.

GDS-II - Graphic Display SubsyStem

Hardware Description

Copyright: PARSYTEC GmbH

GDS-II - Graphic Display Subsystem

Author :
Torsten Wiese Technical Documentation

Version 1.1 (G300B02)
June 1990

This documentation is written for a GDS-II equipped
with a G300B (IMSG300G-11SA ENG B07).

- GDS-II 3 Contents
Contents
1. Introduction To The GDS-II 8
2. Transputer-Node Description 9
2.1 The Processor 9
22 “The Parsytec UniLinks 10
23 The Backplane Link Layout 11
24 The Reset Mechanism 12
3. The GDS-II Video Section 14
3.1 Graphic System Basics 14
3.1.1 How An Image Is Built Up 14
3.12 The Number Of Available Colours 14
3.13 The G300’s Colour-Lookup-Table 15
3.14 Programming The G300 16
32 The Organization Of The Video Memory 17
321 Row-Oriented Addressing 18
3.2.1.1 Hardware Panning With The G300 24
3212 The Importance Of The Registers " Memlnit " and " TransferDelay " 27
322 Linear Addressing 31
3221 Calculating Top of Screen 32
3222 " Linear Addressing " - A Summary 36
323 Double Buffering 37
33 The GDS-II’'s Address Space 40
34 The G300’s Registers 41
34.1 Boot Location (#201001A0) 41
342 Control Register (#20100160) 43
343 Mask Register (#20100140) 50
344 Top of Screen (#20100180) 50
345 Datapath Register (#20100121 - #2010012C) 51
3.4.6 Clut (#20100000) 54
3.4.7 Ident Register (#20000000) 55
4, Jumper Layout 57
5. Daughterboard Connectors 66

GDS-11

Contents

7.1
72
73
74
75
7.6
1.7
71.7.1
772
) 773
7.8
7.8.1
7.8.2
79

-] }f‘h\

Calculating A Video Timing

Software examples

Booting The GDS-II

The GDS As A Host Under MultiTool
The GDS As A Slave Under MultiTool
X - Windows Under Helios On A GDS-II
Link Software Addresses

Initialising The G300

The Transputer’s Graphic Operations
Move2D |

Draw2D

Clip2D

Synchronizing With The Vertical Blank

Programming The CLUT (one interrupt source)
Programming The CLUT (several interrupt sources)

Reading The Datapath Registers
GDS-II vs. GDS - A Comparison

Appendix

69

75
75
75
76
76
77
77
78
78
79
80
81
82
83
86

88

90

O

N

NG
;
L #

GDS-II 6 Preface

Preface

When 1 finally finished this handbook, I realized that it had become somewhat longer than
intended. I’'m sure that everyone will be thrilled about such detailed instructions (at least at
first). This will change abruptly as soon as you start looking for some certain detail among this
100-plus page opus. Therefore, a few opening instructions for using this instruction manual... .
The first two chapters describe the transputer node’s basic functions without explaining the
GDS-II’s graphic functions in any great detail.

Chapter three will be the most tedious of all, as it explains the basics of G300 programming as
well as the GDS-II’s architecture in depths. I tried to structure this chapter in such a way as to
make it possible for a beginner to slowly grow acquainted with the system and its programming.
Skip this chapter if you don’t need to know (or care) exactly where a given pixel is located
within the video memory. This is even more so the case if your going to be using the GDS-II
with an existing software (X-Windows under HELIOS etc.).

Chapter four contains detailed descriptions of each jumper’s functions. Advanced/experienced
GDS-II users, however, will find the jumper listings in chapter 9.6 to be more useful in everyday
work.

I would especially like to point out the index at the end of the manual,- it should make digging
out info a lot easier... .

Since I spent a lot of time and effort writing this manual I'd be grateful for any corrections,
comments or criticisms concerning it.

Enjoy!
T. Wiese

P.S.

Thanks for Jacques Beckman for translating the german version into " readable " English !

-~

GDS-II 8 Architecture

1. Introduction To The GDS -1I

——

Link in _J

Link Out

R

Reset In _‘

Reset Out

DOR

IR el] B [T
G300

He—
LAY ———b T800
Link Out tq T
Reset In b_b Reset-PAL

A 7

Power On Reset

Figure 1.0 Block wiring diagram of the GDS-II

Figure 1.0 shows the basic parts of a GDS-II in a block diagram. The transputer node consists
of a T800 transputer with a 2 MByte dynamic working memory (DRAM), a 2 MByte dynamic
video memory (VRAM) and 4 Parsytec UniLinks. The 4 additional UniLinks connected to
slot A make it possible to add a DBT-x or a DB-DMA-Module. DB-DMA-Module in turn is
also equipped with a transputer capable of writing data into the video memory. With two
transputers (one on the GDS-II & one on the DB-DMA-Module) working, the effective data
transfer rafe from an external transputer network into the GDS-II's video memory is, of course,
considerably greater.

The G300 Video-Controller with its internal Colour Lookup Table (CLUT) is " I/O mapped "
within the transputer’s address space. The VRAM’s video data outputs are bridged into the
G300’s inputs. If the bridge is removed, you can install an external 13 bit CLUT (DB-CLUT)

here.

GDS-II 9 Architecture

2. Transputer-Node Description

2.1 The Processor

The GDS-II is built around a 32 bit, T800 transputer. The " Processor Clock " depends upon the
exact processor type used, and can be changed by rearranging jumper " J3 " (see chapter 4).
The GDS-II is equipped with 2 MBytes of dynamic working memory and 2 MBytes of " dual
ported " video memory. The working memory starts at the address #00000 (0x80000000) and
ends at #7FFFF (0x801FFFFF). In the standard option, the video memory starts where the
working memory ends - beginning at address #80000 (0x80200000) in other words. The
processor can therefore use both memories as one continuous memory.

If a continuous memory is not desired due to the specific uses, the video memory’s start address
can be shifted to a higher value by exchanging a PAL. This, however, may only be done by the

manufacturers.

The " Link Speed " can be set at either 10 or 20 MB/s. A rate of 5 MB/s cannot be supported.
The transfer rates of pins 1-3 can now additionally be set using pin 26B of the 96-way VG-
connector (see chapter 4 - Jumper J4).

4

GDS-II 10 Architecture

2.2 The Parsytec UniLinks

A total of 7 UniLinks are connected to the backplane via the (96-way) VG-connector. Each
Link, in turn, consists of four differential signals e.g. eight wires. These signals are accessible on
the backplane by using (10-way) BERG-connectors.

Reset Out: Reset-Register’s programmable reset outputs
Reset In: Reset input for resetting the transputer

Link Out:

Link In:

Link-connector pinout Video connector pinout
Reset out + |o o‘ Reset out - HSYNC |[lo o| GND
Link out + [fo of Link out - blue o of| green
GND o o GND GND o o GND

Link in - Jlo of Link in + red oo HCLKI)
Reset in - Jlo o| Reset in + VSync Jjo off GND

By wiring the signals to the connector in this type of an array, you’ll need only one type of cable
to connect PARSYTEC-Boards among each other (crossed lines).

Link In + == Link Out +
Link In - = Link Out -
Link Out + = Link In +
Link Out - = Link In -
Reset In + = Reset Out +
Reset In - = Reset Out -
Reset Out + = Reset In +
Reset Out - = Reset In -
Cable

Link connector Link connector

1) The GDS-II's " Video Clock *; running either at S MHz or 32 MHz depending on jumper J5

GDS-I1 11 Architecture

23 The Backplane Link Layout

Backplane Links 0, 1, 2 and 3 correspond to the GDS-II transputer Links. Links 4, 5 and 7 are
routed to the slot A connector. Slot A’s Link 6 is only accessible via the GDS-II's onboard (10-
way) BERG connector - its not routed to the Backplane.

The BERG connector normally corresponding to Link 6 is instead used, analogous to the
GDS-], for video output. The following figure demonstrates the backplane Link layout.

GDS—-1 1

Link O

Link 1

Link 2

Link 3

Link 4
OB slot A - Link O

Link &
DB slot A = Link 1

Video Output

PEs66888

Link 7
DB slot A - Link 3

Backp |l ane

Slot B Slot A

Figure 2.0 The backplane Link layout

GDS—-11
DB slotf/A — Link 2 _0O

Link O

Link 1

Link 2

tLink 3

Link 4
DB siot A - Link O

Link S
08 slot A -~ Link 1

Video Output

EEIXEEE
seccecns s

Link 7
DB slot A - Link 3

eossaceserevcnn
seveesseesvecs ¢

Slot B Slot A

Figure 2.1 The BBK-PC Link layout

3

-

\G

GDS-II

2.4 The Reset Mechanism

There are three different ways to reset the transputer and " Video Controller".

Power-On-Reset: When starting the system, the GDS-II will automatically
generate a reset signal which will affect all components on the board.

Master-Reset: The " Master-Reset " has the same effect as the " Power-On-Reset ".
It enters the system via the (96-way) VG-connector’s A24 pin which is
connected to the reset button of the various MULTICLUSTER systems.

The " Master Reset" cannot be applied if the GDS-II is used together with a
BBK-PC or an ADAPT-PC.

Link-Reset-In: In this case, the processor can be resetted using any of the four
Links’ " Reset-In " channels (they’re logical OR arranged). The Link-Reset-In
procedure will not reset the G300 (!)2). It is therefore possible to initialize the
G300 independently from the main program by using a separate configuration

program.

The GDS-II is also equipped with four programmable " Link-Reset-Out " channels in addition to

a programmable reset for the G300. When this is used, a code word (following a

predetermined start sequence to avoid an accidental reset) is sent to the address #20000030h
(0xC0). The code word bits have the following functions:

bit 0:
bit 1:
bit 2:
bit 3:
bit 4:

Reset-Out via Link 0
Reset-Out via Link 1
Reset-Out via Link 2
Reset-Out via Link 3
G300 Video-Controller Reset

This design enables the user to reset, load a new program code into and start any one of the

network’s transputers individually via one of the four Links. These functions are what makes

large, error tolerant transputer systems possible.

2) If the G300 is " hanging " during a transfer cycle, it is impossible to reset the G300 and the transputer via
software. You have to use the " Power-On-Reset " or the " Master Reset ". If you want your G300 reset by
" Link-Reset-In * contact us for modifying your GDS-11.

¢

GDS-11

13 Architecture

The following OCCAM 2 listing demonstrates the programming and the necessary start

sequence.

PROC reset (VAL INT
-- reset channel 0:

—-- reset channel 1:

-- reset channel 2:

-- reset channel 3:

-- reset G300

INT addr.reset, time

PLACE addr.reset AT

TIMER clock

VAL INT wait

SEQ
addr.reset
addr.reset
addr.reset
addr.reset
addr.reset

IS

H W N = O

clock ? time
clock ? AFTER

addr.reset

time PLUS wait -

0

<< l1link -

link)
link =
link =
link =
link =
link =

W N PO

#20000030 : =-- Address Reset-Registers

—- Release Sequence for
—- the Reset Register

Reset Code word

128 us Delay

The same procedure in ’C’ under HELIOS:

void reset (int link)

{

int * addr_reset = (int *)0xCO

*addr_reset
*addr_reset
*addr_reset
*addr_reset
*addr_reset
Delay (128)
*addr.reset

0

~ W N =

.
14

.
’

~e

<< 1link) ;

Vi

GDS-11 14 Architecture

3. The GDS-II Video Section

3.1 Graphic System Basics

In addition to the usual working memory, a graphic system also needs a special video memory
for storing the image as a pixel pattern. The transputer uses the video memory just as it would a
ordinary dynamic working memory. The video memory is not only accessed by the transputer
(which creates, rotates, magnifies, shifts, etc. images), but also by the Video Controller
(/G300). The Video Controller will periodically address a screen line and transfer it to one of
the video RAM’’s internal shift registers from where it’s sent to the screen (e.g. called Screen
Refresh). When the G300 is addressing the video memory the transputer is cut off (DMA-
cycle) and forced to rely on its own internal registers and On-Chip-RAM. This explains the

GDS-II transputer node’s lower performance (approx. 8% less) in comparison to similar
transputer nodes without a video section.

3.1.1 How An Image Is Built Up

As stated above, an image is stored as a pixel pattern in the video memory. The G300 will read
a complete video line at a line frequency of 15 kHz - 64 kHz and convert the information into a
serial " pixel flow *. In order to do this, the binary coded colour information stored in the video
memory first has to be converted into analog voltage values. This is done by the G300’s three
internal 8 bit D/A Converters. ‘

In addition to all this, the G300 generates the driving signals for the monitor (Horizontal Sync
and Vertical Sync or Composite Sync) and if you want it to, will combine them with the colour
outputs accordingly.

3.1.2 The Number Of Available Colours

The width of a pixel determines the number of colours that can be used simultaneously. An 8 bit
wide pixel can encode 28=256 different colours, a 24 bit pixel, 2%.

Both modes are possible with a GDS-II. In addition, a 13 bit mode can also be employed when
using the appropriate added board (DB-CLUT).

J

GDS-11 15 Architecture

3.13 The G300’s Colour-Lookup-Table

Using the 8 bit/pixel mode, a total of 256 colours can be used by the GDS-II simultaneously.
The monitor, however, can only use the data if the colours have been separated into the three
basic colours. In order to do this, the G300 is equipped with three separate D/A-Converters
(red, green & blue). Each D/A Converter is able to convert an 8 bit wide signal in up to 256
different voltage values. Each basic colour can therefore be shown in 256 different shades. The
three D/A converters make it possible to show 768 different basic colour shades which, in turn,
can be combined for a total of 16,776,448 mixtures.

The CLUT enables the user to choose 256 colours from the wide range possible, and address
them with an 8 bit wide pixel. It’s essentially a memory for 256 words at 24 bits each. The
following figure will demonstrate how it works. The CLUT address and the pixel’s value are
identical.

CLUT Address Memory contents Colour seen on the monitor
red green blue

#00 0x00 00h 00h 00h black

#01 0x04 FFh FFh FFh white

#FF Ox3FC 80h 80h 00h medium yellow brightness

Colours can be coded directly when using the 24 bit/pixel mode.

Bits 0-7 stand for the red, bits 8-15 for the green, bits 16-23 for the blue colour component and
bits 24-31 are ignored.

The older G300A automatically switches off the CLUT in mode 2 (13, 24 bit/pixel). The
newer G300B, however, enables you use your CLUT.

The user can then use a 256 word 4 8 bit table for each basic colour, making quick monitor
colour changes possible without having to alter the video memory.

T

GDS-1I 16 Architecture

' 3.1.4 Programming The G300

The G300’s registers are located in the transputer’s address space from the base address

#20100000 (0x400000) onwards. There’s a summary with all registers and functions in chapters
3.3 and 34.

The registers fall into several categories.

The CLUT uses 256 words (1 kByte) of memory and can be reprogrammed while an
image is running. To avoid disturbances, try to program only during the " Vertical Blank "
cycles. The appropriate signal is sent to the transputer’s Event-Pin. This is explained in
detail in chapter 7.83).

Registers that determine the G300’s function. This includes choosing the pixel width,
" Pixel Clock ", etc.
These registers are loaded every time the system is started, then usually left alone.

Registers that determine the monitor timing thereby also determining the resolution.
The parameters are set by the monitor manufacturer and should be followed exactly.
The parameters for several widespread models were tested (!) and are listed in the
appendix along with the appropriate driver disc. Don’t change the parameters while

your monitor is in use, as false programming might damage it.

Registers that can be modified during use in order to shift portions of the image or to

switch from one image to another within the video memory (Double Buffering).

3

Software examples ; chapter 7.8 " Synchronizing With The Vertical Blank *

A

GDS-II 17 Architecture

3.2 The Organization Of The Video Memory

The GDS-II has a 2 MByte video memory that starts at the hardware address 0x80200000. This
corresponds to OCCAM word address #80000.

Ox00401000 #20100400
Ox00400000 #20100000
Ox00380000 #200E0000

Ox00080000 #20020000
Resat PAL «mm Ox000000CO #20000030

G300

DB-CLUT

DBlI-x boords

Ident PAL ewe Ox00000000 #20000000

Ox80400000 #O0100000
Ox80200000 #O0080000
0xQ0000000 #00000000

Video memory

System memory

Figure 3.0 The video memory’s position in the address space

The video memory is equipped with dual-ported Video RAMs, 4 * 256 kBit in size, and consists
of two banks. Each bank is organized as a 512 * 512 word matrix. Two banks result in a 512 *
1024 word organisation.

To address a certain word within the matrix, you need a 9 bit " Column-Address " and a 10 bit
" Row-Address ".

The number of pixels per memory cell depends on the selected mode:

24 bit/pixel Mode:
1 pixel a’ 24 bit and 8 bits for additional information
Byte 0 = red ; Byte 1 = green ; Byte 2 = blue

13 bit/pixel Mode: (can only be used with the DB-CLUT)
2 pixel a’ 13 bit and 2 * 3 bits for additional information
Byte 0 and Byte 1 comprise pixel number 2n
Byte 2 and Byte 3 comprise pixel number 2n+1

8 bit/pixel Mode:
4 pixel a’ 8 bit
Byte 0 comprises pixel number 4n
Byte 1 comprises pixel number 4n+1
Byte 2 comprises pixel number 4n+2
Byte 3 comprises pixel number 4n+3

s

GDS-II 18 Architecture

Pixel location on the monitor:

This figure demonstrates how the

Pixel locotion on the monitor
A pixel's location on the monitor
o v corresponds its location in the video
;;Z',f‘g memory. As opposed to the GDS, the
T - GDS-II does in fact use normal graphic
video memory Th Y dRe memo ry standards as far as video memory
addressing are concerned. The left
== | v X upper monitor pixel is located at the
— —— bottom-most video memory address.
monitor monitor

Figure 3.1 Pixel location on the monitor

As the addresses of the memory cells rise, rows are built up from left to right and the screen is
filled with the resulting lines from top to bottom.

When using the G300 Video-Controller there are two ways to address the video memory; -
" Row-Oriented Addressing" which is explained in chapter 3.2.1 and " Linear Addressing"
which is explained in chapter 3.2.2.

3.2.1 Row-Oriented Addressing

The simplest memory organisation consists in mapping VideoRAM - rows to monitor rows and
VideoRAM - columns to monitor columns. As a consequence, each VideoRAM-row can only
correspond to one monitor row. The figures 3.2 - 3.4 will illustrate just how an image is stored in
the video memory and the dependency on the mode of representation (24, 13 or 8 bit/pixel).
They are based on the assumption that the first monitor pixel is located at the lowest video
memory address 4) (0x00200000 or #80000).

4) " TopScreen Register ", see 3.2.1.1 and 3.4.4, - set to zero in this case.

e

"

GDS-II 19

Architecture

The location of an image in the video memory when using " Row-Oriented Addressing ™

24 bit/pixele:

Fig. 3.2
diwployed part:
812 Ines P 512 x 768 pixel
312 1ines
l 7/ [y €1..n..512)
212 words @) plixet
13 bit/pixele; (only with a DB-CLUT)
Fig.3.3
l diepleyed port:
512 lines 1024 x 768 pixel
512 1ines
l Plxel (2..2n42..1024)
Pixet (1..2n+1..1023)
312 words o 2 plixel
8 bit/pixele:
Fig. 3.4
sz Illnol
l dleployed port:
1024 x 788 pinel
| — Plxel (4..4n44..2048)
512 11nes —— Pixel (3..4n+3..2047)
l —— Plixel (2..4n+2..2048)
jo—— P ixel (1..4n¢1,..2048)

312 worde o 4 pixel

Up to 512 pixels (horizontal
resolution) by 1024 pixels (vertical
resolution) are possible. The lower
left position in the video memory
(0x200000) corresponds to the
first pixel in the first monitor row.
The right pixel in the bottom
monitor row corresponds to the last
memory position (0x400000).

Up to 1024 pixels (horizontal
resolution) by 1024 pixels (vertical
resolution) are possible. Since
2 pixels are stored per word in this
mode, two planes are used (the
front one’s for bytes 0 and 1, the
rear one’s for bytes 2 and 3).

Up to 2048 pixels (horizontal
resolution) by 1024 pixels (vertical
resolution) are possible. Since
4 pixels are stored per word in this
mode, a total of four planes are
used. The front plane corresponds
to byte 0, the rear plane to byte 3.

At this point one realizes that the 24 bit/pixel mode used in this configuration isn’t very useful

(a maximum of 512 pixel in horizontal orientation).

GDS-I1 20 Architecture

The following examples should demonstrate how to find the address of a specific pixel
depending on the chosen mode.

Examples): x = 400 Xgpie € { 0,-, 2047} x5, € {0,.,1023} x,,. €{0,.,512}
y = 64 Yapit € {01023} y,5. €{0,,1023} y,,.. €{0,.,1023}

8 bit/Pixel Mode

Each word consists of four pixels in this mode. The pixel in question is located in the
first byte of the memory cell in row 64 and column 100.

Adr. , = 100 = 001100100 = 64h

Adr, . = 64 = 0001000000 = 40h

Adr = (Adr, * 512) + Adr. . + Adry,.
= (Adrp,, << 9)+ Adr., + Adry, .
= # 8064 + #80000
= #88064

This address is an OCCAM word address.
The byte address generated by the hardware is therefore
Adr = 0x80220190

Hardware

General equation 3.1a: (to determine the OCCAM word address for 8 bit/pixel)

Adr = I\drBase + %x + bl2y

= Adr + (x> 2)+(y<<?9); Adr, = #80000

Base Bas

General equation 3.1b: (to determine the hardware address for 8 bit/pixel)

Adr = Adr, + x +(y<<11); Adr,,__ = 0x80200000

5 The origin of the coordinate system lies at lower left corner of the video memory (see figure 31).

B
—ar

GDS-I1

21 Architecture

13 bit/Pixel Mode

24 bit

Each word contains exactly two pixels in this mode.

Adr. , = 200 = 011001000 = C8h

Adr.,, = 64 = 0001000000 = 40h

Adr = (Adr, * 512) + Adr. , + Adry,
= (Adrp, << 9) +Adr., + Adrg, .
= # 80C8 + #80000
= #880C8

Adr,. ... = 0x80220320

General equation 3.2a: (to determine the OCCAM word address for 13 bit/pixel)

Adr = Adr
= Adr

+ %X + 512y
+ (x>»1)+(y<$9)
Adr = #80000

Base

Base

Base

General equation 3.2b: (to determine the hardware address for 13 bit/pixel)

Adr = Adr + (x<<1)+(y<<11)

Adr

Base

sase = 080200000

ixel Mode

Each word represents exactly one pixel.

Adr , = 400 = 110010000 = 190h

Adr, = 64 = 0001000000 = 40h

Adr = (Adr, * 512) + Adr_, + Adry, .
= (Adrp, << 9) + Adr., + Adry,
= # 8190 + #80000
= #88190

Adr = 0x80220640

Hardware

GDS-II 22 Architecture

bt General equation 3.3a: (to determine the OCCAM word address for 24 bit/pixel)
Adr = Ad"aase + X + 512y
=Adr, .+ X+ (Yy<9)
Adr. = #80000
General equation 3.3b: (to determine the hardware address for 24 bit/pixel)
Adr = Adr, . + (x<<2)+ (y<<11)
Adr. . = 0x80200000
-
Initialisation examples
The smart array definition can make addressing specific pixels a whole lot easier.
8 bit/pixel Mode: (OCCAM 2) (C)
VAL YSIZE IS 1024 : #define YSIZE 1024
VAL XSIZE IS 2048 : #$define XSIZE 2048
[YSIZE][XSIZE] BYTE VRAM : char *VRAM =
PLACE VRAA AT #80000 : (char *) 0x80200000;
—~ 13 bit/pixel Mode: (OCCAM 2) ’e)

VAL YSIZE IS 1024
VAL XSIZE IS 1024
[YSIZE][XSIZE] INT16 VRAM

#define YSIZE 1024
#define XSIZE 1024
short *VRAM =

PLACE VRAM AT #80000 : (short *) 0x80200000;
24 bit/pixel Mode: (OCCAM 2) (c)

VAL YSIZE IS 1024 : #define YSIZE 1024

VAL XSIZE IS 512 : #define XSIZE 512

(YSIZE][XSIZE] INT VRAM : int *VRAM =

i PLACE VRAM AT #80000 : (int *) 0x80200000;

o

GDS-II 23 Architecture

The following OCCAM sequence draws a vertical white (if the CLUT is programmed that

way) line at the position x.

8 bit/pixel Mode :
SEQ y = 0 FOR 1024
VRAM [y][x] := BYTE (0)
13 bit/pixel Mode:
SEQ y = 0 FOR 1024
VRAM [y][x] := INT16 (O)
24 bit/pixel Mode:

SEQ y = 0 FOR 1024
VRAM [y][x] := 0

The following is an example of how, when in the 8 bit/pixel mode, the definitions can be
incorporated into a program under HELIOS 'C’, and how to draw a white vertical line at the

position x = 20.

$define XSIZE 2048

#define YSIZE 1024

char *VRAM = (char *) 0x80200000 ;

/* function prototype */

void putpixel (int x, int y, int colour);

main ()
{
int i ;
int x = 20 ;
for (i = 0; i < 1024; i++) {
putpixel (x, i, 0) :

void putpixel (int x, int y, int colour)
{
if ((x < XSIZE) && (y < YSIZE))
VRAM [x+ (XSIZE * y)] = colour ;

™

GDS-I1 _24 Architecture

32.1.1 Hardware Panning With The G300: (Row-Oriented Addressing)

Since the picture will usually be smaller than the video memory, the G300 Video Controller will
have to be told where to look for it.
This can be done by programming the G300’s " TopSreen Register ". This register will then
contain the image’s start address within the video memory (i.e. the address of the upper left
pixel on the monitor, see Fig. 3.1).

The G300 generates the " Row-Address " on bits 2-11 and the " Column-Address " on bits 12 -
20. The address sequence is switched compared to the sequence used by the transputer,. (bits
0 and 1 are not used when generating the word address.)

T800 T800

Co i umnoddr. VRAM Co lunnoddr. [: VRAM

MUX VRAN VRAM
RAM RAM
| RAM

RAM

MUX

A20 - A1

o L
0) A
= q IR
0 [A23 - a23 o
G300 AZ2 - A3Y G300A » don’t core
- A24 - A31 not wired

LS § 2
i

SBTe
memory access

Figure 3.5 T800 Memory access Figure 3.6 G300 Memory access

Examples for calculating G300’s TopScreen Register

8 bit/pixel Mode: 1024 * 768 pixel from a 2048 * 1024 pixel plane

Top of Screen7) = 0: The area ranging from {x,y = 0,0} to {x,y = 1023, 767 } will
be shown.

Now you want to move the image in the video memory 100 pixels to the right and 40

pixels upwardss). To do this, the " TopScreen Register " has to be loaded with the pixel

address {x,y = 100,40 }. (The pixel is in the first byte of the 32 bit word with the

coordinates { x,y = 25,40 })

6) Only affects the programming of the " TopScreen Register .
7 " Top of Screen " is the value stored in the " TopScreen Register "
8) The screen image will be shifted 100 pixels to the right and 40 pixels downward.

==

GDS-I1 25 Architecture

Adr., = 25 = 000011001 = 19H = Al2 .. A20

Adr, ., = 40 = 0000101000 = 28H = A2 .. All

(A1l is used for switching between the two video memory banks)
The value stored in the " TopScreen Register " is put on the address/data bus and
interpreted as a word address by the Video-RAMSs, - that's why the two bottom bits

have to be set to zero.

Top of Screen = [(Adr., * 1024) + Adr,] * 4
= [(Adr,,,<< 10) +Adr,1*4
= 190A0h

Using an OCCAM-Word address in connection with the " TopScreen Register "
won't make any sense since values stored in the TopScreen Register consist of
normal " data words ". These have to interpreted as addresses by the address decoder
in the GDS-II before being useful.

General equation 3.4a: (determining the Top of Screen for 8 bit/pixel)9)

Top of Screen = 1024x + 4y for x=4n
= 4[1024 * Int(%x)] + 4y for all x
= (X<<10)+ y<«2 for x=4n

= ((x>»2)<«12)+(y<«2) for allx

Note:
Since each word represents four pixels in the 8 bit/pixel mode and the G300 is
only able to address word by word, horizontal Hardware-Panning is only

possible using even multiples of 4.

Note: The highest allowable " Row-Address " in the " Row-Oriented Addressing
Mode "is: 1023 - vertical pixel resolution.

Applying the above example, you get: Top of Screen < = 1023 - 768 = 255

If you were to, for instance, program in a value of 257, the top monitor row (768th)
would receive the " Row-Address " 1025. The topmost bit in this value is then
interpreted as the bottom " Column-Address " bit. This in turn causes the top two
monitor rows to be shifted to the right by four pixels (= 1 word).

Let x , y be the coordinates of the lower left screen pixel in the video memory after shifting.

-

_

-y

GDS-11 26 Architecture

13 bit/pi ode:

The 13 bit/pixel mode equation can easily be derived from equation 3.4a. This time, the
user has access to a video memory 1024 * 1024 pixels in size. As in the 8 bit/pixel mode
you can only shift horizontally word by word. As a result one can only move to the left or
right by steps of multiples of two. ’

General equation 3.4b: (determining the Top of Screen for 13 bit/pixel)10)

Top of Screen = 2048x + 4y for x=2n
= 2[2048 * Int(%x)] + &y for all x
= (X<< 1l)+ y<<2 for x=2n

((x>1)<<12)+(y<<2) for all x

24 bit/pixel Mode:

Again, the 24 bit/pixel mode equation can easily be derived from equation 3.4a and is
only explained for the sake of being complete. When using the G300’s " Row-Oriented
Addressing " in this mode, the user has access to a video memory 512 * 1024 monitor
pixels in size. Since, however, one is limited to 512 pixels in horizontal orientation, you
will probably not want to use " Hardware - Panning " in the 24 bit/pixel mode, but use
the G300 in its " Linear Addressing Mode "11) instead.

General equation 3.4c: (determining the Top of Screen for 24 bit/pixel)8)

Top of Screen = 4096x + 4y for all x
= (x<<12)+ y<«2 for all x

10)
11)

Let x , y be the coordinates of the lower left screen pixel in the video memory after shifting.
See chapter 3.2.2

)

GDS-II 27 Architecture

32.12 The Importance Of The Registers MemlInit And TransferDelay

Two other registers are relevant for " Hardware - Panning ". The G300 not only has to know how
long an image row really is, it also has to know how many pixels from the video memory’s next
row it has to have access to. This is achieved by programming the registers TransferDelay and
Memlnit. When the values stored in these registers are divided by 1/4th of the " Pixel Clock "
you get a time span in seconds.

Memlnit tells the G300 at what point in time it has to start its transfer cycle, TransferDelay tells
you how long it takes the G300 to complete the cycle. The sum of both registers, multiplied by

four,,,, results in the number of pixels after which the G300 has to complete a transfer cycle

12y
(i.e. access the next video memory row).

The way the video memory rows and monitor rows are linked to each other (ridged, that is)
the sum must always be identical to one quarter of the horizontal pixel resolution (this is what

makes Hardware-Panning possible).

In our e.xample13).°
TransferDelay + Memlnit = % * 1024 = 256 !!

Some additional explanations concerning the registers TransferDelay and MemlInit:

(for the more advanced user)

When creating an image, one complete VRAM-row (2048 pixel for 8 bit/pixel, 1024 pixel for
13 bit/pixel and 512 pixel for 24 bit/pixel) is always read and loaded into the VRAMs’
internal shift register. This process is referred to as a Transfer Cycle. The sum of the register
contents of TransferDelay and MemInit determines when (after how many pixels) a new
transfer cycle has to be ended.
Note that all time spans have to be stated as a multiple of 4 pixels.
The ridged coupling of VRAM-rows and monitor rows described here amounts to the
following correlation:

Memlnit + TransferDelay = XSIZE, %) /4
This ensures that a new Transfer cycle will be started every time the end of a monitor row is
reached. Make sure that the number of pixels shown in horizontal orientation on the screen
does not exceed four X the length of the VRAMSs’ shift register (one X the length when using
24 bit/pixel).

The VRAMs used (organized 256k * 4) have a 512 * 512 word matrix, i. e. every

row, including the VRAMS’ internal shift registers, is 512 words long.

12) The multiplication factor is determined by the G300
13) 1024 * 768 pixels in the 8 bit/pixel mode
14) Video memory’s horizontal pixel resolution !

GDS-I1 28 Architecture

The effective shift register length depends on the mode used.

The shift register length in the 24 bit/pixel mode is 512 pixels. Consequently, the sum
of MemInit and TransferDelay may not exceed 128 (% * 512).

When using the 8 bit/pixel mode, each word contains four pixels, each of which are
demultiplext in the G300. This results in an effective shift register length of 2048
pixels in this mode. The sum of MemlInit and TransferDelay may not exceed 512
(% *2048).

Each word has two pixels in the 13 bit/pixel mode. The G300, however, will be
working in its 24 bit/pixel mode and is therefore expecting one pixel per word. The
DB-CLUT Daughterboard is equipped with a 2:1 Multiplexer and, with the help of
the 8192 * 24 bit CLUT, can take two 13 bit pixels (these are read from the video
memory at half the " Pixel Clock " rate) and convert them into two 24 bit pixels
which are then fed to the G300 at the rate of the normal " Pixel Clock". The
effective shift register length in this mode is therefore 1024 pixels. The sum of
MemInit and TransferDelay may not exceed 256 (% * 1024).

The contents of the register TransferDelay tells the G300 how much time it takes to complete a
transfer cycle.

Too short a time span (the TransferDelay value’s too small) leads to bus conflicts on the
board. When the transputer has BLOCKMOVE running one will then see short horizontal
stripes on the monitor. The Transputer is trying to access the working memory while the G300
is still in the middle of a transfer cycle. This may eventually lead to hardware damage.
TransferDelay values that are too large will not damage the system, but will reduce its
performance.

J

GDS-1I 29 Architecture

The following table (middle column) lists the necessary values, depending on the " Pixel
Clock ", for a 17.5 MHz Transputer in a 8 bit/pixel mode. (These are " worst case " values, safe
& sufficient for all modes and any transputer types.)

TrDelay
pixelClock 24bpp 8bpp 8bpp
17.5 MHz17.5 MHz25 MHz

The right column lists the values

30 MHz - 10 9 ~

32 MHz 11 - - that can be used for a 25 MHz
35 MHz - 11 9 . ., .

40 Mz) 12 10 transputer in an 8 bit/pixel mode.
45 MHz - 13 11 These values are lower, and the
50 MHz - 14 1 . .

55 Mz] 15 12 resulting performance, higher. The
60 MHz - 16 12 necessary TransferDelay value can
65 MHz - 16 13 . .
70 Mz) 17 iy be calculated with the following
75 MHz - 18 14 equation.

80 MHz - 19 15

85 MHz - 20 16

90 MHz - 21 16

95 MHz - 22 17

100 MHz - 23 17

105 MHz - 24 18

110 MHz - 24 19

TrDelay = [(28 TState + 20ns) * % pixelclock]/[s] + 4.5 (24,12bpp)
TrDelay = [(24 TState + 20ns) * % pixelclock]/[s] + 4.5 (8bpp)
TSTate = 20ns for 25 MHz Transputer

= 25ns for 20 MHz Transputer
= 28.6ns for 17.5 MHz Transputer

.. which result in the following equations ... :

TrDelay = [3.5 * PClk / TCik + 0.005 * PC1k] + 4.5 (24,12bpp)
TrDelay = [3 * PClk / TClk + 0.005 * PClk] + 4.5 (8bpp)

bpp = bits per pixel

[s] = second

TCIk = Transputer Clock (" Processor Clock ") in MHz
PClk = " Pixel Clock " in MHz

GDS-I1 30 Architecture

(Dis-) Advantages of Hardware Panning

The ridged correspondence between the image shown and the video memory architecture
(dictated by the system) makes it possible to move the monitor image " across and over " a

larger total picture, but it costs additional video memory...

Using our example again (1024 * 768 pixel), we get the following situation:

Beside the image you already have, you still have an equally large " space " for a second
image. If, however, you don’t want to store a second image, you will hardly be able to use
this memory (768 kByte) since it consists of 768 separate 1 kByte sections (as opposed to
linear addressable block).

GDS-II 31 Architecture

322 Linear Addressing

The video memory can be used most effectively if the shift registers are used to their full length.

This means:

24 bit/pixel: Memlnit + TransferDelay =: 128
13 bit/pixel: Memlnit + TransferDelay =: 256
8 bit/pixel: MemlInit + TransferDelay =: 512

A new transfer cycle, independent of the horizontal timing, will take place 128 pixels (256 pixels
for 13 bit/pixels ; 512 pixels for 8 bit/pixel). Using this type of programming enables you to use
more than 512 pixels in horizontal orientation when in the 24 bit/pixel mode. The image format
may be chosen freely as long as it does not exceed a total of 512 * 1024 = 524,288 pixels
(11024 * 1024 = 1,048,576 pixel for 13 bit/pixel ; 2048 * 1024 = 2,097,152 pixel for 8 bit/pixel).
The following figures will try to demonstrate where in the video memory the image can be
found (compare this to figures 2.2,2.3,24).

|

512 I1tnes

|
|

512 Ilnes

|

\

\
A\

I1ne 937 |

I
//// "ee 33

dlisployed part:
800 x 600 pixe|

2 7%

d— Pixel (1..4n+1..2048)

dlep)ayed part:

R

800 x 800 pixel |

\

S12 words o 1 pixel
8512 worde o 4 plixel

Figure 3.8 800* 600* 24bit Figure 3.9 800* 600 * 8 bit (Linear
(Linear Addressing: Addressing: Top of
Top of Screen =:0) Screen =:0)

The two above figures show the memory occupancy for " Top of Screen" =: 0 and should (!)

make it clear why Hardware-Panning cannot be used in this mode.

Note:
The image’s first pixel always (!) has to be placed at the beginning of a VRAM-row
when using the "Linear Addressing Mode". This means setting the " Column-
Address Component " to zero when programming the " TopScreen Register " !

GDS-I1 32 Architecture

oL 322.1 Calculating Top Of Screen: (Linear Addressing)

24 bit/pixel

Image size: 800 * 600 pixels = 480,000 pixels.

Memory needed: 480,000 * 4 Byte = 1875 kByte
This corresponds to 937.5 VRAM rows at 512 pixels each. The last pixel will be
placed in the middle of the last VRAM-row used.

Start address: #8.0000H (Top of Screen =:0)
End address: #F5.2FFH (Top of Screen =:0)
5 The unused section at the end of the video memory is 44,288 words
. (/173 kByte) in size. By raising " Top of Screen "15), however, you can move the

starting and end address so that the " excess " memory (unused part of video
meory) starts at the address #8.0000H. The unused memory section " starts "
where the working memory " lets off " and can therefore be used as additional

working memory.

Calculating the optimal value for Top of Screen

The easiest way to calculate your best " TopScreen Register " value would be:

Top of Screen = #8.0000H - number of pixels per picture

- This will only work if the number of pixels per image is dividable by 512...
If this should not be the case (The image's last pixel is not identical to the last pixel
of a VRAM row) you're going to have to correct the equation, so that partially
used rows are also considered.
Image size: 800 * 600 pixel = 480,000 pixel.
Memory needed: 937.5 Rows 4 512 pixel
The starting address of the image has to also be the starting address of a VRAM
row. This is what you get:
Top of Screen = #0x80000 - 938 * 512 = #ACO0h
L

15) Value stored in the " TopScreen Register "

GDS-II 33 Architecture

The calculated value represents the starting address and cannot be used directly
for the " TopScreen Register ". (see chapter 3 and figure 3.5)

Use the following equation:
Top of Screen =: (1024 -938) * 4 = 344 = 158h

44,032 words (172 kByte) of previously unusable memory are now accessible.
The remaining 1.0 kByte, however, are at the top of the video memory and still
can’t be reached.

The following equations, listed according to the mode used, will deliver the optimal
" Top of Screen " values.

General equation 3.6: (Top of Screen for " Linear Addressing " and 24 bit/pixel)

Top of Screen =4 * Int[((1024 * 512)un' (XSIZE * YSIZE)1n)1m/ 512]1”
= (((1024 * 512)16)- (XSIZE * YSIZE)N))IS)» 9)19)« 220)

Initialising the monitor for 24 bit/pixel: (example in OCCAM 2)

VAL XSIZE IS 800
VAL YSIZE IS 600
VAL TopScreen IS
[YSIZE][XSIZE] INT VRAM
PLACE VRAM AT #80000 + ((TopScreen >> 2)19)<< 9) :

(above equation)

Initialising the monitor for 24 bit/pixel: (_example in’C’)

#define XSIZE 800

#define YSIZE 600

#define TopScreen ... above equation

int *VRAM = 0x80200000 + (TopScreen << 9);

16)
17)
18)
19)
20)

Number of pixels in the video memory

Number of pixels per screen

Number of unused words in the video memory (VRAM)

Number of unused Video-RAM rows

The starting row (Row-Address) has to be stored from address bit A2 onward, e.g. it has to be shifted 2 bits
Note: (A >>9) << 2isn't identicalto A >> T!!

GDS-II 34 Architecture

T
13 bit/pixel
Analogous to what’s listed above. In this case, however, the unused memory (at a
resolution of 800 * 600 pixels) is 1.08 MByte in size, a VRAM row contains 1024 pixels
and the equation is:
General equation 3.7: (Top of Screen for " Linear Addressing " and 13 bit/pixel)
Top of Screen = (((1024 * 1024) - (XSIZE * YSIZE)21)) > 10) << 2
nitialising the monitor for 13 bit/pixel: (example in M2
~
- VAL XSIZE IS 800 :
VAL YSIZE IS 600 :
VAL TopScreen IS : (aboveequation)
[YSIZE][XSIZE] INT16 VRAM :
PLACE VRAM AT #80000 + (TopScreen << 7) ¢
#define XSIZE 800
#define YSIZE 600
#define TopScreen ... above equation
,-..,) short *VRAM = 0x80200000 + (TopScreen << 9);

21) Number of pixels per screen

GDS-1I 35 Architecture

8 bit/pixel
Again, analogous to the 13 bit/pixel mode. The unused memory is 1.54 MByte large at a
resolution of 800 * 600 pixels, and a VRAM row has exactly 2048 pixels.
The corresponding equation:

General equation 3.8a: (Top of Screen for " Linear Addressing " and 8 bit/pixel)

Top of Screen = (((2048 * 1024) - (XSIZE * YSIZE)) >> 11) << 2

VAL XSIZE IS 800 :
VAL YSIZE IS 600
VAL TopScreen IS : (aboveequation)
[YSIZE][XSIZE] BYTE VRAM :

PLACE VRAM AT #80000 + (TopScreen << 7) :

Initialising the monitor for 8 bit/pixel: (example in'C’)

#define YSIZE 800

#define XSIZE 600

#define TopScreen ... above equation

char *VRAM = 0x80200000 + (TopScreen << 9);

"

R

J

GDS-II _36 Architecture

3222 "Linear Addressing A Summary

When using the G300 in its " Linear Addressing Mode ", you are free to choose any image format
you like. You are therefore also free to choose formats larger than 512 pixels in horizontal
orientation when using the 24 bit/pixel mode.

Hardware-Panning is not possible in the " Linear Addressing Mode ", since the video memory
is used in its entirety.

If you want to use excess video memory (video memory without pixel data) as working
memory, you will have to move the image in the video memory from the "bottom " to the
" top ". The necessary " Top of Screen " values can be calculated with the equations 3.6 - 3.8. The

equation 3.9 summarizes the results.

General equation 3.9: (calculating the Top of Screen value when using " Linear Addressing ")

Top of Screen = ((1024 * (2048/btpp)) - (XSIZE * YSIZE))*(btpp / 2048))<< 2

XSIZE: horizontal pixel resolution
YSIZE: vertical pixel reolution
btpp: Bytes per pixel (btpp = 4 for 24 bit/pixel, btpp = 2 for 13 bit/pixel, btpp = 1 for 8 bit/pixel)

GDS-1I 37 Architecture

323 Double Buffering

The principals of " Double Buffering " are easily explained once the results of the chapters 3.2.1
and 3.2.2 are understood.

Row-Oriented Addressing in the 8 bit/pixel mode

The video memory is 2048 * 1024 pixels in size. The following figures demonstrate several
possible ways to pack smaller images into the video memory.

2048 pixel 2048 pixel

7/

N

Fraome 2

_ NN

2 frames a 800 x 600

2048 pixel

N7/ Z
Frome 1 Frome 3
7 ZN 24

figure c figure d
2 frames a 800 x 600 3 frames a 640 x 480

Figure 3.10 Examples of Double Buffering

Figurea shows two "Frames" at 1024 * 1024 pixels within the video memory. If the
" TopScreen Register " is given the value zero (pixel address { x,y = 0,0}), " frame 1" will be
shown on the monitor. While " 1" is being shown, "2 " can be worked on by the transputer.
Showing " 2 " on the monitor so that " 1" can be manipulated by the transputer corresponds to
moving everything to the right by 1024 pixels. The " TopScreen Register " contains the address of
the pixel { x,y = 1024, 0 }. Equation 3.4a .

The process of having two frames being alternately shown and manipulated by the transputer is
known as " Double Buffering ".

RS

GDS-II 38

Architecture

This results in the following Top of Screen values.

Figure a Frame 1 {x,y = 0,0} Top of Screen
Frame 2 {x,y = 1024,0} Top of Screen

Figure b Frame 1 {x,y = 0,424} Top of Screen
Frame 2 {x,y = 1248,0} Top of Screen

Figure ¢ Frame 1 {x,y = 0,424} Top of Screen
Frame 2 {x,y = 800,424} Top of Screen

Figure ¢ Frame 1 {x,y = 0,0} Top of Screen
Frame 2 {x,y = 640,0} Top of Screen
Frame 3 {x,y = 1280,0} TYop of Screen

Linear Addressing in the 8 bit/pixel mode

1024
1024
1024

1024
1024

*

*

*

1024

4 * 424
1248

4 * 424
800 + 4 * 424

640
1280

100000h

6A0h
138000h

6A0h
C86A0h

Oh
A0000h
140000h

Its not as easy to illustrate the distribution of more than two images within the video memory,

but it is possible to get optimal memory efficiency when using " Double Buffering " in this mode.

Just make sure that the sum of all the images’ pixels does not exceed 2 * 10242,

GDS-11 39 Architecture

Example:

A SUN-Workstation’s monitor has a resolution of 1152 * 900 pixels = 1,036,800 pixels.
This requires 1012.5 kBytes of video memory, or 506.25 VRAM rows.

The first image will use up 507 VRAM rows (1014 kBytes) of video memory, leaving a
total of 517 rows free for storing a second image.

The question is: how to determine the TopScreen register values for optimal efficiency ?
Both images have to be stored as far to the " top " of the video memory as possible.

Equation for calculating the Top of Screen values for both frames:

1. Frame:

[}
S
*

Top of Screen Int(((2048*1024)-(1152*900))/2048)

= 4 * 517 = 814h

W
N

2. Frame:

[}
Y
*

Top of Screen Int(((2048*517)- (1152*900))/2048)

=4 * 10 = 28h

The second frame starts at VRAM row 10 and ends at the first quarter of VRAM row 516.
The first frame starts at VRAM row 517 and ends at the first quarter of VRAM row 1023.
This configuration leaves you with two 1536 Byte (3/ 4 VRAM row) large sections of video
memory that can ’t' be accessed, but the space at the beginning of the video memory
(20 kByte) can now be added to the working memory.
Ay

Storing two frames with a horizontal resolution of more than 1024 pixels in the video

memory simultaneously is only possible with " Linear Addressing " !

Programming the " TopScreen Register " to switch between several frames in the memory results
in Hardware-Panning. If you know the frame coordinates you can use the equations 3.4a-c
directly, depending on the monitor mode used.

. o

L

GDS-I1

40 Architecture

33 The GDS-II’s Address Space

The following lists the addresses of the various resisters. Both the hardware- and the OCCAM-
word addresses are listed.

Hardware-addr.

8000.
801F.

8020

0000.

0000

0008.
000F .
0010.
0017.
0018.
001F.

0020

0028

0030

0038.

003F

0040.

0040.
0040.

0040.
0040.

0040

0040.
0040.

0000
FFFF

.0000
803F.

FFFF

0000

.00co

0000
FFFF
0000
FFFF
0000
FFFF

.0000
0027.

FFFF

.0000
002F .

FFFF

.0000
0037.

FFFF

0000

.FFFF

0000

0000
03FC

0500
0580

.0600
0040.

0680

0484
0480

0CCAM-word-addr. Name function

#0000.
#0007.

#0008.
#0009.

#2000.

#2000

#2002.
#2003.
#2004.
#2005.

#2006

#200E.

#200F .

#2010.

#2010.
#2010.

#2010.

#2010

#2010

#2010.
#2010.

0000
FFFF

0000
FFFF

0000

.0030

0000
FFFF
0000
FFFF

.0000
#2007.
#2008.
#2009.
#200A.
#2008.
#200C.
#200D.

FFFF
0000
FFFF
0000
FFFF
0000
FFFF

0000

FFFF

0000

ooo0
OO0FF

0140

.0160
#2010.
.01A0

0180

0121
o12C

DRAM -~ Start 2 MByte working memory
DRAM - End

VRAM - Start 2 MByte video memory
VRAM - End

Ident-register bit0 = 0
(read-only) bitB = 1: Event by VSYNC { "Frame” = active)

Reset-register bit0 - 3: Link Reset Out
(write-only) bit4: Reset for G300

PCS0 - Start Chipselect 0 for DB-Slot A { 1/2 MByte)
PCSO - End
PCS1 - Start Chipselect 1 for DB-Slot A (1/2 MByte)}
PCS1 - End
PCS2 - Start Chipselect 0 for DB-Slot B8 (1/2 MByte)
PCS2 - End
PCS3 - Start Chipselect 1 for DB-Slot B (1/2 MByte)
PCS3 - End
PCS4 - Start Chipselect 0 for DB-Slot C (1/2 MByte)
PCS4 - End
PCS5 - Start Chipselect 1 for DB-Slot C (1/2 MByte)
PCS5 - End

CS-CLUT - Start ChipSelect for 12 bit-expansion (DBCLUT)
CS-CLUT - End

Base address G300

CLUT - Start G300's Internal CLUT (256 Words & 24 bit)22)
CLUT - End

Mask register Read/write
Control RegisterRead/write
Top of Screen Read-only
Boot Location23)write-only 1

Datapath Register - Start24)
Datapath Register - End

22) The tranputers addresses 256 words 4 32 bit but only the lowest three bytes of every word are used !
23) Once programmed " Boot Location " can’t be changed.
24) Access to Datapath Registers only possible with enabled VTG !

;;;;;

GDS-II 41 Architecture

3.4 The G300Registers

The following chapters will describe the G300’s various registers. The chapter " Datapath
Register "25) is more or less a " handbook " for the more experianced user. Connections between
monitor parameters, monitor types and resolution will not be explained in this section.
" Beginners " who do not yet fully understand the details, but still want to study and/or modify
(- mess around with) the monitor drivers should read the chapter " Programming The Video
Timings "26)'

3.4.1 Boot Location (#201001A0)

The " read-only " register " Boot Location * is the first to be programmed after resetting the
system. Bits 0-4 at the address #201001A0 (0x400680) represent the multiplication factor for
the internal PLL, thereby determining the " Pixel Clock ". The PLL’s input frequency is set at
5 MHz and can only be changed by installing a different oscillator.

Bit 5 is used to tell the G300B27) whether the internal PLL is active (bitS = 1) oder not
(bit5 =0).

All other bits have to be set to zero.

8 bit/pixel Mode:

* Clock Input " for G300 jumpered to 5 MHz (J5).

(Jumper J10 ist not set)
The " Pixel Clock " can be programmed in steps of 5 MHz; Boot Location gives you the
neccessary faktor.

VAL PLL Is 22 :

VAL Boot_Location IS PLL \/ #20 : --setbit 5 since the G300
-- works in the PLL mode

PLACE Boot_Location AT #201001A0 :

In this example, the " Pixel Clock " is set at 22 * 5 MHz = 110 MHz.

25) See chapter 3.4.5
26) See chapter 6
27) Bit § is always set to zero when using a G300A

o/

GDS-II 42 Architecture

Pixel clock rates of less than 32 MHz may cause problems, since the first four pixel of
the video memory will not show up on the monitor.

* Clock Input " for G300 jumpered to 32 MHz (J5).

(Jumper J10 is closed)

The " Pixel Clock" is set to 32 MHz, i.e. the G300’s " Clock Input" is jumpered to

32 MHz and the PLL multiplication factor is set to zero. Bit 5 has to be set to zero too.
Boot Location = 0

24 bit/pixel Modus

The " Pixel Clock" is set at 32 MHz, i.e. the G300’s " Clock Input" is jumpered to
32 MHz and the PLL multiplication factor is set to zero.

Boot Location = 0

Once programmed, the register " Boot Location " cannot be changed. You’ll have to reset the
G300 via the " Reset Register ",

The register " Boot Location " cannot be read-out !

GDS-II 43

3.42 Control Register (#20100160)

The " Control Register" is a read/write register and can be programmed at the address
#20100160 (0x400580). The various bits represents a number of functions which will be
explained in this chapter.

Do not attempt to program the " Control Register " before the register " Boot Location " has
been programmed.

The G300B’s " Control Register "

bit Function Comments

31-24 Not wired Don‘t care when reading the Control Register

23 Blank function switch | Write zero for GDS-II

22 Pixel repeat Write zero

21 Interlace standard 1 = CCIR interlace format (europe) 0 = EIA interlace format (US)
20 Address step control Write Zero for GDS-II

19 Address step control 1 = interlaced 0 = non interlaced

18-17 Bits per pixel Set pixel port to required pixel depth

16 Blank 1/0 Write Zero for GDS-I1I

15 Turn off blanking 1 = blanking disabled for test 0 = blanking enabled

14-13 Reserved Write zero

12 Black level Selects blanking level 0 = Blank = Black level

11-9 Delay value Write zero for GDS-I1

8 Pixel port mode 1 = mode 2 { 13-24 bit/pixel) 0 =mode 1 { 8 bit/pixel)

7 Micro port mode Write zero for GDS-11

6 Reserved Write zero

3 Analogue video format 1 = video only 0 = video and composite sync
4 Digital sync format 1 = seperate sync. 0 = mixed sync.

5 Frame flyback pattern 1 = plain synchronizing waveform 0 = tesselated synchronizing
2 Device operating mode Write zero for GDS-11I

1 Screen format 1 = interlaced 0 = non interlaced

0 Enable VTG 1 = VTG running 0 = VTG disabled

~ ..dl

o/

GDS-IT 44 Architecture

Details concerning the various bits:

Bit0 = 0 stops the Video Timing-Generator (VTG)
Bit0 =1 starts the Video Timing-Generator

Setting or deleting this bit will start or stop the Video Timing-Generator (VIG). You
usually finish initialising the G300 by setting this bit.

PLACE Control AT #20100160:

SEQ
Control := Control /\ #FFFFFFFE

This example " should " stop the Video Timing-Generator, but sometimes you will have
problems with this program sequence. If the VTG is stopped when a " Transfer cycle " is
pending, the G300 may " hang ". In this situation it is not possible to reset the system via
" Reset PAL " because the G300 blocks the " Transputer Bus"; you have to use the
" Master Resetzs) " or " Power-On-Reset ".
If you want to stop the VTG (neccessary when accessing the " Datapath Registers”) ")
you have to alternatives.
a.) Reset the G300 using the " Reset Pal " and reprogram the chip.30)
b.) Synchronize your access to the " Control Register" with the " Vertical
Blank Pulse ". During VBlank no transfer cycle will take place.31)
Chapter 7.9 gives you an example for disabling the VTG and reading
some of the " Datapath Registers ".

2)

30)
31)

See chapter 2.4

See chapter 3.4.5

This is what INMOS suggests. It works, but what happens if you don’t know the initialisation parameters
Here is what I suggest....

S

GDS-II 45 Architecture

Bit 1,19 = 0 The GDS - II is working non-interlaced
Bit 1,19 = 1 The GDS - II is working interlaced

When using the " Inter-

Consecutive

rising laced Mode", the com-
addresses . . .

Top of Screen Top of fietd O Top of field 1 plete VIdeo lmage 15 pUt
Line 2 Line 4 Top of fleld O together out of two half
Line 3 Line 6 Line 3~field 1 .

Line 4 Line 8 Line 4-fleld O 1mages. The " Pixel
s s Line S-field ! Clock " only has to be half
Line 6 Line 6-field O
Top of field 1 Line 7-field 1 as blg in order to get the
Line 3 Line B-field O R
= (seemingly) same reso-
Lice 7 lution, but image repeti-
l ------------------ Non—interlaced . i Interlaced tion rate will sink. Large
Standard Er::.l::;:gzinterloce areas have the same re-

petition rate as in the
" Non-Interlaced Mode ",
but edges and pixel wide lines will flicker at half the repetition rate.

Figure 3.11 video memory organisation

You don’t have to change the storage of your image in the video memory when choosing
the interlace mode since the G300 increments the " Row-Address " for every field by 2 !
The framestore format for interlace is identical to that for non-interlace. Address
ordering depends on the standard selected. CCIR scans even lines first, NTSC scans odd
lines first32).

Don’t forget to divide the value stored in the datapath register " VDisplay " by 2.

The " Interlace Mode " is only available in the " Row-Oriented Addressing Mode ".

If you try to use the interlace mode in the " Linear Addressing Mode " (e.g. mode 2 with
more than 512 pixels horizontal resolution) G300 will fail to generate the transfer
address. If you want to realize a non-interlace system in mode 2 you can do it the other
way round. Set the G300 to non-interlace screen format and store your two half-frames
at two different areas of the video memory. With every received VBlank33) you have to
change the " TopScreen Register" so that you see alternating two different parts of the
video memory.

Bit2 =0 Always set bit 2 to zero. |

32)
33)

Refer to bit 21; " Control Register "
See chapter 7.8 how to use the event channel.

..

w

GDS-1I 46 Architecture

Bit3 =0 A " Tesselate Composite Sync " is delivered via the HSYNC output
Bit3 =1 A " Plain Composite Sync " is delivered via the HSYNC output

A VSYNC will always be sent to the VSYNC output, regardless of how bits 3,4 and 5 .
The HSYNC output will only change if bit 4 is set to zero. Check the table for a

complete list.
Control bits output
6300
5 4 3 VSYNC HSYNC
x 0 0 VSync Tesselate Comp. Sync.
x 01 VSync Plain Comp. Sync.
x 1 0 VSync HSync34)
x 1 1 VSync HSync34)

tesselaoted composite sync I

. : . 3
plain composite sync

2 | — r—u 1

H 3 B H
disploy g pra equoilse H VvSyne { poat equallae §{ verticol blank
H H :

s horizonta! sync. pulsewidth

h linetime = 1/horizontal scan frequency
b broadpulse width = linetime/2 - fp

fp = horizontal fromt porch

bp = horizonmtal backporch

Figure 3.12 " Tesselated/Plain Composite Sync. "

Bit4 =0 " Mixed Synchronisation"; a Composite SYNC is delivered via the HSYNC
output (" Plain Comp. Sync " for bit3 = 1 - " Tesselate Comp.Sync " for bit 3 =
0).

Bit4 =1 HSYNC, 4) and VSYNC are delivered separately

Bit4 has no influence on the " Composite Sync" modulated on to RGB output
(bit5=0"!).

34) No HSYNC pulses will be generated during VSYNC

GDS-I1 47 Architecture

Bit5=0 * Composite Sync " is modulated to the RGB-output
Bit5=1 Sync-signals will only be delivered via HSYNC, VSYNC outputs

Most analog monitors are synchronized by a " Composite Sync " modulated to the RGB-

outputs. Here, a few typical monitors:

EIZO FLEXSCAN 8060, 9070, 9500
NEC MULTISYNC GSII, XL
SONY GDM 1601, 1602, 1901, 1950, 1952

When in doubt, try reading the instructions. Most monitors can be controlled by either a
modulated " Composite Sync. " or a separate Sync-signal.

_ The G300’s outputs HSYNC and VSYNC are always " active low "35) (negative Sync.).
Its not possible to change the polarity.

The external SYNC signal’s polarity will usually not matter, since most monitors will
switch automatically. (remember to check your monitor’s manual)
Bit6,7 = 0 Always set bits 6 and 7 to zero !

Bit8 =0 The G300 will work in mode 1; i.e. 2,4 or 8 bit/pixel mode36)
Bit§ =1 The G300 will work in mode 2; i.e. 24 bit/pixel mode (13 bit/pixel mode with

DB-CLUT expansion).
~
Changing between the two modes per software is not enough, jumpers JS, J6, J7 and J10
have to be changed accordingly t00.57)
Bit9-15 = 0 In normal use, bits 9-15 should be set to zero.
0 35) HSYNC and VSYNC are active high, when using the G300A chip.

36) 1, 2 and 4 bit /pixel are only available with the G300B chip
37) Jumper 8 has to be changed too, when using the G300A

\/

GDS-11

—48

Architecture

The following bits 16 - 23 can only be set (and read) in a G300B. If you are using a G300A -
set them to zero !

Bit16 = 0

Bit 17, 18

In normal use, bit 16 should be set to zero

following table tells you how to do this.

Control Address

bits mode of CLUT

18 17 (in Hex)
0 0 1 bpp #00 - #01
0 1 2 bpp #00 - #03
1 0 4 bpp #00 ~ #0F
1 1 8 bpp #00 - #FF

(bpp = bits per pixel)
(Offset of CLUT-address = #2010.0000)

The G300B offers the option to store more than 1 pixel in each word. The

The last column shows the part of the CLUT that is used for programming. In the 8 bpp
mode you can choose between 256 different colours - the whole CLUT is used (256

words with 24 Bit each).

In the 2 bpp mode 4 colours out of a 2% palette can be chosen. Each pixel is 2 bits wide
but you need only 4 of the CLUT’s memory cells38).

Using the 1 bpp mode you can store 8 pixels in every byte; only two different colours are

available then.

Bit 19,1 = 0 The GDS - II is working non-interlaced

Bit 19,1 = 1 The GDS - II is working interlaced

Bit20 = 0

38)

The first four memory cells with the addresses #20100000 - #20100003

In normal use, bit 20 should be set to zero

GDS-11 49 Architecture

Bit21 =0 Output signal performs the * EIA4-343 studio television standard "
Bit21 =1 Output signals performs the " CCIR studio television standard ".

Bit 21 is only acted on when using the G300 in the " Interlace Mode ".

The EIA-343 standard is used in the US and well known as the " NTSC - standard ",
whereas the CCIR standard or " PAL - standard " is used in europe.

CCIR scans even lines first (even field), NTSC scans the odd lines first (odd field).

Bit22 =0 In normal use, bit 22 should be set to zero
Bit 22 was reserved for implementing a " Hardware Zoom " option. This mode didn’t
work on the first G300B chips39). Instead of correcting this bug, INMOS now tells us to

program it to zero.
Setting this bit is not dangerous, but gets interesting and amazing results.....

Bit23 =0 In normal use, bit 23 should be set to zero

Bit 24-31 = 0 Bits 24-31 are not wired and will be ignored.

39) G300B01

/‘“\'}

GDS-I1 S0 Architecture

3.43 Mask Register (#20100140)

The " Mask Register " can be used to mask incoming pixels. The value stored in the " Mask
Register " is combined with every pixel through an AND-function. If you forget to program the
" Mask Register " after resetting the G300 a0y the entire monitor will assume the colour listed in
the first CLUT word (address #2010.0000). If the CLUT’s still empty, then the screen will be ,
too (dark).

3.4.4 Top Of Screen (#20100180)

The register " Top Screen " is explained (functions & programming) in full detail in chapter 3.2.
There are two methods of accessing this register. The first method is by the name of " Top of
Screen " at address #2010.0180 and, the second, by the name of "Line Start" at address
#2010.012A (see " Datapath Register " a1)). The difference is, that access via the register " Line
Start " is only possible if the Video Timing-Generator (VIG) is inactive, whereas writing into
the register " Top of Screen " is only possible if the VTG is running... .

As a consequence, the basis address of an image has to be programmed into the " Line Start
Register ", when the system is being initialised. After the VTG is running, however, it has to be
modified by way of the register " Top Screen " (panning, Double Buffering, etc).

It’'s a good idea to synchronize access to the "Top Screen Register" with the " Vertical
Blank Pulse " to prevent flickering on the screen. 42)

The register at the location of " Top Screen " is not readable !

40) All registers, even the " Mask Register ", are set to zero after a reset.
41) See chapter 3.4.5
42) See chapter 7.8

"4

e

GDS-II S1 Architecture

3.4.5 Datapath Register (#20100121 - #2010012C)

During initialising (running VTG prevents access), the " Datapath Registers " are fed all
parameters necessary for the G300 to generate "video timings ". The timing parameters for
some of the more widespread monitor models are listed in the appendix and also delivered with
the GDS-1I in the form of test programs on a diskette. There’s an example in chapter 5.1
explaining how to figure out the correct register values from the monitor parameters supplied
by the monitor manufacturer.

All values are given in periods of " Serial Clock " or in half-lines. Note:

Serial clock = 1/ 4 Pixel Clock = ly 4 Dot Clock

Example:
A monitor requires a Pixel Clock of 80 MHz. This means that all time values will be
stated as multiple of 50 ns.

Register Address Unit Note

HalfSync #121 SClk

BackPorch #122 SC1k

Display #123 SCk

ShortDisplay #124 SCk

BroadPulse #125 SClk

VSync #126 Half-line

VBlank #127 Half-Tine

VDisplay #128 Half-line

Linetime #129 SClk

LineStart #12A SClk chapter 3.4.4

MemInit #128 SClk chapter 3.2.1.3

TransferDelay #12C SCik chapter 3.2.1.3

This figure demonstrates the

ndard ful tinm
different cycles which compose the T \t 1, 5
video timing. Puals Sge ™ ~ oo
< Linetime >
Short scgo line

"Standard Full Scan Line" —
—J
represents a standard row e‘noﬁmt

whose timing is determined DA
by the registers HalfSync, leotl '
BackPorch, Display and v ;,r .

Linetime. (Linetime has to L T

roodpulise Porch

be an even number.)

There’s no need for a Figure 3.13 Horizontal Timing

GDS-I1 52 Architecture

!

register named FrontPorch since its value can be calculated using the other values.
(FrontPorch = Linetime - Display - Backporch - 2 * HalfSync).
note the following restrictions: FrontPorch < % Linetime

2 * HalfSync + BackPorch < ¥ Linetime

" Short Scan Line " is generated in the " Interlaced Mode " at the beginning of the first half image
and at the end of the second half image. Even though the value of the register
ShortDisplay is a direct result of the other registers, it still has to be programmed into
the appropriate register separately. This register must be programmed even when the
G300 is working in the " Non-Interlaced Mode ".

ShortDisplay = ¥ Linetime - 2 * HalfSync - FrontPorch - Backporch
- FrontPorch = Linetime - 2 * HalfSync - BackPorch - Display
ShortDisplay = Display - % Linetime

" Equalisation Cycle " is generated prior to and after the actual " Vertical Sync " is generated, and

is just as long as the " Short scan line ".

" Vertical Sync Cycle " This is the VSYNC. You need the length of " BroadPulse " in order to
generate this cycle. The equation for calculating the value of the register of that name is:

BroadPulse = % Linetime - FrontPorch
BroadPulse = Display + 2 * HalfSync + BackPorch - % Linetime

This figure demonstrates | wsvne
-u no HSYNC cycles during VSYNC u u U 1

VSYNC | l
various Trows are put RGB output

| l
together. The number of |

" Stam’d Fu” Scan tesselated compos I!te sync ‘

Lines", ie. the vertical |U V¥V ¥ ¥ LAAAN VT Y U U U U

the manor in which the

. . .) . plain icomposite sy=n<:
pixel resolution, is listed in | qJ - ' U
the register VDisplay as a { litalise ¢ TSTNC catslise | prosicel iDiseloy
multiple of half-lines.

horizontal sync. pulsewidth
linetime = 1/horizontal scan frequency
broadpulse width = linetime/2 - frontporch

After the last image row, |"
the " Pre Equalise Cycle"

(also known as the Figure 3.14 Vertical Timing

" Vertical Backporch ") starts. This has the same length as the VSYNC. An equally long " Post
Equalise Cycle " is attached to the VSYNC. Then, at last, comes the actual VBlank.

GDS-11 3 Architecture

)
The term VBlank is used a little different in this context (see below).
Standard term Definition for G300 use
Vertical Blank = 3 * VSync + VBlank
Vertical Backporch Pretqualise = VSYNC
Vertical Frontporch PostEqualise + VBlank = VSYNC + VBlank
Transfer Delay
" Transfer Delay " determines the time span the G300 will need for a complete " Transfer
P P
cycle". It is only determined43) by the GDS-II and does not depend on the monitor
N used..
Always pay attention to the following PixelClock TrDelay
restrictions for " Transfer Delay " if you want 30 MHz 10
. 35 MHz 11
your G300 to function properly. 20 MHz 12
45 MHz 13
50 Mz 14
TransferDelay < BackPorch 55 Wiz 15
TransferDelay < ShortDisplay 66 MHz 16
65 MHz 16
70 MHz 17
That means you can’t make the BackPorch as 75 MHz 18
80 MHZ 19
short as you want. 85 MHz 20
90 MHz 21
| For the sake of being complete - a table for 132 ::: ;i
TN 8 bit/pixel and 17.5 MHz " Processor Clock ". 105 MHz 24
-7 The smallest possible value you can store in 110 HHz 2
BackPorch is:
BackPorchy,. = TransferDelay + 1
|
)

‘ 43) See chapter 3.2.1.3

GDS-I1 54 Architecture

MemlInit
The sum of " MemInit * and " Transfer Delay " corresponds to the length of the VRAM’s
shift register in the " Linear Addressing Mode ". The sum is otherwise, i.e. " Row-Oriented
Addiressing ", identical to the number of horizontal pixels.

Note:

Access to the Datapath Registers is only possible, when the Video Timing Generator is not
running !

If you want to check one or more of the datapath registers, it is necessary to stop the
VTG by setting bit 0 of the Control Register to zero. 44)

3.4.6 CLUT (#20100000)

The CLUT is located at address #20100000 (0x400000). If you want to modify the CLUT

when the VTG is running refer to chapter 7.8.2.

Note for " C " programmers:

red information, 15 word : 0x400000
green information, ISt word : 0x400001
blue information, 15% word: 0x400002
red information, Z"d word : 0x400004
red information, 3"d word : 0x400008

44) It’s more complicated as it sounds. Please check chapter 7.9.

GDS-II 55 Architecture

3.4.7 Ident Register (#20000000)

The " Ident Register ". This register can only be read, and is in contrast to other Parsytec boards
(MTM 2-10, MTM 2-11), limited in its functions. If an "Ident Register"is present on the
board, you can use it to identify a given board within a transputer network. There is, however,
an easier way to do this on a GDS-II. Write a series of random numbers into the CLUT and
then read it out. Compare what you got out to what you wrote in and check for write/read
errors. If there are none then you are dealing with a GDS-II since no other Parsytec board has
memory or register placed at the address #20100000.

Bit 0 in the " Ident-Register " is always zero.
This makes sure that it will be compatible to the INMOS " TDS-development system ".

Bit 8 in the " Ident-Registers " shows you if the signal VSYNC is active at the moment.
This tells you if an event is caused) by a connected Daughterboard or by a VSYNC.

45) See chapter 7.8 " Synchronizing With The Vertical Blank "

Jumper Description

57

GDS-II

4. Jumper layout

(i) 110 pue gf
Jadun{ 3saj ayy
abueyd j0u oq

s(qesip T [69)
a[qEsip/ALqTUd T 01

Iif
sdun{ 3s9)
6f
1§

0 O
Jodunf 3s9)

8r

siarsIp T [FTES]

21qvue T [G6 6.0
¥0EO

O G-© O

800£9
o(qesip/a(qrue T

r
€U [53d]

Z %oy ¢ [spoy - [Go0]

139195 apoy

 spou r
7z wou (299
o I

S
A ¥ = A [E5D)
S = W) [ED0

9(8s pO[)

49

ssan 08 €211 (9
s/aH Bz 1] ow

s/a0 ez £2' 1 ow
s/84 o1 (2] o

s/gl 01 €2'17 E
s/ @l o 00
s/ ez €211 (99
s/8 02 el w

328[3s pIads i

£r S3[OAD 2044 9
$3[94d d04d §
-0 O] sa[34d 049 ¢
0 OO 531345 2044 € —
0 -6 _

2l §* 21
560

a2z jeeo oSS
000 NH.ooow
35 0 o| ol o

2 sz joee wwoo
o o] |4} lo] lo]

uo}runbiuod Asoudy

LNH_N;

vogyeunbijuod yndyng

6 8f f s

A

(31qes1p) /21qPU2 Td

Vs PO1) G

uot yeunbiyuod Ksowdy r

323[9s pasds i 4 m

109[95 paads J0SS3D0ULY mh. ﬂ
0-© O

-© 0009

J 015 _u

[eessccecscccccscscccss

| [esccecscccscesccsccsy

Y
2 i

f\

GDS-II 58 Jumper Description

D,
1; Confi tion Of Slot A
Description of Jumper J1:
DMA - Daughterboard (DB-DMA)
not instal led instal led
w,

Figure 4.1 Jumper J1

Jumper J1 determines how slot A can be used..

DB-DMA Disable:
- Slot A can be used for either a DBI-x module (I/O Daughterboard) or a DBT-x
Module (Processor Daughterboard).

DB-DMA Enable:
- Slot A can be used for a DBT-x Module (Processor Daughterboard) or for a DB-
DMA (DMA Daughterboard).

GDS-1I

59

Jumper Description

2: m onfi tio

Description of Jumper J2

‘AN

|9 @

3 4 S

Processor cycles

Figure 4.2 Jumper J2

Jumper J2 determines the number of " Processor Cycles "
per memory access. The possible values are based on the
" Processor Clock" and the type of RAMs used. The
following table lists possible resulting cycle times.

Proc cycles 3 4 5 6

17.5 MHz PCO (171 ns) 229 ns 286 ns 343 ns
20 MHz PCO (150 ns) 200 ns 250 ns 300 ns
25 MHz PCO (120 ns) (160 ns) 200 ns 240 ns
30 MHz PCO (100 ns) (133 ns) (167 ns) 200 ns

PCO = Processor Clock Out

The cycle duration is one of a RAMs characteristics and is influenced by its access time. Sine
the GDS-II's video memory is equipped RAMs with access times of 100 ns and cycle times of

190 ns one should try to stick to the times listed in boldface type.

Using faster RAMs for the working memory is possible, but not very practicable as long as the
video RAMs are only available with access times of 100 ns. Both the working- and the video

memory have to have the same memory configuration.

Its unwise to try to use shorter cycle time than 190 ns. Even if there are no recognizable

memory errors, the higher power losses will cause the RAMs to age faster and the (resulting)

higher temperatures may damage other components.

TR,

GDS-II __60

Jumper Description

Description of Jumper J3

® O O @@ O @) O @)

@9 O O c_ole @® O

K (9) OIC) (96) e O
20 25

17.5

Processor speed

Figure 4.3 Jumper J3

J3 sets the transputers " Processor
Clock ". The transputer is constantly
supplied with a 5 MHz input
frequency from which it generates its
own " Processor Clock " (using a PLL
circuit). Setting jumper J3
determines the factor with which the
5 MHz input frequency is multiplied.

The maximal " Processor Clock",
allowable for a transputer is printed
on its housing; IMST800D G25S

means : INMOS T800; revision D; 25 MHz (the letter S signifies the housing type).

Never drive a transputer at a " Processor Clock " greater than the value printed on its housing.

Of course its possible to slow a transputer down with a lower frequency (e.g. running a 25 MHz

transputer at 17.5 MHz Processor Clock), but this rarely makes sense. You can run a GDS-II

with 25 MHz " Processor Clock " even though all other network transputers are running at

20 MHz or even 17.5 MHz. Link communication between processors will function trouble-free

as long as they are all supplied with an identical input frequency (5 MHz).

GDS-I1 _61 Jumper Description

J4 Link Speed Select
By setting jumper J4 you can
Description of Jumper J4 determine wether the Link data
Bin link net. senn transfer rate will be 10 or 20 Mbit/s.
;C j r: :’ r: :1 ;3 f 5 Mbit/s will not be supported. The
ool &8 B9 lod data transfer rates for Links 1, 2 and
bk © 20w 10mn 10w 20w 3 cannot be set separately. The

Limk 1,2.3 20 re/a 10 asa 20 msa 10 /e

. "Link Speed" signal represents a

Link 1,2,3 20re/s (not offected by J4) new development on Parsytec

ik o
Link 1,2.3 10m/s (not offected by Js)

boards. This signal can be accessed
on the (96-way) VG connector’s 26B
Figure 4.4 Jumper J4 pin and used for external Link

speed adjustments. The data transfer
rates of Links 1, 2 and 3 are set to 20 Mbits/s if this pin is set to VCC, and to 10 Mbits/s if the
pin is set to GND. The transfer rate can only be set via J4 if this pin is not connected Link 0’s
transfer rate is not affected by the " Link Speed " pin and can only be changed by resetting J4.
The " Link Speed " pin is an expansion that will be available in future systems.

Up till now, all backplanes have been delivered with a high resistance pin 26B (the pin is not
connected). The Link speed is therefore determined by the J4 setting.

GDS-II

JI5_G300 Clock Select

Description of Jumper JS

Clock input for G300

O O©)

5 MH=z

@® O

32 MHz

Figure 4.5 Jumper J5

The GDS-II is equipped with two frequency generators.
One of these generates the S MHz signal used by the
transputer to time its work cycles. This 5 MHz can also
be delivered to the G300 by setting JS appropriately. If
this is the case, the G300 will use the signal to generate
its own internal " Pixel Clock" which can then be
programmed in steps of 5 MHz.l).

J5, however, can also be used to rout the second
frequency generator’s signal to the G300 (usually

32 MHz). This is done in modes 2 and 3 (24 bit/pixel & 13 bit/pixel).

M 1

Description of Jumper J&

@ L
0@

) (

\AVAY)
Mode 1

8B|t/plxnl

29

O®®
000

Mode 2 + 3

128it/p1xal
2481t/pixal

Figure 4.7 Jumper J6

Description of Jumper J7

.

O @)

Mode 1 + 2

8sit/pixel
24Bit/pixat

@

n £
30 O
Mode 3

128It/plx.|

Figure 4.8 Jumper J7

1

Use jumper J6 for internal switching. In the G300’s mode
1 there are 8 bit/pixel whereas in mode 2 (at a reduced
pixel resolution) you get 24 bit/pixel.

As the G300 does not differentiate between modes 2 and
3 (13 bit/pixel) you will have to "tell " it by setting J7
appropriately.

Register " Boot Location " at address #201001A0 ; see chapter 3.4.1

GDS-1I1

Description of Jumper J48

Q0O O®

PLL encble

@)

0O c300a

IO @® O] G008

PLL disobte

Figure 4.9 Jumper J8

Description of Jumper J10

PLL ernabile

PLL disacble

Figure 4.10 Jumper J10

J9, J11

J8 is only used with the G300A chip. The G300A chip has
two different " Clock Inputs " and J8 determinates which
input is used.

When using the G300B it is not neccessary to change
jumper J8 when setting your GDS-II to another mode.

J10 is used to short circuit the PLL’s external
condensator. Every time you use the external 32 MHz
oscillator for generating the " Pixel Clock" (mode 2:
24 bit/pixel and mode 3: 13 bit/pixel) J10 you have to
set.

One of the following chapters will contain the jumper

setting for various modes in detai]2).

Jumpers J9 and Jumper J11 are only

Description of Jumper J9 and J11

used when starting the GDS-II for

J11

Do not change this jumper !

Reserved for testing !

the first time or when testing it.
Please, try not to change their
settings.

Figure 4.11 Jumper J9 and J11

2) Chapter 9.1 " Appendix "

GDS-II

o 112 Output Configuration

Description of Jumper J12

Clock input of G300
O O is not connected
(@)}

() is connected

to pin 22A of the
96 way connector

Figure 4.12 Jumper J12

3) See chapter 2.2 and 8.8 - signal HCIk

By setting jumper J12 you can rout the " Video Clock"
(5 MHz or 32 MHz depending on the setting of J5) via
the Link backplane to other systems (take a look at the
video output’s pin layout)3).

GDS-II 66 Daughterboard Connectors

- 5. Daughterboard Connectors

The following table lists, which additional modules can be inserted into which slots.

Slot C Slot B Slot A
DBI-x 0BI-x DB-DMA
---- DB-CLUT ---- DB-DMA
--=-=- DB-CLUT ---- DBT-1
DBI-x DBI-x DBT-1
DBI-x ---- DBT-4 ----
DB-DMA:

This is an additional board that can only be used together with a GDS-II. It may only be
inserted into slot A, which means that you will have to configure the slot accordingly
with jumper J1. The DB-DMA is equipped with a second transputer that has no external
working memory;,. This transputer also (together with the base board transputer) has
access to the video memory, making it possible to transfer data to the video memory via
a total of eight Links. The DB-DMA is connected to Links 4 - 7 (see

figures 2.0 and 2.1).
DB-CLUT:

Another additional board
—~ that can only be used on
o Instalt adepter a GDS-II. It has to be
[¥ DB-CLUT s net inserted into both slots B
e and C. Since a DB-CLUT
needs signals that are not
1 mm obtainable on a standard

slot connector, slotB is

DB - Slot B

equipped with an addi-
tional (72-way) connec-
tor. An adapter is
delivered together with
the GDS-II especially for
this connector, and

Figure 5.0 Installing an adapter board if a
DB-CLUT is not used

1) From revision 1.1 on also with 1 MByte or 4 MByte working memory.

GDS-I1 _67 D t I n

- should always be used when not using a DB-CLUT. The adapter also has to used if a
DBI-x is inserted in slot C or B.
A DB-CLUT makes an additional mode (13 bit/pixel) possible. In this mode, two
pixels are stored per word, thus representing a compromise between high colour
resolution (24 bit/pixel) and high processing speeds (8 bit/pixel).

DBT-1:
This is a standard transputer node with a 1 MByte RAMZ) that may only be inserted in
slot A. Its Links are connected to the GDS-II's Links 4 - 7. Links 4, 5 and 7 are
accessible on the Backplane, Link 6, directly on the GDS-II (see Figures 2.0 and 2.1).
DBT-4:
Just like the DBT-1, except that it has a 4 MByte RAMa). It has to be inserted into both

slots A and B, since it needs two slot connectors and only slot A has the necessary Link

connections.

DBI-x:
DBI-x stands for DBI-1, DBI-2, etc. Any time you insert a DBI-x module in slot A, you
will have to set jumper J1 appropriately.
™
) 2) 4 MByte working memory if equipped with 4 Mbit DRAMs.

3) 16 MByte working memory if equipped with 4 MBit DRAMs.

~

o~

GDS-II

69

6. Calculating a Video Timing:

Video Timing

Establishing a video timing is explained on hand of the following example using an EIZO

9070H-S.

The appropriate manual page copied in figure 5.0.

Timing Charts

F
o N
by A
Video I D E l-
Y, N
e '|
Sync A l B I C
Preset Timing A B D
Enhanced Graphics Hlug -0.1 | 4.9 1.6 6.4 39.4 45.8
fH:21.85kH=z Vv m: 0.05]|]0.6 0.1 0.7 16.0 16.75
Personal System2 Hfugd 0.6 3.8 1.9 6.3 25.48}131.78
fH:31.5kH=z,350Lines | Vimg 1.2 0.0611.9 3.16 11.11]14.27
Personal System2 Hlug 0.6 3.9 1.9 6.3 25.48 | 31.78
(Analog)
fH:31.5kH=z,350Lines | V|mqg 0.4 0.06 11.1 1.56 |12.71114.27
Personal System2 Hlugd 0.6 3.9 1.9 6.3 25.48 | 31.78
(Analog)
fH:31.5kH=Zz,350Lines | V[md 0.35 [0.06 | 1. 1.41 15.26116.67
CAD.CAM use Hug 0.68 |1.77 | 3.04 | 5.49 | 14.62}20.11
(Analog)
fH:49.8kHz,768Lines {Vimg 0.48 |0.12 |0.60 | 1.2 15.44116.64

Figure 5.0 The EIZO 9070’s timing diagram

We want to use the monitor at its highest reolution (1024 * 768), so only the bottom line will

be relevant.

Line time (F):

Display length (E):

Pixel Clock:

Horizontal resolution

Boot Location = 14

The " Pixel Clock " is set at 70 MHz.

- o o+
"o

20.11 us

14.62 us

1024 / 14.62 us
1024 pixel

This results in:

= 70.04 MHz

GDS-11 70 Video Timing

‘Y

The horizontal resolution is 1024 pixel.
Display = % * 1024 = 256

Linetime = % * t, * fc =% * 20.11 us * 70 MHz = 351.9
Linetime = 352

HSync (B): t, =1.77 us

BackPorch (C): tbp = 3.04 us

HalfSync = § * t, * 4 * f =1/ * 1.77 us * 70 MHz = 15.5
HalfSync = 15
e BackPorch =t * % * f, = & * 3.04 us * 70 MHz = 53.2
BackPorch = 53

h

The vertical resolution is 768 lines.
VDisplay = 768 * 2 = 1536
VSync (B): t
VBackPorch (C): t, = 0.6 ms
VFrontPorch (A): t
Vert. Blank (D): t
o It is not possible to adjust " Vertical Frontporch " and " Vertical Backporch " separately. The G300
only allows you to alter the length of the " Vertical Blank "
Note:
Vertical Blank = Pre Equalisation + VSync + Post Equalisation + VBlank
VSync = Pre Equalisation = VSync = Post Equalisation
For the parameters calculated at this point you get a line time of:

t, = 4 * Display /f'z =4 * 352 / 70 MHz = 20.11 us

VSync =t / t =120 us / 20.11 us = 6 lines
VSync = 12

GDS-II 11 Yideo Timing

Vertical Blank =t/ t = 60 lines

VBlank = Vertical Blank - 3 * VSync
VBlank = 60 - (3 * 6) Rows = 42 lines

VBlank = 84

The other parameters result from the values established so far.

ShortDisplay = Display - ¥ Linetime = 256 - 176 = 80
BroadPulse = Display - % Linetime + 2 HalfSync + BackPorch
BroadPulse = 80 + 30 + 53 = 163

The calculation of the following values is explained in chapter 3.2.1:

TransferDelay = 14 (25 MHz Transputer, 8 bit/pixel)

MemInit = 512 - 14 = 498 (Linear Addressing - panning not possible)
MemInit = 256 - 14 = 242 (Row-Oriented Addressing - panning possible)
LineStart =0 (image starts at address #8.0000)

The screen refresh rate can be calculated using the following equation:

fv

[¥ * (VBlank + 3 * HalfSync + VDisplay) * rowlength] !
[¥ * 1656 * 20.11 us] - = 60 Hz

Checking to see if all conditions were met:

ShortDisplay > TransferDelay 80 > 14
BackPorch > TransferDelay 53> 14
2 * HalfSync + BackPorch + Display > % * Linetime 339 > 176

2

g;‘J*

GDS-I1 12

Video Timing

The table on the left summarizes our calculated parameters, the table on the right compares the

resulting values with the values theoretically required by the monitor.

Calculated resulting required
parameters Segments Time Time
Linetime = 352 Rowslength : 20.11 us 20.11 us
Display = 256 HSYNC : 1.71 us 1.77 us
HalfSync = 15 HFrontPorch : 0.74 us 0.68 us
BackPorch = 53 HBackPorch : 3.03 us 3.04 us
VDisplay = 1536 VSync : 0.12 ms 0.12 ms
VSync = 12 VFrontPorch : 0.12 ms 0.48 ms
VBlank = 84 VBackPorch : 0.97 ms 0.60 ms
Vert.Blank : 1.2l ms 1.20 ms

As you can see in the right hand table, the calculated values are more or less equal to those
required by the monitor. The only major differences are in the time spans for VFrontPorch and
VBackPorch. The critical values for Vert.Blank and VSync, however, are exactly what they

should be.

In everyday use, most monitors can usually handle moderate deviations in timing quite well.
The timing listed in the appendix for the EIZO 9070 is in some points a lot different from what
the manufacturer suggests, but is easily tolerated and shortens the time necessary for adapting

to the horizontal scan frequency.

Error analysis (finding the glitch):

The monitor screen stays black:

- The monitor’s not synchronizing - horizontal scan frequency

- The G300’s Mask Register isn’t programmed and is blanking each pixel

- The VTG isn’t running (Control Register bit 0 = 0)
- HSync is too short
- TransferDelay > BackPorch

- Linetime too short or BackPorch too long, this results in a negative horizontal

FrontPorch.

- An error in the calculation of ShortDisplay or Broadpulse

- VBIlank or VSync too short

The monitor’s " whistling ":

- The monitor’s not synchronizing - horizontal scan frequency

The picture’s left edge is hazy or unrecognizable:
- The Horizontal BackPorch is too short

™

GDS-1I 13 Video Timing

Pale or wrong colours:

- The Horizontal BackPorch is too short; the monitor isn’t able to manage the
colour balance.

The upper edge of the picture is in a transient state:
- Either VSync, VBlank or HSync are too short

Colour shifts within the picture or picture distortion:

- The monitor has to be rebalanced or replaced.

GDS-II 75 Software

7. Software Examples

7.1 Booting The GDS-II

The way the GDS-II's transputer is configured, it can be booted via any of its four Links. After
resetting (" PowerOn-Reset", " Master Reset" or "Link Reset"), all Links have the same
function and are waiting for the boot-code. The first data that the transputer receives by any of
the Links will be interpreted as a programcode and executed.

The GDS-II can be used as a normal transputer node under MultiTool. The user will then have
a total of 4 MByte of memory with an access time of 100 ns. Since the working memory and the
video memory are immediately next to each other, the transputer will treat them as one.

The G300 will not perform any " Transfer Cycles " until the Video Timing-Generator has been
started by setting the " Control Register’s " bit 0. As a normal transputer node, the GDS-II with
perform exactly like any other 4 MByte transputer node (e.g. TPM-4).

7.2 The GDS As A Host Under MultiTool

If you boot a GDS-II as a host with MultiTool, MultiTool will take up the entire memory,
including the video memory.

MultiTool 5.0 offers an parameter that will limit the size of memory it will take over.

MTOOL -s #200000

If you start MultiTool in this manor, it will only use the bottom 2 MByte of memory e.g. the
working memory. (#200000 HEX = 2,097,152 bit = 2 MByte)

Your " EXE " may not work, if you don’t to start MultiTool this way.

R

GDS-II 16 Software

73 The GDS As A Slave Under Multitool

The GDS-II is booted just like any other standard transputer node via one of its four links. The
G300 can be initialized in advance by a separate program or else during the main program by a
appropriate process. The complete parameter sets can be used directlyl) or you can install a
library access, into the program.

7.4 X - Windows Under Helios On A GDS-II

There are only minor differences between using X-Windows on a GDS-II and using it on a
GDS:

- Copy the GDS-II specific device driver " gds2.d " into the directory "/helios/lib ".
eg.: cp /a/lib/gds2.d4 /helios/lib
- The attribute " SELECT _MODE " has been added to the configuration directory "xrc",

making it easier to choose a certain mode of operation. Chapter 3.4.5 explains the
various parameters.

- To have full access to the GDS-II's working memory, specify it correctly in the
appropriate " Resource Map . A node " GDS-II " could, for instance, be defined like this
(excerpt from the " Resource Map ")

terminal GDS2 {~00,,,; SYSTEM ;

memory # 200000 ;
ptype T800 ;

In this example, the video memory is used solely as a" Video Buffer". Inserting the line

‘(memory # 300000) will cause X-Windows to use the video memory’s bottom Megabyte as a

working memory too, thus managing a total of 3 MBytes of free working memory.

Using a GDS-II as a Host node under X-Windows is theoretically possible, but you don’t want
to try it.

1) See chapter 9.2

v

Vol

GDS-II

11

Software

7.5 Link Software Addresses

After declaring the channels, use the following PLACE statements to coordinate the channels
to the physical links.

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

LinkO0.Output
Linkl.Output
Link2.0Output
Link3.0Output
Link0.Input
Linkl.Input
Link2.Input
Link3.Input

7.6 Initialising The G300

AT
AT
AT
AT
AT
AT

'AT

AT

#0
#1
#2
#3
#4
#5
#6
#7

After resettingz) the system, you first have to program the register " Boot Location ". This

determines the "

Pixel Clock "

Then program the " Control Register " choose the G300’s operation mode. At this point, bit 0 of

the " Control Registers " has to be zero to keep the VTG from running.

The next step consists of programming the " Datapath Register" and the " Mask Register ".
Since it will take a while for the monitor to get synchronized after starting the VTG, its a good
idea to leave the screen dark at the beginning. This can be done by setting the " Mask
Register " to zero before starting the VTG, and then loading its correct value a little later.

2) Master Reset, Power-on Reset or Software Reset via Reset-Pal

GDS-1I 78 ' Software

7.7 The Transputer’s Graphic Operations

The transputer offers a few interesting additional instructions for graphic applications. When
using OCCAM 2 their names are Move2D, Draw2D and Clip2D (see the following chapters for
details)3).

When using Helios ’C’ you have similar functions under " system call " bytblt! 8

7.7.1 Move2D

This command, also known as 2-dimensional Blockmove, can be used any time you want to copy
part of a 2-dimensional array into another array.

Move2D’s function can illustrated by the following OCCAM2 procedure.

PROC Move2D (VAL[][]BYTE Source, VAL INT sx, sy,
{J[]BYTE Dest, VAL INT dx, dy, width, length)
SEQ y = 0 FOR length
[Dest[y+dy] FROM dx FOR width] :=
[Source[y+sy] FROM sx FOR width]

Source: Block you want (partially) copied.

sX, sy: Coordinates of the first bytes you want copied out of Source ‘5)
Dest: Destination array

dx, dy: Coordinates of the destination.6

width: . Width of the array you want to copy,

length: Length (number of rows) of the array you want to copy.

3) See " INMOS Technical note 26: < Notes on Graphics Support and Performance Improvements on the
IMS T800 > " for detailed description !

4) See " HELIOS operating system part II; chapter 8 < calling helios > "

5) Coordinates of the lower left pixel of the array you want to copy

6) ‘Source pixel { x, sy } is copied to the coordinates { dx, dy } of Dest

A

o

£

GDS-II 79 Software

7.72 Draw2D

This command can also be used any time you want to copy part of a 2-dimensional array into
another array. The difference to Move2D is that this time, only bytes with values different from
zero are copied. This, for instance, makes it very easy to place letters on a given background.
Define the letter in a 2-dimensional array so that everything except the letter is given the value
zero. Draw2D will then ignore everything in the array except those parts belonging to the letter.

Draw2D’s function can illustrated by the following OCCAM2 procedure.

PROC Draw2D (VAL{][]BYTE Source, VAL INT sx, sy,
[J[]BYTE Dest, VAL INT dx, dy, width, length)
BYTE temp:
SEQ line := 0 FOR length
SEQ point = 0 FOR width

SEQ
temp := Source[line+sy][point+sx]
IF
temp = (BYTE 0)
SKIP
TRUE
Dest[line+dy][point+dx] := temp
Source: Block you want (partially) copied.
sx, sy: Coordinates of the first bytes you want copied out of Source “7)
Dest: Destination array
dx, dy: " Coordinates of the des'c'ination.8
width: Width of the array you want to copy,
length: Length (number of rows) of the array you want to copy.
7 Coordinates of the lower left pixel of the array you want to copy

8) Source pixel { sx, sy } is copied to the coordinates { dx, dy } of Dest

"r& ,‘-"

GDS-11

80 Software

7.73 Clip2D

This is the inverse function to Draw2D. Clip2D will only copy bytes with the value zero.

Clip2D’s function can illustrated by the following OCCAM2 procedure.

PROC Draw2D (VAL[][]BYTE Source, VAL INT sx, sy,

{1[]1BYTE Dest, VAL INT dx, dy, width, length)

BYTE temp:
SEQ line := 0 FOR length

SEQ point = 0 FOR width
SEQ
temp := Source[line+sy][point+sx]
IF

temp = (BYTE 0)
Dest[line+dy][point+dx] := temp
TRUE
SKIP

Source: Block you want { partially) copied.
sx, Sy: Coordinates of the first bytes you want copied out of Source ‘9)
Dest: Destination array
dx, dy: Coordinates of the destination.10
width: Width of the array you want to copy,
length: Length (number of rows) of the array you want to copy.
9 Coordinates of the lower left pixel of the array you want to copy

10) Source pixel { s, sy } is copied to the coordinates { dx, dy } of Dest

GDS-IT 81 Software

7.8 Synchronizing With The Vertical Blank

The G300 sends out a signal that is active throughout the entire duration of
the " Vertical Blank ". This signal is connected to the transputer’s " event input ".

By accessing the " event channel " you can time certain procedures, so that they will only be
active during the " Vertical Blank ". This would make it possible to avoid disturbances they might
otherwise cause.

A few examples:

Programming the Colour Lookup Table:
When programming the CLUT, it may happened that the CLUT’s bits change their
values just when CLUT’s output signal (single pixels) is being latched into the G300.
This causes short disturbances seen on the monitor screen.
You can avoid this be programming the CLUT only during " Vertical Blank ".

Switching between two images (" Double Buffering ")
You have to modify the " TopScreen Register " if you want to switch between images (see
chapter 3.2.3). To avoid disturbances, try programming the " TopScreen Register " during
the " Vertical Blank ".

Moving images (Hardware Panning)

Moving images is also only possible by " TopScreen Register " modification (see chapter
322).

How the Event channel works:

The transputer’s event input is controlled by pulse edges. In other words, a rising edge at this
input (beginning of the VBlank) activates the event charmeln). It stays active till inactivated by

‘an access. As a result, the transputer will only be able to react to a further rising pulse edge

after being accessed.

11) See INMOS T800 Data Sheet: * When an external event takes EventReq (Event Input of T800) high the extemal
event channel is made ready to communicate with a process. "

o

GDS-1I 82 Software

7.8.1 Programming the CLUT (one interrupt source)

Programming is fairly simple if interrupts can only be generated by the G300. The following
OCCAM2 excerpt should illustrate this :

PROC event ()

TIMER clock

VAL timeout IS 780
INT time

CHAN OF ANY event

PLACE event AT #8

--50 ms

-- Event channel definition

SEQ
clock ? time
ALT
event ? x -- Wait until event channel is activated
SKIP
clock ? time PLUS timeout -- Wait 50 ms
SKIP

PROC set.CLUT ([256] INT dummy.array)

[256] INT CLUT :

PIACE CLUT AT #20100000:

SEQ
event () -- Dummy access activates the Event channel
event () -- Waiting for the next VBlank to begin
CLUT := dummy.array -- Copy CLUT values into CLUT

PROC grey.colour.scale ()
[256] INT dummy.array :

SEQ
SEQ 1 = 0 FOR 256
dummy.array[i] =i + ((1 << 8) + (i << 16))
set.CLUT (dummy.array)

A " VBlank " usually lasts at least 1 ms. Always consider this time span when planning lengthier
operations. You also have to consider the " reaction time " for an event. This is influenced by
the number and priorities of any background pocesses.

In the example above, the event channel is accessed twice in a row. Synchronization is not
achieved the first time.

Since the event channel is controlled by pulse edges, it will be activated by the first " VBlank " to
hit it. All further " VBlanks " will be ignored until an access sets it back. The above process will

RN

s

7

GDS-I1 83 Software

not wait for a " VBlank " after the first access - it will immediately deactivate the event channel
and proceed to the next command. The second time around, however, it will wait until the event

channel (deactivated at that point) is reactivated by a new " VBlank ".

7.82 Programming the CLUT (several interrupt source)

If the GDS-II is connected to further interrupt causes (Daughterboards) you will be forced to
check what caused the event (VBlank or something else).

Example 1: (OCCAM2)

PROC waiting.for.event ()

INT x, ident :

BOOL running :

CHAN OF ANY event : -- Event channel definition
PLACE ident AT #20000000:

PLACE event AT #8 :

TIMER clock

VAL timeout IS 1560 : -- 100 ms
INT time :
SEQ
running := TRUE
clock ? time
ALT
WHILE running
SEQ
event ? x
IF
(ident/\#100) = #100 -- Check Ident Register’s bit 8
running := FALSE -- Event caused by VBlank
TRUE
SKIP -- Event caused by a Daughterboard
clock ? time PLUS timeout -- No event for 100 ms
SKIP

PROC set.CLUT ([256] INT dummy.array)

[256] INT CLUT :

PLACE CLUT AT #20100000:

SEQ
waiting.for.event () -- Dummy access activates the Event channel
waiting.for.event () -- Waiting for the next VBlank to begin
CLUT := dummy.array -- Copy CLUT values into CLUTIZ)

12) Definition of " dummy.array " in chapter 7.8.1

GDS-II 84 Software

Example 2: (Helios 'C’)

Testroutine for VBlank - Pulses recognition (several interrupt causes)

/***/

/*
/*

/*

/*
/*
/*
/*

Program demonstrates the use of the transputer event line */
on a GDS2 for synchronization with the VBlank

*/

*/
*

Main waits on VBlank (Event line) and increments a counter*/
Every 50 VBlanks a message is displayed.

*/
*

P T T E R T T T T
#include <syslib.h>
#include <stdio.h>

#include <event.h>

#include <sem.h>

/* function prototyping
void SetEvent (Event *handler); /* should be in event.h but isn’t
void RemEvent (Event #*handler); /* should be in event.h but isn’t

void evhandler(word *data, Event *event);

/* initialize event handler struct

Event handler = ({ /* struct for HELIOS event handling

}i:

/* see technical note #13’* Use of
/* the Transputer Event Line from
/* Helios’ Jan. 89

NULL, NULL, /* list pointer (internal use)

0, /* priority (in list)
evhandler, /* event handler function pointer
NULL, /* data vector

NULL /* reserved!

Semaphore ev;

int main ()

{

int 1 = 1;

InitSemaphore (&ev, 0):

SetEvent (&handler); /* install event handler in list

- printf ("Waiting for VSync of GDS2...\n");

while (i < 1000) ¢{ /* get 1000 events
Wait (&ev); /* wait on event signal
if ((i % 50)==0) {
printf ("Event %d recognized.\n", 1i); /* print
}
i++;
}
RemEvent (&handler); /* remove event handler from list
printf ("Program terminating.\n");
return (0);

*/

*

*/

*/

~ g

i\

GDS-II 85 Software

void evhandler (word *data, Event *event)

if (gds2event()) /* Event from GDS2 ?? */
Signal (&ev); /* yes: signal to main... and terminate */
return; '

int gds2event()

{
int *pident = 0x0; /* pointer to ident register *
return ((*pident & 0x100)); /* return bit 8 of ident register (VBlank)

*/
}

- ~a

GDS-II 86 Software

7.9 Reading The Datapath Register

The following example in OCCAM 2 should give you an idea of how to disable the VTG.
The problem:
After G300’s initialization you want to know the screen format.

PROC event ()

TIMER clock

CHAN OF ANY event

PLACE event AT #8

VAL timeout IS 780
INT time

SEQ
clock ? time
ALT
event ? x -- Event received
SKIP
clock ? time PLUS timeout -- No event since 50 ms
SKIP

- 50 ms

PROC disable.VTG ()

INT Control
PLACE Control AT #20100160

SEQ
event () -- Reset event channel
event () -- First received VBlank
Control := Control /\ #FFFFFE -- Disable VTG

PROC enable.VTG ()

INT Control :
PLACE Control AT #20100160 :

SEQ
Control := Control \/ #1 -- Enable VTG

PROC screen.format (INT XSIZE, YSIZE)

INT Display
INT VDisplay
PLACE Display AT #20100123 :
PLACE VDisplay AT #20100128 :

SEQ
disable.VTG ()
XSIZE := Display *
YSIZE := VDisplay /
enable.VTG ()

4
2

&

GDS-II

88

GDS-II vs. GDS

8. GDS-II vs. GDS - A Comparison

Working memory:

Video memory:

Video Timing Controller:
Memory cycle time:

Backplane link layout:

Colour lookup table:z)
Number of possible colours:

Colours used simultaneously (13 bpp):

Colours used simultaneously (8 bpp):
Colours used simultaneously (4 bpp):
Colours used simultaneously (2 bpp):
Colours used simultaneously (1 bpp):

Number of basic colours:

" Pixel Clock "2):

Maximal resolution (1,2,4,8bpp):
Maximal resolution (13,24 bpp):

Video memory size (1bpp):
Video memory size (2 bpp):
Video memory size (4 bpp):
Video memory size (8 bpp):
Video memory size (13 bpp):
Video memory size (24 bpp):

Location of the left topmost monitor
pixel in the video memory:

Generation of the Transferaddresses
by the Video Timing Controller:

1) Links are connected to Daughterboard-Slot A

GDs-II

2 MByte

2 MByte

G300 (INMOS)
200 ns

Link 0

Link 1

Link 2

: Link 3

: Link 01)
Link 1,

: video out

: Link 31)

3 * 8 bit

16,777,216

8192

256

16

4
2

TR oo

256

In757 MHz steps up to
110 MHz

1280 * 1024 pixel
800 * 600 pixel

16,384 * 1024 pixel
8192 * 1024 pixel
4096 * 1024 pixel
2048 * 1024 pixel
1024 * 1024 pixel
524,288 pixel

bottom video memory
address

Addresses are
incremented

GDS

1 MByte
1 MByte

TS 68483 (Thomson)

250 ns

Link 0

: not used
.Link 1

: not used
Link 2
not used

: video out
: Link 3

3*6bit
262,144

TR oA g

256

256
32 or 64 MHz

1024 * 768 pixel

1024 * 1024 pixel

top video memory
address

Addresses are
decremented

2) Reffers to the 8 bits per pixel mode. 13 and 24 bit/pixel are only possible on a GDS-II (!)

e gl

GDS-II 90 Appendix
- 9. Appendix
9.1 Configuration Examples 92
9.1.1 8 Bit/Pixel 93
9.1.2 13 Bit/Pixel 94
9.13 24 Bit/Pixel 95
9.2 Video Timings 96
9.2.1 EIZO FLEXSCAN 8060 - mode 1 96
922 EIZO FLEXSCAN 8060 - mode 2 99
923 EIZO FLEXSCAN 9070 - mode 1 101
924 EIZO FLEXSCAN 9070, 9500 - mode 2 104
b 9.2.5 EIZO FLEXSCAN 9500 - mode 1 107
- 9.2.6 NEC MULTISYNC GSHI - mode 1 110
9.2.7 NEC MULTISYNC GSII - mode 2 112
9.2.8 NEC MULTISYNC XL 114
9.2.9 SONY GDM 1602 115
9.2.10 Philips CT 2064 116
9.2.11 SONY GDM 1950 117
9.2.12 Silicon Graphics 118
9.2.13 TV-Monitor - Interlaced 119
9.3 Testprograms 121
94 Installation 128
94.1 Installation On Multicluster System Units 128
= 9.4.2 Installation In IBM PC/XT/AT Or Compatibles 129
/ 9.5 Power Requirements 130
9.6 Jumper Overview 132
9.7 GDS-II Addressmap 134
9.8 Pinout Of The Daughterboard Slot 136
9.9 Pinout Of The 96-Way DIN 41612 Connector 138
9.10 Index - Register 140

GDS-11 92

Appendix

9.1 Configuration examples

&

Three examples for possible configurations are given on the next pages.
A jumper overview is given for the following configurations:

911 - 8bit/pixel
- variable " Pixel Clock " via PLL
- 20 MHz Transputer (4 processor cycles)
- Slot A is configured for a DBI-x module

- 912 - 13 bit/pixel

- 32 MHz " Pixel Clock "
- 25 MHz Transputer (5 processor cycles)
- Slot A is configured for a DBI-x module

913 - 24 bit/pixel
- 32 MHz " Pixel Clock "
- 20 MHz Transputer (5 processor cycles)
- Slot A is configured for a DBI-x module

Appendix

93

GDS-II

9.1.1 8 Bit/Pixel

ol

(31qesip) /31qewd T

3913 apoy gp

038

(eXoXeo]

(cXe]

ees po[) G

¥e(es paeds Wil 4 3

uot yeanbiuod Luouay e

O O

®

-©
150198 pasds 40SSSD0UJ m—. m

-0 O

g 301§

000000000000000
9000000000000000

J 301S
0000000000000000000000
0000000000000000000000

Appendix

94

9.12 13 Bit/Pixel

GDS-I1

8 101S J 018

[feoccsccecceoacscasocs |coscsssccsssscsscssase

(9(qesSIP) /9 [qeUd Td [0 O O

e o 91 |93

(o X<3)
Papes wo[3 G

B[paads i br m
1D8[es peads .ossId0Ag mh. m
=© O

uvotyeunbiiuod Kuoway O]
1yeanbyy 2r 13
o
0
o 90000000
[-] 000006000
6-© O ’
560600
,IIHO~ (91qeus) /81qesIp M- [[0G© G0 0 2 1
060000

her '

Appendix

95

9.13 24 Bit/Pixel

GDS-II

.Qm r uotjeunbyjuod yndyng

9 Y 301S 8 0[S

ﬁﬂ_—o MMOOOOOOOOOOOOOOOOOOOOQO 0000000000006 00000000 0000000000000000000000OC
,0.0000000000000000000. 00 0000000000000 00000600 000000000000 000060600000

© 9]0 ©

193 B0y o ol 0

pip,_ of 80 < sofes

o Ofjo ©

(9[Qesip) /o [qeud TYd 000 oojloo

PR s F e

- X=3 o ojo o

(s pold g celoe

o 0j0 O

1eges peads Wi 4 m oolso

560 oelee

IO0[9S pauds .0S59204d £r m uu"u

Lo

e

GDS-11 96 Appendix

92 Video Timings

92.1 EIZO FLEXSCAN 8060 - mode 1

== EXZ0 8060 30 MHz dot clock - 640%480 dots - 68.5 Hz

-- pll = 6

LINETIME := 210 -- 35.7 Khz Horiz.Scanning freq.

DISPLAY :t= 160 -- 640 dots

HALFSYNC := 12 -- Horiz. Sync = 3.2 us

BACKPORCH := 24 -- Horiz. Backporch = 3.2 us

- 2 Horiz. Frontporch = 0.3 us

VDISPLAY := 960 -- 480 lines

VSYNC t= 6 -=- 3 1lines = 0.084ms

VBLANK := 64 == 32 lines
-- VFP = PreEqualisation = VSync = 0.084 nms
-- VBP = VBlank + PostEqualisation = 0.98 ms
~- total lines a 28 us = 521 lines
-- total time for each image = 14.6 ms

TRDELAY :

12 -= 1.6 us

GDS-II 97 Appendix

-~ EIZO 8060

35 MHZ dot clock - 720#%540 dots - 64.1 HzZ

-- pll = 73

LINETIME := 240 -- 36.5 Khz Horiz.Scanning freq.

DISPLAY := 180 == 720 dots

HALFSYNC := 12 -- Horiz. Sync = 2.7 us

BACKPORCH := 34 -- Horiz. Backporch = 3.9 us

- 2 Horiz. Frontporch = 0. us

VDISPLAY := 1080 -- 540 lines

VSYNC = 6 -- 3 1lines = 0.082ms

VBLANK = 40 -- 20 lines
-- VFP = PreEqualisation = VSync = 0.082 ms
-~ VBP = VBlank + PostEqualisation = 0.631 ms
-- total lines a 27.4us = 569 lines
~- total time for each image = 15.6 ms

TRDELAY := 13 -=- 1.5 us

-= EIZO 8060 35 MHz dot clock - 768*%576 dots - 59.3 Hz
--pll =7

LINETIME := 244 -- 35.86 Khz Horiz.Scanning freq.

DISPLAY t= 192 -- 768 dots

HALFSYNC := 12 -- Horiz. Sync = 2.7 us
BACKPORCH := 26 -~ Horiz. Backporch = 3.0 us
-- 2 Horiz. Frontporch = 0.2 us

VDISPIAY := 1152 -- 576 lines

VSYNC t= 6 -- 3 1lines = 0.083ms

VBLANK t= 40 --~ 20 lines
-- VFP = PreEqualisation = VSync = 0.083 ms
~- VBP = VBlank + PostEqualisation = 0.891 ms
-- total lines a 27.9us = 605 lines
-- total time for each image = 16.86 ms

TRDELAY := 13 -=- 1.5 us

GDS-II 98 Appendix

-~ EIZ0 8060 - 40 MHz dot clock - 800%600 dots - 62.0 Hz
-- pll = 8

LINETIME := 258 =-- 38.8 kHz Horiz.Scanning freq.

DISPLAY := 200 -- 800 dots

HALFSYNC := 12 -- Horiz. Sync = 2.4 us

BACKPORCH := 33 -- Horiz. Backporch = 3.3 us

- 1 Horiz. Frontporch = 0.1 us

VDISPLAY := 1200 -- 600 lines

VSYNC i= 6 -- 3 1lines = 0.077ms

VBLANK = 32 -- 16 lines
-- VFP = PreEqualisation = VSync = 0.077 ms
-~ VBP = VBlank + PostEqualisation = 0.722 ms
-- total lines a 28.8us = 625 lines
-- total time for each image = 16.13 ms

TRDELAY = 14 -= 1.4 us

-= EIZO 8060 - 40 MHz dot clock ~ 800%600 dots - 59.8 Hz
-- pll = 8

LINETIME := 266 =-- 37.6 KHz Horiz.Scanning freq.

DISPLAY := 200 -- 800 dots

HALFSYNC := 12 -- Horiz. Sync = 2.4 us

BACKPORCH := 41 ~- Horiz. Backporch = 4.1 wus

- 1 Horiz. Frontporch = 0.1 us

VDISPLAY := 1200 -~ 600 lines

VSYNC = 6 -=- 3 1lines = 0.079ms

VBLANK t= 36 -- 18 lines
-- VFP = PreEqualisation = VSync = 0.079 ns
-- VBP = VBlank + PostEqualisation = 0.797 ms
-- total lines a 26.6us = 627 lines
-- total time for each image = 16.7 ms

TRDELAY = 14 -= 1.4 us

¥

Yy

GDS-II 99 Appendix

92.2 EIZO FLEXSCAN 8060 - mode 2

== EIZ0 8060 - 32 MHZz dot clock - 640%480 dots - 70.0 Hz
--pll =0

LINETIME := 220 =-- 36.36 Khz Horiz.Scanning freq.

DISPLAY :t= 160 -- 640 dots

HALFSYNC := 12 -- Horiz. Sync = 3 us '

BACKPORCH := 34 -- Horiz. Backporch = 4.3 us

- 2 Horiz. Frontporch = 0.3 us

VDISPLAY := 960 =-- 480 lines

VSYNC = 6 -=- 3 1lines = 0.082ms

VBLANK := 64 -= 31 lines
-- VFP = PreEqualisation = VSync = 0.082 ms
-- VBP = VBlank + PostEqualisation = 0.935 ms
-- total lines a 27.5us = 520 lines
-- total time for each image = 14.3 ms

TRDELAY = 11 -~ 1.4 us

-~ EIZO 8060 - 32 MHz dot clock =~ 720%540 dots - 61.4 Hz
--pll =0

LINETIME := 232 == 34.5 Khz Horiz.Scanning fregq.

DISPLAY := 180 -- 720 dots

HALFSYNC := 12 -- Horiz. Sync = 3 us

BACKPORCH := 26 ~=- Horiz. Backporch = 3.3 us

- | 2 Horiz. Frontporch = 0.3 us

VDISPLAY := 1080 -~ 540 lines

VSYNC t= 6 -=- 3 1lines = 0.087ns

VBLANK = 26 -- 13 1lines
-- VFP = PreEqualisation = VSync = 0.087 ms
-- VBP = VBlank + PostEqualisation = 0.464 ms
-- total lines a 29us = 562 lines

~ —- total time for each image = 16.3 ms
TRDELAY = 11 -= 1.4 us

GDS-I1

100 Appendix

- BEI20 8060 - 32 MHz

LINETIME := 240 --
DISPILAY i= 192 ==
HALFSYNC := 10 -
BACKPORCH := 27 -

-- 1
VDISPLAY := 1152 --
VSYNC 1= 4 --
VBLANK 1= 26 -~
TRDELIAY := 12 --

== EIZ0 8060

LINETIME := 248 --
DISPLAY i= 200 --
HALFSYNC := 10 -
BACKPORCH := 26 -
-- 2

VDISPLAY := 1200 -~

VSYNC := 6 -
VBLANK i= 26 --

TRDELAY :

11 -

dot clock - 7684576 dots - 56.2 Hz

pPll =0 ‘

33.3 kHz Horiz.Scanning freq.
768 dots

Horiz. Sync = 2.5 us

Horiz. Backporch 3.4 us

Horiz. Frontporch 0.1 us

576 lines

2 lines = 0.060ms

13 lines

VFP = PreEqualisation = VSync = 0.060 ms
VBP = VBlank + PostEqualisation = 0.450 ms
total lines a 30us = 595 lines
total time for each image = 17.8 ms
1.5 us

32 MHz Qot clock -~ 800%600 dots - 51.8 Hz

pll = 0

32.3 kHz Horiz.Scanning freq.
800 dots

Horiz. Sync = 2.5 us
Horiz. Backporch = 3.3 us

Horiz. Frontporch 0.3 us

600 lines

3 lines = 0.093ms

13 lines

VFP = PreEqualisation = vSync = 0.093 ms
VBP = VBlank + PostEqualisation = 0.496 ms
total lines a 31us = 622 lines
total time for each image = 19.3 ms
1.4 us

GDS-II 101 Appendix

9.23 EIZO FLEXSCAN 9070 - mode 1

-- EIZ0 9070 -~ 35 MHz dot clock - 640*480 dots - 80.0 Hz

--pll = 7

LINETIME := 212 -- 41.2 Khz Horiz.Scanning freq.

DISPLAY := 160 == 640 dots

HALFSYNC := 12 -- Horiz. Sync = 2,7 us

BACKPORCH := 18 -- Horiz. Backporch = 2.1 us

-- 10 Horiz. Frontporch = 1.1 us

VDISPIAY := 960 =- 480 lines

VSYNC :t= 8 ~= 4 1lines = 0.096nms

VBLANK t= 50 -- 25 lines
-- VFP = PreEqualisation = VSync = 0.096 ms
-~ VBP = VBlank + PostEqualisation = 0.702 ms
-- total lines a 24.2us = 517 lines
-- total time for each image = 12.5 ms

TRDELAY := 10

-=- EIZO 9070 40 MHZ dot clock - 720%540 dots - 76.3 HZ

-- pll = 8

LINETIME := 228 =-- 43.9 Khz Horiz.Scanning freq.

DISPLAY := 180 -- 720 dots

HALFSYNC := 6 -- Horiz. Sync = 1.2 us

BACKPORCH := 28 -- Horiz. Backporch = 2.8 us

- 8 Horiz. Frontporch = 0.8 us

VDISPLAY := 1080 -- 540 lines

VSYNC = 6 ~= 3 1lines = 0.068ms

VBLANK t= 50 -= 25 lines
-- VFP = PreEqualisation = VSync = 0.068 ms
-- VBP = VBlank + PostEqualisation = 0.638 ms
-- total lines a 22.8us = 574 lines

' —- total time for each image = 13.1 ms
TRDELAY := 12 -- 1.2 us | |

Ay

i/

GDS-I1

102 Appendix

== EIZO 9070 =~ 45

LINETIME := 250
DISPLAY 1= 192
HATLFSYNC := 6

BACKPORCH := 36

- 10
VDISPLAY := 1152
VSYNC t= 6
VBLANK 1= 44
TRDELAY t= 13

== EIZO 9070 -~ 45
LINETIME := 254
DISPLAY 2= 200
HALFSYNC := 6
BACKPORCH := 34
- 8

VDISPLAY := 1200
VSYNC = 6
VBLANK t= 44

TRDELAY :

14

MHz dot clock - 768%#576 dots - 74.1 Hz

pll = 9

45.0 kHz Horiz.Scanning freq.
768 dots

Horiz. Sync = 1.1 us
Horiz. Backporch = 3.2 us

Horiz. Frontporch 0.9 us

576 lines

3 1lines = 0.066ms

22 lines

VFP = PreEqualisation = VSync = 0.066 ms
VBP = VBlank + PostEqualisation = 0.556 ms
total lines a 22.2us = 607 lines
total time for each image = 13.5 ms

1.2 us

MHZ dot clock - 800%#600 dots - 70.4 Hz

pll = 9

44.3 kHz Horiz.Scanning freq.
800 dots

Horiz. Sync = 1.1 us
Horiz. Backporch = 3.0 us

Horiz. Frontporch 0.7 us

600 lines

3 lines = 0.067ms

22 lines

VFP = PreEqualisation = VSync = 0.067 ms
VBP = VBlank + PostEqualisation = 0.565 ms
total lines a 22.6us = 631 lines
total time for each image = 14.2 ms
1.2 us

'

GDS-II

103 Appendix

== EIZO 9070

LINETIME :=
DISPLAY =
HALFSYNC :=
BACKPORCH :=
VDISPLAY :=
VSYNC =
VBLANK =
TRDELAY =

== EIZO 9070

LINETIME :=
DISPLAY =
HALFSYNC :=
BACKPORCH :=

VDISPLAY
VSYNC
VBLANK

TRDELAY

- 65

324

256

11

40

1536

60

18

70

344

270

12

44

1620

60

18

MHZ dot clock - 1024%768 dots - 61.7 Hz

-- pll = 13

-- 50.2 Khz Horiz.Scanning freq.

-= 1024 dots

-=- Horiz. Sync = 1.4 us

-- Horiz. Backporch = 2.5 us
Horiz. Frontporch = 0.4 us

-- 768 lines

-— 4 lines = 0.079ms

-- 30 1lines

-- VFP = PreEqualisation = VSync = 0.079 ms
-- VBP = VBlank + PostEqualisation = 0.678 ms
-- total lines a 19.9us = 810 lines
-- total time for each image = 16.2 ms
-- 1 us

MH2z dot clock - 1080#810 dots - 59.9 Hz

-- pll = 14
-- 50.9 Khz Horiz.Scanning freq.
-- 1080 dots

-- Horiz. Sync

1.4 us
-- Horiz. Backporch = 2.5 us

Horiz. Frontporch 0.3 us

-- 810 lines

-- 3 lines = 0.058ms

-- 30 1lines

-- VFP = PreEqualisation = VSync = 0.058 ms
-- VBP = VBlank + PostEqualisation = 0.649 ms
-- total lines a 19.7us = 849 lines
-- total time for each image = 16.7 ms

_--lus

GDS-11

104 Appendix

92.4 EIZO FLEXSCAN 9070, 9500 - mode 2

== EIZO 9070, 9500 -

LINETIME := 200 --
DISPLAY := 160 ==
HALFSYNC := 10 -
BACKPORCH := 12 -
- 8

VDISPLAY := 960 --
VSYNC 1= 6 -
VBLANK := 50 -

TRDELAY :

10

-= EIZ0 9070, 9500 -

LINETIME := 222 --
DISPLAY t= 180 -~
HALFSYNC := 7 -
BACKPORCH := 26 -
- 2

VDISPLAY := 1080 =-=~
VSYNC t= 6 -
VBLANK = 34 -

TRDELAY := 10

32 MHz dot clock - 640%480 dots -~ 78.1 Hz

pll = O

40.0 Khz Horiz.Scanning freq.

640 dots

Horiz. Sync = 2.5 us

Horiz. Backporch = 1.5 us

Horiz. Frontporch = 1.0 us

480 lines

3 1lines = 0.075ms

25 lines

VFP = PreEqualisation = VSync = 0.075 ms
VBP = VBlank + PostEqualisation = 0.700 ms
total lines a 25us = 514 lines
total time for each image = 12.8 ms

32 MHz dot clock - 720%#540 dots -~ 63.7 Hz

pll =0

36.0 Khz Horiz.Scanning freq.
720 dots

Horiz. Sync = 1.8 us
Horiz. Backporch = 3.3 us

Horiz. Frontporch 0.3 us

540 lines

3 1lines = 0.083ms

17 lines

VFP = PreEqualisation = VSync = 0.083 ms
VBP = VBlank + PostEqualisation = 0.555 ms
total lines a 27.8us = 566 lines
total time for each image = 15.7 ms

v el

it

L

GDS-II

105 Appendix

-= EIZO 9070, 9500 -

LINETIME := 232 --
DISPLAY := 192 --
HALFSYNC := 6 -
BACKPORCH := 26 -—-
-- 2

VDISPLAY := 1152 --
VSYNC = 6 -
VBLANK := 34 -

TRDELAY :

10 --

== EIZ0 9070, 9500 -

LINETIME := 240 =~
DISPLAY t= 200 -~

HALFSYNC := 6 --
BACKPORCH := 26 --
-- 2

VDISPLAY := 1200 =--

VSYNC =6 --
VBLANK := 34 --
TRDELAY := 10 --

32 MHz dot clock = 768%576 dots - 57.3 HZ

pll =0

34.5 kHz Horiz.Scanning freq.
768 dots

Horiz. Sync = 1.5 us
Horiz. Backporch = 3.3 us

Horiz. Frontporch = 0.3 us

576 lines

3 1lines = 0,087ms

17 lines

VFP = PreEqualisation = VSync = 0.087 ms
VBP = VBlank + PostEqualisation = 0.580 ms
total lines a 29us = 602 lines
total time for each image = 17.45 ms
1.3 us

32 MHz dot clock - 800*600 dots - 53.2 Hz
Pll = 0

33.3 kHz Horiz.Scanning freq.

800 dots

Horiz. Sync = 1.5 us

Horiz. Backporch = 3.3 us

Horiz. Frontporch = 0.3 wus

600 lines

3 1lines = 0.090ms

17 lines

VFP = PreEqualisation = VSync = 0.090 ms

VBP = VBlank + PostEqualisation = 0.600 ms

total lines a 30us = 626 lines
total time for each image = 18.8 ms
1.3 us

il

GDS-I1

106 Appendix

-= EIZO 9070,

LINETIME
DISPLAY
HALFSYNC
BACKPORCH

VDISPLAY
VSYNC
VBLANK

TRDELAY

9500 =

228
200

14

1200

20

10

32 MHZ dot clock -~ 800%600 dots - 56.8 Hz

pPll =0

35.1 kHz Horiz.Scanning freq.
800 dots

Horiz. Sync = 1.5 us
Horiz. Backporch = 1.8 us

Horiz. Frontporch 0.3 us

600 lines

2 lines = 0.057ns

10 lines

VFP = PreEqualisation = VSync = 0.057 ms
VBP = VBlank + PostEqualisation = 0.342 ms
total lines a 28.5us = 616 lines
total time for each image = 17.6 ms

R

GDS-II

107 Appendix

92.5 EIZO FLEXSCAN 9500 - mode 1
(EIZO 9500 timings only tested with the new monitor version. The new version has two different inputs: RGB

and 9-pin D)

== EIZO 9500 -~ 35
LINETIME := 212
DISPLAY i= 160
HALFSYNC := 12
BACKPORCH := 18
- 10
VDISPLAY := 960
VSYNC = 8
VBLANK := 50
TRDELAY := 10
== EIZ0 9500 - 40

LINETIME := 228
DISPLAY := 180
HALFSYNC := 6
BACKPORCH := 28
-- 8

VDISPLAY := 1080

VSYNC = 6
VBLANK :t= 50

TRDELAY t= 12

MHz dot clock - 640%480 dots -~ 80.0 Hz

pll = 7

41.2 Khz Horiz.Scanning freq.
640 dots

Horiz. Sync = 2.7 us
Horiz. Backporch = 2.1 us

Horiz. Frontporch = 1.1 us

480 lines

4 lines = 0.096ms

25 lines

VFP = PreEqualisation = VSync = 0.096 ms
VBP = VBlank + PostEqualisation = 0.702 ms
total lines a 24.2us = 517 lines
total time for each image = 12.5 ms

MHZz dot clock = 720%#540 dots - 76.3 Hz

pll = 8

43.9 Khz Horiz.Scanning freq.
720 dots

Horiz. Sync = 1.2 us
Horiz. Backporch = 2.8 us

Horiz. Frontporch 0.8 us

- 540 lines
3 1lines = 0.068ms
25 lines

- VFP = PreEqualisation = VSync = 0.068 ms
VBP = VBlank + PostEqualisation = 0.638 ms
total lines a 22.8us = 574 lines
total time for each image = 13.1 ms

1.2 us

et

GDS-1I1

108

-= EIXIZ0 9500

LINETIME
DISPLAY
HALFSYNC
BACKPORCH

VDISPLAY
VSYNC
VBLANK

TRDELAY

== EIZO 9500

LINETIME
DISPLAY
HALFSYNC
BACKPORCH

VDISPLAY
VSYNC

VBLANK

TRDELAY

45

250

192

36
10

1152

44

13

45

254

200

34

1200

44

14

MHZ dot clock - 768%576 dots - 74.1 Hz

-=pll = 9

-=- 45.0 kHz Horiz.Scanning freq.
-~ 768 dots

-~ Horiz. Sync = 1.1 us
-- Horiz. Backporch = 3.2 us

Horiz. Frontporch 0.9 us

-— 576 lines
-= 3 1lines = 0.066ms
«= 22 lines

-- VFP = PreEqualisation = VSync = 0.066 ms
-- VBP = VBlank + PostEqualisation =
-- total lines a 22.2us = 607 lines
-- total time for each image =

-=~ 1.2 us

MHz dot clock - 800%600 dots - 70.4 Hz

-- pll = 9

-- 44.3 kHz Horiz.Scanning freq.
-—- 800 dots

-- Horiz. Sync = 1.1 us

-- Horiz. Backporch = 3.0 us

Horiz. Frontporch = 0.7 us

-~ 600 lines

-=- 3 1lines = 0.067ms

-= 22 lines

-- VFP = PreEqualisation = VSync = 0.067 ns
-- VBP = VBlank + PostEqualisation = 0.565 ms
-~ total lines a 22.6us = 631 lines

-- total time for each image =
-=- 1.2 us

0.556 ms

13.5 ms

14.2 ms

-y

‘VBLANK

GDS-II

109 Appendix

-= EIZ0 9500

LINETIME :=

'DISPLAY i=

HALFSYNC :=
BACKPORCH :=

VDISPLAY :=
VSYNC
VBLANK

TRDELAY

== EIZO 9500

LINETIME :=
DISPLAY =
HALFSYNC :=
BACKPORCH :=

VDISPILAY :=
VSYNC

TRDELAY

65

324
256
11
40

1536

60

18

70

344
270
12

44

1620

60

18

MHzZ dot clock - 1024%768 dots - 61.7 Hz

pll = 13

50.2 Khz Horiz.Scahning freq.
1024 dots

Horiz. Sync = 1.4 us

Horiz. Backporch = 2.5 us
Horiz. Frontporch = 0.4 us

768 lines

4 lines = 0.079ms

30 1lines

VFP = PreEqualisation = VSync = 0.079 ms
VBP = VBlank + PostEqualisation = 0.678 ms
total lines a 19.9us = 810 lines
total time for each image = 16.2 ms
1 us

MHz dot clock - 1280%1024 dots - 59.9 Hz

Pll = 14
50.9 Khz Horiz.Scanning freq.
1080 dots

Horiz. Sync

1.4 us
Horiz. Backporch = 2.5 us
Horiz. Frontporch = 0.3 us

810 lines

3 lines = 0.058ms

30 1lines

VFP = PreEqualisation = VSync = 0.058 ms
VBP = VBlank + PostEqualisation = 0.649 ms
total lines a 19.7us . = 849 lines
total time for each image = 16.7 ms
1 us

TRDELAY :t= 10 -

1.1 us

GDS-IT 110 Appendix

92.6 NEC MULTISYNC GSII - mode 1

== NEC GSII -~ 30 MHz dot clock ~ 640#%#480 dots - 68.0 Hz
-- pll = 6

LINETIME := 210 -- 35.7 Khz Horiz.Scanning freq.

DISPLAY t= 160 -- 640 dots

HALFSYNC =:= 10 -- Horiz. Sync = 2.7 us

BACKPORCH := 22 -- Horiz. Backporch = 2.9 us

- 8 Horiz. Frontporch = 1.1 us

VDISPLAY := 960 =- 480 lines

VSYNC = 6 -- 3 lines = 0.084ms

VBLANK := 70 -= 35 lines
-- VFP = PreEqualisation = VSync = 0.084 ms
-~ VBP = VBlank + PostEqualisation = 1.06 ms
-- total lines a 28us = 524 lines
-- total time for each image = 14.7ms

TRDELAY t= 10 == 1.3 us

== NEC GSII - 35 MHz dot clock - 720%540 dots - 68.0 Hz
-- pll = 7

LINETIME := 224 == 39.6 Khz Horiz.Scanning freq.

DISPLAY := 180 -- 720 dots

HALFSYNC := 10 -=- Horiz. Sync = 2.3 us

BACKPORCH := 16 -- Horiz. Backporch = 1.8 us

-- 8 Horiz. Frontporch = 0.9 us

‘VDISPLAY := 1080 -- 540 lines

VSYNC = 4 -- 2 lines = 0.051ms

VBLANK = 56 -- 28 lines
-- VFP = PreEqualisation = VSync = 0.051 ms
-- VBP = VBlank + PostEqualisation = 0.768 ns
-- total lines a 25.6us = 574 lines
-- total time for each image = 14.7 ms

e

)

GDS-II

111 Appendix

== NEC GSII - 40 MHz

LINETIME := 242 -~
DISPLAY := 200 --
HALFSYNC := 10 --
BACKPORCH := 14 --
- 8

VDISPLAY := 1200 --

VSYNC = 4 -
VBLANK := 36 -

TRDELAY :

10 -

dot clock - 800%600 dots - 66.2 HZ

pll = 8

41.32 kHz Horiz.Scanning freq.
800 dots

Horiz. Sync = 2.0 us
Horiz. Backporch = 1.4 us

Horiz. Frontporch = 0.8 us

600 lines

2 1lines = 0.048ms

18 lines

VFP = PreEqualisation = VSync = 0.048 ms
VBP = VBlank + PostEqualisation = 0.484 ms
total lines a 24.2us = 624 lines
total time for each image = 15.1 ms
1.1 us

GDS-II

112 Appendix

9.2.7 NEC MULTISYNC GSII - mode 2

== NEC GSII

LINETIME
DISPLAY
HALFSYNC
BACKPORCH

VDISPLAY
VSYNC
VBLANK

TRDELAY

== NEC GSII

LINETIME
DISPLAY
HALFSYNC
BACKPORCH

VDISPLAY
VSYNC
VBLANK

TRDELAY

32

210

160

10

22

960

70

10

32

224
180

10

16

1080

56

10

MH2Z dot clock ~ 640%480 dots - 72.5 Hz

pll =0
38.1 Khz Horiz.Scanning freq.
640 dots

Horiz. Sync = 2.5 us
Horiz. Backporch

2.8 us
1.0 us

Horiz. Frontporch

480 lines

3 1lines = 0.078ms

35 lines

VFP = PreEqualisation = VSync = 0.078 ms
VBP = VBlank + PostEqualisation 0.998 ms

- total lines a 26.25us = 524 lines

total time for each image = 13.8 ms
1.3 us

MHZ dot clock - 720%#540 dots - 62.1 HzZ

Pll =0

35.71 Khz Horiz.Scanning freq.
720 dots

Horiz. Sync = 2.5 us
Horiz. Backporch = 2.0 us

Horiz. Frontporch 1.0 us

540 lines

2 lines = 0.056ms

28 lines

VFP = PreEqualisation = VSync = 0.056 ms
VBP = VBlank + PostEqualisation = 0.840 ms
total lines a 28us = 574 lines
total time for each image = 16.1 ms

1.3 us

GDS-II

113

Appendix

NEC GSII -~ 32

LINETIME := 242
DISPLAY := 200
HALFSYNC := 10
BACKPORCH := 14
- 8
VDISPLAY := 1200
VSYNC =4
VBLANK :t= 36
TRDELAY = 10

MHZ dot clock - 800#%600 dots ~ 52.9 HZ

pll =0

33.1 kKHz Horiz.Scanning freq.

800 dots

Horiz. Sync = 2.5 us

Horiz. Backporch = 1.8 us

Horiz. Frontporch = 1.0 us

600 lines

2 lines = 0.060ms

18 lines

VFP = PreEqualisation = VSync = 0.060 ms
VBP = VBlank + PostEqualisation = 0.605 ms
total lines a 30.25us = 624 lines
total time for each image = 18.9 ms

1.3 us

GDS-IT 114 Appendix

A 9.2.8 NEC MULTISYNC XL

-= NEC XL - 65 MHZ dot clock - 1024%768 dots - 60.2 HzZ

-= pll = 13
LINETIME := 334 -- 48.65 kHz Horiz.Scanning freq.
DISPLAY := 256 -- 1024 dots

HALFSYNC := 8 -- Horiz. Sync = 1.0 us
BACKPORCH := 47 -- Horiz. Backporch = 2.9 us
-- 15 Horiz. Frontporch = 0.9 us
\ VDISPLAY := 1536 -- 768 lines
- VSYNC := 8 -— 4 lines = 82.2 us
VBLANK = 56 -- 28 1lines
-- VFP = PreEqualisation = VSync = 82.2 us
-- VBP = VBlank + PostEqualisation = 657.7 us
-- total lines a 20.55 us = 808 lines
-=- total time for each image = 16.6 ms

TRDELAY

18

GDS-II 115 Appendix

< 92.9 SONY GDM 1602

-- S8ONY GDM 1602 - 65 MHz dot clock - 1024%768 dots - 60.2 Hz

-- pll = 13

LINETIME := 332 =-- 48.95 kHz Horiz.Scanning freq.
DISPLAY t= 256 -- 1024 dots

HALFSYNC := 12 -- Horiz. Sync = 1.5 us
BACKPORCH := 32 -- Horiz. Backporch = 2.0 us
- 20 Horiz. Frontporch = 1.2 us

. VDISPILAY := 1536 -- 768 lines

o~ VSYNC t= 6 -- 3 lines = 61 us
VBLANK = 72 -- 36 1lines
-- VFP = PreEqualisation = VSync = 61 us
-- VBP = VBlank + PostEqualisation = 796 us
-- total lines a 20.4us = 813 lines
-- total time for each image = 16.6 ms

TRDELAY :

18 -- 1.1 us

e

GDS-II 116 Appendix

" 9.2.10 Philips CT 2064

-- Philips CT 2064 - 110 MH2Z dot clock - 1280%1024 dots - 60 Hz

-- pll = 22

LINETIME := 430 -- 64 kHz Horiz.Scanning freq.
DISPLAY t= 320 -~ 1280 dots
HALFSYNC := 23 -- Horiz. Sync = 1.7 us
BACKPORCH := 50 ~- Horiz. Backporch = 1.8 wus
- 14 Horiz. Frontporch = 0.5 us
" VDISPLAY := 2048 -~- 1024 lines
~ VSYNC 1= 6 -- 3 lines = 46 us
VBLANK := 60 -—- 30 1lines
; -- VFP = PreEqualisation = VSync = 46 us
| -- VBP = VBlank + PostEqualisation = 516 us
! -- total lines a 15.63us = 1063 lines
-- total time for each image = 16.6 ms

TRDELAY :

28 == 1.0 us

.,

GDS-II

117 Appendix

. 92.11 SONY GDM 1950

== SONY GDM1601,1950

LINETIME := 434 --
DISPLAY :t= 320 -—-=-
HALFSYNC := 23 -
BACKPORCH := 57 -
- 11

VDISPLAY := 2048 --

VSYNC = 6 ~-
! VBLANK := 46 -
TRDELAY = 28 -

%

- 110 MHz dot clk - 1280%*1024 dots -~ 60Hz

pll = 22

63.36 kHz Horiz.Scanning fred.
1280 dots

Horiz. Sync = 1.7 us

Horiz. Backporch = 2.1 us

Horiz. Frontporch = 0.4 us

1024 lines

3 lines = 47 us

23 1lines

VFP = PreEqualisation = VSync = 47 us

VBP = VBlank + PostEqualisation = 410 us

total lines a 15.78us = 1056 lines
total time for each image = 16.7 ms

1.0 us

7~

GDS-1II

118

Appendix

92.12 Silicon Graphics

== Bilicon Graphics - 105 MHz dot clk - 1280%1024 dots - 60 Hz

LINETIME
DISPLAY
HALFSYNC
BACKPORCH

VDISPLAY
VSYNC
VBLANK

TRDELAY

410

320

15

58

2048

64

28

pPll = 21

64 kHz Horiz.Scanning freq.
1280 dots

Horiz. Sync = 1.1 us
Horiz. Backporch = 2.2 us
Horiz. Frontporch = 0.08 us
1024 lines

3 lines = 46.0 us

32 1lines

VFP = PreEqualisation = VSync
VBP = VBlank + PostEqualisation

total

lines a 15.6us

total time for each image

l.1 us

= 46.0 us
= 546 us
1065 lines
= 16.6 ms

-- 8ilicon Graphics - 110 MHZ dot clk - 1376%1024 dots - 60 Hz

LINETIME
DISPLAY
HALFSYNC
BACKPORCH

VDISPLAY
VSYNC
VBLANK

TRDELAY

430

344

16

53

2048

64

28

pll =
64 kHz
1376 4
Horiz.
Horiz.
Horiz.

1024 1
3 1i
32 1i
VFP =
VBP
total
total
1.0 us

22

Horiz.Scanning freq.
ots

Sync = 1.2 us
Backporch = 1.9 us
Frontporch = 0.04 us
ines

nes = 46.0 us

nes

PreEqualisation = VSync

VBlank + PostEqualisation

lines a 15.6us
time for each image

= 46.0 us
= 547 us
1065 lines
= 16.6 ms

s

GDS-II 119 Appendix

92.13 TV-Monitor - interlaced

-- TV Monitor - 20 MHz dot clock - 768#%#512 interlaced - 50.0 Hz
-- interlaced yet to set by control register!!

-- pll = 4

LINETIME := 320 -- 15.625 Khz Horiz.Scanning freq.

DISPLAY $= 192 -- 768 dots

HALFSYNC := 15 -- Horiz. Sync = 6,0 us

BACKPORCH := 58 -- Horiz. Backporch = 11.6 us

- 40 Horiz. Frontporch = 8.0 us

VDISPLAY := 512 -~ 256 lines

VSYNC = 26 -- 13 1lines = 0.832ms

VBLANK := 34 -- 17 1lines
-- VFP = PreEqualisation = VSync = 0.832 ms
-~ VBP = VBlank + PostEqualisation = 1.92 ms
-- total lines a 64 us = 312 lines
-~ total time for each image = 20 ns

TRDELAY :

10

-= TV Monitor - 15 MHz dot clock -~ 512%512 interlaced - 50.0 Hz
-~ interlaced yet to set by control register!!
-- pll =3

LINETIME := 240 -~ 15.625 Khz Horiz.Scanning freq.
DISPLAY := 128 -~ 512 dots

HALFSYNC := 15 -- Horiz. Sync = 8.0 us
BACKPORCH := 46 -- Horiz. Backporch = 12.3 us

- 36 Horiz. Frontporch = 9.6 us

VDISPLAY :

512 -- 256 lines

VSYNC = 26 -- 13 1lines = 0.832ms
VBLANK := 34 -- 17 1lines
~- VFP = PreEqualisation = VSync = 0.832 ms
-- VBP = VBlank + PostEqualisation = 1.92 ms
-- total lines a 64 us = 312 lines
' —- total time for each image = 20 ms
TRDEIAY := 10 | |

GDS-IT 121 Appendix

9.3 Testprograms
Introduction to the test- and driver software

Concept

The supplied software is designed to explain the handling of GDS II and the programming of
GDS 10 specific functions.

All given software is programmed under MULTITOOL OCCAM II.
Hardware and Software needed to run demo programs:

- IBM PC/XT/AT with BBK-PC adaptor

- Standard transputer-node as HOST (MTM2, MTMPC, TPM4, TPMPC,
TPMIO, etc.)

- Parsytec Multitool (formerly named Megatool).

The main purpose of the given routines is to demonstrate the operation and programming of
the board. With the exception of the library ’‘GDSILutil” most of the given files may not even be
used in your application, so don’t stick too close to the way we programed but understand the
principles of the board and write your own !

How to use the software:

You will find a PC formated disk that holds a batch file and all utilities you need.

Put the supplied diskette in your drive, log to that drive and simply
call" install <sourcedrive>"(eg "install c"for installation on drive c:). The
batchfile will copy everything to a subdirectory named "GDSDEMO" under MTOOL

GDS-II 122 Appendix

ctionality of giv

GDSILutil:

GDSILutil is the central library file and supports the user with commands (that means the
necessary procedures and functions) to directly access the hardware. These library routines
operate on the lowest level. Some of the supplied functionalities are:

<x> = input variable x = output variable
event (EventError) wait for event
check.for.event (EventError,ldentError) see if event has come
vertical.scan (EventError,ldentError,Scan) calculates vertical scan freq.
EventError (BOOL) := TRUE no event since SOms
IdentError (BOOL) := TRUE error checking " Ident Register "
Scan (REAL32) vertical scan freq.
set.dot.clock (<pli>}) set pixel dot clock
p11 (INT) multiplication factor for PLL
different.palettes set CLUT with some palettes
delay (<x>) just a delay routine
x (INT) delay in x times of 10ms
simple pictures draw patterns
G300 register operations G300 register operations
read.Control (Contr) read " Control Register "
write.Control (<Contr>) set " Control Register "

Contr (INT) value stored in " Control Register "
disable.VIG () starts the " Video Timing Generator "
enable.V1G () stops the " Video Timing Generator "
read.datapath (datapath) read " Datapath Registers "
write.datapath (<datapath>) write " Datapath Registers "

datapath ([20]INT) values stored in the " Datapath Registers "

ask.for.interlace (interlace) check for interlace mode
interlace (BOOL) := TRUE interlaced mode detected

Be careful on changing the way the hardware is called, since the way most operations are
handled is highly hardware dependant. We suggest that you program your own graphic drivers
on using these routines (which are easy to call and mostly optimized on speed) or that your
alter these routines only after a very close analysis of the given examples !

Nevertheless, don’t be afraid of opening the given folds and read through all routines.

GDS-II 123 Appendix

DATAPOOL

Datapool is a library file and holds all monitor specific data (such as timing, horizontal and
vertical frequencies, etc.) and contains no active routines. Its simply a library and can be
extended to suit your needs by adding more datasets. To create a new dataset for your monitor
or your specific resolution, just copy an existing fold and change the timing data to your desired
(or more likely ’ tested *) parameters.

MONITOR.util

MONITORutil is a procedure called by the actual demo program and selects the desired
dataset from datapool. The calling parameters are: monitor.type, resolution, mode, pll, linear.
After giving (in integer values) the monitor.type, resolution number, mode number and the
Boolean value ’linear’ (TRUE for " Linear Addressing "1) and FALSE for " Row-Oriented
Addressing "2)), MONITOR util loads the corresponding data from datapool and programs the
GDS registers by using routines from the library file GDSILutil.

PLL is returned by procedure and represents the multiplication factor for the internal pll loop
of the G300

3y
The genéral call syntax is:
MONITOR.util (<monitor.type >, <resolution>,<mode > ,pll, <linear>)

Description of parameters:

monitor.type (INT)

0 TV Monitor
1 EIZO Flexscan 8060
2 EIZO Flexscan 9070
3 EIZO Flexscan 9500 4
4 NEC Multisync GSII
10 NEC Multisync XLS)
12 Sony GDM 16015)

1) See chapter 3.2.2

2) See chapter 3.2.1

3) See chapter 3.4.1

4) Only the new version of the EIZO 9500 was tested !

5) Only mode 1 (8 bit/pixel) : * Pixel Clock " > 32 MHz

GDS-II 124 Appendix

- 14 Sony GDM 16021650,
16 Philips CCT 2064,
18 Silicon Graphics HR MonitorG)

resolution (INT)

The resolution depends on the monitor.type. Look inside the fold datapool and choose
the right value:

(example for fixed Pixel Clock with EIZO 8060)

1 640 * 480
2 720 * 540
3 768 * 576
4 800 * 600
linear

set linear to TRUE for " Linear Addressing Mode "
set linear to false for " Row-Oriented Addressing Mode "

- Example for a EIZO 8060 with a 640 * 480 resolution and" Row-Oriented Addressing
— Mode " (Hardware Panning possible). GDS-II jumpered to 8 bit per pixel.

#USE GDSII.util
#USE MONITOR.util

VAL monitor.type IS 1 P
VAL resolution IS 1 :
VAL mode IS 1 :
VAL linear IS FALSE :
INT pll :

MONITOR.util (monitor.type, resolution, mode, pll, TRUE)

6) Only mode 1 (8 bit/pixel) : * Pixel Clock " > 32 MHz

-

GDS-1I 125 Appendix

INIT.util

INIT.util sets " Pixel Clock ", " Control Register ", " Mask Register ", " Datapath Register ", CLUT
and starts the VTG. No additional commands are required to initialize the G300.

The general call syntax is:
INIT.util (<monitor.type >, <resolution>,<mode> pll, <linear>,Error)

monitor.type, resolution, mode, pll, linear: see MONITOR util

Error: Integer value, gives you back an error code.

Error:= 0: No errors during INIT.util
DEMO programs
Every program needs an additional transputer node as a host. Connect link 2 of your host
transputer to link0 of the GDS-II. Enter the directory"” \MTOOL\GDSDEMO "and
start " multitool " with the command " MTOOL ". Than you can enter the several folds and load
the program code by pressing" <ALT>4 ". The program can be started by loading the
EXE " Link Monitor " with key " <F5> and by starting the EXE with key " <F6> ".

Real colour demo:

This program only runs in mode 2. The resolution is fixed to 768 * 576 dots.

Demo:

This program is menu driven. You can choose between mode 1, mode 2, mode 3, linear-
and " Row-Oriented Addressing Mode ", different monitor types and different resolutions.
You will also find some simple drawing commands for testing the GDS-II and your

monitor.

Programming a new video timing:

A

GDS-II 126 Appendix

After choosing resolution and monitor type restart the program with " back to main
menu ". You are asked once again for a monitor type. Choose now the command " user
defined " and you will enter a menu where you can change all the different datapath
registers. The old values will be used as default for every new cycle.

Testing the DB-DMA

Connect link 0 of the DB-DMA to link 2 of the GDS-IL.
Enter the fold " demo " and find the definition for processor 1. Remove the " comment
fold " and recompile the program " demo ".

~

%,

GDS-I1

128 Appendix

9.4 Installation

9.4.1 Installation on Multicluster system units

When installing the GDS-II module within Multicluster system or expansion units you may use
the BNC-connectors at the rear of the unit for feeding the video signals to your graphic

monitor.

The installation should only be done, if the unit is switched off !

you can insert the GDS-II module into any desired slot, even though the left slots
are preferred

the GDS-II module will normally be used as a network processor, so connect its
link 0 to link 2 of your host transputer

The following step depends on your pcb rear backplane version, which is easy to
identify. In one version, the rear backplane contains a few integrated circuits
(refered to as " active rear backplane "). The other version does not contain any
active devices (referred to as " passive rear backplane ").

active rear backplane:

Connect the video output of the GDS-II module (this is link 6 of the backplane)
to the active rear backplane’s video link plug (this is the left-most connector
when viewed from the front of the MultiCluster system / expansion unit) with a
standard internal link cable.

passive rear backplane:

Connect the video output of the GDS-II module (this is link 6 of the backplane)
to the video link plug of the active rear backplane (this is the left-most
connector when viewed from the front of the MultiCluster system / expansion
unit) using a special video link cable.

This video cable has a 1 to 1 plug connection instead of the inverted plug
connection used in the standard link cables for internal use. In addition, lines 6
and 7 are crossed in the special cable. This special video link cable should only
be used within MultiCluster units !

GDS-I1 _129 Appendix

- Connect your monitor to the BNC-connectors. All RGB-signals also carry the
synchronization signals. When using the " passive rear backplane " you should be
careful about a few incorrectly labelled signals at the rear of the unit. Youd
better switch the labels HSYNC and VSYNC'!

9.42 Installation In IBM PC/XT/AT Or Compatibles

When installing the GDS module within IBM PC/XT/AT or compatible computers you will
need a BBK-PC adaptor. This has to be fixed to the GDS-II. After removing the front cover of
the GDS-II both modules form an add-on board that can be inserted into a long IBM slot. The
GDS is normally used as a network processor, so it may be necessary to disable the BBK-PC
adaptor to avoid addressing conflicts with other adaptors (see the technical documentation of
the BBK-PC adaptor).

To feed the video signals to your graphic monitor, connect the video output of the GDS-II
module (Link 6 of the BBK-PC) to one of the external 8-pin Link connectors at the back side
of the adaptor using a standard flat Link cable.

If you've got a new version of the BBK-PC, watch for the additional power connectors on the
upper side of the board. Connect the two power connectors to one of the 4-way power
connector inside the PC.

GDS-II 130 Appendix

9.5 Power Requirements

Operating Temperature6): 0to 70 °C
Power Supply Voltage: +5Volt */ 5%

Power Supply Current; GDS-II:

- standby; G300 is not working: ca. 14 A
- standby; G300 / model runs at 35 MHz: ca. 1.5A
- standby; G300 / model runs at 110 MHz: ca. 1.8A
- standby; G300 / mode2 runs at 32 MHz: ca. 1.85A
- blockmove; G300 / mode2 runs at 32 MHz: ca. 22A
Power Supply Current; GDS-II + DB-DMA:
- standby; G300 is not working: ca. 19A
- standby; G300 / mode2 runs at 32 MHz: ca. 23A
- blockmove; G300 / mode2 runs at 32 MHz: ca. 26 A
Power Supply Current; GDS-II + DB-DMA + DB-CLUT:
- standby; G300 is not working: ca. 25 A
- standby; G300 / mode3 runs at 32 MHz: ca. 29A
- blockmove; G300 / mode3 runs at 32 MHz: ca. 32A

When installing your GDS-II in an IBM PC/XT/AT make sure, that your Power Supply is
" strong enough ". Use the additional Power Connectors on your BBK-PC.

The best way to run your GDS-II is using a " MultiCluster " unit. Power supply and cooling
fans are provided for these kind of boards !

6) Sometimes additional cooling is required !

Appendix

>

GDS-I1

9.6 Jumper overview

(i) 11f pue gf
Jadwn{ 3saj ay)
abueyd jou og

s

o

sqesip T [59)
s1qrsip/ALqeUe T O1F

sr
QY W [B0 6]
2[R T [E6 G0

1 ¥ooEo
CXE X

eeoleso T
sdun{ 359 8009
JqeSIP/A[qUS TIY

er r
i$ =
ool Zeou | WU [EOO)
Jadunf{ 3sd] 3109[as Ipoy

sr
€ ®pou [60 0

w338
voou (888

(eXeXo)
3935 oy

St
NI VP = D [GGD
i S = NI [Ee0]

¥d8(es doO[)

24
s/ 01 £°2'1N ©
S/ &2 CY] ow

s/a 0T €241 ow
s/al of (3] P

s/al o1 g'z'n g
/84 0l ol 29

s/gu 82 £'2' 11 [90
S84 82 "3 w

192[3s5 paads w11

er
-0 O
2 §'21 joe®
0 0-©

-0 O
Hl 07 |6 O
-6 O

O

ZH ST |0 0-©
0-© O

108[9s poads 20.4d

Sl
|

4y

(XXX oXo)
000090

vot yeanbiuod Lsousy

e

uogyeunbisuod Inding

Y 301S

MM,OOOOOOO000000000000000

0 -0 0|3-6 O]

(o1qesip) /8[qeue Tid

(qevd) A1qesiP WK-8¢ [joee0 00

6 8f 4r ¥oiss

eies spoy g mmlm_

[0-©0]
Pds o[G

1%3(as paads w1 [m

109[9s padds .0SS8O0.Y er ﬂ
. -9 O

uot yeunbijuod Aaoudyy r

900000000000000000000D0
0000000000000000000000

g8 3018

ﬁ

e

P

GDS-1I

134 Appendix

9.7 GDS-II Addressmap

Hardware-addr.

8000.
801F.

8020.

803F

0000.

0000.

0008.
000F .
0010.
0017.
0018.
001F.

0020
0028

0030
0037

0038

0040.

0040.
0040.

0040
0040

0040.
0040.

0000
FFFF

0000

.FFFF

0000

00Co

0000
FFFF
0000
FFFF
0000
FFFF

.0000
0027.

FFFF

.0000
002F.

FFFF

.0000
FFFF

.0000
003F.

FFFF

0000

0000
03FC

.0500
.0580
0040.
0040.

0600
0680

0484
04B0

OCCAM-word-addr. Name function

#0000.
#0007.

#0008,
#0009.

#2000.

#2000.

#2002.
#2003.
#2004.
#2005.
#2006.
#2007.
#2008.
#2009.
#200A.
#2008.
#200C.
#2000.

#200E.
#200F .

#2010.

#2010.
#2010.

#2010
#2010.
#2010.
#2010.

#2010.
#2010.

0000
FFFF

0000
FFFF

0000

0030

0000
FFFF
0000
FFFF
0000
FFFF
0000
FFFF
0000
FFFF
0000
FFFF

0000

FFFF

0000

0000
0OFF

.0140

0160
0180
01A0

0121
012¢C

9

DRAM - Start 2 MByte working memory
DRAM - End

VRAM - Start 2 MByte video memory
VRAM - End

Ident-register bit0
(read-only) bits

0
1: Event by VSYNC ("Frame" = active)

Reset-register bit0
(write-only) bit4:

3: Link Reset Qut
Reset for G300

PCSO - Start Chipselect 0 for DB-Slot A (1/2 MByte)
PCSO - End
PCS1 - Start Chipselect 1 for DB-Slot A { 1/2 MByte)
PCS1 - End
PCS2 - Start Chipselect 0 for DB-Slot B (1/2 MByte)
PCs2 - End
PCS3 - Start Chipselect 1 for DB-Slot B (1/2 MByte)
PCS3 - End
PCS4 - Start Chipselect 0 for DB-Slot C (1/2 MByte)
PCS4 - End
PCS5 - Start Chipselect 1 for DB-Slot C (1/2 MByte)
PCS5 - End

CS-CLUT - Start ChipSelect for 12 bit-expansion (DBCLUT)
CS-CLUT - End

Base address G300

CLUT - Start G300's Internal CLUT (256 Words & 24 bit)7)
CLUT - End

Mask register Read/write
Control RegisterRead/write
Top of Screen Read-only
Boot Locations) Write-only !

Datapath Register - Start9)
Datapath Register - End

The tranputers addresses 256 words 4 32 bit but only the lowest three bytes of every word are used !
Once programmed " Boot Location " can’t be changed.
Access to Dataparh Registers only possible with enabled VTG !

Appendix

136

GDS-II

9.8 Pinout of the daughterboard slot

aN9

N9
444
ayu
g4y
Zdmy
fgmd
Qdry
¥SU
gsuy
sy
[su
QSuy
aan

0O 0000 O0O0O0

Q. 00 OO0

O 0 0O0O0O0OO0OO0Oo

OOOOOOOOOO"OO@OOOOOOOO

dN9g

aN9
A3
03d
NICE
0343
LHIW
034l
S3dl
40d
LIbM
43
UNU
JoNn

DBIx Slot Connector

Pin location

20N
610y
81ay
2104
91Qy
SIQY
y1QY
c1ay
Z1ay
[1Qy
e1ay
6QY
80y
2 QY
9ay
Say
LY
£Qy
Zay
1Q* 44y
Bq‘ gMu
N9

O 0O0O0O0O0D0O0DODODOOODOOOOOOOOOODO
O 000O0OODOOODOOOOOOOOOOOCOOOo

20N
448

4NOD

S5'gf 153du
vt Z'9S2du
SH1

el

£y

Zy1

1834
peay
6234
823y
223y
923y
S2ay
yZQY
£23ay
223y

1204
9Zay

aNg

B

GDS-11

138

Appendix

9.9 Pinout Of The (96-Way) DIN 41612 Connector

The pinout is compatible to the 8 Link PARSYTEC boards (MTM2, TPM-IO). The video
signals are placed at the position of Link 6. The signals of Link 6 are connected to an additional
10-pin BERG-connector on the board.

W ® N O W N -

W W W NN N AN N N NN NN = = = e e e b e b b
N = O O 00 N O & WN - O OO0 N WM& WN =D

Reset 0 out +
Link 0 out +
GND
Link 0 in -
Reset 0 in -
Link 1 in +
Reset 2 out +
Link 2 out +
GND
Link 2 in -
Reset 2 in -
Link 3 in +
Reset 4 out +
Link 4 out +

GND
Link 4 in
Reset 4 in
Link 5 in
HSYNC
BLUE
GND
RED
VSYNC
Link 7 in +

+

+ 5V
+ 5V
+ 5V
GND
GND
GND

b
Reset 1 out +
Reset 1 out -
Link 1 out +
Link 1 out -
Link 1 in -
Reset 1 in -
Reset 3 out +
Reset 3 out -
Link 3 out +
Link 3 out -
Link 3 in -
Reset 3 in -
Reset 5 out +
Reset 5 out -
Link 5 out +
Link 5 out -
Link 5 in -
Reset 5 in -
Reset 7 out +
Reset 7 out -
Link 7 out +
Link 7 out -
Link 7 in -
Reset 7 in +
Reset 7 in -
LinkSpeed
+ 5V
+ 5V
+ 5V
GND
GND
GND

Reset 0 out -
Link 0 out -
GND
Link 0 in +
Reset 0 in +
Reset 1 in +
Reset 2 out -
Link 2 out -
GND
Link 2 in +
Reset 2 in +
Reset 3 in +
Reset 4 out -
Link 4 out -
GND
Link 4 in +
Reset 4 in +
Reset 5 in +
GND
GREEN
GND
HCLK
GND
Master Reset

+ 5V
+ 5V
+ 5V
GND
GND
GND

T

s

GDS-11 140

Appendix

9.10 Index - Register

13 bit /pixel 19,21, 34,94

24 bit/pixel 19, 21, 32, 95

8 bit/pixel 19, 20, 35, 93
Address Space 40
Backplane 11

BackPorch 51

BBK-PC 11

Blockmove 78

Boot Location 41
BroadPulse 51

Bytblt 78

CCIR studio television standard 49
Clip2D 80

Clock Input 41

Clock Select 62

CLUT 15,54
Colour-Lookup-Table 15
Column-Address 17, 24, 25
Composite Sync 46, 47
Control Register 43

D/A Converter 15
Datapath Register 51
Daughterboard Connectors 66
DB-CLUT 66

DB-DMA 358, 66

DBI-x 67

DBT-1 67

DBT4 67

Display 51

Double Buffering 37
Draw2D 79

EIA-343 studio television standard 49
EIZO FLEXSCAN 8060 96
EIZO FLEXSCAN 9070 101
EIZO FLEXSCAN 9500 107
Equalisation Cycle 52

Even field 49 ’
Event 81

G300 14,41

GDS-II Addressmap 133
HalfSync 51

Hardware Panning 24

Helios 76

Horizontal Timing 51
HSYNC 46

IBM PC/XT/AT 128
Ident Register S5
Initialisation examples 22
Initialising The G300 77
Interlaced 45, 48
Jumper J1 58

Jumper J10 63

Jumper J11 63

Jumper J2 59

Jumper J3 60

GDS-II 141

Jumper J4 61

Jumper JS 62

Jumper J6 62

Jumper J7 62

Jumper J8 63

Jumper J9 63

Jumper overview 131
Jumper J12 64

Line Start 50

Linear Addressing 31, 36
LineStart 51

Linetime 51

Link In 10

Link Out 10

Link Software Addresses 77
Link Speed 61

Link Speed Select 61
Link-Reset-In 12
Link-Reset-Out 12

Mask Register 50
Master-Reset 12
Memlnit 27, 51, 54
Memory access 59
Memory Configuration 59
Mixed Synchronisation 46
Mode Select 62, 63
Move2D 78

Multicluster 127
MultiTool 75

NEC MULTISYNC GSII 110
NEC MULTISYNC XL 114
Non-interlaced 45, 48
NTSC - standard 49

Odd field 49

Output Configuration 64
PAL - standard 49

Philips CT 2064 116

Pixel Clock 41, 62

Plain Composite Sync 46
Post Equalise Cycle 53
Power Requirements 129
Power-On-Reset 12

Pre Equalise Cycle 52
Processor Clock 60
Processor Cycles 59
Processor Speed Select 60
Rear backplane 127

‘Reset In 10

Reset Out 10

Row-Address 17, 24, 25
Row-Oriented Addressing 18
Screen Refresh 14

Short Scan Line 52
ShortDisplay 51

Silicon Graphics 118

SONY GDM 1602 115
SONY GDM 1950 117
Standard Fuli Ccan Line 51
Tesselate Composite Sync 46

Appendix

' g’

GDS-11 142

Appendix

Top Of Screen 24, 32, 50
Transfer Cycle 27, 44, 53
TransferDelay 27, 28, 51, 53
TV-Monitor 119

UniLinks 10

VBlank 51

VDisplay 51

Vertical Backporch 53
Vertical Frontporch 53
Vertical Sync Cycle 52
Vertical Timing 52

Video Clock 64

Video memory 17

Video Timing , 69

Video Timing-Generator 44
VSYNC 46, 51, 52

X - Windows 76

	Contents
	Preface
	1 Introduction To The GDS-II
	2 Transputer-Node Description
	2.1 The Processor
	2.2 The Parsytec UniLinks
	2.3 The Backplane Link Layout
	2.4 The Reset Mechanism

	3. The GDS-II Video Section
	3.1 Graphic System Basics
	3.1.1 How An Image Is Built Up
	3.1.2 The Number of Available Colours
	3.1.3 The G300's Colour-Lookup-Table
	3.1.4 Programming The G300

	3.2 The Organization Of The Video Memory
	3.2.1 Row-Oriented Addressing
	3.2.1.1 Hardware Panning With The G300
	3.2.1.2 The Importance Of The Registers MemInit And TransferDelay

	3.2.2 Linear Addressing
	3.2.2.1 Calculating Top Of Screen
	3.2.2.2 Linear Addressing A Summary

	3.2.3 Double Buffering

	3.3 The GDS-ll's Address Space
	3.4 The G300 Registers
	3.4.1 Boot Location
	3.4.2 Control Register
	3.4.3 Mask Register
	3.4.4 Top Of Screen
	3.4.5 Datapath Register
	3.4.6 CLUT
	3.4.7 Ident Register

	4 Jumper Layout
	J1 Configuration Of Slot A
	J2 Memory Configuration
	J3 Processor Speed Select
	J4 Link Speed Select
	J5 G300 Clock Select
	J6, J7 Mode Select
	J8, J10 Mode Select
	J9, J11 Reserved
	J12 Output Configuration

	5 Daughterboard Connectors
	6 Calculating a Video Timing
	7 Software Examples
	7.1 Booting The GDS-II
	7.2 The GDS As A Host Under MultiTool
	7.3 The GDS As A Slave Under Multitool
	7.4 X - Windows Under Helios On A GDS-II
	7.5 Link Software Addresses
	7.6 Initialising The G300
	7.7 The Transputer's Graphic Operations
	7.7.1 Move2D
	7.7.2 Draw2D
	7.7.3 Clip2D

	7.8 Synchronizing With The Vertical Blank
	7.8.1 Programming the CLUT (one interrupt source)
	7.8.2 Programming the CLUT (several interrupt source)

	7.9 Reading The Datapath Register

	8. GDS-II vs. GDS - A Comparison
	9. Appendix
	9.1 Configuration examples
	9.1.1 8 bit/pixel
	9.1.2 13 bit/pixel
	9.1.3 24 bit/pixel

	9.2 Video Timings
	9.2.1 EIZO FLEXSCAN 8060 - mode 1
	9.2.2 EIZO FLEXSCAN 8060 - mode 2
	9.2.3 EIZO FLEXSCAN 9070 - mode 1
	9.2.4 EIZO FLEXSCAN 9070, 9500 - mode 2
	9.2.5 EIZO FLEXSCAN 9500 - mode 1
	9.2.6 NEC MULTISYNC GSII - mode 1
	9.2.7 NEC MULTISYNC GSII - mode 2
	9.2.8 NEC MULTISYNC XL
	9.2.9 SONY GDM 1602
	9.2.10 Philips CT 2064
	9.2.11 SONY GDM 1950
	9.2.12 Silicon Graphics
	9.2.13 TV-Monitor - interlaced

	9.3 Testprograms
	9.4 Installation
	9.4.1 Installation on Multicluster system units
	9.4.2 Installation in IBM PC/XT/AT or Compatibles

	9.5 Power Requirements
	9.6 Jumper overview
	9.7 GDS-II Addressmap
	9.8 Pinout of the daughterboard slot
	9.9 Pinout of the (96-Way) DIN 41612 Connector

	10 Index

