Transputer
Development
System

Delivery manual

Contents

1 Introduction 3
2 Installation instructions 5
2.1 Deleting the D700C release 5

2.2 Full installation 5

23 Selective installation 7

2.4 Using the system on an NEC PC 8

25 Setting up the system for use 8

3 Software contents of the TDS release 11
3.1 TDS system 11

3.2 Compiler libraries 12

3.3 Software tools 13

3.4 1/O libraries 14

3.5 Maths libraries 15

3.6 Tutorial 16

3.7 Example programs 16

3.8 Server sources 16

4 The servers 19
5 Changes since D700C 21
5.1 Functional changes to the TDS 21

5.2 Changes to existing D700C programs 22

5.2.1 EXE programs 23

5.2.2 Configuration language 24

5.2.3 Lists of abbreviations, retypes and placements 24

5.2.4 Protocols 25

5.2.5 Program checking rules 25

5.2.6 Functions 25

5.2.7 Program layout 26

5.2.8 Library references 26

5.2.9 The libraries 26

6 The implementation of occam 29
6.1 Implementation restrictions 29

6.2 Size limitations 30

72 TDS 142 00

Known problems 33
7.1 The documentation 33
7.2 The development environment 34
7.3 The servers 35
7.4 The compiler utility set 35
7.5 The file handling utility set 36
7.6 The debugger 37
7.7 The tools 37
7.8 The libraries 37
7.9 The examples and tutorial 37

72 TDS 142 00

1 Introduction

This manual is the “delivery manual” for the Transputer Development System
(TDS), describing how to install the software, and giving an overview of the
contents of the release. This release of the TDS is the IMS D700D, for the IBM
PC and compatibles, and the IMS D800D, for the NEC PC-9801. For the rest of
this manual the release will be referred to as the ‘D700D’.

The software of the TDS runs on a transputer board attached to the host com-
puter. This may be an IMS B004 or IMS B008 for the IBM PC, an IMS B010
for the NEC PC, or a board compatible with one of these. The binary code of
the TDS will run either on an IMS T414 processor (although not a revision A
T414) or on an IMS T800. A program called a server runs on the host computer
and provides the TDS with access to the keyboard, screen and filing system of
the host computer. The TDS can be ported to a different host/transputer board
combination by porting the server, and a version of the server written in C is
provided for this purpose.

The release consists of nine 360Kbyte floppy disks and a number of manuals.
This manual includes the information needed to upgrade from the previous re-
lease of the software (the IMS D700C). In addition it gives a list of known bugs
and problems with the system, at the time of release.
The other manuals provided with the system are as follows:-

1 occam 2 reference manual.

2 A tutorial introduction to occam programming.

3 The transputer development system manual.

72 TDS 142 00

1 Introduction

72 TDS 142 00

2 Installation instructions

The system is supplied on nine 360Kbyte disks for the IBM PC AT and compat-
ibles. The files are provided in a compacted form produced by an archive utility
called arc. The installation procedure assumes that you are going to install all
of the supplied system onto the same volume. You will need about 6 Mbytes
of space on your volume for the whole system, but you can be more selective
about what you install, as described below.

2.1 Deleting the D700C release

The D700D release of the TDS replaces the previous release of the TDS, the
D700C. The directory names for the D700D are different from those of the
D700C, so if you wish you can have the two releases co-existing on your com-
puter over the period of transition to the new release. Alternatively you may wish
to delete the D700C before installing the D700D. A batch file is provided on the
first disk of the D700D to aid in this; it assumes that the files are installed as
in the D700C installation procedure. The batch file is called deld700c.bat.
Proceed as follows:

1 First of all make sure that there are no files in any of the D700C directories
which you wish to keep.

2 Set your default drive to the drive containing the TDS (for example, c:).

3 Place the first D700D disk into the floppy drive (for example, drive a:),
and type:

a:deld700c

If the floppy drive has a different name from a, use that in the line above
instead.

4 The program will start up, give a message and ask for you to press a key
to proceed. Do that (you can press ctrl-C here if you have changed your
mind!).

5 As the program runs you will have to keep entering ‘y’ to confirm the

deletions in each directory (again you can press ctrl-C to terminate the
batch file).

2.2 Full installation
To install the whole system proceed as follows:

72 TDS 142 00

6 2 Installation instructions

1 Set your default drive to the drive you wish to install onto (for example,
c:).

2 Put disk 1 into the floppy drive (for example drive a:) and type
a:install a

If you have used a different floppy drive, replace a in the above line with
the name of that drive (e.g. b:install b).

3 The installation procedure will then instruct you to put in each of the
subsequent disks, and will then proceed to install the archived files. This
will take up to 30 minutes, depending on the speed of your disks.

The following directories are created during installation:

Directory Contents

\tds2\system TDS system and utilities
\tds2\complibs Compiler libraries

\tds2\tutor Some simple tutorial programs
\tds2\examples Some example programs

\tds2\tools Code for tools

\tds2\tools\src Source for tools

\tds2\iolibs I/O library header files
\tds2\iolibs\src I/O library sources

\tds2\iolibs\ht2 I/O libraries for the T2 (HALT mode)
\tds2\iolibs\ht4 1/O libraries for the T4 (HALT mode)
\tds2\iolibs\ht8 I/O libraries for the T8 (HALT mode)
\tds2\mathlibs Maths library header files
\tds2\mathlibs\src Maths library sources
\tds2\mathlibs\ht2 Maths libraries for the T2 (HALT mode)
\tds2\mathlibs\rt2 Maths libraries for the T2 (REDUCED mode)
\tds2\mathlibs\ht4 Maths libraries for the T4 (HALT mode)
\tds2\mathlibs\rt4 Maths libraries for the T4 (REDUCED mode)
\tds2\mathlibs\ht8 Maths libraries for the T8 (HALT mode)
\tds2\mathlibs\rt8 Maths libraries for the T8 (REDUCED mode)

\tds2\server\serverld Server sources
\tds2\server\afserver Aferver sources
\tds2\server\cserver Cserver sources

72 TDS 142 00

2 Installation instructions 7

In addition to the TDS directories, the installation procedure also creates the
directory \arcd700d which at the end of installation includes the arc program,
and a number of batch files. These include a file called deld700d.bat which
removes the TDS files and directories (this may be useful to remove the system
before installing another release of it). In addition there are a number of batch
files for selectively installing parts of the system; see the next section. You can
delete the contents of \arcd700d if you wish, as it is not required to run the
TDS.

2.3 Selective installation

You can be more selective about which bits you install by giving parameters to
the install program. The parameters are:

/ne No examples; the tutor and examples directories are not made.
/nt No tools source; the tools\szrc directory is not made.

/nl No library sources; no iolibs\src and mathlibs\src directories.
/ns No server source; the server directories are not made.

For example, to omit the examples, the tools source and the server sources,
type

a:install a /ne /nt /ns

If you have asked for part of the system to be omitted, the system will not ask
you to load unnecessary disks.

Omitting the examples will save about 200 Kbytes, the tools source will save
about 900 Kbytes, the server sources will save about 900 Kbytes, and the library
source will save about 600 Kbytes.

If you subsequently decide that you need to install one of the parts you have
omitted, you can use one of the following batch files left in \arcd700d after
installation:

getparte.bat The tutor and examples directories.
getpartt.bat The tools\src directory.

getpartl.bat The iolibs\src and mathlibs\src directories.
getparts.bat The server directories.

When running one of these, supply as a parameter the name of the floppy drive
you will use to load the files; for example:

getparte a

72 TDS 142 00

8 2 Installation instructions

The batch file will then run, telling you which disks to insert, and then de-archiving
the files into the appropriate directories.

2.4 Using the system on an NEC PC

If you are using an NEC PC, it is suggested that you set up the files in the
\tds2\system directory so that the NEC version is picked up by the standard
commands. To do this, rename the file nectds2.bat in the \tds2\system
directory to tds2 .bat and the file necafser.exe to afserver.exe (you
will first have to delete or rename the existing files with these names).

The IMS BO010, the transputer board for the NEC PC, is supplied with 1 MByte
of memory, rather than 2 Mbytes as on the IMS B004. When running the TDS
on the IMS BO010, there is less memory available to load and run utilities. Utility
sets should be loaded one at a time and cleared when another one is required;
otherwise there will be very little space for running the compiler. The Autoload
fold in the toolkit fold should be changed so that it only includes the compiler
utility set. The file handling utility set and the debugger should be placed in the
Tools fold and only loaded when needed,

The ‘interrupt’ key for the NEC, which causes the TDS to be interrupted and
rebooted, is ‘ctrl-V'.

25 Setting up the system for use

WARNING: This release will not work on a revision A IMS T414. If you have
a T414A in your transputer board you must upgrade to a later revision of
the T414 before starting to use the system. The system will give an error
message if an attempt is made to start it on a T414A.

Once you have installed the system, you need to be sure that you can run it.
The directory \tds2\system contains a .BAT file for running the TDS. Put
\tds2\system into your DOS PATH command in AUTOEXEC.BAT.
You will need to edit the TDS2 . BAT file under the following circumstances:
o If you are running the TDS on a different drive from the drive on which
the TDS is installed, you will need to edit all the file names in the batch

file to include the drive name.

o If you are running the TDS on an IMS T800, include the parameter —p
T800 in the server call.

o If you are running the TDS on a board which is larger or smaller than 2

72 TDS 142 00

2 Installation instructions 9

Mbytes, change the value after the —s parameter to match the memory
size.

o If for some reason you have installed the transputer board at a different
link adaptor address value than the standard one (see the board manual
for details of this), you will need to supply a =1 parameter to the server
giving the link adaptor address (for example, to specify a link adaptor
at base address hexadecimal #310, include the server parameter -1
#310).

You can try out the system in the directory \tds2\tutor. To use the systemin
a different directory you will need a “toolkit” fold. Copy the file TOPLEVEL . TKT
from \tds2\system into the directory you want to work in.

As supplied, the system is intended to be used within the same drive as it is
installed on. If you wish to use the system on a different drive, you will need to
make a different toolkit fold which will refer to utility and library files in a manner
including the drive name. To do this, follow the instructions below. You will need
to use the TDS to complete this task, so have a keyboard map with you (see
appendix A of the TDS manual).

1 Go to the directory \tds2\system and type tds2 to start the system.
Press to enter the top level file.

2 Use [ENTER TOOLKIT] (ALT-F1]) to enter the toolkit fold. Edit the directory
names in the Library logical names fold to include a drive name.

3 Exit the toolkit fold.

4 Follow the instructions in the top level file to make new Autoload and
Tools folds.

5 Exit the toolkit fold, exit to top level, and finish the session (FINISH] is
on the numeric keypad).

The TOPLEVEL. TKT file in \tds2\system will now be of the required form.

Once you are satisfied that the system is ready for use, turn to the TDS manual
for instructions on how to start using the system.

72 TDS 142 00

10

2

Installation instructions

72 TDS 142 00

3 Software contents of
the TDS release

This chapter gives an overview of the contents of this release of the TDS. The
components are split up as follows:

1 TDS system and utilities (in \tds2\system).
2 Compiler libraries (in \tds2\complibs).

3 Software tools (in \tds2\tools).

4 1/O libraries (in \tds2\iolibs).

5 Maths libraries (in \tds2\mathlibs).

6 Tutorial material (in \tds2\tutor).

7 Example programs (in \tds2\examples).

8 Server sources (in \tds2\server).

3.1 TDS system
The TDS system comprises:
1 The TDS2.BAT DOS command file.
2 The TDS server object (SERVER14 . EXE).
3 The TDS loader (TDSLOAD . B4)
4 The TDS .Xsc file.
5 The compiler/configurer utility set (OCCAM2 . CUT).
6 The file handling utility set (FILEHAND . CUT).
7 The debugger program (DEBUGGER . CEX).
8 The toolkit file (TOPLEVEL . TKT).

9 The host file server object. (AFSERVER.EXE).

72 TDS 142 00

12 3 Software contents of the TDS release

10 The NEC server object (NECSERVE . EXE).

11 The NEC host file server object (NECAFSER . EXE).

12 The ANSI server object compiled for the IBM (ANSISERV.EXE).
13 The C server object compiled for the IBM (CSERVER . EXE).

14 The NECTDS2 .BAT file to call the NEC server.

15 A number of .LD and .TBL files for the NEC PC.

3.2 Compiler libraries
The compiler libraries are as follows:
reals
realpds
ints
intpds
r64utils
t2utils
The compiler libraries are used by the occam compiler to support extended
data types in occam and the implicitly defined libraries described in the TDS
manual. The compiler libraries are provided in the directory \tds2\complibs,
compiled for all transputer types and error modes (see below). The sources are
not provided.
Transputer types supported are:
e T8: The IMS T800.
e T4: The IMS T414.

e T2: The IMS T212.
Error modes supported are:
¢ HAT.T mode.
e STOP mode.
e REDUCED mode.
These terms are explained in the TDS manual.

72 TDS 142 00

3 Software contents of the TDS release 13

The extraordinary link handling library (reinit) and the block CRC library
(blockcerc) are provided compiled for all transputer types and error modes,
in the same directory as the compiler libraries. These libraries are described in
the TDS manual. The sources are not provided.

3.3 Software tools

The software tools comprise the following principal tools (referred to in the Tools
fold of the toolkit)

1 The lister program LIST.CEX.

2 The unlister program UNLIST .CEX.

3 The link transfer program LINKCOPY . CEX.

4 The transputer network tester program NETTEST . CEX.

5 The memory interface program MEMINT .CEX.

6 The EPROM hex program EPROMHEX . CEX.

7 The hex-to-programmer program, HEXTOPRG . CEX.
These are all referred to or described in detail in the TDS manual.
The tools source directory contains:

1 The link transfer program sources.

2 The lister program sources.

3 The unlister program sources.

4 The EPROM hex program sources.

5 The hex-to-programmer sources.

6 Example ROM sources.

7 Extractor program sources.

8 Network memory browser sources.

9 An “add preamble” program sources.

72 TDS 142 00

14 3 Software contents of the TDS release

10 Example transputer loaders and analyse worms.
11 A simple transputer network exploration worm.
12 Sources of a disassembler program.

Tools which are not described in the TDS manual are accompanied by some
explanatory text in the tools source directory.

3.4 1/O libraries
The input/output libraries comprise:

ioconv
extrio
strings
userio
interf
slice
ufiler
msdos
derivio
afio
afiler
afserver
t4board
t2board

These are all described in the TDS manual.

The 1/O libraries are provided compiled in HALT mode only, for the T8, the T4
and the T2 (where relevant). The sources of these libraries are supplied.

The /O library sources are provided in the directory:
\tds2\iolibs\src

The compiled and compacted versions are supplied in the directories:
\tds2\iolibs\ht8

\tds2\iolibs\ht4

\tds2\iolibs\ht2

In addition there are the following header libraries, supplied in the directory
\tds2\iolibs, and listed in an appendix to the TDS manual:

72 TDS 142 00

3 Software contents of the TDS release 15

uservals
userhdr
filerhdr
krnlhdr
afhdr

3.5 Maths libraries
The maths libraries comprise:

snglmath
dblmath
t4math

These are described in the TDS manual. The sources of these libraries are
available.

The elementary function libraries are provided compiled in HALT and in REDUCED
mode.

There are two basic versions of the elementary function library: a version using
floating point arithmetic, and a version using fixed point arithmetic. The floating
point function library is compiled for the T8, the T4 and the T2 (the T2 version
contains some functions specially optimised for the T2). The fixed point function
library is compiled for the T4, and referred to using the name t4math. On the
IMS T414, this library should be used in preference to the floating point function
library, as it is much faster. The floating point function library should only be
used on the IMS T414 if for some reason it is required to behave exactly the
same way as on an IMS T800 (for example, if a program intended for a T800 is
being tested on a T414).

The sources are in the directory:

\tds2\mathlibs\src

The compiled and compacted libraries are placed in the directories:
\tds2\mathlibs\ht2

\tds2\mathlibs\ht4

\tds2\mathlibs\ht8

\tds2\mathlibs\rt2

\tds2\mathlibs\rt4
\tds2\mathlibs\rt8

72 TDS 142 00

16 3 Software contents of the TDS release

In addition there are the header libraries mathvals and mathhdr, placed in
the following directory:

\tds2\mathlibs

The header mathvals is listed in an appendix to the TDS manual.

3.6 Tutorial
The tutorial directory contains the following:

1 The editor tutorial, in TUTORIAL. TOP. This is described in chapter 4 of
the TDS manual.

2 The user guide examples, in EXAMPLES .TOP. These are a pipeline

sorter example, in various configurations, and the debugger example,
both referred to in the ‘User guide’ chapters of the TDS manual.

3.7 Example programs
The examples contain:
1 Simple input/output examples.
2 User filer interface examples.

3 Simple transputer network examples.

3.8 Server sources
The server sources contain:
1 The source of the TDS server (in assembler).
2 The source of a TDS server (in C).
3 The source of the host file server (in C).
Directories are:
\tds2\server\serverl4
\tds2\server\cserver

\tds2\server\afserver

72 TDS 142 00

3 Software contents of the TDS release

17

These are described in more detail in the next chapter.

72 TDS 142 00

18

3 Software contents of the TDS release

72 TDS 142 00

4 The servers

This release of the TDS contains a number of different servers. A serveris a
program which runs on the host computer, such as the IBM PC, and boots a
transputer program into its transputer board. After it has booted the program it
communicates with the program running on the transputer and provides it with
the ability to access the terminal and filing system of the host computer.

There are two basic types of server provided with this release of the TDS:

e The “TDS file server” which supports the TDS running on a transputer
board.

e The “host file server” which provides programs running independently of
the TDS with the ability to access the terminal and filing system of the
host computer.

Two entirely different versions of the TDS file server are provided: one written
in Intel 8086 assembler, and one written in C.

The 8086 assembler version of the TDS file server is contained in the file
serverld.exe in \tds2\system, and is the one normally used to sup-
port the TDS on the IBM PC. The sources of this are provided in case the user
wishes to make minor modifications to it. In addition to the standard version,
there is also a version in the file ansiserv.exe which uses ANSI commands
for screen driving. Although slower than the standard screen driver, this may
be usefu! if you are running the TDS on a PC which is connected to an ANSI
terminal over a network. The PC must have an ANSI terminal driver installed for
this server to work. There is also an NEC version of the assembler server, in the
file necserve. exe; this differs in the terminal handling, and in the address of
the link adaptor on the transputer board. These different versions of the server
can be built from the same sources by setting different compilation flags in the
sources.

The C version of the TDS file server may be used to port the TDS to a different
host computer with an attached transputer board. The C version supports the
same facilities as the assembler version, apart from the ability to search within
the current directory for files with the extension . TOP. This facility may be added
by the user, if desired, when porting the C server to a different operating system.
A compiled version of the C server, for the IBM PC, is in the file cserver.exe
in the directory \tds2\system. When running the C server, it requires that
all TDS files be contained in the file toplevel.top in the directory.

The host file server is provided in a compiled form for the IBM PC in the file
afserver.exe, and for the NEC PC in the file necafser.exe. The host
file server is written in C, with a small (optional) section in assembler,

72 TDS 142 00

20

4 The servers

To summarise, the following executable versions of the servers are provided in
the directory \tds2\system:

serverl4.exe
necserve.exe
ansiserv.exe
cserver.exe

afserver.exe
necafser.exe

Assembler version of TDS server for IBM PC

Assembler version of TDS server for NEC PC

Assembler version of TDS server for IBM PC (ANSI screen)
C version of TDS server for IBM PC

Host file server for IBM PC

Host file server for NEC PC

The sources are provided in the following directories:

\tds2\server\serverld Assembler TDS server sources
\tds2\server\afserver Host file server sources
\tds2\server\cserver C TDS server sources

Server sources are provided in TDS file format, and may be viewed using the
TDS. To produce executable versions, the source files must be exported from the
TDS into standard DOS files, and then compiled using the Microsoft assembler
or C compiler. Each of the source directories contains instructions on how to do

this.

72 TDS 142 00

5 Changes since D700C

This section is intended for users of the D700C release, and outlines the main
changes to the system since that release. It may be omitted by new users of
the software.

5.1 Functional changes to the TDS

The TDS programming environment has been improved substantially since the
D700C release. The main additions are as follows:

e The TDS can run on a board with more memory than 2 Mbytes, and can
use the extra memory itself or supply it to a user program running within
the TDS.

A “toolkit” fold containing utilities and their default parameters can be ac-
cessed easily from anywhere in the fold structure. The toolkit is preserved
between sessions using the TDS.

Multiple utilities and programs can be kept in memory at the same time.

A set of standard working utilities can be loaded with a single keypress.

Selection of parameters to utilities can be done more easily.

Before running utilities or programs within the TDS, they are moved to
make optimum use of the on-chip RAM.

e There are extra editing functions, such as word move/delete, move to
top or bottom of fold, picking and copying of lines into an accumulating
buffer.

o It is possible to “suspend” the TDS temporarily to issue some DOS com-
mands.

o A “macro” key equivalent to a commonly used sequence of keys may be
defined for use during a session.

A number of the functions have changed their positions on the keyboard, to
accomodate the new functions in the system. See Appendix A of the TDS
manual for the new keyboard layout.

This release of the TDS contains a compiler which conforms to the language

as described in the occam 2 Reference Manual, with a few minor exceptions
described in the next section. The main additions to the compiler in the D700C

72 TDS 142 00

22 5 Changes since D700C

release are as follows:
¢ Implementation of functions.
o Full checking of alias and usage rules.
o Compilation for different error modes.
o Use of separate workspaces for scalars and vectors.
o Logical names for libraries.
e OCCam 2 language at configuration level.

e Recompilation of programs using parameters from the previous compila-
tion.

e Multiple program compilation.

o Multiple library compaction.
These are all described in detail in the TDS manual.
This release also includes a post-mortem source-level debugger which can be
used on programs run within the TDS, programs on a network loaded from the

TDS, or programs booted from DOS with a server. A hardware debugging tool
known as the “Transputer network tester” is also included.

5.2 Changes to existing D700C programs
This section describes a number of minor changes which will be required in
existing programs to make them compile with the compiler in the D700D. Most

of these changes were described in the note supplied with the D700C entitled
“Writing occam programs to minimise future changes”.

72 TDS 142 00

5 Changes since D700C 23

5.2.1 EXE programs

The way that EXE programs should be written has changed since the D700C
release (this has been done for technical reasons associated with the separate
vector space). It is now not necessary to start a program with a procedure
heading indicating the channel interface between the EXE and the TDS. This
interface is now supplied by the compiler. So where previously an EXE might
have been written as:

{{{ EXE myprog

{{{F myprog.tsr

PROC user.program(CHAN OF ANY keyboard, screen,
[max.files]CHAN OF ANY from.user.filer,

to.user.filer)
Declarations
SEQ
Program

11}
}1}

Now it has the form:

{{{ EXE myprog
{{{F myprog.tsr

Declarations
SEQ

Program

11}
1}
The channel names (for example, keyboard and screen) are now automati-
cally supplied by the compiler, so they have fixed names and can be used directly
without declaration. The channel parameters supplied are listed in chapter 6 of
the TDS manual.

The keyboard channel is now an INT protocol; apart from this, no changes have
been made to the behaviour of these channels since the D700C release. Ideally
these should be proper occam protocols instead of ANY, but they have been
preserved to allow existing programs to continue to run unchanged.

72 TDS 142 00

24 5 Changes since D700C

The easiest way to adapt existing programs is to put in a procedure call at the
end, as follows:

{{{ EXE myprog
{{{F myprog.tsr
PROC user.program(CHAN OF INT kbd,
CHAN OF ANY scr,
[max.files]CHAN OF ANY from.uf,
to.uf)
Declarations
SEQ
Program

user.program(keyboard, screen, from.user.filer,
to.user.filer)

}1}

}1}

Note that this allows the supplied channels to be renamed to any names used
to identify them in an existing program.

5.2.2 Configuration language

The configuration language is now a proper subset of occam 2. This may
require a few minor changes to expressions at configuration level.

5.2.3 Lists of abbreviations, retypes and placements

The D700C compiler allowed lists of names in abbreviations, retypes and place-
ments. This is not supported in the current release.

So instead of writing:

VAL one IS 1, two IS 2:

PLACE var0O AT #0, varl AT #1:

VAL INT64 fp64.zero RETYPES 0.0 (REAL64),
fp64.one RETYPES 1.0 (REAL64):

72 TDS 142 00

5 Changes since D700C 25

write the following:

VAL one IS 1:

VAL two IS 2:

PLACE var(Q AT #0:

PLACE wvarl AT #1:

VAL INT64 fp64.zero RETYPES 0.0 (REAL64) :
VAL INT64 fp64.one RETYPES 1.0 (REAL64):

5.24 Protocols

There is a minor change to the handling of CHAN OF ANY. In this release a
channel declared to be CHAN OF ANY may be passed as an actual parameter
to a procedure with a formal channel parameter of any protocol (for example,
CHAN OF INT, or a user-defined protocol). This is the same as in the D700C.
However, a channel declared with a protocol may not be passed as an actual
parameter to a procedure whose formal parameter is declared as a CHAN OF
ANY, as was allowed in the D700C.

5.25 Program checking rules

This release now supports usage and alias checking, as decribed in the occam
2 reference manual. The TDS manual (chapter 5) describes some details about
the implementation of these checks, particularly in relation to array elements.
It is recommended that existing programs be adapted to pass these checks as
soon as possible; however, the checks can be switched off in the meantime,
using the compiler's alias.check and usage.check parameters.

5.2.6 Functions

Functions were not supported in the D700C compiler, but are supported in this
release, and are used in the supplied libraries. This has the following implications
for existing programs written without functions.

o Some of the standard library procedures are now functions, so programs
containing calls to these will have to be changed to make them into
function calls. The standard libraries are listed in Appendix J of the
occam 2 Reference Manual.

e The elementary function library provided (SIN etc.) contains functions
rather than procedures. it is still possible to recompile the D700C ver-
sions of these with the current release, but users are advised to move to
the new versions as soon as possible.

72 TDS 142 00

26 5 Changes since D700C

e The alias checking rules have the implication that it is not possible to
pass the same variable more than once as a parameter to a procedure
(except as a VAL parameter). However, it is possible to return a value
into a variable from a function call, where that variable is also one of
the function parameters. It may therefore be necessary to turn some
procedures into functions before it will be possible to fully check the
program with usage and alias checking turned on.

5.2.7 Program layout

The rules for program layout have been tightened up since the D700C release.
The new rules for program layout are given at the start of the 0ccam 2 Reference
Manual. The main implications for existing programs are as follows:

e The compiler in the D700C was more lenient about where a program
statement could be broken across lines, so some lines may have to be
edited to bring them into line with the language rules.

o A text string must be broken by ending the first line of the string with *,
and starting the following line with *, instead of using double quotes, as
in the D700C.

e A comment may not be less indented than the following statement, which
may require some editing of existing comment lines.

5.2.8 Library references

The system of “library logical names” in this release gives a much more con-
venient method for identifying libraries. For libraries provided by INMOS, such
as the /O libraries and maths libraries, it is suggested that users edit their pro-
grams to pick up the new versions of these libraries using their logical names.
For user-defined libraries, the method of identifying libraries by their actual file
names may be retained, if desired, or replaced with logical name references.
Users may wish to re-examine how their libraries are organised, in the light of
the facilities provided by the logical name system.

5.2.9 The libraries
The elementary function libraries supplied with the D700C have been replaced
with new libraries using functions. The functions supported in the libraries are

the same as in the D700C.

The /O libraries have been given logical names which relate to the file names
of the libraries in D700C. For example, instead of writing:

72 TDS 142 00

5 Changes since D700C 27

#USE "\directory\userio.tsr"
write:
#USE userio

The /O libraries have been extended with new libraries, such as a string handling
library strings (which incorporates some of the string handling procedures
from userio) and with new procedures in some of the libraries. Some library
procedures have had their names changed, principally in the libraries afiler
(to make their style consistent with the other libraries) and msdos (to ensure that
the names are distinct from the names of procedures in other libraries). There
have been some changes to the parameter lists of some library procedures.
Apart from these superficial changes, the facilities provided by the I/O libraries
in D700D are a superset of those in D700C, and moving to the new libraries
should be fairly straightforward.

72 TDS 142 00

28

5 Changes since D700C

72 TDS 142 00

6 The implementation of
occam

This release of the TDS contains a compiler which supports the occam lan-
guage as described in the occam 2 Reference Manual. There are some im-
plementation restrictions governing how particular language features may be
combined, which are listed here. Most of these restrictions are due to space
limitations within the compiler, and there are no current plans to fix them. In
addition, this section lists some of the upper limits on program size imposed by
the compiler’s internal data structures.

6.1 Implementation restrictions
e VALOF's may not appear within expressions.
o Multiple assignments may not include assignments of arrays.

¢ A specification may not appear immediately before an option on a CASE
statement.

e A specification may not appear immediately before an ALT process ap-
pearing as a guard within another ALT.

e An expression within a table may not include a function call. (even an
implicit function call generated by the compiler, e.g. for long arithmetic).

e An expression within an ALT guard may not include a function call (even
an implicit function call generated by the compiler, e.g. for long arith-
metic).

¢ At the outermost level of an SC (i.e. outside the procedures of the SC),
a constant declaration may not include a function call (even an implicit
function call generated by the compiler, e.g. for long arithmetic).

¢ A constant may not be retyped into an array.

¢ A table may not be placed at a location in memory.

e An ALT guard may not include an input from a PORT. Since PORTS are
always ready, this can always be replaced by a SKIP in the guard and
a PORT input at the start of the process.

o Replicated PRI PAR is not implemented.

72 TDS 142 00

30 The implementation of occam

6.2 Size limitations

In the following list ‘procedure’ should be taken to mean ‘procedure or function’.
The term ‘compilation unit’ is defined in the TDS manual.

o The maximum number of identifiers in a compilation unit is 3000.
e The maximum number of dimensions of an array is 10.

e The maximum depth to which replicated PARs can be nested, and be
usage checked, is 10.

e The maximum number of tags in a variant protocol is 256.

e The maximum number of functions which may be in scope at any point
in a compilation unit is 1000.

e The maximum number of parameters to a procedure or function for which
debugging information can be generated is 50. Without debugging infor-
mation, the number of parameters allowed depends on their complexity,
but is subject to a maximum of about 75.

e The maximum number of results which may be returned from a function
is 20.

e The maximum number of options in a CASE statement is 256.

e The maximum number different library procedures which may be called
within a procedure declaration is 200.

e The maximum number of procedures in an SC is 200.

e The maximum number of library entry points in a program being linked
is 1000.

e The maximum number of libraries in a program being linked is 100.

¢ The maximum number of libraries which may be used within an SC is 50.
In addition to these fixed limits, some of the compiler's data structures are de-
pendent on the amount of freespace available when the compiler is run. More
space can be made available for these by clearing other code items from mem-
ory before running the compiler, or by running the TDS on a larger board. These

are as follows:

o The size of an array which may be alias or usage checked.

72 TDS 142 00

The implementation of occam 31

» The size of a channel array which may be declared at configuration level.

o The total code size of a system which may be linked.

72 TDS 142 00

32

The implementation of occam

72 TDS 142 00

/7 Known problems

This list contains the list of problems with the TDS documentation and software
known at the time of release. This includes software bugs, and problems which
users have encountered in using the system. The list of known problems with
the system is divided up into the following categories:

1 The documentation

2 The development environment

3 The servers

4 The compiler utility set

5 The file handling utility set

6 The debugger

7 The tools (excluding the debugger)
8 The libraries

9 The examples and tutorial

Each software problem in the list below is followed by a number, which is an
INMOS internal number for the problem reports on D700D. The number should
be quoted in any correspondence with INMOS about the problem.

7.1

The documentation
1 Section 8.3. The parameter should be called:

first.processor.is._boot.from.link.

2 CAUSEERROR. The documentation does not describe the implicitly de-
fined occam procedure CAUSEERROR () which sets the error flag, and
which may be useful for debugging purposes.

3 Control keys on the IBM. The documentation does not state that the
control keys of the NEC PC keyboard layout (for example, ctrl-Z for
SUSPEND TDS]) are also available on the IBM PC.

4 CHAN OF ANY. The documentation does not state that a channel de-
clared to be CHAN OF ANY may be passed as an actual parameter to

72 TDS 142 00

34

7 Known problems

7.2

a procedure with a formal channel parameter of any protocol (for exam-
ple, CHAN OF INT, or a user-defined protocol). However, a channel
declared with a protocol may not be passed as an actual parameter to a
procedure whose formal parameter is declared as a CHAN OF ANY.

5 Debugger example. The worked example for the debugger in chapter
9 does not give exactly the same values for addresses as the software
does when the example is worked through.

The development environment

1 No disk space. If disk space runs out when the compiler, or other utility,
is running, the utility can deadlock. (2)

2 Repeated parameter pop-up. If a utility reads an already existing pa-
rameter fold from the toolkit, and one of the parameters is missing, it
keeps on popping up the parameter fold, instead of supplying the miss-
ing parameter itself. Solution: type it in yourself, or abort the utility and
delete the old parameter fold from the toolkit. (14)

3 Server side effect on BREAK. Running the TDS server has the side
effect of setting the DOS BREAK state to OFF. (15)

4 User filer uf.derive.file signal. The user filer uf .derive.file com-
mand, when sent for a fold that is already filed causes the TDS to set
error. (18)

5 User filer uf.test.filed command. The user filer uf.test.filed
command should return an error value if it is used for an item which is
not a fold; instead it returns £sd . result followed by £i.not.filed,
just as it does on an unfiled fold. (33)

6 User filer uf.unfile command. The user filer command uf.unfile
should return an error when used on an unfiled fold; instead it sets error.
(43)

7 SELECT PARAMETER behaviour. The [SELECT PARAMETER] function
may have unexpected behaviour on a badly-formed parameter line. (60)

8 Failure to write toolkit. There is no warning message given if the TDS
fails to write out the toolkit file TOPLEVEL . TKT (for example, this will
happen if the file is write-protected). (63)

9 Disk full errors. The TDS does not always recover correctly if it runs out
of disk space. The system may deadlock, or the first filing system error
may cause any further filing operations to fail giving messages such as

72 TDS 142 00

Known problems 35

7.3

File does not exist or File has incorrect format. To
recover from this, exit the TDS (do not suspend it), delete some files to
make more space, and then reboot the TDS. (64)

10 Autoload failure. If an error occurs during autoloading (for example, if
one of the code files does not exist), the error message only appears
briefly, and it is not usually apparent that an error has occurred. (65)

11 Core dump out of disk space. If the TDS runs out of disk space while
writing the core dump file, it gives a message but the name of the file is
corrupted. (94)

The servers

No known problems.

7.4

The compiler utility set

1 Library headers not checked. When a library is validated, the compiler
does not check the syntax of the text folds containing constant and pro-
tocol definitions, so errors in this text are not detected until the library is
used in a program. (6)

2 SEQ in a PROCESSOR statement. Using SEQ in a PROCESSOR state-
ment, followed by a sequence of procedure calls, gives the misleading
error message Processor number number already used. (13)

3 Text lines in library folds. A library may not contain any text lines
between the folds. (19)

4 RECOMPILE parameters. The utility displays a full com-
piler parameter fold, which may be confusing, since it normally only uses
the compile.all and force.pop.up parameters, taking the other
parameters from existing descriptor folds. (22)

5 Configuration level libraries. If using a header library at configuration
level, there must be a logical library name translation for the name with
the target type of T4 (along with the error mode set in the parameter fold)
even if the rest of the system contains only T8 or T2 processor types.
(29)

6 RECOMPILE on a PROGRAM When a PROGRAM is compiled, the com-
piler parameters are not recorded in the descriptor, so on [RECOMPILE| the
parameters are taken from the parameter fold. (41)

72 TDS 142 00

36

7 Known problems

7.5

7 Non-existent library. If a logical library name points to library files,
but not for the required target type, the error message Cannot open
library fileis given rather than informing you that the logical name
has not been set up correctly. (42)

8 Incompatible protocols from multiple USEs. If a compilation unit in-
cludes a number of PROC declarations, each preceded by a #USE of the
same library, the compiler says that the protocols are incompatible when
the procedures are called. (52)

9 Using uncompacted libraries. Using uncompacted libraries from an-
other directory can lead to very obscure errors. The names of nested
filed folds are interpreted as if they applied to the directory in which the
library is being used, rather than the directory containing the source. If
the current directory happens to include files with these names, they can
be picked up instead of the library files, with unpredictable effects. (74)

10 Compiler sets error again. If the compiler sets error during a compila-
tion, it may lead to a badly formed descriptor in a foldset which appears
to be valid, leading the compiler to set error again when it is applied to
the program. The data folds should be removed from the foldset before
applying the compiler to the program again. (91)

11 Functions in replicators. Using a function call in a replicator base or
count expression gives incorrect values for the replication. Solution: put
the function call in an abbreviation before the replicator. (101)

12 Assign to protocol tag sets error. If a compilation unit includes an as-
signment to a protocol tag name (a meaningless operation) the compiler
does not report it, but sets error instead. (103)

13 More than 50 parameters sets error. If a procedure declaration in-

cludes more than 50 parameters, then if create.debugging. info
is TRUE, the compiler will set error. (104)

The file handling utility set

1 Disk full. When using the [COPY IN], [COPY OUT] or [COMPACT LIBRARIES]
utilities, if the disk becomes full, it is not possible to suspend the TDS,
delete some files, return to the TDS and repeat the operation, as the
TDS continues to be unable to write any files. It is necessary to reboot
the TDS before the new disk space can be used. (38)

72 TDS 142 00

7

Known problems 37

7.6

7.7

7.8

7.9

—_

—_

e

—_

The debugger

Debugger read-only mode. Using the debugger, when located into a
library, pressing gives the misleading message Read only mode
is now set instead of informing you that you can only be in read-only
mode while viewing the source of a library. (20)

Debugger handling of non-local arrays. The debugger is unable to
deduce the size of some abbreviations of non-local arrays, where the size
of the abbreviated array is not specified either in the local abbreviation
or in the previous specification. (106)

The tools

Disassembler output too big. The disassembler program can produce
a file which is too big to be read with the TDS. It must be listed to a host
file using the lister program before it can be read. (5)

Lister filename handling. The lister program is unable to deal with a

DOS filename beginning .. (meaning the parent directory). It is trun-
cated to a zero-length name. (16)

The libraries

Functions exp and Dexp. The elementary function libraries include the
functions exp and Dexp for internal use, but the names are not listed in
the descriptions of these libraries.

The examples and tutorial

Example 3 STOPs. Example 3 has a STOP on error which makes it
likely to set error when not run on a fold bundle. (44)

72 TDS 142 00

	Contents
	1 Introduction
	2 Installation instructions
	2.1 Deleting the D700C release
	2.2 Full installation
	2.3 Selective installation
	2.4 Using the system on an NEC PC
	2.5 Setting up the system for use

	3 Software contents of the TDS release
	3.1 TDS system
	3.2 Compiler libraries
	3.3 Software tools
	3.4 I/O libraries
	3.5 Maths libraries
	3.6 Tutorial
	3.7 Example programs
	3.8 Server sources

	4 The servers
	5 Changes since D700C
	5.1 Functional changes to the TDS
	5.2 Changes to existing D700C programs
	5.2.1 EXE programs
	5.2.2 Configuration language
	5.2.3 Lists of abbreviations, retypes and placements
	5.2.4 Protocols
	5.2.5 Program checking rules
	5.2.6 Functions
	5.2.7 Program layout
	5.2.8 Library references
	5.2.9 The libraries

	6 The implementation of occam
	6.1 Implementation restrictions
	6.2 Size limitations

	7 Known problems
	7.1 The documentation
	7.2 The development environment
	7.3 The servers
	7.4 The compiler utility set
	7.5 The file handling utility set
	7.6 The debugger
	7.7 The tools
	7.8 The libraries
	7.9 The examples and tutorial

