Programming manual

"” occam

Tvetenveien 152, P.B. 102
Tveita, 0617 Oslo 6, Norway
Telex 78955

Telefax (02) 26 83 05

Tif.. (02).26 99 55

[Cig

@y'\/thd

Programming manual

Occam

INMOS reserves the right to make changes to this manual and the products described therein at any
time and without notice.

Copyright 1983 INMOS Limited. All rights reserved.

This document may not be copied, in whole or part, without the prior written consent of INMOS.

and occam are trade marks of the INMOS Group of Companies.

OPS-002 000 7/83

Occam

Proto occam

Occamis anew programming language. Itis designed to support concurrent
applications in which many parts of a system operate separately and interact.
Occamis relevant to many present day applications, particularly those involving
microprocessors and real time. Occam will be essential for future applications
involving the interaction of many thousands of computing components.

The novelty of occamis in its treatment of concurrency Occam enables the
programmer to express a program in terms of concurrent processes which
communicate by sending messages through communication channels. This
has two important consequences. Firstly, it gives the program a clear and simple
structure as the individual processes operate largely independently Secondly, it
allows the program to exploit the performance of many computing components,
as each concurrent process may be executed by an individual processor

Occam can capture the hierarchical structure of a system by allowing an
interconnected set of processes to be regarded from the outside as a single
process. Atany level of detalil, the programmer is only concerned with a small
and manageable set of processes.

This manual describes the initial version of the programming language, proto
occam. Proto occamiis intended to allow programmers and designers to
experiment with the use of concurrency in programming and system design. To
avoid obscuring the treatment of concurrency, proto occam has been kept small
and contains a minimum of additional features.

This manual contains an introduction to the principles of the language, a tutorial
introduction to the central features of the language, and a programmer’s
reference manual, providing full details of the language, complete with
examples.

Contents

Introduction

Tutorial introduction to occam

2.1 Building blocks

2.2 Sequential processes

2.3 Repetitive processes

2.4 Parallel processes

2.5 Input and output revisited
2.6 Naming processes

2.7 Alternative processes

2.8 Arrays of processes

29 Conclusion

Programmer’s reference manual

3.1 Purpose, use and organisation

3.2 Syntactic notation

3.3 Primitive processes
3.3.1 Assignment processes (:=)
3.3.2 Input processes (?)
3.3.3 Output processes (!)
3.34 Wait processes (WAIT)
3.3.5 Skip processes (SKIP)

34 Constructs
3.441 Sequential processes (SEQ)
3.4.2 Parallel processes (PAR)
3.4.3 Alternative processes (ALT)
3.4.4 Conditional processes (IF)
3.4.5 Repetitive processes (WHILE)
3.4.6 Replicators (FOR)

3.5 Declarations
3.5.1 Variable declarations (VAR)
3.5.2 Channel declarations (CHAN)
3.5.3 Vectors of variables
3.5.4 Vectors of channels
3.5.5 Constant definitions (DEF)

3.6 Named processes and substitution

3.7

Expressions and constant expressions

3.71 Arithmetic operators
3.7.2 Comparison operators
3.7.3 Logical operators
3.7.4 Boolean operators
3.7.5 Shift operators
3.7.6 Clock comparison operator (AFTER)
3.8 Elements
3.8.1 Elements
3.8.2 Numbers
3.8.3 Local clock (NOW)
3.8.4 Character constants
3.85 Vector constants (TABLE)
3.8.6 Character strings
3.9 Lexical and character representations
3.9.1 Identifiers and reserved words
3.9.2 Character set
3.10 Syntax
3.10.1 Program format
3.10.2 Syntax summary
3.11 Vector operations
3.11.1 Slices
3.11.2 Slice assignment
3.11.3 Slice communication
3.12 Configuration
3.12.1 Prioritised alternative processes
(PRI ALT)
3.12.2 Single processor execution and
priority (PRI PAR)
3.12.3 Multi-processor execution
(PLACED PAR)
3.124 Physical resource allocation
(ALLOCATE)

Index

1 Introduction

A process performs a sequence of actions, and terminates. Each action may be
an assignment, an input or an output. An assignment changes the value of a
variable, an input receives a value from a channel, and an output sends a value
toachannel.

Atany time between its start and termination, a process may be ready and
waiting to communicate on one or more of its channels. Communication is
synchronous. When both an input process and an output process are ready to
communicate on the same channel, the value to be output is copied from the
output process to the input process. The input and ouput processes then
continue.

Each channel provides a one-way connection between two concurrent
processes; one of the processes may output to the channel, and the other may
input fromiit.

A process may be ready and waiting to input from any one of a number of
channels. In this case, the input is taken from the first channel which is used for
output by another process.

Occam may be used to program a network of computers. Each computer with
local store executes a process with local variables, and each connection
between two computers implements a channel between two processes.

Occammay be used to program an individual computer The computer shares
its time between the concurrent processes, and the channels are implemented
by values in store. Indeed, a program designed for a network of connected
computers may also be executed unchanged by a single computer

2 Tutorial introduction to occam

This section introduces the main features of occam, and shows how to build
simple occam programs. It assumes that the reader has had some experience
of programming

21 Building blocks

There are three primitive processes from which all other processes are
constructed

Aninput process. The ? symbol denotes input.
channel ? variable

Aninput process inputs a value fromthe channel into the variable.

Anoutput process. The | symbol denotes output.
channel ! expression

An ouput process outputs the value of the expression to the channel.

An assignment process. The := symbol denotes assignment.

variable := expression

An assignment process transfers the value of its expression to the named
variable.

These three primitive processes can be combined sequentially or concurrently
to create more complex processes, and thus they form the building blocks for
programs.

2.2 Sequential processes

Inmany applications itis necessary to do a number of steps one after the other

Assume that we require a process to input a single value via an input channel
named chant, thento output the square of the value via an output channel
named chan2

chant— x xxx >chan2

Thisis asequential process, as the output cannot take place before the input has
finished.

This process will normally be part of a larger design. For the time being, we will
assume that the channels used to connect this process to the rest of the system
have already been declared

We will need a local variable, say x, whichis to hold the input value. Inoccam, a
declarationimmediately preceeds the process to which it applies, and so we first
need to declare the variable x, which is done as follows

VAR x:

Every declaration in occam is introduced by a keyword (such as VAR), followed
by anidentifier, or alist of identifiers. The declaration is attached to a process and
this is signified by the colon. Next we state that the process is sequential

VAR x:
SEQ

The word SEQ must line up underneath the word VAR.

The firsteventinthe sequence will be the arrival of a value via the channel chanf
tobe storedin x. Toindicate this we write

VAR x:
SEQ
chan1 ? x

We indent the input process to indicate that it is a component of the sequential
process.

2.2 Sequential processes

Continued

The next process has to output the value of x*x via another channel named
chan2

VAR x: chant— x xxx F>chan2
SEQ

chani ? x

chan2 ! xxx

Note that the output process is again indented to indicate it is a component of the
sequential process.

SEQ ensures that each component process terminates before the following
component process is executed, and the entire process will only terminate when
the final component process has finished Thus once the output of xxx has taken
place, the sequential process itself has finished

SEQ is an example of an occam ‘constructor’ It builds a ‘construct’ (comprising
the SEQ and its component processes), which, taken as a whole, can be
regarded as a single process. Occam has a number of constructors, all of which
are used in a similar way

23 Repetitive processes

If we wish to square more than one value of x, we need to repeat the process that
we have just written. To do this we use the repetitive process

WHILE x >=0

This evaluates the expression accompanying it. If this expressionis TRUE the
component process will be executed When the component process has
finished, the expression will be evaluated again, and so on. As soon as the
expressionis FALSE, the repetitive construct terminates.

Thus for the example where we wish to square any number of successive values
of X, we need the expression always to be TRUE. We can state this using

WHILE TRUE

Since the sequential process is now a component of the repetitive process, we
mustindent it

WHILE TRUE
VAR x:
SEQ
chan1 ? x
chan2 ! xxx

Because the WHILE expression is always TRUE the process never terminates.
If we wish the process to square positive values of x, terminating when a
negative value is input, we have to use the condition x >= 0.

Tobe able to dothis, we have to arrange for x to be input before the WHILE is
executed This requires, therefore, another SEQ construct

SEQ
chan1 ? x
WHILE x >= 0

Inthe example above, x is declared within the repetitive process. Obviously x
has to be valid for this particular sequence, so we have to move the declaration

VAR x:

SEQ
chan1 ? x
WHILE x >= 0

23 ~ Repetitive processes
Continued

We have already input a value into x, so now all that is left to do is to output the
value of xxx, and to input the next value ready to be tested nexttime.

VAR x:
SEQ
chan1 ? x
WHILE x >=0
SEQ
chan2 ! xxx

chan1 ? x

If we require many processes to be running as a concurrent system, we can
construct a parallel process. Here we shall take two processes which do not
communicate with each other and run them in parallel, and then indicate a
method by which parallel processes can communicate. A parallel process is not
just limited to two components, of course.

Let us take the simple process described in section 2.3 which takes aninput
value fromone channel, and outputs its square to another channel The program
is

WHILE TRUE
VAR x:
SEQ
chan1 ? x
chan2 ! xxx

We can take a similar process which inputs a value y via achannel named
chan3 and outputs y*y viaachannelnamed chan4

WHILE TRUE
VAR y:
SEQ
chan3 ?y
chan4 | yxy

We would like to execute these processes in parallel We state this using the
parallel constructor, remembering to indent the two component processes

PAR
WHILE TRUE
VAR x:
SEQ
chan1 ? x
chan2 ! xxx
WHILE TRUE
VAR y:
SEQ
chan3 ?y
chan4 ! yxy

24 ~Parallel processes
Continued

The parallel process causes the two component processes to execute
simultaneously and terminates when its component processes have finished
The parallel process looks like

chan1—{ x xxx >chan2

chan3— y vyxy —>chan4

Notice that the order of the component processes in a parallel construct does not
matter

The above component processes do not communicate with each other To

illustrate how two concurrent processes can communicate with each other, we
build a process which outputs x* This process looks like

chan1—{ x xxx
comms
y yxy (>chan2

Forthe parallel process we must first declare the linking channel, in this case
named comms. Thisis done using

CHAN comms:

We next declare that the process is parallel and include its component
processes properly indented

CHAN comms:
PAR
WHILE TRUE
VAR x:
SEQ
chani ? x
comms ! xxx
WHILE TRUE
VAR y:
SEQ
comms ?y
chan2 ! yxy

This completes the parallel process. If we require two-way communication
between the concurrent processes we would need to use two channels. Notice
that x and y are declared in the respective component processes.

25 ~Inputand outputrevisited

Two concurrent processes communicate by using input and ouput. One
executes an output to a channel, the other executes an input from the same
channel Inputand output are synchronised An input will not complete
execution until an output on the same channel is executed, and equally an output
will not complete execution untilan input on the same channel is executed

Itis worth pausing to consider allittle further what actually happens in the
example given above. Both components of the parallel construct start executing
inparallel After a shorttime, the first one will reach its input process. A value is
suppliedvia chan1, and the next thing that happens is that the first process
reaches the output to the connecting channel comms.

Now consider the second process. There are two possibilities. Either the second
process has not yet reached its input, in which case the first process waits until
the second process does reach its input from comms, or the second process
already has reached its input, and so is waiting for a value to arrive.

Eventually, the communication takes place, and both processes go on their
separate ways. The output to chan2 and next input from chan1 cantake place
inparallel The two processes will synchronise again to communicate the next
intermediate result.

2.6 ~ Naming processes

Inthe example of the parallel process above we had to write the text of both
squaring processes. However, a name can be given to any process, allowing
that process to be used by name when itis required.

If we are going to use a process several times, connected to the rest of the
program in a different way each time, itis clear that the channels that are used on
each occasion will be different. So let's rewrite the process, using non-commital
names for the channels

WHILE TRUE
VAR x:
SEQ
source ? X
sink ! xxx

The process declaration allows us to give the process a name, for example,
square. Parameters are added to indicate the non-commital names (often these
are called formal parameters’). The process declaration is used in the following
way to provide a squaring process

PROC square (CHAN source, sink) =
WHILE TRUE
VAR x:
SEQ
source ? X
sink | xxx:

Note that the squaring process itself is indented.
We can use this process simply as follows

CHAN comms:

PAR
square (chan1, comms)
square (comms, chan2)

2.6 Naming processes
Continued

Thus we can rewrite the entire program by combining this with the declaration of
the squaring process

PROC square (CHAN source, sink) =
WHILE TRUE
VAR x:
SEQ
source ? X
sink ! xxx:
CHAN comms:
PAR
square (chan1, comms)
square (comms, chan2)

Notice how in each use of the process square we specify which channelsitis
actually going to use (this specification is often called ‘passing parameters’). For
example, inthe first use of the squaring process the channel named source now
has the name chan1, and the channel named sink has the name commes.

2.7 Alternative processes

Sometimes a process has a number of channels associated with it and needs to
perform one of a number of actions depending on which channel first sendsita
message. This is achieved using the alternative process, which chooses just one
of its inputs for execution.

As an example, a high-tech digital radio replaces an analog volume control with
two buttons, one marked 'louder’, the other marked 'softer’ These are connected
totwo channels, louder and softer respectively, and whenever either buttonis
pressed it causes a message to be sent along the corresponding channel.

We need to design a volume controller process which will accept messages
from these channels and transmit a message to the amplifier controller to
indicate how loud the volume should be.

Let'slook at the process which makes the volume increase. If the louder’ button
is pressed we wish the volume to increase, say by one unit. The volume is then
transmitted to the amplifier Name the channel to the amplifier amplifier. Thus
the processis

SEQ
volume := volume + 1
amplifier ! volume

Similarly, if we want the volume to decrease by one unit then the corresponding
processis

SEQ
volume := volume — 1
amplifier | volume

When a button is pressed one of the channels is able to input. We are not
interested here in communicating values along these channels, merely
synchronising signals. The identifier ANY allows the values to be disregarded
and a process to input if any signal is ready to be transmitted The processes are
inputs fromthe channels louder and softer

louder ? ANY
softer ? ANY

The controller needs to recognise which button has been pressed We achieve
this by combining these processes within an alternative process

ALT
louder ? ANY
softer ? ANY

2.7 B Alternative processes
Continued

Note that the two component input processes are indented We now need to add
the processes which are to be executed if either of the alternative inputs is ready
These are again indented

VAR volume:
SEQ
volume := 0
WHILE TRUE
ALT
louder ? ANY
SEQ
volume := volume + 1
amplifier ! volume
softer ? ANY
SEQ
volume := volume — 1
amplifier ! volume

This completes the volume controller process. The WHILE TRUE makes the
process execute repeatedly for ever

What if both buttons are pressed together? The alternative process guarantees
that just one of its component processes will be chosen Ifthe buttons are
pressed so close together that it is not possible to distinguish the times of
pressing, one of the two processes will be chosen arbitrarily The other one will
e chosen on a later execution of the alternative process.

The inputs that are used for selection within an alternative process are called
‘guards’ Aninputin aguard can be preceded with a condition, and then the
guardis TRUE only if both the conditionis TRUE and the input is possible

condition & chan1 ? x

Our simple example can be extended to include maximum and minimum
volume. Thus if the radiois already at maximum volume and the louder button is
pressed, we obviously do not want to increase the volume further By using a
guard expression, the process which increases the volume can be prevented
from executing The guard expressions are therefore.

volume < maximum for louder
volume > minimum for softer

2.7 Alternative processes
Continued

We can use DEF to give a constant value to the identifiers maximum and
minimum

DEF maximum = 10, minimum = 2:
Thus a possible program would be

DEF maximum = 10, minimum = 2:
VAR volume:
SEQ
volume := minimum
WHILE TRUE
ALT
(volume < maximum) & louder ? ANY
SEQ
volume := volume + 1
amplifier ! volume
(volume > minimum) & softer ? ANY
SEQ
volume := volume — 1
amplifier ! volume

28 Arraysofprocesses

We have shown how to build simple processes in occam, and now consider
other methods of connecting processes. Itis useful to be able to describe a
collection of processes as an array of processes, which can be done in occam
using a replicator

A simple example is a process which takes a value and estimates its square root,
using the Newton-Raphson approximation technique. The process needs the
value (which we will call x) and an initial guess at the square root, for example
halfthe value. A formula is applied to this initial guess to produce a better
estimate. The same formula is reapplied to the new estimate to improve upon it. If
the formula is applied enough times, the final estimate will be sufficiently close to
the real square root. In this example, we will apply the formula a fixed number of
times, and treat each application as a separate process, which we will calla
Newton-Raphson step, NRstep.

We can consider this as a simple one dimensional array of processes with data
flowing from the input to the output, sometimes called a pipeline. It looks like

X,X/2 x,est xest x,est x,est root
NRstep .. NRstep .. NRstep |
0 i n—1

Having established the overall structure, consider the individual process. Each
step looks like

valuesli] — NRistep

— values[i+1]

The value of x and the value of the estimate from the previous step are input by
NRstep i fromchannel values[i] The values of x and the new estimate formed
by NRstep i are output to the channel values[i+1], which will be connected to
the next process of the pipeline, NRstep i+1 The value of x is transmitted first,
followed by the value of the estimate. To describe the process NRstep i in
occam we first need to look at the Newton-Raphson approximation step. It
provides the following formula for a new estimate, based on an existing estimate
and the original value

(Estimate + (x/Estimate))/2

Each Newton-Raphson step NRstep i therefore outputs this value to the next
step

values[i+ 1] ! (Estimate + (x/Estimate))/2

2.8 ~ Arraysof processes

Continued

We now describe the process NRstep i in occam. We first need to declare the
variables x, and Estimate

VAR x, Estimate:

The process needs to input x and the estimate from the previous step, and then
tooutput x and a new estimate to the next step. It can be written in occam as

VAR x, Estimate:
SEQ
values|i] ? x
values|i] ? Estimate
valuesl[i+1] ! x
values|i+1] ! (Estimate+ (x/Estimate))/2

We can now use this process to construct the pipeline. The pipeline for the n-step
Newton-Raphson approximation needs n+1 channels. Assuming thata
constant n has been declared, we can declare the channels values[0] to
values[n] using

CHAN values[n+1]:

We can formthe pipeline consisting of n identical processes using PAR with a
replicator A replicator has the following form

i=[0FORN]

which means replicate n times starting from i=0, increasing i by 1 We can
combine the channel declaration and the replicated PAR

CHAN values[n+1]:
PAR i = [0 FOR n]
WHILE TRUE
VAR x, Estimate:
SEQ
values|i] ? x
values|i] ? Estimate
values|[i+1] ! x
values[i+1] ! (Estimate+(x/Estimate))/2

We ensure repeated execution of each step of the pipeline witha WHILE TRUE
construct.

2.8 Arrays of processes

Continued

Finally, we need two processes to connect this pipeline to the rest of the system.
Oneinputs from the channel Sg.root a sequence of initial values, forms the first
estimate and presents itto the pipeline:

WHILE TRUE
VAR x:
SEQ
Sq.root ? x —— input initial value
values|[0] ! x
values[0] ! x/2 —— form initial estimate

The other outputs the final estimate to a channel called Sq.root.result:

WHILE TRUE
VAR root:
SEQ
values[n] ? ANY
values[n] ? root ——receive final estimate
Sq.root.result ! root

The entire process can be written as
CHAN values[n+1]:
PAR

PAR i = [0 FOR n]
| WHILE TRUE
VAR x, Estimate:
SEQ
valuesli] ? x
values|i] ? Estimate
values|i+1] ! x
values[i+1] ! (Estimate+(x/Estimate))/2
WHILE TRUE
I VAR x:
SEQ
‘ Sq.root ? x —— input initial value
| values[0] ! x
\ values|[0] ! x/2 —— form initial estimate
WHILE TRUE
VAR root:
SEQ
values[n] ? ANY
values[n] ? root ——receive final estimate
Sq.root.result ! root

\

2.8 Arrays of processes

Continued

In a conventional sequential programming language, the sequence of steps
would be performed by aloop. For comparison, here is such a program

WHILE TRUE
VAR x, Estimate:
SEQ
Sq.root ? x —— input initial value
Estimate := x/2 —— form initial estimate

SEQi = [0 FOR n]
Estimate :=(Estimate+(x/Estimate))/2
Sq.root.result | Estimate

Thisinputs avalue of x, and afterthe n steps of the loop have been performed,
the final estimate of the square root is obtained Another value for x is then input
and the entire loop executed again.

By contrast, the pipeline inputs the next value for x and calculates the early
estimates for its square root before the final estimate for the first value has been
obtained. Let's look at the first two stages

X,x/2 NRstep X,est NRstep X,est
values[0] 0 values|[1] 1 values[2]

The processes operate in parallel. When the values of x and x/2 are inputon
values|0] the process NRstep 0 is executed

When NRstep 0 has output the new estimate via values[1], NRstep 1 is
executed However at this stage NRstep 0 is ready to receive another value for
X, and can be executed in parallelto NRstep 1 This does not affect the flow of
the first value through the pipeline because it has already been output to
NRstep 1

Although the amount of calculation required for each individual result takes just
as long with pipelining as it does with a conventional loop, the inherent
parallelism permits the throughput of many values to be very much greater

2.9 Conclusion

This section has introduced the main features of occam. The remainder of the
manual gives full details of the whole language.

Programmer’s reference manual

3.1 Purpose, use and organisation

This section provides the syntax and semantics of occam. Itis intended primarily
for reference, with each section on a separate page. Information is repeated
where this can reduce the need for cross-reference.

The ordering of the sections is intended to provide a useful sequence to the
knowledgeable programmer The manual starts by defining the primitive
processes and then details the different ways in which these primitive processes
can be combined to create more elaborate processes. The next section
describes declarations, and is followed by a section onthe mechanisms for
naming processes and substitution. This is followed by sections on expressions,
elements, and the lexical and character representations. The final section
provides a syntax summary

Each section starts with a statement of purpose, together with small examples
which are informally discussed. This is followed by the formal syntax of the
language item and an informal explanation of its semantics.

32 Syntactic notation

The syntax of occam is described in a modified Backus-Naur Form printed in
blue. Actual language symbols and keywords are printed in black.

The = symbol is used to define a syhtactic category The name of the category is
givenon the left of the symbol, and the valid syntactic forms on the right. Where
there are several valid forms of one category, they are separated by the symbol |
Anitemin curly brackets

{item}

indicates that it may be repeated zero or more times.

Anitemin square brackets

[item]

indicates that the item is optional

As an example, the following are simplified definitions of operators and
expressions

assoc.op = + %

operator = +|—I%l/

element = number lidentifier| (expression)
expression = element {assoc.op element}

element [operator element]

The following are therefore all legal expressions

2
X

X+y+z
(x y)xz

Note that the rules for the format of occam programs are indicated informally in
the syntax descriptions for each construct in the main part of the manual, but are
not given in the syntax summary (section 3.10.2).

Alternative definitions for some syntactic categories are given in different
sections of the manual, so that only the syntactic forms which are relevant to the
construct being described are given in any one section.

3.3 Primitive processes

3.3.1 Assignment processes (:=)

An assignment process transfers the
value of its expression to the named
variable.

Seealso

m:=1
assigns the value 1 tothe variable m.
card[BYTE i] := ch

assigns the current value of ch tothe i 'th element of the vector card, addressed
using byte subscription.

variable = identifier [subscript]
assignment = variable := expression
primitive = assignment

The expression is evaluated, and the variable set to the resulting value. The
assignment process then terminates.

The variable may be a simple variable, or an element of a vector of variables
selected using either byte or word subscription.

3.3.2 Input processes
3.3.3 Output processes
3.8.1 Elements

3.3.2 Input processes (?)

Aninput process transfers a value from
achannel to a variable.

Seealso

cl ?x

inputs a value from the channel named c¢1 tothe variable x.

sync.chan ? ANY

inputs a value which is not preserved. It has the effect of synchronising the input
\évr;tg ﬁn%cl)ncurrent process, which outputs a synchronising signal on the same

link ? index; x

performs two inputs from the channel called link, placing first value in index, the
secondinx.

variable = identifier [subscript]

channel = identifier [subscript]

input = channel ? variable {; variable}
input = channel ? ANY

primitive = input

Aninput sets the value of a variable to a value input froma channel The input
waits until an output using the same channel is executed in parallel with the input.

Aninput may also be used in a guard in an alternative construct.

Amultiple input is equivalent to a sequence of separate input processes for each
variable inturn, in leftto right order Eachinput is separately synchronised with an
output process being executed in parallel. Each variable may be a simple
variable, or aword or byte subscripted element of a vector of variables.

A channelmay be a simple channel, or an element of a vector of channels.

If ANY is used instead of a variable, then the input value is discarded This
provides a mechanism for receiving synchronisation signals.

Only one of the components of a parallel construct may contain input processes
forany given channel

3.3.3 Output processes
3.4.3 Alternative processes
3.4.2 Parallel processes

3.33 Output processes (!)

An output process transmits a value to
achannel.

Seealso

cli] ! x

outputs the value of x to the channel indexed by the current value of i belonging
tothe vector of channels c.

letters ! alphabet[BYTE i]
outputs the i 'th byte of the vector alphabet to the channel letters.
sync.chan ! ANY

outputs an arbitrary value to the channel sync.chan. This would be used for
synchronisation purposes.

channel = identifier[[expression 1]

output = channel !expression { ;expression}
output = channel | ANY

primitive = output

The channel may be a simple channel, or an element of a vector of channels.

Anoutput waits until an input using the same channelis executed Itthen outputs
the value of the expression to the channel and terminates.

Amultiple output is equivalent to a sequence of outputs, and outputs the value of
each expression inturn, inleft to right order Each output is separately
synchronised with an input process executed in parallel

ANY may be output in place of an expression, in which case an arbitrary value is
output. This may be used as a synchronising signal

Only one of the components of a parallel construct may contain output
processes for any given channel

Input processes
Parallel processes
Alternative processes

BB w
WMNN

3.3.4 Wait processes (WAIT)

WAIT is used to delay execution until a
period of time has passed.

Seealso

WAIT NOW AFTER alarm.time

continues execution when the time provided by the local clock is after the time
stored in the variable alarm.time.

DEF timeout = 100 :
VAR clock, x :
SEQ
clock := NOW
ALT
cl ?x
c2 | ok.message; x
WAIT NOW AFTER clock + timeout
c2 ! timeout.message

waits until either a message is received on channel ¢1, in which case it is output
toc2, preceded by a control value representing ok, or until the timeout occurs, in
which case an appropriate control value is transmitted to c2.

wait
primitive

WAIT expression
wait

Await process is defined to be ready to execute if the expression evaluates to
TRUE. The expression must be a clock comparison.

If a wait process is used as a primitive process, it delays until ready, and then
terminates.

Await process may also be used as a guard in an alternative process.

Alternative processes
Clock comparison operator
Local clock

O N B
wow

3.35 Skip processes (SKIP)

SKIP terminates with no effect.

Seealso

IF
(char>="0") AND (char<='9’)
SKIP
TRUE
char ;=X

converts all characters which are not digits to character ’x’.
primitive = SKIP
SKIPis always ready to execute, and its only effect is to terminate.

Askip process may be used as a guard in an alternative process.

343 Alternative processes

3.4 7 7anstLuc157 B

B B - 3.4.1 Sequential processes (SEQ)
A sequential process executes its VAR x: cl—{ X Xx*X [=>c2
component processes one after SEQ
another. cl?x
C2 | X*X

inputs a single value from channel c1 and then outputs the square of that value
tothe channel c2.

construct = SEQ
{process}

A sequential process takes the form of the keyword SEQ followed by the
component processes, each on anew line, all at an extra level of indentation.

The component processes are executed inturn. The sequential process
terminates when the last component process has terminated.

Ifthere are no component processes, the construct terminates.

Seealso 3.4.6 Replicators

3.4.2 Parallel processes (PAR)

A parallel process causes its
component processes to be executed
together.

Seealso

CHAN comms: cl—=> X —comms—> X (>c2
PAR
WHILE TRUE
VAR x:
SEQ
cl1 ?x
comms ! x
WHILE TRUE
VAR x:
SEQ
comms ? X
c2!'x

The process constructed by PAR in this example combines two buffer
processes which execute concurrently Each of the buffer processes can hold a
single value, so the effect of combining them is to repeatedly copy values from
channel ¢1 to channel ¢2, buffering up to two values atatime.

construct = PAR
{process}

The keyword PAR is followed by a number of component processes, each
starting on anew line and indented The effect s to execute all of the component
processes together, and the construct terminates when all the component
processes have terminated If there are no component processes, the construct
terminates immediately

Two component processes of a parallel construct may communicate by sending
values using a channel One contains outputs to the channel, and the other
contains inputs from the channel The two processes are said to be connected
by the channel No other component processes of the parallel construct may use
the same channel If two processes are connected by a channel,
communication occurs when both the input and the output are ready, and the
effectis to set the value of the variable specified by the input process to the value
ofthe expression in the output process.

Variables are not used for communication between the component processes of
aparallel construct. However, a variable may be used in two or more component
processes, provided that no component process changes its value by input or
assignment.

The rules governing the use of variables and channels cannot always be
checked, particularly when using subscript operations.

3.4.6 Replicators

343 Alternative processes (ALT)

An alternative process is used
to accept the first message available
from a number of channels.

WHILE TRUE c1—
VAR X : X c3
ALT c2 —>

cl ?2x
c3 !x
c2?x
c3 ! x

This process merges data from channels ¢1 and c2 onto channel ¢3.

guard = [expression &] input
| [expression & | wait
| [expression & | SKIP

guarded process = guard
process
| ALT
{guarded process}

construct = ALT
{guarded process}

An alternative process waits until at least one guarded process is ready to
execute. One of the ready guarded processes is then selected and executed.
The construct then terminates.

A guarded process starting with an input from a channel is ready if an output
process is waiting to output to the channel. If the guarded process is selected,
the input is performed, and then the component process is executed.

A guarded process starting with a wait is ready if the wait is ready If the guarded
process is selected, the component process is executed.

A guarded process starting with SKIP is always ready. Ifthe guarded processis
selected, the component process is executed.

If a guard contains an expression followed by an input or wait, the guarded
process is ready only if both the value of the expression is TRUE and the input or
waitis ready.

If a guard contains an expression followed by a skip, the guarded process is
ready only if the value of the expression is TRUE.

343) Alternative processes (ALT),, B

Seealso

Continued

If a guarded process is itself an alternative construct, then itis ready if one or
more of the component guarded processes of the alternative is ready.

A guard containing a multiple input is ready if an output process using the same
channel as the inputis waiting The guarded process is executed by performing
all of the inputs of the multiple input in sequence, and then executing the
component process.

If more than one guarded process is ready when the alternative process is
executed, an arbitrary one is selected.

If more than one guarded process becomes ready at the same time, an arbitrary
oneis selected. This may occur ifthey contain inputs on the same channel.

3.4.6 Replicators

A conditional process executes the first
component process for which the
expressionis TRUE.

Seealso

3.4.4 7 Vipﬂjritionalprocessg (IF)

IF
i=1
outl I'x
i=2
out2 I'x
Ifthe value of i is 1, then the value of x is output to the channel out1, ifthe value

of i is2then x is output to out2. If i has any other value, the conditional process
has no effect.

conditional = expression
process
IIF
{conditional}
construct = IF

{conditional}

A conditional taking the form of an expression followed by a process is able to
execute if the expression evaluates to TRUE. A conditional taking the form of IF
followed by component conditionals is able to execute if one of its component
conditionals is able to execute.

The conditional process executes the first component (textually) which is able to
execute, and then terminates. If there is no component able to execute, then the
construct terminates with no other effect. At most one component is executed

If there are no components, the construct terminates immediately

3.4.6 Replicators

3.4.5 Repetitive processes (WHILE)

Arepetitive process executes the
component process each time the
expression evaluates to TRUE.

VAR x: cl—>f x —>c2
SEQ
Xi=0
WHILE x >= 0
SEQ
cl 7x
c2 !x

This process provides a single buffer It repeatedly copies values from the
channel ¢1 tothe channel c2, buffering each value and terminating after
copying a negative value.

construct = WHILE expression
process

The repetitive construct takes the form of the keyword WHILE followed by an
expression, followed by a single component process indented on the next line.

The component process is executed repeatedly until the expression evaluates to
FALSE, and the construct terminates. If the expression s initially FALSE, the
process is not exeécuted and the construct terminates immediately

Areplicator is used with a constructor
to replicate the component process a
number of times.

Areplicator can be used with PAR to
constructan array of concurrent processes.

Areplicator can be used with ALT for
inputting from an array of channels.

A replicator can be used with SEQ to provide
aconventional loop.

3.4.6

~ Replicators (FOR)

CHAN c[n+1]:
PAR i = [0 FOR n]
WHILE TRUE
VAR x:

SEQ
cli] ? x
cli+1]!x

cl0]—=f x t=c[1]:--c[n=1]> x (>c[n]

This process provides an n stage FIFO buffer It repeatedly transfers values from
channel ¢[0] to channel c[n], buffering a maximum of n values.

WHILE TRUE c[1]-
VAR x: cl2]— c
ALT i = [1 FOR n] c[n] |
cfi] ? x
clx

This process merges data from a vector of channels ¢[1] through c[n] onto a
single channelnamed c.

DEF alphabet = "abcdefghijklmnopgrstuvwxyz”.
SEQi = [1 FOR alphabet[BYTE 0]]
letters ! alphabet[BYTE i]

> letters

This process outputs the alphabetic characters in alphabetical order via the
channel named letters.

3.4.6 Replicators (FOR)

Seealso

Continued

replicator = identifier = [base FOR count]
base = expression
count = expression
construct = SEQ replicator
process
construct = PAR replicator
process
construct = ALT replicator
guarded.process
construct = |F replicator
conditional

guarded process = ALT replicator
guarded.process

conditional = IF replicator
conditional

The replicator declares an identifier to be the replicator index, giving its base
value and a count of the number of replications required

Its effect is to form a sequential, parallel, alternative, or conditional construct
containing countcomponents by replicating the component process,
substituting successive integer values for the replicator index (starting at base).
The substituted value for the replicator index in the last component will be
(base + count) 1

The replicator index can be used in expressions (but not constant expressions)
inthe component process. It may not be changed by assignment or input.

Animplementation may restrict the values of base and countto be constants,
particularly when a replicator is used to form a parallel construct.

If countevaluates to less than zero or equal to zero, then an empty constructis
generated. This has the effect of termination for sequential, parallel and
conditional processes, and the effect of never being ready to execute for
alternative processes.

Where textual order is significant, the component with the value base substituted
for the replicator index is considered to be textually first, followed by the
component with (base + 1), etc.

Sequential processes
Parallel processes
Alternative processes
Conditional processes

W 0w w
N

D=

3.5 Declarations

A declarationinoccamis usedto
introduce an identifier.

Seealso

Adeclaration introduces a new identifier for use in the process that follows it. It
defines the meaning that the identifier will have within the process. If the new
identifier is the same as an identifier which is already in use, all occurrences of
the identifier in the following process refer to the meaning associated with the
new declaration.

process = declaration:
process

Declarations introduced by VAR, CHAN, DEF and PROC arelinked tothe
following process by a colon (:) at the end of the last line of the declaration. The
process follows on the nextline, atthe same level of indentation as the keyword
of the declaration.

Anidentifier may be declared as a formal parameter of a named process, and is
used with the given meaning in the named process.

Anidentifier may be declared as a replicator index. It can be used in expressions
(but not constant expressions) in the component process. It cannot be changed
by assignment or input.

Depending on the implementation, variables, channels and vectors may require
locations in store to be allocated Such locations are allocated before the
process following the declaration is executed, and deallocated when it
terminates.

3.4.6 Replicators
3.6 Named processes and substitution

A variable declaration introduces an
identifier to be used as a variable.

Seealso

3.5.1 ~Variable declarations (VAR)

VAR x: input—{ Xx Xx*x = output
SEQ
input ? x
output ! xxx

Inthis example, VAR x: introduces the identifier x, which is used to hold a value
withinthe SEQ process. Note that the variable named x cannot be accessed
outside of this process.

var = identifier

declaration = VAR var{, var}

process = declaration:
process

Avariable declaration introduces an identifier for use as a variable. The variable
is notinitialised, and therefore its value is not determined at the start of execution
of the following process; it may well be different each time the following process
is executed

Alist of variable identifiers may be declared Thisis the same as a series of single
variable declarations.

Assignment processes
Vectors of variables
Elements

! w
-) =

3.5.2 Channel declarations (CHAN)

A channel declaration introducesanew CHAN c: cl—> X F>c— x c2
identifier to be used as a channel. PAR

Channels are used to communicate buffer (c1, c)

between concurrent processes. buffer (c, c2)

In this example, the channel ¢ is declared as an internal channel of the PAR
process. It cannot be used outside this process. Note that channels ¢1 and c2
will be external to this process, and will be declared in an outer level declaration.

chan = identifier

declaraton = CHAN chan {, chan}

process = declaration:
process

A channel declaration introduces an identifier for use as a channel

Alist of channelidentifiers may be declared This is the same as a series of single
channel declarations.

Seealso 3.5.4 Vectors of channels

3.5.37 Vectors of variaples 7

A variable vector declaration
introduces an identifiertobe usedas a
vector of variables.

Seealso

VAR list [16]:
declares a vector of 16 variables. They are indexed as list[0].. . . list[15].
VAR line [BYTE 80]:

allocates a vector named line with enough variables to hold 80 bytes.

subscript = [[BYTE] count]

count = expression

var = identifier subscript

declaraton = VAR var{, var}

process = declaration:
process

Avariable vector is a set of variables. The value of count, which must be a
constant expression, gives the number of variables in the vector The variables
are numbered from O up to (count — 1). If countis preceded by BYTE, the value
of count gives the number of bytes in the vector; the vector contains enough
variablesto hold all the bytes.

The identifier introduced by a variable vector declaration, may be used as an
actual parameter to pass the vector to a substitution, or may be subscripted to
access anindividual variable in the vector Subscription is described fully under
Elements (section 3.8.1)

Alist of variable vector identifiers may be declared This is the same as a series of
single variable vector declarations. Each vector is individually sized

5 Variable declarations
Named processes and substitution
Expressions and constant expressions
A Elements

0 W W o
o~NOO

3.5.4 Vectors of channels

A channel vector declaration
introduces a new identifier to be used
as a vector of channels. Channels are
used to communicate between
concurrent processes.

Seealso

CHANc[n 1]: cl—{ x —=c[0]:--c[n —2] > x —>c2
PAR
buffer (c1, c[0])
PARi=[0FORn 2]
buffer (c[i], c[i + 1])
buffer (c[n 2], c2)

This example declares a vector of channels to provide the internal structure of a
FIFO buffer of depth n. The value of n (a constant expression) and the channels
c1 and c2 will be external to this process, and will be declared in outer level
declarations.

chan = identifier [count]

declaration = CHAN chan {, chan}

process = declaration:
process

A channel vector is a set of channels. The value of count, which must be a
constant expression, gives the number of channels in the vector The channels
are numbered from O up to (count — 1).

A channel vector declaration introduces an identifier for use as a vector of
channels. The identifier may be used as an actual parameter to pass the vector
to a substitution, or may be subscripted to access an individual channelin the
vector

Alist of channel vector identifiers may be declared This isthe same as a series of
single channel vector declarations. Each vector is individually sized.

3.5.2 Channel declarations
3.6 Named processes and substitution
3.7 Expressions and constant expressions

DEF associates a name with a constant
value, or with a table of constant values.

Seealso

3.5.5 Constant definitions (DEF)

DEF close.purge = 1, close.keep = 2:

This example associates the constant values with the identifiers close.purge
and close.keep. Use of these identifiers within the subsequent process will yield
the associated values.

DEF crctable = TABLE [#0000, #CCO01, #D801, #1400,
#F001, #3C00, #2800, #E401,
#A001, #6C00, #7800, #B401,
]#5000, #9C01, #8801, #4400

This example provides a definition of an identifier to represent a vector constant.
Individual values may be obtained by subscripting the identifier crctable.

DEF alphabet = "abcdefghijkimnopgrstuvwxyz’
This example defines the vector constant alphabet to be associated with a

string Individual letters of the alphabet may be obtained by using byte
subscription

const.def = identifier = expression
| identifier vector.constant
declaration = DEF const.def{ const.def}

DEF declares anidentifier, and defines it to be associated with a constant value.
Each occurrence of the identifier in the subsequent process is replaced by the
constantvalue.

Constants come intwo classes: simple constants and vector constants. Both are
introduced by the constant declaration.

Simple constants are defined by a constant expression (one which only involves
operators, numbers, character constants, TRUE, FALSE and simple
constants) A simple constant evaluates to a single value.

Avector constant associates an identifier with a table or string It may be
subscripted to produce a single value, or passed as a value vector parameter in
asubstitution

3.7 Expressions and constant expressions
3.8.1 Elements

3.85 Vector constants

3.8.6 Character strings

3.6 Named processes and substitution

A name can be given to the textofa
process. The text will be substituted for
all occurrences of the name in the
subsequent process. Channels,
variables etc. may be used as
parameters when textual substitution
takes place.

PROC buffer (CHAN in, out) =
WHILE TRUE
VAR x:
SEQ
in ?x
out ! x:
CHAN c:
PAR
buffer (c1, c)
buffer (c, c2)

in {P out

cl—> x > c2

Asingle buffer process is declared Thetext for this is then substituted in the two
components of a parallel construct to give a process which copies from channel
c1 tochannel ¢2, buffering up totwo values at atime.

The line starting PROC gives the name buffer to the process, and identifies two
formal parameters, the channels in and out. The remaining lines give the text of
the named process. This is written in terms of the local variable x, and the formal
parameters in and out. The formal parameters will be substituted by the actual

parameters when the named process is substituted in the subsequent process.

formparm = VARidentifier[[]]{, identifier[[1]}

| CHAN identifier[[1] {, identifier[[]] }

| VALUEidentifier[[1] { ,identifier [[1]}
formparms = (form.parm {,form.parm})
declaration = PROCidentifier [form.parms] =

process
process = declaration:
process

process = identifier[(expression { ,expression})]

The PROC declaration introduces an identifier to name the process which
follows, indented, on the succeeding lines. This process is referred to as the
named process. This, inturn, is followed by the process in which the identifier will
be used (the prefixed process). The named process will be substituted for all
occurrences of the identifier in the prefixed process.

The named process may have parameters. The parameters that are declared
with the declaration of the named process are called formal parameters. Those
supplied as part of the substitution are called actual parameters

36 - Named processes and substitution

Continued

The following are the formal parameter specifiers

VAR identifier variable

CHAN identifier channel

VALUE identifier value

VAR identifier[] vector of variables
CHAN identifier[] vector of channels
VALUE identifier] vector of values

The size of the vector is not specified in the formal parameter Different sized
vectors may be used as actual parameters on different substitutions.

The identifier of the formal parameter may be written within the text of the named
process wherever a corresponding variable, channel, vector or value would be
valid A value vector parameter may be used as a constant vector in the named
process. Value parameters and value vector parameters may not be changed
by assignment or input.

The keyword VAR, CHAN or VALUE need not be repeated in successive items
in the parameter list.

A substitution with parameters consists of the identifier of the named process
followed by the actual parameters in brackets. A substitution without parameters
consists of the identifier of the named process.

The effect of a substitution is to make a copy of the process named by the
identifier, and to execute itin place of the substitution

If the named process has formal parameters, then they are replaced by the
actual parameters of the substitution, before the named process is executed
The actual parameters must correspond to formal parameters as follows

Formal Actual

variable variable or element of vector of variables
channel channel or element of vector of channels
value value of an expression

vector of variables vector of variables

vector of channels vector of channels

vector of values vector of variables or vector constant

Allvalue parameters are evaluated, and all elements of vectors are selected
before the actual parameters are substituted.

No recursion is allowed.

3.6 Named processes and substitution

Continued

The named process may contain an identifier which is the same as an identifer
substituted as an actual parameter In this case, the actual parameter refers to
the identifier in use at the point in the program where the substitution takes place.

Anidentifier which is used in, but not declared in, anamed processis called a
free identifier of the named process. A free identifier may be the same as an
identifier in use at the point in the program where the substitution takes place. In
this case, the free identifier is the identifier in use at the pointin the program
where the named process is declared.

Aformal variable parameter cannot be substituted by a vector element
accessed using byte indexing

3.7 o Expressions and constant expressions

Anexpressionis evaluatedtoproduce expression = monadic.op element
asingle value.

An expression can take the form of an element preceded by one of the two
monadic operators — or NOT

expression = element[operator element]

An expression can take the form of a single element, or two elements separated
by an operator

expression = element {assoc.op element}

An expression may take the form of a sequence of operands separated by the
same associative operator The associative operators are

o addition

* multiplication

I\ bitwise and

\/ bitwise or

>< bitwise exclusive or
AND Boolean and

OR Boolean or

A constant expression is one which only involves operators, numbers, character
constants, TRUE, FALSE and identifiers defined as simple constants. A
constant expression may not involve variables or replicator indices. A constant
expression evaluates to a single value and can be computed by a compiler

3.71 Arithmetic operators

Arithmetic operators provide two’s
complement integer arithmetic.

addition +
subtraction —
multiplication
division /
remainder \

The arithmetic operators treat their operands as two's complement integers. An
arithmetic operator combines two single word values to produce a single word
result.

Minus may be used with only one operand, and is evaluated by subtracting the
operand from zero. The effect of minus applied to the the most negative integer is
implementation dependent.

Division rounds towards zero, the sign of the result being positive if both dividend
(lefthand operand) and divisor (right hand operand) have the same sign, and
negative ifthey are of opposite sign.

The remainder operator evaluates to the remainder when the left hand operand

is divided by the right hand operand. The sign of remainder is the same as the
signofthe dividend The remainder is such that

x = ((y* (xy)) + (x\y))
isalways TRUE, regardless of the signof x and y

The effect of division and remainder by zero is implementation dependent, as is
the division of the most negative integer by —1

372 Compari;on operators

less than

greaterthan

less than orequal to
greater than orequal to
equalto =
notequal to <>

IVAVA

The result of a comparison operator is a truth value, TRUE or FALSE. The equal
and not equal operators compare corresponding bits of their operands. The
other comparison operators treat their operands as two's complement integers.

3.7.3 Logical operators

Logical operators provide facilities for
bit manipulation and truth value
manipulation.

i:=crc/\#F

produces a value in the variable i of between 0 and 15, by masking the variable
crc with the hexadecimal constant #F

The logical operators are

and /\

or \/
exclusive or ><
not NOT

The logical operators operate on corresponding bits of their operands,
producing bits of the result according to the following table

first second and or exclusive
operand operand or

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

The logical operator NOT takes one operand. Itis evaluated by inverting each
bit of its operand.

Boolean operators provide left to right
evaluation of conditions. Evaluation
ceases as soon as the result can be
determined.

374 Booleanoperators

IF (i >= 0) AND (i <= tab.size) AND (tab[i] = 0)

Inthis example, checks are made on the value of i before itis used as anindex
forthe table tab. This will ensure that no attempt will be made to use i asthe
index f itis out of range.

The boolean operators are

AND
OR

The result of evaluating an operand of a boolean operator should be either
TRUE or FALSE. The resultof the AND operatoris FALSE ifits first operand is
FALSE, otherwise the result is the same as the second operand The result of
the OR operatoris TRUE ifitsfirst operand is TRUE, otherwise the resultis the
same as the second operand

3.7.5 Shift operators

The shift operators are
up shift <<
down shift >>

The result of a shift operator is its first operand shifted by the number of bit
positions given by its second operand The up shift operator shifts towards the
most significant end of the word, the down shift operator towards the least
significantend In both cases, vacated bits are filled with zero.

Shifting by more than the word length results in zero. Itis an error to attempt to
shift by a negative number of places. Note that this will only be detected if the
second operand is a constant.

AFTER is used for comparing two time
values derived from a cyclic clock.

Seealso

3.7.6 Clock comparison operator (AFTER)

DEF interval = 60°
VAR alarm.clock:
SEQ
alarm.clock := NOW + interval
WHILE TRUE
SEQ
WAIT NOW AFTER alarm.clock
ring ! alarm.clock
alarm.clock ‘= alarm.clock + interval

causes the time to be output to the channel ring every 60 units of time. Note that it
has been constructed to avoid any slippage of time resulting from the time taken
to execute the WHILE process.

expression = element! AFTER element?

The value of the expressionis TRUE if (element! element2) > 0. Itisusedin
WAIT processes to compare the value of element2 with the value of afree
running clock, accessed as element! Note that AFTER gives the desired result
irrespective of the sign of element1 and element2 Note also that the maximum
interval of time for which AFTER can be used is the interval which can be
represented as a positive integer in a single word Half the full cycle of values is
regarded as ‘after’, and the other half as ‘before’

Wait processes

3.34
3.8.3 Local clock

3.8 Elements

3.8.1 Elements

An elementis used to provide a value in
an expression.

The following examples of elements yield the values indicated

X the value of the variable x

V[BYTE i] the value of the i 'th byte of vector v
TRUE the value represented by all 1's

‘a’ the ASCII code of the character a
(x/y) the value produced by dividing x by y
variable = identifier [subscript]

vector.constant = tablestring

item = variable | vector.constant subscript

numberlitem| TRUE| FALSE | NOW
char.const! (expression)

element

An element produces a word value, represented as a pattern of bits. Aword can
hold an implementation dependent number of 8-bit bytes.

The value of the element TRUE is the bit pattern consisting entirely of one bits.
The value of the element FALSE is the bit pattern consisting entirely of zero bits.

The value of a parenthesised expression is the value of the expression.
Parentheses are used to indicate precedence.

The value of an element which is a variable is the current value of the variable.
The value of an element which is a replicator index is the value of the base

expression given in the replicator constructor, plus the number of the replication
(counting from zero).

3.8.1 Elements

Seealso

Continued

The value of an element which is a vector, followed by a subscriptin square
brackets, is obtained by evaluating the expression forming the subscript, and
then using itto index the vector to obtain a value. If s is the value of the subscript,
thenthe s'th word (counting from zero) is accessed to produce a word value,
unless the expression is immediately preceded by the keyword BYTE, in which
casethe s'th byte is accessed, producing a value which is non-zero inthe least
significant byte only The effect of a value for s which does not define aword or
byte within the vector isimplementation dependent. Byte zero is the least
significant byte of word zero of the vector

The value of an element which is a constant is the bit pattern representing that
constant.

Itis not permitted to use an identifier declared as a channel or vector of channels
asan elementin an expression.

3.8.2 Numbers

3.8.3 Local clock

3.8.4 Character constants
3.8.5 Vector constants

,3;8',2 Numbers

0

941

#FF the hexadecimal constant which is all ones for the least
significant 8 bits

A numberis written as a sequence of decimal digits and represents the
corresponding value radix ten. Numbers are stored using two's complement.
The number range which may be stored is implementation dependent.

Anumber may be written as the symbol # followed by hexadecimal digits, and
represents the corresponding value radix sixteen (right justified). Either upper or
lower case hexadecimal digits may be used

NOW provides the value of the local
clock.

Seealso

383 Localclock(NOW)

alarm.clock := NOW + interval

assigns to alarm.clock a value which represents a short time after the
assignmentis executed.

element = NOW

NOW s a word-sized integer representing the time. At regular, but
implementation dependent, intervals of time itis incremented

No relationship may be assumed between the values produced by NOW in
different components of a parallel construct. Occam neither requires nor
supports a global sense of time.

Care needs to be taken when regarding the time as an integer Properly, NOW
should be regarded as unsigned, in which case note that the time represented
by all ones increments to zero. If regarded as a two's complement integer then
the largest positive integer value is incremented to the most negative value. The
AFTER operator gives the desired results, regardless of the sign of NOW or of
thetime itis being compared with.

3.34 Wait processes
3.7.6 Clock comparison operator

3.8.4 - Charapterconstaits

Character constants yield the ASCII
representation of a character.

Seealso

'a’ the ASCII for the character a

* the ASCII for the quote character
‘*n’ the ASCII for the newline character
Ezaii the ASCII for the erase character

The syntactic category char.const is informally defined as any occam character
(except* and quote marks), or a special character sequence (defined below),
placed between single quotes. It evaluates to the corresponding ASCII code,
without parity

Some codes (such as those of newline, quote marks and asterisk itself) are
written as an asterisk followed by a character as follows

*Cc *C carriage return

*n *N newline

*t - *T horizontal tabulate

*S *S space

* quotation mark

¥ double quotation mark
o asterisk

Any other code is written as an asterisk, followed by a two digit hexadecimal
constant (introduced by #).

Note that the character constant for single quote must be written as '

3.9.2 Character set

3.8.5 Vector constants (TABLE)

Atable produces a vector of
constants

Seealso

DEF crctable = TABLE[#0000, #CCO01, #D801, #1400,
#F001, #3C00, #2800, #E401,

#A001, #6C00, #7800, #B401,

] #5000, #9C01, #8801, #4400

defines a vector constant. Individual values may be obtained by subscripting
fromthe identifier crctable, and the identifier may be passed as a vector value
parameter in the substitution of a named process.

table = TABLE [[BYTE]expression {, expression}]

Atableis avector constant. It may be used anywhere that a vector identifier may
be used, but may not be assigned to. Each member of the table must be a
constant expression.

Ifthe keyword BYTE is used, then each constant is truncated to byte size and a
byte vector created

3 Vectors of variables
Expressions and constant expressions
.6 Character strings

3.8.6 Character strings

A string produces a table of byte
constants.

Seealso

"Hello WorldxN"
astring of 12 characters, terminated by the newline character

Astring is written as a sequence of characters placed between double quote ()
marks. Each character is written using the same conventions as for character
constants. Within a string the double quote character must be written as *”.

Astring is represented as a table of byte constants. The first byte gives the
number of characters in the string, the remaining bytes are setto the ASCI|
representations of the characters inthe string A string is limited to not more than
255 characters. The null string consists of a single byte setto zero.

A string may be written anywhere that a vector identifier may be used. It is not
valid to assignto a string

Vectors of variables
Character constants
Vector constants

Qo
abhw

3.9 ~ Lexical and character representations

3.9.1 7Identifiers ang reserved words

An identifier consists of a sequence of letters (a to z, A to Z), decimal digits (0
to 9)and dots (.), the first of which must be a letter Uppercase and lowercase
letters are not differentiated

Certain identifiers are reserved as keywords to identify language constructs.

AFTER
ALLOCATE
ALT
AND
ANY
BYTE
CHAN
DEF
FALSE
FOR

IF
LOAD
NOT
NOW
OR
PAR
PLACED
PORT
PRI
PROC
SEQ
SKIP
TABLE
TRUE
VALUE
VAR
WAIT
 WHILE

Other identifiers may also be associated in a given implementation with channels
and named processes which provide interfaces with the runtime environment.

3.9.2) Characglﬂat

The occam character set comprises
Alphabetic characters

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqgrstuvwxyz

Digits

0123456789

Other characters

P"#%& ()x+,—./;<=>72@[\]

The space character

Note that some terminals may not support lowercase letters.

Other characters from the ASCII character set may be used in strings and
character constants where supported by the implementation.

- 3.10 Syntax

3.10.1 Program format

Constructs

Guarded processes

Conditional processes

Declarations

Occam uses indentation from the left hand margin to indicate program structure.
The indentation is indicated informally for each construct in the main body of the
manual, which also contains examples

Each process starts on anew line, at a level of indentation given by the following
rules

The construct keyword and an optional replicator occupy the first line. Each of
the component processes (if any) start on a new line and are indented by two
spaces more than the construct keyword

The expression and/or input or wait occupies the first line. The component
process starts on the following line, indented two more spaces.

The expression occupies the first line. The component process starts on the
following line, indented two more spaces.

Each declaration starts on a new line, at the same level of indentation as the
process it prefixes. The final line of a declaration is terminated by a colon.

Blank lines may be inserted anywhere and are ignored.

A construct may be broken to occupy more than one line. Line breaks may occur
after comma, semi-colon, before the second operand of an operator which takes
two operands, and after the & of a guard. The continuation must be more
indented than the first line of the construct. A string may be broken by terminating
it with a double quote mark, and then starting its continuation on the next line
(more indented than the first line of the construct) with a further double quote
mark.

3.10.1 Program format

Continued

Spaces are required to define indentation, and to separate identifiers. Spaces
may not occur within identifiers or operators. Otherwise, extra spaces may be
freely used to improve readability

Comments are introduced by double hyphen (- -), and terminate at the end of the
line. Allthe characters of a comment, including the double hyphen, are ignored
A comment may follow an occam construct on the same line, or may occupy a
line by itself For editing convenience, acomment occurring on a line by itself
should be started at the same or greater level of indentation as the following
construct.

3.10.2 Syntax summary

The following four syntactic categories are defined informally in the main part of
the manual

identifier(3.9.1)

number(3.8.2
char.const(3.8.4)
string (3.8.6)
Processes program = process
process = primitive
| construct
| identifier [(expression {, expression})]
| declaration : process
Primitive processes assignment = variable := expression
input = channel ? variable {; variable}
| channel ? ANY
output = channel ! expression {; expression}
| channel 'ANY
wait = WAIT expression
primitive = assignment|input|output|wait|SKIP
Constructors guard = [expression &]input
| [expression & Jwait
| [expression& | SKIP

guarded process = guard process
| ALT {guarded process}
| ALT replicator guarded process
conditional = expression process
IF {conditional}
IF replicator conditional
identifier = [expression FOR expression]
SEQ {process}
PAR {process}
ALT {guarded process}
IF {conditional}
SEQ replicator process
PAR replicator process
ALT replicator guarded.process
IF replicator conditional
WHILE expression process

replicator
construct

3.10.2 Syntax summary
Continued
Declarations subscript = [[BYTE]expression]
chan = identifier [[expression]]
var = identifier [subscript]
const.def = identifier = expression
| identifier = vector.constant
form.parm = VAR identifier [[]]{, identifier [[]]}
| CHAN identifier [[]]{, identifier [[]]}
| VALUE identifier [[]] {, identifier [[]]}
form.parms = (form.parm {, form.parm})
declaration = VARvar{, var}
| CHAN chan {, chan}
| DEF const.def {, const.def}
| PROC identifier [form.parms] = process
Expressions variable identifier [subscript]
channel identifier [[expression]]
vector.constant table | string
item variable | vector.constant subscript
table TABLE [[BYTE]expression {, expression}]

arithmetic.op
comparison.op
logical.op
boolean.op
shift.op
monadic.op
assoc.op
operator

element

expression

T T T |

+ =11/
<I>I<=I>=1<>I=|AFTER
NN/ I><

AND IOR

<< |>>

— INOT

+ |% | logical.op | boolean.op
arithmetic.op | comparison.op | logical.op
boolean.op | shift.op

number litem I TRUE IFALSE INOW
char.const | (expression)

= element {assoc.op element}

element [operator element]
monadic.op element

3.10.2

Syntax, summary

Vector operations

Configuration

assignment
output
input
destination
source
slice

base

count

program
system

allocation

processor
port.allocation
port

singleton

construct

Continued

destination := source

channel!slice

channel ? slice

slice

slice

identifier [[BYTE] base FOR count]
expression

expression

| T A

system
PLACED PAR {system}
| PLACED PAR replicator system
| {declaration: } system
| allocation: singleton
ALLOCATE processor
{ PORT port allocation }
[LOAD port]
[other allocations]
expression
port :—channel[, channel]
expression
{declaration: } singleton
| PRI PAR {process}
process
PRI ALT { guarded process }
| PRI ALT replicator guarded process

([l

([T |

I

3.1 Vector operations

Slices extend the primitive assignment, input and output processes to allow
efficient assignment and communication of parts of vectors.

These facilities may be omitted in simple implementations.

3.11.1 Slices

A slice identifies part of a vector.

slice = identifier [BYTE] base FOR count]
base = expression
count = expression

Aslice identifies a set of vector elements. The elements may be words or bytes.
The identifier must be declared as a vector of variables or a constant vector. The
expression base is the subscript of the first element in the set, and the number of
elements is given by count. A slice must have at least one element.

Slices may be used in assignment, input and output processes.

Aslice of word elements may be used as an actual parameter in a substitution. A
slice of a vector of variables may be substituted for a vector of variables or a
vector of values. A slice of a constant vector may only be substituted for a vector
of values.

3.11.2 Slice assignment

An assignment transfers the elements of a
slice to another slice.

assignment = destination:= source
destinaton = SI!ce
source = slice

The source and destination slices must be of the same length, and must not
overlap. Both must be word slices or both must be byte slices.

The value of each element of the destination slice is set to the value of the
corresponding element of the source slice. The assignment then terminates.

The destination may not be a slice of a constant vector.

3.11.3 Slice communication

Slice communication transfers the values
in a slice from an output process to an
input process.

in.pack ? p.buff[BYTE n FOR 16]

inputs a 16 byte slice fromin.pack and places the received data into the vector
p.buff starting at byte number n.

output = channel ! slice
input = channel ? slice

Slice communication is similar to communication of a single value except that a
number of values are copied in a single communication. Communication occurs
when both an input process and an output process are ready, and the effect is to
setthe value of each element in the input slice to the value of the corresponding
element of the output slice.

The input and output slices in any slice communication must be of equal length.
Both must be word slices or both must be byte slices. The input slice may not be
aslice of a constant vector

Aslice inputmay be used inthe guard of a guarded process.

3.12 Configuration

Configuration associates the
components of an occam program with
a set of physical resources.

Configuration is used to meet speed and response requirements by
distributing programs over separate, interconnected computers, and by
placing and prioritising processes on single computers.

Every computer has local store and a set of numbered ports. A physical
connection between two computers connects a port on one computerto a
port on the other computer. This implements up to two channels between the
computers, one in each direction.

A parallel construct may be configured for a network of computers. Each
computer executes a component process, and port allocations are used to
allocate channels to ports.

A parallel construct may be configured for an individual computer. The
computer shares its time between the component processes, and the
channels are implemented by values in store. Indeed, a parallel construct
configured for a network may be reconfigured for an individual computer.

On any individual computer, a parallel construct may be configured to
prioritise its components, and an alternative construct may be configured to
prioritise its inputs.

The allocation of processing resources to the concurrent processes in a
program does not affect the logical behaviour of the program. Simple
implementations may omit or ignore some or all of the configuration facilities.

3.11.3 Slice communication

Slice communication transfers the values
in a slice from an output process to an
input process.

in.pack ? p.buff BYTE n FOR 16]

inputs a 16 byte slice from in.pack and places the received data into the vector
p.buff starting at byte number n.

channel ! slice
channel ? slice

output
input

Slice communication is similar to communication of a single value except that a
number of values are copied in a single communication. Communication occurs
when both aninput process and an output process are ready, and the effect is to
set the value of each element in the input slice to the value of the corresponding
element of the output slice.

The input and output slices in any slice communication must be of equal length.
Both must be word slices or both must be byte slices. The input slice may not be
aslice of a constant vector

Aslice input may be used in the guard of a guarded process.

3.12 Configuration

Configuration associates the
components of an occam program with
a set of physical resources.

Configuration is used to meet speed and response requirements by
distributing programs over separate, interconnected computers, and by
placing and prioritising processes on single computers.

Every computer has local store and a set of numbered ports. A physical
connection between two computers connects a port on one computer to a
port on the other computer. This implements up to two channels between the
computers, one in each direction.

A parallel construct may be configured for a network of computers. Each
computer executes a component process, and port allocations are used to
allocate channels to ports.

A parallel construct may be configured for an individual computer. The
computer shares its time between the component processes, and the
channels are implemented by values in store. Indeed, a parallel construct
configured for a network may be reconfigured for an individual computer.

On any individual computer, a parallel construct may be configured to
prioritise its components, and an alternative construct may be configured to
prioritise its inputs.

The allocation of processing resources to the concurrent processes in a
program does not affect the logical behaviour of the program. Simple
implementations may omit or ignore some or all of the configuration facilities.

3.121 Prioritised alternative processes (PRI ALT)

Alternative processes may be prioritised.

Seealso

VAR going : ct X =>c2
SEQ
going := TRUE

WHILE going stop
VAR x:
PRI ALT
stop ? ANY
going := FALSE
cl ?x
c2!x

This program copies values from channel ¢1 to channel ¢2. Any input on channel
stop stops the copying action. If both channels ¢1 and stop are ready to input,
stopis selected.

construct = PRI ALT
{ guarded . process }
| PRI ALT replicator
guarded process

If more than one guarded process is ready when a prioritised alternative process
is executed, the first one intextual sequence is selected.

If more than one guarded process becomes ready at the same time, an arbitrary
oneis selected. This may occur if they contain inputs on the same channel.

343 Alternative processes

3.12.2 Single processor execution and priority (PRI PAR)

Asingletonis a process executed by a
single processor.

CHAN edit.in, edit.out:

PRI PAR
terminal.io (keyboard, screen, edit.in, edit.out)
editor (edit.in, edit.out)

always executes the terminal input and output in preference to the editor.

singleton = {declaration:}
singleton
| PRI PAR

{ process}
| process

Asingletonis a set of declarations and processes to be executed by a single
processor

A prioritised parallel contruct gives each component process a different priority.
The first component has the highest priority and the last component has the
lowest priority. An implementation may restrict the number of components which
a prioritised parallel construct can have.

A prioritised parallel construct ensures that a higher priority process always
proceeds in preference to a lower priority one. The progress of a higher priority
process is not affected by any lower priority one, except by communication on
connecting channels. If several concurrent processes at the same priority are
able to proceed, each one is given an opportunity to proceed in turn.

3123 Multi-processor execution (PLACED PAR)

A system is a parallel construct which is
configured for a network of computers.
Each computer with local store executes a
component process.

See also

system = PLACED PAR
{system}
| PLACED PAR replicator
system
| {declaration:}
system
| allocation:
singleton

The configuration of a system is described by a set of declarations and
parallel constructs. The declarations may not include declarations of
variables or vectors of variables.

Each computer executes a component singleton of the placed parallel
construct. Each channel between such singletons must be associated with a
port on each of the corresponding computers, and the two ports must be
physically connected together.

3.124 Physical resource allocation

3.124 Physical resource allocation (ALLOCATE)

Allocations are used to give physical
resources to processes and channels.

CHAN comms: cl— —Ccomms — > c2
PLACED PAR
ALLOCATE 0
PORT 0:— comms
PORT 1—ct
LOAD 1:
buffer (c1, comms)
ALLOCATE 1
PORT 0:— comms
PORT 1:—c2
LOAD 0:
buffer (comms, c2)

places a buffer process on each of two processors. Ports are allocated for the
channels and for loading the programs to be executed by each processor

allocation = ALLOCATE processor
{PORT port.allocation}
[LOAD port]
[other.allocations]

processor = expression

port.allocation = port—channel [, channel]

port = expression

Each singleton in a system s given resources by an allocation.

The physical processors in a system are identified and distinguished by
giving each one a unique number. The processor number is the value of the
expression at the start of the allocation.

Every processor has a set of numbered ports. A physical connection between
two processors connects a port on one processor to a port on the other
processor. This implements up to two channels between the processors, one
in each direction.

A port is associated with one or two of the channels used in the singleton. If
there are two channels, the singleton must use one channel for input, the other
channel for output. The channel used in a port allocation may be a simple
channel, or an element of a vector of channels.

A channel may occur in only one port allocation within an allocation.

3.124 Physical resource allocation (ALLOCATE)

Seealso

Continued

The LOAD allocation nominates a port from which a process will be loaded
when the system is initialised. Loading takes place from a single point, and
the load ports must be allocated so as to provide a route from this point to
each processor in the system. The load route must exist as physical
connections between the processors in the system, but need not correspond
to the connections indicated by the port allocations.

Some implementations may require further information to complete the
allocation of resources, for example the address from which code should be
loaded A description of these allocations is found in the appropriate
implementation reference manual

3.12.3 Multi-processor execution

Index

= 21 331 3102 3112

? B B 21 332 3102 3.113 B -

! 21 333 3102 3.11.3 N -

; B 332 333 3102 -

- 22 35 351 352 353 354 355 36 3101

B 3102 '

& 27 343 3102 7

= 28 346 355 36 372 3102 3124

, 351 352 353 354 355 36 385 3101 3102

* 371 3102)

- 371 3102 -

’ 3.8.4

: 384 386

—— 3.10.1) -

* 371 384 3102

/ 811 3102

\ 371 3102) -

< 372 3102

> 372 3102

== 372 3102 -

>= 372 3102

< 372 3102

/\ 373 3102

\/] 373 3102

>< 373 3102

>> 375 3102

<< 375 3102 -

*C 3.84 .

*N 3.8.4

*T 3.84

*S 3.8.4 -

* 3.8.4 o -

*” 384 -

*x 3.8.4 N

- 382 384

B 28 346 353 354 36 381 385 3102 3.11.1
3113

() 26 36 381 3102 -

actual parameters 25 3.6
AFTER 334 376 383 391 3102
ALLOCATE 3102 3.124
allocation 3102 3123 3.124
allocation, store 3.5
ALT 2.7 332 333 334 343 346 391 3102 3.121
alternative processes 2.7 3.2 332 334 343 3.121
and 3.7.3
AND 37 3.74 391 3102
ANY 2.7 2.8 332 333 391 3102
arithmetic 3.71 3102
arrays of channels 28 346 354
of processes 28 3.4.6
of variables 346 353 3.11
ASCII 381 384 386 392
assignment processes 21 331 342 346 35 351 36 3102 3.11.2
associative operators 3.7 3.10.2
asterisk 371 384 3102
Backus-Naur form 3.2
base 346 381 3.11.1
bit manipulation 372 373 375 381 382
Boolean operators 3.7 3.74 3102
brackets 32 36 3.8.1
curly 3.2
round 2.6 3.6 38.1 3102
square 28 32 346 353 354 36 381 385 3102
BYTE 331 332 333 346 353 355 36 3.8.1 385
386 391 3102 3111
carriage return 3.8.4
CHAN 24 26 28 332 333 342 346 35 3.5.2
354 36 391 3102
channel declarations 24 2.6 2.8 352 354
channels 1 21 24 25 26 28 332 383 342
343 346 35 352 354 36 381 391 312
3123 3124
character codes 3.8.4
character constants 355 37 381 384 385 386 39 392
character set 3.9.2
character strings 355 3.8.6

clock 334 376 383
clock comparison operator 3.7.6
colon 22 3.5 3.10.1
comma 3.10.1
comments 3.10.1
communication 1 2.1 24 25 332 333 342 311 3113
3122
comparison operators 3.72 3102
component processes 332 333 34 341 342 343 344 345 346
35 36 383 3101 3121 3122
concurrent processes 1 21 24 25 2.8 332 333 342 346
352 354 312 3122 3.123
conditional processes 344 3101 3102
configuration 3.12
constants 2.7 346 35 353 354 355 36 3.7 3.7.3
375 381 382 384 385 386 392 3102
character 3.84
vector 3.8.5
constant definitions 2.7 3.5.5
constant expressions 355 37
constructs 2.2 3.2 3.4 3.6 391 3101 3102
alternative 2.7 343 3.121
conditional 344
parallel 2.4 342 3122 3.123
repetitive 23 3.4.5
replicators 2.8 3.4.6
sequential 22 341
constructors 2.2 346 3.10.1
continuation lines 3.10.1
count 346 3.111
curly brackets 3.2
decimals 382 391
declarations 3.5 3101 3102 3122 3123
channels 24 3.5.2
constant definitions 2.7 3.5.5
formal parameters 2.6 3.6
named processes 2.6 3.6
replicator indices 28 3.4.6
variables 2.2 3.5.1

declarations vectors of channels 2.8 3.54
vectors of variables 3.5.3

DEF 2.7 334 346 35 355 376 385 391 3102

definitions 2.7 3.5.5

delays 332 333 334

destination 3102 3.11.2

digits 382 3.9.1

division 3.71

dots 3.9.1

down shift 3.75

double hyphen 3.10.1

elements 3.7 3.8 381 3102

elements of vectors 331 332 333 353 354 36 381 3111

equals 346 372

erase 3.84

escape 3.84 386

exclusive or 3.7.3

expressions 2.1 2.7 3.2 331 333 334 342 343 344
345 346 35 353 354 355 36 3.7 376
381 385 3101 3102

FALSE 2.3 345 355 37 372 374 381 391 3102

FOR 2.8 346 391 3102 3.11.1

formal parameters 2.6 35 3.6

format 3.10.1

free variables 3.6

greater than operator 3.72 3101

guard 27 332 334 343 3101 3102

guarded processes 2.7 343 346 3101 3102 3121

hexadecimal constant 373 382 384

identifiers 346 35 3.6 381 3.9.1

IF 344 391 3102

indentation 22 26 341 342 345 35 3.10.1

input processes 1 2.1 25 2.8 332 333 342 343 346
35 3101 3102 3.11.3

integers 371 372 3.8.2

item 381 3102

keywords 22 32 3.10.1

left shift 3.7.5

less than operator 3.72 3101

lexical representations

3.9

line breaks 3.10.1) -
LOAD 3.10.2 3.124 -
local clock 1 334 376 383 - B
locations of store 1 35
logical operators 3.73 3102
loop 23 2.8 345 3.4.6
lowercase 3.9.1
masking) 3.73
minus operator 3.71
monadic operators 3.7 3.10.2 N
multiplication 3.7.1
named processes 26 35 3.6 385 3123
newline 342 384 386 3101
Newton-Raphson 2.8
NOT 37 373 391 3102 :
NOW 334 376 381 383 391 3102
null string B 3.8.6 -
nullmessage . 332 333
numbers 355 347 381 382 3102
operators 355 37 7
arithmetic 3.71
Boolean 3.74
clock comparison 3.76
comparison 3.7.2
logical 3.7.3
shift 3.75
or 3.73
OR 37 374 391 3102 B
output processes o 1 21 25 28 332 333 342 343 3102
3.11.3
PAR 24 28 332 333 342 346 351 352 354
391 3102 3122 3123 3124
parallel processes 1 2.1 24 25 28 332 333 342 346
B 352 354 312 3122 3.123 - B
parameters 2.6 35 3568 38b54 355 36 3.85
parentheses 3.8.1 - 7 -
pipeline 2.8 o
PLACED PAR 3102 3123 3124

plus operator 3.71
PORT 3102 3.124
precedence 3.8.1
prefixed process 2.6 3.6 3.10.1
PRI ALT 3102 3.1241
primitive processes 3.3 331 332 3383 334 3102
PRI PAR 3102 3.12.2
priority 3.12 3121 3.12.2
PROC 26 35 3.6 391 3102
processes alternative 2.7 343 3.121
assignment 2.1 331 3.11.2
component 3.4
concurrent 2.4 342 3122 3123
conditional 344
guarded 2.7 343
input 21 332 3.11.3
named 2.6 3.6
output 2.1 333 3.113
parallel 24 342 3122 3123
prefixed 2.6 3.6
primitive 21 3.3
repetitive 2:3 3.4.5
sequential 2.2 3.4.1
skip 3.3.5
wait 3.34
processor allocation 3.12.4
ready 1 2.7 333 334 342 343 346
recursion 3.6
remainder operator 3.71
repetitive processes 2.3 345
replicators 2.8 3.4.6
right shift 3.75
round brackets 2.6 3.6 3.81 3102
scope 3.5
SEQ 2.2 2.3 2.8 341 343 345 346 351 391
3.10.2
sequential processes 2.2 3441
shift operators 3.75 3102
singleton 3102 3.123 3124

SKIP 335 343 3102

slices 3.11 3.11.1 3112 3113

source 3102 3.11.2

spaces 384 392 3.10.1

square brackets 2.8 32 346 353 354 36 381 385 3102

store 1 3.5

strings 355 381 385 386 392 310.1

subscription 28 331 332 342 353 354 355 381 3102

substitution 2.6 353 354 355 3.6 3185

subtraction operator 3.71

synchronisation 1 25 332 333 343

syntax 3.2 3.10 3.10.2

syntax summary 3.10.2

system 3102 3.12.3

tab character 3.74

TABLE 355 373 374 381 385 386 391 3102

time 334 376 383

timeout 3.34

TRUE 23 24 26 2.7 28 334 342 343 344
345 346 355 36 37 371 372 374 376
381 391 3102

up shift 3.7.5

uppercase 3.9.1

VALUE 3.6 391 3102

VAR 22 2.3 24 2.6 2.7 28 334 341 342
343 345 346 35 351 353 36 3.76 391
3.10.2

variable declarations 2.2 351 353 36 3102

vector constants 3.8.5

vectors a 3.5 353 354 36 381 385 386 311

vectors of channels 2.8 354 3123

vectors of variables 3.5.3

vector operations 3.11

WAIT 334 343 376 383 391 3102

WHILE 23 24 26 2.7 28 345 391 3102

word 331 332 371 375 376 381 383

Designed by HSAG Limited
Printed in England by Syon Print Limited.

NMOS

INMOS Limited
Whitefriars

Lewins Mead

Bristol BS1 2NP

England

Telephone (0272) 290861
Telex 444723

INMOS Corporation

PO Box 16000

Colorado Springs
Colorado 80935

USA

Telephone (303) 630 4000
Telex 910 920 4904

D01004MH

	Contents
	1 Introduction
	2 Tutorial introduction to occam
	2.1 Building blocks
	2.2 Sequential processes
	2.3 Repetitive processes
	2.4 Parallel processes
	2.5 Input and output revisited
	2.6 Naming processes
	2.7 Alternative processes
	2.8 Arrays of processes
	2.9 Conclusion

	3 Programmer's reference manual
	3.1 Purpose, use and organisation
	3.2 Syntactic notation
	3.3 Primitive processes
	3.3.1 Assignment processes (:=)
	3.3.2 Input processes (?)
	3.3.3 Output processes (!)
	3.3.4 Wait processes (WAIT)
	3.3.5 Skip processes (SKIP)

	3.4 Constructs
	3.4.1 Sequential processes (SEQ)
	3.4.2 Parallel processes (PAR)
	3.4.3 Alternative processes (ALT)
	3.4.4 Conditional processes (IF)
	3.4.5 Repetitive processes (WHILE)
	3.4.6 Replicators (FOR)

	3.5 Declarations
	3.5.1 Variable declarations (VAR)
	3.5.2 Channel declarations (CHAN)
	3.5.3 Vectors of variables
	3.5.4 Vectors of channels
	3.5.5 Constant definitions (DEF)

	3.6 Named processes and substitution
	3.7 Expressions and constant expressions
	3.7.1 Arithmetic operators
	3.7.2 Comparison operators
	3.7.3 Logical operators
	3.7.4 Boolean operators
	3.7.5 Shift operators
	3.7.6 Clock comparison operator (AFTER)

	3.8 Elements
	3.8.1 Elements
	3.8.2 Numbers
	3.8.3 Local clock (NOW)
	3.8.4 Character constants
	3.8.5 Vector constants (TABLE)
	3.8.6 Character strings

	3.9 Lexical and character representations
	3.9.1 Identifiers and reserved words
	3.9.2 Character set

	3.10 Syntax
	3.10.1 Program format
	3.10.2 Syntax summary

	3.11 Vector operations
	3.11.1 Slices
	3.11.2 Slice assignment
	3.11.3 Slice communication

	3.12 Configuration
	3.12.1 Prioritised alternative processes (PRI ALT)
	3.12.2 Single processor execution and priority (PRI PAR)
	3.12.3 Multi-processor execution (PLACED PAR)
	3.12.4 Physical resource allocation (ALLOCATE)

	4 Index

