
TM

No. 1

CONTENTS

Summer 1984

Contributions Wanted 2
The OCCAM Programming System 2
Program Exchange 5
Use of OCCAM for the Description of Signal Processing

Hardware 5
A Simple Random Number Generator 7
OCCAM User Group Technical Meeting 8
Sorting on the Transputer 9
Bibliographies 11

• and occarr, are trade marks of the INMOS Group 01 Companies

- 2 -

CONTRIBUTIONS WANTED

The sucess of the Newsletter depends entirely on contribu­
tions from you, the users of and thinkers about occam and
the transputer. We welcome short contributions on any aspect
of occam and the transputer, such as applications experi­
ence, evaluations of the language and concept, useful short
programs, notes on teaching, theoretical background in
fact anything you would like to communicate to other users
or potential users. For inclusion in the next Newsletter,
please send contributions to the Editor:

Dr Martin Bolton
Dept of Electrical and Electronic Engineering
University of Bristol
Queen's Building
University Walk
BRISTOL BSB ITR

THE OCCAM PROGRAMMING SYSTEM

by Philip Mattos, INMOS

The OCCAM Programming System (OPS) is now fully available
for the VAX under VMS, and offers the following features:

occam development system for VAX/VMS
integrated screen editor/checker
optimising VAX compiler

It will be upgraded during the rest of this year to also
offer:

full occam.... floating point, etc
separate compilation facilities
transputer development system
other hosts

The ops provides an effective d~velopment environment for
the creation of occam programs for execution on VAX/VMS.

The editor/checker provides both the features required of a
screen editor and the textfolding mechanisms to provide con­
trol of the hierarchy of a large program, together with the
ability to syntax check the source.

Textfolding enables a section of the source - program or
text - to be 'hidden' behind a commented special marker.
Such a fold may itself contain folds, allowing the program
text to be hidden in a hierarchical fashion. Viewing the
content of a fold requires simply that the cursor be moved
to the fold marker, and the 'open fold' key be pressed; the
text of the fold is then unwrapped onto the screen. Creating
a fold requires marking above and below the text by cursor

--------.

- 3 -

movement and hitting the 'create fold' key: the text is
folded out of sight, and the marker shown. To provide a sim­
ple identification of the folded text, the marker may be
commented.

The fold mechanism is used in several of the ops major
operations; syntax checking is done on a fold (allowing par­
tial checking of the source), and the equivalents of 'in­
clude' files and the facilities of separate compilation will
be implemented using it. Text once folded may be placed in a
separate file; conversely text in a separate f'ile may be at­
tached to a fold. This provides a simple mechanism for the
sharing of source files, while allowing the user access to
the text of the files wthin a natural context. Separate com­
pilation will be achieved by the compilation of such 'out­
folded' source files; compiling the main program will simply
cause the separately compiled folds to be linked.

The source of the editor is provided to allow user­
customising for, special requirements and for tailoring to
specific terminals. As supplied, the ops works with vt100
and TVI920 terminals.

The separate compiler, invoked to produce an executable file
after leaving the editor/checker when no syntax errors
remain, generates well-optimised code. Itself written in oc­
cam (as is the editor/checker), the compiler is an example
of a large concurrent occam program, being organised as five
major communicating processes.

Technical Summary

Editor/checker functions

The editor/checker functions use the terminal cursor
keys and the numeric keypad. The functions currently
are:

move the cursor as indicated
func
delete line
undelete line
open fold
close current fold
move cursor to left end of line
pick or put line (alternate)
copy current line and insert on line above
move cursor to right end of line
move screen down document
make last line of fold bottom line on screen
make current line centre of screen
move screen up document
make first line of fold top line of screen
write file away and exit editor

- 4 -

create fold
remove fold
syntax check current fold
move cursor to line containing syntax error,
opening folds as necessary

OPS Products

VAX/VMS available now

First release will implement an integer subset of full oc­
cam, and omit the extensions of file folding to separate
files and separate compilation.

Next release - available free to previous purchasers - will
implement full occam, which will provide multilength arith­
metic, structures and IEEE real arithmetic. In addition, th
full folding mechanisms will be supplied.

VAX/Unix

Same facilities as ops VAX/VMS

INMOS Workstation

available Q4 1984

available Q4 1984

A 68000-based workstation with Winchester, floppy disk, half
megabyte of memory and a terminal together with the ops
software.

Related Products

OCCAM Evaluation Kit available now

A low cost introduction to occam, available for a number of
small computers.

OCCAM Portable Compiler Kit available Q4 1984

The occam compiler with a code generator for an abstract
machine for which the user writes an interpreter as the
first stage in porting the compiler to hosts and/or operat­
ing systems not directly supported by INMOS.

OPS/IBM PC available Ql 1985

A portakit implementation of the ops on an IBM PC or PC XT,
under MS-DOS.

Transputer Development System available Q4 1984

Software tools for IMS T424 support. Available as an upgrade
to ops customers, when the cost of the ops is deducted from
the tds price.

- 5 -

PROGRAM EXCHANGE

In this section we will give details of useful occam pro­
grams which are offered to others. The program exchange
coordinator is Sue Peeling of RSRE, whose address is given
below. Please send descriptions of programs you would like
to make available to her.

I.Floating Point Arirhmetic

A VAX OPS package is provided for representing and arithmet­
ically operating on floating point numbers in OCCAM. The
numbers are stored to 6 significant figures in a binary code
decimal format. Multiplication produces a 12 figure result
which is rounded up to 6 figures. All other operaiions pro­
duce 6 figure results although only 4 significant figures
are displayed. Monadic and dyadic minus are supported.

Apart from the standard arithmetic operations, shift, round­
ing (always up), normalisation, relational operations, in­
teger to floating point conversion and input/output are pro­
vided.

The numbers are stored in byte arrays with two digits per
byte. To increase the speed in multiplication and division
a routine to convert to one digit per byte" is used.

The range of floating point numbers supported is

-0.9999 * 10**-62 to 0.9999 * 10**62

Any attempt to go outside this range produces an error mes­
sage.

All calculations use the full 6 figures which are stored.

Further details are available from:

Mrs S.M.Peeling,
R.S.R.E,
st. Andrews Road,
Malvern,
Worcs WR14 3PS

Tel: Malvern (06845) 2733 ext 2228

USE OF OCCAM FOR THE DESCRIPTION OF DIGITAL FILTERING HARDWARE

by J.W.Harrison (3rd year student)
Department of Electrical and Electronic Engineering

University of Bristol

This article examines briefly the use of occam in the
description and simulation of digital filters. The language

....; 6 -

is very useful in this application, and the principles could
easily be extended to cover other design areas.

The description and design of a particular class of systolic
architecture [1] was studied in detail. The architecture
considered has a separate processing element associated with
each filter weight. The advantages of this type of design
include the use of an array of similar p»ocessing elements,
which are regularly interconnected. Occarn is well suited to
this type of design since the replicated PAR construct can
be used to create the processing elements. These can be con­
nected easily by channels to represent the wiring which
would be used in practice. Typically, the replicated
processes w~uld take in data and a partial sum of previous
weighted data samples. The data would then be multiplied by
a weight, and added to the partial sum. This result could
then be sent to another stage in the array of processes. In
this way, simple non-recursive filters can be simulated. The
method can also be extended to form recursive filters, and a
Fast Fourier Transform processor. Details of these struc­
tures can be found in Lynn [2], and [3].

One of the major advantages of using a structured language
in this way is that the description can be extended to as
Iowa level of detail as is required. In the examples above,
the processing elements can be simulated more closely by
modelling the behaviour of the actual devices which would be
used, for example the multiplier circuits. The low level
simulation can take into account such factors as output de­
lay times, and input setup times. This can allow extensive
debugging of the final design without the need to commit
anything to hardware. The model can be used for an initial
feasibility study right thr~ugh to the final design, with
simulation and evaluation at each st~ge.

It would seem to be relatively straightforward to build up a
standard library of devices which are commonly used, and
these could then be called up in parallel as required in
particular projects. The only real problem encountered with
the study undertaken was that of the tight synchronisation
required between occam processes. This was overcome by using
extensive buffering of signals, both on inputs to the pro­
cedures, and their outputs. The buffering procedures also
allow error messages to be printed when a procedure produces
a second output before the first has been read, or if an in­
put changes several times before the clock to the circuit
has latched it in.

The principal aavantage of occam over a purely sequential
structured language such as Pascal is that the program bears
a greater resemblance to the actual hardware. Separate dev­
ices are represented by separate parallel processes. Wiring
is represented directly by the channel interconnections.
Thus occam provides a powerful and useful simulation and
design aid in this application area.

- 7 -

REFERENCES

1 Kung H.T., 'Why systolic architectures 1', IEEE Computer,
Vol 15 No 1, Jan 1982, p37-47.

2 Lynn P.A., An Antroduction to the Ana1tsis and Processing
of Ssignals, Macmillan Press, 1980.

3 Bergland G.D., 'Fast Fourier Transform hardware implemen­
tations - an overview', IEEE Trans. Audio and Electroacous­
tics, Vol AV-17, No 2, June 1969, pl04-108.

submitted by Gordon Harp, RSRE

Random number generators have applications in program test­
ing, data generation and games. A procedure to generate
pseudo-random numbers is given using the technique of m­
sequence shift registers.

A seed, ranum, is loaded into a 16 bit shift register with
taps at bits 0,2,11 and 15 which are selected by ANDing with
an appropriate constant. All selected bits are shifted to
bit 0, exclusively-ORed and fed back into the most signifi­
cant bit. The register is clocked to produce a new random
number after 16 clock cycles. Latch-up is prevented by
checking that the register does not get into a state of all
zeros.

The sequence has a uniform ~istribution and repeats after
(2**16)-1 calls.

For the majority of applications, requiring only random
bytes, th~~least significant bits should be used by ANDing
ranum with .,-rF.

Take care when typing the program!

--16 bit m-sequence generator

--check that seed is not zero
--if sa, set to default value57rdnum:

TRUE
SEQ i-[O for 16]

ranum:-««(ranumjll)«15»«(ranum/#10)«11»><
«ranum~2000)«2»>«ranum~8000»/(ranum»1):

PROC ranum(VAR ranum)­
IF

ranum ... Q

-- To show the use of PRoe ranum

VAR random_number
SEQ
random.nurnber:~lll --seed value

random(randorn.nurnber)
random.number:-random.number~FF --to give 8 bit value

- 8 -

OCCAM USER GROUP TECHNICAL MEETING

21st September 1984

The OCCAM User Group ar.e arranging a one-day technical meet­
ing to be held at The Watershed, Bristol qn the 21st Sep­
tember. Any member who would like to attend this meeting
should get in touch with Michael Poole at the INMOS Bristol
Office.

Provisional List of Contributors

Bill Roscoe, Oxford Univ PRG
"Formal Semantics of OCCAM"

Roland Backhouse, Essex University
"Experience of teaching occam~ts"

Mike Reeve, Imperial College
"OCCAM in the ALICE Project"

John Ainscough, BruneI University
"An OCCAN Compiler"

Sue' Peeling, RSREc
"Experiments with OCCAM for Sorting"

Don Fay, Queen's Univ, Belfast
- to be decided -

Someone from Standard Telephone Labs
- to be decided -

Richard Bornat, Queen Mary College
"A Proposal for Output Alternatives in OCCAM"

David May, INMOS
"OCCAM, the Transputer, and the Future"

- 9 -

SORTING ON THE TRANSPUTER

by S.M.Peeling, RSRE

This work arose from the desire to asses the suitability of
using the transputer to calculate the median, or middle,
value of a set of numbers. Various specialised methods were
considered but the most appropriate solution seemed to be
the adaptation of a general sorting routine. To this end
five general sorts were considered and occam programs writ­
ten to implement each one. Included in these programs were
statements which counted how many IOns cycles were involved
in each operation. In this way it was possible to run each
program on sets of random numbers and compare the timings
obtained.

The five sorts are described below. In each case it is as­
sumed that N numbers are to be sorted with the largest at
the top (right hand end). Some of the methods allow advan­
tage to be taken of the fact that the median is the middle
value in the sequence, and hence it is only: necessary for
half the numbers to be sorted. Such methods are indicated.

1.Bubble Sort

This is one of the simplest sorts and involves "bubbling"
the highest (or lowest) number to the top of the group. A~­

jacent numbers are compared and if the first is greater than
the second they are swapped. This is repeated throughout the
entire sequence, i.e. first and second, second and third,
third and fourth etc are compared. This can be repeated un­
til all N numbers are sorted at a cost of

(n-l) + (N-2) + + 1
comparisons and up to the same number of exchanges. It is
only necessary to sort half the numbers in the median calcu­
lation.

2.Q Sort

This is also called the ?inear insertion sort. This is
another easily implemented sort which also utilises the fact
that only half the sorted numbers are required. Here the
numbers are fed in one at a time. The first number is as­
sumed to be the largest and so occupies the top position.
The second number is compared to the first and if it is
smaller it occupies the second position, otherwise the first
number moves down one position and the second number re­
places it at the top. Each succeeding number is compared
with those already in position and shifts performed, as
necessary, to insert it in the correct position. It is not,
of course, necessary to fill the lower half of the group
although all the numbers are input. As an example consider
the input sequence 5 9 3 7 which results in:

i) 5
ii) 9 5
iii) 9 5 3
iv) 9 7 5 3

1 comparison + 1 shift
2 " + 0 shift
2 + 2 shift

- 10 -

3.Shell Sort

This is also called the diminishing increment sort since it
sorts pairs of numbers initially some distance d apart then
successively halves d until it becomes zero. It is claimed
to be more efficient than Bubble Sort but no more difficult
to implement. There seemed to be several different versions
of the routine and also several ways of determining d. The
comparisons tend to overlap and hence hence propagate the
exchanges.

4.Quicksort

This is also calles the partition exchange sort since it re­
lies on partitioning the numbers so that a certain element v
is in it final position. All elements above v are greater
than it whilst all below are less than v, although nothing
can be said about the order of these subgroups. If neces­
sary, these subgroups can also be partitioned although this
application did not do so. It is hoped that v will be near
the middle of the group and thus only a small amount of
sorting will be necessary to produce the median. Again there
seemed to be several different versions of th~s routine
available, of varying complexity.

5.Straight Selection Sort

This is probably the simplest sort to implement and is simi­
lar to Bubble .Sort. It involves finding the largest number
and swapping it with the one in the Nth (top) position. This
is then repeated over the lower (N-I) numbers and the larg­
est swapped into the (N-I)th position. It has the same
number of comparisons as Bubble Sort but fewer shifts. Again
it is only necessary to sort half the numbers.

The average timings over 6 ~ets of 9 random numbers are
shown in Table 1.

Table 1
Time (microseconds)

40.10
51.22
72.36
76.69
79.21

Quicksort
Straight Selection Sort
Shell Sort
Q Sort
Bubble Sort

Although Q~icksort seems to be the best method it is worth
noting that the algorithm is the most complex to implement
and the timings ranged from 30 to 66 microseconds. Straight
Selection Sort is worthy of consideration since it is an ex­
tremely simple algorithm and there was little variation over
all the timings.

Further details of this work, including occam code listings,
can be obtained fron the author, whose address appears in
the Program Exchange section of this newsletter.

- 11 -

BIBLIOGRAPHIES

A regular feature of the newsletter will be a bibliography
section containing lists of items on or related to occam and
the transputer. The first one, on papers related to Communi­
cating Sequential Processes, was provided by Geraint Jones
of the Programming Research Group at Oxford, and the second,
containing papers about occam and the transputer, was pro­
vided by INMOS, with additions by the Editor.

These will be updated in every newsletter. If you know of
any item which has been missed, please inform the Editor and
it will be included.

1. A CSP Bibliography

K.R.Apt, "Formal justification of a proof system for commun­
icating sequential processes," Journal of the ACM , Vol. 30,
No. 1, Jan 1983, pp 197-216.

K.R.Apt, N. Francez, W.P.de Roever, "A proof system for com­
municating sequential processes," ACM Transactions on -Pro­
gramming Languages and Systems, Vol. 2, No. 3, July 1980,
pp 359-385.

S.D.Brookes, A Model for Communicating Sequential Processes
Oxford University Programming Research Group, Technical

Monograph PRG-35, 1983.

S.D.Brookes, "On the relationship of CCS and CSP," Proceed­
ing of the lOth Colloquium on Automata, Languages and Pro­
gra~~ing , Springer Lecture Notes in Computer Science, No.
154, 1983, pp 83-96.

S.D.Brookes, C.A.R.Hoare, A.W.Roscoe. "A Theory of Communi­
cating Sequential Processes," Journal of the ACM , Vol. 31,
No. 3, July 1984.

S.D.Brookes, A.W.Roscoe, An Improved Failures Model for Com­
municating Sequential Processes , Carnegie-Mellon University
Technical Report, to appear, 1984.

E.C.R.Hehner, C.A.R.Hoare, "A more complete model of commun­
icating processes," Theoretical Computer Science, Vol. 26,
1983, pp 105-120.

C.A.R.Hoare, "Communicating Sequential Processes," Communi­
cations of the ACM , Vol. 21, No. 8, Aug 1978, pp 666-676.

C.A.R.Hoare, A Model for Communicating Sequential Processes
Oxford University Programming Research Group, Technical

Monograph PRG-22, 1981.

C.A.R.Hoare, "A Calculus of Total Correctness for Communi-

- 12 -

cating Processes," Science of Computer Programming, Vol. 1,
1981, pp 49-72.

C.A.R.Hoare, Specifications, Programs and Implementations
Oxford University-)Programming Research Group, Technical
Monograph PRG-29, 1982.

C.A.R.Hoare, Notes on Communicating Sequential Processes ,
Oxford University Programming Research Group, Technical
Monograph PRG-33, 1983.

C.A.R.Hoare, A.W.Roscoe, The Laws of Programming , Oxford
University Programming Research Group, to appear, 1984.

J.R.Kennaway, C.A.R.Hoare, "A theory of nondeterminism,"
Proceedings of the 7th Colloquium on Automata, Languages and
Programming, Springer Lecture Notes in Computer Science,
No. 85, 1980, pp 338-350.

S.S.Kuo, M.H.Linck, S.Sadaat, A Guide to Communicating
Sequential Processes , Oxford University Programming
Research Group, Technical Monograph PRG-14, 1979.

R.de Nicola, "A complete set of axioms for a theory of com­
municating sequential processes," Proceedings of the Inter­
national Conference on Foundations of Computation Theory ,
Springer Lecture Notes on Computer Science, to appear, 1983.

E.-R.Olderog, C.A.R.Hoare, Specification-Oriented Semantics
for Communicating Processes , Oxford University Programming
Research Group, Technical Monograph PRG-37, 1984.

G.D.Plotkin, "An operational
Description of Programming
1983, pp 199-223.

semantics
Concepts,

for CSP," Formal
11 , North-Holland,

A.W.Roscoe, A Mathematical Theory of Communicating Sequen­
tial Processes, DPhil thesis, Oxford, 1982.

A.W.Roscoe Denotational Semantics for occam , Oxford Univer­
sity Programming Research Group, to appear, 1984.

W.e.Rounds, S.D.Brookes, "Possible futures, acceptances, re­
fusals and communicating processes," Proceedings of the 22nd
IEEE Symposium on Foundations of Computer Science , Nash­
ville, Tenessee, 1981.

N.Soundararajan, O.-J.Dahl, Partial Correctness Semantics of
Communicating Sequential Proceses , Institute of Informat­
ics, University of Oslo, Resaerch Report No. 66, 1982.

Zhou Chaochen, The Consistency of the Calculus of Total
Correctness for Communicating Sequential Processes , Oxford
University Programming Research Group, Technical Monograph

- 13 -

PRG-26, 1982.

Zhou Chaochen, C.A.R.Hoare, "Partial correctness of communi­
cating processes," Proceeding of the 2nd International
Conference on Distributed Computing Systems, Paris, 1981.

2. OCCAM and the Transputer Bibliography

OCCAM papers authored outside INMOS

S.Fawcett, "OCCAM talks on parallel lines," Computing, Dec
2, 1982, P 19.

A.N.Godwin, "Simulation and global time in occam," presented
at System Science VIII, Wroclaw, Poland, 1983.

Dick Pountain, "OCCAM's curtain raiser," Soft, June 1983,
pp 57-59.

M.Banks, "The coming of concurrency," Systems International
, June 1983, pp 73,74.

Max Schindler, "Real-time languages speak to control appli­
cations," Electronic Design , July 21, 1983, pp 105-120.
(Uses occam for representing logic gates and control charts,
in review of several languages)

Graham R. Perkins, Letter to Editor, ACM SIGPLAN Notices
Nov 1983, pp 19,20. (Comments on the language)

A.Dixon, "occam - a concurrent programming language," CCTA
News , Nov 13, 1983, pp 20,21. (Review)

Don Fay, "Working with occam: a program for generating
display images," Microprocessors and Microsystems , Vol. 8,
No. 1, Jan/Feb 1984, pp 3-15. (3D graphics on an Apple
OEK!)

Jon M Kerridge, Dan Simpson, "Three solutions for a robot
arm controller using Pascal-Plus, occam~ and Edison,"
Software Practice and Experience, Vol. 14, No. 1, Jan 1984,
pp 3-15.

B.Jane Curry, "Language based architecture eases system
design. Ill," Computer Design , Jan 1984, pp 127-136.
(Modelling hardware communucation and multitasking)

OCCAM papers authored by INMOS

Imnos Ltd., OCCAM Programming Manual, Prentice-Hal1 Inter­
national, 1984.

B. Lee Jones, "OCCAM - a process oriented language for dis­
tributed processing," Proceeding of the Digital Equipment

- 14 -

Users Society, st. Louis, Missouri, May 1983, pp 305-310.
(Uses matrix multiplication example)

David May, "OCCAM," ACM SIGPLAN Notices, Vol. 18, No. 4,
April 1983, pp 69-79. (Language description with system ex­
ample)

David May, "Large languages versus small
presented at IFIP Panel, Sept 19, 1983.

languages,"

David May, "OCCAM," lEE Colloquium on Software Tools for
Hardware Design , Digest No. 1983/98, 7 Dec 1983, pp 5/1­
5/5.

David May, Richard Taylor, "OCCAM, " Microprocessors and Mi­
crosystems , Vol. 8, No. 2, March/April 1984. (Includes ex­
amples of program transformation)

Richard Taylor, Pete Wilson, "Process-oriented language
meets demand of distributed processing," Electronics, Vol.
55, No. 24, Nov 30, 1982, pp 89-95.

(Less formal version of Sigplan article)

Pete Wilson, "Programming System builds multiprocessor
software," Electronic Design ,July 21, 1983, pp 129-134.
(Walks through the development of an occam program)

Pete Wilso~, "OCCAM architecture eases system design - Part
I," Computer Design, Nov 1983, pp 107-115. (OCCAM used as
a system description language)

Pete Wilson, "Language based architecture eases system
design - Part 11," Computer Design, Dec 1983, pp 109-120.
(OCCAM used for simple graphics)

Papers about the Transputer authored outside INMOS

F. Warren Burton, M. Roland Sleep, "Executing functional
Programs on a virtual tree of processors," Proc. ACM/MIT
Conference on Functional Languages and Computer Architec­
tures , Oct 1981.

Ehud Shapiro, Lecture notes on "The Bagel: a systolic con­
current Prolog machine" ICOT Research Center Technical
Memorandum TM-0031, Nov 1983. (Proposes transputer im­
plementatin of concurrent Pro1og)

T.Palrner, "Cagey INMOS reveals all," Infomatics
No. 12 1 Dec 1983, pp 40-43,61.

Vol. 4,

M.Persson, "Transputer and occam: English microcircuit
bUilding block for the computers of the future," Industriell
Datateknik (Sweden), Vol. 4, No. 1, Jan 1984, pp 39-43. (In
Swedish)

- 15 -

T.Durham, "INMOS: a final frontier?" Computing
1984, p 34.

Jan 19,

Max Schindler, "Multiprocessing systems embrace both new and
conventional .architectures," Electronic Design, March 22,
1984, pp 77-130.

R.W.Coles, "The transputer - a component for the fifth gen­
eration," Practical Electronics, April 1984, pp 26-31.

P.Petre, "A computer chip with a mind of its own," Fortune,
Vol. 109, No. 10, May 14, 1984, P 74.

Papers about the Transputer authored by INMOS

INMOS Ltd, IMS Transputer Advance Information, Nov 1983.

I.M.Barron, "The transputer," Mini/Micro West Session
Record 2: 16/32-Bit Microprocessor Architectures, Nov 8-11,
1983, pp 2/5 1-8. (Introduction to IMS T424)

Peter Cavill, "Transputer systems," Mini/Micro West, Sesion
Record 19: System Design with 16/32-Bit Microprocessors, Nov
8-11, 1983, pp 19/5 1-6. (Introduction to transputer sys­
tems)

lann Barron, Peter Cavil1, David May, Pete Wilson, "Tran­
sputer does 5 or more MIPS even when not used in parallel,"
Electronics, Vol. 56, No. 23, Nov 17, 1983, pp l09~115.

(Introductory article)

Stephen Brain, "The transputer - exploiting the opportunity
of VLSI," Electronic Product Design, Dec 1983, pp 41-44.

Peter Eckelmann, "The transputer: a microcomputer concept
for a high processing capability," Elektronik (Germany),
Vol. 32, No. 24, Dec 2, 1983, pp 51-55. (In German)

Stephen Brain, "Applying the transputer," Electronic Product
Design, Jan 1984, pp 43-48.

P.Eckelmann, "Architecture and use of the transputer," Elek­
tronik (Germany), Vol. 33, No. 4, Feb 24, 1984, pp 59-65.
(In German)

David May, Roger Shepherd, "OCCAM and the transputer," Pre­
prints of the IFIP Workshop (WG. 10) on Hardware Supported
Implementation of Concurrent Languages in Distributed Sys­
tems f Univ. of Bristol, March 26-28, 1984.

Useful background material

I.M.Barron, "Future developments in computer hardware and
architecture," C0mputer Design: International state of the

- 16 -

Art Report, C.Boon, ed., Infotech, 1974, pp 501-512.

I.M Barron, "The decline and fall of the computer," Minicom­
puter Forum , (London, Feb 11-13, 1975), Online, 1975, pp
17-29.

I.M.Barron, "Intercommunication within distributed systems,"
Small Systems Software , Vol. 1, No. 2, 1976, pp 6-10. (Also
in: Distributed Systems: International State of the Art Re­
port, J.P.Spencer, Ed., Infotech, 1976)

A.M.Walsby, "Off the buses," Systems, June 1976, pp 24,25.
("Many of the ideas here were gleaned from lann Barron")

I.M.Barron, "The Microcomputer and its Consequences," Digi­
tal Systems Design , Proceedings of the joint Newcastle/IBM
Seminar, (Sept 6-9, 1977), pp 19-27.

I.M.Barron, "The transputer," The Microprocessor and its Ap­
plications , Cambridge Univ. Press, 1978, pp 343-357.

M.A.Jackson, "Information systems: Modelling, Sequencing and
trasformations," Proc. of the 3rd International Conference
on Software Engineering, 1978, pp 72-81.

I.M.Barron, "The future of the microprocessor," Microelec­
tronics , Vol. 8, No. 4, June 1978, pp 32-36.

I.M.Barron, "The future of computer technology," Information
Technology 78 , (Jerusalem, Aug 6-9, 1978), North-Holland,
1978, pp 125-132.

Iann Barron, Ray Curnow, The Future with Microelectronics
The Open University Press, 1979.

C.A.R.Hoare, "The emperor's old clothes," (The 1980 ACM Tur­
ing Award Lecture), Communications of the ACM , Vol. 24, No.
2, ~eb 1981, pp 75-83.

I.M.Barron, "Architecture Oriented Objects," Proceedings,
Conference on Advanced Research in VLSI , P.Penfield, Jr.,
Ed., (MIT, Jan 25-27, 1982), Artech House, 1981, p 67. ("In
the most recent period, the rococo, microprocessors are in­
corporating all the computer science ideas that never got
into real computers.")

Richard "Tay10r, "Introduction to VLSI," SERC/DOI IKBS Archi­
tecture Study, Workshop 1 , Jan 6,7, 1983.

Butler W.Lampson, "Hints for computer system design," Proc.
of the 9th ACM Symposium on Operating System Principles ,
Gct 1983, pp 33-48.

C.A.R.Hoare, "Programs are predicates," Meeting of the Royal
Society on Mathematical Logic and Programming Languages ,
Feb 15,16, 1984.

