3L PARALLEL C
USER GUIDE

. 72 TDS 179 00 February 1989

Copyright INMOS Limited 1989

This document may not be copied, in whole or in part, without prior written
consent of INMOS. I

@ , Inmos , IMS and occam are trademarks of the INMOS Group of Companies.

72 TDS 179 00

Contents

Contents

Contents overview

ix

1 How to use the manual 1
1.1 How to use the manual 1

1.2 User guide 1

1.3 Reference manual 1

1.4 Appendices 1

1.5 Host operating system dependencies 2

The user guide 3

2 Programming single transputers 5
2.1 Outline procedure 5

2.2 A simple example 5

2.3 A more complex example 6

2.4 Indirect linker files 7

2.5 Libraries 7

3 Introduction to Parallel C 9
3.1 Abstract model 9

3.2 Hardware realisation 10

3.3 Software model 11

3.4 Parallel execution threads 12

3.5 Configuring an application 13

3.6 Processor farms 14

4 Programming transputer networks 15
4.1 Configuring one user task 16

4.1.1 Hardware configuration 17

4.1.2 Software configuration 18

Declaring tasks 18

Making connections between tasks 19

Assigning tasks to processors 19

4.1.3 Building the application 19

Building a task image 20

Configuring the task images 20

4.2 More than one user task 20

72 TDS 179 00

Contents

4.2.1 Inter-task communication functions 21

4.2.2 Building the application 24

4.3 Access to host services 25

4.4 Multi-transputer systems 25

4.5 Multi-threaded tasks 26

4.5.1 Creating threads 26

4.5.2 Threads versus tasks 29

4.6 Debugging 30

4.7 Estimating memory requirements 31

5 Processor farms 33
5.1 The worker task 33

5.2 The master task 34

5.3 The net functions 35

54 Building the application 36

5.4.1 Building master and worker task images 36

5.4.2 Configuration file 37

5.4.3 Configuration 37

5.4.4 Running the example 38

5.5 Mixed networks 39

The reference manual 41

6 config general purpose configurer 43
6.1 Running the configurer 43

6.2 The distributing loader 43

6.2.1 Bootstrapping a transputer 43

6.2.2 Bootstrapping a network 46

6.2.3 Loader command stream 47

6.24 Memory allocation 50

7 decode utility 55
71 Usage 55

7.2 Features of the decode program 55

7.3 Other languages 56

8 fconfig flood-fill configurer 59
8.1 Running the flood-fill configurer 59

8.2 User task protocol 59

8.2.1 Master task’s ports 59

8.2.2 Worker task’s ports 60

8.3 Packet format 60

72 TDS 179 00

Contents

9 iboot bootstrap 61
9.1 Running the iboot tool 61
9.2 What can be made executable 61
9.3 Producing task images 62
9.4 Bootstrap loader interface 63
9.5 Error messages 65

10 ilibr librarian 67
10.1 Introduction 67
10.2 Running the librarian 67
10.3 Exploding libraries 68
10.4 Removing debug data 68
10.5 Rules for constructing libraries 69
10.6 Library Modules 69

10.6.1 Selective loading 69
10.7 Building libraries 69
10.8 Indirect files 70
10.9 Error messages 70

11 ilink linker 73
11.1 Introduction 73
11.2 Notes on using the linker 73

11.2.1 Output files 73

11.2.2 Processor type checks 73

11.2.3 Selective loading of library files 74

11.3 Running the linker 74

11.4 Redirected command input 74

11.4.1 Linker indirect files 75

11.5 Linker options 76

11.5.1 Option M — disable file Map 76

11.5.2 Option E — extend link capacity 76

11.5.3 Option s - disable Symbol table 76

11.5.4 Option B — change Buffer size 77
Calculating memory requirements for a linked

program 79

11.5.5 Option Q — optimise symbols 79

11.5.6 Order of linking of object files 80

11.6 Error messages 80

72 TDS 179 00

Contents

12 iserver host file server 85
12.1 Running the server 85
12.1.1 Loading programs 86

12.1.2 Specifying link address — option SL 86

13 tc C compiler 87
13.1 Running the compiler 87
13.2 Compiler switches 87
13.2.1 Controlling output files 89
Switches FB and FO 89

Switch FL 89

13.2.2 Controlling object code 90
Switches T4, T8 and T8A 90

Switch s 90

Switch PCn 90

Switch C 91

13.2.3 Controlling #include processing 91
Switch Idirectory 91

Switch x 91

13.2.4 Macro definitions 91
Switch Dmacro and Dmacro=string 91

Switch omac 92

13.2.5 Information from the compiler 92
Switch I 92

Switch M 92

Switch v 93

13.2.6 Obsolescent switches 93

13.3 Compiler error messages 94
13.3.1 Compiler error message format 94

13.3.2 Fixing errors detected by the compiler 96

13.3.3 Compiler control lines 97

13.3.4 List of error messages 98
Program errors 98

System errors 123

Code generator errors 125

13.3.5 Errors in assembler code 126

14 C language implementation 129
14.1 The C language 129
14.1.1 Restrictions 129

Loose type checking of ‘.’ and —> operators 130

72 TDS 179 00

Contents

White space within compound operators 130

Use of sizeof in array declarations 130

#line ignored 130
Anachronisms not allowed 130

14.1.2 Extensions 131
Dollar sign in identifiers 131

More significant characters in identifiers 131

Assignment to whole struct/union variables 131

Restrictions on struct member names relaxed 132

type-name syntax relaxed 133

14.1.3 Keywords 133

14.2 System-dependent features 133
14.2.1 Data type enum not allowed 134

14.2.2 All bit fields unsigned 134

14.2.3 >> operator 134

14.2.4 Register variables 134

14.3 Predefined macros 134
14.4 Handling of #include files 135
14.5 Assembly language 135
14.5.1 When to use assembly language 135

14.5.2 Assembly language syntax 136

14.5.3 Literal operands 137,
14.5.4 Variables as operands 137
Storage class 138

Type 139

14.5.5 Accessing complex structures 139

14.5.6 Labels and jumps 141
Labels within asm statements 142

Jump optimisations 143

14.5.7 Literal machine code 143

14.5.8 Errors 143

14.6 Data-type representations 144
15 The C run-time library 147
15.1 Purpose of the run-time library 147
15.2 Conventions 147
15.3 Header files 148
15.4 Library modules 149
15.4.1 Input/output 149
Standard 1/O 150

Low-level /O 155

15.4.2 Mathematical functions 155

72 TDS 179 00

Contents

15.4.3 String handling 156

15.4.4 Character classification 157

15.4.5 Conversions 158
15.4.6 Dynamic memory allocation 158

15.4.7 Date and time 159

15.4.8 thread package 159

15.4.9 sema package 159
15.4.10 timer package 160
15.4.11 chan package 160
15.4.12 net package 161
15.4.13 par package 161
15.4.14 Compatibility channel 1/0 162
15.4.15 Miscellaneous 162

15.5 The C main program 163
15.6 Reduced run-time library 163
16 Alphabetic list of run-time library functions 165
17 Configuration language 217
17.1 Standard Syntactic Metalanguage 217
17.2 Configuration Language Syntax 218
17.2.1 Low Level Syntax 218

17.2.2 Numeric Constants 219

17.2.3 String Constants 220

17.2.4 Identifiers 221
17.2.5 Statements 222

17.2.6 PROCESSOR Statement 223

17.2.7 WIRE Statement 224

17.2.8 TASK Statement 224

INS Attribute 225

OUTS Attribute 225

FILE Attribute 225

Memory Size Attributes 226

OPT Attribute 227

URGENT Attribute 227

Port Specifiers 227

17.2.9 CONNECT Statement 228
17.2.10 PLACE Statement 228
17.2.11 BIND Statement 229
Appendices 231

72 TDS 179 00

Contents vii

A Task data sheets 233
B Harnesses and run-time libraries 239
B.1 Harnesses 239

‘ B.2 Run-time libraries 240
B.2.1 Core maths run-time library 240

(& Transputer instructions 243
CA Pseudo-instructions 243

C.2 Prefixing instructions 243

C.3 Direct instructions 244

C.4 Operations 245

C.5 T414-only instructions 247

C.6 T800-only instructions 247

C.6.1 Floating-point instructions 248

C.6.2 Other T800-only instructions 250

D Conventions and defaults 251
D.1 Command line conventions 251

D.2 Filename conventions 252

D.3 File location conventions 254

‘ D.4 Search paths on the IBM PC and SUN3 254
D.5 Search paths on VMS systems 254

E ASCIl code chart 257
Bibliography 259

Index 261

72 TDS 179 00

viii Contents

72 TDS 179 00

Contents overview

1

How to use the manual Describes the layout of the manual

' The user guide

2

3

4

Programming single

transputers

Introduction to Parallel

c

Programming
transputer networks

Processor farms

Describes how to create a program for use on
a single transputer.

An introduction to parallel programming.

Explains the practical use of some of the par-
allel programming tools.

Shows how to implement applications on an
arbitrary network of transputers.

The reference manual

6

7

10

11

config general
purpose configurer

decode utility
fconfig flood-fill
configurer
iboot bootstrap
ilibr librarian

ilink linker

Describes the tool for configuring programs to
run on single and multiple transputer systems.

Shows how to obtain a listing of transputer
instructions from an object file.

Describes the tool for configuring programs to
run on an arbitrary transputer network.

Describes the bootstrap tool for producing
programs that can be directly loaded onto
transputers.

Describes the tool for creating and
maintaining standard libraries.

Describes the tool for linking files
to build executable object files.

72 TDS 179 00

Contents overview

12 iserver host file

server
13 tec C compiler
14 C language
implementation

15 The C run-time library

16 Alphabetic list of
run-time library
functions

17 Configuration language

Shows how to load programs onto transputer
networks.

Describes the compiler options.

Explains how the C language is implemented
on the transputer.

Describes the functions in the run-time library.

Lists all of the supported library functions.

Describes the language used by
the configuration utilities

The appendices

A Task data sheets

B Harnesses and
run-time libraries

C Transputer instructions

D Conventions and
defaults
E ASCII code chart
Bibliography
THE INDEX

Describes the standard ‘building block’ tasks.

Describes the harnesses and run-time
libraries supplied with this release.

Lists the transputer instructions that are
supported.

Explains the conventions used in this manual

Table of standard US ASCII codes.
Lists literature worth referring to.

A comprehensive index.

72 TDS 179 00

1 How to use the manual

Intended audience

This User Guide accompanies 3L’s Parallel C product, and is intended for anyone
who wants to use Parallel C to program a transputer system, whether writing a
conventional sequential program or using the full support for concurrency which
the transputer processor has to offer.

1.1 How to use the manual

There are three main divisions within this document, as follows:
e User guide
¢ Reference manual
e Appendices

Each of the sections is described briefly below.

1.2 User guide
The user guide introduces you to the operation of the compiler and the other
tools supplied with Parallel C. In particular, there are tutorial sections explaining

parallelism on the transputer and the way in which this can be accessed from
Parallel C programs.

1.3 Reference manual

The reference manual contains the detailed technical information which you will
require to write sophisticated applications for the transputer using Parallel C.

1.4 Appendices

The appendices at the end of this manual contain supplementary information in
a condensed form, such as tables of transputer assembly language mnemonics.

72 TDS 179 00

2 1 How to use the manual

Further reading

This User Guide does not attempt to teach the C language itself; rather, refer-
ence should be made to one of the many introductory texts available. The first
— and still one of the best — books about C is the original book describing the
language. This is The C Programming Language[1], by Kernighan and Ritchie.

In a similar way, the reader is assumed to be reasonably familiar with the oper-
ating system of the host computer being used. For personal computers made
by IBM, this will usually be PC-DOS, which is supplied with a manual called
Disk Operating System Reference[2]. For compatible machines made by other
manufacturers, the operating system will usually be MS-DOS, described in Mi-
crosoft MS-DOS User's Reference(3]. These two operating systems are largely
compatible, and their documentation is very similar.

References to these and other documents mentioned in this manual are collected
in a bibliography, which can be found on page 259.

1.5 Host operating system dependencies

Operating system dependencies are as far as possible made invisible to the
user. The few differences are summarized below.

Command line syntax

The major difference between different host implementations is the option prefix
character. For UNIX based toolsets the prefix character is the hyphen ’-’; for all
other toolsets it is the forward slash character ’/’.

This manual uses the ‘~' character in all examples where the tools are invoked
from the host operating system.

Directories and files
Directories and pathnames are treated in a host dependent -manner, whereas
filenames are independent of the host, with certain restrictions. As long as the

directory names are legal for the host operating system, they can also be treated
as host independent.

A directory path searching mechanism is implemented within the compiler, and
full pathnames need not be given.

72 TDS 179 00

The user guide

72 TDS 179 00

4 The user guide

72 TDS 179 00

2 Programming single
transputers

2.1 Outline procedure

To create a program to run on a single transputer you will need to take the
following steps:

1 Compile the C source texts using the C compiler.

2 Link the object files with the C run-time library using the linker.

3 Convert the linked image to an executable file using the bootstrap tool.
4 Load the program for execution on the transputer board using the server.

It is often convenient to collect the object files for commonly used functions into
a &ingle library file. This can be done using the librarian.

2.2 A simple example

The following example shows how to build and run the ‘hello world’ program
for a T414 transputer.

The source of the hello world program is held in the file hello.c. To
compile this source for a T414 transputer type:

t4c hello

As no filename extension is given the compiler will add a .c extension auto-
matically. If the source file contains no errors, an object file hello.bin will
be produced, otherwise error messages will be written to the standard output
stream.

The object file must now be linked with the C run-time library and converted to
an executable file. The sequence of commands required to perform this is as
follows:

ilink mainent.cd4x crtl.lib hello.bin -o hello.c4dx
iboot hello.cdx

72 TDS 179 00

6 2 Programming single transputers

To run the program type:

iserver -sb hello.b4dx

The iserver loads the program hello.b4x to the transputer where it exe-
cutes automatically.

To build a program for a T800 transputer a similar sequence of commands shown
below must be used.

t8c hello
ilink mainent.c8x crtl.lib hello.bin -o hello.c8x

iboot hello.c8x
iserver -sb hello.b8x

2.3 A more complex example

For larger programs it is good practice to build them from a number of separately
compiled C source texts. The following example shows how to build a program
for a T414 from the two C source texts £1.c and £2.c. The example can easily
be generalised for more source files. First compile each source text separately:

t4c £f1
td4c £2

These commands will create the object files £1.bin and £2 .bin. The object
files must now be linked with the C start-up routine and the C run-time library:

ilink mainent.c4x fl.bin £2.bin crtl.lib -o main.c4dx

The C start-up routine (mainent.c4x) and C run-time library (crtl.1ib)
can be found in the installation directory defined in the delivery manual. If the
compiler search path is set up as described in the delivery manual the linker

will find these without needing an explicit directory specifier. Note that .bin
extensions must be stated explicitly.

The -o main.c4x linker option explicitly names the output file. Before the
program is run the linked image must be converted to an executable file:

iboot main.c4dx

The bootstrap program produces the executable file main .b4x as output which
can be loaded by the server to run on your transputer board:

iserver -sb main.bdx

72 TDS 179 00

2.4 Indirect linker files 7

The same program can be built for a T800 transputer using the similar sequence
of commands below:

t8c f1
t8c £2
ilink mainent.c8x fl.bin £2.bin crtl.lib -o main.c8x

iboot main.c8x
iserver -sb main.b8x

2.4 Indirect linker files

When a program consists of many separately compiled units it is recommended
that the linker be invoked using an indirect file.

By creating a file main.14x containing:

mainent.c4dx
£f1.bin
f2.bin
crtl.lib

-0 main.c4dx

the previous example could be linked with the command line:
ilink -f main.l4x

where the - £ option instructs the linker to take its command line from the indirect
file main.1l4x

2.5 Libraries
Collecting a group of object files into a library has a number of advantages:

1 A single file is more convenient than a collection, especially if it is to be
shared and copied between a team of developers.

2 Object code for different transputer types may be collected into a single
library, from which the linker will select the correct version.

3 The linker will automatically select only the object files required for the
program from a library.

72 TDS 179 00

8 2 Programming single transputers

The example below shows a graphics library being built from a core graphics
module and two device driver modules. The library is then linked in the ordinary
way with a user program. Indirect files are used to simplify the required librarian
and linker commands.

Contents of graflib. 1bb are:

core.bin
tek.bin
hp.bin

The following command is used to build the library:
ilibr -f graflib.lbb -o graflib.lib
Contents of myprog.14x are:
mainent.c4x
myprog.bin
crtl.lib
graflib.lib

The following commands are used to link the program and produce the bootable
file:

ilink -f myprog.l4x -o myprog.cdx
iboot myprog.c4x

72 TDS 179 00

3 Introduction to Parallel
C

This chapter aims to help you become familiar with Parallel C and its terminology.
If you know occam, or if you have read a lot about the transputer, then you will
already be familiar with the ideas on which Parallel C is based. If not, don't
worry; the ideas are quite simple. They are explained in outline here, and again
in more detail in the chapters which follow.

3.1 Abstract model

The treatment of parallel processing in transputer systems is based on the idea
of communicating sequential processes. In this model, a computing system is
a collection of concurrently active sequential processes which can only commu-
nicate with each other over channels. A channel connects exactly one process
to exactly one other process. A channel can only carry messages in one direc-
tion: if communication in both directions between two processes is required, two
channels must be used. Each process can have any number of input and output
channels, but note that the channels in a system are fixed; new channels cannot
be created during its operation.

For example, a disk copy command built into a computer's operating system
could be described as three concurrently executing processes: two floppy disk
controller processes and one process doing the copying.

copy

\

disk 1 disk 2

This example shows an important property of channel communications: they are
synchronised. A process wanting to send a message over a channel is always
forced to wait until the receiving process reads the message. In our example,
this means that even if at some time the output floppy disk can't keep up with the
input, the system will still work properly. This is because the copy process will
automatically be forced to wait if it tries to send a message before the output disk
process is ready to receive it. Sometimes it is useful to allow a sending process
to run ahead of a receiving one; in such cases an explicit buffering process must

72 TDS 179 00

10 3 Introduction to Parallel C

be added to the system.

Note that because a process in this model is just a ‘black box’ connected to
the outside world only by its channels, the actual implementation of any individ-
ual process is not important. A process could be implemented in hardware or
software or could be a complex system, itself consisting of a number of commu-
nicating processes.

3.2 Hardware realisation

The transputer was designed to be used as a component in concurrent systems
of exactly the sort described in the previous section. Each transputer processor
has four INMOS links, to connect it with other transputers. Each link has two
channels, one in each direction. These hardware channels behave exactly like
the abstract channels discussed above; they provide synchronised, unidirectional
communication.

Arbitrary networks of transputers can be constructed simply by connecting their
links together with ordinary wires, the only limitation being that each processor
cannot be directly connected to more than four others.

At this level, a transputer can therefore be viewed as a single process in a multi-
transputer system. However, it is also possible for any number of concurrent
processes to be run on an individual transputer. Any word in the transputer's
memory may be used as a channel to connect one internal process to another.
The address of such a channel word is used to identify it to the transputer instruc-
tions (and Parallel C functions) which send or receive messages. The contents
of the word are used by the hardware to synchronise sending and receiving
processes.

From a program’s point of view, these internal channels and the hardware link
channels are identical. The same instructions (or Parallel C functions) are used
to send and receive messages on both. Hardware link channels are identified by
special fixed addresses. For example, on a T414 the input channel of proces-
sor link 3 is always at address 8000001Cs¢. Internal channels have addresses
allocated by software.

This equivalence of internal channels to hardware link channels means it is pos-
sible to develop a parallel system on a single transputer and then move some of
its processes onto other transputers without having to recompile any code.

Each process executing on a transputer processor has a priority, which can either
be ‘urgent’ or ‘not urgent’. The processor automatically shares its available time
between these processes. A process can be descheduled either because it has
performed an operation (such as sending a message to another process) which

72 TDS 179 00

3.3 Software model 1

causes it to pause or, in the case of a ‘not urgent’ process, because it has been
executing without interruption for a certain period of time. The effect of this is that
the CPU time-slices between the ‘not urgent’ processes, but ‘urgent’ processes
are not interrupted until they cannot proceed because of a communication. For
this reason, ‘urgent’ processes should be designed so that they do not perform
large amounts of computation, as they will ‘lock out’ the less urgent processes
entirely.

3.3 Software model

Parallel C is based on the same abstract model of communicating sequential
processes as the transputer hardware.

A complete application is viewed as a collection of one or more concurrently
executing tasks. Each task has its own region of memory for code and data, a
vector of input ports, and a vector of output ports. The port vectors are passed
to the task as arguments to its main function.

Tasks can be treated as software ‘black boxes’ connected together via their ports,
as shown in figure 3.1.

input output
ports poﬁs
—

3
— task |

Figure 3.1 a task viewed as a ‘black box’.

For example, a very simple task might accept a stream of char values on an
input port, convert each character to upper case, and output the resulting stream
of characters on an output port. The C code for this is shown in figure 3.2.

Tasks can be treated as atomic building blocks for parallel systems, to be wired
together rather like electronic components. Indeed, several such basic building-
block tasks are supplied with the compiler.

Each element in the input and output port vectors is of type ‘pointer to channel
word’, (CHAN *). Ports are bound to real channel addresses by configuration
software external to the task itself; the bindings can be changed without recom-
piling or relinking the task. Extended C run-time library functions supplied with
the compiler allow C programs to send and receive messages over the channels
bound to a task’s ports.

The configuration software also provides ways of specifying which software tasks

72 TDS 179 00

12 3 Introduction to Parallel C

#include <chan.h>
#include <ctype.h>

main (argc, argv, envp, in ports, ins, out_ports, outs)
int argc, ins, outs;

char *argv[], *envp[];

CHAN *in ports[], *out ports[];

{
int c;
for (;;) {
chan_in word(&c, in_ports[0]);
if (¢ == -1) break; /* terminate task */
chan_out_word(_toupper(c), out_ports[0]);
}
}

Figure 3.2 Complete example task with one input and one output port.

are to be run on which hardware processors. Each processor can support any
number of tasks, limited only by available memory.

Tasks placed on the same processor can have any number of interconnecting
channels. Tasks placed on different processors can only be connected where
physical wires connect the processors’ links. Each logical connection between
two tasks placed on different processors is assigned exclusive use of one of the
physical link channels connecting the processors. The number of interconnec-
tions between tasks on different processors is therefore limited by the number
of hardware links each one has. If more than four logical connections in each
direction are required between one transputer and its neighbours, the designer
of the system must provide explicit multiplexor tasks.

3.4 Parallel execution threads

The model described so far consists of a network of tasks communicating with
each other by sending messages over channels. Each task has its own code

and data areas.

Parallel C also provides the mechanisms to dynamically create new concurrent
threads of execution within a task. Each thread has its own stack, allocated by
its creator, but shares its code, static data and heap space with other threads
in the same task. Semaphore functions in the run-time library are provided to
control access to shared data and channels.

72 TDS 179 00

3.5 Configuring an application 13

These threads can communicate either by using channels or by using shared
data.

Parallel threads must be used if a task must wait for a message on one of a
number of input channels. The inputs cannot be performed sequentially as the
task would have to wait for input on the first channel regardless of inputs arriving
on the other channels.

For example a server task would require a separate thread for each of its clients.

Each thread services all requests from one input channel. The thread would
consist of a loop which inputs a message and calls a service function for the

message.
The parallel thread and semaphore functions provide a powerful extension to
C. However incorrect use of these functions can lead to obscure problems in
your programs which can be very difficult to find. Unlike the occam parallel
constructs, the correct use of these extensions cannot be checked by a compiler.

It is therefore recommended that the use of these functions should be localised
within your source code.

3.5 Configuring an application

A multi-transputer program consists of a network of communicating tasks which
are distributed over a physical network of transputers.

A configuration file must be created which describes:
o the transputers in the physical network and how they are connected.
o the names of the tasks and how they are connected.
o the placement of the tasks on the transputers.

Multi-transputer programs are built in two stages.

First, each individual task is compiled, linked and converted into an executable
image.

Second, the configurer is used to create the final program. The configurer takes
as input the configuration file and the task images and creates as output a
program which can be loaded to the transputer network with the server.

72 TDS 179 00

14 3 Introduction to Parallel C

3.6 Processor farms

The tools described so far allow you to build applications which execute on any
transputer network, the wiring of which can be specified in advance in a con-
figuration file. For many parallel computations it is useful to be able to create
applications which will automatically configure themselves to run on any net-
work of transputers. Such applications will automatically run faster when more
transputers are added to a network, without recompilation or reconfiguration.

Parallel C allows you to create applications like this, provided the application can
be implemented by a processor farm, and provided that there is enough memory
on each processor in the network to support the required loading and message
handling software.

In the processor farm technique, an application is coded as one master task
which breaks the job down into small, independent pieces called work packets
which are processed by any number of anonymous worker tasks. Work packets
are automatically distributed across an arbitrary network of transputers by routing
software supplied with the compiler. All of the worker tasks must run the same
code. Each worker simply accepts work packets, processes them, and sends
back result packets via the same routing software. A worker task is just a simple
sequential loop: read a packet; process it; send back a result packet.

Provided a master task can be written for your application which will split the job
up into independent work packets which the worker tasks can handle without
communicating with other tasks, you can use the flood-fill configurer to combine
the code for the master and worker tasks into a bootable application file which
can be loaded automatically into an arbitrary transputer network by the i server

program.

Many computationally intensive applications can in fact be implemented by pro-
cessor farms, particularly graphics applications like ray-tracing where different
sections of the screen can be worked on independently.

72 TDS 179 00

4 Programming
transputer networks

In this chapter we move on from looking at the general features of Parallel C to
explaining how some of the parallel programming tools supplied with the compiler
are used in practice. The general-purpose configurer is described here along
with the extended run-time library functions for sending messages over channels
and creating new execution threads. Processor farm applications are covered in
the next chapter.

We have actually already encountered an interesting example of a parallel sys-
tem: even a simple sequential program running on a transputer board plugged
into the host runs in parallel with the iserver program on the host computer,
as shown below.

PC | B004

iserver l filter prgggm

The iserver task is an application program that runs on the host. It loads
executable files onto the transputer and also acts as a file server, handling /0
requests made by the transputer. The iserver and the transputer execute in
parallel and communicate via an Inmos link. The messages sentto the iserver
are normally generated by the Parallel C run-time library. It converts /O opera-
tions like putchar and fprint£ into messages requesting the iserver to
perform host operations like write 512 bytes and then waits for the iserver to

reply.

It is always necessary to plug a task called the filter process between the user
process and the iserver. The filter runs in parallel with the iserver and
the user task; it simply passes on messages travelling in both directions. The
reason that the ‘filter task is always used is because the protocol generated by
the Parallel C run-time library to request host services is different from that used
by the iserver and so the filter task converts the protocol used by the Parallel
C run-time library to that used by the iserver

72 TDS 179 00

16 4 Programming transputer networks

4.1 Configuring one user task

Up to now a standard ‘harness’, mainent .c4x or mainent.c8x, has been
linked in with all user programs. The harness contains system initialisation code,
the filter, and a call to the user program. There is no need to describe the stan-
dard system configuration (iserver, filter and one user task) to the harness;
the configuration is assumed.

The standard harness provides a simple solution for simple cases. We need
a way to produce executable files for more complicated system configurations
containing many tasks and many transputers. The configurer program is used
to build programs for these more complex configurations.

The configurer takes as input a user-written configuration file which describes
the system to be built: the file lists all the physical processors in the system, the
wires connecting them, the tasks to be loaded into the system and their logical
interconnections. The complete configuration file needed for a single transputer
system with one task (i.e. the same configuration that is built into the standard
harness) is shown in figure 4.1. In the rest of this section we will look at its
contents in detail.

! UPPER.CFG
]
processor host 'the host computer
processor root 'the transputer on the
! transputer board
wire jumper - fconnects...
root[0] - 'link 0 of root transputer
host[0] fto the host computer
task upper ins=2 outs=2 the user task

task filter ins=2 outs=2 data=10k
task iserver ins=1 outs=l

place iserver host !iserver runs on host computer
pPlace upper root lfeverything else on transputer
place filter root

connect ? filter[O0] iserver|[0]
connect ? iserver[0] filter[O]
connect ? filter[1] upper|[1]
connect ? upper[1] filter[1]

Figure 4.1 Configuration file with one example task

72 TDS 179 00

4.1 Configuring one user task 17

The example program we have chosen just converts a stream of characters read
from stdin to upper case. The C source file, upper. c is shown in figure 4.2
(the corresponding configuration file is called upper .c£g).

#include <stdio.h>
#include <ctype.h>

main ()
{
int c;
while ((c = getchar()) != EOF)
putchar(_toupper(c));
}

Figure 4.2 C Source file for upper casing program, upper.c

4.1.1 Hardware configuration

The first thing the configuration needs to describe is the hardware configuration.
A single transputer board plugged into the host is very easy to describe.

processor host
processor root
wire jumper host[0] root[O0]

There are two processors: the host computer and the root transputer in the
transputer board. The root transputer is so called because if a larger network is
built around a basic single transputer system, the transputer directly connected
to the host computer becomes the root of the network — all communication with
the file system on the host computer must pass through it.

A wire connects the root transputer’s link 0 to the host computer. The WIRE
statement describes actual physical cables, in this case the jumper you have to
plug into the transputer board which connects link 0 on the transputer to the host
computer. Each wire is given a name, in this case jumper. Objects declared in
the configuration language can have arbitrary names made up of letters, digits
and the special characters ‘_’ and ‘$’, but are usually given mnemonic names.

The processor identifiers (host and root) used in a WIRE statement must
have been declared in a previous PROCESSOR statement. This is a general
rule: all objects in the configuration language (processors, wires, tasks) must be
declared before they are used.

Now compare the short example with the full configuration file in figure 4.1. You

will notice a few differences in layout. Blank lines, spaces and tabs have been
used to improve readability, and comments (from a ‘!’ character to the end of the

72 TDS 179 00

18 4 Programming transputer networks

line) have been added. Some lines have been broken, indicated by a hyphen, ‘-,
as the last non-whitespace character before a line break (or comment). Layout
and comments are ignored by the configurer. Note that, unlike C, the configurer
also ignores the case of letters: ‘a’ and ‘A’ are not distinguished.

4.1.2 Software configuration

As well as describing the hardware of a system, the configuration file must contain
details of all its software tasks and their interconnections.

Declaring tasks

For each concurrently executing task in the system the configuration file must
contain a TASK statement which declares the number of input and output ports
the task has. The iserver has only one input port (for file system requests)
and one output port for responses.

task iserver ins=1 outs=1l

Our example user task is next. It will be a program to convert characters to
upper case, so it is given the name upper.

task upper ins=2 outs=2

As before, the ins and outs attributes specify the number of input and output
ports for the task. The upper task has two of each, numbered from 0 as in C,
and called upper [0] and upper [1]. Whether a port specifier like uppexr [0]
refers to an input or an output port is determined by the context in which it is

used.

The ordinary Parallel C run-time library, with which the upper task will be linked,
makes the assumption that the first two input and output ports of a task will be
reserved for its use. The first pair of ports (numbered 0) have uses which will
not be described here; they should simply be left unconnected. The second pair
of ports (numbered 1) are assumed to be connected to a file server task. Here,
we will connect the upper task to the iserver through a filter task.

The filter task has a slightly more complicated declaration:

task filter ins=2 outs=2 data=10k
The DATA attribute specifies the amount of memory a task needs. The filter
task requires a minimum of 10Kb of workspace (used for stack, heap and static
data). For ready made tasks supplied with the compiler, like £iltex, memory
requirements can be looked up in the data sheets in appendix A.

72 TDS 179 00

4.1 Configuring one user task 19

A user task like upper for which no memory requirement is specified gets all
the free memory remaining once any other tasks placed on that processor are
loaded. Only one task on each processor can have its memory requirements
left unspecified in this way. The configurer would otherwise have to decide how
to split the remaining memory between several tasks with unspecified require-
ments. Because an even split is unlikely to be desirable in practice, this is not
allowed. Section 4.7 gives hints on estimating memory requirements in cases
where multiple user-written tasks must be placed on the same processor.

Making connections between tasks

The CONNECT statement establishes a channel between two tasks. Because
channels (unlike wires) are unidirectional, two CONNECT statements are needed
to create channels going in both directions between the iserver and the filter.

connect ? filter[0] iserver[O0]
connect ? iserver[0] filter([O0]

The CONNECT keyword can be followed by an identifier naming the connection,
but all the configuration statements which declare new identifiers allow a ques-
tion mark to be used in place of the identifier being declared. This is useful when
there is no need to refer to an object after it has been declared. Currently there
is no statement which can refer to the identifier declared by a CONNECT state-
ment, so the question marks avoid the bother of naming essentially anonymous
connections.

The remaining connections in our example system are written down in the same
way:

connect ? filter[l] upper[1]
connect ? upper[l] filter([1]

Assigning tasks to processors

The placement of tasks on processors is specified by the PLACE statement.
In our example, the iserver runs on the host computer and the user task
(upper) runs on the root transputer with the filter task.

place iserver host
place upper root
place filter root

4.1.3 Building the application

To build a multi-task application we must first build task images for each task
(in our example the server and filter tasks have been provided ready built). The

72 TDS 179 00

20 4 Programming transputer networks

configurer is then used to create the multi-task program image; it takes as input
the configuration files and the task images.

Building a task image
The following steps are required to build a task image for the upper task.

t4c upper
ilink taskharn.t4x upper.bin crtl.lib -o upper.c4dx
iboot upper.c4x -c -o upper.b4

Notice when building a task hamess taskharn.t4x is used rather than
mainent .t4x. Notice also that the —c option must be given to the iboot
program to specify that the outpuit file is for input to the configurer.

Be sure to check that the correct harness is used as the linker is unable to detect
this error, and programs created may fail to execute or simply give the wrong
answers.

Configuring the task images
To create the program upper . bt the configurer is used as follows:
config upper.cfg upper.bt
The filenames for the task images are derived by appending .b4 to the task
names in the configuration file. If the task images are not found in the current

directory the search path is used (so £ilter.b4 will be found in the ‘standard’
libraries directory).

Note that tasks running on the host transputer are not searched for. These are
named for the notational convenience of describing connections to the host.

The program file output by the configurer can now be run using the server:

iserver -sb upper.bt

The actual configuration of the network attached to your computer must of course
match the description in the configuration file.

4.2 More than one user task

In the previous section we saw how an application consisting of a single user
task could be built using the configurer instead of the standard harness.

72 TDS 179 00

4.2 More than one user task 21

From this base, we can move on to more complicated systems containing multiple
user tasks running in parallel.

Let’s continue with the small case conversion example by splitting the job per-
formed by upper .c into two tasks: a driver task to handle file /O, and a pro-
cessing task which accepts a stream of words containing ASCII character code
values on one of its input ports and sends the corresponding upper case char-
acter codes to one of its output ports.

This example is a bit contrived, but splitting a job up into an I/O task and a
number of concurrent computation tasks is commonplace.

4.2.1 Inter-task communication functions

Coding the driver task in C is easy. Instead of using the _toupper macro
from <ctype.h> as before, it converts characters to upper case by sending
a message containing the ASCII character code to the ‘computation’ task and
waiting for a reply message containing the result.

C tasks send messages using the channel 1/O functions described in chapter 15.
The chan package provides functions to send and receive messages of any
length. The driver task is shown in figure 4.3; it uses chan_in_word and
chan_out_word to handle word-sized messages. A word is the same size as
an int, 32 bits.

The driver source file, driver. c, is included as an example in the distribution
kit, along with the processing task, upc.c, and a suitable configuration file,
upc.cfg. These files can be found in the examples subdirectory of the
directory containing the compiler.

The statement in driver.c which sends character codes to the processing
task is: .

chan_out_word(¢, out_ports[2]);

The word (int) value to be sent is passed as the first argument in the function
call.

Beware when using the channel I/O functions that sending and receiving tasks
always agree on the size of messages. For example, if a task sends a word value
as a single 4-byte message, the receiving task must read it as one 4-byte unit;
it is not possible for the receiving task to read four separate 1-byte messages.
Trying to do so may cause the transputer to lock up or behave unpredictably.

The second argument to chan_out_word identifies the output port to which

72 TDS 179 00

22 4 Programming transputer networks

/* driver.c file I/O for uppercasing example */

#include <chan.h>
#include <stdio.h>

main(argc, argv, envp, in ports, ins, out_ports, outs)
int argc, ins, outs;
char *argv[], *envp[];
CHAN *in ports[], *out ports[];
{
int c;
for (;;) {
c = getchar();
chan_out_word(¢, out_ports[2]);
if (c == EOF) break;
chan_in word(&c, in_ports[2]);
putchar(c);

Figure 4.3 driver.c with Channel I/O Calls

the message is to be sent. out_ports[2] corresponds to output port 2 of
the driver task. A CONNECT statement in the application’s configuration file
referring to driver[2] will specify which task the port is connected to. In our
case, it will be the processing task to be described later.

out_ports is a vector of pointers to channels, passed into the task via the
argument list of its C main function. This vector is declared as:

CHAN *out_ports[];

CHAN is the channel data type defined in the library header file <chan.h>
which is included by C files which use the channel I/O functions. Each port (i.e.
each element in the vector) has type ‘pointer to channel’.

The number of output ports in the vector is defined by the OUTS attribute of the
TASK statement used to declare the task in the configuration file. Our driver
task has ins=3, so there are three elements in its output port vector, numbered

0to 2.

The value of OUTS is passed into the task as an argument to main along with
the port vector. It is declared (int outs;) in driver.c but not used. It
can be used to write tasks which handle an arbitrary number of ports, like the
multiplexor task described later on in this chapter.

72 TDS 179 00

4.2 More than one user task 23

The main function’s argument list also provides access to the input port vector
in a similar way. In the driver example, the input port vector is given the name
in_ports and will have ins elements.

The driver task will keep reading characters from the standard input stream
(getchar), sending them to the processing task and writing the reply messages
(the translated characters) to the standard output stream until EOF is read.

The next thing to look at is the processing task. It is logically a ‘black box’ with
one input port and one output port:

processing
task

stream of word- ¢ c [°_, same stream in
size messages —>| Up " upper case
(ASCII codes)

A Parallel C implementation of this task is shown in figure 4.4.

/* upc.c standalone processing task; */
/* communicates with driver.c */

#include <chan.h>
#include <ctype.h>

main(argc, argv, envp, in_ports, ins, out_ports, outs)
int argc, ins, outs;

char *argv[], *envp[];

CHAN *in ports[], *out_ports[];

{

int c;
for (;;) {
chan_in word(&c, in_ports[0]);
if (¢ == -1) break; /* terminate task */

chan_out_word(_toupper(c), out_ports[0]);

Figure 4.4 The Processing Task

The processing task uses the same channel 1/0 functions as the driver to send
and receive messages. It terminates when it receives a —1 from the driver. (The
character codes are sent as words rather than bytes because in this implemen-
tation of C, char variables can only hold values in the range 0 to 255; —1 is not
a valid char value).

72 TDS 179 00

24 4 Programming transputer networks

Extending the configuration file for our first, single-task, example (fig. 4.1) to
handle two tasks is easy. We just change references to the old upper task to
driver, and add the following extra configuration statements to describe the
processing task and its connections.

task upc ins=1 outs=1 data=5k
place upc root

connect ? driver[2] upc[0]
connect ? upc[0] driver[2]

This says that the new task upc has one input port, one output port, and re-
quires 5KB of memory (section 4.7 gives hints on estimating task memory re-
quirements). The upc task is placed on the root transputer, and its ports are
connected to the corresponding ports of the driver task.

4.2.2 Building the application

As with the previous example the program is built by first creating task images
for each task in the system, and then using the configurer to create the multi-task

program.

t4c driver
ilink taskharn.t4x driver.bin crtl.lib -o driver.cdx
iboot driver.c4x -c -o driver.b4

The sequence above creates the task image driver driver.b4.

t4c upc
ilink taskharn.t4x upc.bin sacrtl.lib -o upc.cdx

iboot upc.c4x -c -o upc.b4d

The sequence above creates the task image upc .b4. It is important to notice
that the reduced C run-time library sacrtl.libis used ratherthat crtl.1lib.
This is because the process upc does not perform any host input or output. A
full explanation of the use of this library is given in the next section.

config upc.cfg upc.bt

creates the multi-task program upc.bt which can run using the server as fol-
lows:

iserver -sb upc.bt

xyzl1l23

XYZ123

pPar

PQOR

‘EOF’

You should try this out for yourself using the example sources provided.

72 TDS 179 00

4.3 Access to host services 25

4.3 Access to host services

This section explains how programs running on transputers access host services
such as file and terminal handling. It is important that you understand this if you
are building muiti-task programs.

The basic principle of operation is quite simple. Requests are passed to an
output port (through the £ilter process) to the server, the server processes
the request and returns the result to the task on an input port (via the filter
process).

As ports are point to point connections only one task, the iotask, may be con-
nected to the server in this way. An jotask is a task that performs i/o operations
with the host file system, for example, using the standard i/o functions getchar,
printf etc. Only the jotask may use functions such as print £ which require
access to the host machine. All other tasks ‘compute tasks’ can only perform
input and output through ports.

The iotask is linked with the full run-time library crtl.1ib. The library makes
input and output requests on output port 1 and receives replies on input port 1.
The task must not use these ports for direct port input and output.

All compute tasks must be linked with the reduced run-time library sacrtl.1lib,
otherwise the program will fail to operate correctly.

4.4 Multi-transputer systems

If you have followed the examples this far, the generalisation from a multi-task
system running on a single transputer to a full multi-transputer system will be
fairly obvious. All that is required is a change to the configuration file to describe
the extra hardware and place some tasks onto processors other than the root
transputer.

We could run the case conversion example on a two-transputer system with the
driver task on the root transputer and the upc task on the other transputer. The
extra hardware must be declared in the. configuration file:

processor addon
wire ? root[l] addon[0]

This gives a name (addon) to the second processor and declares that it will be
connected by a wire from its link O to link 1 on the root transputer. (Link 0 on
the root transputer is already being used to connect it to the host computer).

If we reconfigured the application at this stage, the addon processor would

72 TDS 179 00

26 4 Programming transputer networks

be unused because the upc and driver tasks are both placed on the root
transputer. We can fix this by modifying the PLACE statement for upc.

place upc addon

Now the configurer will automatically generate all the bootstrap and loader soft-
ware required to make sure that the code of the upc task is loaded into the
second transputer when the complete application is started on the root trans-
puter by the iserver.

config upc.cfg upc.bt

iserver -sb upc.bt
two transputers...
TWO TRANSPUTERS...
‘EOF’

Further generalisation to an arbitrary system should be clear: just declare more
processors and wires in the configuration file, place tasks on the processors and
connect them together.

4.5 Multi-threaded tasks

One thing we have not yet seen how to do is to wait for a message from any
one of a number of concurrently executing tasks. For example, a multiplexor
task which accepted messages on any of an arbitrary number of input ports and
passed them on through a single output port would be a useful building block. It
might be used to allow a number of tasks to share a single hardware link.

0

—
. — 5>

input __2 0__ output
ports — | X > “port

A task connected to the output port of the mux task sees a sequential stream
of messages, even though they are coming from any number of input tasks, in
any order.

4.5.1 Creating threads
To implement the mux task we will need a way of reading from a number of
input ports ‘all at the same time’ so that the first message to appear on any of

them ‘wins’ and satisfies the read request, blocking any other messages which
appear until the next read request.

72 TDS 179 00

4.5 Multi-threaded tasks 27

In Parallel C this can be done by creating a new execution thread for each input
port. Each thread in our example does a simple sequential read and waits for a
message. As soon as a thread receives a message it waits until a semaphore
indicates the output port is free. It needs to wait in case one of the other threads
is currently using it. Using a semaphore prevents disaster if two threads each
try to write to a shared object like the output port at the same time.

Figure 4.5 shows an implementation of the multiplexor task in Parallel C. This
implementation shares one message buffer area between all its threads as well
as sharing the output port. All of a task’s threads share the same static,
extern and heap data. Each thread has its own stack for auto variables,
so each thread in the example has its own msglen variable. The stack space
for a thread is created automatically (from the heap) by the thread create
function. Any number of input threads can have read the length part of their
incoming messages, but the buf_free semaphore ensures that only one is
using buf and out_ports[0] at any time.

If you haven’t used semaphores or a similar method for controlling concurrent
access to shared objects before, you should read a good introduction to the sub-
ject, such as [6,5], or restrict yourself to the stylised usage shown in the example.
It is possible to introduce difficult-to-trace errors into a program if threads forget
to synchronize access to a shared object by waiting for a semaphore.

72 TDS 179 00

28 4 Programming transputer networks

/* mux.c: message multiplexor task */

#include <chan.h> /* required header files */
#include <thread.h>

#include <sema.h>

char buf[1024];

SEMA buf_ free; /* controls access to buf */
CHAN **in p, **out_p; /* global pointers to */

/* port vectors */
main(argc, argv, envp, in ports, ins, out_ports, outs)
int argc, ins, outs;
char *argv[], *envp[];

CHAN *in ports[], *out_ports[]’
{
extern void receive():
int i;]
sema_init(&buf_ free, 1);/*buffer initially free*/

in_p = in_ports; /* make in_ports & out_ports */
out_p = out_ports; /* globally available */

for (i=0; i < ins; i++) /*1 thread per input port*/

thread create(receive, /* function */
50*sizeof (int),

/* workspace size in bytes */

1, /* 1 argument */

i); /* tell thread which port */

}
void receive (i) /* handle a single input port */
int i; /* which input port to service */
{
int msglen; /* each thread has its own msglen */
for (:;) { /* forever... */
chan_in word(&msglen, in p[i]):;
/* await message from input port */
sema_wait (ébuf_free);
/* wait till no one else using buf */
chan_in message(msglen, &buf[0], in p[i])
/* read body of message into the shared */
/* global buffer from our port */
chan _out_word(msglen, out_p[0]);
/* copy message to out_ports[0] */
chan_out_message (msglen, &buf[0], out_p[0]):
sema_signal (¢buf_free);
/* let someone else in again */
}
}

Figure 4.5 Multiplexor Task Using Semaphores

72 TDS 179 00

4.5 Multi-threaded tasks 29

4.5.2 Threads versus tasks

Threads can be useful in many situations. They are just ‘lightweight’ processes,
corresponding to processes in Modula-2 or the co-routines of some other lan-
guages.

Compared with tasks, threads are:

« ‘lightweight’'—they share their code, heap, static and external data mem-
ory with all the other threads created by the same task;

« they can share data and may communicate either by using channels like
tasks, or via shared memory;

« all the threads of a single task run on the same processor, allowing them
to share memory.

Tasks on the other hand are more substantial than threads:
o they only communicate via channels;
e each task has its own code and data areas, separate from all other tasks;
code, including run-time library functions, is not shared between tasks,
even tasks placed on the same processor; this is so that

¢ a task can be moved to a different processor simply by reconfiguration.

Two operations to be performed concurrently can be usefully performed by
threads rather than tasks if all of the following conditions hold.

e They will never need to be run on distinct processors.

e The operations are closely coupled (i.e. they share a lot of common
code). Code is automatically shared between threads, but each task
has its own copy of all of its code, including library functions, so that if
necessary it can later be moved to a different processor without requiring
recompilation or relinking.

o The operations logically operate on shared data structures. This may be

more efficiently performed directly by concurrent threads than by tasks
copying the data back and forth as messages when it is modified.

72 TDS 179 00

30] 4 Programming transputer networks

4.6 Debugging

What can be done when a parallel system locks up or fails to work properly?
A sequential program could be attacked by inserting extra debugging output
statements at strategic points in the code.

In a multi-task system this will in general only be easy to do to an I/O server task
linked with the standard library and directly connected to the iserver. Unless
you design debugging messages into the communication protocol used between
the various tasks in your system you will not be able to get debugging output
from a standalone task to a screen driving task. Even building debug message
formats into the protocols used by the tasks in your system may not be enough
if the fault lies in the failure of some intermediate task to transmit messages

correctly.

However, it is possible to get output directly from a standalone task to an output
device by using a second host computer and transputer board combination as a
debugging tool. The second system can be attached to a suspect node of the
system, in the same way as an oscilloscope can be used to debug an electronic

system.

One way of doing this is to relink the suspect task with the standard run-time
library (rather than the standalone library) and place it on the transputer attached
to the second host computer. Ordinary printf calls can then be inserted in
the code; the results will be output directly by the iserver in the second host
computer and displayed on its screen. The configuration statements required
would be like this:

processor host

processor root

wire ? root[0] host[O0] las before

processor extra_ host type=PC

processor extra processor !plugged into
! extra host

task extra_iserver ins=1 outs=l

wire ? extra_processor[0] extra host[0]

wire ? extra_processor[l] root[1]

place extra_iserver extra_ host
place suspect_task extra_processor

connect ? suspect task[l] extra_iserver|[0]
connect ? extra_iserver [0] suspect_task[1]

The main thing to notice here is the type=PC attribute given to the extra_host
processor. This tells the configurer not to try and bootstrap any tasks into that

72 TDS 179 00

4.7 Estimating memory requirements 31

processor. (The host processor is just a special case for which type=PC is
assumed). To make this configuration work, you must start the iserver on the
extra host computer using the iserver command with just the the SS option
before starting the system under test. If just the SS option is present on the
command line, the iserver does not attempt to bootstrap the network it is
attached to; it will simply accept file I/O request messages over its links.

It is also possible to use this debugging technique if you don’t have another host
and transputer board combination but do have another host computer with an
INMOS link adapter card. Relink the suspect task with the full run-time library
rather than the standalone library, then reconfigure the system with input and
output ports 1 of the task being debugged connected to the host computer with
the link adapter, as follows:

processor second host type=pc
task second iserver ins=1 outs=2
place second iserver second host

processor any processor
fof network being debugged

wire ? any processor[3] second host[0]

task suspect_task ins=2 outs=2

fconnect [1]’s to iserver
place suspect_task any_ processor
connect ? suspect_task[1l] second iserver[0]
connect ? second iserver[0] suspect_task[1]

This technique has two advantages: it only requires an extra host computer and
link adapter card, rather than an extra host computer and transputer board, and
there is no need to change the placement of the suspect task.

A third technique uses the three spare links on a transputer board plugged into
the extra host computer to accept debugging messages from up to four separate
tasks anywhere in the network being debugged and multiplex them onto the host
computer’s screen.

4.7 Estimating memory requirements

The data requirement for a task is the sum of the number of bytes required for
stack (auto), static, extern and heap storage in all its modules.

The decode utility (see chapter 7) can be used to determine a module’s static

data requirement (including extern data). decode displays the number of
words (not bytes) of static data required by a module near the top of the output

72 TDS 179 00

32 4 Programming transputer networks

listing it produces, after the keyword STATIC. The whole task also has one word
of static space permanently allocated to each module.

Stack and heap requirements are more difficult to estimate; you must decide how
much space to leave for all the functions which may be active at once, based on
the sizes of individual data items. Each level of function calling uses about five
words of stack space in addition to the space required for function data.

Heap storage is currently allocated by the run-time library in blocks of 4KB, so
if your task uses the heap be sure to allocate at least that much space for it.

In addition to the amount of space you estimate your task actually needs it is
a good idea to leave at least 1 or 2KB of extra overflow space, unless you are
absolutely sure the task will never require more space than you have calculated.

Bear in mind that if a task exceeds its stated memory requirements the whole
system will probably crash, so err on the side of caution. A good rule of thumb
would be to allocate at least 1KB to simple tasks which don’t use the heap, and
8—10KB for tasks which do use the heap. Note that the C standard I/O functions
implicitly use the heap to allocate buffer space.

If the stack space required by a task is small enough it can be allocated from the
transputer’s on-chip RAM. The space available there is 2KB on a T414, 4KB on a
T800. Placing a computationally intensive task’s stack in fast on-chip RAM can
produce dramatic speed improvements. The configuration language contains
various attributes for the TASK statement which allow control over memory layout.
These more advanced topics are covered in chapter 17.

72 TDS 179 00

5 Processor farms

The previous chapter showed how to create a parallel application for a multi-
transputer system with a fixed hardware configuration. In this chapter we look at
how to build one of the ‘processor farm’ applications mentioned in the Introduction
to Parallel C in chapter 3 which will automatically flood-fill an arbitrary network
of transputers with copies of a ‘worker task.

Three things must be written to create a processor farm application:
1 A master task to split up the job into independent work packets.
2 A worker task, which is automatically copied to each node of the network.

3 A configuration file, describing the memory requirements and other at-
tributes of the tasks.

In this chapter we will use a program which multiplies two matrices together as
an example processor farm application.

The full source code of the matrix multiplication master and worker tasks, and
of the configuration file required, is supplied in machine-readable form in the
examples subdirectory in the release directory, along with a command file
(matxrix) which compiles, links and configures the example files into an exe-
cutable application. Section 5.4.4 at the end of this chapter explains how to run
the demonstration if you want to try it out before reading further.

The matrix multiplication program is suitable for running on a processor farm
because each element of the final matrix can be computed independently of all
the others.

The master task has to split the job up into lots of small units which can be
handled independently by the ‘farm workers’. In the matrix multiplication case
this is easy: the master divides up the calculation of the output matrix and sends
the rows and columns of the.input matrices to be multiplied out into the network
as work packets. Any idle worker receiving a data packet calculates the required
result and sends it back as a result packet.

5.1 The worker task

If you look at the code of the matrix multiplication worker task you will see that
it is purely sequential. It consists of a single loop:

72 TDS 179 00

34 5 Processor farms

1 Get the work packets by calling net_receive. These work packets
identify the element in the output matrix to be calculated and the row and
column data of the input matrices to be used for this calculation.

2 Work out the value of the element in the output matrix using the row and
column data of the input matrices.

3 Send the result packet back to the master task by calling net_send.
4 Go back to step 1.
The net_send and net_receive functions are described below in section 5.3.

The worker task does not care which processor it is executed on and must not
communicate explicitly with other tasks. All communication between workers and
master is handled ‘behind the scenes’ by net_send and net_receive.

The only other restriction on the worker task is that because it must be repli-
cated throughout the network and therefore cannot be directly connected to the
iserver it must be linked with the reduced run-time library (see section 4.3).

5.2 The master task
The master task of a processor farm application has three basic functions.

1 Split up the job into work packets. It sends the work packets out into the
farm of worker tasks by calling net_send. The master simply does this
as fast as it can: whenever the network of worker tasks becomes satu-
rated, net_send is automatically blocked until a worker task becomes
idle.

2 Receive result packets from the network by calling net_receive. If
no result packets are available, net_receive will wait for one to arrive
before returning.

3 Perform any I/O required for writing out the results received from the
worker tasks.

To prevent incoming result packets being blocked by the net_send function
waiting for a worker to become free, or conversely the sending of work packets
being blocked by net_receive waiting for a reply, these functions must be
performed in parallel.

In the example implementation of the matrix multiplication program these func-
tions are performed by two parallel execution threads: send and main, which

72 TDS 179 00

5.3 The net functions 35

are synchronised using semaphores.

5.3 The net functions

The net_send and net_receive functions used by the master and worker
tasks must be declared by including the appropriate header file:

#include <net.h>

The net functions provide a procedural interface to the underlying message-
based software which routes work packets from the master to free worker tasks
and carries result packets back again.

net_send has three arguments:

int net_send (nbytes, packet, complete)
char *packet;
int nbytes, complete;

If net_send is called by the master task, the message packet is sent to
any free worker task; if the function is called by a worker task, the packet
is sent back to the master task.

nbytes is the number of bytes of data in the buffer pointed to by
packet.

If nbytes is less than zero or greater than NET_MAX_PACKET_LENGTH
(defined in version 2.0 of Parallel C by <net .h> to be 1024 bytes) no
message is sent and the function returns a negative value.

Otherwise the function returns the number of bytes sent, which will be
nbytes if no error occurs.

If a message longer than NET_MAX_PACKET_LENGTH has to be sent, it
must be broken up into a number of packets, each smaller than this limit.

If complete is 0, the argument packet is regarded as part of a larger
message; a circuit to the destination task is held open until the last packet
of the message has been sent. The final (or only) packet of a message
is marked by setting complete equal to 1.

The routing software guarantees that multiple packets sent in this way
are always received by the destination task in the same order they were
sent.

In normal use, packets will be smaller than 1024 bytes and complete

72 TDS 179 00

36 5 Processor farms

will always be given the value 1. Sending very long packets can clog up
the network, blocking packets being delivered to other nodes.

net_receive has two arguments:

int net_receive (packet, complete)
char *packet;
int *complete;

The next (or only) packet of the message being received is read into the
buffer pointed to by packet.

If net_receive is called by the master task it reads the next available
result packet returned by a worker task; if it is called from a worker task,
it reads the next work packet sent out by the master.

The size of the packet (in bytes) is returned as the result of the function.

If the packet is the final or only packet of the message, the location
pointed to by complete will be set to 1; otherwise it is set to 0 and the
receiving task must repeatedly call net_receive to read the remaining
part of the message.

No more than NET_MAX_PACKET_LENGTH bytes will be read into the
packet buffer. Less space may be allocated if it is certain that the
sending task will not send messages longer than some smaller limit (for
example, if only fixed-length messages are being used).

5.4 Building the application
5.4.1 Building master and worker task images

The following sequences of commands are used to build the master and worker
file images:

t4c matrixm
ilink taskharn.t4x matrixm.bin crtl.lib -o matrixm.c4dx
iboot matrixm.cd4x -c -o matrixm.b4

t4c matrixw
ilink taskharn.t4x matrixw.bin sacrtl.lib -o matrixw.c4x
iboot matrixw.cd4x -c -o matrixw.b4

Note that the worker task is linked with the reduced run-time library sacrtl.lib
(see section 4.3).

72 TDS 179 00

5.4 Building the application 37

5.4.2 Configuration file

Like the fixed-network configurer, £config requires a configuration file as input.
This must specify at least:

o the filename of the master task;
o the filename of the worker task;
o the memory requirements of the worker task.

The configuration language accepted by fconfig is a subset of that accepted
by config.

The minimum configuration file for the matrix multiplication example would be:

task master
task worker data=10k

fconfig would search for the master task in master .b4, and for the worker
task in worker.b4. These file names can be over-ridden using the FILE at-
tribute of the TASK statement, as shown below, but the task identifiers master
and worker are special: you must use these names to identify the master and
worker tasks to the flood-configurer.

If the alternative configuration file below was used, the configurer would expect
to find the tasks in files called matrixm.b4 and matrixw.b4.

task master file=matrixm
task worker file=matrixw data=10k

The DATA size specification is required for at least one of the tasks. Other
attributes governing placement of stack memory in on-chip RAM and so on are
covered in the reference part of this manual (see chapter 17).
INS and OUTS must not be specified for the master and worker tasks. All ports
and connections are handled automatically by the configurer.

5.4.3 Configuration

The flood-fill configurer is invoked to create the matrix multiplication program as
follows:

fconfig fmatrix.cfg fmatrix.bt

The executable file generated by the flood-configurer will place the master task

72 TDS 179 00

38 5 Processor farms

and one copy of the worker task on the root transputer, and distribute copies
of the worker task to any other transputers connected to the root. A filter task
allowing the master task to communicate with the iserver is automatically
added by fconfig, along with the loader and router tasks required to copy the
workers across the network and carry messages between them and the master
task.

This additional software occupies about 20KB of RAM in version 2.0 of Parallel C,
so each node in our example network must have at least 32KB of RAM to support
the 10KB worker task declared in the configuration file along with a router and
loader. The root node must be larger again in order to support the master task
as well.

5.4.4 Running the example
A command file, matrix, is supplied, along with the matrix multiplication ex-
ample program source files, which will automatically compile, link and configure

the application. These files can be found in the examples subdirectory in the
release directory.

The resulting executable file (called fmatrix.bt) can be loaded and run on
any network containing only T414 transputers. To use T800 transputers you
would have to recompile the tasks to generate T800 code. Section 5.5 below
describes how to flood-configure applications to run on a network containing a
mixture of T414 and T800 processors.
The executable file can be loaded and run in the normal way:

iserver -sb fmatrix.bt m; m, ... m, output
where: my m, ... mjy are the input matrices

output is the output matrix filename.
Example matrices are supplied along with the source for the program. The format

of the output file is identical to that of the input file. As an example, try the
following, using the supplied example matrix files mat1l.m33 and mat2.m32:

iserver -sb fmatrix.bt matl.m33 mat2.m32 mat.m32

Once you have the program working, you can make it run faster simply by plug-
ging more T414 (or T800) transputers into the network.

72 TDS 179 00

5.5 Mixed networks 39

5.5 Mixed networks

A flood-filled application compiled for the T414 and configured using the simple
master and worker forms of task declaration may work on a mixed network
of T414 and T800 processors if it uses only integer operations. This approach
will not in general work for an application which uses floating-point operations,
because of the incompatibilities between the T414 and T800 instruction sets.

Mixed networks of T414 and T800 processors are properly handled by an ex-
tension to the configuration file, like this:

task t4master file=matrixm4

task t8master file=matrixm8

task t4worker file=matrixw4 data=10k

task t8worker file=matrixw8 data=10k opt=stack

Separate tasks must be compiled and linked for T414 and T800 processors; the
Parallel C software ensures that the right task images are loaded into the right
processors.

Again the names t4master, t8master, t4worker and t 8worker are spe-
cial, but the file names derived from them can be over-ridden by the FILE at-
tribute, as above.

Note that it is possible to specify different memory optimisation options (e.g.
opt=stack above) for the T414 and T800 variants of a task. This is useful
because the T414 and T800 have different amounts of on-chip RAM.

If a t4master task is declared, a corresponding t 8master task must also be
declared, and similarly for the worker task.

72 TDS 179 00

40 5 Processor farms

72 TDS 179 00

The reference manual

72 TDS 179 00

42 The reference manual

72 TDS 179 00

6 config general
purpose configurer

The general purpose configurer is used to build multi-task multi-transputer pro-
grams. A task image must be created for each task by using the iboot tool.
A configuration file must be created to describe the network, the tasks and in-
terconnecting processors, and how the tasks are distributed over the processor
network.

The configurer takes as input the configuration file and the task images and
creates a program which can be automatically loaded to the processor using the

server.

6.1 Running the configurer
The configurer has a simple command line:

config configuration-file output-file

All options are defined in the configuration file. These are discussed in the
chapter describing the configuration language (chapter 17).

The configuration file also defines the task image files required by the configurer.
If these are not found in the current directory the configurer will use the search
path.

6.2 The distributing loader

This chapter provides a summary of the way in which a single-transputer system
is bootstrapped, and a description of the way in which this method is extended
to handle multi-transputer systems. The distributing loader program is described
and the protocol which it uses is covered in detail.

6.2.1 Bootstrapping a transputer

The transputer processors [10,11] have been designed to function with the mini-
mum of external components. One of the consequences of this design decision
has been that the transputer processor contains firmware to make bootstrapping
transputer systems possible without supplying each transputer with a bootstrap
ROM. A transputer may be configured (using a pin called BootFromRom) to
bootstrap itself either from an external ROM memory device or from its INMOS

72 TDS 179 00

44 6 config general purpose configurer

links.

Most transputer development hardware uses the boot from link option. Others,
such as the INMOS IMS B002 — which contains diagnostic routines and a loader
in EPROM — provide a simple switch to disable the bootstrap ROM.

When a hardware reset is performed on a transputer configured to boot from its
links, it enters a special state in which messages received on its links can be
used to peek and poke (i.e. read and write) its memory. This state and the link
messages used are described in the transputer processor data sheets [10,11]
and in the ‘Transputer instruction set: a compiler writer’s guide’ [12]. The state in
which peek and poke functions are available is left when a bootstrap message is
received along any link; this message contains the initial program to be executed
by the transputer (the primary bootstrap). The size of the primary bootstrap is
limited by the fact that the bootstrap message contains the size of the primary
bootstrap program encoded in a byte value (i.e. the primary bootstrap cannot
exceed 255 bytes).

The primary bootstrap is provided with information about the transputer state by
the link bootstrap firmware which loaded it. In particular, the primary bootstrap
is provided with a pointer to the link from which it was loaded, so that it can use
that link to load further information.

It would be possible in principle for the primary bootstrap to load the program to
be executed directly from the link at this point, but it has become conventional to
interpose a program known as the secondary bootstrap. This is invoked by the
primary bootstrap and allows the actual user program image to be reasonably
configuration-independent; for example, the secondary bootstrap deduces the
amount of physical memory available. The bootstrapping scheme used by the
3L language compilers uses this two-stage system.

The standard iboot program as provided with the INMOS sequential language
compilers produces an output program image file (conventionally given the ex-
tension .b4x or .b8x depending on whether it is for a T414 or T800) which
can be used to load a single transputer. The bootstrap process performed by
the iserver program is simply to reset the transputer and then to write the
.b4x (or .b8x) file to the link one byte at a time. The structure of this file is
shown in figure 6.1.

The .b4x (or .b8x) file for a single-transputer system consists of:

e The primary bootstrap (‘PRI in the figure). As described above, this is
a short sequence of code preceeded by a byte containing the length of
the bootstrap; the code is loaded into the transputer's memory by the
transputer’s firmware. The main function of the primary bootstrap is to
load the secondary bootstrap into the transputer’s memory, but it also

72 TDS 179 00

6.2 The distributing loader 45

Program Image
for transputer

17T
omw

Figure 6.1 .b4x (or .b8x) File for Single-transputer System

has the task of initialising the transputer’s link channel words and other
critical processor registers such as the process scheduling queues and
timers.

e The secondary bootstrap (‘SEC’ in the figure). This code sequence is
preceded by a 32-bit word containing the length of the code of the sec-
ondary bootstrap. The primary bootstrap loads the secondary bootstrap
by reading (from the link down which the primary bootstrap was loaded)
first the length word and then the code block. The secondary bootstrap
has the task of determining how much external memory is available on
the transputer and then loading the code of the program to be executed.

e The code of the program to be executed in the transputer. This is.pre-
ceeded by a number of parameter words which are used by the secondary

. bootstrap:

— Target processor type

- File format version number

— Harness workspace requirement

— Harness additional workspace requirement
— Parallel language stack size

- Program entry point offset

— Program code size

After loading the program, the secondary bootstrap executes it, providing to the
program such parameters as the size and location of the area of memory which it
should use as a workspace, the links to communicate on, and so on. At the same
time, having sent the last byte of the .b4x (or .b8x) file to the transputer’s link,
the iserver program begins to wait for the first filer request from the newly

. loaded program.

72 TDS 179 00

46 6 config general purpose configurer

6.2.2 Bootstrapping a network

It would be possible to bootstrap a network of transputers very easily if the host
were to posess one link for each transputer in the network; each transputer could
then be bootstrapped independently of the others using the method described
in section 6.2.1.

This approach is not used in practice because of the large number of links which
the host would have to have into the network. Instead, networks are loaded
by taking advantage of the observation that any useful network of transputers
will be connected, i.e. that there is some path through the network available
between any two processors in the network. If this were not so, some processors
in the network would be isolated from the rest of the network and unable to
communicate with it.

Because the network to be loaded is connected, it suffices to have only one trans-
puter in the network physically connected to the host. This is referred to as the
root transputer of the network. After the root transputer has been bootstrapped
with a suitable loader program, it can be used to bootstrap its neighbours in the
network, this process proceeding until every processor in the network has been
loaded.

To allow the whole network to be bootstrapped through the root transputer, a
more complex executable file must be produced. The standard INMOS tool
for making programs executable, iboot, is not at present suited to this task
and the executable file must be produced by the configurer program described
elsewhere in this document. The .bt file produced by the 3L configurer is very
similar to that created for the single-transputer scheme described above. It is
shown in figure 6.2.

Note that the iserver program has no way of differentiating between the multi-
transputer kind of . bt file and the simpler kind destined for a single transputer.
The root transputer’s link is still driven by the iserver sending each byte of
the .bt file in sequence, and when the iserver has finished sending the .bt
file it still enters a loop to service file server messages.

FF; g Copy of Loader Commands to Loader
c for Root transputer in Root transputer

Figure 6.2 .bt File for Multi-transputer System

72 TDS 179 00

6.2 The distributing loader 47

The multi-transputer . bt file starts with the same sequence of sections as in the
single-transputer case: primary bootstrap, secondary bootstrap, program image.
For the multi-transputer case, however, the program image is not a user program
but a loader program. In addition, the loader program image is followed in the
.bt file by a stream of data which will follow the loader program into the root
transputer and will be used by the loader as a sequence of commands.

6.2.3 Loader command stream

The command stream for the loader is divided into a series of command packets,
each of which takes the form shown in figure 6.3.

T T
H D A | I
o] M L R ! (Optional) I
P D E G I Data Block |
) N | |
L - - _ _I

Figure 6.3 Structure of a Loader Command Packet

Each command packet starts with a fixed-length message containing four 32-bit
words:

e HOPS contains the distance from the root transputer to the transputer for
which this command packet is destined. For example, packets destined
for the root transputer would have HOPS = 0, while packets destined for
transputers directly connected to the root would have HOPS = 1.

If a transputer passes a packet on to one of its neighbours, it first decre-
ments the HOPS field. Thus, in a packet in transit within the network,
HOPS always contains the number of transputers a packet has still to
pass through before it reaches its destination.

e CMD is the command to be executed.
e DLEN is the length of the optional data block.

e ARG is a single integer parameter to the command, used by commands
which require only a simple parameter of this type.

If DLEN is zero, the packet header just described constitutes the whole of the
packet. If DLEN is not zero, a data block of length DLEN bytes' follows. This

'To avoid ever transmitting a message of length 1 byte along a hard link, an actual data length
of 2 bytes is used should DLEN=1. This is intended to avoid a bug in the link hardware of the
Rev A T414 processor.

72 TDS 179 00

48 6 config general purpose configurer

data block is an additional argument to the command; most information being
distributed is carried in the data block.

The data block is limited to 1024 bytes in order to limit the size of buffer which
each loader program in the network needs to reserve.

The available command values are as follows:

OPEN Each loader holds a bit-mask of the physical links available to it, with the
least-significant bit of the mask representing link 0. Initially this bit-mask
is zero, but it is overwritten by the ARG field of an OPEN command. The
bit-mask is used under the following two circumstances:

e When a command arrives with HOPS +# 0, the command is sent
in turn to all links whose bit is set in the bit-mask. As described
earlier, the HOPS field of a packet passed on in this fashion is
decremented before transmission.

e By the BOOT command, described below.
There is no data block associated with this command.

BOOT This command is used to bootstrap neighbouring processors. The data
block accompanying the command is sent in turn to each link whose bit
is set in the link bit-mask set by the last OPEN command. The ARG field
is not used with this command.

TASK Creates a new task on this processor. The ARG field contains a bit-mask
of flags of properties of the task, as follows:

¢ PRIO (value 00014g) contains the priority at which the task’s initial
thread will be started.

e STACK DIR (value 0002¢) determines the way in which the
task’s stack area will be allocated. If this bit is 0, the stack area
is allocated from the more positively addressed end of the trans-
puter's unallocated memory, that is at the end farthest from the
on-chip RAM. If this bit is 1, the stack area will be allocated from
the on-chip RAM end of the transputer’s unallocated memory.

¢ CODE_DIR (value 00044¢) determines the way in which the task’s
code area is allocated along the same scheme as described
above for STACK_DIR.

e STATIC_DIR (value 0008+¢) controls the allocation of the task’s
static/heap area as described for CODE_DIR and STACK_DIR.

72 TDS 179 00

6.2 The distributing loader 49

o SEPARATE (value 0010,¢) controls whether the task has separate
stack and static’heap areas. If SEPARATE = 1, separate areas
are provided. If SEPARATE = 0, the two areas are combined.

The data block accompanying the TASK command contains additional
information about the task, shown in figure 6.4.

mooo
om
O——>-H0
xXO>—H®
z—
-CO
nwsST

Figure 6.4 TASK Command’s Data Block

Each entry in the TASK command’s data block is a 32-bit integer, with
the following interpretations:

CODE Size of the code area, in bytes.

EP Offset from the start of the code area to the first instruction in the
task.

STATIC Size of the combined static and heap area for the task.
STACK Size of the stack for the task.

IN Number of ports in the task’s input vector.

OUT Number of ports in the task’s output vector.

HWS Size of the workspace required to start the task, i.e. the size of the
workspace used by the task’s harness.

The various memory areas to be associated with the task are allocated;
an internal pointer is set to the start of the task’s code area for use by
subsequent LOAD commands as described below. If a memory allocation
of —1 is specified for STATIC or STACK, the allocation is deferred until
the task is started, at which point all available memory is allocated to
the appropriate area. Only one such allocation should occur on any
processor.

The order of allocation of the various memory areas for the task is per-
formed in a fixed order: stack, code and then static. This order has been
chosen so that, in conjunction with the allocation direction bits of the task
flags, the most important areas of selected tasks can be placed into the

72 TDS 179 00

50

6 config general purpose configurer

transputer’s on-chip RAM.

If the stack and static areas are to be combined (as specified by the
SEPARATE flag described above being set to 0) then the allocation for
the combined area is placed in STACK. Memory allocated by STATIC is
lost, and the contents of STATIC would therefore normally be 0 under
these circumstances.

LOAD The data block accompanying this command contains data to be loaded

at the current load point, as initialised by the most recent TASK command.
Afterwards, the current load point is stepped over the data just loaded.

CHANS The ARG field of this command is the number of ‘extra’ channels re-

quired for this processor. Such channels are those connected to one
or more tasks which are not accounted for by channels associated with
physical links. For example, one such channel is required for every con-
nection leading from one task to another task placed on the same pro-
cessor. No data block is associated with this command.

The loader program allocates a vector of channel words of the requested
size, and initialises each element of the array to NotProcess_P (the
value of MOSTNEG INT, 80000000+¢ for 32 bit transputers), thus indi-
cating that no process is currently communicating on the channel.

B_IN ARG must be the number of input ports of the task created by the most

recent TASK command, and the accompanying data block contains two
32-bit words for each port. The first of the two words for a particular port
contains a value to be used for the port; the second is a description of
the kind of value this is. The second word must either have the value 0
(indicating that the value is to be left unchanged) or 1 {indicating that the
value should be replaced with a pointer to the ‘extra’ channel of which it
is the index).

B_OUT As for B_IN, but the output ports are bound rather than the input ports.

GO This command is the last one which any loader program receives. It causes

the loader to start each task which has been created on the transputer,
and to stop itself.

6.2.4 Memory allocation

The distributing loader is responsible for the allocation of physical memory to

the various tasks loaded onto a processor. This memory is used for the stack,

heap, and code areas of a task, for the ‘extra’ channels allocated by the loader
and for various data structures used by the loader itself.

72 TDS 179 00

6.2 The distributing loader 51

As an example, take a T414 transputer with 2MB of external memory. The
memory map of this configuration is shown in figure 6.5a. The fast ‘on-chip’
RAM which is built into the transputer processor appears from the lowest mem-
ory address and extends for 2048 bytes, occupying addresses 800000001¢ to
800007FF,¢. The slower external memory takes over from the on-chip RAM at
address 8000080046 and continues to the highest valid memory address in the
configuration, which in this case is 801FFFFFs.

8020000046
LOADER
External
(slow) RAM ot DT
e { 80000800 oPT
On-chi f
(fast) RAM
800000004¢
(a) (b)

Figure 6.5 Memory Allocation in a 2MB, T414 System

For a T800 transputer processor, the memory map shown would be unchanged
except for the upper limit of on-chip RAM, which would be at address 80000FFF .

The amount of external memory actually available to a particular transputer pro-
cessor is established by the secondary bootstrap. The scheme used by the
distributing loader’s secondary bootstrap establishes the amount of available ex-
ternal memory in multiples of 64KB. Thus, the smallest amount of memory which
is acceptable with this scheme is 64KB, although any multiple of this amount may
be available.

After establishing the amount of external memory available, the secondary boot-
strap reads the loader into the highest addressed part of the available memory?.
The secondary bootstrap next allocates a small workspace for the loader to work
in and finally transfers control to the loader.

2The loader is loaded so that the last byte of its code is a few words away from the end of ex-
ternal memory. This prevents the transputer’s instruction pre-fetch mechanism from accidentally
causing a reference to non-existant memory.

72 TDS 179 00

52 6 config general purpose configurer

On entry (see figure 6.5b), the loader has the following information, which has
been passed to it by the secondary bootstrap:

o The address of the lowest addressed memory byte which is available for
use. This is the INMOS MemStart location, which is 80000048;¢ for
the T414 and 8000007046 for the T800. Memory between this address
and the start of the memory map at 800000004¢ must not be used for
any purpose, as these locations are reserved for use by the processor
itself.

e The address of the lowest addressed memory byte which is in use by the
loader. Memory at addresses lower than this but higher than MemStart
are available for use.

« Pointers to the channel words of the link connecting this processor to the
processor from which it has been bootstrapped.

Throughout its operation, the loader maintains the two memory pointers received
from the secondary bootstrap. Memory is allocated from the area between the
two pointers, with one or other pointer being moved after each allocation. Thus,
low-addressed memory may be allocated by moving the pointer which was ini-
tialised to MemStart, while high-addressed memory may be allocated by mov-
ing the pointer which originally pointed to the start of the loader itself. These
two allocation methods can be seen as the two vectors in figure 6.5b; they cor-
respond to the presence or absence of the configuration language OPT=area
attribute within a TASK statement.

For example, take the following configuration language statement:

task user_task...opt=code

For this task, the low-address pointer would be used to allocate memory for the
task’s code area, while all other memory areas required by the task would be
allocated from the high-addressed end of the free memory area.

The configuration language includes a facility for allocation of the remaining free
memory on a processor to a particular task, as follows:

task user_task...data=?
This is implemented through the special case mentioned on page 49, whereby
a memory area size of —1 is not immediately allocated, but is deferred until the

tasks are finally started on receipt of a GO command. At this point, the unused
memory on the processor is simply the area between the two allocation pointers.

72 TDS 179 00

6.2 The distributing loader 53

As well as allocating memory for user tasks, the loader also creates small dy-

namic data structures for its own purposes. These data structures, which in-

clude the vector of ‘extra’ channels allocated by the loader CHANS command,

are always allocated from the high-addressed end of free memory, to avoid their
‘ occupying valuable on-chip memory space.

72 TDS 179 00

54 6 config general purpose configurer

72 TDS 179 00

7 decode utility

A separate decoder utility is supplied with Parallel C which takes as its input
the binary output file of the compiler, and produces a listing including both the
source code and the disassembled machine code for each source line.

An example of decode’s output may be found in figure 7.1.

71 Usage

The decoder is started by a command of this format:

decode filename

Here, filename is the name of a binary output file from the compiler. If no
extension is typed, .bin is assumed.

The decoder then attempts to find the source file, using the source file name
given at compilation time, which is stored in the binary file. It applies this name
in the context of the current directory when the decoder is run. The decoder
should therefore be invoked with the current directory set to be the directory
which was current when the file being decoded was compiled.

If decode cannot find the source file, it outputs a warning message and pro-
duces a disassembly listing without source lines.

The decoder’s output is normally sent to the display.

7.2 Features of the decode program

Machine-code instructions are decoded into mnemonics. A complete list of all
mnemonics produced can be found in appendix C. The decoder automatically
merges pfix’s and nfix’s with the following opcode. There is full support for
all T414 and T800 instructions, including the T800’s ‘£pu’ operations. Unrecog-
nised indirect instructions are decoded as ‘opr n’, and unrecognised £fpentry
instructions as ‘1dc n; fpentry'

The destinations of j and c3j instructions are shown as addresses in hexadec-
imal, rather than relative displacements. Calls to external symbols are shown

symbolically if possible. The operand fields of all other direct instructions are
shown in decimal.

The initialisation values of static data are shown in hexadecimal and ASCII.

72 TDS 179 00

56 7 decode utility

The source code contents of #include files are not shown, but binary code
generated from them is decoded and appears at the right point in the main
source file.

7.3 Other languages

The decoder can handle object files which are produced by the INMOS Parallel C,
Parallel Fortran and Pascal compilers. If source files are available, the C, Fortran
or Pascal source program will be correctly included in the listing.

The INMOS stand-alone occam 2 compiler also generates binary files in this
format, and should therefore be decoded correctly, although this cannot be guar-
anteed. The source programs are not shown, as the occam compiler does not
generate the necessary line-number information.

The decoder cannot handle executable (.b4x, .b8x and .bt) files.

72 TDS 179 00

7.3 Other languages 57

Transputer DECODE (V1.2) of decodex.bin
ID T4 "occam 2 V2.1" "CC_transputer V2.0"
sC 0

TOTALCODE 140 0

STATIC 2
20 0008B

|
00000000 00040 |
5845444F 43454409 00000001 00078 |
432E 00084 |
00000000 00044 1
REF #0, "_iob"
PATCH LONG 00000044 0 00000001 DATAFIX
00000001 00000001 FFFFFFFE 00048
00000000 00054 | |
1 #include <stdio.h>
2 main()

6E 69616D04 00086

CODESYMB

3 {
4
5

00000000
00000002
0000003C
FFFFFFD4
PATCH LONG
PATCH LONG
PATCH LONG
PATCH LONG

0000003E

7}
8

"main"

int a, b;
a = 100;

b = a/25;

00000000
00000000
00000044
0000000E
00000004
00000008
0000000C
00000010

00000008

00000030

BE 60

01CBO1CB
00000000
00000028
00000054
MODNUM
STATICFIX
INIT
LIMIT
FFFFFFFF
00000030
FFFFFFFF

00030

00032
00034

00035
00036
00038
0003A
0003B
0003C
00058
00000
00o00C
00018
00024

0005C
00060
0006C

ajw

1dc
stl

id1
1dc
div
stl
ajw
ret

Figure 7.1 Example of output from decode

72 TDS 179 00

58 7 decode utility

72 TDS 179 00

8 fconfig flood-fill
configurer

There are two types of user task in a flood-fill configured application. One task,
referred to as the master, divides up the computation to be performed into small
work packets. The other task, which is known as the worker, is replicated all
over the network; it accepts work packets originating from the master, performs
some computation and sends a reply packet or packets back.

Task images for the master and worker tasks must be created with the iboot
tool. A configuration file must be created to define the master and worker tasks,
and the types of processor allowed in the network.

The flood-fill configurer takes as input the task image files and the configuration

file and creates as output a program which will run on an arbitrary transputer
network (subject to transputer type constraints defined in the configuration file).

8.1 Running the flood-fill configurer
The configurer has a simple command line:

fconfig configuration-file output-file

All options are defined in the configuration file. These are discussed in the
chapter describing the configuration language (chapter 17).

The configuration file also defines the task image files required by the configurer.

If these are not found in the current directory the configurer will use the search
path.

8.2 User task protocol

This section describes the protocol used by the user tasks in a flood-filled ap-
plication. Note that a different protecol may well be used by the router tasks,
for example to avoid problems with T414A restrictions on minimum length of
messages sent across links.

8.21 Master task’s ports

The master task has two input ports and two output ports. The input and output
ports master[1] are connected in the usual way to a file server task such as

72 TDS 179 00

60 8 fconfig flood-fill configurer

iserver (via the protocol filter task £ilter).

The input and output ports master [0] are connected to the router task. The
router task is provided by the flood-fill configurer, and has the function of trans-
porting work packets from the master through the network to idle workers to be

processed.

8.2.2 Worker task’s ports

Each worker task has one input port and one output port.
These ports worker [0] are connected to the part of the routing system which
exists on each processing node of the network.

8.3 Packet format

Work and response packets have identical format, consisting of a fixed-length
portion and an optional variable-length portion. The two portions of the packet
are send as separate messages. Each packet starts with a message containing
a 4-byte integer header, as shown in Figure 8.1.

Must be Zero Data Length

<02

31 (msb) 18171615 (Isb) 0

Figure 8.1 Format of Packet Header
The various fields of this 32-bit message are used as follows:

o The least-significant sixteen bits of the message are used to indicate the
length of the data block following the header. If the length is zero, no
data block follows; otherwise this many bytes of additional data follow as
a separate message of that length.

o Bit number 16 (value 000100004¢) is always 1.
o Bit number 17 (value 00020000+¢) is set to 1 to signify that the sending

task is ready. A worker task can set RDY = 0 to indicate that further
response packets will be issued before the next work packet will be ac-

cepted.

o Bits number 18-31 are always 0.

72 TDS 179 00

9 iboot bootstrap

The iboot tool takes as its input a linked C program and produces an exe-
cutable file that can be loaded down onto transputer and run. The input file will
always be the output of the linker.

The iboot tool can be considered as a simple configuration program which
converts a (non-executable) object file and into a executable code file that will

run on a single transputer.

The iboot tool also enables a linked task to be coverted so that it can be used
as input to the 3L general purpose and flood-filling configurers.

9.1 Running the iboot tool
To run the iboot tool type:
iboot filename {option}
where: filename is the name of the input file. No default extension is assumed.

option is a list, in any order, of zero or more of the options listed in
Table 9.1.

Spaces between the options and the case of letters in parameters are not sig-
nificant. Options may be specified in any order following the filename.

9.2 What can be made executable
The iboot tool assumes that the program is to be run on a single transputer.
The iboot tool will not accept the following types of object file as its input:

e object files created by the librarian.

« object files that still have unresolved external references in them (i.e.
programs that have yet to be linked).

o object files which contain more than one entry point.
The transputer targets supported by the iboot tool are the T414 and the T800.

If the transputer target is of any other type then the iboot tool will generate an
error. The same bootstrap loader is output for the T414 and T800.

72 TDS 179 00

62 9 iboot bootstrap

Option Description

C Produce task image file for input to the 3L configurers.
S stacksize | Specify amount of run-time stack for C programs in
words.
I Display information.
L Load and terminate the tool.
M Do not produce a code map file.

E Flip the error action of the bootstrap loader code.

O outputfile | Specify output file name. Otherwise the iboot tool
uses the same file name as the input file with a .bxx
extension produced in accordance with the rules in
section D.2.

Options must be preceded by ‘=’ for UNIX based toolsets.

Options must be preceded by ‘/’ for non-UNIX based toolsets.

Table 9.1 iboot options

By default the internal bootstrap loader used by iboot will clear the transputer’s
halt-on-error flag, which means that if the error flag is set during the execution
of a C program the transputer will not halt. If the E option is used then the then
the halt-on-error flag will be set.

9.3 Producing task images

If a C program has been linked using the taskharn . txx harness (which means
that it is to be used for input to the 3L configurers) then it will be necessary to
apply the iboot tool using its C option on the output file of the linker. When
this option is used the iboot tools converts the linked C task object file into a
file format that the 3L configurers can then use.

When this option is used it is also necessary to use the O option to specify an

output file name. The name that is used for the output file should by the same
as the input file except that the extension should be changed from .cxx to .b4.

72 TDS 179 00

9.4 Bootstrap loader interface 63

The following is an example showing how a C program is linked using the harness
taskharn.txx with the full C run-time library which is then converted, using
iboot, for input to the 3L configurers:

ilink taskharn.txx a7,a2, .. crlt.lib -o 0.cxx
iboot o0.cxx -c -o 0.b4

Where at, a2, ... are the object files for the C program and o is the output file
name (minus extension). The part of the file name extension denoted by x is
the transputer target for which the C program has been compiled for (4 for the
T414 and 8 for the T800).

9.4 Bootstrap loader interface

The bootstrap loader output by the iboot tool loads a linked program in the
following way:

The code for the C program is placed as low in memory as possible taking
into account the amount of work space required by the special harness
that is always linked in when linking a C program (see appendix B). The
C program’s code is always placed above the work space required by this
harness. N.B. The memory reserved by the bootstrap loader for itself will
be overwritten by the C program’s code and work space when it is started
up by the bootstrap loader.

If the harness requires additional work space then the bootstrap loader
will reserve memory for this work space and place it just above the C
program’s code.

The size of the harness work spaces, along with the size of the code
for the C program are used by the bootstrap loader to determine the
offset, from the start of memory, from which point onwards can be used
as the C program’s work space. The bootstrap loader determines the
size of C program’s work space by looking up the environment variable
IBOARDSIZE before the C program is started.

IBOARDSIZE specifies the size of memory, in bytes, of the transputer
board on which the C program is to be executed. (# or $ in front of the
memory size indicates a hexadecimal number.)

The memory reserved for the C program’s work space is used by the C program
forits static and global varaibles and for its heap. Also, depending on whether
the S option of the iboot too! is used this work space is also used for the C
program’s run-time stack.

72 TDS 179 00

64 9 iboot bootstrap

If the S option of the iboot tool is used then the amount of memory specified
by the option (in words) will be used for the C program’s run-time stack. This
amount of memory, for the C program’s run-time stack, will be allocated by the
bootstrap loader below the harness work space and will start from MemStart
(address 800000485 on the T414 and address 800000704¢ on the T800).

If the S option of the iboot tool is not used then the memory reserved for
the C program’s work space will be used for the C program’s run-time stack as
well as being used for the C program’s static and global-variables and for its
heap. The C program’s run-time stack will fall from the top of the work space, the
static and global variables will be allocated from the base of the work space
and the heap will be rising from the top of the static and global variables used
by the C program.

Figure 9.1 illustrates the memory map of the loaded code as created by the
bootstrap loader described above.

Top of memory

Work space

Additional harness work space
(only if needed)

Code

Harness work space

Stack space
(only if specitied by the
‘S’ option of the iboot tool)

Base of memory (MemStart)

Figure 9.1 Memory map

72 TDS 179 00

9.5 Error messages 65

9.5 Error messages

If an unspecified error message is produced it is possibly due to the file being
corrupt.

code not contiguous
The transputer code contained in the input object file is not contiguous,
i.e. the code is stored randomly in memory. This can occur if the file has
not been linked.

illegal formal parameter specification

List of parameters defined by the main entry point file of the program
does not match that required by the bootstrap loader.

illegal link data tag, tagtype
An illegal data tag was found in the input object file. This can occur if

the file has not been completely linked, or if the file is the output of the
toolset librarian.

tagtype canbe: STATIC WORD LONG LONGADJ INSTRUC-
TION COMMON DATASYMB LIBRARY.

illegal option (chr)

An unknown option was specified. chr was the invalid option character.
multiple input files specified

More than one input file was specified.
multiple output files specified

More than one output file was specified when using the O option.
multiple stack sizes specified

More than one value for stack size was specified with the S option.
no input file specified

No input file was specified.

72 TDS 179 00

66 9 iboot bootstrap

no output file specified
No output file was specified after the O option.
no stack size specified
No stack size was specified after the S option, or was set to zero.

unable to close (value)

A file on the host system could not be closed. This error can arise if
the file does not exist, if the file system is corrupted, if the file is write
protected, or if the file system is full. ‘value’ is the error result returned
by the file system.

unable to open (value)
A file on the host system could not be opened. This error can arise if
the file does not exist, if the file system is corrupted, if the file is write

protected, or if the file system is full. ‘value’ is the error result returned
by the file system.

unable to read (value)
A file on the host system could not be read. This error can arise if the
file system is corrupted, or if the file system is full. ‘value’ is the error
result returned by the file system.

unable to write (value)
A file on the host system could not be written. This error can arise if the

file system is corrupted, or if the file system is full. ‘value’ is the error
result returned by the file system.

72 TDS 179 00

10 ilibr librarian

This chapter describes the library building tool ilibxr, that collates modules,
declarations and files that are related in some way into a single named unit.
Files created by the librarian consist of separate modules that can be selectively
loaded by programs.

10.1 Introduction
The librarian builds libraries from one or more separately compiled units supplied
as input files. The input files may be any object code file produced by the C

compiler or files produced by the linker and librarian. In the process it enforces
rules about the contents of libraries.

10.2 Running the librarian
The librarian takes a list of compiled (and possibly linked) files and library files,
or an indirect file containing a list of such files, and concatenates them to form
a single library file. Each file in the input list becomes a selectively loadable
module in the library.
To invoke the librarian type:

ilibr filenames {option}

where: filenames is a list of input files, separated by one or more spaces.

option is any option from table 10.1.

Option Description
I Display information.
F filename | Specify indirect file name.
O filename | Specify output file name.

D Do not include full debugging.
L Load only. Librarian performs no action.
X Explode library into constituent files.

Options must be preceded by ‘-’ for UNIX based toolsets.
Options must be preceded by ‘/’ for non-UNIX based toolsets.

Table 10.1 Librarian options

72 TDS 179 00

68 10 ilibr librarian

If an output file is not specified then the name of the first file in the list, or
the name of an indirect file, is used instead. Output files are given the .1ib

extension.

10.3 Exploding libraries

The explode option (X) allows a library to be disassembled to its constituent files,
using the original file names. If the original files are still in the current directory
then the original files are overwritten. If an error ocurrs whilst a library is being
disassembled constituent files that have already been written are not deleted.

Note: Exploding a library does not delete the library.

The explode option can be used for removing unwanted modules from a library.
To do this, explode the library and reinvoke the librarian to restore only the

required modules.

For example, suppose you have a library of routines for T414 transputers, called
t41ib. 1ib, which contains the files mod1 .bin, mod2 .bin and mod3.bin.
If you decide that you will never use mod2.bin you can remove it using the
following procedure.

1 Explode the library by typing:
ilibr t41lib.1lib -x
This will re-create the three constituent files mod1 .bin, mod2 .bin and
mod3.bin.
2 Delete the file mod2.bin and type
ilibr modl.bin mod3.bin -o t41lib.1lib

This will recreate the library t41ib.1ib, but now it will not contain the
module mod2 .bin.

10.4 Removing debug data

When C source is compiled the compiler inserts decoding data for the decode
tool to use. If you have the source of the object files that make up a library then
the decode tool can use this data to ‘decode’ the data of the object files within a
library, just as with any other object file created by the C compiler. See chapter 7
for a description of the decode tool. The D option causes the librarian to remove
the decoding data from the object code. This reduces the size of library files.

72 TDS 179 00

10.5 Rules for constructing libraries 69

10.5 Rules for constructing libraries
There are a number of rules governing the construction of libraries.

e A library cannot have a routine (entry point) which has the same name
as another routine in the same library if they are compiled for the same
transputer type.

e As above but for global variables.

10.6 Library Modules

Libraries are made up of one or more modules. Each file specified to the librarian
forms a module. The ordering of modules in a library is unimportant, although
modules in a library are implicitly numbered from zero.

A module is the smallest unit of a library that can be separately loaded.

10.6.1 Selective loading

Modules from libraries are selectively loaded by the linker according to the fol-
lowing rules.

1 The transputer target for the module must match the transputer target for
the program.

2 At least one routine in the module must be used by the program or by a
library that is used by the program.

10.7 Building libraries
This section contains some hints for building libraries.

When building libraries try to keep modules as small as possible. This will ensure
that your final program does not contain large amounts of unnecessary code.

In general purpose libraries you can add modules containing the same routines,
but compiled for different transputers.

72 TDS 179 00

70 10 ilibr librarian

Try to group routines of similar functions into a library. If routines are always
used together (for example routines for opening and closing files), group them
in a single module.

If your library source references external functions and variables you are recom-
mended to include the referenced code in the library that you are building. ‘

10.8 Indirect files
Indirect files are input files for the librarian that contain a list of files from which
the library will be built. To use an indirect file, specify the F option and the name
of the indirect file. More than one indirect file can be specifided on the command
line.
The format of indirect files is as follows.

1 Input file names may be split over any number of lines.

2 Comments may be inserted using the comment symbol ‘--'. All charac-
ters typed on a line after ‘==’ are ignored.

3 Librarian options must appear on a line starting with an option escape
character (i.e. ‘/’ or ‘=’) rather than a file name.

Indirect files should have the same name as the library file, but with the . 1bb .
extension.

10.9 Error messages

The librarian produces error messages in the standard toolset format. If errors
are produced the librarian terminates and no files are produced.

Command line too long (at string)

Character limit exceeded on the command line. string is the position on
the command line where the overspill occurred.

Could not open indirect file filename

File system error. The indirect input file filename could not be opened.

72 TDS 179 00

10.9 Error messages 71

Expected an option letter, found end of line

Command line error. No option was specified after the option selection
character.

Expected filename after -f option

Syntax error. No indirect file was specified after the F option.
Expected filename after -o option

Syntax error. No output file was specified after the O option.
Explode option and chr d switch are incompatible

Command line error. The X option and the option given by chr cannot
be used on the same command line.

Indirect filename filename is too long

Syntax error. The maximum length for filenames is 255 characters.
Input file filename is not a library

File filename is not a library.
Input filename filename is too long

Syntax error. The maximum length for filenames is 255 characters.
No input files specified, at least one needed

Command line error. At least one input file must be specified on the
command line.

num Output files specified, only one allowed

Command line error. Only one output file is permitted and num were
supplied.

Ran out of memory (at number bytes)

Insufficient memory available for the tool to run. This may occur if the
libraries involved are very large.

72 TDS 179 00

72 10 ilibr librarian

Unable to open input file filename

File system error. The input file filename could not be opened.
Unable to open output file filename

File system error. The output file filename could not be opened. ‘
Unknown option letter ‘chr’

Command line error. An invalid option was specified. chr was the first
letter of the invalid option.

72 TDS 179 00

11 ilink linker

This chapter describes the linker tool i1ink which is used to build groups of
separate compilation units into object files. The chapter begins with an introduc-
tion to the tool, continues with a description of the command and its options, and
finally lists linker error messages.

11.1 Introduction

The linker is a tool that builds object code from a list of input files. External
references are resolved, and the separate units are combined to produce an
object file that can be loaded onto a transputer or tansputer network.

The linker can be driven directly via a command line, or by redirected input
through a linker indirect file or standard input. Details of redirected input can be
found in section 11.4.

An option to the command allows the linker to run without resolving external
references. This allows you to pre-link sub-components of a program during
program development.

Input files can be separately compiled program units, or library files. Output from
the linker can be used as input to the bootstrap tool iboot, the librarian i1ibr,
and to the linker itself.

11.2 Notes on using the linker

11.2.1 Output files
The linker does not check for coincidence of input and output file names. You
should ensure that the same file name is not used for an input file and output

file, otherwise the contents of the input file may be lost, replaced with the linked
output file.

If an error occurs during execution of the linker any output files are deleted.

11.2.2 Processor type checks
Before linking, the linker checks the processor type of each input code file. If

processor types are incompatible, the linker will fail and an error message is
generated.

72 TDS 179 00

74 11 ilink linker

NOTE. The processor type for the linked output file is determined by the first
input file on the command line that is not a library file.

11.2.3 Selective loading of library files

The processor type check is not performed on library input files. If the linker finds
a module within a library file has been compiled for a non-compatible processor
type, the library module will be ignored by the linker. This allows selective loading
of library modules based on processor type.

Libraries are also selected for linking on the basis of previous usage. If library

modules have not been referenced within the same linking process by other
program units, then they are not used.

11.3 Running the linker

To run the linker use the following command line:
ilink {inputfiles} {option}

where: inputfiles is a list of code files generated by the C compiler, or by the
linker. If the first file in the list was generated by the linker then it may
be necessary to explicitly specify the name of the output file.

option is any of the linker options, given in table 11.1.

To rename the entry point name for an input object file, prefix the following to
the input object file:

new.name =

This instructs the linker to change the first entry point name in the associated
input object file to new.name.

11.4 Redirected command input

The linker can read its command parameter list from three different types of
source

.o the linker command line

o an indirect file

72 TDS 179 00

11.4 Redirected command input 75

Option Description
I Displays link information.
L Load linker and terminate.
M Disables the file map. The default is to produce a

map of the linker input files in a file named from the
first input file, suffixed with .mxx.

E Extends linker capacity (two pass operation).
U Allow unresolved external references.
S Disables the symbol table. The default is to write

the symbol table to a file named from the first input
file, suffixed with . sxx.

B (size,...) Redefine buffer sizes (size = decimal numbers).

Q (symbol, ...) | Optimize library functions by placing at the begin-
ning of code.

O outputfile | Specify output file.

F indirectfile | Take command input from an indirect file.
Options must be preceded by ‘-’ for UNIX based toolsets.
Options must be preceded by ‘/’ for non-UNIX based toolsets.

Table 11.1 Linker options
o standard input, for example, the keyboard.
If the input comes from either an indirect file or the standard input then the input
is known as redirected input.
11.4.1 Linker indirect files
An indirect file is a file that can contain a list of input object files to the linker,
plus linker options. The format for indirect files reflects the syntax of the linker

command line, except that the input object file names and linker options can be
split over a number of lines.

An indirect file can also contain comments. The start of a comment is denoted
by a double dash ('--') and the comment ends at the end of the line.

Indirect files are specified using the F option followed by a file name, as in the
following example:

F indirect.file

72 TDS 179 00

76 11 ilink linker

If no file name is specified then the input will be taken from standard input,
usually the terminal. The format for input taken from standard input is the same
as for an indirect file.

Redirected linker command input may NOT itself be redirected. Therefore an
indirect file may not refer to another indirect file or standard input. The same
applies to standard input, that is, it cannot be redirected to itself or to an indirect

file.

11.5 Linker options

Command line options to i1ink are described in the following subsections.

11.5.1 Option M - disable file Map

The disable file map option disables the production of a file mapping the code
that is being linked. This map gives information on the order in which the files
were linked (including library files) and the position of each file’s code within the
address range of the entire code file. The position is given as an addresses in
bytes. The map displays information about two categories of input file; separate
compilation units, and library modules.

11.5.2 Option E — extend link capacity

Normally the linker makes a single pass over the input files, processing all code
and link data in memory, thus reducing the size of code which may be linked.
The E option forces two passes over the code, and allows larger pieces of code
to be linked. If you specify the E option, linking will take longer.

11.5.3 Option S - disable Symbol table
This option disables the production of a symbol map of the code. The default if
you do not specify this option, is to write a symbol map file with the same name

as the output file, but suffixed with the extension . sxx.

The symbol map lists all the global code and data symbols that are defined within
the program, with their relative offsets from the start of the corresponding code
and static data areas.

72 TDS 179 00

11.5 Linker options

11.5.4 Option B — change Buffer size

The change buffer size option resets the sizes of the internal buffers used by the

linker. To reset buffer sizes, specify new values within the parentheses.

There are seven internal buffers used by the linker, five of which can be changed
with the B option, namely, LINK, DESC, SYMBOL, INIT, REF. Two other buffers,

FILE and CODE, are fixed and cannot be modified.

New values for the five modifiable buffers must be specified within the parenthe-

ses in the correct order, as follows:

B (LINK, DESC, SYMBOL, INIT, REF)

The modifiable buffers are described below.

Buffer
LINK

DESC

SYMBOL

INIT

REF

Of the non-modifiable buffers, the FILE buffer contains the list of the modules

Description

This buffer holds link information from all the object files and is
used by the linker to perform any linking operations specified in
these object files.

This buffer holds the description information present in the object
file that defines the main entry point of the program being linked.
The information contains the formal parameter specification of
the main entry point, the entry point offset, and the work space
requirements for the main entry point. Also stored in this buffer
are the program’s processor type and total code size.

This buffer is used by the linker as its symbol table and is used
to store all the code and data global symbols defined in the
program being linked.

This buffer is used by the linker when linking a program that
contains one or more C object files. It stores the information
that is required by the C components to perform the initialisation
of static variables and data segments at run-time.

This buffer is used to store all the external references that are
made in each object file being linked (the buffer is re-used for
each object file).

being linked (plus the ones specified in the command input, but not linked be-

cause of selective loading), and the CODE buffer is allocated last, using the

space that is not already occupied by the other buffers described above.

72 TDS 179 00

78 11 ilink linker

Buffer sizes can be displayed by using the information (I) option.

To leave a buffer size unchanged from the default proportional size, leave the
position blank. For example, the following command changes the sizes of LINK
and SYMBOL buffers only, leaving the others unchanged from their default pro-
portional sizes:

B (150000,,1000)
or B (150000,,1000,)
or B (150000,,1000,,)

If the position is left blank the buffer is set to the default proportional size.

The proportions of the free memory available to the linker are allocated to the
buffers as follows:

Buffer | Size Type Element
LINK 20% | data used for linking (bytes) 1 byte
DESC 1% | main entry point information (bytes) | 1 byte
SYMBOL | 15% | global code and data symbols 64 bytes
INIT 1% | modules to be initialised 8 bytes
REF 1% | external symbol references 4 bytes
CODE — 1 byte

Note that for each element in the SYMBOL buffer it has been assumed that the
length of each symbol name will be on average no longer than 32 characters.
This is the average length only, and individual symbol names can be any length
up to 255 characters.

CAUTIONS: If the modified sizes for these buffers exceed the total memory
space available to the linker it will then not be possible to allocate the CODE
buffer and an error will be generated. An error is also generated if a buffer size
is set to zero or to a negative value.

Note that the free memory available to the linker is treated as a byte vector and

the proportions for the buffers are allocated from this byte vector before being
converted for use by the buffers.

72 TDS 179 00

11.5 Linker options 79

Calculating memory requirements for a linked program

To determine the amount of memory available for the linker code in bytes, sum
the buffer requirements and subtract the result from the total memory size. That

is:
LINK.SIZE = size TIMES 1
DESC.SIZE = size TIMES 1
SYMBOL.SIZE = size TIMES 64
INIT.SIZE = size TIMES 8
REF.SIZE = size TIMES 4

(size will be either the default settings for each buffer, or the values set using
the B option.)

Using this scheme, the size of the CODE buffer will be given by the following:

CODE.SIZE = TOTAL.SIZE MINUS (
LINK.SIZE pLUS DESC.SIZE PLUS
SYMBOL.SIZE p1LUS INIT.SIZE PLUS REF.SIZE

)

Some sample buffer sizes for different values of TOTAL.SIZE which generate
usable CODE buffer sizes are as follows :

TOTAL.SIZE | LINK DESC | SYMBOL | INIT | REF
1 Mbyte 200000 | 10000 2000 | 500 | 500
2 Mbyte 400000 | 10000 4000 | 1000 | 1000
4 Mbyte 800000 | 10000 8000 | 2000 | 2000
8 Mbyte 1600000 | 10000 16000 | 4000 | 4000

11.5.5 Option Q — optimise symbols

This option allows you to specify which library functions are to be located on
the front of the linked code. Functions on the front of the linked code are those
which are most likely to be placed in the on-chip RAM.

Placing commonly-used functions on the on-chip RAM will optimise their running

72 TDS 179 00

80 11 ilink linker

speed, and increase the overall speed of the program.

The library functions to be optimised are specified using the Q option by giving
the entry point names of the library functions. The entry name specification can
include any character except a space or a comma (,), and must be specifed on a
single line. To specify a list of entry names, separate each entry with a comma.
If a specified entry name is not used by the program then no optimisation is
performed for that entry name.

If no library entry names are specified, then entry names REAL320P and
REAL320PERR are optimised, if they are used by the program. These entry
names relate to functions that carry out 32 bit real addition, subtraction, multipli-
cation and division.

11.5.6 Order of linking of object files

The object files can be linked in any order, but the processor type for the linked
output file is determined from the first input file in the list. For this reason, you
should specify the main body of a unit (e.g. mainent . cxx) being linked first,
so that the transputer type used in the final object is that of the main program
unit.

11.6 Error messages

If an unspecified error message is produced it is possibly due to the file being
corrupt.

attempted to re-redirect input

Command input has already been redirected using the F option. The F
option has been given more than once on the command line, for example,
by specifying the F option from within an indirect file.

code patch over legal code, INSTRUCTION (value)

A code patch specified by an INSTRUCTION record has overwritten
some valid code, that is, code which not made up of NOP transputer
instructions (p£ix 0). This error generally only happens when there
are too few NOP instructions remaining to make a code patch over, and
is usually generated when using sequential program inserts. value is the
code patch offset specified by a INSTRUCTION record that generated
the error. This can be generated by specifying too small a value of n for
the ‘PC’ option of the C compiler.

72 TDS 179 00

11.6 Error messages 81

expected end of buffer list

The closing parenthesis was omitted when using the B option.
expected end of symbol list

The closing parenthesis was omitted when using the Q option.
expected start of buffer list

The opening parenthesis was omitted when using the B option.
expected start of symbol list

The opening parenthesis was omitted when using the Q option.
file name expected

This error can occur if the filename is omitted when using the O option,
or when the prefix ‘new.name ='is used.

illegal buffer size, buffertype (value)

A buffer size less than or equal to zero was specified with the B option.
buffertype can be LINK, DESCRIPTOR, SYMBOL, INIT, or REF.

illegal character in buffer list (chr)

A non-numeric character was specified in the list of buffer sizes. chr is
the invalid character.

illegal option (chr)

An invalid option was specified on the command line. chr is the invalid
option character.

internal buffer overflow, buffertype

This message is generated if one of the linker buffer overflows. buffer-
type can be STRING, FILE, LINK, CODE, DESCRIPTOR, REF, INIT or
SYMBOL. All but the STRING and FILE buffers can be changed using
the B option. The STRING buffer has a maximum capacity of 255 char-
acters; the size of the FILE buffer can be displayed using the linker I
option.

72 TDS 179 00

82 11 ilink linker

multiple entry points, symboltype unchanged
The object file referenced by the new.name= prefix contains more than
one entry point, and records associated with all entry points except the
first remain unchanged. symboltype can be DESC, ENTRY, NEWEN-
TRY, CODESYMB, ENTRYSYMB, or NEWENTRYSYMB.

multiple MAININIT addresses, MAININIT

More than one MAININIT operand to a record was specified. This error
can occur when the C run-time library is multiply defined.

no MAININIT address, INIT

No MAININIT operand to a record was specified. This error can occur
when the C run-time library is undefined.

output file redefined
The O option was specified more than once.
processor type incompatible (value)

A module has been compiled for a processor type incompatible with the
main the program. value is the incompatible processor type.

program entry point undefined

No main program body was specified. The message is also generated if
no object file is specified.

reference to undefined symbol, REF (symbol)

The external symbol symbol, specified by a REF record, has not been
defined in the program.

selective symbol multiply defined, symboltype (symbol)

The symbol symbol has been defined more than once in the program.
symboltype can be CODESYMB, ENTRYSYMB, or NEWENTRYSYMB.

72 TDS 179 00

11.6 Error messages 83

symbol multiply defined, symboltype (symbol)
The symbol symbol has been defined more than once in the program.
symboltype can be COMMON, DATASYMB, CODESYMB, ENTRYSYMB,
or NEWENTRYSYMB.

unable to allocate buffer, CODE (value)

The CODE buffer could not be allocated. value is the invalid size of the
buffer, or the amount of space remaining from which to allocate the buffer.

unable to close (value)

File system error. A file on the host could not be closed. value is the
error tag returned by the host file system.

unable to open (value)

File system error. A file on the host could not be opened. value is the
error tag returned by the host file system.

unable to read (value)

File system error. A file on the host could not be read. value is the error
tag returned by the host file system.

unable to write (value)

File system error. A file on the host could not be written. value is the
error tag returned by the host file system.

72 TDS 179 00

84 11 ilink linker

72 TDS 179 00

12 iserver host file
server

The host file server, iserver, provides two functions:

o Control of transputer networks, such as loading programs and resetting
processors

o Access to host services for programs running on transputer networks.

12.1 Running the server

To run the host file server use the following command line:
iserver {option}

where: option is any file server option, given in table 12.1

Option Description
SB filename | Boot program contained in named file.
sc filename | Copy named file to link.

SI Produce information messages.

SL name Specifiy link address or device name.

SR Reset the root transputer.

ss Serve link (i.e. provide host support to program

communicating on link)

Options must be preceded by ‘=’ for UNIX based toolsets.
Options must be preceded by ‘/’ for non-UNIX based toolsets.
Note: =SB filename is equivalent to ~SR-SS-SI-SC filename

Table 12.1 File server options

All options are two letters long and start with the letter ‘S’. None of these options
may be used for program parameters. Any other text on the command line is
supplied to programs.

If iserver alone is typed then the server provides brief help information.

72 TDS 179 00

86 12 iserver host file server

12.1.1 Loading programs

Before a program may be loaded onto a transputer network it must be compiled,
linked and made bootable using either the bootstrap tool iboot (for single
transputer programs), or the configurers config, fconfig (for multitransputer
programs). The file will have a .bt or a .bxx file extension.

The name of the file containing the program to be loaded is specified using the
SB option. If the file cannot be found an error is reported. When this option is
used the board is reset prior to loading the program. When the program has
been loaded the server then provides host services to the program.

Note: Using the SB option is equivalent to using the SR, SS, ST and SC options
together.

To load a program onto a board without resetting the root transputer, use the
Sc option. This should only be done if the transputer being loaded has already
been reset or has a resident program that can interpret the file.

To terminate the server immediately after loading the program use the SR and
SC options together. The server will then reset the transputer, load the program
onto the board, and terminate.

To reset a transputer use the SR option.

12.1.2 Specifying link address — option SL

The server contains a default address or device name, depending on the operat-
ing system, used when communicating with boot from link boards. This address
or name may be changed by the SL option followed by the new value. The link
addresses must be given in hexadecimal.

72 TDS 179 00

13 tc C compiler

This chapter describes the C compiler, tc, its facilities and options. It explains
how to invoke the compiler, describes the command line options and lists com-
piler error messages.

13.1 Running the compiler

The compiler takes as input the name of a C text file and compiles the contents
into a binary object code file.

Options control the mode of compilation and various compiler facilities, such as
disabling the generation of decode data.

To invoke the compiler use the following'‘command line:
tc filename {option}

where: filename is the name of the C text file. If you do not specify a file exten-
sion, the extension . c is assumed. If the filename is omitted the compiler
displays brief help information.

option is a list, in any order, of any of the compiler options given in
table 13.1.

t4c is equivalent to tc with the T4 option.
t8c is equivalent to tc with the T8 option.

If the compilation is unsuccessful an error message is produced giving infor-
mation about the file and the line where the error occurred. Compilation error
messages are listed in section 13.3.

13.2 Compiler switches

This section describes the switches available to control the behaviour of the com-
piler. Switches are introduced by the switch character (which is host dependent)
and may be typed in any order, before or after the source file specification. Ex-
cept as noted below, switches and their argument strings are not case-sensitive;
that is, lower-case letters have the same significance as the corresponding upper-
case letters. This means, for example, that the following two switches would be
treated the same:

-FBhello.bin
-fbHELLO.BIN

72 TDS 179 00

88 13 tc C compiler

Option Description

(o] Check: do not generate object file.

Dmacro Define macro with the value 1.

Dmacro=string | Define macro with the value string.

FBfilename Put binary object output in filename.

FLfilename Put listing in filename.

FOfilename Identical to FB.

I Print the compiler’s identification.

Idirectory Add directory to the #include list.

L Equivalent to FL (obsolescent). A filename may not be
specified.

M Include macro expansions in the listing.

PCn Set the number of bytes required for an extern function
call.

S Use single-precision floating-point arithmetic when pos-
sible.

T4 Generate object code for the T414 processor.

T8 Generate object code for the T800 processor.

T8A Generate special object code for the Rev A T800 pro-
cessor.

Umacro Undefine a predefined macro.

v Verbose: display progress messages.

X, Discard the standard #include list.

Switches and their arguments are not case sensitive,

except as noted in section 13.2.

Table 13.1 C compiler options

The format of the various switches is described using the following notations:

filename The filename. It may be omitted in whole or in part; the compiler's
behaviour in this case is described in section 13.2.1 below.

directory The filename, which will be assumed to refer to a directory.

macro Any sequence of characters which is acceptable to the compiler as a
macro name.

string Any sequence of characters which is acceptable to the compiler as the
value of a macro.

n A decimal integer.

72 TDS 179 00

13.2 Compiler switches 89

13.2.1 Controlling output files

The F switch is used for specifying which output files are to be generated, and
their names. Each of the varieties of F may be followed by a filename, but the
complete path name may not be necessary. The compiler supplies defaults, as
follows:

o If no extension is given, the compiler supplies a default extension de-
pending on the type of output file: . 1is for listing files, etc.

e If no filename is given, the filename of the source file is used.

o If no directory specification is given, the directory specification of the
source file is used; if the source file specification did not include a direc-
tory specification, then the current directory is used.

Switches FB and FO

These switches have the same effect. They instruct the compiler to create an
object file in binary format. The default extension is .bin.

Notice that if no FB or FO switches are specified, the behaviour of the compiler
is the same as if a FB switch were used, with no argument. In order to stop the
compiler generating an object file of any kind, the C switch must be used (see
section 13.2.2).

Switch FL

This switch makes the compiler produce a line-numbered source listing file. The
listing file contains any error messages produced by the compiler, as well as the
numbered source lines. The default extension is . 1is.

The listing file produced for the HELLO . C program would look like this:

Source file: HELLO.C

Object file: HELLO.BIN

Qualifiers: -T8 -FL

Compiled by: transputer C compiler, CC_transputer V2.0

1 main ()

2 {

3 printf ("Hello, world\n");
4 }

5

72 TDS 179 00

90 13 tc C compiler

13.2.2 Controlling object code
Switches T4, T8 and T8A

These switches can be used to specify which type of transputer the program is
to be compiled for. T4 and T8 are only permitted with the tc command, as
the t4c and t8c commands supply the appropriate switches automatically, and
these will, in fact, appear in the ‘Qualifiers:’ line of the listing (see section 13.2.1).

The T8A switch is valid with the t8c and tc commands. It makes the compiler
generate code to work round a floating-point firmware bug in Rev A of the T800
processor which affects integer-to-real conversions.

Switch s

The C Programming Language[1] states that ‘all floating arithmetic in C is car-
ried out in double-precision; whenever a £1loat appears in an expression it is
lengthened to double...’. By default, the compiler follows this rule and eval-
uates an expression like a+b, where a and b are float, by first converting
a and b to double and then performing the addition using double-precision
floating-point arithmetic.

The s switch changes the compiler's behaviour when both operands of an arith-
metic operator are £loat. If S is used, the operands are not converted to
double, and the operation is performed using single-precision floating-point
arithmetic. This should result in faster program execution, but note that be-
cause floating-point arithmetic works with approximations the numerical result
of the operation may be different from that obtained normally. Using S is not
recommended.

Note also that even if S is used, floating-point constants are still double, and so
an expression like 2. 0*a will still be evaluated in double precision (with a being
converted to double). You can avoid this happening by assigning the value
2.0 to a float temporary variable beforehand (two say) and then writing the
expression as two*a.

Switch PCn

This switch makes the compiler allocate n bytes for a call to an extexrn function
which must be patched by the linker. The value of n determines the maximum
displacement of the called function from the point of call. The maximum positive
displacement is 2" bytes. n should be in the range 2 to 8. If the PC switch is not
used, the compiler assumes a value of 6 for n, giving a maximum displacement
of 16MB. (Similar negative displacements are also allowed, except if n = 1 when
backward calls do -not work). Smaller values of n reduce the code size for

72 TDS 179 00

13.2 Compiler switches 91

external calls (resulting in faster execution) but restrict the total size of the final
program image. For example, n = 5 allows displacements up to 1MB; n = 4
allows up to 64KB. Normally the default value of n should be adequate.

Switch C

If this option switch is used, the compiler checks the source file for errors, but
does not generate an obiject file.

13.2.3 Controlling #include processing

This section should be read in conjunction with section 14.4, where include file
processing is discussed more fully.

Switch Idirectory

This switch adds directory to the include list, that is, the list of ‘standard places’
where the compiler looks for files specified in #include lines. The directory
string is assumed to be a directory.

Switch x

This switch excludes the ‘standard places’ from the include list. Directories added
to the include list by means of the Idirectory switch are not affected, and will
still be searched by the compiler.

13.2.4 Macro definitions

This section should be read in conjunction with section 14.3, where predefined
macros are discussed.

Switch Dmacro and Dmacro=string

The first form of the D switch can be used to define a macro with the value ‘1°.
The second form enables the user to define a macro with the value ‘str’. These
definitions are done before the compilation of the program. For example:

T8C -dDEBUG -Dhelp=3 -dJOE=Jim CATS

72 TDS 179 00

92 13 tc C compiler

This is equivalent to coding the following lines at the top of the program cats. c:
#define DEBUG 1

#fdefine help 3
#define JOE Jim

Notice that the macro names and their values are case sensitive. If there are any
syntax errors in the definitions, these are reported on the display and included
on the listing (if any) in the usual way.

Switch Umac

This switch undefines a predefined macro — see section 14.3 for a discussion
of these. This means, for example, that the following switch:

T8C -U_transputer CATS
is equivalent to coding the following line at the top of cats.c:
#undef _transputer

Once again, the name of the macro is case sensitive.

13.2.5 Information from the compiler
Switch I

This switch makes the compiler display a line containing its identity and version.
Please quote this information in any correspondence about the compiler.

Switch M

This switch causes the expanded form of lines containing macros to be written
to the listing file. By default, macro expansions are not listed. If a M is used
without a FL, the latter is assumed. An example of a listing file containing
macro expansions is shown below.

72 TDS 179 00

13.2 Compiler switches 93

Source file: MACRO.C

Object file: MACRO.BIN

Qualifiers: -T8 -FL -M

Compiled by: transputer C compiler, CC_transputer V2.0

1 #define SEVENTEEN PLUS (TEN, SEVEN)

2 {#define PLUS(a,b) ((a)+(b))

3 {#define TEN 10

4 $#define SEVEN 7

5

6 main()

7 {

8 printf("seventeen = %d\n", SEVENTEEN);

8" printf ("seventeen = %d\n", PLUS(TEN, SEVEN));
8" printf ("seventeen = %d\n", ((TEN)+(SEVEN)));
8" printf ("seventeen = %d\n", ((10)+(SEVEN)));
8" printf ("seventeen = %d\n", ((10)+(7)));

9 1}

Notice that the compiler does not list the definitions of the predefined macros,
or of macros defined by D switches.

Switch v

Makes the compiler produce additional messages on the standard output stream
indicating how far compilation has progressed. By default, only error messages
are written to the standard output stream and no messages are produced if no
errors are detected.

Typical messages generated by use of the V option are:

123 statements analysed; no errors detected
Code generation complete: starting object file
generation

Object file complete: deleting scratch files

13.2.6 Obsolescent switches
The L switch is provided for compatability with earlier INMOS C compilers. It

is the equivalent of FL except that it does not accept arguments and so cannot
redirect the output listing file.

72 TDS 179 00

94 13 tc C compiler

13.3 Compiler error messages

This section shows how error conditions are reported by the compiler, outlines
ways of dealing with errors detected by the compiler and lists the error messages
which may be produced by the compiler along with examples showing how they
might come about.

13.3.1 Compiler error message format

This section describes the error reports displayed by the compiler when it detects
errors in the program it is trying to compile. Errors which can be detected by the
compiler in this way are the easiest to correct. If an attempt is made to compile
a program which does not obey all of the rules of C, the compiler will display a
message indicating the nature of the fault and showing where in the program the
error was detected. For example, in the following program the brackets which
must surround the expression following the keyword while have been omitted:

main ()

{

int i = 0;

while i++ < 10
printf ("hello, world\n");

}
The compiler will discover the error and display a message like this:

*"prog.c", line 5: while i++ < 10

A

(expected
The upward arrow character ‘~’ points to the place where the error was found.

Notice the format of the message: all of the messages which the compiler can
produce appear in a similar form. The first character in the message is a marker
which indicates how bad the error was — an asterisk ‘*’ is the normal sort of
error; it means that the compiler has detected a fault but is able to continue
trying to compile the rest of the program. The other markers which can appear
are described later.

Following the marker character there is the name of the file in which the error
has occurred, followed by the line number in the original C program at which the
error was detected; here the error is on line five. Wherever possible the compiler
displays the text of the offending line after the line number, as in the example
program, but because the original text is stored in a fixed size memory area, this
cannot always be done. If the source text is no longer in memory it is omitted
from the error message.

72 TDS 179 00

13.3 Compiler error messages 95

The general form of compiler messages is therefore:

marker" filename"™, line line-number: source-text
~ message-text

Here ‘~’ points to the part of the source-text in error, message-text is a brief
explanation of the fault, and marker may be any of ‘*’, ‘?’ or ‘1",

Marker Meaning

‘*x’ Error: compilation continues

?’ Warning: a part of the program is strictly correct, but is dubious in
some way. For example, if some part of a program can never be
reached. '

‘o Fatal error. Compilation cannot continue after a fatal error. Fatal

errors indicate either that a program is too large or complicated to be
compiled in the amount of memory available or that there is a fault
in the compiler itself which makes it unable to compile this program.
Section 13.3.4 gives information about what should be done if any
particular fatal error is reported.

The line number information can be used to locate the incorrect line quickly with
a text editor even when a program contains #include statements, because
each #include counts as a single line, no matter how many lines the included
file contains. Look at two C program files called main.c (figure 13.1) and
error.h (figure 13.2).

#include "error.h"
main ()
{

while count++ < 10
printf("hello\n");

Figure 13.1 File main.c

/* error included text */

auto int count;
Figure 13.2 File exrror.h

72 TDS 179 00

96 13 tc C compiler

If we compile main, we will get the following error messages:

*"error.h", line 3: auto int count;
A
an external data definition may not have storage
class "auto"

*"main.c", line 5: while count++ < 10

A

(expected

These messages indicate that in line three of the included file error the decla-
ration of count is not allowed (because only static or extern declarations
are allowed at the outermost level of a program), and in line five of main an
opening bracket must follow the keyword while.

13.3.2 Fixing errors detected by the compiler

This section contains information about how the compiler handles errors in the
program which it is trying to compile. This information should make it easier to
understand the messages displayed by the compiler, and so make it easier to
fix incorrect programs.

The compiler can detect two classes of error: errors in the form of a program such
as missing semicolons, misspelt keywords, etc. and errors where an identifier
of a particular type is used in the wrong context, such as attempting to multiply
a struct variable by a £loat value or use an identifier that has not been
declared.

Errors of form (syntax errors) are detected when the compiler discovers that the
piece of program it is reading does not fit in the context of the part of the program
it has read already. When this happens the compiler displays a message and
starts reading on from the point of the error, ignoring everything until it finds a
symbol which could fit in at this point in the program; compilation then continues
as though there had been no error.

Because the compiler may ignore vital parts of the program (like declarations)
in recovering from an error, the best policy when fixing errors reported by the
compiler is to deal with them one by one, starting with the first. Look at the part
of the program indicated by the error message and try to find out what is wrong
with it, then fix the problem and recompile the program. If errors are dealt with
sequentially like this, you will not waste time hunting for spurious errors caused
by the compiler skipping over some declarations and then complaining about
‘undeclared identifiers’ in the rest of the program. Look at the example below,

72 TDS 179 00

13.3 Compiler error messages 97

where a comma in a declaration has been mistyped as a dot.

main ()

{
int length . breadth;

length = breadth ;

}
This compiler will display the following messages:
*"ex.c", line 3: int length . breadth;
A
; expected
*"ex.c", line 5: length = breadth ;
A

"breadth" not declared

The first message indicates that a semicolon or comma must follow each identifier
in a declaration; a dot is not allowed. Because the compiler has skipped the
declaration of breadth in order to get back in step with the program, breadth
appears not to be declared in line five resulting in the second error message.

If you correct this program as suggested above, by starting with the first error,
fixing it and then recompiling the program then you will never have to worry about
fixing the second error: it will go away automatically when the first error is fixed.

In certain cases the logic of the compiler will result in the same error being
reported more than once. The remedial action here is simply to fix the error and
ignore the duplicated messages.

13.3.3 Compiler control lines

The current version of Parallel C follows the common convention that compiler
control lines must start in the first character position on the line. If the ‘#’ charac-
ter is not the first character on the line then the compiler will report an error which
is unlikely to be related to the compiler control line as in the following example:

1 main()
2 {
3 #if 1
4 ffelse
5 #fendif
6 }
* 3 #if 1
} expected

72 TDS 179 00

98 13 tc C compiler

13.3.4 List of error messages

The messages listed here may be issued by the compiler while a program is
being compiled.

Some messages contain special sequences like item-1, item-2 etc. These do
not appear in the actual message displayed by the compiler, rather they are
replaced by appropriate text from the program. For example, take the message:

"jtem-1" not declared

If it is the identifier "£oo" which has not been declared, the message actually
displayed will be:

"foo" not declared

Where feasible, the description of each message includes a sample (meaning-
less) program which causes the message to be generated during compilation.

Program errors

This section gives a list of messages which may be generated by the compiler as
a result of errors in the source program or limitations imposed by the compiler.

a bit-field must have an integer type

C allows an implementation to restrict the type of bit-fields. Parallel C
imposes the restriction that all bit-fields must have a type which yields
integer values.

error ()

{

}
a compiler-control (#) line may not begin with ”item-1~

struct thing { float wee:9; };

Compiler control lines are introduced by a hash character, ‘#’, followed
by a keyword. This message indicates that a valid keyword has not been
found.

error()

{
#?rubbish

}

72 TDS 179 00

13.3 Compiler error messages 99

a constant integer expression is required here

This message indicates that an identifier or a string literal has been found
in a context which requires a constant integer expression.

error ()

{
int a[l12]; /* right */
int b[a]; /* wrong */

}
a field may not exceed 32 bits

C limits the size of a bit field to the size of an int which on the transputer
is 32 bits long.

error ()

{
struct thing { int huge:999; };

}
a function result of type “item-1” Is not allowed

This message is generated when an attempt is made to define a function
which returns an array or a function.

error ()

{
int £()[17] /* £ cannot return an */

/* array of 17 items */
}

a parameter declaration may not be initialized

A parameter declaration simply gives information about the sort of value
being passed as a parameter, the actual value of the parameter being
given when the function is called. This message could be the result
of placing the declaration of what should be local variables before the
opening ‘{’ of the function.

error (x)
int x = 3;
{

}

72 TDS 179 00

100 13 tc C compiler

a parameter may not have storage class "item-1"

This message indicates that a parameter type specification has attempted
to give a parameter an invalid storage class. This can be the result of
confusing parameter specifications with local variable declarations.

error (x)
static int x;
{

}

”jtem-1" already defined

This message is issued when an attempt is made to redefine the tag of
a struct or union

error ()

{
struct thing{int a,b;};
struct thing{float c,d;};

}
an empty enumerator list is not allowed

The list of enumeration constants in the declaration of an enumerated
type must not be empty; there must be at least one enumeration constant.

error ()

{
enum transparent {};

}
an empty structure is not allowed

Every st ruct must have at least one member; it is not possible to have
structures with no members.

error ()

{
struct empty (};

}

72 TDS 179 00

13.3 Compiler error messages 101

an external data definition may not have storage class "item-1”

Variables declared outside a function may only have a limited selection
of storage classes. This message indicates that such a declaration has
a prohibited storage class.

register int r;
error ()

{

}

”jtem-1” and ”item-2” are incompatible operand types for the "item-3”
operator

This message indicates that an attempt has been made to apply the given
operator to operands of inappropriate types.

error ()

{
int z;
struct {int a,b;} x,y;
if (x<y) z=0;

}

array dimension table full

There is a global limit on the overall complexity of array and structure
declarations. This fatal error message is issued when the program ex-
ceeds this complexity. The remedial action is to simplify the program or
split it into two or more separate files.

It is not feasible to give a simple example of a program which would
generate this fault.

attempt to assign address to short or char

The address of an object is a value which will almost certainly be too
large to be assigned to a short or char sized object. While this is not
prohibited it will result in the pointer value being converted into an int
and then the more significant bits being truncated. As it is very likely
that this effect will not be what was intended the compiler will issue this

warning.
warning ()
int v;
static char text = "hello" /* wrong */
short s = &v; /* wrong */
char x = &v; /* wrong */
}

72 TDS 179 00

102 13 tc C compiler

attempt to divide by zero

The compiler has detected an attempt to divide by zero. Note that this
can happen in two distinct places in the compiler: in a context where
the result of the division is needed during the compilation, or when the
value is not strictly needed until the compiled program is executed but
the compiler is attempting to simplify the expression. This particular error
message is a result of a division by zero in the first case.

error ()

{

#if 1/0
#endif

}

The second case gives rise to a ‘Zero divide’ message which is
described in section 13.3.4.

auto/register arrays and structs may not be initialized

This message is issued when an attempt is made to initialize arrays or
structs with storage class auto or register.

error ()

{

int vector[3] = {1,2,3};

struct {int a,b;} s = {100,200};
}

bad escape code “”’item-1’

The given escape code has been detected in a string or character con-
stant but has no meaning. This is commonly caused by including an
escape character, ‘\’, in a string without using another escape. In the
following example the fragment ‘\ ' should be written ‘\\ .

error ()

{
printf ("cannot open \ ");

}

72 TDS 179 00

13.3 Compiler error messages 103

& before array or function ignored

When used on its own as an operand in an expression, the identifier of
an array or function represents the address of that array or function. This
message indicates that an ‘&’ operator has been ignored when it has
been used redundantly on an array or function.

error ()
{
int ad;
int a[l2];
ad = &a;
ad = &error;
}

both operands for pointer ”-” must have the same type

When ‘-’ is used to obtain the difference between two pointer values the
types of the two pointers must be identical.

error ()

{
int x;
float *f;
double *d;
x = d-£;

}
case "item-1”: already defined

This message indicates that a switch statement contains two or more
actions defined for a particular case.

error ()
{
int x;
switch (x) {
case 1 : x 100;
case 1 : x 200;
}

}

72 TDS 179 00

104 13 tc C compiler

“case” and “default” are only allowed inside a switch statement

The keywords case and default are reserved for use within switch
statements and may not be used in any other contexts. The message
frequently indicates that a switch statement has been prematurely termi-
nated or has not been recognised because of a syntactic error.

error ()
{
int x;
case 1l : x = 0;
default : x = 1;
}

’item-1’ character not allowed here

The given character is either a control character or the character grave
(‘V’). Such a character may only be used in very restricted circumstances.
The most likely causes for this error are typing a grave when a single
quote character was wanted or accidentally inserting control characters
into the source file.

error ()
{
‘grave error;

}

closing ">’ expected

An include statement has attempted to specify a search of standard
places only by enclosing the file name in ‘<’ and >’. The message
indicates that the compiler has found the opening ‘<’ but not the closing
>'. One cause of this error is not pressing the shift key when typing the
>’ character and getting ‘.’ instead.

#include <thing.

error ()

{
}

constant integer expression required here

This message is generated when the compiler is expecting an expression
which can be evaluated at compile time to give an integer value but no
such expression can be recognised.

main ()
{
int x[1.5];

}
72 TDS 179 00

13.3 Compiler error messages 105

constant integer value too large

This message indicates that overflow occurred while processing an in-
teger constant. Currently this is only detected in the case of octal or
hexadecimal constants.

error ()

{
int x = 0x123456789; /* > 32 bits */

}
corrupt syntax tree

This message indicates that an error has occurred in the compiler itself.

It is not feasible to give a simple example of a program which would
generate this fault.

declarator may only contain a single formal parameter list

Following a function identifier definition there may be at most one list
of formal parameter identifiers enclosed in parentheses. This message
indicates that two or more such lists have been found.

error (x) (y)
int x, y;
{

X =y;

}

declaration syntax fault

This message is generated whenever a declaration has been specified
incorrectly. As there are many reasons for the error it is best to examine
the declaration at the point indicated by the upward arrow in the compiler’s
report. If the cause of the error is not obvious the formal definition of the
syntax of the relevant declaration should be checked.

error ()

{
int a,;

}

72 TDS 179 00

106 13 tc C compiler

#endif/#else without matching #if

The compiler control lines #else and #endif must follow a matching
#if control line.

error ()
{

#else
#endif
}

#endif pending at end of file

This message is issued when the end of the source file has been reached
and no #endif has been found to match a previous #if.

error ()

{

#ifdef flag
}

end of file in argument list of macro “item-1” at line ”item-2” (missing ”)”?)

This message indicates that the end of the source file has been found

before the compiler has found the closing parenthesis of a reference to
a macro.

error ()

{

#fdefine thing(x) 1-x
int a;
a = thing(x

}

expanded macro line too long

This fatal error message indicates that the compiler's macro expansion
area has become full and further processing is impossible. The usual
cause for this is a recursive macro as in the following example.

error ()

{

#define rubbish rubbish+1000
rubbish

}

72 TDS 179 00

13.3 Compiler error messages 107

item-1 expected

The given item is expected at the indicated point in the program. Note
that there may be several different items which would fit but the compiler
will only indicate the most likely one.

error ()

{
int a /* semicolon omitted */

}
expression expected
The compiler expects to find an expression at the indicated point in the
program.

error ()

{

case {
}
}

expression of type ”item-1” cannot be used as a function
This message is issued when an expression which is not a function is
applied to an argument list.
error ()
17(0); /* 17 isn’t a function */
}
expression of type “item-1” used instead of "int”

This message is given when an expression of a type other than ‘int’
has been used in a context which requires a condition.

error ()

{
float £, g;
if (£) g = 0;

72 TDS 179 00

108 13 tc C compiler

expression syntax fault

An expression has been incorrectly specified. This is usually the result
of a typographical error with operators. Check the form of the operator
you require and correct the expression accordingly.

error () ‘

{

int a,b,c;

b =12;

c =25;

a = b+%c; /* rubbish */
}

format is #include "file” or #include <file>

This message indicates that the file reference in an #include compiler
control line has not been specified correctly. The two acceptable forms
are #include "file" which will search for file starting in the current
directory and then searching the standard place, and #include <file>
which only searches the standard place.

error ()

{
#include something

’ |
{ function-body } expected here; could be missing ; after) above?

The opening brace, ‘{’, of a function body could not be found following
the function heading. N.B. this message is unfortunately very common,
as it is easy to make a syntax error which makes a function declaration
look like a function header to the compiler.

extern £() /* ; omitted */

int a;
double d;
g()
{

a =17;
}

function declarator required before *{’

This message was generated by earlier versions of Parallel C and should
no longer be encountered. It was issued when a declaration appeared
syntactically to be a function declaration but did not have the type ‘function
returning ...". '

72 TDS 179 00

13.3 Compiler error messages 109

identifier expected

This message indicates that the context demands an identifier but some-
thing else has been found.

error(l)
{
}

identifier or {enum-list} required after ’enum’
Following the enum keyword there must be either an identifier or a list

of enumeration constants enclosed in parentheses. Note that the enum
construct is not in any case supported by this version of Parallel C.

error ()
{
enum colour {red, yellow, green, blue}/*right*/
enum; /*wrong*/
}

identifier or {struct-decl-list} required after *struct’/’union’

The keywords struct and union must be followed by either an iden-
tifier or a declaration of the contents of the structure or union.

error ()
{
struct;
union;
}

implementation restriction: pointers to functions cannot be initialized

This message was issued by previous versions of Parallel C. The current
versions of the compiler do not have this restriction and so the message
should never be generated.

implementation restriction: "sizeof” not allowed in this context

The current implementation of Parallel C does not permit the use of the
operator sizeof in a constant expression.

error ()

{
int x;
int a[sizeof(x)];

}

72 TDS 179 00

110 13 tc C compiler

include stack underflow

This message indicates a malfunction in the compiler itself. The only
remedial action is to attempt to simplify the include file structure of the
program.

It is not feasible to give a simple example of a program which would
generate this fault.

”jtem-1” incompatible with type "item-2”

This message indicates that an incompatible combination of type speci-
fiers has been given in a declaration.

error ()

{

}
initializer string longer than array

long char x;

The string constant which has been used to initialize an array of char
contains more characters than there are elements in the array. Note
that there is always an invisible ‘\ 0’ character on the end of every string
constant so that the number of characters it contains is one larger than it
may appear to the casual reader. The message is simply a warning that
the string constant will be truncated for the purposes of initialization by
ignoring one or more of the rightmost characters.

warning()
{

static char x[3] = "1234";
}

internal error
This message indicates that an error has occurred in the compiler itself.

It is not feasible to give a simple example of a program which would
generate this fault.

72 TDS 179 00

13.3 Compiler error messages 111

”jtem-1" is not in the parameter list of "item-2”
and so may not appear here

This message is generated when a parameter specification following a
function heading attempts to describe an identifier which has not been

. given in the parameter-list of the function. This can be caused by the in-
correct placement of local variable declarations before the opening brace
(‘{’) of the function body compound statement, or by misspelling an iden-
tifier in the function heading or in its declaration.

error ()
int p;
{

p=0;
}

ISO code item-1 illegal in strings

A string or character constant contains an illegal character whose 1ISO
(ASCII) code value is item-1 (decimal). This is most commonly caused
by attempting to include control characters, such as newline, in strings
explicitly rather than by means of the \n escape sequence. Correct
the program by replacing such explicit characters with their escape code
equivalents.

‘ error ()
{
printf("line 1l\nline 2"); * correct *\
printf ("Two bells \07\07"); * correct *\
printf("line 1
line 2"); * wrong *\

}
label ”item-1" has already been defined in this function

Within any function a particular label may only be used once as the prefix
to a statement. This message is the result of using the given label as a
prefix on two or more statements.

error ()

72 TDS 179 00

112 13 tc C compiler

label "item-1” is used in function ”jitem-2” above but is not defined there

The named function contains a goto statement or assembly-language
statement which references a label which has not been attached to any
statement within the function. Note that C restricts the use of the goto
statement to transfer control within a function; it is not possible to use
goto to transfer control out of a function.

error ()

{

goto somewhere;

}

Note that unknown identifiers used in asm statements are implicitly de-
clared as labels in case they may be forward references to real labels.
This means that misspelling identifiers in asm statements may result in
this message.

left operand of ”item-1” is not an Ivalue
An lvalue is an expression referring to a manipulable region of storage.

This message indicates that the given operator demands an Ivalue but
its operand does not refer to appropriate storage.

error ()
{
int x;
&x = 12;
}

left operand of .’ must be a structure

The operator ‘.’ is used to select a particular field from a structure. This
message indicates that ‘.’ has been used to select a field from an ob-
ject which is not a structure and therefore cannot have any fields to be

selected.
error ()
{
int x;
x.x = 0;
}

macro expansion stack full
During macro expansion, the expanded macro with actual parameters

substituted for formals is held in a 4KB buffer. This fatal error message
is issued when this buffer has been filled.

72 TDS 179 00

13.3 Compiler error messages 113

macro text store full
This fatal error message is issued under two circumstances:

1 The body of a #define macro is too long (currently the limit is
1023 characters).

2 When expanding a function-like macro the size of the actual ar-
guments exceeds 1023 characters.

It is not feasible to give a simple example of a program which would
generate this fault.

missing)

A right parenthesis has been omitted from an expression or parameter
list. This is commonly caused by mismatching parentheses in complex
expressions or by forgetting to depress the shift key when typing ‘)’ and
getting a different character, ‘9’ in the following example.

error ()

{

int a;

a = 2*(a+l19;
}

missing operand

An expression contains an operator which has not been given a required

operand.
error ()
{
int a;
a=-); /* no operand for the "-" */
}

”jtem-1” must be within a loop

The keywords break and continue are used to control the execution
of a loop (for, while, or do). This message indicates that break
or continue has been found but not within the body of a loop.

error ()
{

break;
}

72 TDS 179 00

114 13 tc C compiler

%’ must have integer operands

The modulus operator, ‘%’, returns the remainder from the division of its
operands, both of which must yield integer values.

error ()
{

int n;

n =123 % 4.5;
}

not a constant

This message is generated when a constant value was expected but
something else was found.

error ()

{
int x;
switch (x) {

case x : x = 0;
}

}

”jtem-1” not declared

This message indicates that an identifier has been used without having
been declared previously. Note that in C the case of letters in identifiers
is significant. The error can be the result of mis-spelling an identifier or
simply forgetting to declare it.

error ()
{
int Thing;
thing = 0;
}

number of macro actual parameters does not agree with definition

This message is generated when a reference to a macro has been given
a number of parameters which is different from the number of parameters
specified when the macro was defined.

error ()
{
#define mac(x) x+1
int a, b;
b 0;
a = mac(b); /* right */
a mac(a, b); /* wrong */

}

72 TDS 179 00

13.3 Compiler error messages 115

one or more #endif lines inserted before extra #else here

This message is generated if an #else compiler control line is found
while the compiler was expecting an #endi £ control line. The compiler
assumes that the #endif for a previous #else has been omitted and
that the #else it has just found belongs to an enclosing #if statement.

error ()

{

#if 1

f#felse

ffelse /* no corresponding #if */
#fendif

}

only “extern” or “static” functions are allowed

This message results from attempting to define a function with a storage
class other than extern or static.

register error()
{
}

only one “default” statement is allowed per switch statement
The default statement prefix is used to specify the action to be taken in

a switch statement when an actual case has not been explicitly handled
by a case label. It follows that a second or subsequent default must

be in error.
error ()
{
int x;
switch (x) {
default : x = 1;
default : x = 2;
}

72 TDS 179 00

116 13 tc C compiler

operand of —> or unary * must have pointer type

The left-hand operand of the operators ‘=>’ and unary ‘*’ must be objects
which have a pointer type. This message indicates that the given operator
has been given an operand which has not been defined to be a pointer.

Unfortunately this message also results from errors in arrays. This is
because the C definition of array accesses is in terms of the unary ‘*’
and pointer ‘+’ operators.

error ()
{
int a;
struct point {int x,y;};
struct point b;
int x[10];

int p,q;
*a = 983;
b->x = 983;

a[pl[q]l = 983;
}

operand of unary “item-1” must be an Ivalue

An Ivalue is an expression referring to a manipulable region of storage.
This message indicates that the context demands an Ivalue but the ex-
pression given does not refer to appropriate storage. Note that a pointer
value (yielded by ‘&’) is not an Ivalue.

error ()
{

int x;

x = &12;
}

”item-1” operator not allowed in a constant-expression

Only a limited number of operators may occur in expressions which must
yield constant values at compile time. This message indicates that such
a constant expression contains a prohibited operator.

error ()

{
int a[(1,2)];

}

72 TDS 179 00

13.3 Compiler error messages 117

original and result types for cast must be scalar or pointers

A cast may not involve array or function types, although pointer to array
and pointer to function types are permitted.

error ()
{
(int []) 0; /* can’t cast to an */
/* array of int */

}
”jtem-1” previously declared as ”item-2” may not be redeclared as ”item-3”

This message results from attempting to declare an object when it has
already been declared.

error ()

{
int a;
float a;
}

sizeof operand must be a type name or unary expression

The sizeof operator takes as its argument something which either has
or implies a requirement for a number of bytes of storage. It is this
number which is returned as the result. The message indicates that the
argument given to sizeof is not associated with a quantity of storage.

error ()

{
int a;
a = sizeof (else);

}
statement expected here

A statement which controls another statement has been specified without
any statement to be controlled.

error ()

{
int x;
if (x) else;

72 TDS 179 00

118 13 tc C compiler

storage class incompatible with a previous declaration

This message is issued when a declaration contains more than one stor-
age class specification.

error ()

{
}

string constant too long

static extern int x;

The Parallel C compiler limits the size of string constants to 255 charac-
ters. This message is generated if a string constant is found with more
than 255 characters. This error is often caused by omitting the clos-
ing double quote of a string constant, with the result that a section of
program text is interpreted as part of the string. Because this can lead
to total confusion later the error is considered fatal and compilation is
abandoned.

error ()

{

print£("123456789012345678901234567890\
1234567890123456789012345678901234567890\
1234567890123456789012345678901234567890\
1234567890123456789012345678901234567890\
1234567890123456789012345678901234567890\
1234567890123456789012345678901234567890\
1234567890123456789012345678901234567890") ;

}
struct tag ”item-1” not declared yet

This message results from an attempt to declare a structure before the
structure tag has been declared. It is only possible to declare pointers
to structs which have not yet been defined.

error ()

{
}

struct x p;

72 TDS 179 00

13.3 Compiler error messages 119

structure of this type has no "item-1” field

The operator ‘.’ has been used to select the named field from a structure
but the structure does not contain a field with that name.

error ()

{
struct coord {float x, y;};
struct coord point;
point.z = 0;

}

switch expression must have integer type

The expression used to select a particular case in a switch statement
must yield an integer value.

error ()

{
float x;
switch (x) {
case 1l : x =

}

0;

}

syntax error in compiier-control (#) line

This message is generated when part of a compiler control line cannot
be understood. The error could be caused by terminating an #include
control line with a semicolon.

error ()

{
#include <fred>;

}
too many Iinitializers for object of type “item-1”"

This message indicates that a declaration has included an initialization
which contains more items than the object being initialized.

static float n = {1,2}; /* n can only take*/
/* 1 value not 2 */

error ()

{

}

72 TDS 179 00

120 13 tc C compiler

too many macro parameters

The compiler currently limits the number of parameters in any macro to
32. This fatal error message indicates that the limit has been exceeded.

Trror (9] .

#define silly(P1,P2,P3,P4,P5,P6,P7,P8,P9,\
P10,P11,P12,P13,P14,P15,P16,P17, \
P18,P19,P20,P21,P22,P23,P24,P25,\
P26,pP27,P28,P29,P30,P31,P32,P33) O

}

too many names

The program has used so many identifiers that the compiler’s dictionary
has become full leaving no space for new identifiers. It may be possible
to solve the problem by replacing some long identifiers with shorter ones
or by splitting the file being compiled into two or more files which can be
compiled separately.

If neither of these alternatives works it will be necessary to compile the
file on a system with more memory.

It is not feasible to give a program which demonstrates this error!
too many nested #include files ‘

This message results from an attempt to include a file which needs a
file to be included which needs a file to be included and so on to the
limit of the compiler's ability to open files (currently three include files
open at once). One possible cause of this would be a file attempting
to include itself! Remedial action is to reduce the depth of include file
nesting, perhaps by textual substitution of one of the more deeply-nested
files.

It is not feasible to give a simple example of a program which would
generate this fault.

72 TDS 179 00

13.3 Compiler error messages 121

type “item-1” may not be "unsigned”

The keyword unsigned may only be applied to a restricted selection of
type verbs. In particular, £loat and double may not be specified as

unsigned.

error ()

{
unsigned int a /* right */
unsigned short b /* right */
unsigned char c /* right */

unsigned float d; /* wrong */

unsigned double e; /* wrong */

~

~,

}

type “item-1” not allowed

This message is the result of attempting to declare an array of objects
which cannot be combined into arrays, functions for example.

error ()

{

}
unary ”item-1” may not have an operand of type ”item-2”

static int *x[12]();

This message indicates that the given unary operator has been applied
to an operand of the given type when such an operation is not permitted.

error ()
{
float £;
f = ~f; /* logical negation only */
/* applies to integers */

}
union type objects may not be initialized

This message indicates that an attempt has been made to initialise an
object which is a union.

union x {int p; float q;};
union x thing = 12;

72 TDS 179 00

122 13 tc C compiler

unexpected colon in statement context

This message is issued when a colon is found in an unexpected position.
One reason for this error is accidentally typing a colon at the end of a
statement rather than a semicolon.

error ()

{
int x;
x = 0:

}.
unexpected end of file (perhaps missing ” or */ symbol?)

This message results from the compiler reaching the end of the source
file when it was expecting more input. A common cause of this error is
omitting or mistyping the closing ‘* /’ of a comment or omitting the closing
double quote of a string constant.

error ()

{

/* This comment is never terminated
because wrong slash used here *\

}
unimplemented feature item-1

The program contains a feature which is correct C but which has not
been implemented in the version of the compiler being used. The only
remedial action is to recast the offending section of the program in a
different form.

error ()

{

enum hue {red, yellow, green=20, blue};
/* enum has not been implemented yet */
enum hue col;

col=green;

}
unknown size

This messages indicates that a statement requires the size of an object
to be known while that statement is being compiled but the actual size
cannot be determined.

error ()

{
int x;
x = sizeof (void);

}
72 TDS 179 00

13.3 Compiler error messages 123

value out of range

This message indicates that an initializing value is outside the range of
values that can be stored in the bit-field being initialized.

. Trror ()

static struct {int i:3; } x = {255};
}

System errors

This section gives a list of the error messages that may be generated during
compilation as a result of the interaction between the compiler and the operating
system. These messages give information about errors associated with the
compilation process itself and are independent of the C language and the general
form of source programs.

All of these messages are introduced by the phrase: ‘Fatal Error --'and
result in the termination of the compilation.

cannot open #include file ”filename”

An #include compiler control line has referenced a file which cannot
be accessed. Check that the filename has been spelled correctly and
. that it exists in the relevant directory

Note that the filename given in the error message is the full path
and name of the final file the compiler attempted to access; forms of
#include which require the compiler to search two or more directories
will not necessarily report the same filename string as specified by the
programmer.

/D and/or /U qualifiers are too long
As the compiler scans any D or U switches typed by the user, it converts
them into #define and #undef compiler control lines, and stores them
in an internal buffer. If this buffer is filled up, the compiler reports this
error. In practice, it is almost impossible to make this happen.
expecting pétch size: /switch

After a PC switch, the compiler expects to find a decimal integer param-
eter. This error is reported if no such parameter is supplied.

72 TDS 179 00

124 13 tc C compiler

more than one source file specified

The compiler will only compile one source file per run. Source file names
on the command line are distinguished from switches by the fact that they
do not start with the switch character. A common cause of this error is
to type, for example:

t4c cats -fo dogs.bin
instead of:

t4c cats -fodogs.bin

There must not be a space before dogs .bin if it is to be regarded as
a parameter of the FO switch.
range for patch size is 1 to 8 bytes

The message indicates that the PCn compilation option has been spec-
ified with an invalid value for the displacement value ‘n’. Refer to sec-
tion 13.2.2 for a discussion of this option.

. reason ...; please submit a CSR

This message indicates a fault in the compiler itself. In some cases the
reason may give a clue to a possible avoidance procedure but in all cases
such messages should by reported to INMOS by means of a Customer
Software Report (CSR).

If any other error messages have been generated before this fatal error
message it is possible that a previous error has confused the compiler.
Correcting the other errors may remove the cause of this message.

target must be /T4 or /T8 only: /switch
This error is caused by using a switch like —t 9, tor example.
target processor already specified: /switch

This could be caused by typing either of the following:

tc -t4 -t8 cats
t4c -t8 cats

or similar things. Each would flag the T8 switch as an error; the first,
because a T4 switch has already been given, and the second because
the t4c command implicitly specifies the T414 as the target processor.

72 TDS 179 00

13.3 Compiler error messages 125

unable to open filename as listing file

The host computer was unable to open the named file for output. This
might be caused, for example, by using an erroneous filename:

t4c cats -£f199:zot
unable to open filename as source file
The given filename has been specified in the command which invoked
the compiler but such a file cannot be accessed. Check that the filename
has been spelled correctly and that it exists in the relevant directory.

unknown switch /switch

The sequence of characters —switch was not recognised by the compiler
as a valid switch.

Code generator errors

Once the syntactic and semantic phases of compilation have been completed
the compiler attempts to generate transputer instructions for the program.

During this phase of compilation the compiler does not have access to the source
program and so error messages cannot include the offending statement but
simply give its line number.

The general form of these messages is:

Error: ...reason ... at line number

The following list describes the various reason messages, all of which are cond-
sidered fatal error messages.

byte initialization too complex

This message is issued when the initialization of a byte-sized object
(char) has specified a value which cannot fit into a byte. Note that
in Parallel C the range of values held in a byte is [0, 255].

error ()

{
static char ¢ = 1000;

}

72 TDS 179 00

126 13 tc C compiler

count for shift must be in range [0..32]

This message is issued when the compiler tries to fold a constant ex-
pression and discovers that a shift count is not in the range [0, 32].

error ()

{

int x;

x = 7<<50;
}

initialization too complex

error ()

{
static int i;
static int j = i;

Zero divide

This message is issued when the compiler tries to fold a constant ex-
pression and discovers that the divisor is zero.

error ()
{
int x,y;
x = 1/0;
}

13.3.5 Errors in assembler code

This section deals with a number of special errors which may occur in assembler
code. Other errors may occur in assembler code, and these are reported and
dealt with in the usual way. The distinguishing mark of the errors dealt with in
this section is that they are recognised at a relatively late point in the compilation.
For this reason, although they are reported on the display, they are not output to
the listing file. In order to save messages resulting from these errors, the output
to the display could be redirected into a file.

These error messages have the following format:
*opcode : message at line In in file fn

opcode is replaced by the intruction mnemonic or pseudo-op coded on the line
where the error happened. In specifies the source line number. The file specifi-
cation is omitted unless the error happened in an #include file, in which case
fn is the filename in question.

72 TDS 179 00

13.3 Compiler error messages 127

In the descriptions below, only the message field is mentioned.
constant expected after ”-”

This error would be reported for code like the following:

asm {
ldc -foo;
}

Only a numeric constant is valid after the ‘=",

operand form
This error will be reported when an opcode which cannot have a symbolic
operand is given one. For example:

int foo;
asm {
1ldnlp foo;

}
1dnlp is not one of the opcodes allowed to have a symbolic operand.

constant expected

This error report occurs with the byte pseudo-op. For example:

int foo;
asm {
byte foo;

}
The byte pseudo-op must be followed by a constant.

operand type wrong

This is reported when an opcode which is allowed to be foliowed by a
symbolic operand is in fact followed by a label:

foo:
asm {
1d1l foo;

}

72 TDS 179 00

128 13 tc C compiler

external operand not allowed

This error is reported when an opcode which is allowed to be followed by
a symbolic operand is followed by an identifier with storage class extern
which is not allocated storage by the declaration currently in scope.

extern int foo;
asm {
1d1l foo;

}

label required

This error may be reported for the j and cj opcodes. If these are
followed by a symbolic operand, it must be an identifier defined as a
label.

int foo;
asm {

j foo
}

unknown opcode

This error is reported for assembler statements whose opcodes do not
appear in the list in appendix C.

asm {
foo 123;

}
syntax error

This error is reported when the format of the assembler statement is so
peculiar that the compiler cannot understand it at all.

int foo;
asm {
1ldc 123 foo;

}

72 TDS 179 00

14 C language
implementation

This chapter contains technical information about the way the C language is
implemented on the transputer. Note that the information in this chapter applies
only to the current version of the compiler; it is not guaranteed that future versions
of the compiler will behave in the same way.

14.1 The C language

Currently, there is no internationally agreed standard for C. The definition of C
adopted by 3L is the one given by Kernighan and Ritchie (the designers of the
language) in The C Programming Language[1], except for the differences noted
here. Henceforth their definition will be referred to as ‘K&R C'. In order to use
Parallel C, you will need access to the information in this book, which contains
an excellent tutorial introduction to computer programming in general as well as
the definition of C.

Because most other implementations of C are also based on Kernighan and
Ritchie’s definition it is possible to move C programs quite freely between different
computers provided the programs avoid the use of extensions to K&R C peculiar
to individual machines.

Unfortunately, although much of the power of C comes from the library functions
for input and output of data, string handling and so on supplied along with most
compilers, K&R C does not define a set of functions which all compilers must
provide. This is not as much of a problem as it might be because most compilers
agree about the definitions of the the commonly used functions. The library
functions supplied with Parallel C (see chapter 15), with the exception of the
low-level 1/0O functions, are common to almost all implementations of C; it is not
guaranteed however that these functions will have exactly the same effect as
their counterparts in other versions of C.

The differences between Parallel C and K&R C are described here. Section
numbers in the text refer to the section numbers in the C Reference Manual
(appendix A of The C Programming Language).

14.1.1 Restrictions

The following features of K&R C are not allowed in Parallel C.

72 TDS 179 00

130 14 C language implementation

Loose type checking of ‘.’ and —> operators

Section 7.1 of K&R C states that the left operand of the operators ‘.’ and ->
must be a structure and the right must be the name of a member of that struc-
ture. Section 14.1 states however that the compiler allows any /value as the left
operand of ‘.’ and any expression of pointer or integer type as the left operand of
=>. The rule of section 7.1 is followed, in disallowing examples like the following
one:

struct { int p, q; } s;

17;

White space within compound operators

Assignment operators like ‘+=" are single tokens whose parts (‘+’ and ‘=") may

not be separated by white space. If ‘+ = is written instead of ‘+=’, an error
message will be printed by the compiler.

Use of sizeof in array declarations

Constant expressions used in an array declaration may not contain the sizeof
operator. This example is illegal:

char v [sizeof(int)];

#1line ignored

The #1ine compiler control line is accepted but ignored.

Anachronisms not allowed

Both of the anachronistic forms =op and int x 3; described in section 17 of
K&R C are considered illegal.

Assignments should not be specified using the notation x=-1, rather the mean-
ing should be made clear by use of one of the following forms:

X -=
X

1; /* meaning x = x - 1 */
= -1;

or /* meaning x (-1) =*/

The correct modern form of the initialised declaration int x 3; s
int x = 3;

72 TDS 179 00

14.1 The C language 131

14.1.2 Extensions

The following language features are allowed in Parallel C, but not in K&R C:

Dollar sign in identifiers

The dollar sign ‘$’ may appear in identifiers. The dollar sign is treated as though
it were a letter. The following are all acceptable identifiers:

$
rate$
$_max9

More significant characters in identifiers

Two identifiers are deemed by the compiler to be the same if their first 31 char-
acters match (K&R C says 8 characters). Any additional characters are ignored.
This rule also applies to external identifiers when a file of functions is being
compiled.

If C programs are to be portable to many different compilers, they should only
use identifiers which are distinct in the first 8 characters, except for external

identifiers which should be distinct in the first 6 characters whether or not the
distinction between upper and lower case letters is ignored.

Assignment to whole struct/union variables

In K&R C, all that can be done with a struct variable is to create a pointer to
it (using the ‘&’ operator) or access one of its members (using the ‘.’ operator).

In Parallel C, the assignment operator ‘=" may be used to copy all of the members

of a struct variable at once. If one operand of ‘=" is a struct then the other
must be a struct of the same type. For example:

struct { int p, q; } x, y ;
x.p=3; x.q=17;
y = x; /* struct assignment */

After this structure assignment, y . p has the value 3 and y . q has the value 17.

72 TDS 179 00

132 14 C language implementation

~e

struct tag { int p, q; }

clear (item)
struct tag item;
{
item.p = 0; item.q = 0;
}
example()
{
struct tag pair;
pair.p = 3; pair.q = 4;
clear (pair);
return(pair.p + pair.q);
}

Figure 14.1 Example of the use of struct arguments

Both assignments in the example below are incorrect because the types of the
operands for ‘=" do not match.

~

struct { int p, q; } x
struct { int a, b; } y
int i;

~

x = i; /* one integer, one struct */
x =y; /* same size, but different types */

Function arguments may also be struct types (K&R C allows only pointers
to structs as arguments). struct arguments are declared and used in the

same way as any other type.

The result returned by the function example in figure 14.1 will be 7 because,
like all other types of function arguments in C, st ruct arguments are passed by
value: clear cannot affect the contents of the structure pair which is passed
to it, since it works with a copy of pair named item.

Restrictions on struct member names relaxed

In K&R C, the same member name may occur in different structures only if
the fields identified by the member name and all preceding fields are the same.
Parallel C makes no restrictions on the use of the same member name in different
structures. Again, programs which must be usable with other C compilers should

not make use of this fact.

72 TDS 179 00

14.2 System-dependent features 133

type-name syntax relaxed

Kernighan and Ritchie give the definition of the type-name construct as:

type-name: type-specifier abstract-declarator

This allows only one type-specifier before the abstract-declarator, disallowing
expressions like:

sizeof (long int)
(unsigned short) small

Multiple type-specifiers like long int are allowed in this context by other im-
plementations of C, and by Parallel C.

14.1.3 Keywords

The following identifiers are reserved for use as keywords, and may not be used
otherwise:

int extern else
char register for
float typedef do
double static while
struct goto switch
union return case
long sizeof default
short break asm
unsigned continue fortran
auto if void
enum

The keywords enum and void are additional to the keywords defined in the C
Reference Manual part of Kernighan and Ritchie’s book. The keyword entry
is not implemented.

14.2 System-dependent features

Using the features described in this section may cause different effects ‘with
different C compilers.

72 TDS 179 00

134 14 C language implementation

14.2.1 Data type enum not allowed

Some C compilers have extra data types which are not part of K&R C: void
and enum. void is a special data type with no values, normally used to indicate
that a function returns no value. The enum data type allows the programmer to
construct new data types by enumerating the values which variables of that type
may take, as in Pascal. For example, a variable of type colour might take any
of the values red, green or blue.

Parallel C does not include enum types, but does provide void.

14.2.2 All bit fields unsigned

Parallel C only permits bit fields in structures to be integers. The class of integer
(int, short, long etc.) is ignored: all bit fields are taken to be of type
unsigned int. This restriction is permitted by K&R C (section 8.5).

14.2.3 >> operator

The use of the >> operator results in a logical shift rather than an arithmetic shift,
that is, zeros are brought in at the most significant end of the operand rather
than copies of the sign bit. As a result the value of the expression (-1)>>1 is
7FFFFFFF ¢ and not FFFFFFFFqg (—1).

14.2.4 Register variables

The register storage class is always ignored in Parallel C.

14.3 Predefined macros

The following macros are defined with the value ‘1’ for every compilation:
_transputer 3L _IMST4 or _IMSTS8 or ;IMSTBA

_IMST4 is defined for compilations done by T4C or TC -T4, _IMSTS8 is de-

fined for compilations done by T8C or TC -T8, and _IMST8A is defined for

compilations done by T8C -T8A or TC -T8A. Any of these predefinitions may
be cancelled by the Umac switch — see section 13.2.4.

72 TDS 179 00

14.4 Handling of #include files 135

14.4 Handling of #include files

Handling of #include lines is discussed in The C Programming Language[1]
p. 207. When the compiler encounters an #include line, it searches for the
specified file in a sequence of directories known as the include list. This consists
of the following, which are searched in this order:

1 The current directory — except in the case of lines of this format:

#include <filename>
2 The ‘standard places’. These are defined in one of the following ways:

e The user has defined the environmental variable ISEARCH to
specify a series of directories.

¢ |If the X compiler switch is used, the standard places are excluded
from the include list.

3 Directories which have been specifically added to the include list at com-
pilation time by means of the I switch — see section 13.2.3.

All the directories which are added to the include list, either by the ISEARCH
environment variable or by the I compiler switch are assumed to be directories.
If the filename specified in the #include line includes a directory specification,
an attempt is made to concatenate it to each of the directories in the include list
in order to find the file.

14.5 Assembly language

This section shows you how to use the ‘in-line assembler’ which is built into the C
compiler to write programs containing embedded transputer assembly language
instructions. It is assumed that you are already familiar with the transputer’s
architecture and machine code. If you are not familiar with these topics you will
need to read in addition the ‘Transputer instruction set: a compiler writer's guide’
[12].

If you use assembly language you may find the decode utility described in
chapter 7 useful. It allows you to disassemble the object files generated by the
compiler and read the machine code contained in them.

14.5.1 When to use assembly language

There are two main reasons for using in-line assembly language in a C program.

72 TDS 179 00

136 14 C language implementation

1 To take direct control of the hardware, for example to write a function
which sets the transputer error flag.

2 To improve the performance of short sections of critical code.

The C compiler’s in-line assembler is suitable for both these tasks. However, it
is not intended for writing large sections of code in assembly language. If you
need to do that, you should use a separate transputer assembler with its own
macros, storage allocation directives and direct access to external symbols.

14.5.2 Assembly language syntax

Assembly language instructions are inserted into a program using the asm state-
ment, which has the following syntax':

statement = “asm”, “{”, instructions, “}”;
instructions = instruction, “; ", [instructions J;

There are two basic forms of instruction, reflecting the division of the transputer
instruction set into direct instructions which have an operand field, and the zero-
address indirect instructions with no operand field®> which take their operands
from the three-register evaluation stack.

instruction = direct — indirect;
direct = direct opcode, operand;
indirect = indirect opcode;

Appendix C contains a list of the opcodes recognised by the compiler.

A function to set the transputer error flag could be written as:

set_error_ flag()

{

asm { seterr; 1}
}

Two more example asm statements are shown below.

asm { seterr; stopp; }
asm { 1dl 0; ajw -10; stl 2; 1ldc 123; stl 1; }

'See section 17.1, Standard Syntactic Metalanguage

2Actually, there are only direct operations. All the indirect operations are assembled as
particular literal operand values for one direct instruction called opz.

72 TDS 179 00

14.5 Assembly language 137

14.5.3 Literal operands

The operand of a direct instruction can be any literal 32-bit integer value. The
assembler automatically generates any p£ix or nfix bytes required to encode
large values.

operand = constant;

Decimal, octal and hexadecimal constants can be used; floating-point, character
and string constants are not allowed. Some valid examples are shown below.

#define XYZ 23
asm {
ldc 17; /* decimal */
lde Oxff; /* hex */
lde 0377; /* octal */
ldc XYZ; /* decimal 23, defined by macro */

}

Note that constant expressions like sizeof (int) or 10+7 are not allowed as
assembly language operands.

14.5.4 Variables as operands

The assembler allows C variables to be used as operands for the following direct
instructions:

Idl which loads a data word from memory and pushes it onto the evaluation
stack;

stl which pops a word from the evaluation stack and stores it in memory;
Idlp which pushes a pointer to a word in memory onto the evaluation stack.
The required syntax is:

instruction = “1d1”, identifier —

“1d1p”, identifier —
“st 1’ identifier;

72 TDS 179 00

138 14 C language implementation

We can now write a complete C example function which uses assembly language
to manipulate program variables.

main ()
{
int a, b=123, c=456;
asm {
1dl b; 1d1 c; /* load b and ¢ */
add; /* add them */
stl a; /* store result in a */
}

printf ("a=%d\n", a);
}

Storage class

An identifier used as the operand of a 1d1, 1d1p or st1 instruction must be the
identifier of a variable. The variable can have storage class auto, register
or static®. An extern variable can also be used, but only in the scope of
the declaration which actually allocates storage for the variable. The following
example is allowed:

int i = 17; /* storage for 'i’ allocated here */
fun ()
{
asm { ldc 123; stl i; }
}

The next example is not allowed, because storage for j is not allocated by the
declaration in scope. That declaration contains an explicit extern keyword,
which means that storage for j is allocated elsewhere (probably in a different
file).

extern int j; /* refers to storage elsewhere */
fun2 ()
{
asm { ldc 123; stl j; }
}

3The assembler automatically generates the extra 1d1 instruction required to load the base
address of the static area and converts the ‘local’ operation into a ‘non-local’ one.

“Restriction in V2.0: if a static or extern variable is accessed from within an asm
statement, there must be at least one C statement in the enclosing function which also uses a
static or extern variable (not necessarily the same one).

72 TDS 179 00

14.5 Assembly language 139

Type

Identifiers used as operands for 1d1, 1dlp and stl must be declared as
variables. Function identifiers, labels, struct member names, and tags like
struct tags cannot be used.

. Otherwise the type of a variable is ignored when it is used as an assembly
language operand. The 1d1 and st1 instructions always load or store exactly
one word, irrespective of how a variable was declared. If an object (e.g. a
struct) is longer than a word then only the first word is accessed. Take care
with char objects, which are shorter than a word: the whole word beginning at
the address of the char will be loaded or stored to.

14.5.5 Accessing complex structures

Expressions are not allowed as assembly language operands. The following
example shows some incorrect operands.

struct s { int value; struct s *link; };
int total=0;

sum (p)
struct s *p;
{
‘ while (p) asm {
1d1 p->value; /* wrong: p->value is */
/* an expression */
1d1 total; /* ok */
add;
stl total;
1d1 p;
1dnl 1link; /* wrong again: link */
/* is a member name */
stl P;
}
}

72 TDS 179 00

140 14 C language implementation

To make this example work, we can rewrite it as follows.

struct s { int value; struct s *link; };
int total=0;

sum2 (p)
struct s *p;
{
while (p) asm {
1d1 p; /* load pointer */
/*to base of struct */
ldnl O0; /* value: 0 offset */
/* from struct base */
1d1 total;
add;
stl total;
1d1 p; [/* struct base addr again */
ldnl 1; /* link: offset=1 word */
stl P’

}

In general, an object whose address is given by a complex expression (e.g.
an array element) can be manipulated in assembly language either by saving
a pointer to the object beforehand in C and then accessing the object via the
pointer, or by working out how the compiler will allocate starage for the object
and then calculating its address in assembly language.

For example, to store the character ‘*’ in element i of a char array A we can
use any of the following techniques.

1 Write in C.
char A[128];
int i;

£1() { A[i] = '*'; }
2 Save a pointer to the object in C.

£2() {
char *p = &A[i]; /* save pointer to it */
asm {
ldc 0x2A; /* ASCII ’'*’ */
1dl p;
sb; /* store byte */
}
}

72 TDS 179 00

14.5 Assembly language 141

3 Calculate the object’'s address in assembly language.

£3() {

asm {
ldc 0x2A;
1d1 i;
1dlp A;
bsub; /* byte subscript: &A[i] */
sb;

}

}

Use methods 1 or 2 if at all possible. If you use method 3 you may find that
your program will not work with future versions of the compiler because the way
in which storage is allocated for some object changes. If you do need to use
method 3, the decode utility described in chapter 7 can be used to find out how
the compiler has allocated storage for a program’s variables.

14.5.6 Labels and jumps

In the examples given so far, C control statements (e.g. while) have been used
to control the execution of assembly language statements. Sometimes though,
you may need to program jumps in assembly language. For example, you might
want to avoid storing an intermediate result back into a local variable in order to
be able to test its value using a C conditional statement.

To make programming jumps easy, the j and cj instructions permit C labels to
be used as operands.

instruction = “3°, label —

An identifier used as the operand of a j or c3j instruction must appear as a C
statement label somewhere in the body of the enclosing function.

72 TDS 179 00

142 14 C language implementation

The example below shows the list-summing function with its while statement
recoded in assembly language.

struct s { int value; struct s *1link; };
int total=0;

sum3 (p)
struct s *p;

{

/* access extern variable in C before
using it in asm */

total = 0;
loop: asm {
ldl P/
cj out;
1d1 P’
ldnl O; /* p->value */
1dl total;
add;
stl total;
1dl p;
1ldnl 1; /* p->link */
stl P; /* p = p->link; */
j loop;
}
out:
}

Note the forward reference to label out. Any identifier which appears in an
asm statement and which has not yet been declared is automatically declared
as a forward reference to a label, which must be defined before the end of the
function.

Labels within asm statements

C labels must be attached to C statements. It is not possible to label individ-
ual instructions within an asm statement. If you need to do so, the instruction
sequence must be split up into multiple asm statements, each of which can be
labelled.

asm {

ldc 17;
L: stl i;
}

The above example is incorrect, because a label has been put inside an asm

72 TDS 179 00

14.5 Assembly language 143

statement. It must be split up:

asm { ldc 17; }
L: asm { stl i; }

Jump optimisations

The assembler always generates minimum sized jumps. Note that it may also
delete unreachable jumps and merge jumps-to-jumps.

14.5.7 Literal machine code

The assembler allows you to put literal machine code directly into the object file
using the byte pseudo-operation.

instruction = “byte”, code list; code list = constant, { “, ", constant };

For example, the following asm statement outputs the actual machine code for
a ret instruction:

asm { byte 0x22, OxFO; }

14.5.8 Errors

The messages produced by the compiler when it detects an error in an assembly
language statement are of the form:

*opcode: message at line n of file f

The opcode, line and file parts refer to the name and location of the offending
instruction; the various possible messages are included in the full list of compiler
error messages in chapter 14. The filename part of the message is omitted
unless the error is within an #include file.

The following error message can appear if you mis-spell an identifier in an asm
statement:

label "ident" is used in function "f" above but is
not defined there

This is because the mis-spelt identifier is assumed by the compiler to be a forward
reference to a label.

72 TDS 179 00

144 14 C language implementation

14.6 Data-type representations
The primitive C data types are represented on the transputer as follows:

char byte (unsigned)

int word
short word
long word

float word (IEEE single-precision format)
double 2 words (IEEE double-precision format)
pointer word

On T414 and T800 transputers, a byte is 8 bits and a word is 32 bits.
char variables occupy 8 bits, and can hold values between 0 and 255.

unsigned short variables occupy 32 bits, but only the 16 least significant
bits are used in expressions.

The |IEEE floating-point formats used to hold £1loat and double quantities on
the transputer are described in detail in the |IEEE floating-point standard[9]. The
way in which these standard formats are represented in transputer memory is
-.shown in figure 14.2.

msb byte number Isb
Lz [6 [5 [4] 3]2 1]11]o]
g e fraction
i 11 52 bits

Isl e fraction

nrs 23 bits

Figure 14.2 Representation of floating-point values

All types except char are automatically word aligned by the compiler.

struct and union types are always rounded up to a whole number of words,
even if they contain only byte objects.

Successive bit fields in a stxruct are allocated starting from the least significant

(lowest addressed) end of a word. Only integer fields are allowed, and plain int
fields are treated as unsigned. No field may be wider than 32 bits.

72 TDS 179 00

14.6 Data-type representations 145

struct sl { char first;
int bitsl:7, bits2:7;
char last; };

struct s2 { char first, last;
int bitsl:7, bits2:7; };

struct s3 { char first;
int bitsl:7;
char last;
int bits2:7; }:;

Figure 14.3 Effect of Alignment on struct Size

Adjacent bit fields are considered together when they are being packed into
words. A sequence of fields occupying up to 8 bits is packed into the next byte
in the structure. Longer sequences are aligned starting at the next word in the
structure and padded out to a whole number of words (even if following char
fields could otherwise be packed into this padding space). Figure 14.3 shows
the effects of this on the total size of structures. In s1 the fields bits1 and
bits2 together occupy 14 bits and are therefore aligned to start at the next
word boundary (offset 4 bytes). They occupy the whole of this word, forcing
last into the next word (offset 8 bytes), making s1 3 words long after being
rounded up from 9 bytes.

In 82 the two char items £irst and last have been brought together reducing
the size of the struct to two words.

In s3 the bit fields have been separated by last. This prevents the bit fields

being combined into a unit of 14 bits, leaving them as two byte-sized objects.
The overall effect is to reduce the size of the struct to four bytes (1 word).

72 TDS 179 00

146 14 C language implementation

72 TDS 179 00

15 The C run-time library

15.1 Purpose of the run-time library

The Parallel C run-time library is a collection of compiled functions which perform
commonly-used operations not included in the C language itself: reading and
writing data, and evaluation of mathematical functions like sin and cos are the
most obvious instances.

This chapter describes the conventions used to call library functions and de-
scribes their arguments and lists the available routines grouped by function (I/0,
string handling, etc.). Chapter 16 lists the available routines in alphabetic order,
giving a description of the effects of each.

15.2 Conventions

This section describes how to use standard header files in calling library functions
and how to interpret the notation used in chapter 16 to specify the number and
types of arguments they require.

Run-time library functions are used in exactly the same way as user-defined
functions (most are in fact just normal C functions anyway). To use a library
function, a program must first declare the name of the function to be used, and
indicate that it is external to the program (storage class extern).

So that the declarations of library functions in user programs are always correct,
standardised header files are provided with the system for each group of library
functions. The programmer uses the C #include statement to access the
contents of the header file before making use of any of the functions declared
there. As well as containing the required function declarations, the header file
will include declarations for any special data types required by its functions. For
example, consider the standard I/O functions. These are declared in the header
file stdio.h. Before the first use of any of the standard I/O functions, a program
must contain the statement:

#include <stdio.h>

This declares all of the standard I/0 functions like print £ and getc as well as
defining the macros EOF and NULL which are used in communication between
the I/O functions and user programs. EOF has the value (—1); NULL has the
value 0.

Programs should always use the header files provided with the compiler rather
than attempting to provide their own declarations for library functions since the

72 TDS 179 00

148 15 The C run-time library

declarations of some functions will differ from the obvious declaration implied by
the function synopses in this chapter.

The function synopses indicate how to call library functions. Information about
required argument types and function result types is presented in the form of a
C function declaration prefixed by #include statements which indicate which
header files, if any, must be used in order to access the function. For example,
the synopsis for the £gets function looks like this:

#include <stdio.h>

char *fgets(str, n, stream)
char *str;

int n;

FILE *stream;

This means that £gets returns a result of type (char *) and has three ar-
guments of types (char *), (int) and (FILE *), where FILE is a data
type declared in the header file stdio.h. This header file must be included in
all programs which use the function.

Ellipsis is used in function synopses to indicate that a function has a variable
number of arguments, for example the print £ function:

#include <stdio.h>
printf (format[,argl[,arg2[,...1]1])
char *format;

The synopsis shows that print£’s first argument must be a character pointer.
The square brackets [] indicate that the enclosed arguments are optional; el-
lipsis “...” indicates repetiton. Where argument types are not shown in the
synopsis (e.g. argl, arg2, ... for printf£) the allowed argument types are
discussed in the text.

Functions implemented as macros are marked with a dagger ().

15.3 Header files

The following header files are supplied with the compiler.

ascii.h errno.h sema.h thread.h
assert.h limits.h serv.h time.h
boot .h malloc.h setjmp.h timer.h
chan.h math.h stdio.h

chanio.h net.h stdlib.h

ctype.h par.h string.h

72 TDS 179 00

15.4 Library modules 149

15.4 Library modules

This section lists the library functions provided, divided into the following func-
tional groups.

o Stream /O to files and devices, including facilities for random file access
o Classification of ASCII characters (e.g. is a character an ASCI! letter?)
o String manipulation, including string copy and string comparison

o Character conversion (e.g. convert uppercase letters to lowercase)

o Numeric conversions between ASCII string and binary representations
for integer and floating-point values

o Mathematical functions, including logarithms and trigonometric functions

o Dynamic (‘heap’) memory allocation and deallocation

o Creating additional execution ‘threads’

e Operations on software semaphores

e Accessing the transputer’s timer facilities

e Accessing the transputer's message-passing primitives

e Support for the flood-fill configurer's network protocol

e Functions to allow multi-threaded access to the run-time library:

¢ Various other miscellaneous functions
Some background information common to all of the functions in a group is pre-
sented in this section rather than being repeated with the description of each
individual function. In particular, the concepts on which the standard /0O system
is based are presented here: stream, file pointer etc.

15.4.1 Input/output

The functions which are provided to read and write data fall into two groups: the
low-level 1/0 functions and the standard 1/O functions.

72 TDS 179 00

150 15 The C run-time library

Standard 1/O

The standard I/O functions provide a portable 1/O interface for C programs. They
are available in the form described here in most implementations of C. They
also provide buffering between user programs and files or devices. This means
that I/O transfers to or from real files remain efficient even if data is transferred
between the file and the user program in small units (e.g. one byte at a time).
On output, user data is placed in a data buffer allocated ‘behind the scenes’
by the standard I/O functions, until the buffer becomes full, at which point the
contents of the buffer are written en masse to the file. This technique achieves
an overall speed-up because disk devices are optimised for block transfers. The
situation for input is similar.

Other standard I/0 functions allow random file access and conversion of numeric
data between internal (binary) and external (character string) representations.

All of the functions described in this section require the calling program to include
the header file stdio.h before they may be called.

Before a user of the standard I/0O package can read or write the data in a file,
a path to the file must be opened by calling the fopen function. The name of
the file is passed to fopen, which, if the file is accessible, returns a pointer to
a structure of type FILE. This file pointer must be used by the calling program
to refer to the file in subsequent I/O operations (£putc, for example, requires
a file pointer argument to identify the file which is to be written). The data type
FILE is declared in the header file stdio.h.

After performing I/O on an open file, the path to the file may be broken by closing
the file. Files should be closed when they are no longer in use, since some
implementations place a limit on the number of files which may be open at once.
Files may be opened again after they have been closed. Having more than one
path open to the same file at any point in a program should be avoided, since
some implementations may disallow or restrict this. Closing all files explicitly at
the end of a program is, however, unnecessary; this is done automatically by the
standard I/O system.

72 TDS 179 00

15.4 Library modules 151

#include <stdio.h> /* standard I/O declarations */

main ()
{
FILE *fp; /* file pointer variable */
fp=fopen("fred", /* file name */
"w"); /* open for writing */
fprintf (/* formatted output routine */
fp, /* file pointer (identifies file) */
"Hi!\n" /* text string to be written */
):
fclose(£fp); /* disconnect file */

Figure 15.1 An example of using fopen and fclose

Figure 15.1 gives an example where a file named £red is opened, some ASCII
data is written out to it and the file is closed. For clarity, no error checking is
performed.

For convenience, three file pointers are always automatically opened. These are
declared in stdio.h as follows.

FILE *stdin; Thisis the standard input stream. By default on most systems,
stdin is connected to a terminal keyboard.

FILE *stdout; This is the standard output stream. stdout on most sys-
tems is the display device (VDU or printer) of a terminal.

FILE *stderr; This is the standard error stream, used by programs for out-
putting error messages. It too is normally opened on the terminal output

device.

To simplify writing programs which read one sequential input file, process it and
write another sequential output file, most implementations of C provide some
means external to a program (e.g. the command language) to connect at run
time files or devices other than the default to the standard input and output of
a program. This means that programs may be written and tested using the
terminal for standard input and output, then run unchanged using files for input
and output, yet the program itself need not open files.

72 TDS 179 00

152 15 The C run-time library

Stream 1/0

The model of I/O supported by the standard I/O package is known as stream
/0.

In the stream 1/O model, a file is considered as a sequence of char values.
A notional file pointer, maintained by the I/O functions, indicates the character
position within the file at which the next character will be read or written. The
file pointer is advanced automatically as characters are read or written. Random
file access is supported by allowing user positioning of the file pointer.

The basic operations provided by the standard I/O package in support of the
stream |/O model are therefore ‘read a character (Egetc), ‘write a character
(£putc), ‘reposition file pointer’ (Eseek) and ‘read file pointer’ (ftell). Other,
higher level, operations (e.g. write a string) are built up directly from these
primitive operations. Because of this, calls on the character level functions and
the higher level functions may be freely intermixed and characters will still be
transferred in the expected order.

Devices such as terminals are included in the stream 1/0O model: characters may
be read or written from them as appropriate (in principle, one at a time) but
positioning operations are not supported.

Binary 1/O

The basic units in the above discussion of stream I/O are ‘characters’: values
of type char. These are integers which stand for graphic character represen-
tations in the encoding scheme of the host computer system (e.g. the ASCII
encoding for ‘A’ is 65, in the EBCDIC scheme used by IBM it is 193). The C I/O
system, however, does not require that the values transferred be valid character
representations. In fact, any binary value which can be represented in a char
variable may be written to a file (and later read back unaltered). In Parallel C
any value in the range 0 to 255 will fit in a char. Arbitrary binary data can be
stored in files using the standard I/O system by recording it as sequences of
char values.

By default C reads and writes text files. If you need to process binary data
you must inform the run-time library that a particular file is to be processed
as a binary file. This can be done either by using the ‘binary’ specifier b in
a call to fopen (for example, fopen ("x.bin", "rb")) or by altering the
setting of the global variable extern int _fmode;, which controls the run-
time library’s default behaviour.

72 TDS 179 00

15.4 Library modules 153

You can assign one of two flag values to _fmode:

o O_TEXT

o O_BINARY
Both of these flag values are defined as macros in the <stdio.h> header file.
For example, to open a binary file binfile for input, you might write:

#include <stdio.h>

main ()
{
FILE *fp;
extern int _fmode; /* declare _fmode */
_fmode = O_BINARY; /* open for binary access */

fp = fopen("binfile", "r");
}

Note that _fmode will not be altered by the C library: if you wish to open a text
file again once you have set _fmode to O_BINARY, you must explicitly change
_fmode back to the default ‘value of 0 TEXT: _fmode = O_TEXT.

Files processed or created by redirecting the standard input, output and error
streams are always text files. You cannot process binary files by redirecting
standard input and standard output in this way.

Text 1/O

Text /O in C is simply a special case of the binary /O discussed above where
the values transferred are restricted to the valid character codes for the host
system.

Human-readable text files are divided into lines. Line-breaks are represented in
the stream /O model by the newline character, ‘\n’. The integer code for this
character is system-dependent. On output, newline characters may be included
at arbitrary points in the text. On input, programs detect the end of a line by
comparing characters being read with the value ‘\n’.

72 TDS 179 00

154

15 The C run-time library

Standard /O functions

The library functions which form the standard /0O package are listed in this sec-

tion.

clearerr
fclose
fdopen
feoft
ferrort

f£flush
fgetc

fgets
fileno!
fopen
fprintf
fputc
fputs
fread
freopen
fscanf
fseek

ftell

fwrite
getct
getchart
gets

printf
putct
putchart
puts

putw

resets the error and end of file indicators

closes a file

creates a FILE structure and associates it with a file descriptor
tests for end-of-file

returns a nonzero integer if an error occurs during read or write
operations

writes out any buffered information to the file

returns the next character from a file; generates a true function
call

reads a line from a file; the line is terminated by a NUL character
returns an integer file descriptor

opens a file

performs formatted output to a specified file

writes a single character to a file; generates a true function call
writes a string to a file

reads a specified number of items from the file

reassigns the address of a FILE structure and reopens the file
performs formatted input from a file

places the file pointer at a specified byte offset relative to the
beginning of the file, the end of the file or the current location in
the file

returns the current byte offset from the beginning of the file to the
current location within the file

writes the specified number of items to a file

returns the next character from a file; implemented as a macro
returns the next character from the standard input device

reads a line from the standard input device; the newline is re-
placed with a NUL character

performs formatted output to the standard output device

writes a single character to a file; implemented as a macro
writes a single character to the standard output device

writes a string to the standard output device; terminates the string
with a newline

writes a specified integer to a file

72 TDS 179 00

15.4 Library modules 155

rewind places you at the beginning of the file

scanf performs formatted input from the standard input device
setbuf associates a buffer with an input or output file

sscanf performs formatted input from memory

sprintf performs formatted output to a character string in memory
ungetc writes a character to a file buffer and leaves the file positioned

before the character

Low-level I/O

The low-level I/O functions transfer ‘raw’ user data to or from files or devices
in variable length blocks (down to one byte). The low-level I/O functions are
provided mainly for compatibility with other implementations of C; normally stan-
dard I/0 should be used. In low-level I/O files are accessed via ‘file descriptors’,
small integers returned by the system when a file is opened. Other functions are
provided to create new files and directly control the position in a file where data
transfers will take place.

The low-level I/O functions are:

close closes a file

creat creates a new file

isatty determines if a file descriptor is associated with a terminal

lseek places you at a byte offset within a file and returns the new position
as an integer

open opens a file for reading, writing or both

read reads a specified number of bytes from a file and places them in a
buffer

write writes a number of bytes from a buffer to a file

15.4.2 Mathematical functions

The mathematical functions calculate various standard mathematical functions
such as logarithms, sines, cosines etc.

The trigonometric functions operate on angles expressed in radians.

Errors are handled by returning impossible or unusual result values and setting
an error code in the external integer variable errno.

72 TDS 179 00

156 15 The C run-time library

abs returns the absolute value of the integer argument

acos returns the arc cosine of the argument

asin returns the arc sine of the argument

atan returns the arc tangent of the radian argument

atan2 returns the arc tangent of the division of the arguments

ceil returns the smallest value which is equal to or greater than the
argument

cos returns the cosine of the radian argument

cosh returns the hyperbolic cosine of the argument

exp returns the base e raised to the power of the argument

fabs returns the absolute value of the floating point argument

floor returns the largest integer which is less than or equal to the argu-
ment

fmod calculates the floating-point remainder of the division of its argu-
ments

frexp split a floating-point number into a normalised fraction and an inte-
gral power of 2

ldexp multiplies a floating-point number by an integral power of 2

log returns the natural logarithm of the argument

loglo0 returns the base-ten logarithm of the argument

modf breaks the argument into integral and fractional parts

pow returns the value of the first argument raised to the power of the
second argument

sin returns a value that is the sine of the radian argument

sinh returns a value that is the hyperbolic sine of the argument

sqrt returns the square root of the argument

tan returns the tangent of the argument

tanh returns the hyperbolic tangent of the argument

15.4.3 String handling

The C language itself allows the manipulation of single characters. Library func-
tions are provided to allow C programs to process variable-length strings of char-

acters.

index
memcpy

memset
rindex

find character in string

copies a given number of bytes from one memory location to an-
other

overwrites each byte of an object with a given character code

find character in string

72 TDS 179 00

15.4 Library modules 157

strcat concatenates two strings

strchr finds a specified character in a string

strcmp performs lexicographic comparison of two ASCII strings

strcpy copies one string to another

strcspn returns the length of the initial part of a string which does not contain
specified characters.

strlen returns the length of a string

strncat concatenates two strings up to a maximum number of characters

strncmp performs lexicographic comparison of two ASCII strings (up to a
maximum number of characters)

strncpy copies a maximum number of characters from one string to another

strspn returns the length of the initial part of a string which contains spec-
ified characters.

strtok returns a pointer to the first character of a token.

15.4.4 Character classlfication

The character classification functions described here are implemented as
macros. They return a nonzero value if their argument meets the condition
being tested and zero otherwise. The argument is a single integer.

isalnum! determines if the argument is alpha-numeric

isalphat determines if the argument is alphabetic

isasciit determines if the argument is an ASCII character

isentrlt determines if the argument is an ASCII control character

isdigit! determines if the argument is a digit

isgrapht determines if the argument is a printing character but not a space

islowert determines if the argument is a lowercase letter

isprintt determines if the argument is a printing character

ispunctt determines if the argument is a punctuation character

isspacet determines if the argument is a space, horizontal or vertical tab,
carriage return, form-feed or newline

isuppert determines if the argument is an uppercase letter

isxdigit! determines if the argument is a hexadecimal digit character

72 TDS 179 00

1568 15 The C run-time library

15.4.5 Conversions

These functions provide conversion operations between various representations
of numeric values: binary integers, binary floating-point and character string.
Some character mapping functions (upper/lower case mapping) are also pro-
vided.

atof converts an ASCII string to a numeric value (double)
atoi converts an ASCII string to a numeric value (int)
atol converts an ASCII string to a numeric value (1ong)

tolower converts uppercase characters to lowercase; returns lowercase
characters unchanged

_tolower! converts uppercase characters to lowercase; returns lowercase
characters unchanged

toupper converts lowercase characters to uppercase; returns uppercase
characters unchanged

_toupper! converts lowercase characters to uppercase; returns uppercase
characters unchanged

15.4.6 Dynamic memory allocation

Building complex dynamically changing data structures requires a different class
of storage from static or extern variables (which must be preallocated by
the programmer when a program is written and are therefore not flexible enough)
and auto or register variables (which disappear when the procedure which
created them returns; some dynamic data structures must be operated on by
many procedures).

This extra storage class is generally referred to as heap storage. In C, heap
storage is allocated by calling a library function (malloc) and remains until it is
explicitly released by calling another function (£ree).

calloc allocates and clears an area of memory

cfree deallocates the space allocated by calloc or realloc

free deallocates the space allocated by malloc or realloc

malloc allocates the specified number of contiguous bytes of memory

realloc changes the size of an area previously allocated by malloc or
realloc

72 TDS 179 00

15.4 Library modules 159

15.4.7 Date and time
The following functions return information about the time.

clock returns processor time used
time returns the current calendar time

15.4.8 thread package

The functions in this section allow a Parallel C program to create new threads
of execution within a single task.

Every thread executing on a transputer has a priority, which is either ‘urgent’
or ‘not urgent’ The header file <thread.h> defines the following literals to

represent this:
¢ THREAD URGENT
¢ THREAD NOTURG

thread_start general thread-starting facility

thread create simpler shorthand version of thread_start
thread priority returns current thread’s priority

thread deschedule make current thread momentarily unable to execute
thread restart restart a thread given a workspace pointer
thread_stop stop the current thread

15.4.9 sema package

This group of functions allows a Parallel C program to create and manipulate
semaphores, which can be used to synchronise the activity of several concur-
rently executing threads. The header file <sema .h> declares a new type SEMA
which is used by these functions.

sema_init initialise a semaphore

sema_signal perform the signal operation on a semaphore
sema_wait perform the wait operation on a semaphore
sema_signal n perform sema_signal n times
sema_wait n perform sema_wait n times

72 TDS 179 00

160 15 The C run-time library

15.4.10 timer package

Each transputer associates a hardware timer with the group of threads executing
at a particular priority. The following functions allow threads to manipulate the
timer associated with the priority at which they are executing.

timer_after indicates whether one time value is later than another
timer_ delay wait at least a specified number of ticks

timer now returns the current timer value

timer_wait wait until current timer reaches some value

15.4.11 chan package

The functions described here allow programs to access the transputer's basic
communication facility, which is to transfer a message across a channel. The
header file <chan.h> defines the following:

e a type CHAN representing the channel data type

e (CHAN *) literals for the input and output channels for each of the four
INMOS links attached to the transputer

e a (CHAN *) literal for the channel associated with the transputer's ex-
ternal event mechanism

e a CHAN literal for initialising channels to their inactive state
e procedures to initialise and reset channels

e procedures to send and receive communications across channels, with
variants to wait until the communication occurs or to fail after some time-
out interval.

The literals defined by <chan .h> are as follows; note that these literals are not
entered in the alphabetical list of library entry points.

LinkOInput input channel associated with link 0
LinkOOutput output channel associated with link O
LinklInput input channel associated with link 1
LinklOutput output channel associated with link 1
Link2Input input channel associated with link 2

Link20utput output channel associated with link 2
Link3Input input channel associated with link 3
Link3Output output channel associated with link 3
EventReq channel associated with external events
NotProcess_P value to which channel words are initialised

72 TDS 179 00

15.4 Library modules 161

The functions provided in the ‘chan’ package are as follows:

chan_init initialise a channel word
chan_reset resets a channel, along with any link hardware
- associated with it. -
chan_in_byte input a byte from a channel
chan_in_byte_t as above, with timeout
chan_in_word input a word from a channel
chan_in_word t as above, with timeout
chan_in_message input a message from a channel
chan_in_message_t as above, with timeout
chan_out_byte output a byte to a channel
chan_out_byte t as above, with timeout
chan_out_word output a word to a channel
chan_out_word_t as above, with timeout

chan_out_message output a message to a channel
chan_out_message_t as above, with timeout

15.4.12 net package

The functions described here allow tasks running under the flood-filling config-
urer’s network protocol to communicate without knowing the exact details of that

protocol.

net_send send a message into the network
net_receive receive a message from the network

15.4.13 par package

In a program in which many execution threads are active, access to the C run-
time library must be synchronised, so that only one thread may be performing
a library operation at one time. For example, if two threads attempted to allo-
cate a memory block at the same time (say, using malloc) then the run-time
library’s data structures could become corrupted. The required synchronisation
is achieved by a SEMA variable par_sema defined in the header file <par.h>,
which should be used by any thread wishing to use the C run-time library and
released when it is finished.

As an alternative, some of the more common functions used in concurrently
executing threads are available in an interlocked form, which include these

semaphore operations.

72 TDS 179 00

162 15 The C run-time library

par_malloc interlocked version of malloc
par_free interlocked version of free
par_printf interlocked version of printf
par_fprintf interlocked version of fprintf

15.4.14 Compatibility channel I/O

The functions in this category provide compatibility with previous versions of the
run-time library. To perform I/O operations on channels, new programs should
use the functions described in section 15.4.11.

_outword output a word to a channel (use chan_out_woxd)
_outbyte output a byte to a channel (use chan_out_byte)
_outmess output a message to a channel (use chan_out_message)
_inmess input a message from a channel (use chan_in message)

15.4.15 Miscellaneous

Other useful library functions are provided for halting program execution, non
local jumps, debugging etc.

assert program debugging routine

boot_peek peek at memory of (unbooted) neighbouring transputer
boot_poke poke into memory of (unbooted) neighbouring transputer
exit stop program

getenv access environment variables

longjmp returns to the context saved by set jmp

rand pseudo-random number generator

remove removes a file from the file system

serv_filter generates INMOS host file server protocol filter threads

setjmp saves the context of the calling function for a subsequent
longjmp call

strtol convert string to long integer

strtoul convert string to unsigned long integer

srand change seed for rand

system execute operating system command string

unlink removes a file from the file system

72 TDS 179 00

15.5 The C main program 163

15.5 The C main program
The C main program function is called with the following parameters.
typedef int CHAN;

main(argc, argv, envp, in, inlen, out, outlen)
int argec, inlen, outlen;

char *argv[], *envp[];

CHAN *in[], *out][];

argv[0] is the program name, currently always a pointer to a null string (i.e.
a pointer to a ‘\ 0’ character).

If the value of argc is greater than one then argv[1]...argv[argc-1] are
pointers to token strings each of which is terminated by ‘\0'.

argv[argc] is a null pointer.

argc is the number of tokens, including the program name. |t is always greater
than zero.

envp is always NULL.

in and out are vectors of pointers to channels. inlen and outlen are the
number of elements in in and out respectively.

The C program can send and receive messages across these channels using
the channel I/O functions described in section 15.4.11.

15.6 Reduced run-time library

If the only run-time library functions a C program needs are the channel /O
functions, the size of the resulting executable program can be reduced and the
supporting filer process can be dispensed with by using the reduced run-time
library instead of the normal C run-time library.

The reduced library contains only essential initialisation code and the channel
I/0 functions. A program linked with the reduced library cannot use standard 1/0
functions like print£, or utility functions like exit.

The user-written function main is called by the reduced library with exactly
the same arguments as shown in section 15.5 above, but argc is always 1,
argv[0] is always "", and argv[1] is always NULL. That is, the command
line arguments are not passed in to the program.

72 TDS 179 00

164 v 15 The C run-time library

The T414 and T800 versions of the reduced run-time library are supplied in the
file sacrtl.1lib.

Programs which are to be run on a remote node in a transputer network (us-
ing the configurers config and fconfig) must be linked with both the re-
duced run-time library and the appropriate harness module (taskharn.t4x
or taskharn.t8x), for example:

t4c x
ilink taskharn.t4x x.bin sacrtl.lib -o x.c4dx

iboot x.c4x -c -o x.b4

72 TDS 179 00

16 Alphabetic list of
run-time library
functions

This chapter lists all of the supported library functions supplied with Parallel C.
The functions are arranged in alphabetical order; note that non-letters such as
digits or *_’ are regarded as being ‘before’ the alphabet. Thus, a function a_a
would appear before aaa, and functions whose names begin with ‘_’ appear at
the start of the list.

_inmess read message from channel

#include <chanio.h>
_inmess (chanp, buf, nbytes)
int *chanp, nbytes;

char buf[];

Reads a message of length nbytes from the channel pointed to by
chanp into the buffer buf.

This function is provided only for compatibility with older versions of
the run-time library. New programs should use the equivalent function
chan_in message.

_outbyte write byte to channel

#include <chanio.h>
_outbyte (b, chanp)
char b;

int *chanp;

Wirites a single-byte message consisting of the value b to the channel
pointed to by chanp.

This function is provided only for compatibility with older versions of
the run-time library. New programs should use the equivalent function
chan_out_byte.

_outmess write message to channel

#include <chanio.h>
_outmess (chanp, buf, nbytes)
int *chanp, nbytes;

char bufl[];

72 TDS 179 00

166 16 Alphabetic list of run-time library functions

Writes a message of length nbytes from the buffer buf to the channel
pointed to by chanp.

This function is provided only for compatibility with older versions of
the run-time library. New programs should use the equivalent function
chan_out_message.

_outword write word to channel

#include <chanio.h>
_outbyte(w, chanp)
int w;

int *chanp;

Writes a four-byte message consisting of the value w to the channel
pointed to by chanp.

This function is provided only for compatibility with older versions of
the run-time library. New programs should use the equivalent function
chan_out_word.

_tolower! convert char to lower case

#include <ctype.h>
int _tolower (cval)
int cval;

cval is the ASCII code for an upper case letter. _tolower returns
the code for the corresponding lower case letter, otherwise the value of
cval is returned unchanged.

_tolower behaves like tolower but is implemented as a macro.
_toupper! convert char to upper case

#include <ctype.h>
int _toupper(cval)
int cval;

cval is the ASCIlI code for a lower case letter. _toupper returns
the code for the corresponding upper case letter, otherwise the value of
cval is returned unchanged.

_toupper behaves like toupper but is implemented as a macro.

72 TDS 179 00

Alphabetic list of run-time library functions 16 167

abs integer absolute value

#include <math.h>
int abs(arg)
int arg;
. abs returns the absolute value of its integer operand. The result returned
by abs is implementation defined if arg is the largest negative integer.

acos calculates the arc cosine of its argument

#include <math.h>
double acos(x)
double x;

acos returns the arc cosine in the range [0, x].

asin calculates the arc sine of its argument

#include <math.h>
double asin (x)
double x;
X x

asin returns the arc sine in the range [-%, §].

assert program debugging routine

‘ #include <assert.h>
assert (expression)
int expression;

If the macro identifier NDEBUG is defined at the point in the source file
where <assert .h> is included, use of the assert function will have
no effect.

The assert function puts diagnostics into programs. The expression
argument is any scalar expression. When it is executed, if expression
is false (that is, evaluates to zero), assert writes the message ‘assertion
failed’ on the standard error file and performs a diagnostic traceback of

the call stack.

No value is returned by assert.

atan arc tangent

#include <math.h>
double atan (x)
double x;

. atan returns the arc tangent of x.

72 TDS 179 00

168 16 Alphabetic list of run-time library functions

atan2 arc tangent of the division of its arguments

#include <math.h>
double atan2(x, y)

double x, y; .

atan2 returns the arc tangent of % in the range [—m, x].
atof convert string to floating point

double atof (nptr)
char *nptr;

The string pointed to by nptr is converted to double-precision floating
point representation. The first unrecognised character terminates the

string.

atof recognises an optional string of tabs and spaces, then an optional
sign, then a string of digits optionally containing a decimal point, then an
optional ‘e’ or ‘E’ followed by an optionally signed integer.

The effect of overflow is implementation defined.

atoi convert string to integer

int atoi (nptr) '
char *nptr;

This function converts the string pointed to by nptr to integer represen-
tation. The first unrecognised character ends the string.

atoi recognises an optional string of tabs and spaces, then an optional
sign, then a string of digits.

The effect of overflow is implementation defined.
atol convert string to long integer

long atol (nptr)
char *nptr;

This function converts the string pointed to by nptr to long integer rep-
resentation. The first unrecognised character ends the string.

atol recognises an optional string of tabs and spaces, then an optional
sign, then a string of digits. ‘

72 TDS 179 00

Alphabetic list of run-time library functions 16 169

In Parallel C, atol is equivalent to atoi since sizeof (int) and
sizeof (long int) are the same.

The effect of overflow is implementation defined.

boot_peek peek in memory of neighbouring transputer

#include <boot.h>

int boot_peek(ad, val, chan_in, chan_out)
int ad, *val;

CHAN *chan_in, *chan_out;

This function reads a word of memory from address ad in a neighbouring
transputer into the variable pointed to by val. In order to be able to do
this, the neighbour transputer must have been recently reset but not
bootstrapped. In this special state, the transputer processor executes
special firmware implementing a ‘peek and poke’ protocol described in the
INMOS data sheets[10,11] and the Transputer instruction set: a compiler
writer's guide[12]). The function returns a non-zero value if the ‘peek’
operation succeeds.

The neighbouring transputer is connected to the one on which the
boot_peek function is executed by an INMOS link, with which are as-
sociated an input and output channel chan_in and chan_out. If that
link does not lead to another transputer, or if the other transputer is not
executing the ‘peek and poke’ firmware, the boot_peek function will
time out after 30 ticks of the transputer timer associated with the cur-
rent thread’s priority. This timeout period is around 2mS for a non-urgent
thread. If boot_peek times out, it returns zero.

boot_poke poke to memory of neighbouring transputer

#include <boot.h>

int boot_poke(ad, val, chan_out)
int ad, val;

CHAN *chan_out;

This function writes the value val into the word of memory at address
ad in a neighbouring transputer. In order to be able to do this, the neigh-
bour transputer must have been recently reset but not bootstrapped. In
this special state, the transputer processor executes special firmware
implementing a ‘peek and poke’ protocol described in the INMOS data
sheets[10,11] and the Compiler Writer's Guide[12]. The function returns
a non-zero value if the ‘peek’ operation succeeds.

72 TDS 179 00

170

16 Alphabetic list of run-time library functions

The neighbouring transputer is connected to the one on which the
boot_poke function is executed by an INMOS link, with which is as-
sociated an output channel chan_out. If that link does not lead to
another transputer, or if the other transputer is not executing the ‘peek
and poke’ firmware, the boot_poke function will time out after 30 ticks
of the transputer timer associated with the current thread’s priority. This
timeout period is around 2mS for a non-urgent thread. If boot_poke
times out, it returns zero.

calloc allocates and clears an area of memory

char *calloc(nelem, elsize)
unsigned nelem, elsize;

calloc returns a pointer to enough space for nelem objects of size
elsize, or NULL if the request cannot be satisfied. The storage is
initialised to zero.

ceil ceiling function

#include <math.h>
double ceil (x)
double x;

ceil returns the smallest integer not less than x.

cfree deallocates the space allocated by calloc or realloc

cfree (ptr)
char *ptr;

cfree frees the space pointed to by ptr, where ptr was originally
obtained by a call to calloc or realloc.

chan_in_byte input a byte from a channel

#include <chan.h>
chan_in byte(b, chan)
char *b;

CHAN *chan;

This function reads a single-byte message from the channel pointed to
by chan into the character variable pointed to by b.

72 TDS 179 00

Alphabetic list of run-time library functions 16 171

chan_in_byte_t input a byte from a channel, or timeout

#include <chan.h>

chan_in byte_t (b, chan, timeout)
char *b;

CHAN *chan;

int timeout;

This function attempts to read a single-byte message from the channel
pointed to by chan into the character variable pointed to by b. If the
communication does not take place within timeout ticks of the timer
associated with the priority of the current thread, the function will termi-
nate and return zero. If the communication succeeds within the timeout
interval, the function will return a non-zero value.

chan_init initialise a channel word

#include <chan.h>
chan_init (chan)
CHAN *chan;

This function initialises the channel word pointed to by its chan argument.
This operation consists of writing the special value NotProcess_ P
(MOSTNEG INT) into the channel word; this indicates that no threads
are currently attempting to communicate through this channel.

All channel words (i.e. all variables declared to be of type CHAN) must
be initialised before the first attempt to communicate through them. If
this is not done, the first attempt to communicate through the channel
will cause the transputer processor to crash.

Note that the channel words bound to a program’s input and output ports
are already initialised by the calling environment, and should not be ini-
tialised again by the program.

chan_in message input a message from a channel

#include <chan.h>

chan_in message(l, b, chan)
int 1;

char *b;

CHAN *chan;

This function reads a message of length 1 bytes from the channel pointed
to by chan into the variable pointed to by b.

72 TDS 179 00

172

16 Alphabetic list of run-time library functions

chan_in_message_t input a message from a channel, or timeout

#include <chan.h>

chan_in message t (1, b, chan, timeout)
int 1, timeout;

char *b;

CHAN *chan;

This function attempts to read a message of length 1 bytes from the
channel pointed to by chan into the variable pointed to by b. If the
communication does not take place within timeout ticks of the timer
associated with the priority of the current thread, the function will termi-
nate and return zero. If the communication succeeds within the timeout
interval, the function will return a non-zero value.

chan_in_ woxrd input a word from a channel

#include <chan.h>
chan_in word(w, chan)
int *w;

CHAN *chan;

This function reads a four-byte message from the channel pointed to by
chan into the integer variable pointed to by w.

chan_in_word t input a word from a channel, or timeout

#include <chan.h>

chan_in word t(w, chan, timeout)
int *w, timeout;

CHAN *chan;

This function attempts to read a four-byte message from the channel
pointed to by chan into the integer variable pointed to by w. If the
communication does not take place within timeout ticks of the timer
associated with the priority of the current thread, the function will termi-
nate and return zero. If the communication succeeds within the timeout
interval, the function will return a non-zero value.

chan_out_byte output a byte to a channel

#include <chan.h>
chan_out_byte (b, chan)
char b;

CHAN *chan;

This function sends a single-byte message consisting of the value b to
the channel pointed to by chan.

72 TDS 179 00

Alphabetic list of run-time library functions 16 173

chan_out_byte_t output a byte to a channel, or timeout

#include <chan.h>
chan_out_byte_t(b, chan, timeout)
char b;

CHAN *chan;

int timeout;

This function attempts to send a single-byte message consisting of the
value b to the channel pointed to by chan. If the communication does
not take place within timeout ticks of the timer associated with the
priority of the current thread, the function will terminate and return zero.
If the communication succeeds within the timeout interval, the function
will return a non-zero value.

chan_out_message output a message to a channel

#include <chan.h>

chan out_message(l, b, chan)
int 1;

char *b;

CHAN *chan;

This function sends a message of length 1 bytes from the variable pointed
to by b to the channel pointed to by chan.

chan_out_message_t output a message to a channel, or timeout

#include <chan.h>

chan_out_message t(1, b, chan, timeout)
int 1, timeout;

char *b;

CHAN *chan;

This function attempts to send a message of length 1 bytes from the vari-
able pointed to by b to the channel pointed to by chan. If the communi-
cation does not take place within timeout ticks of the timer associated
with the priority of the current thread, the function will terminate and re-
turn zero. If the communication succeeds within the timeout interval, the
function will return a non-zero value.

72 TDS 179 00

174

16 Alphabetic list of run-time library functions

chan_out_woxrd output a word to a channel

#include <chan.h>
chan_out_word(w, chan)
int w;

CHAN *chan;

This function sends a four-byte message consisting of the value w to the
channel pointed to by chan.

chan_out_word t output a word to a channel, or timeout

#include <chan.h>

chan _out_word_t(w, chan, timeout)
int w, timeout;

CHAN *chan;

This function attempts to send a four-byte message consisting of the
value w to the channel pointed to by chan. If the communication does
not take place within timeout ticks of the timer associated with the
priority of the current thread, the function will terminate and return zero.
If the communication succeeds within the timeout interval, the function
will return a non-zero value.

chan_reset reset a channel

#include <chan.h>
char *chan_reset (chan)
CHAN *chan;

This function resets the channel pointed to by chan. If the channel is
associated with an INMOS link, then the hardware of that link is reset as
well.

If a thread was attempting to communicate on the channel at the time
of the reset, then a handle to that thread (which is now suspended) will
be returned as the result of chan_reset. This handle can be used to
restart the suspended thread at a later date by passing it to the function
thread_restart.

If the channel was idle at the time of the reset (i.e. if no thread was
attempting to communicate on it) then the value NotProcess P
(MOSTNEG INT) will be returned.

72 TDS 179 00

Alphabetic list of run-time library functions 16 175

clearerx! clear stream errors

#include <stdio.h>
clearerr (stream)
FILE *stream;

clearerr resets any error indication on the named stream. It is imple-
mented as a macro and therefore may not be redeclared.

clock return processor time used

#include <time.h>
clock_t clock()

The clock function determines the processor time used. It returns the
elapsed time in seconds since an (unspecified) base time as the best
approximation to the processor time used. The type (clock_t) of the
value returned by clock is int and CLK_TCK is 1.

The time in seconds is the value returned divided by the value of the
macro CLK_TCK (also defined by <time.h>).

close close a file

int close(fildes)
int fildes;

Given a file descriptor (fildes) as returned by open or creat, close
closes the associated file, i.e. breaks the connection between the file de-
scriptor (a small integer) and the file itself. A close of all files is automatic
on exit, but since there is a limit on the number of files which may be
open at once, close is necessary for programs which deal with many
files.

Zero is returned if a file is closed, —1 is returned for an unknown file
descriptor.

cos cosine function

#include <math.h>
double cos (x)
double x;

cos returns the cosine of its radian argument.

72 TDS 179 00

176 16 Alphabetic list of run-time library functions

cosh hyperbolic cosine function

#include <math.h>
double cosh (x)
double x;

cosh returns the hyperbolic cosine of its argument.
creat create a new file

creat (name, mode)
char *name;
int mode;

creat creates a new file or prepares to rewrite an existing file called
name, given as the address of a NUL-terminated string. The mode argu-
ment is currently ignored, but should be given by the caller for portability.

exit terminate execution

exit (status)
int status;

exit is the normal means of terminating program execution. exit
closes all the process’s files

This call never returns.
exp e” function

#include <math.h>
double exp (x)
double x;

exp returns the exponential function of x.

exp returns a huge value when the correct value would overflow; errno
is set to ‘ERANGE’.

fabs floating absolute value
#include <math.h>
double fabs (arg)
double arg;

fabs returns the absolute value of arg.

72 TDS 179 00

Alphabetic list of run-time library functions 16 177

fclose close a file

#include <stdio.h>
int fclose (stream)
FILE *stream;

‘ fclose causes any buffers for the specified stream to be emptied, and
the file to be closed. Buffers allocated by the standard I/O system are
freed.

fclose is called automatically upon calling exit.

fclose returns EOF if stream is not associated with an output file, or
if buffered data cannot be transferred to that file.

fdopen open a stream

#include <stdio.h>

FILE *fdopen(fildes, type)
char *type;

int fildes;

fdopen associates a stream with a file descriptor obtained from open
or creat.

‘ type is a character string specifying the way in which the file is to be
opened. Refer to the description of fopen (page 179) for a full descrip-
tion of the type string.

The type of the stream must agree with the way the file was opened.
feof! is stream at end of file?

#include <stdio.h>
int feof(stream)
FILE *stream;

feof returns non-zero when end of file is read on the named input
stream, otherwise zero. It is implemented as a macro, and therefore
cannot be redeclared.

ferror! tests for stream errors
#include <stdio.h>

int ferror (stream)
’ FILE *stream;

72 TDS 179 00

178

16 Alphabetic list of run-time library functions

ferror returns non-zero when an error has occurred reading the named
stream, otherwise zero. Unless cleared by clearerr, the error indi-
cation lasts until the stream is closed. ferror is implemented as a
macro.

££f1lush flush stream buffer

#include <stdio.h>
int fflush(stream)
FILE *stream;

f££flush causes any buffered data for the named output stream to be
written to the file or device associated with that stream. The stream
remains open.

fflush is called automatically by close, and when all streams are
implicitly closed by exit.

EOF is returned if stream is not associated with an output file or if
buffered data cannot be transferred to that file.

fgetc read a character from a stream

#include <stdio.h>
int fgetc (stream)
FILE *stream;

fgetc returns the next character from the specified input stream. Suc-
cessive calls return successive characters from the stream. fgetc is a
genuine function, unlike getec which is a macro.

EOF is returned at end of file or if a read error occurs.

fgets read a string from a stream

#include <stdio.h>

char *fgets(str, n, stream)
char *str;

int n;

FILE *stream;

fgets reads n — 1 characters, or up to a newline character, whichever
comes first, from the stream into the string stx. The last character
read into str is followed by a NUL character. £gets returns its first

argument.

fgets returns NULL on end of file or error

72 TDS 179 00

Alphabetic list of run-time library functions 16 179

Note that £gets behaves differently from gets (q.v.) with respect to any
terminating newline character: £gets keeps the newline, gets deletes
it from the string.

filenot stream status enquiry

#include <stdio.h>
int fileno (stream)
FILE *stream;

fileno returns the low-level /O ‘file descriptor associated with the
stream, see open. It is implemented as a macro. (Standard I/O is
implemented by calls on the low-level functions).

floor floor function

#include <math.h>
int floor (x)
double x;

floor returns the largest integer not greater than x.

£mod calculate the floating-point remainder of the argument division

#include <math.h>
double fmod(x, y)
double x, y;

£mod returns the remainder from x/y
fopen opens a file

#include <stdio.h>
FILE *fopen(filename, type)
char *filename, *type;

fopen opens the file named by filename and associates a stream
with it. fopen returns a pointer to be used to identify the stream in
subsequent operations. fopen returns the pointer NULL if £ilename
cannot be accessed in the way requested.

72 TDS 179 00

180 16 Alphabetic list of run-time library functions

type is a character string made up of the following parts:

o A specification of whether the file is to be opened for reading (‘r’),
writing (‘w’) or appending (‘a’). This specifier must appear as the
first character in the type string.

¢ An optional ‘update’ specifier (‘+’). If included, the file is opened
for both reading and writing. If omitted, the file is opened in the
mode described by the first character of type.

o An optional specification of whether the file is to be a normal text
file (‘t’) or a binary file (‘'b’). If this specifier is omitted, the value
of the _£fmode variable is used to determine the mode of access.
The default is O_TEXT, files are opened as text files.

The second and third parts of the type string may appear in any order.
For example, "r+b" and "rb+" are equivalent. Some examples of
possible values for type are now given, along with a description of their
interpretation.

"r" open text file for reading

"rb" open binary file for reading

"rb+" open binary file for update

"r+b" open binary file for update

"w" truncate and write to, or create, text file

"a" append to, or create, text file ‘
"ab" append to, or create, binary file

fopen will fail if the file is to be opened for reading (‘r’) and it does not
exist. For writing (‘w’) or appending (‘a’) the file will be created if it does
not exist.

fprintf formatted output

#include <stdio.h>

int fprintf (stream, format[, argl [, arg2 [...]]1])
FILE *stream;

char *format;

fprint£ writes its output on the specified stream (by calling putc).
fprint £ converts, formats and outputs the arguments argi under con-
trol of its format argument. The format argument is a character
string which contains two types of object: plain characters, which are
simply copied to the output stream, and conversion specifications, each
of which causes conversion and output of the next arg value. '

72 TDS 179 00

Alphabetic list of run-time library functions 16 181

Each conversion specification is introduced by the character ‘%’. Follow-
ing the ‘%’ there may be (in the given order):

« an optional minus sign ‘=’, which specifies left justification of the
converted value in the indicated field;

e an optional digit string specifying a field width; if the converted
value has fewer characters then the field width it will be blank
padded on the left (or right if left justification indicator — has been
given) to make up the field width; if the field width begins with a
zero, zero padding will be performed instead of blank padding.

an optional digit string specifying a precision which specifies the
number of digits to appear after the decimal point for ‘e’ and ‘£’
format conversion, or the maximum number of characters to be
output from a string;

o the character ‘1’ (lowercase ‘L’), specifying that a following ‘d’,
‘o’ ‘x’ or ‘u’ corresponds to a long integer arg. (A capitalised
conversion code, such as ‘D’, has the same effect).

o A character which indicates the type of conversion to be applied.

A field width or precision may be specified as ‘*’ instead of a digit
string, in which case a corresponding integer arg is used as the
field width or precision respectively.

The conversion characters and their meanings are:

‘d’ The integer arg is converted to decimal notation.

‘o’ The integer arg is converted to octal notation.

‘x’ The integer arg is converted to hexadecimal notation.

‘£’ The float or double arg is converted at decimal notation in
the form ‘[-]ddd.ddd’ where the number of d's after the
decimal point is equal to the precision specification for the
argument. If the precision is missing, 6 digits are given; if
the precision is explicitly 0, no digits and no decimal point
are printed.

‘e’ The float or double arg is converted into the form
‘[-]d.ddde[+]dd’ where there is one digit before the dec-
imal point and the number after is equal to the precision
specification for the argument; when the precision is not
specified, 6 digits are produced.

72 TDS 179 00

182

16 Alphabetic list of run-time library functions

‘g’ The float or double arg is output in style ‘d’, ‘€ or ‘e’
whichever gives full precision in minimum space.

‘c’ The (char) arg is printed. NUL characters are ignored.

‘s’ arg is taken to be a string (character pointer) and characters
from the string are printed until a NUL character is reached
or until the number of characters indicated by the precision
specification is reached; however if the precision is zero
or missing, all characters up to a NUL are printed.

‘a’ The unsigned integer arg is converted to decimal and output.
‘s’ Print a ‘%’; no argument is converted

In no case does a non-existent or small field width cause trunca-
tion of a field; padding takes place only if the specified field width
exceeds the actual width. Characters generated by fprintf
are printed by putc (q.v.)

Note that fields wider than 128 characters do not work.

fprint£ returns the number of characters output, or a negative value
if an output error occurred.

fputc write a character to a stream

#include <stdio.h>

int fputc(cval, stream)
FILE *stream;

int cval;

fputc appends the character cval to the specified output stream. It
returns the character written. £putc, unlike putc, is a genuine function
rather than a macro.

fputc returns EOF if an error occurs.

fputs write a string to a stream

#include <stdio.h>
fputs (str, stream)
char *str;

FILE *stream;

fputs copies the NUL-terminated string str to the specified output
stream. The NUL character which terminates the string is not written
to the stream.

72 TDS 179 00

Alphabetic list of run-time library functions 16 183

Note that £puts is inconsistent with puts, which appends a newline to
the output string.

fread buffered binary input

#include <stdio.h>

int fread(ptr, size, nitems, stream)
FILE *stream;

int nitems, size;

char *ptr;

fread reads into a block beginning at ptr, nitems of data of the type
of *ptr from the specified input stream. size will be the value of
sizeof (*ptr). It returns the number of items actually read.

fread returns zero on end of file or error.

free deallocates the space allocated by malloc or realloc

free (ap)
char *ap;

free frees the space pointed to by ap, where ap was originally obtained
by a call to malloc or realloc.

freopen open a stream

#include <stdio.h>

FILE *freopen(filename, type, stream)
char *filename, *type;

FILE *stream;

freopen substitutes the named file £ilename in place of the open
stream. It returns the original value of stream. The original stream is

closed.

freopen is typically used to attach the preopened constant names,
stdin, stdout and stderr to specified files.

type is a character string specifying the way in which the file is to be
opened. Refer to the description of fopen (page 179) for a full descrip-
tion of the type string.

freopen returns the pointer NULL if £ilename cannot be accessed.

72 TDS 179 00

184

16 Alphabetic list of run-time library functions

frexp split floating-point number into separate parts

#include <math.h>
double frexp (value, exp)
double value;

int *exp;

frexp breaks value into its normalised fraction and an integral power
of 2. The function returns the fractional part and the integral part is
pointed to by *exp.

fscanf formatted input

#include <stdio.h>

int fscanf(stream, format[, ptrl [, ptr2 [...]1]1])
FILE *stream;

char *format;

fscanf reads characters from the specified input stream, interprets
them according to a format string and stores the results in the variables
pointed to by its arguments.

The format string usually contains conversion specifications which are
used to direct interpretation of input sequences. The control string may
contain:

o Blanks, tabs or newlines, which match optional white space in the
input.

e An ordinary character (not %) which must match the next charac-
ter of the input stream.

Conversion specifications: the character ‘%’ followed by an op-
tional assignment suppressing character, ‘*’, followed by an op-
tional numerical maximum field width and finally a conversion
character.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the cor-
responding ptr argument, unless assignment suppression was
indicated by ‘*’. An input field is defined as a string of non-space
characters; it extends to the next inappropriate character or until
the field width, if specified, is exhausted.

72 TDS 179 00

Alphabetic list of run-time library functions 16 185

The conversion character indicates the interpretation of the input
field; the corresponding pointer argument must usually be of a
restricted type. The following conversion characters are legal;

‘s’ a single ‘%’ is expected in the input at this point; no assign-

ment is done.

‘d’ a decimal integer is expected; the corresponding argument

should be an integer pointer.

an octal integer is expected; the corresponding argument

should be an integer pointer.

a hexadecimal integer is expected; the corresponding argu-

ment should be an integer pointer.

a character string is expected; the corresponding argument

should be a character pointer pointing to an array of char-
acters large enough to accept the string and a terminating
‘\0’, which will be added. The input field is terminated by
a space character or a newline.

a character is expected; the corresponding argument should

be a character pointer. The normal skip over space char-
acters is suppressed in this case; to read the next non-
space character, use ‘¢1s’. If a field width is given, the
corresponding argument should point to a character array,
and the indicated number of characters is read.

a floating-point number is expected; the next field is converted

accordingly and stored through the corresponding argu-
ment, which should be a pointer to a float. The input
format for floating point numbers is an optionally signed
string of digits, possibly containing a decimal point, fol-
lowed by an optional exponent field consisting of an ‘E’ or
‘e’ followed by an optionally signed integer.

‘[’ Indicates a string not to be delimited by space characters.

72 TDS 179 00

The left bracket is followed in the format string by a set of
characters and a right bracket; the characters between the
brackets define a set of characters making up the string.
If the first character is not a circumflex (‘~’), the input field
is all the characters until the first character not in the set
between the brackets; if the first character after the left
bracket is ‘~’, the input field is all characters until the first
character which is in the remaining set of characters be-
tween the brackets. The corresponding argument must
point to a character array.

186

16 Alphabetic list of run-time library functions

The conversion characters ‘d’, ‘o’ and ‘x’ may be capitalised or
preceded by ‘1’ (lowercase ‘L’) to indicate that a pointer to 1long
rather than to int is in the argument list. Similarly, the conversion
characters ‘e’ or ‘£’ may be capitalised or preceded by a ‘1’ (low-
ercase ‘L) to indicate a pointer to double rather than to £1loat.
The conversion characters ‘d’, ‘o’ and ‘x’ may be preceded by ‘h’
to indicate a pointer to short rather than to int.

£scanf returns the number of successfully matched and assigned input
items. This can be used to decide how many input items were found.
The constant EOF is returned on end of input; note that this is different
from zero, which means that no conversion was done; if conversion was
intended, it was frustrated by an inappropriate character in the input.

EOF is returned on end of input.

fseek reposition a stream

#include <stdio.h>

int fseek(stream, offset, ptrname)
FILE *stream;

long offset;

int ptrname;

fseek sets the position of the next input or output operation on the
stream. The new position is at the signed distance offset bytes
from the beginning, the current position or the end of the file, depending
on whether ptrname has the value 0, 1 or 2.

fseek undoes any effects of ungetc.

fseek returns —1 for improper seeks.

ftell stream position enquiry

#include <stdio.h>
long ftell (stream)
FILE *stream;

ftell returns the current value of the offset relative to the beginning of
the file associated with the named stream. This offset is measured in

bytes.

72 TDS 179 00

Alphabetic list of run-time library functions 16 187

fwrite buffered binary output

getct

#include <stdio.h>

int fwrite(ptr, size, nitems, stream)
FILE *stream;

int nitems, size;

char *ptr;

fwrite appends at most nitems of data of the type of *ptr begin-
ning at ptr to the specified output stream. size will be the value of
sizeof (*ptr). It returns the number of items actually written.

Zero is returned on end of file or error conditions.
read a character from a stream

#include <stdio.h>
int getc(stream)
FILE *stream;

getc returns the next character from the named input stream. Succes-
sive calls on getc return successive characters from the stream. getc
is implemented as a macro.

EOF is returned on end of file or when a read error is detected.

getchart read a character from standard input

#include <stdio.h>
int getchar()

getchar () is identical to getc (stdin). It returns the next character
from the standard input stream stdin. getchar is implemented as a

macro.

EOF is returned on end of file or read error conditions.

gets read string from standard input

#include <stdio.h>
char *gets(str)
char *str;

gets reads a string into str from the standard input stream stdin.
The string is terminated by a newline character, which is replaced in stx
by a NUL character. gets returns its argument as result.

72 TDS 179 00

188

16 Alphabetic list of run-time library functions

gets returns NULL on end of file or error.

Note that gets is inconsistent with £gets (q.v.) in its treatment of the
terminating newline character: gets deletes the newline, £gets keeps
it.

index find character in string

char *index(s, c)
char *s, c;

This function searches the string s for the first occurrence of character
¢, and returns a pointer to it. If ¢ does not occur in s, a null pointer is
returned.

isalnum! is character alphanumeric?

#include <ctype.h>
int isalnum(cval)
int cval;

cval is a letter or a digit, O otherwise.

isalpha! is character alphabetic?

#include <ctype.h>
int isalpha(cval)
int cval;

cval is a letter, 0 otherwise.

isasciit is argument an ASCII character?

#include <ctype.h>
int isascii(cval)
int cval;

cval is an ASCII character (code less than 200 octal).

isatty is file descriptor a terminal?

#include <stdio.h>
int isatty(fildes)
int fildes;

isatty returns 1 if the file descriptor £ildes is associated with a
terminal device, 0 otherwise.

72 TDS 179 00

Alphabetic list of run-time library functions 16 189

iscntrlt ASCII control character?

#include <ctype.h>
int iscntrl(cval)
int cval;

cval is an ASCII control character, 0 otherwise.
isdigit! is argument a digit?

#include <ctype.h>

int isdigit(cval)

int cval;

cval is a digit, O otherwise.

isgraph! printing ASCII character other than space?

#include <ctype.h>
int isgraph(cval)
int cval;

cval is a printing character, codes 41 octal (‘') through 176 octal (‘~').
Returns 0 otherwise.

islowert is character lowercase?
#include <ctype.h>
int islower(cval)
int cval;
cval is a lowercase letter, O otherwise.
isprint! printing ASCII character?
#include <ctype.h>
int isprint(cval)

int cval;

cval is a printing character, codes 40 octal (space) through 176 octal
(‘~’). Returns O otherwise.

72 TDS 179 00

190 16 Alphabetic list of run-time library functions

ispunct! punctuation character?

#include <ctype.h>
int ispunct (cval)
int cval;

cval is a punctuation character (neither control nor alphanumeric), 0 oth-
erwise.

isspace! white space character?

#include <ctype.h>
int isspace(cval)
int cval;

cval is a space, horizontal or vertical tab, carriage return, newline or
form feed character, 0 otherwise.

isuppert! is character uppercase?

#include <ctype.h>

int isupper(cval)

int cval;

cval is an uppercase letter, 0 otherwise.
isxdigit! printing hexadecimal digit?

#include <ctype.h>

int isxdigit (cval)

int cval;

cval is a printing hexadecimal digit, 0 otherwise.

72 TDS 179 00

Alphabetic list of run-time library functions 16 191

ldexp calculate x€*P

#include <math.h>
double ldexp (x, exp)
double x;

‘ int exp;

1dexp returns the result of x multiplied by the value of two raised to the
power exp.

log calculates log.x

#include <math.h>
double log(x)
double x;

log returns the natural logarithm of x.

log returns 0 when x is zero or negative; the extern int variable
errno is set to EDOM. EDOM is defined in the header file <errno.h>

1og1l0 calculates logiox

#include <math.h>
double 1loglO (x)

. double x;

logl0 returns the base-ten logarithm of x.

1og1l0 returns 0 when x is zero or negative; the extern int variable
errno is set to EDOM. EDOM is defined in the header file <errno.h>.

72 TDS 179 00

192 16 Alphabetic list of run-time library functions

long3jmp non-local goto

#include <setjmp.h>
longjmp (env, val)
jmp_buf env;

int val;

This function, together with setjmp, is useful for dealing with errors
encountered in a low-level subroutine of the program.

longjmp restores the stack environment saved in its env argument by
an earlier call on setjmp. This has the effect of resuming execution
immediately after that setjmp call.

set jmp’s caller can distinguish between the original return from set jmp
and the second return caused by longjmp by examining setjmp’s
return value. This is always O for the initial return, and the value of
longjmp's val argument for subsequent returns. If val is set to 0,
longjmp will change it to a 1 in order to preserve this condition.

The function which originally called set jmp must not itself have returned
before the call to 1longjmp. All accessible data still have their values as
of the time 1ongjmp was called.

1seek move read/write pointer

long lseek(fildes, offset, whence)
long offset;
int fildes, whence;

The file descriptor refers to a file open for reading and writing. The read
(resp. write) pointer for the file is set as follows:

whence = 0 : the pointer is set to of£set bytes.
whence = 1 : the pointer is set to its current location plus offset.
whence = 2 : the pointer is set to the size of the file plus offset.
The returned value is the resulting pointer location.

—1 is returned for an undefined file descriptor or a seek to a position
before the beginning of the file.

1seek is a no-op on devices (e.g. the VDU or keyboard) which are not
disk files.

72 TDS 179 00

Alphabetic list of run-time library functions 16 193

malloc allocates the specified number of contiguous bytes of memory

char *malloc (nbytes)
unsigned nbytes;

malloc allocates space for an object whose size is specified by

. nbytes. The function returns a pointer to the start of the allocated
space. If the space cannot be allocated, the malloc function returns a
NULL pointer.

Space allocated by malloc is not initialised by the run-time library, and
may contain arbitrary values. If a zeroed area of storage is required, the
function calloc should be used. Note that the calloc function has
two arguments compared to malloc’s one. Thus, calls to malloc must
be rewritten from malloc (n) to calloc(n, 1).

memcpy memory block move

#include <string.h>
void *memcpy(sl, s2, n)
void *sl, *s2;
unsigned int n;

memcpy copies n characters from the object pointed to by s2 into the
object pointed to by s1. If copying takes places between objects that
. overlap, the behaviour is undefined.

memcpy returns the value of s1.
memset fill object with repeated byte value

#include <string.h>

void *memset (ptr, cval, num)
void *ptr;

int cval;

unsigned int num;

The memset function copies the value of cval (converted to an
unsigned char) into each of the first num characters of the object
pointed to by ptr.

The memset function returns the value of ptr.

72 TDS 179 00

194 16 Alphabetic list of run-time library functions

mod£ split argument into integral and fractional parts

#include <math.h>
double modf (value, iptr)
double value, *iptr;

modf split value into its integral and fractional parts. The function
returns the signed fractional part and the integral part is pointed to by
*iptr

net_receive receive a flood-filled network message

#include <net.h>

int net_receive (packet, complete)
char *packet;

int *complete;

This function can be called by tasks participating in a flood-filled applica-
tion to receive a message from the network.

The next (or only) packet of the message being received is read into the
buffer pointed to by packet.

If net_receive is called by the master task it reads the next available
result packet returned by a worker task; if it is called from a worker task,
it reads the next work packet sent out by the master.

The size of the packet (in bytes) is returned as the result of the function.

If the packet is the final or only packet of the message, the location
pointed to by complete will be set to 1; otherwise it is set to 0 and the
receiving task must repeatedly call net_receive to read the remaining
part of the message.

No more than NET_MAX PACKET LENGTH bytes will be read into the
packet buffer. Less space may be allocated if it is certain that the
sending task will not send messages longer than some smaller limit (for
example, if only fixed-length messages are being used).

72 TDS 179 00

Alphabetic list of run-time library functions 16 195

net_send send a flood-filled network message

#include <net.h>

int net_send(nbytes, packet, complete)
char *packet;

int nbytes, complete;

This function can be called by tasks participating in a flood-filled applica-
tion to send a message into the network.

If net_send is called by the master task, the message packet is sent to
any free worker task; if the function is called by a worker task, the packet
is sent back to the master task.

nbytes is the number of bytes of data in the buffer pointed to by
packet.

If nbytes is less than zero or greater than NET_MAX_PACKET_LENGTH
(defined in version 2.0 of Parallel C by <net .h> to be 1024 bytes) no
message is sent and the function returns a negative value.

Otherwise the function returns the number of bytes sent, which will be
nbytes if no error occurs.

If a message longer than NET _MAX PACKET LENGTH has to be sent,
it must be broken up into a number of packets, each smaller than this
limit.

If complete is 0, the argument packet is regarded as part of a larger
message; a circuit to the destination task is held open until the last packet
of the message has been sent. The final (or only) packet of a message
is marked by setting complete equal to 1.

The routing software guarantees that multiple packets sent in this way
are always received by the destination task in the same order they were
sent.

In normal use, packets will be smaller than 1024 bytes and complete
will always be given the value 1. Sending very long packets can clog up
the network, blocking packets being delivered to other nodes.

72 TDS 179 00

196 16 Alphabetic list of run-time library functions

open open for reading or writing

int open(name, mode)
char *name;
int mode;

open opens the file name for reading (mode = 0), writing (mode = 1)
or for both reading and writing (mode = 2). name is the address of a
string of ASCII characters representing a file name, terminated by an
ASCII NUL character. The file is positioned at the beginning (byte 0).
The returned file descriptor must be used for subsequent calls for other
input-output functions on the file.

The value —1 is returned if the file does not exist or is unreadable or if
too many files are already open.

par_free deallocate space allocated by par_malloc

#include <par.h>

par_free (ap)

char *ap;

par_free provides access to the function f£ree in circumstances
where multiple threads are active; access to the memory allocation
structures in the run-time library is interlocked through the semaphore
par_sema.

par_fprintf formatted output

#include <stdio.h>

#include <par.h>

int par fprintf(stream, format[, argl[, arg2[...]]1])
FILE *stream;

char *format;

par_fprintf provides access to the function fprintf in circum-
stances where multiple threads are active; access to the standard I/O
structures in the run-time library is interlocked through the semaphore

par_sema.

par_printf formatted output on stdout
#include <par.h>
int par printf(format [, argl [, arg2 [...]]])
char *format;
par_print£ provides access to the function print £ in circumstances

where multiple threads are active; access to the standard 1/0O structures
in the run-time library is interlocked through the semaphore par_sema.

72 TDS 179 00

Alphabetic list of run-time library functions 16 197

par_malloc allocate the specified number of contiguous bytes of memory

#include <par.h>
char *par_malloc(nbytes)
unsigned nbytes;

par_malloc provides access to the function malloc in circumstances
where multiple threads are active; access to the memory allocation
structures in the run-time library is interlocked through the semaphore
par_sema.

pow calculates x¥

#include <math.h>
double pow(x, y)
double x, y;

pow returns the value of x raised to the power of y.

printf formatted output on stdout

putct

#include <stdio.h>
int printf(format [, argl [, arg2 [...]]1])
char *format;

printf writes output to the standard output stream, stdout. It returns
the number of characters which have been output, or a negative value if
an output error occurred.

The arguments of printf£ have the same meaning as the fprintf
arguments of the same name. See the description of fprintf£.

printf(...);
is equivalent to

fprintf(stdout, ...);
writes a single character to a file

#include <stdio.h>
int putc(cval, stream)
char cval;

FILE *stream;

putc appends the character cval to the specified output stream. It
returns the character written.

72 TDS 179 00

198

16 Alphabetic list of run-time library functions

EOF is returned on error.

Because it is implemented as a macro, putc treats a st ream argument
with side-effects improperly. In particular, putc(c, *£++); does not
work sensibly.

putchar! write a character to standard output

#include <stdio.h>
int putchar(cval)
int cval;

putchar (cval) is a macro defined as putc (cval, stdout). le.
the character cval is written to the standard output stream, stdout

(normally the VDU).

EOF is returned on error.

puts write string to standard output

#include <stdio.h>
puts (pstr)
char *pstr;

puts copies the NUL-terminated string pstr to the standard output
stream stdout and appends a newline character. The terminating NUL
character is not copied. stdout is normally the VDU.

puts appends a newline to the output string but £puts (q.v.) does not.

putw write an integer to standard output

#include <stdio.h>
int putw(ival, stream)
FILE *stream;

int ival;

putw outputs an integer value to the standard output stream in a format
which can be read in again by the standard input function getw.

putw returns the integer value written.
putw neither assumes nor causes special alignment in the file.

EOF is retured if a write error occurs.

72 TDS 179 00

Alphabetic list of run-time library functions 16 199

rand pseudo-random number generator

int rand()

rand function returns successive pseudo-random integers in the range
0 to 32767.

read read from file

int read(fildes, buffer, nbytes)
char *buffer;
int fildes, nbytes;

A file descriptor is an integer returned by a successful call on open or
creat. buffer is the location of nbytes contiguous bytes into which
the input will be placed. It is not guaranteed that all nbytes bytes will
be read; for example if the file descriptor refers to the keyboard at most
one line will be returned. In any event, the number of characters actually

read is returned.

Zero is returned when the end of the file has been reached. If the read
was unsuccessful for any other reason, —1 is returned. Many conditions
may cause errors: physical I/O errors, bad buffer address etc.

realloc changes the size of an area allocated by malloc or realloc

char *realloc(ptr, size)
char *ptr;
unsigned size;

realloc changes the size of the object pointed to by ptr to the size
specified by size. The function returns a pointer to the start of the
possibly moved object. If the space cannot be allocated, the realloc
function returns a NULL pointer and the object pointed to by ptr is
unchanged.

remove removes a file from the file system

#include <stdio.h>
int remove (filename)
char *filename;

remove function causes the file whose name is the string pointed to by
filename to be removed. Subsequent attempts to open the file will fail,
unless it is created anew.

remove returns —1 if the file cannot be removed.

72 TDS 179 00

200 16 Alphabetic list of run-time library functions

rewind reposition stream to beginning

#include <stdio.h>
int rewind (stream)
FILE *stream;

rewind (stream) is equivalent to £seek (stream, OL, 0). It repo-
sitions stream to the first byte of the associated file (byte 0). It is a
no-op if the stream is associated with a device rather than a file (e.g. the
keyboard or the VDU).

rewind returns —1 on failure.
rindex find character in string

char *rindex(s, c)
char *s, c;

This function searches the string s for the last occurrence of character
c, and returns a pointer to it. If ¢ does not occur in s, a null pointer is
returned.

scanf formatted input from stdin

#include <stdio.h>
int scanf(format [, ptrl [, ptr2 [...]111)
char *format;

scanf reads input from the standard input stream stdin. It reads
characters (via getc), interprets them according to the given format
and stores the resulting values in the locations pointed to by the ptr
arguments.

The exact meaning of the arguments to scanf is the same as that of
the arguments of the same name to the function £scan£. In fact, the

call
scanf (format, ...);
is equivalent to

fscanf (stdin, format, ...);

scanf returns EOF on end of input, and a short count for missing or
illegal data items.

72 TDS 179 00

Alphabetic list of run-time library functions 16 201

sema_init initialise a semaphore

#include <sema.h>
sema_init (s, v)
int v;

SEMA *s;

This function initialises the semaphore variable pointed to by s to an
initial state in which:

o the queue of threads waiting for the semaphore is empty

o the value of the semaphore is v.

If a static or external semaphore is left uninitialised, it defaults to an
empty queue of threads and an initial value of 0. If an auto semaphore
is left uninitialised, the first sema_signal or sema_wait operation on
the semaphore will cause the transputer system to behave unpredictably.

sema_signal perform a signal operation on a semaphore

#include <sema.h>
sema_signal(s)
SEMA *s;

If there are threads waiting for the semaphore pointed to by s, one of
them will be chosen and made able to execute again. The value of
the semaphore under these conditions will always be 0, and will remain
unchanged.

If there are no threads waiting for the semaphore pointed to by s, its
value will be increased by 1.

Note that any particular semaphore must be accessed only by threads
executing at one particular priority. For example, it would be acceptable
for a set of ‘urgent’ threads to synchronise through a semaphore, or for
a set of ‘not urgent’ threads to do this, but not for a mixture of threads
executing at different priorities. Threads executing at different priorities
can synchronise by passing messages along channels.

sema_signal_n perform n signal operations on a semaphore

#include <sema.h>
sema_signal n(s, n)
int n;

SEMA *s;

This function calls the function sema_signal n times, in sequence.

72 TDS 179 00

202

16 Alphabetic list of run-time library functions

sema_wait perform a wait operation on a semaphore

#include <sema.h>
sema_wait (s)
SEMA *s;

If the value of the semaphore pointed to by s is not zero, its value is
decreased by 1.

If the value of the semaphore is 0, the value is left unchanged and the
current thread is added to the list of threads waiting for the semaphore,
and paused. It will be resumed by some future call on sema_signal.

Programs should not rely on any relationship between the order in which
threads start to wait on a semaphore and the order in which they will be
resumed. At present, threads are simply ‘pushed down’ onto the list of
waiting processes, so that the last thread to start waiting on a semaphore
will be the first to be resumed.

Note that any particular semaphore must be accessed only by threads
executing at one particular priority. For example, it would be acceptable
for a set of ‘urgent’ threads to synchronise through a semaphore, or for
a set of ‘not urgent’ threads to do this, but not for a mixture of threads
executing at different priorities. Threads executing at different priorities
can synchronise by passing messages along channels.

sema_wait_n perform n wait operations on a semaphore

#include <sema.h>
sema_wait_n(s, n)
int n;

SEMA *s;

This function calls the function sema_wait n times, in sequence. The
calling thread may be forced to wait at any point in the sequence.

serv_filter start run-time library protocol filter threads

#include <serv.h>
serv_filter (norm_in,norm out, wide_ in,wide out)
CHAN *norm_in, *norm out, *wide_in, *wide_ out;

A historical problem involving first-silicon T414A transputers was solved
by making the protocol used by the full run-time library different to the
documented protocol when a communication is performed across the

transputer links.

72 TDS 179 00

Alphabetic list of run-time library functions 16 203

When the standard hamness is used (mainent . c4x or mainent . c8x)
there is no ‘problem’ as the protocol used by the iserver is different to
that used by the full run-time library, which does not have this problem.
The standard harness has a protocol converter (written in 0ccamy) which
performs the conversion between the protocol used by the full run-time
library and the protocol used by the iserver.

In configuring programs the mismatch of protocol between the full run-
time library and the iserver is handled by the purpose-built filter
task (again by a protocol converter written in 0occam).

This function allows a program to start a pair of threads which perform
this protocol conversion. The workspace for these threads is roughly
1200 bytes in total; this is allocated from the heap. After the filter threads
have been started, control is returned to the caller.

norm_in and norm_out are connected to the ‘normal’ task (i.e. the
one using the standard unmodified protocol used by the run-time library)
while wide_in and wide_out are connected to the task using the
T414A-tolerant variant protocol. The latter will normally be the pair of
physical links connected to the host.

The sense of the in/out labels on the arguments to this function is from
the point of view of the tasks to which the filter is being attached. For
example, norm_in is an input channel to the normal-protocol task; it will
therefore be an output channel to the task containing the serv_filter
call.

Note that the maximum size of a variable-length data item which may be
passed through the filter in either direction is 512 bytes.

setbuf assign buffering to a stream

#include <stdio.h>
setbuf (stream, buf)
FILE *stream;

char *buf;

setbuf is used after a stream has been opened but before it is read
or written. It causes the character array buf to be used instead of an
automatically allocated buffer. If buf is the constant pointer NULL, I/O
will be performed without any buffering being interposed by the stdio
package. A macro BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

72 TDS 179 00

204 16 Alphabetic list of run-time library functions

A buffer is normally obtained from malloc upon the first getc or putc
on the file, except that output streams directed to the VDU and the stan-
dard error stream stderr are normally not buffered.

setjmp save environment for longjmp

#include <setjmp.h>
int setjmp(env)
jmp_buf env;

This function, together with longjmp, is useful for dealing with errors
encountered in a low-level subroutine of the program.

longjmp restores the stack environment saved in its env argument by
an earlier call on setjmp. This has the effect of resuming execution
immediately after that set jmp call.

set jmp’s caller can distinguish between the original return from set jmp
and the second return caused by longjmp by examining setjmp’s
return value. This is always O for the initial return, and the value of
longjmp’s val argument for subsequent returns. If val is set to O,
longjmp will change it to a 1 in order to preserve this condition.

The function which originally called set jmp must not itself have returned
before the call to longjmp. All accessible data still have their values as
of the time 1longjmp was called.

sin sine function

#include <math.h>
double sin(x)
double x;

sin returns the sine of its radian argument. The magnitude of the argu-
ment should be checked by the caller to make sure the result is mean-
ingful.

sinh hyperbolic sine function
#include <math.h>
double sinh (x)

double x;

sinh returns the hyperbolic sine of its argument.

72 TDS 179 00

Alphabetic list of run-time library functions 16 205

sprintf formatted output to a string

#include <stdio.h>
int sprintf(pstr, format [, argl[, arg2[...]]])
char *pstr, *format;

sprintf writes formatted output into a character array via a pointer
pstr supplied by the caller. It returns the number of characters written

into the array.
The meaning of format and the arg pointers is as for fprint£.

The output string pstr is automatically terminated by a NUL character.
Note that this terminator is not included in the character count returned

by sprintf

sqrt calculates /x

#include <math.h>
double sqgrt (x)
double x;

sqrt returns the square root of x.

sqgrt returns zero when x is negative; exrrno is set to EDOM.

srand new seed for rand function

srand (seed)
unsigned int seed;

srand function uses its argument as a seed for a new sequence of
pseudo-random numbers to be returned by subsequent calls to rand.

sscanf formatted input from string

#include <stdio.h>
int sscanf(pstr, format [, ptrl[, ptr2[...]]])
char *pstr, *format;

sscanf reads input from the string pstr. It interprets the characters
it reads according to the given format string and stores the resulting
values in the locations pointed to by the ptxr arguments.

The exact meaning of the arguments to sscanf is the same as for
fscanf.

72 TDS 179 00

206 16 Alphabetic list of run-time library functions

strcat concatenates two strings

#include <string.h>
char *strcat(sl, s2)
char *sl, *s2;

strcat appends a copy of string s2 to the end of string s1. A pointer
to the NUL-terminated result is returned.

strchr find a specified character in a string

#include <string.h>
char *strchr (pstr, cval)
char *pstr;

int cval;

strchr locates the first occurrence of cval (converted to a char) in the
string pointed to by pstr. The terminating null character is considered
to be part of the string. The function returns a pointer to the located
character, or a null pointer if the character does not occur in the string.

strcmp string compare

#include <string.h>
int strcmp(sl, s2)
char *sl, *s2;

strcmp compares its arguments and returns an integer greater than,
equal to, or less than 0, depending on whether s1 is lexicographically
greater than, equal to or less than s2.

strcpy string copy

#include <string.h>
char *strcpy(sl, s2)
char *sl, *s2;

strcpy copies string s2 to 81, stopping after the NUL character has
been moved. s1 is returned. If copying takes place between objects that
overlap, the behaviour is undefined.

72 TDS 179 00

Alphabetic list of run-time library functions 16 207

strecspn find length of string that does not contain specified characters

#include <string.h>
unsigned strcspn(sl, s2)
char *sl, *s2;

strcspn calculates the length of the initial part of the string pointed
to by s1 which consists of characters not from the string pointed to by
s2. The terminating null character is not considered part of the s2. The
function returns the length of the part.

strlen string length

#include <string.h>
int strlen(pstr)
char *pstr;

strlen returns the number of non-NUL characters in pstr.

strncat string concatenate

#include <string.h>

char *strncat(sl, s2, num)
char *sl, *s2;

int num;

strncat appends a copy of string s2 to the end of string s1. It copies at
most num characters. A pointer to the NUL-terminated result is returned.

strncmp string compare

#include <string.h>

int strncmp(sl, s2, num)

char *sl, *s2;

int num;

strncmp compares its arguments and returns an integer greater than,

equal to, or less than 0, depending on whether s1 is lexicographically
greater than, equal to or less than s2. At most num characters are looked

at.

strncpy string copy

#include <string.h>

char *strncpy(sl, s2, num)
char *sl, *s2;

int num;

72 TDS 179 00

208 16 Alphabetic list of run-time library functions

strncpy copies string 82 to s1. Exactly num characters are copied:
s2 is truncated or NUL-padded as required. The target may not be NUL
terminated if the length of 82 is n or more. s1 is returned.

strspn find length of string which contains specified characters

#include <string.h>
unsigned strspn(sl, s2)
char *sl, *s2;

strspn calculates the length of the initial part of the string pointed to
by s1 which consists of characters from the string pointed to by s2. The
function returns the length of the segment.

strtok break strings into tokens

#include <string.h>
char *strtok(sl, s2)
char *sl, *s2;

strtok breaks the string pointed to by s1 into tokens, each of which is
delimited by a character from the string pointed to by s2. The first use of
strtok must have s1 pointing at a string. Subsequent use can either
have s1 pointing at a new string or a null pointer as its first argument.
If a null pointer is used, the function starts from the position the last call
terminated. s2 can be different for each call. The function returns a
pointer to a token or a null pointer if there is no token found.

strtol convert string to long int

#include <stdlib.h>

long int strtol (nptr, endptr, base)
char *nptr, **endptr;

int base;

This function converts the initial portion of the string pointed to by nptr
to long int representation. First the string is split into three parts: an
initial string of white-space characters (which may be empty), a subject
string resembling an integer, to be decoded using the radix information
specified in base, and a final string which starts at the first character
which is not acceptable in the expected format of the subject string, and
extends to and includes the terminating null character of the input string.
Then it attempts to convert the subject string to an integer, and returns

the result.

72 TDS 179 00

Alphabetic list of run-time library functions 16 209

If the value of base is in the range 2-36, the expected form of the subject
string is a sequence of digits and letters representing an integer with the
radix specified in base. The letters a-z are ascribed the values 10—
35. Only those characters which are representations of values less than
base are allowed. If base has the value 16, the characters 0x may
precede the sequence of letters and digits, but have no effect.

If the value of base is 0, the subject string is treated as hexadecimal (if
it starts with 0x), octal (if it starts with 0) or decimal (for any other case).
All other values of base are illegal.

Uppercase letters are everywhere equivalent to lowercase ones, and the
subject string may start with a plus or minus sign. However, suffixes (like
L or U) are not allowed.

The function attempts to trap overflows, and if this happens the value
LONG_MAX or LONG_MIN is returned (these are defined in 1imits.h),
and errno is set to ERANGE.

If the subject string is empty, or base has an illegal value, then 0 is
returned and errno is set to EDOM. In this case, the object pointed to
by endptr is set to the value of nptr (unless endptr is null); in all
other cases, including overflows, this object is set to the address of the
start of the final string. The subject string will be empty if, for example,
the input string is empty or contains only white space. Here are some
other input strings whose subject strings are empty:

+
0x
/
- 1
0x-5

strtoul convert string to unsigned long int

#include <stdlib.h>

unsigned long int strtoul (nptr, endptr, base)
char *nptr, **endptr;

int base;

This function operates in the same way as strtol, except:
e It returns an unsigned long int;
e + and — are not accepted as part of the subject string;

« In the event of an overflow being trapped, the value returned is
always ULONG_MAX.

72 TDS 179 00

210 16 Alphabetic list of run-time library functions

tan tangent function

#include <math.h>
double tan(x)

double x;

tan returns the tangent of its radian argument. The magnitude of the .
argument should be checked by the caller to make sure the result is
meaningful.

tanh hyperbolic tangent function

#include <math.h>
double tanh(x)
double x;

tanh returns the hyperbolic tangent of its argument. The magnitude of
the argument should be checked by the caller to make sure the result is

meaningful.
thread_ create create a simple thread

#include <thread.h>
char *thread create(fn, wssize, nargs,

argl, ..., argn)
void (*£n) (); ‘

int wssize;
int nargs;
int argl, ..., argn;

The function £n is started as a new thread, running at the same priority as
the current thread, with a workspace of wssize bytes. This workspace is
taken from the heap and a pointer to it is returned from thread create
so that, if desired, the workspace can be returned to the heap (using
par_free) once the thread is known to have stopped. If there is in-
sufficient heap space remaining to create the requested workspace, this
function will return NULL.

The nargs arguments argl...argn will be passed on to the thread’s
function £n as its arguments; any number of arguments may be supplied
here as long as the correct number is recorded in nargs.

This function is a shorthand way of calling the more general thread cre-
ation function thread_start in the most usual circumstances.

72 TDS 179 00

Alphabetic list of run-time library functions 16 211

If thread create is used to create a new thread when a task is exe-
cuting with combined stack and data areas (no S option is specified when
iboot is used to make a single transputer program executable, or when
configuring a task with the data= attribute option), care must be taken
when allocating an area of storage from the heap.

In these circumstances, the heap allocation functions check that the
amount of space you request is actually available by comparing the top
of the heap with the current workspace pointer. For threads started with
thread_create, this will be within the heap and the check will there-
fore fail; the allocation function will return a null pointer to indicate that
no more space is available in the heap area.

If the separate stack and data storage allocation model is used, the heap
allocation functions check allocations against the true end of the heap
area, and this problem therefore cannot arise.

There are several ways to avoid this problem:

e Arrange your code so that threads started using
thread create neither allocate space from the heap or
(equivalently) themselves call thread create.

o Configure the task in which such operations are performed in
the separate stack and heap mode, using the STACK and HEAP
attributes of the configuration language TASK statement.

thread deschedule make current thread momentarily unable to execute

#include <thread.h>
thread deschedule ()

This function causes a thread to become momentarily unable to execute
(usually for one timer tick); this will cause it to be descheduled from the
processor, thus allowing some other thread to resume execution in its
place. Eventually, the thread which called thread deschedule will
resume.

This function can be used by a thread performing some background com-
putation to prevent it from ‘hogging’ the processor to the detriment of
other threads executing at the same priority level. In effect, a priority
level even less urgent than THREAD NOTURG can be achieved for use
by threads performing long-term CPU-intensive tasks whose results are
not expected to be immediately required.

72 TDS 179 00

212 16 Alphabetic list of run-time library functions

thread priority return current thread’s priority

#include <thread.h>
int thread priority()

This function returns the priority of the current thread, which will be either
THREAD URGENT or THREAD NOTURG.

thread_restart restart a thread given its workspace

#include <thread.h>
thread restart (p)
char *p;

p should be a pointer to the workspace of a thread which is known to be
stopped. The effect of this function is to restart that thread from where it

left off.

This function can be used to restart threads which have been stopped
because the channel on which they were attempting to communicate has
been reset using a call to chan_reset, which returns a handle suitable
for use by thread restart.

thread_start start a general thread

#include <thread.h>
thread start (fn, ws, wssize, flags,

nargs, argl, ..., argn)
void (*£n) ()
char *ws;
int wssize;
int nargs;
int argl, ..., argn;

This function starts a new thread based on the function £n. The new
thread uses the area ws as its workspace. The size of the workspace
(wssize) is a number of bytes.

The new thread will stop either when it executes the function
thread_stop, or when £n returns.

72 TDS 179 00

Alphabetic list of run-time library functions 16 213

The £1ags argument is a set of attributes for the new thread. At present,
the only attribute available is the thread’s priority, which should be either
THREAD URGENT or THREAD NOTURG. Normally, new threads should
be started at the same priority as the current thread. This is achieved by
passing the result of the function thread priority described below
as the value of this argument. Other than the priority specification, all
bits in the £1ags argument are reserved, and should be 0.

The nargs arguments argl...argn will be passed on to the thread’s
function £n as its arguments; any number of arguments may be supplied
here as long as the correct number is recorded in nargs.

See also the description of thread_create, which simplifies thread
creation by starting a thread at the current priority and allocates the
thread’s workspace from the heap.

thread stop stop the current thread

#include <thread.h>
thread stop()

This function stops the current thread. The current thread is also stopped
if its main function returns.

time returns the current calendar time

#include <time.h>
time_t time (timer)
time_t *timer;

time function determines the current calendar time. The type (time_t)
of the value returned by time is int. The value returned is the number
of seconds that have elapsed since 00:00:00 GMT on 1st January, 1970,
according to the host system clock.

timer_ aftexr compare two transputer timer values

#include <timer.h>
int timer_after(tl, t2)
int tl1, t2;

This function returns non-zero if timer value t1 is after timer value t2,
and zero otherwise.

72 TDS 179 00

214 16 Alphabetic list of run-time library functions

timer_delay delay for some number of timer ticks

#include <timer.h>
timer_ delay(d)
int d;

This function causes the current thread to wait for at least d ticks of the
timer associated with the current thread’s priority.

timer_now return the current timer value

#include <timer.h>
int timer now()

This function returns the value of the timer associated with the current
thread’s priority.

timer_ wait wait until current timer reaches some value

#include <timer.h>
timer wait(t)
int t;

This function causes the current thread to wait until the value of the timer
associated with the the priority of the current thread is at least t.

tolower convert char to lower case

int tolower (cval)
int cval;

cval is the ASCII code for an upper case letter. tolower returns the
code for the corresponding lower case letter, otherwise the value of cval
is returned unchanged.

toupper convert char to upper case

int toupper (cval)
int cval;

cval is the ASCII code for a lower case letter. toupper returns the
code for the corresponding upper case letter, otherwise the value of cval
is returned unchanged.

72 TDS 179 00

Alphabetic list of run-time library functions 16 215

ungetc push character back into input stream

#include <stdio.h>

int ungetc(cval, stream)
FILE *stream;

int cval;

ungetc pushes the character cval back on an input stream. That
character will be returned by the next getc call on that stream.
ungetc returns cval.

One character of pushback is guaranteed provided something has been
read from the stream and the stream is actually buffered. Attempts to
push EOF are rejected.

fseek (q.v.) erases all memory of pushed back characters.

ungetc returns EOF if it can’t push a character back.

unlink remove a file from the file system

int unlink (s)
char *s;

This function is identical to remove on this system, that is, the file iden-
tified by the string parameter s is deleted. If the file cannot be removed,
the function returns —1.

write write on a file

int write(fildes, buffer, nbytes)
char *buffer;
int fildes, nbytes;

A file descriptor is the integer returned by a successful call on open or
creat.

buffer is the address of nbytes contiguous bytes which are written
on the output file. The number of characters actually written is returned.
It should be regarded as an error if this is not the same as requested.

Write returns —1 on error: bad descriptor, bad buffer address, bad count,
or physical I/O errors.

72 TDS 179 00

216 16 Alphabetic list of run-time library functions

72 TDS 179 00

17 Configuration
language

The 3L configuration language is the language accepted by the various 3L con-
figuration utilities. It is designed to allow easy description both of physical pro-
cessor networks and of user applications built up out of tasks, without the user
being concerned with the details of how the tasks are actually loaded into the
processor network.

Each of the configuration utilities will, in general, accept a subset of the language
described here according to its needs. For example, the flood-fill configurer
accepts the barest descriptions of the user tasks; it needs no description of the
physical network because that information will be discovered at load time.

17.1 Standard Syntactic Metalanguage

In a formal description of a computer language, it is often convenient to use
a more precise language than English. This language-description language is
referred to as a metalanguage. The metalanguage which will be used to describe
the configuration language is that specified by British Standard 6154[7]. A tutorial
introduction to the standard syntactic metalanguage is available from the National
Physical Laboratory[8].

The BS6154 standard syntactic metalanguage is similar in concept to many
other metalanguages, particularly those of the well-known Backus-Naur family.

It therefore suffices to give a very brief informal description here of the main
points of BS6154; for more detail, the standard itself should be consulted.

1 Terminal strings of the language — those not built up by rules of the
language — are enclosed in quotation marks.

2 Non-terminal phrases are identified by names, which may consist of sev-
eral words.

3 A sequence of items may be built up by connecting the components with
commas.

4 Alternatives are separated by vertical bars (‘|’).
5 Optional sequences are enclosed in square brackets (' and 7).
6 Sequences which may be repeated zero or more times are enclosed in

braces (‘{’ and ‘}’).

72 TDS 179 00

218 17 Configuration language

7 Each phrase definition is built up using an equals sign to separate the
two sides, and a semi-colon to terminate the right hand side.

17.2 Configuration Language Syntax

To simplify the explanation of the configuration language, the formal definition
which follows in subsections 17.2.2 onwards deals only with the higher level syn-
tax of the language. At this level, we can deal with how the significant characters
of the language are built up into tokens and statements. The lower level syntax
deals with the way in which multiple input files are handled, with comments and
with line continuation. This topic is treated informally in subsection 17.2.1.

The high level syntax given here has an additional simplification intended to
make it more readable. To show this, consider the following syntax rule written
in the BS6154 metalanguage:

example rule = “first’, “second”;

Interpreted strictly, this rule would be satisfied only by an input text which read
‘firstsecond’. In the syntax presented here, it should be taken to match
‘first’ followed by ‘second’, but in such a way that the two items are dis-
tinguishable. For example, the two words here might be separated by a space
character in the input file. When the two items are distinguishable in the input
file without a space between them, then they may be abutted. This would be the
case for the two items in the following example:

second example rule = “first’, ‘="

Valid input text for this rule could be, for example, ‘€irst="or ‘first =

17.2.1 Low Level Syntax

The general form of a configuration language ‘program’ is designed to be as
simple as possible to use.

The following example show the ways in which the formatting, commenting and

72 TDS 179 00

17.2 Configuration Language Syntax 219

continuation facilities available in the configuration language can be used:

! this is an example of a comment
! a blank line follows...

! next, a statement continuation...
PROCESSOR -
host

! now, both features in combination...
PROCESSOR - ! comment AND continuation
root

The above sequence is, to the configurer, exactly equivalent to the following:

PROCESSOR HOST
PROCESSOR ROOT

The various facilities used above can be summarised as follows:

e Case of letters is not significant to the configurer; in other words, upper
and lower case letters may be used interchangeably.

o White space within a line (space characters, tab characters and so forth)
is compressed; for example, three consecutive spaces would be seen as
one.

o Everything from an exclamation mark character ‘!’ to the end of the line
is taken to be a comment, and is discarded.

o If the last non-whitespace character on a line is a hyphen ‘~’, the line is
taken to be continued onto the next line.

o Continuation and commenting can be used together; the hyphen must
then be the last non-whitespace character before the comment.

In addition to these line formatting considerations, note that the configurer can
accept any number of input files rather than simply one. This facility is designed
to allow different parts of the description of an application to be held in separate
files. For example, the description of the physical network might be held in one
file and the description of the user’s application in another. The configurer simply
treats each input file in order as part of one long input stream.

17.2.2 Numeric Constants

Several different kinds of numeric constant are available to meet the different
uses of constants within the configuration language. For example, a constant

72 TDS 179 00

220 17 Configuration language

may be expressed in decimal notation or in hexadecimal.

A special notation is provided to extend the decimal constant with a scaling
letter; this is most commonly used in specifications of memory allocation, which
are conveniently specified in units of kilobytes or megabytes. The scaling letters
‘K’ and ‘M’ scale the decimal constant they follow by 1024 and 1024 x 1024
(1048576) respectively. Note that it is not possible to add a scaling letter to a
hexadecimal constant; the configurer would interpret such a combination as the
hexadecimal constant followed by a single-character word containing the scaling
letter.

Although all numeric constants in the configuration language represent integer
values, a representation including a decimal point can be used for input: the
number is simply truncated towards zero before use. For example, 1.6 would
simply represent 1. Because this truncation occurs after the scaling letter, if
any, has been applied, the decimal point can be used to express fractions of
the scaling value. For example, 1.6M would represent 1677721, which is the
truncated integer part of 1.6 x 1024 x 1024.

constant = decimal constant | hex constant;

hex constant = “&”, hex digits;

hex digits = hex digit, { hex digit };

hex digit = digit| “A"| ... | “F7;

decimal constant = decimal digits, [“. ", {decimal digit}], [scaling letter];
scaling letter = “K”| “M”%

decimal digits = decimal digit, {decimal digit};

decimal digit = “0"] ... | “97%

Some examples of numeric constants are given here, along with their values,
expressed in decimal.

10 10
&10 16
10K 10240
10M 10485760

1.6 1
1.6k 1638

17.2.3 String Constants

The only circumstance in which a string constant is required in the configuration
language is when an operating system file must be identified. Such string con-
stants in the configuration language are simply enclosed in double quotes. No
notation is available for including double quotes within the string; this is unnec-
essary as file names should not contain this character.

72 TDS 179 00

17.2 Configuration Language Syntax 221

The trailing string quote may be omitted if the string is terminated by the end of
the line.

string constant = “"”, { any ASCII character other than newline or
double quote }, [“"” J;

Some examples of valid string constants are as follows:

"string"
"fred.b4

17.2.4 Identifiers

Each object in the physical transputer system (processors and wires) and in the
user’s application (tasks and connections) has a unique identifier. This is used by
the configurer in error reports, and is also used to specify relationships between
the objects. For example, a wire runs between links on two named processors.

Identifiers for objects in the configuration language are simply sequences of
letters, digits and the special symbols underline ' ’ and dollar sign ‘$’. The
sequence must start with a letter.

identifier = letter, { identifier character } ;
identifier character = letter | digit | “$” | “_"
letter = ‘A" ... | “Z%

Some examples of valid identifiers follow. Note that the last three examples
would all be treated identically by the configurer, because the case of letters is
not significant.

proc_5

do$work

root

a_very_ long_name
A Very_ Long_ Name
A VERY_ILONG NAME

Part of the syntax of each of the configuration language statement types which
declare an object is the identifier which is to be used to refer to that object in
later statements. For example, the identifier given to a processor is used again
in placing tasks on that processor or in wiring the processor’s links to those of
other processors.

It is sometimes convenient, when an object will not be referred to later, to allow
the configurer itself to choose an identifier for an object rather than for the user to
invent meaningless identifiers for every object. The declaration statement types
all allow a question mark to be used in place of an identifier.

72 TDS 179 00

222 17 Configuration language

new identifier = identifier | “?";

Normally, this special form of identifier is used when declaring wires and con-
nections, as there is at present no statement type which refers back to these
objects. Declarations of processors and tasks will almost always require an ex-
plicit identifier to be used, as these identifiers are used later when placing the
tasks onto the network of processors.

An example of using the question mark form of identifier would be as follows:

wire ? host[0] root[O0]

This statement declares a wire running from link number 0 on processor host
to link number O on processor root. The configurer will be able to report
errors concerning this wire by reference to the line number and file name of the
declaration, but the user will not be able to refer to the wire again.

17.2.5 Statements

Given the definitions of such primitives as numeric constants and identifiers,
the high-level syntax of the configuration language can now be presented. The
combined input file consists of a number of newline-separated statements, as
follows:

input file = { [statement], newline };

Note that the statement part of the above is optional, allowing for blank lines ap-
pearing between statements. This may come about either deliberately, perhaps
to improve the readability of the input file, or because the line contained only a
comment, which is of course not visible at this level.

Each statement in the input file is one of the following statement types. The
different statement types are covered in the subsections which follow.

statement = processor statement
| wire statement

| task statement

| connect statement

| place statement

|

bind statement;

There is no restriction on the order in which statements appear in the input file,
except that no object may be referred to before it has been declared.

72 TDS 179 00

17.2 Configuration Language Syntax 223

17.2.6 PROCESSOR Statement

processor statement = “PROCESSOR’,new identifier,{ processor attribute};
processor attribute = “TYPE”, “=", processor type;
processor type = “PC%

The PROCESSOR statement declares a physical processor. Every processor in
the physical network must be declared, including the host processor from which
the network is to be bootstrapped (normally the host computer). The configurer
assumes that the processor named host is the host processor; thus, each
configuration must contain a statement as follows:

processor host

Most processors declared in a configuration file will be declared so that user
tasks can be placed on them by later statements. However, it is sometimes
necessary to simply describe the tasks placed on a particular processor without
causing them to be loaded into the processor. For example, the physical network
may contain some processors which will already be executing tasks at the time
the rest of the network is bootstrapped.

A trivial example of this case is the host processor itself. In the case of the
host processor, the host will usually be executing the isexrver program when
the network is loaded, simply because that is the program which loads the rest
of the network. It is necessary to be able to specify the iserver task to the
configurer so that its ports can be connected to ports in user tasks, but without
forcing the configurer to attempt to bootstrap the host computer. Similarly, some
processors in the network might be set to bootstrap from ROM rather than from
link; here, too, there is a need to describe the tasks running in those processors
without attempting to bootstrap them.

A processor is declared to the configurer as having already been bootstrapped
by means of the TYPE attribute taking the value PC. For example, a physical
network containing one transputer and two host computers might be described
as follows:

processor host
processor root_processor
processor other_ host type=pc

Note that the default for the host is that it is TYPE=PC already. The default for
all other processors is to be normal, bootable, transputer processors.

Every processor is assumed to be able to support any user task placed on it by
the configuration file; specifically, there is no way to ask the configurer to check
the memory requirements of tasks placed on the processor against the amount
of physical memory available. Similarly, although certain tasks may not be able

72 TDS 179 00

224 17 Configuration language

to execute on particular types of processor (for example, a task making use of
the floating point instructions found only on the T800 cannot execute on a T414),
the configurer cannot check for this and the responsibility for ensuring a valid
configuration is the.user’s.

Every processor in the network is assumed to have four INMOS links, numbered
0 to 3. These may be referred to (in the WIRE statement) by means of a link
specifier construct, which consists of the processor identifier followed by the link
number enclosed in square brackets:

link specifier = processor identifier, “ ", constant, “1";

For example, link number 3 of the processor called extra would be specified
as extra[3].

17.2.7 WIRE Statement
wire statement = “WIRE”, new identifier, link specifier, link specifier;

The WIRE statement declares a physical wire connecting links on two physical
processors. Each wire supports two connections, one in either direction. The
two link specifiers in the WIRE statement may therefore be interchanged with-
out affecting the statement’'s meaning. For example, the following statements
both declare a wire named yellow_wire running between link 2 of processor
proc_one and link 3 of processor proc_two:

wire yellow wire proc_one[2] proc_two[3]
wire yellow wire proc_two[3] proc_one[2]

17.2.8 TASK Statement

“TASK’, new identifier, {task attribute};
“INS”, “=", constant

“OUTS”, “=", constant

“FILE", “=", task file specifier
“OPT", “=", opt area

“URGENT”

memory area, ‘=", memory amount;
memory area | “CODE”;

“STACK”

MHEAPH

“STATIC”

“DATA”;

constant | “?%;

identifier | string constant;

task statement
task attribute

opt area
memory area

memory amount
task file specifier

72 TDS 179 00

17.2 Configuration Language Syntax 225

The TASK statement declares a task, which may be either a user-supplied task
or one of the standard tasks provided with the configurer. Each task statement
may contain a number of task attribute clauses, each of which describes some
aspect of the task. The task’s attributes may appear in any order within the
statement.

INS Attribute

Each task declaration must include an INS attribute, which specifies the number
of elements in the task’s vector of input ports. If the task needs no input ports
(because it only requires to send messages to other tasks, never to receive) then
the number of input ports may be specified as 0.

OUTS Attribute

Each task declaration must include an OUTS attribute, which specifies the num-
ber of elements in the task’s vector of output ports. If the task needs no output
ports (because it only requires to receive messages from other tasks, never to
send) then the number of output ports may be specified as 0.

FILE Attribute

This attribute specifies the file in which the memory image of the task is to be
found. Task image files are produced by the iboot tool using the C option.

The FILE attribute is ignored for any processor which is declared as already
having been bootstrapped, and may be omitted. This state is assumed for the
host processor and for any processor for which the processor attribute TYPE=PC

has been specified.

If the FILE attribute is omitted for a normal (bootable) processor, the configurer
will scan the current directory and the directories specified in the environment
variable ISEARCH for a file whose name is the same as the task’s name, with
the suffix ‘.b4’. The search stops at the first directory in which a file with the
appropriate name is found.

If the FILE attribute is present, its argument is either a string constant, or a word

with the same syntax as an identifier. In the former case, the string is the name
of the file which will be opened, as in the following example:

task x file="mytask.b4d" ...

If the identifier-like option is taken, the identifier given is used in a search through
the ISEARCH path in the same way as the task’s own identifier would have been

72 TDS 179 00

226 17 Configuration language

if the FILE attribute had been omitted:

task x file=mytask...

Memory Size Attributes

The various memory size attributes specify the size of the various areas used as
workspace for the task, as well as specifying which memory allocation strategy
should be used.

The argument to one of the memory size attributes is an integer expressing the
number of bytes of memory to be allocated to the area in question. Sizes smaller
than 128 bytes will not be accepted, to prevent accidental entry of unreasonably
small amounts (for example, by typing 1. 6 instead of 1. 6K). It is also possible
to specify ‘the rest of memory available on the processor’ by entering a question
mark instead of an integer. Only one task may request this treatment on any
particular processor.

The single-vector allocation strategy is used if the DATA attribute appears. In this
strategy, the task uses a single area of memory for all workspace requirements,
whether stack, heap or static data. The stack and heap are allocated at opposite
ends of this area, and grow towards each other. For example:

task x...data=50k...

The double-vector allocation strategy is used if the STACK and HEAP attributes
appear (STATIC is available as a synonym for HEAP). In this strategy, the stack
occupies a separate area of memory to all the other workspace used by a task.
This can be useful when a task has a small stack requirement, as it can allow
for the stack area to be placed into the transputer's on-chip memory using the
task OPT attribute; this technique can produce large performance benefits. An
example of double-vector allocation is as follows:

task x...stack=1lk heap=10k...

The two allocation strategies are mutually exclusive. Thus, if the DATA size for
the task is given, neither STACK nor HEAP should appear. If the two-vector
allocation strategy is chosen, both STACK and HEAP must be specified. If
no memory size attributes at all appear for a task, the default is the same as
DATA="?; in other words, single-vector allocation of the rest of memory available
on the processor.

72 TDS 179 00

17.2 Configuration Language Syntax 227

OPT Attribute

This attribute specifies that the memory area given as its argument should be
placed, if possible, into the transputer’'s on-chip memory area. The CODE spec-
ifier indicates the area of memory which will contain the executing code of the
task; the other memory area specifiers have the same interpretation as for the
memory size attributes.

If not all of the memory areas specified will fit into the on-chip memory, then
some will be placed instead into the slower external memory, which is the default
allocation for all memory areas. The order of precedence between memory areas
in the same task is: stack, code, heap. In other words, if OPT=STACK and
OPT=CODE are both specified, then the stack area is more likely to be placed in
on-chip memory. No order of precedence is guaranteed between memory areas
in different tasks.

It is possible for only part of a memory area to be placed in the on-chip RAM; this
is useful in respect of the code area, where the modules which appeared first in
the linker command line will have been placed at the start of the code area. If
the most critical procedures are placed in the first module, then the likelihood of
their being executed from on-chip memory will be increased.

The on-chip memory is quite small (2KB on the T414, 4KB on the T800), so the
OPT attribute should be used sparingly to ensure that critical memory areas are
not displaced into the slower external memory by less critical memory areas.

An example of a critical task with small stack and large data requirements might
be as follows:

task t stack=lk heap=100k -
opt=stack opt=code

URGENT Attribute

This attribute specifies that the task’s initial thread is to be started at the urgent
priority level. The default is that the task’s initial thread is started at the not-urgent
priority level. For example:

task x...urgent...

Port Specifiers

After the declaration of a task, its ports may be referred to in much the same
way as the links of a processor, by a port specifier construct consisting of the
task identifier followed by a number enclosed in square brackets:

72 TDS 179 00

228 17 Configuration language

port specifier = task identifier, “ [", constant, “1";

For example, either input or output port number 5 on task usexr would be spec-
ified as user[5].

Note that a port specifier as given here does not indicate whether the port con-
cerned is an input port or an output port, that is, whether the index given is into
the task’s vector of input ports or into its vector of output ports. This information
is provided by the context in which the port specifier appears. In the CONNECT
statement, the port specifier's direction is determined by its position within the
line. In the BIND statement, the port specifier is preceded by a direction word
(INPUT or OUTPUT).

17.2.9 CONNECT Statement

connect statement = “CONNECT’, new identifier,

output port specifier, input port specifier;
output port specifier = port specifier;
input port specifier = port specifier;

The CONNECT statement connects an output port on one task with an input port
on another task. For example:

connect ? iserver|[0] filter[O]
connect ? filter[0] iserver[0]

Note that the order of the ports given in the CONNECT statement is significant,
unlike the order of the links in the WIRE statement which CONNECT otherwise

resembles.

17.2.10 PLACE Statement

“PLACE’", task identifier, processor identifier;
identifier;

identifier;

place statement
processor identifier
task identifier

o on

The PLACE statement determines which processor a particular task is to execute
on; every task must be placed on some processor. A simple example of the use
of this statement might be as follows:

place user_task root
place iserver host

72 TDS 179 00

17.2 Configuration Language Syntax 229

17.2.11 BIND Statement

“BIND", binding type, port specifier, binding value;
“INPUT” | “OUTPUT”;

“VALUE", “=", constant;

bind statement
binding type
binding value

The BIND statement allows the contents of a port to be explicitly set to some
literal value. Normally, ports are only bound by means of the CONNECT state-
ment; ports left unbound are pointed at unique transputer channel words so
that attempts to send or receive messages through them cause the minimum of
harm; the thread causing the attempt to communicate over the unbound port sim-
ply pauses indefinitely rather than causing failure of possibly all threads running
on the processor.

One application of the BIND statement is to give a task access to the trans-
puter’'s external event mechanism. This appears as a channel word at address
8000002016. Input port 5 of task event_handler could be initialised to point
to this channel word as follows:

bind input event_handler[5] value=&80000020

Another application of the BIND statement is to pass an integer parameter to a
user task. Here, the same input port as before is bound to the value 5:

bind input event_handler[5] value=5

This technique can be used to allow several otherwise identical tasks to be-
have differently. For example, tasks executing on a fast processor can have
this fact indicated to them by means of a parameter value, and use a more
processing-intensive algorithm for the solution of some problem. Another use of
this parameter facility is to ‘label’ each task with a unique identifier.

Note that if an arbitrary value is supplied for a port binding and an attempt is

then made to send or receive a message using that port, the processor on which
the task resides will most probably crash.

72 TDS 179 00

230 17 Configuration language

72 TDS 179 00

Appendices

72 TDS 179 00

232 Appendices

72 TDS 179 00

A Task data sheets

This chapter contains descriptions of the standard ‘building block’ tasks which
are provided with Parallel C.

' The description of each task starts with a diagram indicating the way in which the
ports of the task should be connected to those of other tasks. Small digits inside
the box representing the task are used to indicate port numbers corresponding
to the connections visible outside the box.

This diagrammatic description is then backed up by a detailed description of the

function of the task, along with examples of how a reference to the task might
appear in a configuration file.

72 TDS 179 00

234 A Task data sheets

Data Sheet: iserver

> to

iserver 0 filter

The iserver task is used in configured applications to represent an iserver
program executing on the host computer. It is therefore not provided in true
task-image form.

The iserver task should be described to the configurer as follows:

task iserver ins=1 outs=1l
place iserver host

The iserver program (and therefore the iserver task) provides access to
the host computer for tasks running in the transputer system, with which it com-
municates over its port pair 0.

The protocol used by the i server is different to that used by the full C run-time .

library. Therefore the iserver must be attached to a £iltexr task so that the
iserver protocol is matched with the protocol used by user tasks.

72 TDS 179 00

Task data sheets A 235

Data Sheet: filter

® e ——

iserver <—_° filter 14— user task

The £ilter task is used to convert between the protocol used by the iserver
and the protocol used by the full run-time library for C. A £ilter task would be
described in a configuration file as follows:

task filter ins=2 outs=2 data=10k

A filter task’s port pair 0 communicates using the protocol expected by the
iserver This is normally attached to an iserver task running on the host
computer. Port pair 1 of a £ilter task communicates using the protocol ex-
pected by the full run-time library of C.

Thus, if a £ilter task is interposed between an iserver and a user task,

they will be able to communicate normally although each is using a different
‘ protocol.

72 TDS 179 00

236

A Task data sheets

Data Sheet: frouter

‘up’ link
3
to — > to
master o | 4 frouter 5 le — worker

T

‘down’ links

The frouter task is used by the flood-filling configurer as the standard task
which resides on each node of a flood-filled network and manages the flow of
work packets and responses through the network.

The attributes used by the flood-filling configurer for the frouter task are as
follows:

task router file=frouter ins=6 outs=6 -
data=1llk urgent

The following list summarises the way in which the frouter task is used by
the flood-filling configurer:

0-2 Each of these pairs of ‘down’ ports are either set to zero by the loader,

or are connected to the ‘up’ ports of nodes deeper in the network which
were bootstrapped from this node. For each non-zero port pair in this
range, the £router task will start a pair of threads to carry packets to
and from the subnetwork attached through that link.

3 If this node is not the root of the network, these ‘up’ ports are connected

to a pair of ‘down’ ports of the router on the node which bootstrapped
this node. In this case, the frouter task will read work packets and
send responses to the booting node (and thus ultimately to the master
task executing on the root node) through this pair of ports. If this node is
the root of the network, these ports are set to zero by the loader and are
ignored by the frouter task: port pair 4 (attached to the master task)
will be used instead.

4 If this node is the root of the network, these ports are connected to the

master task. In this case, the £router task will read work packets and
send responses to the master task through this port pair. Otherwise,

72 TDS 179 00

Task data sheets A 237

these ports are set to zero by the loader and the £router task will use
port pair 3 to reach the master task.

5 These ports are connected to the worker task executing on this node.

The standard £router task uses two protocols in communicating with the tasks
to which it is connected:

4-5 Port pairs connected directly to user tasks use the standard ‘net’ protocol
described in section 8.2.

0-3 Port pairs connected to other routers through Inmos links use a variant
of the ‘net’ protocol which is tolerant to the T414A problem with one-byte
messages. In this variant, a two-byte message is actually transferred
whenever the message header indicates that a one-byte message should
follow.

Note that a communications task like £router should normally be specified
as having the urgent attribute. This prevents worker tasks in the network
becoming idle because there is too little CPU time available elsewhere in the
network for the router to operate.

72 TDS 179 00

238 A Task data sheets

72 TDS 179 00

B Harnesses and
run-time libraries

In this release there are supplied a number of pre-compiled files that are used
by the user when linking C programs (using ilink). These pre-compiled files
are known as harnesses and are always required when linking a C program.

Also supplied are the full and reduced versions of the C run-time library files that
have to be linked in with a C program as well.

B.1 Harnesses

There are two types of harness supplied with the release, one is used when
linking a program for input to the configurers (config and £fconfig) and the
other is used when linking a program for input to the iboot tool.

The harness that is used when linking a program for input to the configurers is
taskharn.txx. There are two versions of this harness, one for C programs
compiled for the T414 (taskharn.t4x) and one for C programs compiled for
the T800 (taskharn.t8x).

When a program has been linked using this type of harness it is then considered
to be a task which can be placed on a node in a transputer network using the
configurers supplied with this release. Before a linked task can be used by the
configuration tools it must be converted to a format that is acceptable as input
to the configurers. This conversion is performed using the iboot tool with its
C option (see section 9.3).

The harness that is used when linking a program for input to the iboot tool is
mainent .cxx. There are also two versions of this harness, one for C programs
compiled for the T414 (mainent .c4x) and one for C programs compiled for
the T800 (mainent.c4x).

When a program has been linked with this type of harness it can then be con-
sidered as a compiled C program would be in a conventional non-parallel envi-
ronment. In order to execute this type of C program it is necessary to make the
linked program into an executable program. This operation is performed using
the iboot tool (see section 9.1). Once the C program has been made execu-
atble it is then possible to load and execute it on a transputer board (using the

host file server).

72 TDS 179 00

240 B Harnesses and run-time libraries

B.2 Run-time libraries

There are two versions of the run-time libraries supplied with this C release, a
full run-time library and a reduced run-time library. The main difference between
these two versions of the C run-time library is that the full C run-time library con-
tains all the routines necessary to perform i/o to the host file system and terminal
where as the reduced C run-time library does not contain these functions. The
full C run-time library is called cxrtl.1ib and the reduced C run-time library is
called sacrtl.1lib.

The full C run-time library is always used by C programs that are to be linked
using the mainent . cxx harness. The full C run-time library is also used by C
programs which are to be linked with the taskharn.txx harness and are to
be configured so that they are connected to the host computer via the host file
server (i.e. the iserver).

The reduced C run-time library is only used by C programs that are to to be
linked using the taskharn.txx harness and are to be configured so that they
are not connected to the host file server. (These programs will in general be
executing on remote nodes in a transputer network with no access to host file
and terminal services.)

B.2.1 Core maths run-time library

The C run-time library (full and reduced versions) share a common core of maths
routines. Unlike the rest of the run-time library these routines are re-entrant and
can be used in this way using the occam 2 toolset. That is, a single copy of
the maths core of the C run-time library can be used by any number of C tasks
executing on the same transputer when used called from an occam program.

The maths core is specified in the library build file mrtl.1bb and is refer-
enced from the full and reduced library build files of the C run-time libraries (i.e.
crtl.lbb and sacrtl. 1bb). It is therefore possible to re-build the full and
reduced C run-time libraries without the maths core in them so that only one copy
of the maths core library is used when a number of C tasks are to be executed
on the same transputer.

To build the maths core library and to rebuild the full and reduced versions of
the C run-time libraries without the maths core it is first necessary to explode the
full and reduced C run-time libraries as supplied into their component modules
(using i1libr and its X) option). For example:

ilibr crtl.lib -x
ilibr sacrtl.lib -x

72 TDS 179 00

B.2 Run-time libraries 241

N.B. The reduced C run-time library contains a subset of the modules that appear
in the full C run-time library so it does not matter if the librarian overwrites these
common modules which have been exploded from the full C run-time library.

Once the standard (i.e. as supplied) full and reduced C run-time libraries have
been exploded it will be necessary to modify the library build files for them. The
only modification that is required is to remove the first line in the library build files
that has the librarian command:

-f mrtl.lbb

To rebuild the full and reduced C run-time libraries as well as the core maths
library the following sequence of commands should then be used:

ilibr -f mrtl.lbb -o mrtl.lib
ilibr -f crtl.lbb -o crtl.lib
ilibr -f sacrtl.lbb -o sacrtl.lib

It is now possible to use the library file mxrt1.1ib as a re-entrant library which
need be linked in only once per transputer when more than one C task is to be
executed on a single transputer.

To link a C task which requires the use of the core maths library it will necessary
to perform serveral linking passes and to also use the linker's U option.

For example, consider an occam program that calls two C tasks, both of which
require routines from the core maths library where one C task uses the full C
run-time library and the other uses the reduced C run-time library. The sequence
of linking commands that will be required could be as follows:

ilink h1 at,a2,.. crtl.lib -o c7-u
ilink h2 b1, b2, .. sacrtl.lib -o c2-u

Where af, a2, ... are the object files for the first C task and b7, b2, ... are the
object files for the second C task. h1 and h2 are the harness files that have to
be linked with the C tasks and ¢7 and c2 are the output files corresponding to
each partially linked C task.

To link these partially linked C tasks with the occam program that calls the C
tasks the following linking command could be used:

ilink o1, 02 ... ¢1,c2 mrlt.1lib ol1,02,.. -0 o
Where 01, 02, ... are the object files for the 0ccam program and o/1, ol2, ... are
the library files used by the occam program. c¢7 and c2 are the partially linked

C tasks that are called by the occam program. o is the fully linked occam
program with C tasks.

72 TDS 179 00

242 B Harnesses and run-time libraries

72 TDS 179 00

C Transputer instructions

This appendix provides a quick reference for the transputer instruction set as
supported by Parallel C’s asm statement. The syntax of the asm statement is
covered in detail in section 14.5.

It is not anticipated that this appendix would be used as the sole reference for
the transputer instruction set by a programmer unfamiliar with the transputer. For
a detailed specification of each of the instructions available, refer to ‘Transputer
instruction set: a compiler writer's guide’ [12].

C.1 Pseudo-instructions

Pseudo-instructions are instructions to the assembler, rather than true transputer
instructions. At present, only one pseudo-instruction is implemented, as follows:

byte This instruction takes as argument a list of constant values in the
range 0 to 255. The assembler copies the literal bytes into the
instruction stream.

C.2 Prefixing instructions

The transputer instruction set is built up from 16 direct instructions, each with
a 4-bit argument field. The direct instructions include prefix instructions which
augment the 4-bit field in a direct instruction which follows them by their own
4-bit argument field, effectively allowing the argument to be extended to 32 bits.

Normally, the assembler will compute the prefix instructions required for operand
values greater than 4 bits automatically. However, you may wish to use ex-
plicit pfix and nfix instructions in conjunction with with the byte pseudo-
instruction to synthesise special instruction sequences, for example for future
transputer processors with additional instructions to those supported by Paral-
lel C at present.

pfix prefix
nfix negative prefix

72 TDS 179 00

244 C Transputer instructions

C.3 Direct instructions

The direct instructions form the core of the transputer instruction set. Each
direct instruction has a single operand, normally an integer constant, which will
be encoded in the instruction itself and, if it is larger than will fit into the 4-
bit argument field of the direct instruction, into a series of pfix and nfix
instructions as well.

The transputer architecture is based around a three-register evaluation stack and
a single base register Wreg. The load and store ‘local’ instructions access a
word in memory at a displacement from Wreg given by the operand value used.
The displacement is scaled by the word size. The load and store ‘non-local’
instructions use the top evaluation stack register (Areg) as the base instead of
Wreg, allowing computed base addresses to be used.

The operand of the j, ¢j and call instructions is interpreted as a byte dis-
placement from the instruction pointer (program counter) register Iptr. 1dpi
is similar but takes its operand from Areg.

opr ‘operate’: the argument to this instruction is a code indicating a zero-
operand indirect instruction to be executed. Most of the transputer
instruction set is made up of these indirect instructions. Normally you
would use the mnemonic for the specific indirect instruction which you
require: the assembler will encode this as an opr instruction on your
behalf. However, it is possible to use opr explicitly, for example to
synthesise the instruction sequence for a new indirect instruction not
supported by the T414 and T800 transputers.

1ldc load constant

1d1 load local word

stl store local word

1ldlp load pointer to local word

adc add constant operand value to Areg

eqc test if Areg equals constant; Areg gets 1/0 result

3 jump: the argument may be an identifier indicating a label for the jump
to go to; the assembler will compute the displacement required.

cj conditional jump: as with jump, a label identifier may be used as

argument to this instruction.
1ldnl load non-local word
stnl store non-local word
1ldnlp load pointer to non-local word

call call
ajw adjust workspace pointer Wreg by constant operand value (scaled by
word length)

72 TDS 179 00

C.4 Operations 245

C.4 Operations

The instructions in this section are all indirect instructions built out of the opr
instruction. None of these instructions take an argument; instead, they work
solely with the transputer evaluation stack.

The arithmetic instructions take their operands from the top of the evaluation
stack (Aregq, Breg) and push the result value back on the stack in Aregq.

rev reverse top two stack elements

add add

sub subtract

mul multiply

div divide

rem remainder

sum sum

diff difference

prod product

and bit-wise and

or bit-wise inclusive or

xor bit-wise exclusive or

not bit-wise not

shl shift left

shr shift right

gt greater than (1/0 result in Areg)

lend loop end

bent byte count

went word count

1dpi load pointer to instruction (Areg is byte displacement from
Iptr)

mint minimum integer

bsub byte subscript (Areg = Areg + Breg)

wsub word subscript (Areg = Areg + 4*Breg)

move move block of memory (src: Creg dest: Breg len: Areg)

in input message

out output message

1b load byte

sb store byte

outbyte output byte

outword output word

72 TDS 179 00

246 C Transputer instructions

gcall general call (swap Areg— Iptr)
gajw general adjust workspace
ret return

startp start process

endp end process

runp run process

stopp stop process

ldpri load current priority
ldtimer load timer

tin timer input

alt alt start

altwt alt wait

altend alt end

talt timer alt start

taltwt timer alt wait

enbs enable skip

diss disable skip

enbc enable channel

disc disable channel

enbt enable timer

dist disable timer

csub0 check subscript from 0
centl check count from 1
testerr test error false and clear
stoperr stop on error

seterr set error

xword extend to word
cword check word

xdble extend to double
csngl check single

ladd long add

1lsub long subtract

72 TDS 179 00

C.5 T414-only instructions 247

1lsum long sum

1diff long difference

lmul long multiply

ldiv long divide

1shl long shift left

1shr long shift right

norm normalise

resetch reset channel

testpranal test processor analysing

sthf store high priority front pointer
stlf store high priority back pointer
sttimer store timer

sthb store high priority back pointer
stlb store low priority back pointer
saveh save high priority queue registers
savel save low priority queue registers
clrhalterr clear halt-on-error
sethalterr set halt-on-error
testhalterr test halt-on-error

fmul fractional multiply

C.5 T414-only instructions

The indirect instructions in this section may only be executed on T414 proces-
sors, although you may use them in asm statements even when compiling for a
different processor.

unpacksn unpack single-length floating-point number

roundsn round single-length floating-point number

postnormsn post-normalise correction of single-length floating-point
number

1dinf load single-length infinity

cflerr check single-length floating-point infinity or not-a-number

C.6 T800-only instructions
The instructions in this section may only be executed on T800 processors, al-

though you may use them in asm statements even when compiling for a different
processor.

72 TDS 179 00

248 C Transputer instructions

C.6.1 Floating-point instructions

The indirect instructions in this section provide access to the T800’s built-in
floating-point processor. Note that the instructions beginning with ‘£pu..." are
doubly indirect: they are accessed by loading an entry code constant with a 1dc
instruction, then executing an £pentry instruction, which is itself indirect. As
with ordinary indirect instructions, this indirection is handled transparently by the
assembler, although the £pentry instruction is also available.

The floating point load and store instructions use the integer Areg as a pointer

to the operand location.

fpentry floating point unit entry: used to synthesise the ‘fpu...’
instructions.

fpdup floating duplicate

fprev floating reverse

fpldnlsn floating load non-local single

fpldnldb floating load non-local double

fpldnlsni floating load non-local indexed single

fpldnldbi floating load non-local indexed double

fpstnlsn floating store non-local single

fpstnldb floating store non-local double

fpurn set rounding mode to round nearest

fpurz set rounding mode to round zero

fpurp set rounding mode to round positive

fpurm set rounding mode to round minus

fpadd floating-point add

fpsub floating-point subtract

fpmul floating-point multiply

fpdiv floating-point divide

fpusqrtfirst floating-point square root first step

fpusqgrtstep floating-point square root step

fpusqgrtlast floating-point square root end

fpremfirst floating-point remainder first step

fpremstep floating-point remainder iteration step

fpldzerosn load zero single

fpldzerodb fload zero double

fpmulby?2 multiply by 2.0

fpudivby2 divide by 2.0

fpuexpinc32 multiply by 2%2

fpuexpdec32 divide by 2%

fpuabs floating-point absolute

72 TDS 179 00

C.6 T800-only instructions 249

fpldnladdsn
fpldnladddb
fpldnlmulsn
fpldnlmuldb
fpchkerr
fptesterr
fpuseterr
fpuclrerr
fpgt

fpeq
fpordered
fpnan
fpnotfinite
fpur32tor64
fpur64tor32
fpint
fpstnli32
fpuchki32
fpuchki64
fprtoi32
fpi32tor32
fpi32tor64
fpb32tor64
fpunoround

72 TDS 179 00

floating load non-local and add single
floating load non-local and add double
floating load non-local and muiltiply single
floating load non-local and multiply double
check floating error

test floating error false and clear

set floating error

clear floating error

floating point greater than

floating point equality

floating point orderability

floating point not-a-number

floating point finite

convert single to double

convert double to single

round to floating integer

store non-local 32-bit integer

check in range of 32-bit integer

check in range of 64-bit integer

convert floating to 32-bit integer

convert 32-bit integer to 32-bit real
convert 32-bit integer to 64-bit real
convert 32-bit unsigned integer to 64-bit real
convert 64-bit real to 32-bit real without rounding

250 C Transputer instructions

C.6.2 Other T800-only instructions

The indirect instructions in this section supplement the T414’s integer instruction
set.

dup duplicate top of stack

move2dinit initialise data for 2-dimensional block move
move2dall 2-dimensional block copy
move2dnonzero 2-dimensional block copy non-zero bytes
move2dzero 2-dimensional block copy zero bytes
crcword calculate Cyclic Redundancy Check (CRC) on word
crcbyte calculate CRC on byte

bitent count the number of bits set in a word
bitrevword reverse bits in a word

bitrevnbits reverse bottom n bits in a word

wsubdb form double-word subscript

72 TDS 179 00

"

D Conventions and
defaults

All tools in the toolset, and all implementations of the toolset, use a common set
of conventions and defaults.

The toolset conforms to conventions in the following areas:
e command line syntax and options
e error handling and message format
o file naming

o file location.

D.1 Command line conventions
Syntax
All tools in the toolset conform to the following syntax conventions:
o Options must be prefixed by the option prefix character. The option prefix
character is ‘-’ for UNIX based toolsets, and ‘/’ for VAX VMS and DOS
based toolsets.

o Options may occur anywhere on the command line and case is ignored.

o If an option takes more than one parameter the parameters must be
enclosed in parentheses (), and separated by commas.

Common options

All tools in the toolset conform to the following conventions for command line
options:

o All tools provide help information if called with no options.

o The -I option, where supported, displays information about what the tool
is doing.

e The -F option, where supported, is used to specify an input filename. If
no name is given then input is taken from the host system standard input
(normally the keyboard).

72 TDS 179 00

252 D Conventions and defaults

e The —L option, where supported, loads the program without invoking the
tool or running the program. This can be used to load a program onto
a transputer board without running it, or to test for the existence of a
particular tool.

e The —O option, where supported, is used to specify an output filename.
If no name is give then output is sent to the host system standard output
(normally the screen).

D.2 Filename conventions

The toolset encourages the use of conventions in file naming, and especially in
the area of file extensions. The relationship of tools to each other in the various
stages of program building and compilation, relies on these conventions, and it
is recommended that you use them wherever possible.

Filename conventions are encouraged for three reasons. Firstly, it enables file-
names to be used in a host independent manner. Secondly, it enables file
extensions to be omitted from filenames in many commands, because defaults
can be assumed. This simplifies the use of these commands.

Filenames

Filenames should not contain the characters: dot ., colon :, semi-colon ;,
square brackets [], round brackets (), forward slash /, backslash \, exclama-
tion mark !, equals =.

Where the host operating system allows logical names to be used in place of
filenames, such as with VMS, the toolset allows logical names to be used, but

the name must be followed by a dot (.). This prevents the tool from adding an
extension, which would generate a host filing system error.

File extensions

File extensions used by the software, and the tools to which they relate, are
given in table D.1.

72 TDS 179 00

D.2 Filename conventions

253

Extension | Tool File Type | Description
.b4 config Input Configurer input files. Input files
fconfig created by the iboot tool us-
ing the tool’s ‘C’ and ‘O’ options.
.bt config Output | Configurer output file.
fconfig
.bxx iboot Output | Bootable code for single trans-
puter.
.CXX ilink Output | Linked code files.
.dxx iboot Output | Bootstrap tool code description.
.h - - Declarations of constants etc.
.1bb ilibr Input Library build file.
.1ib ilibr Output | Library file.
.1xx ilink Input Linker command files.
.mXX ilink Output | Module map.
.c tc/t4c/ t8c Input C source.
.cfg config Input Network configuration file.
fconfig
.SXx ilink Output | Symbol table produced by the
linker.
.bin tc/t4c/t8c Output | Code files produced by com-
piler.
N.B. for extensions .bxx,.cxx, etc., the value of x depends on
the transputer type (4 for T414 and 8 for T800).

Table D.1 File extensions

In file extensions composed of a letter and two additional characters, for example
.bxx, the second character of the extension indicates the transputer type.

If an extension is not specified, some tools assume an appropriate extension.
For example, the C compiler t4c (or t8c) assumes the extension .c on the
input file, and the configurer tool config assumes a .b4 extension on its input

files.

Other tools, such as ilink, cannot make assumptions about the input file to
use, and require the extension to be explicitly stated.

72 TDS 179 00

254 D Conventions and defaults

D.3 File location conventions

The tools locate files by searching a specified directory path on the host system.
The path is specified on the PC using the environment variable ISEARCH, and
on VAX systems running VMS, by a sequence of logical names.

The tools conform to the following rules for locating files:

1 If the filename contains a directory specification then the filename is used
as given. Relative directory names are treated as relative to the directory
in which the tool was invoked.

2 If no directory is specified the directory in which the tool was invoked is
searched.

3 If the file is not present in the current directory, the path specified by the
environment variable (or logical name) ISEARCH is searched. [f there
are several files of the same name on this path, the first occurrence is
used.

4 If the file is not found using the above rules, then the file is assumed to
be absent, and an error is generated by the tool.

If no search path has been set up then only rule 1 applies.

D.4 Search paths on the IBM PC and SUN3

When using the environment variable ISEARCH on a PC running DOS and
the SUN3 running SunOS, directories to be searched are specified as a list of
directory paths. Directories are searched in the order that they appear in the list.
Within the list, directory paths must be followed by the appropriate directory

separator character (‘\’ for DOS and ‘/’ for SunOS), and entries in the list must
be separated by a space or a semi-colon.

D.5 Search paths on VMS systems

The symbol ISEARCH has a list of logical names as its argument, which by
convention will be ISEARCH_1, ISEARCH_2, etc., separated by spaces.

You should set up the logical names to point to the directories that you require.
They will be searched in the order that they are specified when the symbol

72 TDS 179 00

D.5 Search paths on VMS systems 255

ISEARCH is set up. For example:

$ ISEARCH :=="ISEARCH 1: ISEARCH 2:"

72 TDS 179 00

256 D Conventions and defaults

72 TDS 179 00

E ASCII code chart

0x0x | Ox1x | Ox2x | Ox3x | Ox4x | Ox5x | Ox6x | OX7x
0xx0 | NUL | DLE 0 e P ')
Oxx1 || SOH | DC1 ! 1 Q a q
Oxx2 || STX | DC2 " 2 B R b r
0xx3 || ETX | DC3 # 3 (o] S c s
Oxx4 || EOT | DC4 $ 4 D T d t
Oxx5 || ENQ | NAK % 5 E U e u
Oxx6 || ACK | SYN & 6 F v £ v
Oxx7 || BEL | ETB ! 7 G W g w
Oxx8 | BS CAN (8 H X h x
0xx9 | HT |EM) 9 I Y i y
OxxA || LF | SUB * : J 4 3 z
OxxB || VT ESC + ; K [k {
0xxC || FF FS , < L \ 1 |
0xxD || CR GS - = M] m }
OxxE || SO [RS . > N ~ n ~
OxxF || sT |[US / ? (o] _ o | DEL

72 TDS 179 00

258 E ASCIl code chart

72 TDS 179 00

Bibliography

[1] The C Programming Language. Brian W. Kernighan and Dennis M. Ritchie.
Prentice-Hall, 1978. ISBN 0-13-110163-3.

[2] Disk Operating System Version 3.10 Reference. International Business Ma-
chines, February 1985.

[8] Microsoft MS-DOS User’s Reference. Microsoft Corporation, 1986. Docu-
ment Number 410630013-320-R03-0686.

[4] Disk Operating System Version 3.00 Technical Reference. International
Business Machines, May 1984.

[5] A. M. Lister, Fundamentals of Operating Systems. Macmillan Press, 1979.
ISBN 0-333-27287-0.

[6] Andrew S. Tanenbaum, Operating Systems: Design and Implementation.
Prentice-Hall, 1987. ISBN 0-13-637331-3.

[7] British Standard BS6154:1982: Method of Defining Syntactic Metalan-
guage. British Standards Institution, 1981. ISBN 0-580-12530-0.

[8] R. S. Scowen. An Introduction and Handbook for the Standard Syntactic
Metalanguage. National Physical Laboratory Report DITC 19/83, Febru-
ary 1983.

[9] ANSI/IEEE Std 754-1985: IEEE Standard for Binary Floating-Point Arith-
metic. Institute of Electrical and Electronics Engineers, 1985.

[10] IMS T414 transputer: Engineering data. Inmos Ltd., June 1987.
[11] IMS T800 transputer: Preliminary Data. Inmos Ltd., April 1987.

[12] The transputer instruction set: a compiler writers’ guide. Inmos Ltd., Febru-
ary 1987. Publication number 72 TRN 119 01.

[13] Roger Shepherd. Technical Note 1: Extraordinary use of transputer links.
Inmos Ltd., November 1986.

[14] Stephen Ghee. Technical Note 11: IMS B004 IBM PC add-in board. Inmos
Ltd., February 1987.

[15] Michael Rygol and Trevor Watson. Technical Note 18: Connecting Inmos
Links. Inmos Ltd., April 1987.

72 TDS 179 00

260 Bibliography

72 TDS 179 00

Index

#include
controlling 91, 135

directory search 135

#line 130

_fmode 152, 153, 180

_inmess 165

_outbyte 165
_outmess 165
_outword 166
_tolower 166
_toupper 166

abs 167

acos 167
Applications 11
argc 163

argv 163

ASCIl 257

asin 167
Assembler 135

error messages 126

labels and jumps 141, 142, 143
literal bytes 143, 243

opcodes 243

operands 137, 138, 139

syntax 136
uses for 135
assert 167
atan 167
atan2 168
atof 168
atoi 168
atol 168

BIND statement 229
Bootable 86
Bootstrap

error messages 65
loader interface 63
network 46
primary 44

72 TDS 179 00

secondary 44, 45, 51
Bootstrap tool 61
boot_peek 169
boot_poke 169
BUFSIZ 203
Byte 144

calloc 170

ceil 170

cfree 170

CHAN 22

Channels 9, 10, 160, 162, 163
chan_init 171

chan_in byte 170
chan_in byte t 171
chan_in message 171
chan_in message t 172
chan_in word 172
chan_in word t 172
chan_out_byte 172
chan_out_byte t 173
chan_out_message 173
chan_out_message t 173
chan_out_word 174
chan out_word t 174
chan reset 174

char 144

clearerr 175

clock 175

close 175

Command line 251

Compiler

bit fields 134, 144, 145
controlling object files 89
controlling verbosity 93
differences from K&R C 129
disassembling output from 55

error message lists 98, 123, 125,

126

error messages 94, 95, 96, 97, 98

extensions 131
external linkage 90

262

Index

file defaults 89

identifying 92

language standard 129
list of keywords 133
option summary 88
options 87

representation of data types 144
restrictions 129

running 87

shifts 134
Compiler switches

C 89, 91

D 91

FB 89

FO 89

I 91,92, 135

M 92

PC 90

s 90

T4 90

T8 90

T8A 90

U 92,134

v 93

X 91,135

config 43
Configuration files 16, 33, 37
more than one transputer 25
Configuration language
anonymous identifiers 221
file layout 218

identifiers 221

link specifiers 224
numeric constants 219
port specifiers 227
statement syntax 222
string constants 220
syntax of 217
Configurer 13, 15, 16

loader command stream 47
loader used by 43

memory allocation 49, 50, 51, 52
CONNECT statement 19, 228
Connections between ports
declaring to configurer 228

72 TDS 179 00

Conventions
toolset 251
cos 175
cosh 176
creat 176

Debugging

parallel systems 30, 161
Debugging data 68
decode 55

invoking 55
Disassembly 55
double 144
Double precision 90

entry 133
enum 133, 134
EOF 147
errno 155
Error messages
bootstrap 65
compiler 94, 98
librarian 70
linker 80
Example programs
matrix multiplication 34, 37, 38
multiplexor 26
upper case 11,12, 16,17
Executable files
format 44, 45, 46, 47
exit 176
exp 176

fabs 176
fclose 177
fconfig 59
fdopen 177
feof 177
ferror 177
fflush 178
fgetc 178
fgets 178
FILE 150
File extensions 253
conventions 252
File server options 85

Index

263

Filenames 252
conventions 252
permitted characters 252

fileno 179

float 144

Floating-point constants 90

Flood-fill configurer 59
mixed networks 39
task-task protocol 59

floor 179

fmod 179

fopen 179

fprintf 180, 182

fputc 182

fputs 182

fread 183

free 183

freopen 183

frexp 184

fscanf 184

fseek 186

ftell 186

fwrite 187

getc 187
getchar 187
gets 187

Hardware
configuration 17
Harness 164
standard 16
Harnesses 239
Host computer 17
Host file server 85

iboot 61, 225
Identifiers
anonymous 221
case distinction 131
dollar sign in 131

in configuration language 17, 19,

221
‘reserved as keywords 133
significant characters 131
ilibr 67

72 TDS 179 00

index 188
isalnum 188
isalpha 188
isascii 188
isatty 188
iscntrl 189
isdigit 189
ISEARCH 135, 254
iserver 85
isgraph 189
islower 189
isprint 189
ispunct 190
isspace 190
isupper 190
isxdigit 190

ldexp 191
Librarian 67
error messages 70
Libraries 69
building 69
disassembling 68
exploding 68
indirect files 70
modules 69
removing debug data 68
selective loading 69
Linker 73
error messages 80
Links 10, 224
Listing files 89, 92
Loading programs 86
log 191
loglO 191
longjmp 192
lseek 192
Macros
defining 91
listing expansions 92
predefined 91, 92, 93, 134
main 11, 163
malloc 193
master 37
Master task 33, 34, 59

264 Index
memcpy 193 putchar 198

Memory puts 198

estimating requirements 31, 32 putw 198

memset 193

Messages 9 rand 199

length of 21 read 199

modf 194 realloc 199

Modules 69 register 134

MS-DOS remove 199

versus PC-DOS 2

NDEBUG 167

net_receive 34, 35, 36, 194
net_send 34, 35, 195

NULL 147

On-chip RAM 51
open 196
Option prefix 2
O_BINARY 153
O_TEXT 153

par_fprint 196
par_free 196
par_malloc 197
par_printf 196
par_sema 161

Path searching 254
PLACE statement 19, 228
Port vectors 11
Portability 131

Ports 11, 21, 22, 227
binding 11, 229

pow 197
printf 197

Processes 9, 10
Processor farms 14
PROCESSOR statement 17, 223
TYPE attribute 223
Processor type

compiling for 90

T414A 47, 237

T800A 90

Processors

declaring to configurer 223
putc 197

72 TDS 179 00

rewind 200

rindex 200

Root transputer 17

Run-time libraries 240

Run-time library

binary I/0 152

channel I/0 functions 160, 162

character classification functions
157

conventions 147

conversion functions 158

header files 148

heap functions 158

I/O functions 154

list of functions 165

Low-level I/0 155

mathematical functions 155

miscellaneous functions 162

module summaries 149

network functions 161

parallel I/O functions 161

purpose 147

reduced 163

semaphore functions 159

standard I/0 150

stream /O 152

string handling functions 156

text VO 153

thread functions 159

time functions 159

timer functions 160

scanf 200

Search path 225
Selective loading 69
Semaphores 27, 35, 159
sema_init 201

Index

265

sema_signal 201
sema_signal n 201
sema_wait 202
sema_wait_n 202
Server

host file server 85
serv_filter 202
setbuf 203
setjmp 204

sin 204

sinh 204
sizeof 130
sprintf 205
sqrt 205

srand 205
sscanf 205
Standard error 151
Standard input 151
Standard output 151
stderr 151
stdin 151
stdout 151
strcat 206
strchr 206
strcmp 206
strcpy 206
strcspn 207
strlen 207
strncat 207
strncmp 207
strncpy 207
strspn 208
strtok 208
strtol 208
strtoul 209

t4c 87
t4master 39
t4worker 39
t8c 87
t8master 39
t8worker 39
tan 210

tanh 210

Task image files 62

locating with configurer 225

72 TDS 179 00

TASK statement 18, 224
FILE attribute 37, 39, 225
INS attribute 18, 225
memory size attributes 226
OPT attribute 227
OUTS attribute 18, 22, 225
URGENT attribute 227

Tasks 11, 12
declaring to configurer 225
specifying memory requirements

226
versus threads 29

tc 87

Threads 12, 26, 34
creating 26, 27
versus tasks 29

thread create 210

thread deschedule 211

THREAD_NOTURG 159

thread priority 212

thread restart 212

thread start 212

thread stop 213

THREAD URGENT 159

time 213

timer_after 213

timer_ delay 214

timer now 214

timer wait 214

tolower 214

toupper 214

type 180

ungetc 215

unlink 215
unsigned 144
unsigned short 144

void 133, 134

WIRE statement 17, 224
Wires 10

declaring to configurer 224
Work packets 33, 34, 60
worker 37

Worker task 33, 60

write 215

INMOS Limited
1000 Aztec West

Almondsbury

Bristol BS12 4SQ

U.K.

Telephone (0454) 616616
TLX 444723

INMOS SARL

Immeuble Monaco

7 rue Le Corbusier

SILIC 219

94518 Rungis Cedex
France

Telephone (1) 46.87.22.01
TLX 201222

INMOS GmbH
Danziger Strasse 2
8057 Eching

West Germany

Telephone (089) 319 10 28

TLX 522645

INMOS Corporation -
P.O. Box 16000

Colorado Springs
Colorado 80935

US.A.

Telephone (719) 630 4000
TLX (Easy Link) 62944936

INMOS Japan K.K.

4th Floor No 1 Kowa Bldg
11-41 Akasaka 1-chome
Minato-ku

Tokyo 107

Japan

Telephone 03-505-2840
TLX J29507 TEI JPN

@ , Inmos, IMS and occam are trademarks of the INMOS Group of Companies.

72 TDS 179 00

February 1989

	Contents
	Contents overview
	1 How to use the manual
	1.1 How to use the manual
	1.2 User guide
	1.3 Reference manual
	1.4 Appendices
	1.5 Host operating system dependencies

	The user guide
	2 Programming single transputers
	2.1 Outline procedure
	2.2 A simple example
	2.3 A more complex example
	2.4 Indirect linker files
	2.5 Libraries

	3 Introduction to Parallel C
	3.1 Abstract model
	3.2 Hardware realisation
	3.3 Software model
	3.4 Parallel execution threads
	3.5 Conflguring an application
	3.6 Processor farms

	4 Programming transputer networks
	4.1 Conflguring one user task
	4.1.1 Hardware configuration
	4.1.2 Software configuration
	Declaring tasks
	Making connections between tasks
	Assigning tasks to processors

	4.1.3 Building the application
	Building a task image
	Configuring the task images

	4.2 More than one user task
	4.2.1 Inter-task communication functions
	4.2.2 Building the application

	4.3 Access to host services
	4.4 Multi-transputer systems
	4.5 Multi-threaded tasks
	4.5.1 Creating threads
	4.5.2 Threads versus tasks

	4.6 Debugging
	4.7 Estimating memory requirements

	5 Processor farms
	5.1 The worker task
	5.2 The master task
	5.3 The net functions
	5.4 Building the application
	5.4.1 Building master and worker task images
	5.4.2 Configuration file
	5.4.3 Configuration
	5.4.4 Running the example

	5.5 Mixed networks

	The reference manual
	6 config general purpose configurer
	6.1 Running the configurer
	6.2 The distributing loader
	6.2.1 Bootstrapping a transputer
	6.2.2 Bootstrapping a network
	6.2.3 Loader command stream
	6.2.4 Memory allocation

	7 decode utility
	7.1 Usage
	7.2 Features of the decode program
	7.3 Other languages

	8 fconfig flood-fill configurer
	8.1 Running the flood-fill configurer
	8.2 User task protocol
	8.2.1 Master task's ports
	8.2.2 Worker task's ports

	8.3 Packet format

	9 iboot bootstrap
	9.1 Running the iboot tool
	9.2 What can be made executable
	9.3 Producing task images
	9.4 Bootstrap loader interface
	9.5 Error messages

	10 ilibr librarian
	10.1 Introduction
	10.2 Running the librarian
	10.3 Exploding libraries
	10.4 Removing debug data
	10.5 Rules for constructing libraries
	10.6 Library Modules
	10.6.1 Selective loading

	10.7 Building libraries
	10.8 Indirect files
	10.9 Error messages

	11 ilink linker
	11.1 Introduction
	11.2 Notes on using the tinker
	11.2.1 Output flies
	11.2.2 Processor type checks
	11.2.3 Selective loading of library files

	11.3 Running the linker
	11.4 Redirecteed command input
	11.4.1 Linker indirect files

	11.5 Linker options
	11.5.1 Option M - disable file Map
	11.5.2 Option E - extend link capacity
	11.5.3 Option S - disable Symbol table
	11.5.4 Option B - change Buffer size
	Calculating memory requirements for a linked program

	11.5.5 Option Q - optimise symbols
	11.5.6 Order of linking of object files

	11.6 Error messages

	12 iserver host file server
	12.1 Running the server
	12.1.1 Loading programs
	12.1.2 Specifying link address - option SL

	13 tc C compiler
	13.1 Running the compiler
	13.2 Compiler switches
	13.2.1 Controlling output files
	Switches FB and FO
	Switch FL

	13.2.2 Controlling object code
	Switches T4, T8 and T8A
	Switch S
	Switch PCn
	Switch C

	13.2.3 Controlling #include processing
	Switch Idirectory
	Switch X

	13.2.4 Macro definitions
	Switch Dmacro and Dmacro=string
	Switch Umac

	13.2.5 Information from the compiler
	Switch I
	Switch M
	Switch V

	13.2.6 Obsolescent switches

	13.3 Compiler error messages
	13.3.1 Compiler error message format
	13.3.2 Fixing errors detected by the complier
	13.3.3 Complier control lines
	13.3.4 List of error messages
	Program errors
	System errors
	Code generator errors

	13.3.5 Errors in assembler code

	14 C language implementation
	14.1 The C language
	14.1.1 Restrictions
	Loose type checking of ' .' and -> operators
	White space within compound operators
	Use of sizeof in array declarations
	#line ignored
	Anachronisms not allowed

	14.1.2 Extensions
	Dollar sign in identifiers
	More significant characters in identifiers
	Assignment to whole struct/union variables
	Restrictions on struct member names relaxed
	type-name syntax relaxed

	14.1.3 Keywords

	14.2 System-dependent features
	14.2.1 Data type enum not allowed
	14.2.2 All bit fields unsigned
	14.2.3 >> operator
	14.2.4 Register variables

	14.3 Predeflned macros
	14.4 Handling of #include flies
	14.5 Assembly language
	14.5.1 When to use assembly language
	14.5.2 Assembly language syntax
	14.5.3 Literal operands
	14.5.4 Variables as operands
	Storage class
	Type

	14.5.5 Accessing complex structures
	14.5.6 Labels and jumps
	Labels within asm statements
	Jump optimisations

	14.5.7 Literal machine code
	14.5.8 Errors

	14.6 Data-type representations

	15 The C run-time library
	15.1 Purpose of the run-time library
	15.2 Conventions
	15.3 Header files
	15.4 Library modules
	15.4.1 Input/output
	Standard I/O
	Low-level I/O

	15.4.2 Mathematical functions
	15.4.3 String handling
	15.4.4 Character classification
	15.4.5 Conversions
	15.4.6 Dynamic memory allocation
	15.4.7 Date and time
	15.4.8 thread package
	15.4.9 sema package
	15.4.10 timer package
	15.4.11 chan package
	15.4.12 net package
	15.4.13 par package
	15.4.14 Compatibility channel I/O
	15.4.15 Miscellaneous

	15.5 The C main program
	15.6 Reduced run-time library

	16 Alphabetic list of run-time library functions
	_inmess
	_outbyte
	_outmess
	_outword
	_tolower
	_toupper
	abs
	acos
	asin
	assert
	atan
	atan2
	atof
	atoi
	atol
	boot_peek
	boot_poke
	calloc
	ceil
	cfree
	chan_in_byte
	chan_in_byte_t
	chan_init
	chan_in_message
	chan_in_message_t
	chan_in_word
	chan_in_word_ t
	chan_out_byte
	chan_out_byte_t
	chan_out_message
	chan_out_message_t
	chan_out_word
	chan_out_word_t
	chan_reset
	clearerr
	clock
	close
	cos
	cosh
	creat
	exit
	exp
	fabs
	fclose
	fdopen
	feof
	ferror
	fflush
	fgetc
	fgets
	fileno
	floor
	fmod
	fopen
	fprintf
	fputc
	fputs
	fread
	free
	freopen
	frexp
	fscanf
	fseek
	ftell
	fwrite
	getc
	getchar
	gets
	index
	isalnum
	isalpha
	isascii
	isatty
	iscntrl
	isdiqit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	ldexp
	log
	log10
	longjmp
	lseek
	malloc
	memcpy
	memset
	modf
	net_receive
	net_send
	open
	par_free
	par_fprintf
	par_printf
	par_malloc
	pow
	printf
	putc
	putchar
	puts
	putw
	rand
	read
	realloc
	remove
	rewind
	rindex
	scanf
	sema_init
	sema_siqnal
	sema_signal_n
	sema_wait
	sema_wait_n
	serv_filter
	setbuf
	setjmp
	sin
	sinh
	sprintf
	sqrt
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncpy
	strspn
	strtok
	strtol
	strtoul
	tan
	tanh
	thread_create
	thread_deschedule
	thread_priority
	thread_restart
	thread_start
	thread_stop
	time
	timer_after
	timer_delay
	timer_now
	timer_wait
	tolower
	toupper
	ungetc
	unlink
	write

	17 Configuration language
	17.1 Standard Syntactic Metalanguage
	17.2 Configuration Language Syntax
	17.2.1 Low Level Syntax
	17.2.2 Numeric Constants
	17.2.3 String Constants
	17.2.4 Identifiers
	17.2.5 Statements
	17.2.6 PROCESSOR Statement
	17.2.7 WIRE Statement
	17.2.8 TASK Statement
	INS Attribute
	OUTS Attribute
	FILE Attribute
	Memory Size Attributes
	OPT Attribute
	URGENT Attribute
	Port Specifiers

	17.2.9 CONNECT Statement
	17.2.10 PLACE Statement
	17.2.11 BIND Statement

	Appendices
	A Task data sheets
	B Harnesses and run-time libraries
	B.1 Harnesses
	B.2 Run-time libraries
	B.2.1 Core maths run-time library

	C Transputer instructions
	C.1 Pseudo-instructions
	C.2 Prefixing instructions
	C.3 Direct instructions
	C.4 Operations
	C.5 T414-only instructions
	C.6 T800-only instructions
	C.6.1 Floating-point instructions
	C.6.2 Other T800-only instructions

	D Conventions and defaults
	D.1 Command line conventions
	D.2 Filename conventions
	D.3 File location conventions
	D.4 Search paths on the IBM PC and SUN3
	D.5 Search paths on VMS systems

	E ASCII code chart
	Bibliography
	Index

