetical list of functions

strlen Calculates the length of a string.

Synopsis:

#include <string.h>
size_t strlen(const char *s);

Arguments:

const char *s A pointer to the string to be measured.

Results:

Returns the length of the string (excluding the NULL terminating character).

Errors:

None.

Description:

strlen counts the number of characters in the string up to, but not including,
the NULL terminating character.

Example:

char *string = "String to be measured";
size t result;

result = strlen(string);

/*
Gives a result of 21

*/

72 TDS 225 00 August 1990

2.2 List of functions 283

strncat

Synopsis:

Appends one string onto another (up to a maximum num­
ber of characters).

#include <string.h>
char *strncat(char *sl, const char *s2,

size_t n)i

Arguments:

char *sl A pointer to the string to be extended.

const char *s2 A pointer to the string to be appended.

size_t n The maximum number of characters to be appended.

Results:

Returns the unchanged value of sl.

Errors:

None.

Description:

strncat copies a maximum of n characters from the string pointed to by 82
(excluding the null terminating character) onto the end of the string pointed to by
sl. The first character of s2 overwrites the null terminating character of sl. A
null terminating character is appended to the end of the result.

See also:

strcat

72 TDS 225 00 August 1990

284

strncmp

Synopsis:

2 Alphabetical list of functions

Compares the first n characters of two strings.

#include <string.h>

int strncmp(const char *sl, const char *s2,
size_t n)i

Arguments:

const char *sl A pointer to one of the strings to be compared.

const char *s2 A pointer to the other string to be compared.

size_t n The maximum number of characters to be compared.

Results:

Returns:

A negative integer if the sl string is numerically less than the s2 string.

A zero value if the two strings are numerically the same.

A positive integer if the s 1 string is numerically greater than the s2 string.

Errors:

None.

Description:

strncmp compares up to the first n characters of the strings pointed to by sl
and s2.

The comparison is of the numerical values of the ASCII characters.

Example:

/*
Compares two strings

*/

char stringl[SO], string2[SO];
int result;

72 TDS 225 00 August 1990

2.2 List of functions

strcpy(strinql, "Text");
strcpy(strinq2, "Textual difference");
result = strncmp(stringl, string2, 4);

/*
strncmp returns 0
*/

See also:

memcmp strcmp strcoll strncmp

72 TDS 225 00

285

August 1990

286

strncpy

Synopsis:

2 Alphabetical list of functions

Copies a string into an array (to a maximum number of
characters).

#include <string.h>
char *strncpy(char *sl, const char *s2, size_t n);

Arguments:

char *s 1 A pointer to the array used as the copy destination.

const char *s2 A pointer to the string used as the copy source.

size_t n The maximum number of characters to be copied.

Results:

Returns the unchanged value of s 1.

Errors:

The behaviour of strncpy is undefined if the source and destination overlap.

Description:

strncpy copies up to n characters from the source string (pointed to by s2) into
the destination array (pointed to by sl). The behaviour of strcpy is undefined
if the source and destination overlap.

If the source string is less than n characters long, the extra spaces in the desti­
nation array will be filled with null characters.

See also:

strcpy

72 TDS 225 00 August 1990

2.2 List of functions 287

strpbrk

Synopsis:

Finds the first character in one string present in another
string.

#include <strinq.h>
char *strpbrk(const char *sl, const char *s2);

Arguments:

const char *sl A pointer to the string to be searched.

const char *s2 A pointer to. the string containing the characters to be
searched for.

Results:

Returns a pointer to the first character found in both strings. If none of the
characters in the s2 string occur in the sl string, strpbrk returns a null pointer.

Errors:

None.

Description:

strpbrk finds the first character in the string pointed to by sl which is also
contained within the string pointed to by s2.

Example:

/* Return a pointer to the first occurrence of
'r', 'c', or 'm', */

'include <stdio.h>
'include <string.h>

int main ()
{

char *string "The Inmos C Compiler";
char *result;

result = strpbrk(string, "rem");
printf("%s\n", result);

/* result

72 TDS 225 00

"mos C Compiler" */

August 1990

288

See also:

strchr strrchr

72 TDS 225 00

2 Alphabetical list of functions

August 1990

2.2 List of functions 289

strrchr

Synopsis:

Finds the last occurrence of a given character in a string.

#include <strinq.h>
char *strrchr(const char *s, int c);

Arguments:

const char *s A pointer to the string to be searched.

int c The character to be searched for.

Results:

Returns a pointer to the last occurrence of the character.

Errors:

Returns NULL if c does not occur in the string.

Description:

strchr finds the last occurrence of c in the string pointed to by s. The search
includes the null terminating character. c is converted to a char before the search
begins.

Example:

/* Finds the last time that '9' occurs
in a string */

'include <stdio.h>
'include <string.h>

int main ()
(

char *string = "9 times 9 81";
char *result;

result = strrchr(string, '9');
printf("%s\n", result);

/* result = "9 = 81" */

See also: strpbrk strchr

72 TDS 225 00 August 1990

290 2 Alphabetical list of functions

strspn Counts the number of characters at the start of a string which
are also in another string.

Synopsis:

#include <strinq.h>
size_t strspn(const char *sl, const char *s2);

Arguments:

const char *sl A pointer to the string to be measured.

const char *s2 A pointer to the -string containing the characters to be
looked for.

Results:

Returns the length of the matched segment.

Errors:

None.

Description:

strspn counts the characters in the string pointed to by s 1 which are also
present in the string pointed to by s2. As soon as strspn finds a character in
the first string which is not present in the second string, it stops and returns the
number of characters counted.

Example:

#include <string.h>
#include <stdio.h>

int main(void)
{

char *string = "cracking";
size_t result;

result = strspn(string, "arc");
printf("%d\n", result); /* 4 in this case */

See also:

72 TDS 225 00 August 1990

2.2 List of functions

strcspn strtok

72 TDS 225 00

291

August 1990

292 2 Alphabetical list of functions

strstr Finds the first occurrence of one string in another.

Synopsis:

#include <string.h>
char *strstr(const char *sl, const char *s2);

Arguments:

const char *sl A pointer to the string to be searched.

const char *s2 A pointer to the string to be searched for.

Results:

Returns a pointer to the string, if found. If s2 points to a string of zero length,
the function returns sl. If the s2 string does not occur within the sl string the
function returns NULL.

Errors:

None.

Description:

strstr finds the first occurrence of the s2 string (excluding the null terminating
character) in the s 1 string.

Example:

#include <string.h>
#include <stdio.h>

int main ()
{

char *string1 = "string to be searched";
char *string2 = "sea";

print£("%s\n", strstr(stringl, string2»;

/* Displays "searched" */

See also:

strpbrk strspn

72 TDS 225 00 August 1990

2.2 List of functions 293

strtod Converts the initial part of a string to a double and saves a
pointer to the rest of the string.

Synopsis:

#include <stdlib.h>
double strtod(const char *nptr, char **endptr);

Arguments:

const char *nptr A pointer to the string to be converted.

char **endptr A pointer to the location which is to receive a
pointer to the rest of the string.

Results:

Returns the converted value if the conversion is successful. If no conversion is
possible, strtod returns zero.

Errors:

If the result would cause overflow, errno is set to ERANGE and the value
HUGE_VAL is returned. If the result would cause underflow, errno is set to
ERANGE and zero is returned.

Description:

strtod converts the initial part of the string pointed to by nptr to a number
represented as a double. strtod expects the string to consist of the following
sequence:

1. Leading white space (optional).

2. A plus or minus sign (optional).

3. A sequence of decimal digits, which may contain a decimal point.

4. An exponent (optional) consisting of an 'E' or 'e' followed by an
optional sign and a string of decimal digits.

5. One or more unrecognised characters (including the null string
terminating character).

strtod ignores the leading white space, and converts all the recognised char­
acters. If there is no decimal point or exponent part in the string, a decimal point
is assumed after the last digit in the string.

The string is invalid if the first non-space character in the string is not one of the

72 TDS 225 00 August 1990

294

following characters:

+-.0123456789

2 Alphabetical list of functions

If endptr is not NULL, and the conversion took place, a pointer to the un­
recognised part of the string is stored in the location pointed to byendptr. If
conversion did not take place, the location is set to the value of nptr.

Example:

'include <stdio.h>
'include <stdlib.h>

int main ()
{
char *array = "97824.3E+4Goodbye";
char *number_end;
double x;

x = strtod(array, &number end);
printf("strtod gives %f\n~, x);
printf("Number ended at %s\n", number_end);

}

/*
Prints:

strtod gives 978243000.000000
Number ended at Goodbye

*/

See also:

atof atoi atol strtol

72 TDS 225 00 August 1990

2.2 List of functions

strtok Converts a delimited string into a series of string tokens.

Synopsis:

#include <strinq.h>
char *strtok(char *sl, const char *s2);

Arguments:

char *s 1 A pointer to the string to be broken up.

const char *s2 A pointer to the delimiter string.

Results:

295

Returns a pointer to the first character of a token. A NULL pointer is returned if
no token is found.

Errors:

None.

Description:

strtok is used to break up the string pointed to by sl into separate strings.
The input string is assumed to consist of a series of tokens separated from one
another by one of the characters in the delimiter string pointed to by s2.

When strtok is first called, each character in the string pointed to by sl is
checked to see if it is also present in the delimiting string pointed to by s2.
strtok recognises the first character which is not in the delimiter string as the
start of the first token. If no such character is found it is assumed that there are
no tokens in sl, and strtok returns a NULL pointer.

Having found the start of a token, the strtok function searches for the end of
the token, represented by a character present in the delimiting string. If such
a character is found, it is overwritten with the NULL terminating character and
strtok saves a pointer to the following character for use in a subsequent call.
If no such character is found the token extends to the end of the string. strtok
returns a pointer to the first character of the token.

The next token from the string is extracted by calling strtok with a NULL
pointer as the first parameter. This causes strtok to use the pointer saved
during the previous execution.

Note: Care should be taken when calling strtok in a concurrent environment.

72 TDS 225 00 August 1990

296 2 Alphabetical list of functions

Calls to the function by independently executing, unsynchronised processes may
change the returned token pointer.

Example:

'include <stdio.h>
'include <string.h>

int main ()
{

char *string
char *token;

"String"'of things,to"be"'split";

token = strtok(string, "'" ,If);
while (token != NULL)
{

printf ("Token found = %s\n", token);
token = strtok(NULL, "'" ,If);

/*
* Gives the output:
* Token found String
* Token found = of
* Token found things
* Token found = to
* Token found be
* Token found = split
*/

72 TDS 225 00 August 1990

2.2 List of functions 297

strtol Converts the initial part of a string to a long integer and saves
a pointer to the rest of the string.

Synopsis:

#include <stdlib.h>
long int strtol(const char *nptr,

char **endptr, int base);

Arguments:

const char *nptr A pointer to the string to be converted.

char **endptr A pointer to the location which is to receive a
pointer to the rest of the string.

int base The radix representation of the integer string to be
converted.

Results: Returns the converted value if the conversion is successful. If no
conversion is possible, strtol returns zero. If the result would cause overflow
the value LONG-MAX or LONGJ4IN is returned (depending on the sign of the
result).

Errors: If the result would cause overflow the value LONG-MAX or LONGJ4IN
is returned (depending on the sign of the result), and errno is set to ERANGE.

Description: strtol converts the initial part of the string pointed to by nptr
to a long integer. strtol expects the string to consist of the following:

1. Leading white space (optional).

2. A plus or minus sign (optional).

3. An octal '0' or hexadecimal 'Ox' or 'OX' prefix (optional).

4. A sequence of digits within the range of the appropriate base. The
letters 'a'to 'z', and 'A' to 'Z' may be used to represent the values 10
to 35. For example, if base is set to 18, the characters for the values
o to 17 ('0' to '9' and 'a' to 'h' or 'A' to 'H') are permitted.

5. One or more unrecognised characters (including the null string termi­
nating character).

strtol ignores leading blanks, and converts all recognised characters.

The string is invalid if the first non-space character in the string is not a sign, an
octal or hexadecimal prefix, or one of the permitted characters.

If endptr is not NULL, and the conversion took place, a pointer to the rest of

72 TDS 225 00 August 1990

298 2 Alphabetical list of functions

the string is stored in the location pointed to byendptr. If no conversion was
possible, and endptr is not NULL, the value of nptr is stored in that location.

Example:

#include <stdio.h>
#include <stdlib.h>

int main ()
{

char *array = "12345abcGoodbye";
char *number_end;
int base;
long 1;

for (base = 2; base < 12; base += 3)
{

1 = strtol(array, 'number end, base);
printf("base = %d, strtol-gives %ld\n",

base, 1);
printf("Nwnber ended at %s\n\n", number_end);

/* Prints base = 2, strtol gives 1
* Number ended at 2345abcGoodbye

* base = 5, strtol gives 194
* Number ended at 5abcGoodbye

* base = 8, strtol gives 5349
* Number ended at abcGoodbye

* base = 11, strtol gives 194875
* Number ended at bcGoodbye
*/

See also:

atoi atol strtod strtoul

72 TDS 225 00 August 1990

2.2 List of functions 299

strtoul

Synopsis:

Converts the initial part of a string to an unsigned long
int and saves a pointer to the rest of the string.

#include <stdlib.h>
unsigned long int strtoul(const char *nptr,

char **endptr, int base);

Arguments:

const char *nptr A pointer to the string to be converted.

char **endptr A pointer to the location which is to receive a
pointer to the rest of the string.

int base The radix representation of the integer string to be
converted.

Results:

Returns the converted value if the conversion is successful. If no conversion is
possible, strtoul returns zero. If the result would cause overflow the value
ULONG...MAX is returned.

Errors:

If the result would cause overflow the value ULONG...MAX is returned and errno
is set to ERANGE.

Description:

strtoul converts the initial part of the string pointed to by nptr to an unsigned
long int. strtoul expects the string to consist of the following:

1. Leading white space (optional).

2. An octal '0' or hexadecimal 'Ox' or 'OX' prefix (optional).

3. A sequence of digits within the range of the appropriate base. The letters
'a' to 'z', and 'A' to 'z' may be used to represent the values 10 to 35. For
example, if base is set to 18, the characters for the values 0 to 17 ('0' to
'9' and 'a' to 'h' or 'A' to 'H') are permitted.

4. One or more unrecognised characters (including the NULL string termi­
nating character).

strtoul ignores the leading white space, and converts all the recognised char­
acters.

72 TDS 225 00 August 1990

300 2 Alphabetical list of functions

The string is invalid if the first non-space character in the string is not an octal or
hexadecimal prefix, or one of the permitted characters (signs are not permitted).
If endptr is not NULL, and the conversion took place, a pointer to the rest of
the string is stored in the location pointed to byendptr. If no conversion was
possible, and endptr is not NULL, the value of nptr is stored in that location.

See also:

atoi atol strtod strtol

72 TDS 225 00 August 1990

2.2 List of functions 301

strxfrm

Synopsis:

Transforms a string according to the locale and copies it
into an array (up to a maximum number of characters).

#include <string.h>
size_t strxfrm(char *sl, const char *s2, size_t n);

Arguments:

char *sl

const char *s2

size_t n

Results:

A pointer to the array used as the copy destination.

A pointer to the string used as the copy source.

The maximum number of characters to be copied.

If the string to be copied fits into the destination string, strxfrm returns the
number of characters copied (excluding the NULL terminating character); other­
wise it returns O.

Errors:

None.

Description:

strxfrm copies up to n characters from the source string (pointed to by s2)
into the destination array (pointed to by s 1), after transforming the source string
according to the program's locale. Since the only permissible locale is "e",
strxfrm is equivalent to strncpy. The behaviour of strxfrm is undefined
if the source and destination overlap.

If the source string is less than n characters long, the extra spaces in the desti­
nation array will be filled with NULL characters.

See also:

strncpy

72 TDS 225 00 August 1990

302 2 Alphabetical list of functions

system Passes a command to host operating system for execution.

Synopsis:

#include <stdlib.h>
int system(const char *string};

Arguments:

const char *string A pointer to the string to be passed to the host.

Results:

Returns a non-zero value if string is a NULL pointer (to indicate that there is
a command processor). If string is not a NULL pointer system returns the
return value of the command which is host-defined.

Errors:

None.

Description:

system passes the string pointed to by string to the host environment to
be executed by a command processor. string can be any command defi
command defined on the host system, but should not be a command which
causes the transputer to be rebooted as this would overwrite the program execu
executing the call.

If string is a NULL pointer the call to system is an enquiry as to whether
there is a command processor.

system is not included in the reduced library.

Note: Issuing a command that boots a program onto the transputer running the
current program causes the program to fail by overwriting the memory.

The mode of execution of the command is defined by the host system.

72 TDS 225 00 August 1990

2.2 List of functions

tan Calculates the tangent of the argument.

Synopsis:

#include <math.h>
double tan(double x);

Arguments:

double x A number in radians.

Results: Returns the tangent of x in radians.

Errors:

None.

Description: tan calculates the tangent of a number (given in radians).

See also:

stan

303

72 TDS 225 00 August 1990

304 2 Alphabetical list of functions

tanf Calculates the tangent of a float number.

Synopsis:

#include <mathf.h>
float tanf(float X)i

Arguments:

float x A number in radians.

Results:

Returns the tangent of x.

Errors:

None.

Description:

float form of tan.

See also:

tan

72 TDS 225 00 August 1990

2.2 List of functions

tanh Calculates the hyperbolic tangent of the argument.

Synopsis:

'include <math.h>
double tanh(double X)i

Arguments:

double x A number.

Results:

Returns the hyperbolic tangent of x.

Errors:

None.

Description:

tanh calculates the hyperbolic tangent of a number.

See also:

tanhf

72 TDS 225 00

305

August 1990

306 2 Alphabetical list of functions

tanhf Calculates the hyperbolic tangent of a float number.

Synopsis:

#include <mathf.h>
float tanhf(float x);

Arguments:

float x A number.

Results:

Returns the hyperbolic tangent of x.

Errors:

None.

Description:

float form of tanh.

See also:

tanh.

72 TDS 225 00 August 1990

2.2 List of functions

time Reads the current time.

Synopsis:

#include <time.h>
time_t time(time_t *timer)i

Arguments:

time_t -*timer A pointer to a location where the current time can
be stored.

Results:

307

Returns the value of the current time. If the current time is not available, time
returns -1, cast to time_to

Errors:

time returns (time_t)-1, if the current time is not available.

Description:

time returns the closest possible approximation to the current time, and loads
it into the location pointed to by timer, unless timer is NULL.

time is not included in the reduced library.

See also:

asctime ctime localtime strftime clock difftime mktime

72 TDS 225 00 August 1990

308 2 Alphabetical list of functions

tmpfile Creates a temporary binary file.

Synopsis:

#include <stdio.h>
FILE *tmpfile(void);

Arguments:

None.

Results:

Returns a pointer to the newly created file stream, or a NULL pointer if the file
could not be created.

Errors:

Returns a NULL pointer if the file cannot be created.

Description:

tmpfile attempts to create a temporary binary file in the current directory. If
the file is successfully created it is opened for update, that is, in mode "wb+". The
file will automatically be removed when the program terminates or the temporary
file is explicitly closed.

tmpfile is not included in the reduced library.

See also:

tmpnam

72 TDS 225 00 August 1990

2.2 List of functions

tmpnam Creates a unique filename.

Synopsis:

#include <stdio.h>
char *tmpnam(char *s);

Arguments:

char *s A pointer to the destination string for the filename.

Results:

309

If s is a null pointer, tmpnam returns a pointer to an internal object containing
the new filename. Otherwise the new filename is put in the string pointed to by
s, and tmpnam returns the unchanged value s. In this case s must point to an
array of at least L_tmpnam characters.

Errors:

The effect of calling tmpnam more than TMP....MAX times is undefined.

Description:

tmpnam creates a unique filename (that is, one which does not match any
existing filename) in the current directory. A different string is created each time
tmpnam is called. tmpnam may be called up to TMP....MAX times.

Note: Care should be taken when calling tmpnam in a concurrent environment.
Calls to the function by independently executing, unsynchronised processes may
corrupt the returned file pointer.

tmpnam is not included in the reduced library.

See also:

tmpfile

72 TDS 225 00 August 1990

310 2 Alphabetical list of functions

to8 6 Transfers transputer memory to the host. DOS only.

Synopsis:

#include <dos.h>
int to86(int len, char *here, pcpointer there);

Arguments:

int len The number of bytes of transputer memory to be
transferred.

char *here A pointer to the transputer memory block.

pcpointer there A pointer to the host memory block.

Results:

Returns the actual number of bytes transferred.

Errors:

Returns the number of bytes transferred until the error occurred and sets errno
to the value EDOS. Any attempt to use to86 on operating systems other than
DOS also sets errno to EDOS. Failure of the function also generates the fol­
lowing server error message:

[Encountered unknown primary tag (50)]

Description:

to86 transfers len bytes of transputer memory starting at here to a corre­
sponding block starting at there in host memory. The function returns the
number of bytes actually transferred. The host memory block used will normally
have been previously allocated by a call to alloc86.

to86 is not included in the reduced library.

See also:

from86 alloc86

72 TDS 225 00 August 1990

2.2 List of functions 311

tolower

Synopsis:

Converts upper-case letter to its lower-case equivalent.

#include <ctype.h>
int tolower(int c);

Arguments:

int c The character to be converted.

Results:

Returns the lower-case equivalent of the given character. If the given character
is not an upper-case letter it is returned unchanged.

Errors:

None.

Description:

tolower converts the character c to its lower-case equivalent. If c is not an
upper-case letter it is not converted. Valid upper-case letters are ASCII charac­
ters in the range 'A' to 'Z'.

See also:

toupper

72 TDS 225 00 August 1990

312

toupper

Synopsis:

2 Alphabetical list of functions

Converts lower-case letter to its upper-case equivalent.

#include <ctype.h>
int toupper(int c);

Arguments:

int c The character to be converted.

Results:

Returns the upper-case equivalent of the given character. If the given character
is not a lower-case letter it is returned unchanged.

Errors:

None.

Description:

toupper converts the character c to its upper-case equivalent. If c is not a
lower-case letter, it is not converted. Valid lower-case letters are ASCII charac­
ters in the range 'a' to 'z'.

See also:

tolower

72 TDS 225 00 August 1990

2.2 List of functions

ungetc Pushes a character back onto a file stream.

Synopsis:

'include <stdio.h>
int ungetc(int c, FILE *stream);

Arguments:

int c The character to be returned.

FILE *stream A pointer to a file stream.

Results:

Returns the pushed back character if successful, or EOF if unsuccessful.

Errors:

Returns EOF if unsuccessful.

Description:

313

ungetc converts c to an unsigned char and pushes it back onto the input stream
pointed to by stream. The next use of any of the getc family of functions will
return c unless a repositioning function has been called in between (fflush,
fseek, rewind or fsetpos).

If ungetc is called repeatedly on the same stream without the file stream being
read in the meantime, the operation may fail.

ungetc is not included in the reduced library.

Example:

'include <stdio.h>
'include <ctype.h>

/*
* Function to read an integer.
* Leaves the next character to be read
* as the one immediately after the number.
*/

int get_number()
{

72 TDS 225 00 August 1990

314

See also:

2 Alphabetical list of functions

int dec = 0;
int ch;

vhile(isdigit(ch = getc(stdin»)
dec = dec * 10 + ch - '0';

unqetc(ch,stdin);
return (dec) ;

fflush gete

72 TDS 225 00 August 1990

2.2 List of functions

unlink Deletes a file stream.

Synopsis:

#include <iocntrl.h>
int unlink(char *name)i

Arguments:

char *name The name of the file to be deleted.

Results:

Returns 0 if successful or -1 on error.

Errors:

If an error occurs unlink sets errno to the value EIO.

Description:

315

unlink deletes the file by removing the filename from the host file system. It
is equivalent to the ANSI library function remove.

unlink is not included in the reduced library.

See also:

remove

72 TDS 225 00 August 1990

316 2 Alphabetical list of functions

va_arg Accesses a variable number of arguments in a function defini­
tion.

Synopsis:

#include <stdarg.h>
~pe va_arg(va_list ap, ~pe);

Arguments:

va_list ap An argument pointer used by the va_start, va_arg
and va_end macros.

type

Results:

Any C type.

The first call of va_arg, after va_start, returns the value of the next parameter
in the parameter list after parmN. Subsequent calls to va_arg return the values
of subsequent parameters.

Errors:

If the type specified in va_arg disagrees with the type of the next parameter in
the parameter list the effects are undefined.

If there is no next argument in the list, or the next argument is a register
variable, an array type, or a function, the behaviour is undefined. If the next
argument is of a type incompatible with the variable type after default promotions,
the following compile time error is generated:

___assert (0, '" illegal type used with va_arg"')

Description:

Each invocation of va_arg extracts a single parameter value from a variable
length parameter list. va_arg must have been initialised by a previous call to
va_start. The final use of va_arg should be followed by a call to va_end to
ensure a clean termination.

va_arg can only be used when there is at least one fixed argument in the
variable length parameter list.

va_arg is implemented as a macro.

72 TDS 225 00 August 1990

2.2 List of functions

Example:

#include <stdio.h>
#include <stdarg.h>

/*
* Sends the number of strings defined in

number of strings,
* and gi;en-in the parameter list,

to standard output.
*/

void var_stringyrint(int number_of_strings, ...)
{

va start(ap, number of strings);
whIle (number_of_strings-- > 0)

puts(va arg(ap, char *»;
va_end(ap);

int main ()
{

var_stringyrint(2, "Hello", "World");

317

See also:

/*
* Displays:

*
*
*/

Hello
World

va_end va_start vfprintf vprintf vsprintf

72 TDS 225 00 August 1990

318 2 Alphabetical list of functions

va_end Cleans up after accessing variable arguments.

Synopsis:

#include <stdarq.h>
void va_end(va_list ap)i

Arguments:

va_list ap An argument pointer used by the va_start, va_arq
and va_end macros.

Results:

No value is returned.

Errors:

None.

Description:

va_end tidies up after the use of va_arq. If it is not used, abnormal function
return may occur.

va_end can only be used when there is at least one fixed argument in the
variable length parameter list.

va_end is implemented as a macro.

See also:

va_arq va_start

72 TDS 225 00 August 1990

2.2 List of functions 319

va_start Initialises a pointer to a variable number of function argu­
ments in a function definition.

Synopsis:

#include <stdarg.h>

void va_start(va_list ap, parmN)i

A'rguments:

va_list ap An argument pointer used by the va_start, va_arg, and
va_end macros.

parmN

Results:

The name of the last fixed argument in the function defini­
tion.

No value is returned.

Errors:

If parmN is declared as storage class register, as a function or array, or as a
type that is incompatible with the type of the variable after argument promotion,
the behaviour is undefined.

Description:

va_start is used in conjunction with va_arg and va_end. It is an initialisation
macro for va_arg. va_start can only be used when there is at least one fixed
argument in the variable length parameter list.

va_start is implemented as a macro.

See also:

72 TDS 225 00 August 1990

320 2 Alphabetical list of functions

vfprintf An alternative form of fprintf.

Synopsis:

#include <stdio.h>
int vfprintf(FILE *stream, const char *format ,

va_list arg)i

Arguments:

FILE *stream An output file stream.

const char *format A format string.

va_list arg A pointer to a list of variable arguments, ini­
tialised by va_start.

Results:

Returns the number of characters written, or a negative value if an output error
occurs.

Errors:

Returns a negative value if an output error occurs.

Description:

vfprintf is a form of fprintf in which the arguments are replaced by a
variable argument list. vfprintf should be preceded by a call to va_start,
and followed by a call to va_end.

vfprinf is not included in the reduced library.

Example:

#include <stdio.h>
#include <stdarq.h>

void write_file (FILE *stream, char *fo~at, ...)
{

va_list apo;

va_start(apo,format);
fputs ("WRITE FILE TEXT ", stream);
vfprintf(stream, format, apo);
va_end(apo);

72 TDS 225 00 August 1990

2.2 List of functions

int main()
{
FILE *stream;
int a = 10;
char *b = "string";

stream = fopen ("newfile", "w");
if (stream == NULL)

printf("Error opening file\n");
else
{

write file(stream, "%d, %8", a, b);
fcl088 (stream) ;

}
}

/* writes the string "WRITE FILE TEXT 10, String"
to the file newfile */ -

See also:

fprintf va_arq va_end va_start vprintf vsprintf

321

72 TDS 225 00 August 1990

322 2 Alphabetical list of functions

vprintf An alternative form of printf.

Synopsis:

'include <stdio.h>
int vprintf(const char *format, va list arq)i

Arguments:

const char *format A format string

va_list arq A pointer to a list of variable arguments, ini­
tialised by va_start.

Results:

Returns the number of characters written, or a negative value if an output error
occurred.

Errors:

vprintf returns a negative value if an output error occurs.

Description:

vprintf is a form of printf in which the arguments are replaced by a vari- tit
able argument list. vprintf should be preceded by a call to va_start, and
followed by a call to va_end.

vprinf is not included in the reduced library.

See also:

printf va_arq va_start va_end vfprintf vsprintf

72 TDS 225 00 August 1990

2.2 List of functions 323

vsprintf An alternative form of sprintf.

Synopsis:

#include <stdio.h>
int vsprintf(char *s, const char *format,

va list arq);

Arguments:

const char *s The string to which the formatted string is writ­
ten.

const char *format A format string.

va_list arq A pointer to a list of variable arguments, ini­
tialised by va_start.

Results:

Returns the number of characters written.

Errors:

None.

Description:

vsprintf is a form of sprintf in which the arguments are replaced by a
variable argument list. vsprintf should be preceded by a call to va_start,
and followed by a call to va_end.

To use vsprintf in the reduced library include the header file stdiored. h.

See also:

sprintf vfprintf vsprintf va_arq va_end va_start

72 TDS 225 00 August 1990

324 2 Alphabetical list of functions

write Writes bytes to a file stream. File handling primitive.

Synopsis:

#include <iocntrl.h>
int write(int fd, char *buf, int n);

Arguments:

int fd A file descriptor.

char *buf A pointer to a buffer from which the bytes are obtained.

int n The maximum number of bytes that write will attempt to
output.

Results:

Returns the number of bytes written or -1 on error.

Errors:

If an error occurs write sets errno to the value EIO.

Description:

write writes n bytes from the buffer pointed to by buf to the file specified by
fd. If n is zero or negative no output occurs.

write is not included in the reduced library.

See also:

read

72 TDS 225 00 August 1990

Language Reference

72 TDS 225 00 August 1990

326

72 TDS 225 00

Language Reference

August 1990

3 New features in ANSI
C

This appendix describes the new features added by the ANSI standard to the C
language.

This chapter is not intended to be a reference to ANSI standard C but rather
a summary of differences from the previous widely-known definition of the lan­
guage. For a formal description of the language the reader is referred to the
ANSI reference documents and to 'C: A Reference Manual' by Harbison and
Steel.

Kernighan and Ritchie's original description of the language as defined in their
book 'The C programming language' (First edition 1978), is referred to in this
chapter as 'K & R C'.

Details of these publications can be found in the bibliography to the rear of this
manual.

This chapter is divided into two sections:

3.1 A summary of the new features added by ANSI to the original definition
of the language.

3.2 Detailed descriptions of the new features.

3.1 Summary of new features in the ANSI standard

The following tables list the new features in the ANSI standard. The tables list
the main areas of change and briefly describe how they differ from the original
implementation of the language.

72 TDS 225 00 August 1990

328

Area of change

Function decls.

Type Specifiers

Identifiers

Keywords

72 TDS 225 00

3 New features in ANSI C

ANSI standard

Parameter lists in function declarations can include
type specifiers with or without identifiers. The new
void type can be used and the list may end with an
ellipsis' ••• ' to indicate a variable number of param­
eters.

1. New types:

enum

void

2. New type qualifiers:

const

signed

volatile

Where specified alone, signed, const, and
volatile imply the appropriately qualified int
type.

3. New unsigned types:

unsigned char

unsigned long

signed char

The first 31 characters of internal names are signifi­
cant.

1. Keyword entry is no longer valid.

2. New keywords:

const

enum

signed

void

volatile

August 1990

3.1 Summary of new features In the ANSI standard 329

Area of change

Constants

Operators

Character types

ANSI standard

Integer constants can use the suffix U to denote
an unsigned integer constant.

Floating point constants can use the suffixes F
(for float) and L (for long double).

New unary operator '+' added to complement

Character constants are of type int and are
sign extended in type conversions.

New character escape codes: \" \? \x \a
\v.

Signedness of char types is implementation de­
fined.

Hardware characteristics The type short is at least 16 bits long and the
type long at least 32 bits long.

Compiler control lines New preprocessor directives:

#elif

terror

#pragma

Structures and unions

Initialisation

Trigraphs

72 TDS 225 00

Some preprocessor macros are also defined.

Structures or unions can be:

Assigned to other structures or unions.
Passed by value to functions.
Returned by functions.

Unions can be initialised.

Character trigraphs are introduced to support the
ISO 646 invariant character set.

August 1990

330

3.2 Details of new features

3.2.1 Function declarations

3 New features In ANSI C

A new form of function declaration is available which allows types to be specified
for parameters in the function's parameter list. Declarations can omit parameter
identifiers and give only the type specifiers.

It is also possible to specify a variable number of parameters by terminating the
parameter list with an ellipsis' ••• '. For example:

void add numbers (int *sum, int a, int b);
7* Declaration with identifiers */

void add numbers (int *, int, int);
7* Declaration without identifiers */

void add many numbers(int *sum, int n, ...);
7* Declaration with variable parameters */

A function with no parameters can be specified by specifying the keyword void
as the only parameter in the parameter list. For example:

int hello(void);

A function declarator using a parameter type list defines a prototype for that
function.

3.2.2 Function prototypes

Function prototypes are a new way of declaring functions. They make programs
easier to read and function call errors easier to find.

When using function prototypes:

1 Functions must be explicitly declared before any call is made.

2 Multiple declarations of the same function must agree exactly.

3 Function declarations must use the parameter type list form.

4 When calling a function, the number and types of the parameters must
agree with the specification in the declaration.

5 Arguments to functions are converted to the types specified in the dec­
laration.

72 TDS 225 00 August 1990

3.2 Details of new features

3.2.3 Declarations

331

Type specifiers can be used in pointer declarations. This is particularly useful for
creating constant pointers, pointers to constants and pointers to volatiles. For
example:

const int *ptr to constant;
/* Declares a pointer to a constant int */

int *const constant-ptr;
/* Declares a constant pointer to an int */

volatile int *ptr to volatile;
/* Declares a-pointer to a volatile int */

3.2.4 Types and type qualifiers

This section describes the ANSI standard syntax for types and type specifiers.

The following type specifiers have been added: const enum signed void
volatile.

const defines a constant object cannot be changed in the program. const
can be used alone or with other type specifiers struct union enum and
volatile. Used alone it implies const into For example:

const int month = 10;

month = 11; /* Not allowed */
month++; /* Not allowed */

const can be used within pointer declarations to declare variable pointers to
constant values, or constant pointers to variable values.

enum is used to create enumerated .types. An enumerated type defines a se­
quence of integer values for groups of logical names. The sequence of values
begins at 0 and increments by one unless specific values are assigned. For
example:

/* Define an enumerated type for the days of
the week */

enum days {monday, tuesday, wednesday, thursday,
friday, saturday, sunday};

enum days today; /* Declare today as a variable
of type days */

72 TDS 225 00 August 1990

332

today = friday;
if (today == sunday)

3 New features In ANSI C

The default value of a constant can be overridden by assigning a a specific
integer value. If a member of the list is not assigned a value explicitly, it takes
on the value of (previous constant + 1). For example:

enum poets {corso, burroughs, ginsberg = 9, cummings};
/* corso = 0, burroughs = 1, cummings = 10 */

signed complements the existing type specifier unsigned. It may be used
alone, where it implies signed int, or to qualify the following types: int
short int long int char.

void is mainly used to declare functions which do not return a value. For
example:

void add_numbers();
main ()
{
int *answer;
add numbers(ahswer,23,42);
} -

void add_numbers(sum, b, c)
int *sum;
int b,c;
{

sum = b + c;.

Another use for void is in a cast expression where a returned value is discarded.
For example:

/* Ignore the return value of fputc */
(void) fputc(ch,stream);

volatile identifies an object as modifiable outside the control of the imple­
mentation. For example, the object may refer to a memory mapped port which is
used by a modem. volatile can be used to protect objects from unpredictable
compiler optimizations.

72 TDS 225 00 August 1990

3.2 Details of new features 333

volatile can be used alone or with other type specifiers. used alone
volatile implies volatile into

An object can be both volatile and const in which case it can not be mod­
ified by the program but could be modified by an external process (for example,
a real time clock). For example:

volatile int port_one;
const volatile int clock;

3.2.5 Constants

This section summarises the changes to the syntax for integer, floating point,
string and character constants.

The suffix U can follow integer constants to indicate type uns igned. U can be
used in conjunction with the existing L suffix and the order is not significant. For
example:

42u 1096U 100lu 2048UL

The suffix F can follow floating point constants to indicate type float and the
suffix L to indicate type long double. For example:

3.1F 4.2L

The type long float is no longer allowed.

Adjacent string constants are concatenated into a single string terminated by a
null. The following new character escape codes are defined:

Code Description

\? Gives the question mark character. This should be used where a
question mark could be mistaken for part of a trigraph.

\" Gives the double quote character.

\a Rings the bell (equivalent to CTRL-G).

\v Gives a vertical tab.

\xn Gives the character represented by n, where n is the ASCII code of
the character represented in hexadecimal. For example, \x2B gives
the character +.

72 TDS 225 00 August 1990

334

3.2.6 Preprocessor extensions

3 New features in ANSI C

This section describes the predefined preprocessor directives and macros.

Compiler directives

Directive Description

#elif Abbreviation of #else life

terror Generates a compiler error message containing optional text.

#pragma Causes an implementation-defined effect. In ANSI C this direc-
tive is used to select a particular combination of compiler options
or to override options given on the command line.

Predefined macros:

Macro Description
_-DATE __ The current date, in the form: Mmm dd yyyy.

_-FILE__ The name of the current source file, expressed as a string literal.
_-LINE__ The line number of the current line in the source file, expressed

as a decimal constant.
__STDC__ A non-zero value if the implementation conforms to ANSI C.
__TIME__ The current time, in the form: hh:mm:ss.

3.2.7 Structures and unions

In ANSI C structures and unions can be assigned to other structures or unions,
passed by value to functions, and returned by functions. Unions can be initialised.

When a structure is given as an argument to a function a copy of the structure
is created for use within the function. For example:

struct record
{

char firstname[30];
int age;

} ;

void print_name (struct record person);

struct record test(struct record first,
struct record second);

72 TDS 225 00 August 1990

3.2 Details of new features

main ()
{

struct record ph;
struct record rl;

ph.firstname = "Phil";
ph.age = 27;

/* Assigning a structure to a structure */
current-person = ph;

/* Passing a structure as an argument to a
function */

print_name(current-person);

/* Returning a structure from a
function */

winner = test(ph, rl);

335

Unions can be initialised. The initialisation is performed according to the type
of its first component and the expression used to perform the initialisation must
evaluate to the correct type. For example:

union alltypes {
double bigfloat;
int digit;
char letter;
initalltypes 3.1;

union complex {
struct tint a; char b;} s;
double bigfloat;
initcomplex = {42, 'x' };

3.2.8 Trigraphs

Trigraphs are added to enable C programs to be written using only the ISO 646
invariant code set. ISO 646 is a subset of 7-bit ASCII which contains only those
characters present on all keyboards.

Trigraphs and the characters that they represent are listed in the following table.

72 TDS 225 00 August 1990

336 3 New features in ANSI C

Trigraph Character

represented

??= #

??([

??)]

??/ \
??' ...

??< {

??> . }

??! I
??- -

All other trigraph-like sequences are treated as literal strings. For example, the
sequence ??+ is not a trigraph and is treated as the literal sequence that it
represents.

Trigraphs are converted to the equivalent character before lexical analysis takes
place.

Trigraph escape codes

The character escape code \? has been added to allow the printing of trigraph
strings. The trigraph string should be preceded by the escape character. For
example:

static char texta[]
static char textb[]

72 TDS 225 00

"This is a backslash: ??/";
"This is not a trigraph \??/";

August 1990

4 Language extensions
this appendix summarises the INMOS extensions to the C language. It de­
scribes the concurrency features, compiler pragmas, and lists the predefinitions,
all of which are described in detail elsewhere in this book, It also describes the
__asm statement that supports the insertion of transputer code into C programs.

The INMOS implementation of ANSI C provides the following language exten­
sions beyond the ANSI standard:

• Concurrency support.

• Pragmas.

• Additional predefined macros.

• Assembly language support.

4.1 Concurrency support

Concurrency support is provided by a set of library functions with associated
predefined data types and data structures. The library functions are declared in
three standard C header files along with all related constants and macros.

Functions are provided for creating and manipulating processes (process. h),
for synchronising processes and exchanging data down channels (channel. h),
and for creating and manipulating semaphores (semaphore. h).

Full details of how to create parallel programs using the ANSI C concurrency
extensions can be found in chapter 4 'Parallel processing' of the accompanying
User Manual.

4.2 Pragmas

A series of special compiler operations are implemented as options to the
#pragma directive. The options available are listed below. Details of the prag­
mas, their syntax and options can be found in section 11.3.1 in the accompanying
User Manual.

72 TDS 225 00 August 1990

338

Pragma

IMS_linkaqe

IMSJlolink

IMS_codepatchsize

IMSJnodpatchsize

IMS_translate

4 Language extensions

Description

Enables specific compiler checks. Checks to be
enabled are specified as arguments to the pragma.

Disables specific compiler checks. Takes the same
set of check arguments as IMS_on.

Adds tags for segment ordering.

Enables functions to be compiled without a static
link parameter. Used when calling occam code
from C, and C functions from occam.
Notifies the linker of a reserved code patch and
specifies its size.

Notifies the linker of a reserved module number
patch and specifies its size.

Translates all references to one name into another
name. Used to create aliases for external routines
which contain prohibited characters.

4.3 Predefined macros

The following predefined macros are provided in the ANSI C toolset in addition
to the standard definitions required by the ANSI standard.

Constant
__CC.-NORCROFT

-PTYPE

Meaning/value
Indicates a compiler derived from the Norcroft C compiler.
Set to the decimal constant one (1).

Indicates the ANSI C compiler icc. Set to the decimal
constant one (1).
Indicates the target processor type. Takes the following
values:

2 - T21 2 3 - T225

5 - T425fT400 8 - T800
A - Class TA B - Class TB

4 - T414

9 - T8011T805

-ERRORMODE A decimal constant indicating the execution error mode.
Takes the following values:'

1 - HALT 2 - STOP 3 - UNIVERSAL

All compiled object code generated by icc is in UNIVERSAL mode.

72 TDS 225 00 August 1990

4.4 Assembly language support

4.4 Assembly language support

339

The insertion of transputer code into C programs is performed using the _asm
statement. Sequences of transputer instructions specified in this way are as­
sembled in line by the compiler.

The rest of this section assumes some familiarity with the transputer instruction
set. For a list of transputer instructions see appendix B 'Transputer instruction
set' in the accompanying User Manual.

A more detailed description of the instruction set including information about
architecture and design can be found in 'Transputer instruction set: a compiler
writer's guide'.

The full syntax of the __asm statement is given in section A.3.

4.4.1 Directives and operations

__asm statements can contain any number of primary or secondary transputer
operations, optionally preceded by a size qualifier, or transputer pseudo­
operations. Any transputer instruction can be prefixed with a label.

In the transputer instruction set primary operations are direct functions, prefixing
functions, or the special indirect function opr. Primary operations are always
followed by an operand which can be any constant or constant expression. If
additional pfix and nfix instructions are required to encode large values the
assembler automatically generates the required bytes.

Secondary operations are any transputer operation, that is, any instruction se­
lected using the opr function.

Pseudo-operations are more complex operations built up from sequences of
instructions. Like macros, they expand into one or more transputer instructions,
depending on their context and parameters.

Pseudo-operations that are supported by __asm are listed below. A full syntax

72 TDS 225 00 August 1990

340 4 Language extensions

definition for pseudo-operations can be found in section A.3.

ld
st
1dab
stab
ldabc
stabc
[size constant]
[size constant]
[size constant]
[size constant]
byte
word
align

expression
Ivalue
expression, expression
Ivalue, Ivalue
expression, expression, expression
Ivalue, Ivalue, Ivalue
j label
cj label
call label
ldlabeldiff label - label
constant {, constant}
constant {, constant}

Ivalues can be any valid C expression, and labels can be any valid C identifier.
The load and store pseudo-ops (ld, st, ldab, stab, ldabc, stabc) load or
store the integer registers Areg, Breg, and Creg.

The ldlabeldiff operation loads the difference between the addresses of
two labels into Areg.

4.4.2 size option

The size option on primary operations, secondary operations, and certain
pseudo-operations, forces the instruction to occupy a set number of bytes. If
the instruction is shorter than this it is padded out with trailing prefix 0 instruc­
tions. If the instruction cannot fit in the specified number of bytes, an error is
reported. The size option allows instructions to be built of the same size and
is intended to assist with- the creation of jump tables.

4.4.3 Labels

Labels can be placed on _-Clsm statements or on any line of transputer code.
Labels placed inside and outside the __asm statement are handled identically.
C statements are permitted to goto a label set inside an _--asm statement and
vice versa.

72 TDS 225 00 August 1990

4.4 Assembly language support

4.4.4 Notes on transputer code programming

341

Floating-point (fp) registers cannot be loaded directly; they must be loaded
or stored by first loading a pointer to the register into an integer register
and then using the appropriate floating-point load or store instruction.

2 The operands to the load pseudo-ops must be small enough to fit in a
register and the operands to the store pseudo-ops must be word-sized
modifiable Ivalues.

3 Only the lower eight bits of the constant operand(s) of the byte pseudo­
op are generated.

4 The word pseudo-op generates word-length constants for the target ma­
chine. If a constant is too large to fit in the machine's word length only .
the lower bits are generated.

5 The align pseudo-op generates padding bytes (prefix 0) until the cur­
rent code address is on a word boundary.

4.4.5 Useful predefined variables

The following variables are predefined in the compiler and may be used in ex­
pressions as though they were user-defined variables:

volatile const void *_lsb Pointer to the base of a file's static
area.

volatile const void *_params Pointer to the base of the current
function's parameter block.

Given access to a function's parameter block, it is possible to determine the
function's return address, the global static pointer, and the calling function's
workspace as in the following example:

void p(int a, int b)
{

typedef struct paramblock
{ void *return_address;

void *gsb;
int regparaml, regparam2;
paramblock;

volatile const void *-params;

paramblock *pp = -params;
/* return address is: pp->return_address

72 TDS 225 00 August 1990

342 4 Language extensions

global static base is: pp->gsb
caller's wptr is: (void *) (pp + 1); */

4.4.6 Transputer code examples

This section contains listings of programs fragments that illustrate common uses
of embedded instruction code.

Setting the transputer error flag

void set_error_flag(void)
{

asm { seterr; }

Loading constants using literal operands

17; /* decimal */
Oxff; /* hex */
0377; /* octal */
answer; /* defined by macro */
sizeof(c); /* constant expression */
10+7; /* ditto */

'define answer 42
const int c

asm {
- ldc

ldc
ldc
ldc
ldc
ldc

Labels and Jumps

void p(void)
{

b;
c;

a;
done;

label1;
b;

int a, b, c;
/* The following code performs

if (b > c) a = b; else a = c; */
asm{

- ld
ld
gt;
cj
ld
st
j

72 TDS 225 00 August 1990

4.4 Assembly language support

label1:
ld c;
st a;

done:
}

Jump tables

343

'include <stdio.h>
'define JUMP SIZE 3
void p(int iT
{

_asm{ ld i;
/* load the index */

adc -1;
/* subtract base subscript */

ldc JUMP SIZE;
/* scale by size of table entry */

prod;
ldlabeldiff table - here;

/* load pointer to start of table */
ldpi;

here:
bsub;

/* add the offset */
gcall;

/* jump to ith. entry */

table:
size JUMP SIZE j lab1;
size JUMP SIZE j lab2;
size JUMP SIZE j lab3;
size JUMP SIZE j lab4;

}
lab1: printf(ni 1 n) ; return;
lab2: printf(ni 2"); return;
lab3: printf(ni 3"); return;
lab4: printf("i 4") ; return;

Loading floating point registers

void p(void)
{

float a, b, c;
/* The following code performs

72 TDS 225 00 August 1990

344 4 Language extensions

a = b - c; */
asm{

- ld &b;
fpldnlsn;
ld &c;
fpldnlsn;
fpsub;
ld &a;
fpstnlsn;

Using align/word to return an element of a table

int p(int i)
{

/* The following code returns the ith
/* element of the table defined below */

int res;
asm{

:ld i;
ldlabeldiff table - here;
ldpi;

here:

0;
res;
done;

sure table is word aligned
for ldnl to work correctly */

wsub;
ldnl
st
j

/* Make
/*

align;
table:

word 1, 1, 2, 3, 5, 8, 13, 21, 34;

done:
return res;

Inserting raw machine code

The following code inserts the actual machine code (in hex) for the ret instruction.

void ret_hex(void)

72 TDS 225 00 August 1990

4.4 Assembly language support

__asm { byte Ox22, OxFO;

72 TDS 225 00

345

August 1990

346

72 TDS 225 00

4 Language extensions

August 1990

5 Implementation details
This appendix describes the implementation of the language in areas where the
ANSI standard is flexible or allows alternative solutions.

5.1 Data type representation

5.1.1 Scalar types

C scalar type representations on 32 and 16 bit transputers are described in the
following table.

char, 32 Represented in a word in which the lower eight
unsigned char bits are significant, the upper bits are zero.

16 Same as 32 bit.
signed char 32 Represented in a word in which the lower eight

bits are significant, bit 7 is the sign-bit, the upper
bits are zero.

16 Same as 32 bit.
unsigned short 32 Represented in a word in which the lower 16 bits

are significant, the upper bits are zero.
16 Represented in a word in which all 16 bits are

significant.
signed short 32 Represented in a word in which the lower 16 bits

are significant, bit 15 is the sign bit, the upper bits
are zero.

16 Represented in a word in which all 16 bits are
significant, bit 15 is the sign bit.

unsigned int 32 Represented in a word in which all 32 bits are
significant.

16 Represented in a word in which all 16 bits are
significant.

signed int 32 Represented in a word in which all 32 bits are
significant, bit 31 is the sign bit.

16 Represented in a word in which all 16 bits are
significant, bit 15 is the sign bit.

72 TDS 225 00 August 1990

348 5 Implementation details

unsigned long 32 Represented in a word in which all 32 bits are
significant.

16 Represented in two words in which all 32 bits are
significant, the lower addressed word contains the
least significant bits.

signed long 32 Represented in a word in which all 32 bits are
significant, bit 31 is the sign bit.

16 Represented in two words in which all 32 bits are
significant, bit 31 is the sign bit. The lower ad-
dressed word contains the least significant bit.

float 32 Represented in a word, in IEEE single-precision
format.

16 Represented in two words, in IEEE single-
precision format.

double 32 Represented in two words, in IEEE double-
precision format.

16 Represented in four words, in IEEE double-
precision format.

enumeration 32 Represented in a word in which all 32 bits are
significant.

16 Represented in a word in which all 16 bits are
significant.

All signed integer types are represented in twos-complement form and all
unsigned integer types in binary form.

All floating point types are represented in a form defined by the ANSI/IEEE
standard 754-1985.

5.1.2 Arrays

Each element of an array of char occupies 8 bits and each element of an array
of short occupies 16 bits.

Elements of arrays of any other type are represented as the element would be
represented if it was not in an array. An array is padded at the high-end address
to the next word boundary: the padding has no defined value.

5.1.3 Structures

Structure fields are allocated starting from the lowest address. Fields of type
char are allocated on a byte boundary, and are represented in 8 bits.

72 TDS 225 00 August 1990

5.2 Type conversions 349

On 32-bit machines only, fields of type short are allocated on an even-address
boundary, and are represented in 16 bits. Thus, adjacent char or short fields
may be packed into the same word.

Adjacent bit-fields are packed into the same word if possible: the first bit-field is
placed in the least significant bits of the word. If there is not enough room left
after a previous bit-field, a bit-field will be placed in the least significant bits of
the next word. Fields of any other type are represented as they would be if the
field was not in a structure. A structure is padded at the high-end address to the
next word boundary: the padding has no defined value.

5.1.4 Unions

Each field of a union is represented as it would be if it was not in a union. A
union is padded at the high-end address to the next word boundary: the padding
has no defined value.

5.2 Type conversions

5.2.1 Integers

The result of converting an unsigned integer, u, to a signed integer, s, of equal
length, if the value cannot be represented, is calculated as follows:

If max.s is the largest number that can be represented in the signed type then:

result = u - 2{max.s + 1)

An integer is converted to a shorter signed integer, by first converting it to an
unsigned integer of the same length as the shorter signed integer (by taking the
nonnegative remainder on division by the number one greater than the largest
unsigned number that can be represented in the type with smaller size), and
then converting to the corresponding signed integer, as described above.

5.2.2 Floating point

When converting an integral number to a floating-point number that cannot ex­
actly represent the original value, the IEEE 754 'Round to Nearest' rounding
mode is used.

When converting a floating-point number to a narrower floating-point number,
the IEEE 754 'Round to Nearest' rounding mode is used.

72 TDS 225 00 August 1990

350

5.3 Compiler diagnostics

5 Implementation details

Diagnostics are generated at four severity levels: Warning; Error; Serious; and
Fatal. All compiler messages are generated in standard toolset format (see
section A.S in the accompanying user manual).

5.4 Environment

5.4.1 Arguments to main

The interface to main is as follows:

int main(int argc, char *argv[], char *envp[],
Channel *in [], int inlen, 7 iJJ)1 -' (<11 (~/ CA 't-"I

Channel *out [], int outlen);J 0\ 0 d 'J.- . \'

where: int argc is the number of arguments passed to the program from the
environment, including the program name.

char *argv [] is an array of pointers to the passed arguments.

char *envp [] is an array of pointers for the getenv function. In this
implementation it is set to NULL.

Channel *in [] is an array of input channels.

int inlen is the size of the input channel array.

Channel *out [] is an array of output channels.

int outlen is the size of the output channel array.

The first two input and output channels are reserved; in [1] is the channel
coming from the server, out [1] is the channel going to the server.

in [0] and out [0] are unused.

5.4.2 Interactive devices

stdin, stdout and stderr are treated as if they are connected to an inter­
active device.

72 TDS 225 00 August 1990

5.5 Identifiers

5.5 Identifiers

351

The 255 initial characters (beyond 31) in an identifier without external linkage,
and the 255 all initial characters (beyond 6) in an identifier with external linkage,
are significant.

Case distinctions are significant in an identifier with external linkage.

5.6 Source and execution character sets

The source character set comprises those characters explicitly specified in the
Standard, together with all other printable ASCII characters. The execution char­
acter set comprises all 256 values 0 - 255. Values 0 - 127 represent the ASCII
character set.

There are eight bits in a character in the execution character set.

Each member of the source character set is a member of the ASCII character
set and maps to the same member of the ASCII character set in the execution
character set.

All characters and wide characters are represented in the basic execution charac­
ters set. The escape sequences not represented in the basic execution charac­
ter set are the octal integer and hexadecimal integer escape sequences, whose
values are defined by the Standard.

Shift states for encoding multibyte characters

There is only one shift state, which is the initial shift state as specified in the
Standard. Multibyte characters do not alter the shift state.

Integer character constants

The value of an integer character constant that contains more than one character
is given by:

L(value of ith character « (8 * i))

•

Wide character constants which contain more than one multibyte character are
disallowed.

72 TDS 225 00 August 1990

352

Locale used to convert mUltibyte characters

5 Implementation details

The only locale supported to convert multibyte characters into corresponding
wide characters (codes) for a wide character constant is the 'C' locale.

Plain chars

A "plain" char has the same range of values as unsigned char.

5.7 Integer operations

Bitwise operations on signed integers

Signed integers are represented in twos complement form. The bitwise opera­
tions operate on this twos complement representation.

Sign of the remainder on integer division

The remainder on integer division takes the same sign as the divisor.

Right shifts on negative-valued signed integral types

Signed integers are represented in twos complement form. The right-shift oper­
ates on this twos complement form; zero bits are shifted in at the left-hand side;
thus a negative-valued signed integer, if right-shifted more than zero places, will
become positive.

5.8 Registers

The compiler attempts to register variables at shorter offsets from the
workspace pointer.

5.9 Enumeration types

The values of enumeration types are represented as ints.

5.10 Bit fields

A "plain" int bit-field is treated as an unsigned int bit-field.

Bit-fields are allocated low-order to high-order within an int (Le. the first field

72 TDS 22500 August 1990

5.11 volatile qualifier

textually is placed in lower bits in the int).

A bit-field cannot straddle a word boundary.

5.11 volatile qualifier

353

An access to an object that has volatile-qualified type is a 'read' from the memory
location containing the object (if the object's value is required), or a 'write' to the
memory location containing the object (if the object is assigned to).

If the volatile object is an array, then the access will be only to the appropriate
element of the array.

If the volatile object is a structure and only a field of the structure is required,
then the access will be only to the appropriate field.

If the object is not an array element or structure field, then the object occupies
a whole number of words, and all the words will be accessed. Otherwise, if the
array element or structure field is shorter than a word, then only the appropriate
bytes will be accessed.

If the object is a bit-field, then in the case of read access, the entire word con­
taining the bit-field will be read; and in the case of write access, the entire word
containing the bit-field will be first read, and then written.

Note: If the object is an array element or structure field of type short on a
32-bit transputer, or if the object is larger than two words, then the transputer
block move instruction is used for the access. On some transputers, if a block
move instruction is interrupted, when it resumes it may reread the same word
of memory which was read immediately before the interrupt. This may cause
problems with some peripheral devices.

5.12 Declarators

There is no restriction upon the number of declarators that may modify an arith­
metic, structure, or union type.

5.13 Switch statement

There is no restriction upon the number of case values in a switch statement.

72 TDS 225 00 August 1990

354

5.14 Preprocessing directives

Constants controlling conditional inclusion

5 Implementation details

The value of a single-character character constant in a constant expression that
controls conditional inclusion matches the value of the same character constant
in the execution character set. Such a character constant may NOT have a
negative value.

Date and time defaults

When date of translation is not available, _...DATE __ expands to

"Jan 1 1900"

When time of translation is not available, __TlME__ expands to

"00:00:00"

5.15 Runtime library

The null pointer constant to which the macro NULL expands to is (void *) o.

72 TDS 225 00 August 1990

Appendices

72 TDS 225 00 August 1990

356

72 TDS 225 00

Appendices

August 1990

A Syntax of language
extensions

This appendix defines the language extensions in the ANSI C toolset.

A.1 Notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF). Briefly:

1 Terminal strings of the language - those not built up by rules of the
language - are printed in teletype font e.g. void.

2 Each phrase definition is built up using a double colon and an equals
sign to separate the two sides.

3 Alternatives are separated by vertical bars ('I').

4 Optional sequences are enclosed in square brackets (T and T).

5 Items which may be repeated zero or more times appear in braces ('r
and'r)·

A.2 #pragma directive

control-line

pragma

72 TDS 225 00

#pragma pragma (params)

INS_on (params)
INS_off (params)
INS_linkage ([" name"])
INS-nolink (functionname)
INS~odpatchsize(n)

INS_codepatchsize(n)
INS_translate (name, "newname")

August 1990

358 A Syntax of language extensions

params channel_pointers
inline_ops
inline_string_ops
printf_~hecking

scanf_checking
stack_checking
warn...bad_target
warn_deprecated
warn_implicit

I cp
I il
I is
I pc
I sc
I sc
Iwt
I wd
I wi

A.3 __asm statement

asm-statement

asm-directive

pseudo-op

72 TDS 22500

__asm { asm-directive}

[size constant] primary-op constant;
[size constant] secondary-op ;
pseudo-op;
identifier: asm-directive

ld expression
st Ivalue
ldab expression, expression
stab Ivalue, Ivalue
ldabc expression , expression , expression
s tabc Ivalue , Ivalue , Ivalue
[size constant] j label
[size constant] cj label
[size constant] call label
[size constant] ldlabeldiff label- label
byte constant { , constant}
word constant { , constant}
align

August 1990

B ANSI compliance data
This appendix lists details of the INMOS implementation of C in areas of the
language where formal documentation is required by the ANSI standard. The
information is provided for compliance with the standard and to provide a conve­
nient reference point for programmers wishing to port the toolset to other hosts.

The formal ANSI requirement in each area is given followed by a reference to the
appropriate section in the standards document. This is followed by a description
of the INMOS implementation in that area.

Where the information required is provided in other areas of this book or in the
companion volume the 'ANSI C too/set user manual' a reference is given to the
appropriate section.

B.1 Translation

• How a diagnostic is identified (§2.1.1.3)
Diagnostics are displayed to stderr (UNIX and VMS) or stdout (MS­
DOS) in a standard format. The display format is described in section
A.6 the accompanying user manual.

B.2 Environment

• The semantics of the arguments to main (§2.1.2.2)
The prototype of C main is as follows:

int main (int argc, char *argv[], char *envp[],
Channel *in[], int inlen,
Channel *out[], int outlen);

where: arqc is the number of arguments passed to the program from
the ~nvironment, including the program name.

*argv is an array of pointers to those arguments.

*envp is an array of pointers for the qetenv library function ­
implemented in ANSI C as NULL.

Channel *in [] is an array of input arguments.

int inlen is the size of the array.

Channel *out [] is an array of output arguments.

72 TDS 225 00 August 1990

360 B ANSI compliance data

int outlen is the size of the array.

An extension for configured programs allows extra parameters to be
passed by defining them as interface parameters within the configu­
ration description. These configuration level parameters can be accessed
by the C program using the runtime library function *get_param.

• What constitutes an Interactive device (§2.1.2.3)
stdin, stdout and stderr are treated as if they are connected to
an interactive device.

B.3 Identifiers

• The number of significant Initial characters (beyond 31) In an Iden­
tifier without external linkage (§3.1.2).
The first 255 characters in the identifier are significant.

• The number of significant Initial characters (beyond 6) In an Iden­
tifier with external linkage (§3.1.2).
The first 255 characters in the identifier are significant.

• Whether case distinctions are significant In an Identifier with exter­
nal linkage (§3.1.2).
Case distinctions are significant in an identifier with external linkage.

B.4 Characters

• The members of the source and execution character sets, except
as explicitly specified in the Standard (§3.2.1).
The source character set comprises those characters explicitly specified
in the Standard, together with all other printable ASCII characters. The
execution character set comprises all 256 values 0 - 255. Values 0 - 127
represent the ASCII character set.

• The shift states used for the encoding of multibyte characters
(§2.2.1.2). There is only one shift state, which is the initial shift state as
specified in the Standard. Multibyte characters do not alter the shift state.

• The number of bits in a character in the execution character set
(§2.2.4.2). There are eight bits in a character in the execution character
set.

• The mapping of members of the source character set (in character
constants and string literals) to members of the execution character

72 TDS 225 00 August 1990

8.5 Integers 361

set (§3.1.3.4).
Each member of the source character set is a member of the ASCII
character set. It maps to the same member of the ASCII character set
in the execution character set.

• The value of an Integer character constant that contains a character
or escape sequence not represented In the basic execution charac­
ter set or the extended character set for a wide character constant
(§3.1.3.4).
All characters and wide characters are represented in the basic execution
character set.

The escape sequences not represented in the basic execution character
set are the octal integer and hexadecimal integer escape sequences,
whose values are defined by the Standard.

• The value of an Integer character constant that contains more than
one character or a wide character constant that contains more than
one multibyte character (§3.1.3.4).
See section 5.6.

• The current locale used to convert multibyte characters Into cor­
responding wide characters (codes) for a wide character constant
(§3.1.3.4).
The only locale supported is the 'C' locale.

• Whether a "plain" char has the same range of values as signed
char or unsigned char.
A "plain" char has the same range of values as unsigned char.

8.5 Integers

• The representations and sets of values of the various types of In­
tegers (§3.1.2.5).
For all data-type representations see section 5.1.1 in this manual.

• The result of converting an Integer to a shorter signed Integer, or
the result of converting an unsigned Integer to a signed Integer of
equal length, If the value cannot be represented (§3.2.1.2).
See section 5.2.1.

• The results of bltwlse operations on signed Integers (§3.3).
Signed integers are represented in twos complement form. The bitwise
operations operate on this twos complement representation.

• The sign of the remainder on Integer division (§3.3.5).

72 TDS.225 00 August 1990

362 B ANSI compliance data

The remainder on integer division takes the same sign as the divisor.

• The result of a right shift of a negative-valued signed Integral type
(§3.3.7).
Signed integers are represented in twos complement form. The right-shift
operates on this twos complement form; zero bits are shifted in at the
left-hand side; thus a negative-valued signed integer, if right-shifted more
than zero places, will become positive.

B.6 Floating point

• The representations and sets of values of the various types of
floating-point numbers (§3.1.2.5).
For all data-type representations see section 5.1.1 in this manual.

• The direction of truncation when an Integral number Is converted to
a floating-point number that cannot exactly represent the original
value (§3.2.1.3).
When converting an integral number to a floating-point number, the IEEE
754 'Round to Nearest' rounding mode is used.

• The direction of truncation or rounding when a floating-point num­
ber is converted to a narrower floating-point number (§3.2.1.4).
When converting a floating-point number to a narrower floating-point num­
ber, the IEEE 754 'Round to Nearest' rounding mode is used.

B.7 Arrays and pointers

• The type of integer required to hold the maximum size of an array,
that is, the type of the sizeof operator, size_t (§3.3.3.4, §4.1.1).
The type of the sizeof operator, size_t, is unsigned int.

• The result of casting a pointer to an integer or vice versa (§3.3.4).
When a pointer is cast to an integer, the bit representation remains un­
changed.

N.B. A NULL pointer on a 32-bit transputer has the representation all bits
zero, so that casting an integer variable of value zero to a pointer will
result in a NULL pointer. However, a NULL pointer on a 16-bit transputer
DOES NOT have the representation all bits zero, so that it is incorrect
to assume that an integer variable of value zero, when cast to a pointer
will result in a NULL pointer. (the ANSI standard guarantees that an
integer constant of value zero, when cast to a pointer, will result in a
NULL pointer.)

72 TDS 225 00 August 1990

B.8 Registers 363

• The type of Integer required to hold the difference between two
pointers to elements of the same array, ptrdiff_t (§3.3.6, §4.1.1).
into

Note that this means that it is not possible to declare an array of char­
sized objects which is larger than half of the integer range, and take
the difference of a pointer to the end and a pointer to the start. This
is particularly important on a 16-bit processor, ie. ptrdiff_t will not
correctly represent the difference between the two ends of an array of
char-sized objects larger than 32767 bytes.

There is no problem with arrays of elements which are larger than char.

8.8 Registers

• The extent to which objects can actually be placed in registers by
use of the register storage-class specifier (§3.5.1).
The register storage class specifier is used to allocate objects at a
lower offset in workspace. Objects cannot be placed in registers.

8.9 Structures, unions, enumerations, and bit-fields

• A member of a union object is accessed using a member of a
different type (§3.3.2.3).
For the implementation of unions see section 5.1.4 in this manual.

• The padding and alignment of members of structures (§3.5.2.1).
This should present no problem unless binary data written by one
Implementation are read by another.
For the implementation of structures see section 5.1.3 in this manual.

• Whether a "plain" int bit-field is treated as a signed Int bit-field or
as an unsigned int bit-field (§3.5.2.1).
A "plain" int bit-field is treated as an unsigned int bit-field.

• The order of allocation of bit-fields within an Int (§3.5.2.1).
Bit-fields are allocated low-order to high-order within an int (ie. the first
field textually is placed in lower bits in the int).

• Whether a bit-field can straddle a storage-unit boundary (§3.5.2.1).
A bit-field cannot straddle a word boundary.

• The Integer type chosen to represent the values of an enumeration
type (§3.5.3).

72 TDS 225 00 August 1990

364 B ANSI compliance data

The values of enumeration types are represented as ints.

8.10 Qualifiers

• What constitutes an access to an object that has volatlle-quallfled
type (§3.5.3).
An access to an object that has volatile-qualified type is a 'read' from the
memory location containing the object (if the object's value is required),
or a 'write' to the memory location containing the object (if the object is
assigned to). If the volatile object is an array, then the access will be
only to the appropriate element of the array. If the volatile object is a
structure and only a field of the structure is required, then the access
will be only to the appropriate field. If the object is not an array element
or structure field, then the object occupies a whole number of words,
and all the words will be accessed. Otherwise, if the array element or
structure field is shorter than a word, then only the appropriate bytes will
be accessed.

If the object is a bit-field, then in the case of read access, the entire word
containing the bit-field will be read; and in the case of write access, the
entire word containing the bit-field will be first read, and then written.

Note that if the object is an array element or structure field of type short
on a 32-bit transputer, or if the object is larger than two words, then
the transputer block move instruction is used for the access. On some
transputers, if a block move instruction is interrupted, when it resumes it
may reread the same word of memory which was read immediately before
the interrupt. This may cause problems with some peripheral devices.

8.11 Declarators

• The maximum number of declarators that may modify an arithmetic,
structure, or union type (§3.5.4).
There is no restriction upon the number of declarators that may modify
an arithmetic, structure, or union type.

8.12 Statements

• The maximum number of case values In a switch statement
(§3.6.4.2). There is no restriction upon the number of case values in a
switch statement.

72 TDS 225 00 August 1990

8.13 Preprocessing directives

8.13 Preprocessing directives

365

• Whether the value of a single-character character constant in a con­
stant expression that controls conditional inclusion matches the
value of the same character constant in the execution character
set. Whether such a character constant may have a negative value
(§3.8.1).
The value of a single-character character constant in a constant expres­
sion that controls conditional inclusion matches the value of the same
character constant in the execution character set. Such a character con­
stant may NOT have a negative value.

• The method for locating includable source files (§3.8.2).
See section 11.3.1 in the accompanying user manual.

• The support of quoted names for includable source files (§3.8.2).
See section 11.3.1 in the accompanying user manual.

• The mapping of source file character sequences (§3.8.2).
See section 11.3.1. in the accompanying user manual.

• The behaviour on each recognised #pragma directive (§3.8.6).
See section 11.3.11 in the accompanying user manual.

• The definitions for _-DATE__ and __TlME__ when respectively, the
date and time of translation are not available (§3.8.8).
When date of translation is not available, _-DATE__ expands to:

"Jan 1 1900"

When time of translation is not available, __TlME__ expands to:

"00:00:00"

72 TDS 225 00 August 1990

366

8.14 Library functions

B ANSI compliance data

• The null pointer constant to which the macro NULL expands (§4.1.5)
(void *)0

• The diagnostic printed by and the termination behaviour of the
assert function (§4.2)

*** assertion failed: condmon, file mel line line

assert terminates by calling abort. The action of abort depends
upon the use of the set_abort_action function. See the specification
of abort in chapter 2.

• The sets of characters tested for by the isalnum, isalpha,
iscntrl, islower, isprint and isupper functions (§4.3.1)

isalnum : '0'-'9' 'A'-'Z' 'a'-'z'

isalpha : 'A'-'Z' 'a'-'z'

iscntrl : character codes 0-31 and 127

islower: 'a'-'z'

isprint : character codes 32-126

isupper : 'A'-'Z'

• The values returned by the mathematics functions on domain errors
(§4.5.1)
All mathematics functions return the value 0 • 0 on domain errors.

• Whether the mathematics functions set the integer expression errno
to the value of the macro ERANGE on underflow errors. (§4.5.1)
The maths functions do set errno to ERANGE on underflow errors.

• Whether a domain error occurs or zero Is returned when the fmod
function has a second argument of zero. (§4.5.6.4)
If the second argument to fmod is zero then a domain error occurs and
the function returns zero.

• The set of signals for the signal function (§4.7.1.1)

SIGABRT,SIGFPE,SIGILL,SIGINT,SIGSEGV,SIGTERM,SIGIO,
SIGURG, SIGPIPE, SIGSYS, SIGALRM, SIGWINCH, SIGLOST,
SIGUSR1,SIGUSR2,SIGUSR3.

72 TDS 225 00 August 1990

8.14 Library functions 367

• The semantics for each signal recognised by the signal function
(§4.7.1.1)

SIGABRT

SIGFPE

SIGILL

SIGINT
SIGSEGV
SIGTERM
SIGIO
SIGURG
SIGPIPE
SIGSYS
SIGALRM
SIGWINCH
SIGLOST
SIGUSRl
SIGUSR2
SIGUSR3

Abnormal termination, such as initiated by the abort
function.
Erroneous arithmetic operation, such as zero divide or
an operation resulting in overflow.
Detection of an invalid function image, such as an ille­
gal instruction.
Receipt of an interactive attention signal.
Invalid access to storage.

Termination request sent to the program.
Input/output possible.
Urgent condition on 10 channel.
Write on pipe with no-one to read.
Bad argument to system call.
Alarm clock.

Window changed.
Resource lost.
User-defined signal 1.
User-defined signal 2.
User-defined signal 3.

• The default handling and the handling at program startup for each
signal recognized by the signal function. (§4.7.1.1)
The handling at program startup is identical to the default handling, which
is as follows:

SIGABRT

SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM

SIGIO
SIGURG
SIGPIPE
SIGSYS

72 TDS 225 00

The action of SIGABRT depends upon
the set_abort_action function. See the specifi­
cation of abort in chapter 2.
No action.
No action.
No action.
No action.

Terminate the program via a call of exit with the pa­
rameter EXIT-FAILURE.
No action.
No action.
No action.
No action.

August 1990

368

SIGALRM

SIGWINCH

SIGLOST
SIGOSRl
SIGOSR2

SIGOSR3

No action.
No action.
No action.
No action.
No action.
No action.

B ANSI compliance data

• If the equivalent of signal (siq, SIG-DFL); Is not executed
prior to the call of a signal handler, the blocking of the signal that
Is performed (§4.7.1.1)
The equivalent of signal (siq, SIG-DFL); is executed prior to the
call of a signal handler.

• Whether the default handling Is reset if the SIGILL signal Is re­
ceived by a handler specified to the signal function (§4.7.1.1)
The default handling is reset if the SIGILL signal is received.

• Whether the last line of a text stream requires a terminating newllne
character. (§4.9.2)
The last line of a text stream does not require a terminating newline
character.

• Whether space characters that are written out to a text stream Im­
mediately before a newline character appear when read in. (§4.9.2)
Space characters written out to a text stream immediately before a new­
line character do appear when read in.

• The number of null characters that may be appended to data written
to a binary stream. (§4.9.2)
No null characters are appended to data written to a binary stream.

• Whether the file position Indicator of an append mode stream is
Initially positioned at the beginning or end of the file. (§4.9.3)
The file position indicator of an append mode stream is initially positioned
at the end of the file.

• Whether a write on a text stream causes the associated file to be
truncated beyond that point. (§4.9.3)
A write on a text stream will not cause the associated file to be truncated
beyond that point.

• The characteristics of file buffering. (§4.9.3)
When a stream is unbuffered characters appear from the source or des­
tination as soon as possible.

When a stream is line buffered characters are transmitted to and from the

72 TDS 225 00 August 1990

8.14 Library functions 369

host environment as a block when a newline character is encountered.

When a stream is fully buffered characters are transmitted to and from
the host environment as a block when a buffer is filled.

In all buffering modes characters are transmitted when the buffer is full
and when input is requested on an unbuffered or line buffered stream, or
when the stream is explicitly flushed.

See also section 1.3.12.

• Whether a zero length file actually exists (§4.9.3)
The library can support a zero length file if it is permitted on the host
environment.

• The rules for composing valid file names. (§4.9.3)
The rules for composing valid file names are the same as those found
on the host system.

• Whether the same file can be opened multiple times. (§4.9.3)
Although the system will allow a file to be opened multiple times the ice
stdio library has no support for shared access to a single file and so
unexpected results may occur if this is attempted.

• The effect of the remove function on an open file. (§4.9.4.1)
The remove function will delete an open file only if this is permitted on
the host system.

• The effect if a file with the new name exists prior to the call to the
rename function. (§4.9.4.2)
The rename will cause an existing file with the new name to be overwritten
only if this is permitted on the host system.

• The output for %p conversion In the fprintf function. (§4.9.6.1)
The output for the %p function is a hexadecimal number.

• The input for the %p conversion in the fscanf function. (§4.9.6.2)
The input for the %p conversion is a hexadecimal number.

• The Interpretation of a - character that is neither the first nor the
last character In the scanllst for %[conversion In the fscanf func­
tion. (§4.9.6.2)
A - character is treated in the same manner as all other characters no
matter where it appears in the scan set.

• The value to which the macro errno Is set by the fgetpos or
ftell function on failure. (§4.9.9.1, §4.9.9.4)

72 TDS 225 00 August 1990

370 B ANSI compliance data

errno is set to the value EFILPOS by the ftell or fqetpos function
on failure.

• The messages generated by the perror function. (§4.9.10.4)

Value of Message
errno
o (zero) No error (errno = 0)
EDOM EDOM - function argument out of range
ERANGE ERANGE - function result not representable
ESIGNOM ESIGNUM - Illegal signal number to slgnal()
EIO EIO - error In low level server 1/0
EFILPOS EFILPOS - error In file positioning functions
default Error code (errno) errno has no associated message

• The behaviour of the calloc, malloc, or realloc function If the
size requested Is zero. (§4.10.3)
If the size requested is zero in calloc or malloc then no action is
taken and and the functions return NULL.

If the size requested is zero in realloc and the pointer parameter is
NULL then no action is taken and the function returns NULL. The case
where size is zero and the pointer is not a NULL pointer is defined by
the ANSI standard.

• The behaviour of the abort function with regard to open and tem­
porary files. (§4.1 0.4.1)

The abort function will cause termination without closing open files
or removing temporary files. Note that the behaviour of abort may
be altered by set_abort_action (see specification of the function in
chapter 2) but whichever behaviour is selected, open files will not be
closed, and temporary files will not be removed.

• The status returned by the exit function If the value of the ar­
gument Is other than zero, EXIT_SUCCESS, or EXIT-FAILURE.
(§4.10.4.3)
The status returned by the exit function in this case is the numerical
value of the argument.

• The set of environment names and the method for altering the en­
vironment list used by the qetenv function.(§4.10.4.4)
The set of environment names is defined by the host system.

The method of altering the environment list on a given system is particular

72 TDS 225 00 August 1990

8.15 Locale-specific behaviour 371

to the server executing on that system. (Or, more accurately, particular
to the compiler with which the server was compiled) .

• The contents and mode of execution of the string by the system
function. (§4.10.4.5)
The string shall contain any of the commands which can be supported by
the host operating system. Care should be taken so that no commands
are issued which would cause the transputer to be booted, thereby over­
writing the program which executed the system call.

The mode of execution is defined by the host system.

• The contents of the error message strings returned by the
strerror function. (§4.11.6.2)
These are identical to the messages printed by the perror function.
See above.

• The local time zone and Daylight Saving Time. (§4.12.1)
The local time zone is defined by the host system. Daylight Saving Time
information is unavailable.

• The era for the clock function. (§4.12.2.1)
The era for the clock function extends from directly before the users
main function is called until program termination.

8.15 Locale-specific behaviour

• The content of the execution character set, in addition to the re­
quired members. (§2.2.1)
The execution character set comprises all 256 values 0 - 255. Values 0
- 127 represent the ASCII character set.

• The direction of printing. (§2.2.2)
Printing is from left to right.

• The decimal-point character. (§4.1.1)
The decimal point character is ' .'.

• The implementation defined aspects of character testing and case
mapping functions (§4.3)
The only locale supported is "C" and so there are no implementation
defined aspects of character testing or case mapping functions.

• The collation sequence of the execution character set. (§4.11.4.4)
Only the C locale is supported and so the collation sequence of the
execution character set is the same as as for plain ASCII.

72 TDS 225 00 August 1990

372 B ANSI compliance data

• The formats for time and date. (§4.12.3.5)
All the day and month names are in English.

date and time format: Thu Noy 9 15: 42: 39 1989
date format: Thu Noy 9, 1989
time format: 15: 42: 39

72 TDS 225 00 August 1990

Index

__asm 339
__asm

syntax 358
__CC.-NORCROFT 338
_-DATE__ 334
_--FILE__ 334
__LINE__ 334
__STDC__ 334
__TlME__ 334
-ERRORMODE 338
_ICC 338
_IMS-BOARD-B004 30
_IMS-BOARD...B008 30
_IMS...BOARD-B010 30
_IMS...BOARD...BOll 30
_IMS-BOARD-B014 30
_IMS-BOARD-B015 30
_IMS...BOARD...B016 30
_IMS...BOARD_CAT 30
_IMS...BOARD-DRXll 30
_IMS-BOARD_QTO 30
_IMS-BOARD_UDP-LINK 30
_IMS-HOST...APOLLO 30
_IMS-HOST....NEC 30
_IMS-HOST..RC 30
_IMS-HOST_SUN3 30
_IMS-HOST_SUN386i 30
_IMS-HOST_SUN4 30
_IMS-HOST_VAX 30
_IMS_OS_CMS 30
_IMS_OS-DOS 30
_IMS_OS-HELIOS 30
_IMS_OS_SUNOS 30
_IMS_OS_VMS 30
_IOFBF 18
_IOLBF 18
_IONBF 18
-memcpy 34, 22
-PTYPE 338
_strcpy 22, ·35
#elif 329, 334
terror 329, 334

72 TDS 225 00

#pragma 329, 334
syntax 357

o 370
3L 4

abort 20,36
setting action 253

366, 370
ABORT-EXIT 32
ABORT...HALT 32
ABORT_QUERY 32
abs 20,37
Absolute value 37, 98
acos 12,38
acosf 29,39
alloc86 31,40
Allocate

channel 65
DOS memory 40
memory 62, 179
process 198
semaphore 246

Alphabetic characters 154, 155
Alphanumeric character 154
Alphanumeric characters 162
ANSIC

implementation limits 347
language extensions 337
Runtime library 3

ANSI standard
compliance data 359
new features 330

ANSI standard functions 7
Append string 271, 283
Arc cosine function 38
Arc sine function 43
Arc tangent 47
Arguments

to main 359
variable 316

Arguments to main 350

August 1990

374

Array search 60
Array types 348
Arrays

implementation data 348, 362
asctime 23,41
asin 12,43
asinf 29
Assembler

operands 339
Assembly language 339
Assert

debug condition 87
assert 7, 45, 366
Assert condition 45
assert.h 7
atan 12,47
atan2 12,48
atan2f 29, 49
atanf 29,50
atexit 20, 51
atof 20,53
atoi 20,55
atol 20,57

Backus-Naur Form 357
bdos 31,59
Bit fields

implementation 352
Bits in a byte, number of 10
BNF 357
Bold type viii
bsearch 20, 60
BUFSIZ 18

Calendar time structure 23
calloc 20, 62
ceil 12
ceilf 29, 63, 64
centry.lib 4
ChanAlloc 26, 65
Chanln 26, 66
ChanlnChanFai126,67
ChanlnChar 26,68
Chanlnlnt 26, 69
Chanlnit 70
ChanlnTimeFail 26, 71

72 TDS 225 00

Index

Channel
allocate function 65
char input 68
char output 74
initialisation 70
integer input 69
integer output 75
reset 77
secure input 67, 71
secure output 73, 76

Channel input
recovery from 67
recovery from failure 71

Channel input function 66
Channel output 72

recovery from failure 73
channel.h 24
ChanOut 26, 72
ChanOutChanFail 26, 73
ChanOutChar 26, 74
ChanOutlnt 26, 75
ChanOutTimeFail 26, 76
ChanReset 26,77
char

input on channel 68
output on channel 68

Character constants
implementation data 351
syntax 333

Character escape code 336
Character escape codes 329
Character handling functions 7
Character sequences

ANSI trigraphs 335
Character sets 360

implementation data 351
CHAR.-BIT 10
CHAR...MAX 10
CHAR...MIN 10
Clear file stream 78
clearerr 16, 78
clock 23, 79, 371
Clock time

add 225
compare 223
difference 224

August 1990

Index

CLOCKSJPER_SEC 24
clock_t 23
close 28,80
Close file stream 100
Close open file 125
collc.lib 4
Compare characters in memory 182
Compare strings 273
Compare times 223
Compiler control lines 329
Compiler diagnostics

implementation 350
Compiler directives 334

implementation data 365
Concurrency functions 24
Concurrency support 337
const 331
const 328
Constants

maths 12
signal handling 13
syntax 333

Control characters
test 157

Conversion
char to double 53
error number to string 278
floating point 349
integers 349
local time to tm 170
lower to upper case 312
string to double 293
string to int 55
string to long int 57
time to string 86
tm to string 41
tm to time_t 186
upper to lower case 311

Copy
characters in memory 34, 183

cos 12,81
cosf 29,82
cosh 12,83
coshf 29,84
Cosine function 81
creat 28,85

72 TDS 225 00

375

Create file 85
ctime 23,86
ctype.h 7

Data output
on channel 72

Data representation 347
Data types

implementation 347
Date and time functions 23
Dateltime 371

defaults 354
DBL-DIG 9
DBL-EPSlLON 9
DBL...MANT-DIG 9
DBL..MAX 9
DBL..MAX_IO-EXP 308 9
DBL..MAX-EXP 9
DBL....MIN 9
DBL....MIN_IO-EXP 9
DBL....MIN-EXP 9
Debug messages 88
debug_assert 87
debug-IDessage 88
debug_stop 89
debug_assert 32
debug-IDessage 32
debug_stop 32
Decimal digits

test for 158
Declarators 331

implementation 353
implementation data 364

Diagnostics functions 7
difftime 23,90
Directives

preprocessor 329
div 20,91
Division 91
div_t 21
DOS function call 59
DOS registers 245
DOS system functions 31
dos.h 31

EDOM 8, 278, 370

August 1990

376

EFILPOS 370
EFIPOS 278
EIO 8, 278, 370
Ellipsis 330
End-of-file 101
End-of-file indicator 18
entry 328
enum 328,331
Enumerated type 331
Enumeration types

implementation 352
EOF 18
ERANGE 8,278,366,370
errno 5,8

implementation data 366
370

errno.h 8
Error

in file 102
Error codes 8
Error flag

setting 342
Error handling 258
Error handling functions 8
Errors 8
Escape codes 329
ESIGNUM 8,278,370
EVENT 27
Examples

transputer code 342
Execution character set 351
exit 100
exit 20, 92, 370
Exit program 92
exit_repeat 94
exit_terminate 95
EXITJ'AILURE 21
exit_repeat 32
EXIT_SUCCESS 21
exit_terminate 32
exp 12,96
expf 29,97
Exponential

floating point 195
Exponential function 96, 194

72 TDS 225 00

Index

Extensions
language 337, 357

F
floating point suffix 329

333
fabs 12,98
fabsf 29,99
fclose 16, 100
feof 16, 101
ferror 16, 102
fflush 16, 103
fgetc 16, 104
fgetpos 16,105,370
fqets 16, 106
File

create temporary 308
open 112
remove 239
renaming 240
size 107

FILE 17
File buffering 19, 254
File error 102
File pointer 105

repositioning 178
reset 135, 137
set to start 241

File stream
clearing 78
close 80
delete 315
push character 313
read 104

File stream buffering 257
FILENAME...MAX 18
filesize 28, 107
Fill memory 185
Find string 272

in string 287
float.h 9
Floating point

conversion 349
exponential 195
implementation data 362
log 173

August 1990

Index

multiply 166
remainder 110
separation 127, 188
truncation 349

Floating point constants 9, 329
syntax 333

floor 12, 108
floorf 29, 109
I'LT..DIG 9
I'LT..EPSILON 9
I'LT-XANT-DIG 9
I'L'l'...MAX 9
FLT...MAX_10..EXP 9
I'LT...MAX..EXP 9
I'LT-MIN 9
I'LT-MIN_10-EXP 9
I'LT-MIN..EXP 9
I'LT-RADIX 9
I'LT..ROUNDS 9
Flush file stream 103
fmod 12, 110, 366
fmodf 29, 111
fopen 16, 112

mode strings 112
fpos_t 17
fprintf 16, 115
fputc 16, 119
fputs 16, 120
fread 16, 121
free 20,123
Free DOS memory 124
Free memory 123
free86 31,124
freopen 16, 125
frexp 12, 127
frexpf 29, 129
from86 31,130
fscanf 16,131,369
fseek 17
fseek 16, 135
fsetpos 16,137
ftell 16, 139, 370
Function declaration 328
Function declarations 330
Function parameter lists 328
Function prototypes 330

72 TDS 225 00

377

fwrite 16, 140

General utilities functions 19
get character from file 144
qetc 16, 144
getchar 16
qetenv 20,145,370
qetkey 28, 146
gets 16
qet_param 141,32,360
gtntime 23, 147

Hardware characteristics 329
Header files 5
Hexadecimal

test 164
High priority process 216
Host

data 148
environment variables 145
sending command 302

Host functions 30
host.h 30
host.h 30
host_info 148
host_info 30
HUGE_VAL 12
Hyperbolic cosine 83
Hyperbolic sine 263
Hyperbolic tangent 305

I/O 103, 196
I/O buffering 18
I/O routines 15
I/O system 100
Identifiers 328

implementation data 351
Implementation limits 347
INS_codepatchsize 338
INS_linkage 338
INS-modpatchsize 338
INS..nolink 338
INS_off 338
INS_on 338
INS_translate 338

August 1990

378

Initialisation
channel 70
process 206
semaphores 247
unions 329, 335
variable arguments 319

Input/output functions 15
int

input on channel 69
output on channel 75

int86 31,150
int86x 31,151
intdos 31, 152
intdosx 31, 153
Integer

conversion 349
integer

input on channel 69
output on channel 75

Integer constants 329
syntax 333

Integer division 91
Integer operations

implementation data 352
Integers

bitwise operations 352
implementation data 361
remainder on division 352
result of right shift 352

Interrupt
DOS 150, 151

INT...MAX 10
INT-MIN 10
iocntrl.h 28
isalnum 7,154,366
isalpha 7,155,366
isatty 28, 156
iscntrl 7, 15~366
isdigit 7,158
ISERVER

access to functions 250
isgraph 7, 159
islower 7,160,366
ISO 646 335
isprint 7, 161,366
ispunct 7, 162

72 TDS 225 00

Index

isspace 7, 163
isupper 7,366
isxdigit 7
Ital ic type viii

jmp....buf 13
Jump tables 343
Jumps 342

Kernighan & Ritchie 327
Keywords 328

L
floating point suffix 329

333
Label

on __asm statements 340
labs 20,165
Language extensions

syntax 357
lconv 11
LC...ALL 11
LC_C 11
LC_COLLATE 11
LC-Monetary 11
LC....NUMERIC 11
LC_TIME 11
LDBL-DIG 9
LDBL-EPSILON 9
LDBL....MANT-DIG 9
LDBL...MAX 9
LDBL...MAX_10-EXP = 308 9
LDBL...MAX-EXP 9
LDBL....MIN 9
LDBL....MIN_10-EXP 9
LDBL-MIN-EXP 9
ldexp 12, 166
ldexpf 29, 167
ldiv 20, 168
ldiv_t 21
libc.lib 4
libcred.lib 4
Library

ANSI functions 7
character handling functions 7
communication protocols 4

August 1990

Index

diagnostic functions 7
general utility functions 19
header files 5
implementation data 366
linking with program 4
mathematics 12
miscellaneous functions 28
parallel processing 24
reduced 3
signal handling functions 13
standard definition functions 15

Limits 10
limits.h 10
LINKOIN 27
LINKOOUT 27
LINK1IN 27
LINK10UT 27
LINK2IN 27
LINK20UT 27
LINK3IN 27
LINK30UT 27
Linking

libraries 4
Locale 352, 371

data 169
setting 256

Locale functions 11
locale.h 11
localeconv 11,169
Localisation functions 11
localtime 23, 170
log 12, 172
10g10 12, 174
10g10£ 29,175
log£ 29, 173
long 329
Long division 168
Long integers 165
longjmp 13, 176
LONG...MAX 10
LONG...MIN 10
Low priority process 217
Lower case

convert to upper 312
test 160

lseek 28, 178

72 TDS 225 00

379

Macros 7
floating point 9
fp 9
locale 11
predefined 338
standard 15
standard definition 24

main
meaning of arguments 350
parameters 359

malloc 20, 179
math.h 12
math£.h 28
Maths constants 12
Maths functions 12
Maximum representable fp number

9
max_stack_usage 32, 180
mblen 20
mbstowcs 20
mbtowc 20
MB-LEN...MAX 10
MB_CUR...MAX 21
memchr 22,181
memcmp 22, 182
memcpy 22, 183
memmove 22, 184
Memory

allocate 179
allocate DOS memory 40
allocate function 62
DOS transfer 130
DOS transfer to host 31 0
fill 185
freeing 123
reallocate 238

memset 22, 185
Minimum fp exponent 9
misc.h 32
Miscellaneous functions 28
mktime 23, 186
mod£ 12,188
mod££ 29, 189

August 1990

380

Multibyte characters
implementation 351

Multiple processes 202

NDEBUG 7
Non ANSI functions 28
Non-local jump 176

setting up 255
Non-local jumps 13
Not-Process-P 27
NULL 15, 17,21,23,24

implementation 366
Null pointer constant 15
Numeric characters 154

offsetof 15
open 28,190
Open file 112
Open file stream 190
OPEN-MAX 18
Operators

unary 329
Output line buffering 18

Parameters
to main 359

pcpointer 31
perror 16,192,370
Plain chars

implementation 352
Pointers

implementation data 362
Poll keyboard 193
pollkey 28, 193
pow 12,194
powf 29,195
Pragmas 337
Preprocessor directives 329, 334
Printable characters

test 159
printf 16, 196
Priority

process 205
ProcAfter 25, 197
ProcAlloc 25, 198
ProcAllocClean 25,201

72 TDS 225 00

Index

ProcAlt 25,202
ProcAltList 25,204
Process

allocate 198
Alt 202
get parameters 211
get priority 205
initialisation 206
prioritising 213
rescheduling 214
starting 215
starting multiples 210
stopping 221
suspending 229
timing 222
timing out 226

Process 26
process.h 24
ProcGetPriority 25,205
ProcInit 25,206
ProcInitClean 25,209
ProcPar 25,210
ProcParam 25, 211
ProcParList 25,212
ProcPriPar 25,213
ProcReschedule 25,214
ProcRun 215
ProcRunHigh 25,216
ProcRunLow 25,217
ProcSkip~t 25,218
ProcSkip~tList 220
ProcStop 25,221
ProcTime 25, 222
ProcTimeAfter 25,223
ProcTimeMinus 25,224
ProcTimePlus 25,225
ProcTimerAlt 25,226
ProcTimerAltList 25,228
ProcWait 25,229
PROC-HIGH 26
PROC-LOW 26
Program

execution time 79
Program termination 92

for configured programs 95
function call 51

August 1990

Index

with restart 94
Protocol

used by library 4
Pseudo-random numbers 236
ptrdiff_t 15
Punctuation characters

test 162
putc 16, -230
putchar 16, 231
puts 16,232

qsort 20,233
Qualifiers

implementation data 364
Quotient 168

raise 13, 235
rand 20,236
Random numbers

seeding 268
RAND...MAX 21
Read

formatted input 243
formatted string 269

read 28,237
Read character 104
Read current time 307
Read DOS registers 245
Read file stream 121
Read formatted input 131
Read from file stream 237
Read keyboard 146
Read line 106
Read/write pointer 105

position 139
realloc 20, 238
Reduced library 3

i/o-related functions 19
register 352,363
Registers 363
Remainder 168
remove 16, 239
rename 16, 240
Reopen file 125
Reset

channel 77

72 lOS 225 00

381

file pointer 137
Reset file pointer 135
Restarting programs 94
ret 344
rewind 16, 241

Runtime library 3
Scalar types

implementation data 347
scanf 17, 243
SCHAR.MAX 10
SCBAlLMIN 10
Search

array 60
SEEK_CUR 18
SEEK-END 18
SEEK_SET 18
segread 31, 245
SemAlloc 27,246
semaphor.h 24,27
Semaphore

acquiring 249
allocating 246
initialising 247
releasing 248

Semaphore 27
Semaphore handling functions 27
SEMAPHOREINIT 27
Semlnit 27, 247
SemSignal 27,248
SemWait 27,249
server_transaction 5, 28,

250
Set program locale 11
setbuf 17, 254
setjmp 13,255
setjmp.h 13
setlocale 11, 256
setvbuf 17, 257
set_abort_action 36
set_abort_action 32,253,370
short 329
SHRT...MAX 10
SHRT..MIN 10
SIGABRT 14,259,367
SI~ 14, 259, 367, 368

August 1990

382

SIGEGV 259
SIGFPE 14,259,367
SIGILL 14,259,367
SIGINT 14,259,367
SIGIO 14, 259, 367
SIGLOST 14,259,367,368
signal 235, 258
Signal

handling 258
raise 235

signal 13,258,366
signal handler 36
Signal handling

constants 13
functions 13
types 13

Signal handling functions 13
signal.h 13
signed 328,332
signed char 328
SIGPIPE 14,259,367
SIGSEGV 14,367
SIGSTERM 14
SIGSYS 14,259,367
SIGTERM 259, 367
SIGORG 14,259,367
SIGUSRl 14,259,367,368
SIGUSR2 14,259,367,368
SIGUSR3 14,259,367,368
SIGWINCH 14,259,367,368
sig_atomic_t 13
SIG-DFL 14
SIG...ERR 14
SIG_IGN 14
sin 12, 261
sinf 29,262
sinh 12,263
sinhf 29,264
size

option to pseudo-operations 340
size_t 17
size_t 15, 21, 23
Skipping channels 218
Sort 233
Source character set 351
Space character" 161, 162

72 TDS 225 00

Index

Space characters
test for 163

sprintf 17,19,265
sqrt 12,266
sqrtf 29, 267
Square root 266
srand 20, 268
sscanf 17,19,269
Stack usage 180
Standard definitions functions 15
Standard error 192
Standard file stream 156
Standard input 243
Standard output 196, 231, 232, 322
startrd.lnk 4
startup.lnk 4
Statements

implementation data 364
stdarg.h 14
stddef.h 15
stderr 350, 360
stdin 350, 360
stdio.h 15
stdiored. h 3, 19
stdlib.h 19
stdout 350, 360
Stop function

for debugging 89
strcat 22, 271
strchr 22, 272
strcmp 22, 273
strcoll 22, 274
strcpy 22, 275
strcspn 22, 276
strerror 22, 278, 371
strftime 23, 279
String

appending 271, 283
compare 273
compare and count 290
compare characters 284
convert to double 293
convert to long int 299
converttotokens 295
copy to array 35, 275, 286
length function 282

August 1990

Index

transform by locale 301
String comparison 276
String constants

syntax 333
String handling functions

21
string.h 21
strlen 22, 282
strncat 22,283
strncmp 22, 284
strncpy 22, 286
strpbrk 22, 287
strrchr 22, 289
strspn 22, 290
strstr 22, 292
strtod 20, 293
strtok 22, 295
strtol 20, 297
strtoul 20, 299
struct lconv 11
struct tm 23, 24
Structures 329

implementation data 348
syntax 334

strxfrm 22,301
Switch statement

implementation 353
Syntax notation 357
system 20, 302

tan 12,303
tanf 29,304
tanh 12,305
tanhf 29, 306
Teletype font viii
Temporary file 308
Temporary file names 18
Terminate 92

configured programs 95
Terminate program - see abort, exit

20
Terminating a program 36
Termination

invoking function at 51
Time 307

UTC 147

72 TDS 225 00

383

time 23,307
Time difference 90
Time structure, formatted

conversion - see
strftime 279

time.h 23
time_t 23
tmpfile 17, 308
tmpnam 17,309
TMP-MAX 18
to86 31, 310
tolower 7, 311
toupper 7,312
Transputer instructions 339
Trigraphs 335
Type conversion 349
Type qualifiers 331
Type specifiers 328
Types 328,331

signal handling 13
Typographical conventions viii

o
integer suffix 329

333
OCHARJe!AX 10
OINT-MAX 10
ULONG-MAX 10
Unary operators 329
ungetc 17,313
Unions 329

implementation data 349
initialisation 329, 335
syntax 334

unlink 28, 315
unsigned 333
unsigned char 328
unsigned long 328
Upper case

convert to lower 311
OSHRT-MAX 10

Variable argument functions 14
Variable argument list 14
Variable arguments 316

cleaning up 318

August 1990

384

va_arq 14, 316
va_end 14, 318
va_list 14
va_start 320
va_start 14,319
vfprintf 17, 320
void 328, 332
volatile

implementation 353
328, 332

vprintf 17, 322
vsprinf 19
vsprintf 17, 323

wchar_t 15,21
wctomb 20
write 28, 324
Write character 119, 230
Write error message to standard

error output 192
Write file 140
Write formatted string

to file 115, 320
to standard o~tput 196
to stdout 322
to string 265, 323

Write line 232
Write string 120

72 TDS 225 00

Index

August 1990

USA

INMOS Business Centre
Headquarters (USA)
SGS-THOMSON Microelectronics Inc.
2225 Executive Circle
PO Box 16000
Colorado Springs
Colorado 80935-6000
Telephone (719) 630 4000
Fax (719) 630 4325

SGS-THOMSON Microelectronics Inc.
Sales and Marketing Headquarters (USA)
1000 East Bell Road
Phoenix
Arizona 85022
Telephone (602) 8676100
Fax (602) 867 6102

INMOS Business Centre
SGS-THOMSON Microelectronics Inc.
Uncaln North
55 Old Bedford Road
Uncaln
Massachusetts 01 n3
Telephone (617) 2590300
Fax (617) 259 4420

INMOS Business Centre
SGS-THOMSON Microelectronics Inc.
9861 Broken Land Parkway
Suite 320
Columbia
Maryland 21045
Telephone (301) 9956952
Fax (301) 290 7047

INMOS Business Centre
SGS-THOMSON Microelectronics Inc.
200 East Sandpointe
Suite 650
Santa Ana
California 92707
Telephone (714) 9576018
Fax (714) 957 3281

Worldwide Headquarters

INMOS Umited
1000 Aztec West
Almondsbury
Bristol BS12 480
UNITED KINGDOM
Telephone (0454) 616616
Fax (0454) 617910

Worldwide Business Centres

INMOS Business Centre
SGS-THOMSON Microelectronics Inc.
2620 Augustine Drive
Suite 100
Santa Clara
California 95054
Telephone (408) 727 n71
Fax (408) 727 1458

INMOS Business Centre
SGS-THOMSON Microelectronics Inc.
1310 Electronics Drive
Carrollton
Texas 75006
Telephone (214) 466 8844
Fax (214) 466 7352

ASIA PACIFIC

Japan

INMOS Business Centre
SGS-THOMSON Microelectronics K.K.
Nisseki Takanawa Building, 4th Floor
18-10 Takanawa 2-chome
Minato-ku
Tokyo 108
Telephone (03) 2804125
Fax (03) 280 4131

Singapore

INMOS Business Centre
SGS-THOMSON Microelectronics Pte Ltd.
28 Ang Mo Kio Industrial Park 2
Singapore 2056
Telephone (65) 482 14 11
Fax (65) 482 02 40

EUROPE

United Kingdom

INMOS Business Centre
SGS-THOMSON Microelectronics Ltd.
Planar House
Parkway Globe Park
Marlow
Bucks SL7 1YL
Telephone (0628) 890 800
Fax (0628) 890 391

France

INMOS Business Centre
SGS-THOMSON Microelectronics SA
7 Avenue Gallieni
BP 93
94253 Gentilly Cedex
Telephone (1) 47407575
FAX (1) 47407927

West Germany

INMOS Business Centre
SGS-THOMSON Microelectronics GmbH
Bretonischer Ring 4
8011 Grasbrunn
Telephone (089) 46 00 60
Fax (089) 46 00 61 40

Italy

INMOS Business Centre
SGS-THOMSON Microelectronics SpA
V.1e Milanofiori
Strada 4
Palazzo A/4/A
20090 Assago (MI)
Telephone (2) 89213 1
Fax (2) 8250449

	Contents overview
	Contents
	Preface
	Runtime Library
	1 Introduction and Runtime Library summary
	1.1 Introduction
	1.1.1 Reduced library
	1.1.2 Accessing library functions
	1.1.3 Linking libraries with programs
	1.1.4 ISERVER protocols
	1.1.5 Functions which require static

	1.2 Header files
	1.3 ANSI functions
	1.3.1 Diagnostics <assert.h>
	1.3.2 Character handling <ctype.h>
	1.3.3 Error handling <errno.h>
	1.3.4 Floating point constants <float.h>
	1.3.5 Implementation limits <limits.h>
	1.3.6 Localisation <locale.h>
	1.3.7 Mathematics library <math.h>
	1.3.8 Non-local jumps <setjmp.h>
	1.3.9 Signal handling <signal.h>
	1.3.10 Variable arguments <stdarq.h>
	1.3.11 Standard definitions <stddef.h>
	1.3.12 Standard i/o <stdio.h>
	Characteristics of file handling

	1.3.13 Reduced library i/o functions <stdiored.h>
	1.3.14 General utilities <stdlib.h>
	1.3.15 String handling <string.h>
	1.3.16 Date and time <time.h>

	1.4 Concurrency functions
	1.4.1 Process control <process.h>
	1.4.2 Channel communication <channel.h>
	1.4.3 Semaphore handling <semaphor.h>

	1.5 Other functions
	1.5.1 I/O primitives <iocntrl.h>
	1.5.2 float maths <mathf.h>
	1.5.3 Host utilities <host.h>
	1.5.4 DOS system functions <dos.h>
	1.5.5 Miscellaneous functions <misc.h>

	2 Alphabetical list of functions
	2.1 Format
	2.1.1 Reduced library
	2.1.2 Macros

	2.2 List of functions
	_memcpy
	_strcpy
	abort
	abs
	acos
	acosf
	alloc86
	asctime
	asin
	asinf
	assert
	atan
	atan2
	atan2f
	atanf
	atexit
	atof
	atoi
	atol
	bdos
	bsearch
	calloc
	ceil
	ceilf
	ChanAlloc
	Chanln
	ChanlnChanFail
	ChanlnChar
	Chanlnlnt
	Chanlnit
	ChanInTimeFail
	ChanOut
	ChanOutChanFail
	ChanOutChar
	ChanOutlnt
	ChanOutTimeFail
	ChanReset
	clearerr
	clock
	close
	cos
	cosf
	cosh
	coshf
	creat
	ctime
	debug_assert
	debug-message
	debug_stop
	difftime
	div
	exit
	exit_repeat
	exit_terminate
	exp
	expf
	fabs
	fabsf
	fclose
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	filesize
	floor
	floorf
	fmod
	fmodf
	fopen
	fprintf
	fputc
	fputs
	fread
	free
	free86
	freopen
	frexp
	frexpf
	from86
	fscanf
	fseek
	fsetpos
	ftell
	fwrite
	get_param
	getc
	getenv
	getkey
	gmtime
	host_info
	int86
	int86x
	intdos
	intdosx
	isalnum
	isalpha
	isatty
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isxdigit
	labs
	ldexp
	Idexpf
	ldiv
	localeconv
	localtime
	log
	logf
	log10
	log10f
	longjmp
	lseek
	malloc
	max_stack_usage
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	modf
	modff
	open
	perror
	pollkey
	pow
	powf
	printf
	ProcAfter
	ProcAlloc
	ProcAllocClean
	ProcAlt
	ProcAltList
	ProcGetPriority
	Proclnit
	ProclnitClean
	ProcPar
	ProcParam
	ProcParList
	ProcPriPar
	ProcReschedule
	ProcRun
	ProcRunHigh
	ProcRunLow
	ProcSkipAlt
	ProcSkipAltList
	ProcStop
	ProcTime
	ProcTimeAfter
	ProcTimeMinus
	ProcTimePlus
	ProcTimerAlt
	ProcTimerAltList
	ProcWait
	putc
	putchar
	puts
	qsort
	raise
	rand
	read
	realloc
	remove
	rename
	rewind
	scanf
	segread
	SemAlloc
	Semlnit
	SemSignal
	SemWait
	server_transaction
	set_abort_action
	setbuf
	setjmp
	setlocale
	setvbuf
	signal
	sin
	sinf
	sinh
	sinhf
	sprintf
	sqrt
	sqrtf
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strftime
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	strtoul
	strxfrm
	system
	tan
	tanf
	tanh
	tanhf
	time
	tmpfile
	tmpnam
	to86
	tolower
	toupper
	ungetc
	unlink
	va_arg
	va_end
	va_start
	vfprintf
	vprintf
	vsprintf
	write

	Language Reference
	3 New features in ANSI C
	3.1 Summary of new features in the ANSI standard
	3.2 Details of new features
	3.2.1 Function declarations
	3.2.2 Function prototypes
	3.2.3 Declarations
	3.2.4 Types and type qualifiers
	3.2.5 Constants
	3.2.6 Preprocessor extensions
	Compiler directives
	Predefined macros

	3.2.7 Structures and unions
	3.2.8 Trigraphs
	Trigraph escape codes

	4 Language extensions
	4.1 Concurrency support
	4.2 Pragmas
	4.3 Predefined macros
	4.4 Assembly language support
	4.4.1 Directives and operations
	4.4.2 size option
	4.4.3 Labels
	4.4.4 Notes on transputer code programming
	4.4.5 Useful predefined variables
	4.4.6 Transputer code examples
	Setting the transputer error flag
	Loading constants using literal operands
	Labels and Jumps
	Jump tables
	Loading floating point registers
	Using align/word to return an element of a table
	Inserting raw machine code

	5 Implementation details
	5.1 Data type representation
	5.1.1 Scalar types
	5.1.2 Arrays
	5.1.3 Structures
	5.1.4 Unions

	5.2 Type conversions
	5.2.1 Integers
	5.2.2 Floating point

	5.3 Compiler diagnostics
	5.4 Environment
	5.4.1 Arguments to main
	5.4.2 Interactive devices

	5.5 Identifiers
	5.6 Source and execution character sets
	5.7 Integer operations
	5.8 Registers
	5.9 Enumeration types
	5.10 Bit fields
	5.11 volatile qualifier
	5.12 Declarators
	5.13 Switch statement
	5.14 Preprocessing directives
	5.15 Runtime library

	Appendices
	A Syntax of languageextensions
	A.1 Notation
	A.2 #pragma directive
	A.3 __asm statement

	B ANSI compliance data
	B.1 Translation
	B.2 Environment
	B.3 Identifiers
	B.4 Characters
	B.5 Integers
	B.6 Floating point
	B.7 Arrays and pointers
	B.8 Registers
	B.9 Structures, unions, enumerations, and bit-fields
	B.10 Qualifiers
	B.11 Declarators
	B.12 Statements
	B.13 Preprocessing directives
	B.14 Library functions
	B.15 Locale-specific behaviour

	Index

