
GDS-II - Graphic Display Subsystem

Hardware Description

Copyright: PARSYTEC GmbH

'7-----\
'.....

GDS-II - Graphic Display Subsystem

Author:
Torsten Wiese Technical Documentation

Version 1.1 (G300 B02)

June 1990

.~
fil;.. This documentation is written for a GDS-II equipped

with a G300B (IMSG300G-llSA ENG B07).

GDS-rr

Contents

3 Contents

1. Introduction To The GDS-rr 8

2. Transputer-Node Description 9

2.1 The Processor 9

2.2 The Parsytec UniLinks 10

2.3 The Backplane Link Layout 11

2.4 The Reset Mechanism 12

3. The GDS-rr Video Section 14
3.1 Graphic System Basics 14

3.1.1 How An Image Is Built Up 14

3.1.2 The Number Of Available Colours 14

3.1.3 The G300's Colour-Lookup-Table 15

3.1.4 Programming The G300 16

3.2 The Organization Of The Video Memory 17

3.2.1 Row-Oriented Addressing 18

3.2.1.1 Hardware Panning With The G300 24

3.2.1.2 The Importance Of The Registers" MemInit nand" TransferDelay n 27

3.2.2 Linear Addressing 31

3.2.2.1 Calculating Top of Screen 32

3.2.2.2 " Linear Addressing" - A Summary 36

3.2.3 Double Buffering 37

3.3 The GDS-ll's Address Space 40

3.4 The G300's Registers 41

3.4.1 Boot Location (#20100lAO) 41

3.4.2 Control Register (#20100160) 43

3.4.3 Mask Register (#20100140) 50

3.4.4 Top of Screen (#20100180) 50

3.4.5 Datapath Register (#20100121 - #2010012C) 51

3.4.6 Clut (#20100000) 54

3.4.7 Ident Register (#20000000) 55

4. Jumper Layout 57

5. Daughterboard Connectors 66

GDS-n

Preface

6 Preface

When I finally finished this handbook, I realized that it had become somewhat longer than

intended. I'm sure that everyone will be thrilled about such detailed instructions (at least at

first). This will change abruptly as soon as you start looking for some certain detail among this

IOO-plus page opus. Therefore, a few opening instructions for using this instruction manual....

The first two chapters describe the transputer node's basic functions without explaining the

GDS-ll's graphic functions in any great detail.

Chapter three will be the most tedious of all, as it explains the basics of G300 programming as

well as the GDS-ll's architecture in depths. I tried to structure this chapter in such a way as to

make it possible for a beginner to slowly grow acquainted with the system and its programming.

Skip this chapter if you don't need to know (or care) exactly where a given pixel is located

within the video memory. This is even more so the case if your going to be using the GDS-II

with an existing software (X-Windows under HEllOS etc.).

Chapter four contains detailed descriptions of each jumper's functions. Advanced/experienced

GDS-II users, however, will find the jumper listings in chapter 9.6 to be more useful in everyday

work.

I would especially like to point out the index at the end of the manual,- it should make digging

out info a lot easier....

Since I spent a lot of time and effort writing this manual I'd be grateful for any corrections,

comments or criticisms concerning it.

Enjoy!

T. Wiese

P.S.
Thanks for Jacques Beckman for translating the german version into n readable n English!

GDS-II 8 ArchitectuR

1. Introduction To The GDS - II

fCWil:~
~B

I 5 I ot A I I 5 I ot B I 5 I ot C

Uno 'n _~JI ~~"I_zaot:o_
4,;no M IQI:J I Eventl

R•••' 'n -1:1>1 [I C:OO 112MB VRAa C)
4 Rese1: Ou1: I!<J-16----'

Link In ~I:t>-I ~I T800 I J 2MB RAM I
4~ink Out [§~ T

Reset In r.r:::::1 I I
....,;~-~~ I.:!:::::::J ~ Reset-PA~

<I Rese1: Ou1:[§~ J
Power- On Reset. _

Figure 1.0 Block wiring diagram of the GDS-II

"

Figure 1.0 shows the basic parts of a GDS-II in a block diagram. The transputer node consists

of a T800 transputer with a 2 MByte dynamic working memory (DRAM), a 2 MByte dynamic

video memory (VRAM) and 4 Parsytec UniLinks. The 4 additional UniLinks connected to

slot A make it possible to add a DBT-x or a DB-DMA-Module. DB-DMA-Module in turn is

also equipped with a transputer capable of writing data into the video memory. With two

transputers (one on the GDS-II & one on the DB-DMA-Module) working, the effective data

transfer rate from an external transputer network into the GDS-ll's video memory is, of course,

considerably greater.

The G300 Video-Controller with its internal Colour Lookup Table (CLUT) is " I/O mapped"

within the transputer's address space. The VRAM's video data outputs are bridged into the

G300's inputs. If the bridge is removed, you can install an external 13 bit CLUT (DB-CLUT)

here.

GDS-n 9 Architecture

2. Transputer-Node Description

2.1 The Processor

The ODS-II is built around a 32 bit, TSOO transputer. The" Processor Clock" depends upon the

exact processor type used, and can be changed by rearranging jumper" J3 " (see chapter 4).

The ODS-II is equipped with 2 MBytes of dynamic working memory and 2 MBytes of" dual

ported" video memory. The working memory starts at the address #00000 (Ox80000000) and

ends at #7FFFF (Ox801FFFFF). In the standard option, the video memory starts where the

working memory ends - beginning at address #80000 (Ox80200000) in other words. The

processor can therefore use both memories as one continuous memory.

If a continuous memory is not desired due to the specific uses, the video memory's start address

.. ..) can be shifted to a higher value by exchanging a PAL. This, however, may only be done by the

manufacturers.

The" Link Speed" can be set at either 10 or 20 MB/s. A rate of 5 MB/s cannot be supported.

The transfer rates of pins 1-3 can now additionally be set using pin 26B of the 96-way VO­

connector (see chapter 4 - Jumper J4).

GDS-II

J 2.2 The Parsytec UniLinks

10 Architecture

A total of 7 UniLinks are connected to the backplane via the (96-way) VG-connector. Each

Link, in tum, consists of four differential signals e.g. eight wires. These signals are accessible on

the backplane by using (lO-way) BERG-connectors.

Reset Out:

Reset In:

Link Out:

Link In:

Reset-Register's programmable reset outputs

Reset input for resetting the transputer

Link-connector pinout Video connector pinout

Reset out +
Link out +
GND
Link in­
Reset in -

0 0

0 0

0 0

0 0

0 0

Reset out ­
Link out­
GND
Link in +
Reset in +

HSYNC
blue
GND
red
VSync

0 0

0 0

0 0

0 0

0 0

GND
green
GND
HCLK1)
GND

By wiring the signals to the connector in this type of an array, you'll need only one type of cable

to connect PARSYTEC-Boards among each other (crossed lines).

?,~-,

" link In + - Link Out +
Link In - - link Out -
Link Out + - Link In +
Link Out - - link In -
Reset In + - Reset Out +
Reset In - - Reset Out -
Reset Out + - Reset In +
Reset Out - - Reset In -

Link connector Cable Link connector

1) The GDS-II's" Video Clock "; running either at 5 MHz or 32 MHz depending on jumper JS

......

GDS-I1

2.3 The Backplane Link Layout

11 Architecture

Backplane Links 0, 1,2 and 3 correspond to the GDS-II transputer Links. Links 4, 5 and 7 are

routed to the slot A connector. Slot A's Link 6 is only accessible via the GDS-ll's onboard (10­

way) BERG connector - its not routed to the Backplane.

The BERG connector normally corresponding to Link 6 is instead used, analogous to the

GDS-I, for video output. The following figure demonstrates the backplane Link layout.

GDS-I I

Slot B Slot A

Link 0

Link 1

Link 2

Link 3

Link 4
OB slot A - Link 0

Link 5
DB slot A - Link 1

Video Output

Link 7
DB slot A - Link 3

Backplane

Figure 2.0 The backplane Link layout

GDS-I I BBK-PC

Slot B Slot A

Link 0..........
Link 1.....·....
Link 2..........
Link 3..........
Link 4-..... DB slot A - Link 0·....
Link 5..... DB slot A - Link 1.....
Video Output..........
Link 7·.... DB slot A - Link 3·....

Figure 2.1 The BBK-PC Link layout

GDS-g

.J 2.4 The Reset Mechanism

12 Architecture

There are three different ways to reset the transputer and" Video Controller".

Power-On-Reset: When starting the system, the GOS-II will automatically

generate a reset signal which will affect all components on the board.

Master-Reset: The" Master-Reset" has the same effect as the" Power-On-Reset".

It enters the system via the (96-way) VG-connector's A24 pin which is

connected to the reset button of the various MULTICLUSTER systems.

The "Master Reset" cannot be applied if the GOS-II is used together with a

BBK-PC or an ADAPT-PC.

Link-Reset-In: In this case, the processor can be resetted using any of the four

Links' " Reset-In" channels (they're logical OR arranged). The Link-Reset-In

procedure will not reset the G300 (1)2)" It is therefore possible to initialize the

G300 independently from the main program by using a separate configuration

program.

The GOS-II is also equipped with four programmable" Link-Reset-Out II channels in addition to

a programmable reset for the G300. When this is used, a code word (following a

predetermined start sequence to avoid an accidental reset) is sent to the address #20000030h

(OxCO). The code word bits have the following functions:

bit 0: Reset-Out via Link 0

bit 1: Reset-Out via Link 1

bit 2: Reset-Out via Link 2

bit 3: Reset-Out via Link 3

bit 4: G300 Video-Controller Reset

This design enables the user to reset, load a new program code into and start anyone of the

network's transputers individually via one of the four Links. These functions are what makes

large, error tolerant transputer systems possible.

2) If the G300 is • hanging· during a transfer cycle, it is impoSSIble to reset the G300 and the transputer via
software. You have to use the • Power-On-Reset· or the • Master Reset·. If you want your G300 reset by
• Link-Reset-In • contact us for modifying your GDS-II.

GDS-II 13 Architecture

The following OCCAM 2 listing demonstrates the programming and the necessary start

sequence.

PROC reset (VAL INT link)

reset channel 0: link = 0

reset channel 1: link = 1

reset channel 2: link = 2

reset channel 3: link = 3

reset G300 : link = 4

INT addr.reset, time ..
PLACE addr.reset AT #20000030 . -- Address Reset-Registers.

..TIMER clock

VAL INT wait IS 2

SEQ

addr.reset := 0
addr.reset := 1
addr.reset := 2
addr.reset := 3
addr.reset := 1 « link
clock ? time

clock ? AFTER time PLUS wait

addr.reset := 0

p1-""~1 The same procedure in 'C' under HELlOS:
;

void reset (int link)

{

int * addr_reset = (int *)OxCO
*addr reset = 0 ·,
*addr reset = 1 ·,
*addr reset = 2 ·,
*addr reset = 3 ·,
*addr reset = (1 « link) .,
Delay (128) ·,
*addr.reset = 0 ·,

}

~)

Release Sequence for

the Reset Register

-- Reset Code word

-- 128 us Delay

GDS-ll 14 Architecture

3. The GDS-II Video Section

3.1 Graphic System Basics

In addition to the usual working memory, a graphic system also needs a special video memory

for storing the image as a pixel pattern. The transputer uses the video memory just as it would a

ordinary dynamic working memory. The video memory is not only accessed by the transputer

(which creates, rotates, magnifies, shifts, etc. images), but also by the Video Controller

(G300). The Video Controller will periodically address a screen line and transfer it to one of

the video RAM's internal shift registers from where it's sent to the screen (e.g. called Screen

Refresh). When the G300 is addressing the video memory the transputer is cut off (DMA­

cycle) and forced to rely on its own internal registers and On-Chip-RAM. This explains the

GDS-II transputer node's lower performance (approx. 8% less) in comparison to similar

transputer nodes without a video section.

3.1.1 How An Image Is Built Up

As stated above, an image is stored as a pixel pattern in the video memory. The G300 will read

a complete video line at a line frequency of 15 kHz - 64 kHz and convert the information into a

serial" pixel flow". In order to do this, the binary coded colour information stored in the video

memory first has to be converted into analog voltage values. This is done by the G300's three

internal 8 bit D/ A Converters.

In addition to all this, the G300 generates the driving signals for the monitor (Horizontal Sync

and Vertical Sync or Composite Sync) and if you want it to, will combine them with the colour

outputs accordingly.

3.1.2 The Number orAvailable Colours

The width of a pixel determines the number of colours that can be used simultaneously. An 8 bit

wide pixel can encode 28=256 different colours, a 24 bit pixel, 224•

Both modes are possible with a GDS-II. In addition, a 13 bit mode can also be employed when

using the appropriate added board (DB-CLUT).

GDS-n

3.1.3 The G300's Colour-Lookup-Table

15 Architecture

,/

Using the 8 bit/pixel mode, a total of 256 colours can be used by the GDS-II simultaneously.

The monitor, however, can only use the data if the colours have been separated into the three

basic colours. In order to do this, the G300 is equipped with three separate D/A-Converters

(red, green & blue). Each D/ A Converter is able to convert an 8 bit wide signal in up to 256

different voltage values. Each basic colour can therefore be shown in 256 different shades. The

three D/ A converters make it possible to show 768 different basic colour shades which, in tum,

can be combined for a total of 16,776,448 mixtures.

The CLUT enables the user to choose 256 colours from the wide range possible, and address

them with an 8 bit wide pixel. It's essentially a memory for 256 words at 24 bits each. The

following figure will demonstrate how it works. The CLUT address and the pixel's value are

identical.

CLUT Address Memory contents Colour seen on the monitor
red green blue

100 OxOO OOh OOh OOh black
101 Ox04 FFh FFh FFh white
IFF Ox3FC BOh BOh OOh medium yellow brightness

Colours can be coded directly when using the 24 bit/pixel mode.

Bits 0-7 stand for the red, bits 8-15 for the green, bits 16-23 for the blue colour component and

bits 24-31 are ignored.

The older G300A automatically switches off the CLUT in mode 2 (13, 24 bit/pixel). The

newer G300B, however, enables you use your CLUT.

The user can then use a 256 word a 8 bit table for each basic colour, making quick monitor

colour changes possible without having to alter the video memory.

GDS-II

3.1.4 Programming The G300

16 Arcbitec;ture

The G300's registers are located in the transputer's address space from the base address

#20100000 (Ox400000) onwards. There's a summary with all registers and functions in chapters

3.3 and 3.4.

The registers fall into several categories.

The CLUT uses 256 words (1 kByte) of memory and can be reprogrammed while an

image is running. To avoid disturbances, try to program only during the" Vertical Blank "

cycles. The appropriate signal is sent to the transputer's Event-Pin. This is explained in

detail in chapter 7.83)"

Registers that determine the G300's function. This includes choosing the pixel width,

" Pixel Clock", etc.

These registers are loaded every time the system is started, then usually left alone.

Registers that determine the monitor timing thereby also determining the resolution.

The parameters are set by the monitor manufacturer and should be followed exactly.

The parameters for several widespread models were tested <!) and are listed in the

appendix along with the appropriate driver disc. Don't change the parameters while

your monitor is in use, as false programming might damage it.

Registers that can be modified during use in order to shift portions of the image or to

switch from one image to another within the video memory <Double Buffering).

3) Software examples; chapter 7.8 • Synchronizing With The Vertical Blank •

GDS-II

3.2 The Organization Of The Video Memory

17 Architecture

The GDS-II has a 2 MByte video memory that starts at the hardware address Ox80200000. This

corresponds to OCCAM word address #80000.

Ox00401000 120'00400
G300

Ox004oo000 120'00000
OB-CLUT

Ox00380000 1200EOOOO
OBI-x boo....d.

0,,00080000 120020000
R••• t PAL o"ooooooco 120000030

Iden't PAL OxOOOOOOOO 120000000

0)(80400000 100'00000
VIdeomory

0)(80200000 100080000
SY.'t.em m.rno~)I

0)(00000000 100000000

Figure 3.0 The video memory's position in the address space

The video memory is equipped with dual-ported Video RAMs, 4 * 256 kBit in size, and consists

of two banks. Each bank is organized as a 512 * 512 word matrix. Two banks result in a 512 *
1024 word organisation.

To address a certain word within the matrix, you need a 9 bit " Column-Address" and a 10 bit

"Row-Address ".

The number of pixels per memory cell depends on the selected mode:

24 bit/pixel Mode:

1 pixel a' 24 bit and 8 bits for additional information

) Byte 0 =red; Byte 1 =green; Byte 2 =blue

13 bit/pixel Mode: (can only be used with the DB·CLUT)

2 pixel a' 13 bit and 2 * 3 bits for additional information

Byte 0 and Byte 1 comprise pixel number 20

Byte 2 and Byte 3 comprise pixel number 2n+1

8 bit/pixel Mode:

4 pixel a' 8 bit

Byte 0 comprises pixel number 4n

Byte 1 comprises pixel number 4n +1

Byte 2 comprises pixel number 4n+2

Byte 3 comprises pixel number 4n +3

GDS-rr 18 Architecture

-,\
/

'-0.:11'"
Pixel location on the monitor:

Pixel location on the monitor

1I1 riSing L
addr.

X

This figure demonstrates how the

pixel's location on the monitor

corresponds its location in the video

memory. As opposed to the GDS, the

GDS-n does in fact use normal graphic

standards as far as video memory

addressing are concerned. The left

upper monitor pixel is located at the

bottom-most video memory address.

array placed
in video memory

Video memory

monitor monitor

Figure 3.1 Pixel location on the monitor

As the addresses of the memory cells rise, rows are built up from left to right and the screen is

tUled with the resulting lines from top to bottom.

When using the G300 Video-Controller there are two ways to address the video memory; ­

"Row-Oriented Addressing" which is explained in chapter 3.2.1 and "Linear Addressing"

which is explained in chapter 3.2.2.

3.2.1 Row-Oriented Addressing

The simplest memory organisation consists in mapping VuleoRAM - rows to monitor rows and

VldeoRAM - columns to monitor columns. As a consequence, each VideoRAM-row can only

correspond to one monitor row. The figures 3.2 - 3.4 will illustrate just how an image is stored in

the video memory and the dependency on the mode of representation (24, 13 or 8 bit/pixel).

They are based on the assumption that the first monitor pixel is located at the lowest video

memory address4) (0x00200000 or #80000).

4) " TopScreen Register", see 3.2.1.1 and 3.4.4, - set to zero in this case.

GDS-U 19 Architecture

,J The location of an image in the video memory when using" Row-Oriented Addressing ":

24 bit/pixele:

I
'12 11",••

I
I

"2 11"..

I

dlap Joyed part:

512 .. 7 •• pl •• '

Fig. 3.2 Up to 512 pixels (horizontal

resolution) by 1024 pixels (vertical

resolution) are possible. The lower

left position in the video memory

(0000000) corresponds to the

fIrst pixel in the fIrst monitor row.

The right pixel in the bottom

monitor row corresponds to the last

memory position (Ox400000).

13 bit/pixele: (only with a DB-CLUT)

I
512 lIn••

I
I

~'2. lIn••

I
"2 Wo"'<I. 0 2 pllile'

8 bit/pixele:

di.pICl~d ~r-t:

1024 I(768 pl •• I

Fig. 3.3 Up to 1024 pixels (horizontal

resolution) by 1024 pixels (vertical

resolution) are possible. Since

2 pixels are stored per word in this

mode, two planes are used (the

front one's for bytes 0 and 1, the

rear one's for bytes 2 and 3).

I
"2 11n••

I
I

"2 11n••

I

dt.pla~ port:

-=:Pt::t:::P~ 1024 .7&. pT •••

- PIMa, (4 •• 4n.4 •• 2048)

- PI •• , (3", ... 3 • • 2047)

_Ph".1 <2 •. 4n+2 •. 2048>

- Ph"al (1 .• "n+, .. 204S)

Fig. 3.4 Up to 2048 pixels (horizontal

resolution) by 1024 pixels (vertical

resolution) are possible. Since

4 pixels are stored per word in this

mode, a total of four planes are

used. The front plane corresponds

to byte 0, the rear plane to byte 3.

At this point one realizes that the 24 bit/pixel mode used in this configuration isn't very useful

(a maximum of 512 pixel in horizontal orientation).
'~.

)

GDS-rr 20 Architecture

The following examples should demonstrate how to find the address of a specific pixel

depending on the chosen mode.

ExampleS): x = 400

Y=64

"sbit € { 0,.., 2047 }

YSbit € { 0,.., 1023 }

X13bit € { 0,.., 1023} "24bit € { 0,.., 512 }

Y13bit € { 0,.., 1023} Y24bit € { 0,.., 1023 }

8 bit/Pixel Mode

Each word consists of four pixels in this mode. The pixel in question is located in the

first byte of the memory cell in row 64 and column 100.

Adrco1 = 100 = 001100100 = 64h

AdrR~ = 64 = 0001000000 = 40h

=
Adr = (AdrRow * 512) + Adrco1

(AdrRow «9) + Adrco1
= # 8064
= #88064

+ AdrBase

+ AdrBase

+ #80000

This address is an OCCAM word address.

The byte address generated by the hardware is therefore

AdrHardware = Ox80220190

General equation 3.1a: (to determine the OCCAM word address for 8 bit/pixel)

Adr • AdrBase + ~X + 512y

=AdrBase + (X» 2) + (y « 9) AdrBase = #80000

General equation 3.1b: (to determine the hardware address for 8 bit/pixel)

Adr =AdrB + X + (y « 11) ;ase AdrBase = Ox80200000

S) The origin of the coordinate system lies at lower left comer of the video memory (see fIgUre 3.1).

GDS-II

13 bit/Pixel Mode

21 Architecture

·-·I~

-.1;...v

Each word contains exactly two pixels in this mode.

Adrcol = 200 = 011001000 = C8h

AdrRow = 64 = 0001000000 = 40h

Adr = (AdrRow * 512) + AdrCol + AdrBase

= (AdrRow « 9) + Adrcol + AdrBase

= # 80C8 + #80000

= #880C8

AdrHardware = Ox80220320

General equation 3.2a: (to determine the OCCAM word address for 13 bit/pixel)

Adr = AdrBase + ~X + 512y

=AdrBase + (X» 1) + (y « 9)

AdrBase = #80000

General equation 3.2b: (to determine the hardware address for 13 bit/pixel)

Adr = AdrBase + (x « 1) + (y « 11)

AdrBase • Ox80200000

24 bit/pixel Mode

Each word represents exactly one pixel.

Adrcol = 400 = 110010000 = 190h

AdrRow = 64 = 0001000000 = 40h

Adr = (AdrROw * 512) + AdrCol

= (AdrRow « 9) + Adrco1

= # 8190

= #88190

AdrHardware = Ox80220640

+ AdrBase

+ AdrBase

+ #80000

GDS·II 22 Architecture

General equation 3.3a: (to determine the OCCAM word address for 24 bit/pixel)

Adr • AdrB + X + 512yase

• AdrBase + X + (y « 9)

AdrBase = #80000

General equation 3.3b: (to determine the hardware address for 24 bit/pixel)

Adr • AdrBase + (X « 2) + (y « 11)

AdrBase = Ox80200000

Initialisation examples

The smart array definition can make addressing specific pixels a whole lot easier.

8 bit/pixel Mode: (OCCAM 2) ('C')

VAL YSIZE IS 1024 #define YSIZE 1024

VAL XSIZE IS 2048 #define XSIZE 2048

[YSIZE][XSIZE] BYTE VRAM · char *VRAM =·
PLACE ~~ AT #80000 · (char *) Ox80200000;·

......., 13 bit/pixel Mode: (OCCAM 2) ('C')

VAL YSIZE IS 1024 #define YSIZE 1024

VAL XSIZE IS 1024 · #define XSIZE 1024·
[YSIZE] [XSIZE] INT16 VRAM shori: *VRAM =
PLACE VRAM AT #80000 · (short *) Ox80200000;·

24 bit/pixel Mode: (OCCAM 2) ('C')

VAL YSIZE IS 1024 #define YSIZE 1024

VAL XSIZE IS 512 #define XSIZE 512

[YSIZE][XSIZE] INT VRAM illt *VRAM =
PLACE VRAM AT #80000 (illt *) Ox80200000;

GDS-II 23 ArcbiteduR

-

The following OCCAM sequence draws a vertical white (if the CLUT is programmed that

way) line at the position x.

8 bit/pixel Mode:

SEQ Y = a FOR 1024
VRAM [y][x] := BYTE (0)

13 bit/pixel Mode:

SEQ y = a FOR 1024
VRAM [y][x] := INT16 (0)

24 bit/pixel Mode:

SEQ y = a FOR 1024
VRAM [y][x] :- 0

The following is an example of how, when in the 8 bit/pixel mode, the defmitions can be

incorporated into a program under HELlOS 'C', and how to draw a white vertical line at the

position x = 20.

#define XSIZE 2048

#define YSIZE 1024

char *VRAM = (char *) Ox80200000 ;

/* function prototype */

void putpixel (int x, int y, int colour) ;

.-....,
main ()•. ,.

{

int i ;

int x = 20 .,
for (i = 0; i < 1024; i++) {

putpixel (x, i, 0) .,
}

}

void putpixel (int x, int y, int colour)

{

if « x < XSIZE) && (Y < YSIZE »
VRAM [x+ (XSIZE * y)] = colour .,

"...., }-'

GDS-IT 24 Architecture

3.2.1.1 Hardware Panning With The G300: (Row-Oriented Addressing)

Since the picture will usually be smaller than the video memory, the G300 Video Controller will

have to be told where to look for it.

This can be done by programming the G300's "TopSreen Register". This register will then

contain the image's start address within the video memory (i.e. the address of the upper left

pixel on the monitor, see Fig. 3.1).

-

The G300 generates the "Row-Address" on bits 2-11 and the" Column-Address" on bits 12 ­

20. The address sequence is switched compared to the sequence used by the transputer6)' (bits

oand 1 are not used when generating the word address.)

A24 - .4.31 nO't..1 "'.d

~=====) don'~ co,..

EJ

.nOBi.
m.mor'yecc•••

o
I Decoder I

!

EJ
Figure 3.5 TSOO Memory access Figure 3.6 G300 Memory access

Examples for calculating G300's TopScreen Register

8 bit/pixel Mode: 1024 * 768 pixel from a 2048 * 1024 pixel plane

Top of Screen7) =0: The area ranging from { x , y =0, 0 } to { x , y = 1023, 767 } will

be shown.

Now you want to move the image in the video memory 100 pixels to the right and 40

pixels upwardss)' To do this, the" TopScreen Register" has to be loaded with the pixel

address {x, y = 100,40}. (The pixel is in the fIrst byte of the 32 bit word with the

coordinates { x , y = 25 , 40 })

6) Only affects the programming of the· TopScreen Register".
7) "Top ofScreen" is the value stored in the" TopScreen Register"
8) The screen image will be shifted 100 pixels to the right and 40 pixels downward.

GDS-II 2S AI'clliledure

Adrco1 " 25.. 000011001 .. 19H II! A12 •• A20

AdrR~" 40 .. 0000101000 .. 28H = A2 •• All
(All is used for switching between the two video memory banks)

The value stored in the .. TopScreen Register" is put on the address/data bus and

interpreted as a word address by the Vu:leo-RAMs, - that's why the two bottom bits

have to be set to zero.

..
Top of Screen ..

..
[(Adr co1 * 1024)

[(Adrco1 «10)

190AOh

+ AdrROW] * 4

+ AdrROW] * 4

Using an OCCAM-Word address in connection with the "TopScreen Register"

won't make any sense since values stored in the TopScreen Register consist of

normal "data words ". These have to interpreted as addresses by the address decoder

in the GDS-II before being useful

General equation 3.4a: (determining the Top of Screen for 8 bit/pixel)9)

Top of Screen = 1024x + 4y
= 4[1024 * Int(~x)] + 4y
= (x « 10) + y« 2
= « x » 2) « 12) + (y « 2)

for x=4n
for all x

for x=4n
for all x

Note:

Since each word represents four pixels in the 8 bit/pixel mode and the G300 is

only able to address word by word, horizontal Hardware-Panning is only

possible using even multiples of 4.

Note: The highest allowable .. Row-Address .. in the "Row-Oriented Addressing

Mode "is: 1023 - vertical pixel resolution.

Applying the above example, you get: Top ofScreen < =1023 - 768 =255

Ifyou were to, for instance, program in a value of257, the top monitor row (768th)

would receive the .. Row-Address .. 1025. The topmost bit in this value is then

interpreted as the bottom .. Column-Address .. bit. This in tum causes the top two

monitor rows to be shifted to the right by four pixels (= 1 word).

9) Let x , y be the coordinates of the lower left screen pixel in the video memory after shifting.

-.....,
, ,

.-/.......

GDS-n

13 bit /pixel Mode:

26 Architecture

The 13 bit/pixel mode equation can easily be derived from equation 3.4a. This time, the

user has access to a video memory 1024 * 1024 pixels in size. As in the 8 bit/pixel mode

you can only shift horizontally word by word. As a result one can only move to the left or

right by steps of multiples of two. .

General equation 3.4b: (determining the Top of Screen for 13 bit/pixel)10)

-

Top of Screen = 2048x + 4y
• 2[2048 * Int{ ~x)] + 4y
• (x « 11) + y« 2
• ({ x » 1) « 12) + (y « 2)

24 bit /pixel Mode:

for x-2n
for all x
for x-2n
for all x

Again, the 24 bit/pixel mode equation can easily be derived from equation 3.4a and is

only explained for the sake of being complete. When using the G300's " Row-Oriented

Addressing" in this mode, the user has access to a video memory 512 * 1024 monitor

pixels in size. Since, however, one is limited to 512 pixels in horizontal orientation, you

will probably not want to use "Hardware - Panning" in the 24 bit/pixel mode, but use

the G300 in its" LinearAddressing Mode"11) instead.

General equation 3.4c: (determining the Top of Screen for 24 bit/pixel)8)

Top of Screen - 4096x + 4y
= (x « 12) + y« 2

for all x
for all x

10) Let x , y be the coordinates of the lower left screen pixel in the video memory after shifting.
11) See chapter 3.2.2

GDS-ll 27 Architecture

",
-.;i 3.2.1.2 The Importance OfThe Registers MemInit And TransferDelay

Two other registers are relevant for" Hardware· Panning". The 0300 not only has to know how

long an image row really is, it also has to know how many pixels from the video memory's next

row it has to have access to. This is achieved by programming the registers TransferDelay and

MemInit. When the values stored in these registers are divided by 1/4th of the" Pixel Clock"

you get a time span in seconds.

MemInit tells the 0300 at what point in time it has to start its transfer cycle, TransferDelay tells

you how long it takes the 0300 to complete the cycle. The sum of both registers, multiplied by

four12)' results in the number of pixels after which the 0300 has to complete a transfer cycle

(i.e. access the next video memory row).

The way the video memory rows and monitor rows are linked to each other (ridged, that is)

the sum must always be identical to one quarter of the horizontal pixel resolution (this is what

makes Hardware-Panning possible).

In ourexample13r"
TransferDelay + MemInit =~ *1024 =256!!

Some additional explanations concerning the registers TransferDelay and MemInit:

(for the more advanced user)

When creating an image, one complete VRAM-row (2048 pixel for 8 bit/pixe~ 1024pixel for

13 bit/pixel and 512 pixel for 24 bit/pixel) is always read and loaded into the VRAMs'

internal shift register. This process is referred to as a Transfer Cycle The sum ofthe register

contents of TransferDelay and MemInit determines when (after how many pixels) a new

transfer cycle has to be ended.

Note that all time spans have to be stated as a multiple of4 pixels.

The ridged coupling of VRAM-rows and monitor rows described here amounts to the

following correlation:

MemInit + TransferDelay =XSIZE14)/4

This ensures that a new Transfer cycle will be started every time the end ofa monitor row is

reached. Make sure that the number ofpixels shown in horizontal orientation on the screen

does not exceed four x the length of the VRAMs'shift register (one x the length when using

24 bit/pixel).

The VRAMs used (organized 256k * 4) have a 512 * 512 word matrix, i. e. every

row, including the VRAMs' internal shift registers, is 512 words long.

12)
13)
14)

The multiplication factor is determined by the G300
1024 • 768 pixels in the 8 bit/pixel mode
Video memory's horizontal pixel resolution!

GDS-II 28

The effective shift register length depends on the mode used.

Architecture

-

The shift register length in the 24 bit/pixel mode is 512 pixels. Consequently, the sum

ofMemlnit and TransferDelay may not exceed 128 (~ *512).

When using the 8 bit(pixel mode, each word contains four pixels, each of which are

demultiplext in the G300. This results in an effective shift register length of 2048

pixels in this mode. The sum of Memlnit and TransferDelay may not exceed 512

(~* 2048).

Each word has two pixels in the 13 bitluixel mode. The G300, however, will be

working in its 24 bit/pixel mode and is therefore expecting one pixel per word. The

DB-CLUT Daughterboard is equipped with a 2:1 Multiplexer and, with the help of

the 8192 *24 bit CLUT, can take two 13 bit pixels (these are read from the video

memory at half the "Pixel Clock " rate) and convert them into two 24 bit pixels

which are then fed to the G3{)0 at the rate of the normal" Pixel Clock". The

effective shift register length in this mode is therefore 1024 pixels. The sum of

Memlnit and TransferDelay may not exceed 256 (~ *1024).

The contents of the register TransferDelay tells the 0300 how much time it takes to complete a

transfer cycle.

Too short a time span (the TransferDelay value's too small) leads to bus conflicts on the

board. When the transputer has BLOCKMOVE running one will then see short horizontal

stripes on the monitor. The Transputer is trying to access the working memory while the 0300

is still in the middle of a transfer cycle. This may eventually lead to hardware damage.

TransferDelay values that are too large will not damage the system, but will reduce its

performance.

CDS-II 29 An;hitedure

!
I........, The following table (middle column) lists the necessary values, depending on the II Pixel

Clock", for a 17.5 MHz Transputer in a 8 bit/pixel mode. (These are n worst case n values, safe

& sufficient for all modes and any transputer types.)

TrDelay
pixelClock 24bpp 8bpp 8bpp

17.5 MHz17.5 MHz25 MHz

30 MHz 10 9
The right column lists the values

32 MHz 11 that can be used for a 25 MHz
35 MHz 11 9 transputer in an 8 bit/pixel mode.
40 MHz 12 10
45 MHz 13 11 These values are lower, and the
50 MHz 14 11 resulting performance, higher. The
55 MHz 15 12
60 MHz 16 12 necessary TransferDelay value can
65 MHz 16 13 be calculated with the following
70 MHz 17 14-" 75 MHz 18 14 equation.
80 MHz 19 15
85 MHz 20 16
90 MHz 21 16
95 MHz 22 17

100 MHz 23 17
105 MHz 24 18
110 MHz 24 19

TrDelay = [(28 TState + 20ns) * %pixel clock]/[s] + 4.5 (24,12bpp)
TrDelay = [(24 TState + 20ns) * %pixelclock]/[s] + 4.5 (8bpp)

TSTate = 20ns for 25 MHz Transputer
=25ns for 20 MHz Transputer
=28.6ns for 17.5 MHz Transputer

... which result in the followin~equations ...

TrDelay • [3.5 * PClk / TClk + 0.005 * PClkl + 4.5
TrDelay • [3 * PClk / TClk + 0.005 * PClkl + 4.5

bpp =bits per pixel
[s] = second
TClk =Transputer Clock (" Processor Clock ") in MHz
PClk =" Pixel Clock" in MHz

(24,12bpp)
(8bpp)

GDS-II

"')
'. .-- (Dis-) Advantages of Hardware Panning

30 Architecture

The ridged correspondence between the image shown and the video memory architecture

(dictated by the system) makes it possible to move the monitor image " across and over" a

larger total picture, but it costs additional video memory...

Using our example again (1024 • 768pixel), we get the following situation:

Beside the image you already have, you sliO have an equally large "space " for a second

image. If, however, you don't want to store a second image, you wiD hardly be able to use

this memory (768 kByte) since it consists of 768 separate 1 kByte sections (as opposed to

linear addressable block).

GDS-II

3.2.2 Linear Addressing

31 ArdIiteclure

The video memory can be used most effectively if the shift registers are used to their full length.

This means:

24 bit/pixel:

13 bit/pixel:

8 bit/pixel:

MemInit + TransferDelay =: 128

MemInit + TransferDelay =: 256

MemInit + TransferDelay =: 512

A new transfer cycle, independent of the horizontal timing, will take place 128 pixels (256 pixels

for 13 bit/pixels; 512 pixels for 8 bit/pixel). Using this type of programming enables you to use

more than 512 pixels in horizontal orientation when in the 24 bit/pixel mode. The image format

may be chosen freely as long as it does not exceed a total of 512 * 1024 = 524,288 pixels

(1024 * 1024 = 1,048,576 pixel for 13 bit/pixel; 2048 * 1024 = 2,097,152 pixel for 8 bit/pixel).

The following figures will try to demonstrate where in the video memory the image can be

found (compare this to figures 2.2 , 2.3 , 2.4).

I
:,t1Z I tn••

I
I

~'2 I tn••

I
:'12 wor-da a , pIxel

dleplayed PClP"'t:

800)I eoo pt.e.

I
:'12 I In••

I
I

:'12 I In••

I

ClI.played pOP"t:
800)l ClOO pt •• ,

- Plxel (4 •• 4n+4•. 2045)

- Pfwel (3 •• 4n+3 • • 2047)

- Phce' (2 •• 4n+2 •• 2048)

-P'.el (1 •• 4"'+' .• 20<4:')

!H2 wonte a ... pl)(el

8 bit (Linear

Top of

Figure 3.8 800 * 600 * 24 bit

(Linear Addressing:

Top of Screen =: 0)

Figure 3.9 800 * 600 *
Addressing:

Screen =: 0)

The two above figures show the memory occupancy for" Top of Screen" =: 0 and should (!)

make it clear why Hardware-Panning cannot be used in this mode.

Note:

The image's rll"St pixel always (!) has to be placed at the beginning of a VRAM-row

when using the "Linear Addressing Mode". This means setting the "Column­

Address Component" to zero when programming the" TopScreen Register n !

GDS-I1

3.2.2.1 Calculating Top Of Screen: (Linear Addressing)

24 bit/pixel

Arcbitec:tuR

'"!

Image size: 800 * 600 pixels = 480,000 pixels.

Memory needed: 480,000 * 4 Byte = 1875 kByte

This corresponds to 937.5 VRAM rows at 512 pixels each. The last pixel will be

placed in the middle of the last VRAM-row used.

Start address: #8.0000H (Top of Screen =: °)
End address: #F5.2FFH (Top of Screen =: 0)

The unused section at the end of the video memory is 44,288 words

(173 kByte) in size. By raising " Top of Screen "15)' however, you can move the

starting and end address so that the " excess II memory (unused part of video

meory) starts at the address #8.0000H. The unused memory section " starts II

where the working memory " lets off" and can therefore be used as additional

working memory.

Calculating the optimal value for Top of Screen

The easiest way to calculate your best " TopScreen Register" value would be:

Top of Screen:: #8.0000H - number of pixels per picture

This will only work if the number of pixels per image is dividable by 512...

If this should not be the case (The image's lastpixel is not identical to the last pixel

of a VRAM row) you're going to have to correct the equation, so that partially

used rows are also considered.

Image size: 800 * 600 pixel =480,000 pixel.

Memory needed: 937.5 Rows a512 pixel

The starting address of the image has to also be the starting address of a VRAM

row. This is what you get:

Top of Screen:: #Ox80000 - 938 • 512 =#ACOOh

15) Value stored in the" TopScreen Register"

GDS-ll 33 Architecture

The calculated value represents the starting address and cannot be used directly

for the" TopScreen Register". (see chapter 3 and figure 3.5)

Use the following equation:

Top of Screen =: (1024 - 938) • 4 = 344 = 158h

44,032 words (172 kByte) of previously unusable memory are now accessible.

The remaining 1.0 kByte, however, are at the top of the video memory and still

can't be reached.

The following equations, listed according to the mode used, will deliver the optimal

" Top ofScreen "values.

General equation 3.6: (Top of Screen for" Linear Addressing" and 24 bit/pixel)

Top of Screen =4 * Int[«1024 * 512)16)- (XSIZE * YSIZE)17»18/ 512]19)

= «(1024 * 512)16)- (XSIZE * YSIZE)17»18»> 9)19)« 220)

Initialising the monitor for 24 bit/pixel: (example in OCCAM 2)

(above equation)

..VAL XSIZE IS 800

VAL YSIZE IS 600

VAL TopScreen IS

[YSIZE][XSIZE] INT VRAM

PLACE VRAM AT #80000 + « TopScreen

Initialising the monitor for 24 bit/pixel: (example in 'C')

#define XSIZE 800

#define YSIZE 600

#define TopScreen above equation

int *VRAM = Ox80200000 + (TopScreen « 9);

16)
17)
18)
19)
20)

Number of pixels in the video memory
Number of pixels per screen
Number of unused words in the video memory (VRAM)
Number of unused Video-RAM rows
The starting row (Row-Add~ss) has to be stored from address bit A2 onward, e.g. it has to be shifted 2 bits

Note: (A > > 9) < < 2 isn't identical to A > > 7 !!

GDS-rr

13 bit/pixel

34 Architecture

-,
)

Analogous to what's listed above. In this case, however, the unused memory (at a

resolution of 800 * 600 pixels) is 1.08 MByte in size, a VRAM row contains 1024 pixels

and the equation is:

General equation 3.7: (Top of Screen for" Linear Addressing" and 13 bit/pixel)

Top of Screen = « (1024 * 1024) - (XSIZE * YSIZE)21» » 10) « 2

Initialising the monitor for 13 bit/pixel: (example in OCCAM 2)

VAL XSIZE IS 800

VAL YSIZE IS 600

VAL TopScreen IS (above equation)

[YSIZE][XSIZE] INT16 VRAM

PLACE VRAM AT #80000 + (TopScreen « 7)

Initialising the monitor for 13 bit/pixel: (example in 'C')

#define XSIZE 800

#define YSIZE 600

#define TopScreen above equation

short *VRAM = Ox80200000 + (TopScreen « 9);

21) Number of pixels per screen

GDS-II

") 8 bit/pixel

3S Architecture

Again, analogous to the 13 bit/pixel mode. The unused memory is 1.54 MByte large at a

resolution of 800 * 600 pixels, and a VRAM row has exactly 2048 pixels.

The corresponding equation:

General equation 3.8a: (Top of Screen for" Linear Addressing" and 8 bit/pixel)

Top of Screen. «(2048 * 1024) - (XSIZE * YSIZE » » 11) « 2

Initialisin& the monitor for 8 bit/pixel: (example in OCCAM 2)

.-
.' VAL XSIZE IS 800

VAL YSIZE IS 600 ..
VAL TopScreen IS (above equation)

[YSIZE][XSIZE] BYTE VRAM ..
PLACE VRAM AT #80000 + (TopScreen « 7)

Initialisin& the monitor for 8 bit/pixel: (example in 'C')

-,.'
.;/

#define YSIZE 800

#define XSIZE 600

#define TopScreen

char *VRAM = Ox80200000

above equation

+ (TopScreen « 9);

GDS-ll

~
....) 3.2.2.2 "Linear Addressing A Summary

36 An:hitedul'e

When using the G300 in its" LinearAddressing Mode", you are free to choose any image format

you like. You are therefore also free to choose formats larger than 512 pixels in horizontal

orientation when using the 24 bit/pixel mode.

Hardware-Panning is not possible in the" Linear Addressing Mode", since the video memory

is used in its entirety.

If you want to use excess video memory (video memory without pixel data) as working

memory, you will have to move the image in the video memory from the "bottom " to the

" top". The necessary" Top ofScreen "values can be calculated with the equations 3.6 - 3.8. The

equation 3.9 summarizes the results.

"--.
General equation 3.9: (calculating the Top of Screen value when using" Linear Addressing")

Top of Screen = «1024 * (2048/btpp» - (XSIZE * YSIZE»*(btpp / 2048»« 2

XSlZE: horizontal pixel resolution
YSlZE: vertical pixel reolution
btpp: Bytes per pixel (btpp =4 for 24 bit/pixel, btpp =2 for 13 bit/pixel, btpp = 1 for 8 bit/pixel)

.... '

GDS-II

3.2.3 Double ButTering

37 Arch1tec:ture

The principals of "Double Buffering" are easily explained once the results of the chapters 3.2.1

and 3.2.2 are understood.

Row-Oriented Addressing in the 8 bit/pixel mode

The video memory is 2048 * 1024 pixels in size. The following figures demonstrate several

possible ways to pack smaller images into the video memory.

2048 pixel 2048 pixel

figure a

2 frames a 1024 x 1024

2048 pixel

figure c

2 frames a 800 x 600

Figure 3.10 Examples of Double Buffering

figure b

2 frames a 800 x 600

2048 pixel

figure d

3 frames a 640 x 480

Figure a shows two "Frames" at 1024 * 1024 pixels within the video memory. If the

" TopScreen Register" is given the value zero (pixel address { X, y = Ot 0 })t " frame 1 "will be

shown on the monitor. While" 1 " is being shown, "2" can be worked on by the transputer.

Showing" 2 " on the monitor so that" 1 " can be manipulated by the transputer corresponds to

moving everything to the right by 1024 pixels. The "TopScreen Register" contains the address of

the pixel { x, y = 1024, 0 }. Equation 3.4a .

The process of having two frames being alternately shown and manipulated by the transputer is

known as " Double Buffering ".

GDS-n 38 Arcbiledure

This results in the following Top of Screen values.

Figure a

Figure b

Frame 1 {x,Y .. O.O} Top of Screen .. 0
Frame 2 {x,Y .. 1024.0} Top of Screen" 1024 * 1024

Frame 1 {x,Y .. 0.424} Top of Screen ..
Frame 2 {x.Y .. 1248.0} Top of Screen" 1024 * 1248

.. 100000h

4 * 424 .. 6AOh
.. 138000h

Figure c Frame 1 {x,Y" 0.424} Top of Screen" 4 * 424 .. 6AOh
Frame 2 {x.Y .. 800.424} Top of Screen .. 1024 * 800 + 4 * 424.. C86AOh

Figure c Frame 1 {x.Y" O.O} Top of Screen = 0
Frame 2 {x,Y .. 640.0} Top of Screen" 1024 * 640
Frame 3 {x,Y .. 1280.0} Top of Screen· 1024 * 1280

Oh
.. AOOOOh
.. 140000h

"
I

'J

Linear Addressing in the 8 bit/pixel mode

Its not as easy to illustrate the distribution of more than two images within the video memory,

but it is possible to get optimal memory efficiency when using n Double Buffering n in this mode.

Just make sure that the sum of all the images' pixels does not exceed 2 * 10242.

GDS-ll

Example:

39 Architecture

A SUN-Workstation's monitor has a resolution of 1152 * 900 pixels = 1,036,800 pixels.

This requires 1012.5 kBytes of video memory, or 506.25 VRAM rows.

The fIrst image will use up 507 VRAM rows (1014 kBytes) of video memory, leaving a

total of 517 rows free for storing a second image.

The question is: how to determine the TopScreen register values for optimal efficiency ?

Both images have to be stored as far to the" top" of the video memory as possible.

Equation for calculating the Top of Screen values for both frames:

1. Frame:

Top of Screen = 4 * Int(((2048*1024)-(1152*900»/2048)
... 4 * 517 ... 814h

2. Frame:

Top of Screen = 4 * Int(((2048*517)-(1152*900»/2048)
... 4 * 10 ... 28h

The second frame starts at VRAM row 10 and ends at the first quarter ofVRAM row 516.

The first frame starts at VRAM row 517and ends at the first quarter of VRAM row 1023.

This configuration leaves you with two 1536 Byte (3/4 VRAM row) large sections of video

memory that can't be accessed, but the space at the beginning of the video memory

(20 kByte) can now be added to the working memory.

Storing two frames with a horizontal resolution of more than 1024 pixels in the video

memory simultaneously is only possible with" Linear Addressing" !

Programming the" TopScreen Register n to switch between several frames in the memory results

in Hardware-Panning. If you know the frame coordinates you can use the equations 3.4a-c

directly, depending on the monitor mode used.

GDS-n

3.3 The GDS-ll's Address Space

40 Architecture

The following lists the addresses of the various resisters. Both the hardware- and the OCCAM­

word addresses are listed.

Hardware-addr. OCCAM-word-addr.Name function

8000.0000
801F.FFFF

8020.0000
803F.FFFF

0000.0000

10000.0000
10007.FFFF

10008.0000
10009.FFFF

12000.0000

DRAM - Start
DRAM - End

VRAM - Start
VRAM - End

Ident-register
(read-only)

2 MByte working memory

2 MByte video memory

bitO = 0
bit8 = 1: Event by VSYNC ("Frame" = act ive)

OOOO.OOCO

0008.0000
OOOF.FFFF
0010.0000
0017.FFFF
0018.0000
001F.FFFF
0020.0000
0027.FFFF
0028.0000
002F.FFFF
0030.0000
0037.FFFF

0038.0000
003F.FFFF

0040.0000

12000.0030

12002.0000
12003.FFFF
12004.0000
#2005.FFFF
#2006.0000
12007.FFFF
'2008.0000
#2009.FFFF
'200A.0000
'200B.FFFF
#200C.0000
1200D.FFFF

#200E.0000
#200F.FFFF

#2010.0000

Reset-register bitO - 3: Link Reset Out
(write-only) bit4: Reset for 6300

PCSO - Start Chipselect 0 for DB-Slot A (1/2 MByte)
PCSO - End
PCS1 - Start Chipselect 1 for DB-Slot A (1/2 MByte)
PCS1 - End
PCS2 - Start Chipselect 0 for DB-Slot B (1/2 MByte)
PCS2 - End
PCS3 - Start Chipselect 1 for DB-Slot B (1/2 MByte)
PCS3 - End
PCS4 - Start Chipselect 0 for DB-Slot C (1/2 MByte)
PCS4 - End
PCSS - Start Chipselect 1 for DB-Slot C (1/2 MByte)
PCSS - End

CS-CLUT - Start ChipSelect for 12 bit-expansion (DBCLUT)
CS-CLUT - End

Base address 6300

0040.0000
0040.03FC

#2010.0000
'2010.00FF

CLUT - Start
CLUT - End

6300's Internal CLUT (256 Words t 24 bit)22)

0040.0500
0040.0580
0040.0600
0040.0680

0040.0484
0040.04BO

'2010.0140
'2010.0160
12010.0180
'2010.01AO

12010.0121
12010.012C

Mask register Read/write
Control RegisterRead/write
Top of Screen Read-only
Boot Locat ion23) Write-only I

Datapath Register - Start24)
Datapath Register - End

22)
23)
24)

The tranputers addresses 256 words a32 bit but only the lowest three bytes of every word are used!
Once programmed" Boot Location" can't be changed.
Access to Datapath Registers only possible with enabled VfG !

GDS-II

"")
_.j 3.4 The G300Reglsters

41 Architecture

The following chapters will describe the 03OO's various registers. The chapter "Datapath

Register "25) is more or less a " handbook" for the more experianced user. Connections between

monitor parameters, monitor types and resolution will not be explained in this section.

"Beginners" who do not yet fully understand the details, but still want to study and/or modify

(- mess around with) the monitor drivers should read the chapter "Programming The Video

Timings"26)'

3.4.1 Boot Location (#201001AO)

The " read-only" register "Boot Location II is the fIrst to be programmed after resetting the

system. Bits 0-4 at the address #20100lAO (Ox400680) represent the multiplication factor for

the internal PLL, thereby determining the II Pixel Clock". The PLL's input frequency is set at

5 MHz and can only be changed by installing a different oscillator.

Bit 5 is used to tell the 03OOB27) whether the internal PLL is active (bit 5 = 1) oder not

(bit 5 = 0).

All other bits have to be set to zero.

8 bit/pixel Mode:

" Clock Input "for 0300 jumpered to 5 MHz (J5).

(Jumper no ist not set)

The" Pixel Clock" can be programmed in steps of 5 MHz; Boot Location gives you the

neccessary faktor.

PLACE Boot_Location AT #201001AO

VAL

VAL

PLL IS 22

Boot_Location IS PLL \I #20

..

-- set bit 5 since the 0300

-- works in the PLL mode

.-~
:.:iJ

J 25)
26)
27)

In this example, the II Pixel Clock" is set at 22 * 5 MHz = 110 MHz.

See chapter 3.4.5
See chapter 6
Bit 5 is always set to zero when using a G300A

GDS-II 42 Architecture

Pixel clock rates of less than 32 MHz may cause problems, since the ftrst four pixel of

the video memory will not show up on the monitor.

" Clock Input "for 0300 jumpered to 32 MHz (J5).

(Jumper no is closed)

The "Pixel Clock" is set to 32 MHz, i.e. the 0300's "Clock Input" is jumpered to

32 MHz and the PLL multiplication factor is set to zero. Bit 5 has to be set to zero too.

Boot Location 5 0

24 bit/pixel Modus

The "Pixel Clock" is set at 32 MHz, i.e. the 0300's "Clock Input" is jumpered to

32 MHz and the PLL multiplication factor is set to zero.

Boot Location 5 0

Once programmed, the register II Boot Location II cannot be changed. You'll have to reset the

G300 via the II Reset Register ".

The register II Boot Location II cannot be read-out !

GDS-II

3.4.2 Control Register (#20100160)

43 Afchltec;ture

The "Control Register" is a read/write register and can be programmed at the address

#20100160 (Ox400580). The various bits represents a number of functions which will be

explained in this chapter.

Do not attempt to program the " Control Register" before the register " Boot Location" has

been programmed.

The G3OOB's II Control Register"

bit Function Co nts

31-24 Not wired Oon't care when reading the Control Register

23 Blank function switch Write zero for GOS-II

22 Pixel repeat Write zero

21 Interlace standard 1 =CCIR interlace format (europe) o =EIA interlace format (US)

20 Address step control Write Zero for GOS-II

19 Address step control 1 = Interlaced o =non interlaced

18-17 Bits per pixel Set pixel port to required pixel depth

16 Blank I/O Write Zero for GOS-II

15 Turn off blanking 1 =blanking disabled for test o =blanking enabled

14-13 Reserved Write zero

~-' 12 Black level Selects blanking level o =Blank =Black level

11-9 Oelay value Write zero for GOS-II

8 Pixel port mode 1 =mode 2 (13-24 bit/pixel o =mode 1 (8 bit/pixel)

7 Micro port mode Write zero for GOS-II

6 Reserved Write zero

3 Analogue video format 1 =video only o =video and composite sync

4 Olgital sync format 1 =seperate sync. o =mixed sync.

5 Frame flyback pattern 1 =plain synchronizing waveform o =tesselated synchronizing

2 Oevice operating mode Write zero for GOS-II

-', Screen format 1 = interlaced o =non interlacedi

0 Enable VTG 1 =VTG running o =VTG disabled

GDS-rr

Details concerning the various bits:

44 ArclJitectpre

Bit 0 =0

Bit 0 =1

stops the Video Timing-Generator (VTG)

starts the Video Timing-Generator

28)
29)
30)
31)

Setting or deleting this bit will start or stop the Video Timing-Generator (VTG). You

usually fmish initialising the G300 by setting this bit.

PLACE Control AT #20100160:

SEQ

Control := Control /\ #FFFFFFFE

This example" should II stop the Video Timing-Generator, but sometimes you will have

problems with this program sequence. If the VTO is stopped when a II Transfer cycle" is

pending, the 0300 may" hang ". In this situation it is not possible to reset the system via

"Reset PAL" because the G300 blocks the" TranspuJer Bus"; you have to use the

II Master Reset28) II or II Power-On-Reset ".

If you want to stop the VTG (neccessary when accessing the "Datapath RegisteTS29) ")

you have to alternatives.

a.) Reset the G300 using the" Reset Pal II and reprogram the chip.30)

b.) Synchronize your access to the "Control Register II with the "Vertical

Blank Pulse". During VBlank no transfer cycle will take place.31)

Chapter 7.9 gives you an example for disabling the VTO and reading

some of the II Datapath Registers ".

See chapter 2.4
See chapter 3.4.5
This is what INMOS suggests. It works, but what happens ifyou don't know the initialisation parameters
Here is what I suggest....

GDS-rr 45 An;hiledure

Bit 1,19 =0

Bit 1,19 = 1

The ODS - II is working non-interlaced

The ODS - II is working interlaced

Interlaced

Top of fl.ld ,
Top of fl.ld 0

Line 3-field 1

Line 4-freld 0

Line 5-fl.ld ,
Line e-field 0

Ltne 7-field 1

LTn. e-fleld 0

Top of 'field 0

Line 4

Line e

Line e

Top of field 1

Line .3

Line 5

Line 7

Emulating int..~loc.

'for mode 2

r-istng

1
address••

Con8ecut.ive

Non- inter I aced ..1
Standard

Top of Screen

Line 2

Line .3

Line 4

Line 5

Line e

l.. _ .

Figure 3.11 video memory organisation

When using the "Inter­

laced Mode ", the com­

plete video image is put

together out of two half

images. The "Pixel

Clock" only has to be half

as big in order to get the

(seemingly) same reso­

lution, but image repeti­

tion rate will sink. Large

areas have the same re­

petition rate as in the

"Non-Interlaced Mode ",

but edges and pixel wide lines will flicker at half the repetition rate.

You don't have to change the storage of your image in the video memory when choosing

the interlace mode since the 0300 increments the II Row-Address" for every field by 2 !

The framestore format for interlace is identical to that for non-interlace. Address

ordering depends on the standard selected. CCIR scans even lines first, NTSC scans odd

lines first32)"

Don't forget to rlivide the value stored in the datapath register II VDirplay II by 2.

The" Interlace Mode" is only available in the II Row-Oriented Addressing Mode".

If you try to use the interlace mode in the" LinearAddressing Mode II (e.g. mode 2 with

more than 512 pixels horizontal resolution) 0300 will fail to generate the transfer

address. If you want to realize a non-interlace system in mode 2 you can do it the other

way round. Set the 0300 to non-interlace screen format and store your two half-frames

at two different areas of the video memory. With every received VBlan~3) you have to

change the " TopScreen Register II so that you see alternating two different parts of the

video memory.

Bit 2 = 0 Always set bit 2 to zero.

32)
33)

Refer to bit 21; "Control Register"
See chapter 7.8 how to use the event channel.

GDS-D 46 Architecture

Bit3 =0

Bit 3 = 1

A " Tesselate Composite Sync " is delivered via the HSYNC output

A "Plain Composite Sync" is delivered via the HSYNC output

A VSYNC will always be sent to the VSYNC output, regardless of how bits 3, 4 and 5 .

The HSYNC output will only change if bit 4 is set to zero. Check the table for a

complete list.

Control bits
G300

output

5 4 3 VSYNC HSYNC

x 0 0
x 0 1
x 1 0
x 1 1

VSync
VSync
VSync
VSync

Tesselate Compo Sync.
Plain Compo Sync.
HSync34)
HSync34)

no HsYNC pu I ••• dUr"'"9 VSYNC

VSYNC

RGB
rir--,tr--.,...."....... ,.--"'1 ,..---. OU'tPU't

..§~!E- IE-h~ !
2 .. I ~!+s

rir....tr--'1,......r--i
tessela'ted

dTeplOy i p"'. equal'.. VSyf"'tC

plain ~omposite s~nc '

11 ~__---l!'r---.....,lr--u---1
po.~ equoI I •• I vertIcal blonk

s = horizon'tal sync. pulsewid'th
h = linetime E 1/horizon'tal scan frequency
b = broadpulse width = line'time/2 - fp
fp horizontal front porch
bp = horizon'tal backporch

Figure 3.12 "Tesselated/Plain Composite Sync. "

Bit 4 =0

Bit 4 = 1

"Mixed Synchronisation"; a Composite SYNC is delivered via the HSYNC

output ("Plain Compo Sync "for bit 3 = 1 - " Tesselate Comp.Sync " for bit 3 =

0).

HSYNC34) and VSYNC are delivered separately

Bit 4 has no influence on the "Composite Sync" modulated on to RGB output

(bit 5 = 0 !).

34) No HSYNC pulses will be generated during VSYNC

GDS-n

BitS =0

Bit 5 = 1

47

" Composite Sync " is modulated to the ROB-output

Sync-signals will only be delivered via HSYNC, VSYNC outputs

Architecture

Most analog monitors are synchronized by a " Composite Sync " modulated to the ROB­

outputs. Here, a few typical monitors:

EIZO FLEXSCAN 8060, 9070, 9500

NEC MULTISYNC OSll, XL

SONY ODM 1601, 1602, 1901, 1950, 1952

When in doubt, try reading the instructions. Most monitors can be controlled by either a

modulated" Composite Sync. " or a separate Sync-signal.

The G300's outputs HSYNC and VSYNC are always" active low n35) (negative Sync.).

Its not possible to change the polarity.

The external SYNC signal's polarity will usually not matter, since most monitors will

switch automatically. (remember to check your monitor's manual)

Bit 6, 7 =0

Bit 8 =0

Bit 8 =1

Always set bits 6 and 7 to zero !

The 0300 will work in mode 1; i.e. 2,4 or 8 bit/pixel mode36)" .

The 0300 will work in mode 2; i.e. 24 bit/pixel mode (13 bit/pixel mode with

DB-CLUT expansion).

Changing between the two modes per software is not enough, jumpers J5, J6, J7 and 110

have to be changed accordingly too'37)

Bit '-IS =0 In normal use, bits 9-15 should be set to zero.

35)
36)
37)

HSYNC and VSYNC are active high. when using the GJOOA chip.
1,2 and 4 bit/pixel are only available with the G300B chip
Jumper 8 has to be changed too, when using the G300A

GDS-" 48 Architecture

.-

The following bits 16 - 23 can only be set (and read) in a G300B. H you are using a G300A ­

set them to zero !

Bit 16 = 0

Bit 17, 18

In normal use, bit 16 should be set to zero

The G300B offers the option to store more than 1 pixel in each word. The

following table tells you how to do this.

Control
bits
18 17

a a
a 1
1 a
1 1

mode

1 bpp
2 bpp
4 bpp
8 bpp

Address
of ClUT
(In Hex)

'00 - '01
'00 - 103

'00 - 'OF
'00 - 'FF

(bpp =bits per pixel)
(Offset of ClUT-address = '2010.0000)

The last column shows the part of the CLUT that is used for programming. In the 8 bpp

mode you can choose between 256 different colours - the whole CLUT is used (256

words with 24 Bit each).

In the 2 bpp mode 4 colours out of a 22A palette can be chosen. Each pixel is 2 bits wide

but you need only 4 of the CLUT's memory cells38)"

Using the 1 bpp mode you can store 8 pixels in every byte; only two different colours are

available then.

Bit 19,1 = 0

Bit 19,1 =1

Bit 20 =0

The GDS - II is working non-interlaced

The GDS - II is working interlaced

In normal use, bit 20 should be set to zero

38) The rust four memory cells with the addresses ooסס#2010 - #20100003

GDS-n

Bit 21 =0

Bit 21 =1

49

Output signal performs the It EIA-343 studio television standard "

Output signals performs the" CCIR studio television standard ".

Architecture

Bit 21 is only acted on when using the G300 in the" Interlace Mode".

The EIA-343 standard is used in the US and well known as the" NTSC - standard It,

whereas the CCIR standard or "PAL - standard " is used in europe.

CCIR scans even lines fIrst (even fIeld), NTSC scans the odd lines fIrst (odd fIeld).

Bit 22 =0 In normal use, bit 22 should be set to zero

Bit 22 was reserved for implementing a "Hardware Zoom " option. This mode didn't

work on the first G300B chips39)" Instead of correcting this bug, INMOS now tells us to

program it to zero.

Setting this bit is not dangerous, but gets interesting and amazing results.....

Bit 23 = 0 In normal use, bit 23 should be set to zero

Bit 24-31 = 0 Bits 24-31 are not wired and will be ignored.

39) G300BOl

GDS-I1

3.4.3 Mask Register (#20100140)

so ArchitectuR

The " Mask Register" can be used to mask incoming pixels. The value stored in the "Mask

Register" is combined with every pixel through an AND-function. If you forget to program the

II Mask Register II after resetting the G3004O). the entire monitor will assume the colour listed in

the fIrst CLUT word (address #2010.0000). If the eLm's still empty. then the screen will be •

too (dark).

3.4.4 Top Of Screen (#20100180)

The register" Top Screen "is explained (functions & programming) in full detail in chapter 3.2.

There are two methods of accessing this register. The fIrst method is by the name of " Top of

Screen" at address #2010.0180 and. the second, by the name of "Line Start" at address

#2010.012A (see" Datapath Register "41)). The difference is, that access via the register" Line

Start" is only possible if the Video Timing-Generator (VTG) is inactive, whereas writing into

the register" Top ofScreen" is only possible if the VTG is running....

As a consequence, the basis address of an image has to be programmed into the "Line Start

Register ", when the system is being initialised. After the VTG is running, however, it has to be

modifIed by way of the register" Top Screen " (panning, Double Buffering, etc).

It's a good idea to synchronize access to the II Top Screen Register" with the "Vertical

Blank Pulse" to prevent flickering on the screen.42)

The register at the location of "Top Screen" is not readable !

40)
41)

42)

All registers, even the" Mask Register', are set to zero after a reset.
See chapter 3.4.5
See chapter 7.8

GDS-II 51 ArcbitectuR

J 3.4.5 Datapath Register (#20100121- #2010012C)

During initialising (running VTO prevents access), the "Datapath Registers" are fed all

parameters necessary for the 0300 to generate" video timings". The timing parameters for

some of the more widespread monitor models are listed in the appendix and also delivered with

the ODS-II in the form of test programs on a diskette. There's an example in chapter 5.1

explaining how to figure out the correct register values from the monitor parameters supplied

by the monitor manufacturer.

All values are given in periods of" Serial Clock" or in half-lines. Note:

Serial clock = 1/4 Pixel Oock = 1/4 Dot Clock

Example:

A monitor requires a Pixel Clock of80 MHz. This means that all time values will be

stated as multiple of50 ns.

Register Address Unit Note

HalfSync 1121
BackPorch #122
Display 1123
ShortDi splay #124
BroadPulse 1125
VSync #126
VB lank 1127
VDisplay #128
Linetime 1129
LineStart 112A
HemInit 112B
TransferDelay 112C

SClk
SClk
SClk
SClk
SClk
Ha If-l ine
Ha If-line
Half-line
SClk
SClk
SClk
SClk

chapter 3.4.4
chapter 3.2.1.3
chapter 3.2.1.3

This figure demonstrates the

different cycles which compose the

video timing.

St9nd9~d ~ul! scan line

r--_~A~ ----,l-
~~I< >1< >l~ >IHol~ Bock Drsplay 'jron~

Sync Porch Porch

< Lfnetfme >
Shoet scgn I Tne

Equpl IS91:loo eyel.

Vertlcq' Syng eycle

Figure 3.13 Horizontal Timing

Br"oodpulse:<

A L-
~~I< >k :J~ >1

Ho i l' ,Bock Shor1; rent
Sync Porch 0 I ep I. Porch

< Hal¥ Lfnetlme >

II Standard Full Scan Line"

represents a standard row

whose timing is determined

by the registers HalfSync,

BackPorch, Display and

Linetime. (Linetime has to

be an even number.)

There's no need for a

GDS-U 52 Architecture

register named FrontPorch since its value can be calculated using the other values.

eFrontPorch = Linetime - Display - Backporch - 2 * HalfSync).

note the following restrictions: FrontPorch < ~ Linetime

2 • HalfSync + BackPorch < ~ Linetime

" Short Scan Line" is generated in the" Interklced Mode " at the beginning of the fIrst half image

and at the end of the second half image. Even though the value of the register

ShortDisplay is a direct result of the other registers, it still has to be programmed into

the appropriate register separately. This register must be programmed even when the

G300 is working in the II Non-Interlaced Mode ".

ShortDisplay = ~ Linetime - 2 * HalfSync - FrontPorch - Backporch
FrontPorch = Linetime - 2 * HalfSync - BackPorch - Display
ShortDhplay • Display - ~ Linetime

"Equalisation Cycle " is generated prior to and after the actual " Vertical Sync" is generated, and

is just as long as the II Short scan line •.

" Vertical Sync Cycle" This is the VSYNC. You need the length of" BroadPulse" in order to

generate this cycle. The equation for calculating the value of the register of that name is:

BroadPulse = ~ Linetime - FrontPorch
BroadPulse • Display + 2 * HalfSync + BackPorch - ~ Linetime

Ji" • h .:
2~!'E"!E-1 ~:

~ l'i"s

no HS'YNC eyel •• ~ ... 1"9 YS'rNC

V SYNC

HSYNC

s = horizontal sync. pulsewldth
h = linetime = 1/horizon~al scan frequency
b = broadpulse width = Ifnetlme/2 - ~rontporch

lJ
This figure demonstrates

the manor in which the

various rows are put

together. The number of

" Standard Full Scan

Lines", Le. the vertical
plain ~ompOSi~e s~nc i :

pixel resolution, is listed inlJ~~_"*" ~I1==::::;:::==::::;i'"'i'.E--_-_-_-_-_-_~u--u-u--k~~~~:~_
the register VDisplay as a)jE :~~Ol ise)jE VSYNC)jE :~~~I ise)iE ~7:~~co')jEOiSPIOY

multiple of half-lines.

After the last image row,

the "Pre Equalise Cycle"
(also known as the Figure 3.14 Vertical Timing

" Vertical Backporch ") starts. This has the same length as the VSYNC. An equally long" Post

Equalise Cycle II is attached to the VSYNC. Then, at last, comes the actual VBlank.

GDS-n 53 Architecture

The term VBlank is used a little ditTerent in this context (see below).

Standard term

Vertical Blank
Vertical Backporch
Vertical Frontporch

Transfer Delay

Definition for G300 use

=3 * VSync + VB lank
PreEqualise = VSYNC
PostEqualise + VB lank = VSYNC + VBlank

" Transfer Delay" determines the time span the 0300 will need for a complete" Transfer

cycle". It is only determined43) by the ODS-n and does not depend on the monitor

used..

Always pay attention to the following

restrictions for .. Transfer Delay" if you want

your 0300 to function properly.

TransferDelay < BackPorch

TransferDelay < ShortDisplay

That means you can't make the BackPorch as

short as you want.

For the sake of being complete - a table for

8 bit/pixel and 17.5 MHz "Processor Clock".

The smallest possible value you can store in

BackPorch is:

BackPorchMin =TransferDelay + 1

43) See chapter 3.2.1.3

PixelClock TrQelay

30 MHz 10
35 MHz 11
40 MHz 12
45 MHz 13
50 MHz 14

55 MHz 15
66 MHz 16
65 MHz 16
70 MHz 17
75 MHz 18
80 MHZ 19
85 MHz 20
90 MHz 21
95 MHz 22

100 MHz 23
105 MHz 24
110 MHz 24

GOS·U 54 Architecture

MemInit

The sum of " Memlnit " and" Transfer Delay" corresponds to the length of the VRAM's

shift register in the" LinearAddressing Mode ". The sum is otherwise, i.e. " Row-Oriented

Addressing ", identical to the number of horizontal pixels.

Note:

Access to the Oatapath Registers is only possible, when the Video Timing Generator is not

running!

If you want to check one or more of the datapath registers, it is necessary to stop the

VTG by setting bit 0 of the Control Register to zero.44)

3.4.6 CLUT (#20100000)

The CLUT is located at address #20100000 (Ox400000). If you want to modify the CLUT

when the VTG is running refer to chapter 7.8.2.

Note for" C " programmers:

red information, 1st word: Ox400000

green information, 1st word: Ox400001

blue information, 1st word: Ox400002

red information, 2nd word: Ox400004

red information, 3rd word : Ox400008

44) It's more complicated as it sounds. Please check chapter 7.9.

GDS-II

3.4.7 Ident Register (#20000000)

55 Architecture

........

-.-

The" [dent Register". This register can only be read, and is in contrast to other Parsytec boards

(MTM 2-10, MTM 2-11), limited in its functions. If an "[dent Register" is present on the

board, you can use it to identify a given board within a transputer network. There is, however,

an easier way to do this on a GOS-II. Write a series of random numbers into the CLUT and

then read it out. Compare what you got out to what you wrote in and check for write/read

errors. If there are none then you are dealing with a GOS-IT since no other Parsytec board has

memory or register placed at the address #20100000.

Bit 0 in the II Ident-Register II is always zero•

This makes sure that it will be compatible to the INMOS " TOS-development system".

Bit 8 in the II Ident-Registers II shows you if the signal VSYNC is active at the moment.

This tells you if an event is caused45) by a connected Oaughterboard or by a VSYNc.

45) See chapter 7.8 "Synchronizing With The VenicaJ Blank II

~
)

--
-,

/

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

(

r;i
~

7
l

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

#
~
"
-

~. '
L
.
-
~

;
O
~
t
H
>
O

o
a-

e
a-

e
01

J
1

D
B-

D
IV

l
d

ln
b

le
/l

e
m

b
le

)
o

a-
e

a-
e

0
o

a-
e

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

~i g,
J2

1'
fe

tM
)r

)'
co

n
fi

gu
ri

tI
on

o o

If
..­
~ .J::
:..

~
. ~ ~ 3 ~ 0 ~ - ~ 0 ~

.
•·1

·
••

•
••

J3
P

ro
ce

ss
or

"
sp

ee
d

se
le

ct

J4
L1

ric
sp

ee
d

se
le

ct

JS
C

lo
dc

se
le

ct

~
0

0
0

X~
~

J6
M

od
e

se
le

ct
PL

L
e
n

ib
le

/l
d

ls
ib

le
)

O
ut

pu
t

co
n

'U
lJ

In
tI

on

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

0
•
•
•
•

•
•

0
0
•
•
•

0
•
•
•
•
•
•
•
•

0
•
•
•

0
.

S
lo

t
C

'0
-•

•
0
•
•

-•
•
•

0
•
•
•

•
•
•
•
•
•
•
•

0
•
•
•
•

S
lo

t
B

....
.,

0
•
•
•
•

I
'..

rt
od

e
se

le
ct

J7
J8

J9
o

a-
e

a-
e

0
0

0
.-

-.
-0

-•
•
•
•
•

-
.

•
•

•
•
.
.
.

•
•

•
•
•
•

«P!
•
•
•
•
•
•
•
•
•
•

0
•
•

0
0

.
0

•
•
•
•
•

6!

S
lo

t
A

····
··J

10

M
et

ao
ry

co
M

lg
u

ri
tI

on
P

ro
c

sp
ee

d
se

le
ct

L
lr

ic
sp

ee
d

se
le

ct
C

lo
dc

se
le

ct
I1

0d
e

se
le

ct
T

es
t

J
ll
iI

p
e

I'
Jl

e
PL

L
em

b
le

/d
ls

ib
le

II
;~

J2
m

I!!I
Le

20
I1

IV
s

!o
a-

e!
C

lk
•

5
II

lz
10

a-
e!

,
M

od
e

I
:

M
od

e
2

G
!a

-e
!

PL
L

d
ln

b
le

a-
e

0
2S

II
fz

!a
-e

O!
C

lk
•

ex
t

C
lk

!a
-e

01
o

a-
e

0
0

L
I,

2
,3

2
0

M
B

1
s

M
od

e
3

m
D

Le
Ie

I1
B

/s
JS

J7
J9

100
no

t
ch

an
ge

o
a-

e
20

II
fz

~
~

L
I,

2
,3

Ie
I1

B
/s

PL
L

en
ib

le
/d

ls
A

b
le

th
e

te
st

ju
m

pe
r

o
a-

e
M

od
e

se
le

ct

~
3

P
ro

<
"
"
I
u
m

eL
e

Ie
I1

B
/s

ro
o

l
G

30
0B

T
es

t
JI

II
Ilp

e
r'

J9
an

d
J1

1
(
!)

a-
e

0
17

,5
II

lz
~
~
~

M
od

e
I

!o
a-

eo
!

10
a-

el
o

a-
el

of
P

ro
c

cy
cl

es
o

a-
e

~
0

L
I,

2
,3

20
M

B
ls

0
0

0
0

0
0

5
P

ro
c

cy
cl

es
J3

G
30

8A
J

11
_

6
P

ro
c

cy
cl

es
9

Le
20

M
B

ls
m

M
od

e
21

I2
:.Q

-H
l

PL
L

en
ib

le
o
~

L
I,

2
,3

Ie
M

B
ls

0
0

0
M

od
e

3
~

..Q
.Q

J
PL

L
d

ln
b

le
J4

J6
J8

i_. 1= ::s

GDS-II

Jl; Confieuration Of Slot A

Description of ~umper ~1:

58 Jumper Description

DMA - Doughterboord (DB-DMA)

-••,;/

not i nsto 1 led

Figure 4.1 Jumper J1

i nsto I led

: ..;:

Jumper J1 determines how slot A can be used..

DB-DMA Disable:

- Slot A can be used for either a DBI-x module (I/O Daughterboard) or a DBT-x

Module (Processor Daughterboard).

DB-DMA Enable:

- Slot A can be used for a DBT-x Module (Processor Daughterboard) or for a DB­

DMA (DMA Daughterboard).

GDS-n

J2; Memo!)' Confieuration

59 .JumPer Desqiption

Description of ~umper ~2 Jumper J2 determines the number of" Processor Cycles"

per memory access. The possible values are based on the

"Processor Clock" and the type of RAMs used. The

following table lists possible resulting cycle times.

3 4 5 6
Processor cycles

Figure 4.2 Jumper 12

Proc cycles 3 4 5 6

17.5 MHz pca (171 ns) 229 DS 286 ns 343 ns
20 MHz pca (150 ns) 200 DS 250 ns 300 ns
25 MHz pca (120 ns) (160 ns) 200 DS 240 ns
30 MHz pca (100 ns) (133 ns) (167 ns) 200 DS

PCO = Processor Clock Out

The cycle duration is one of a RAMs characteristics and is influenced by its access time. Sine

the GDS-ll's video memory is equipped RAMs with access times of 100 ns and cycle times of

190 ns one should try to stick to the times listed in boldface type.

Using faster RAMs for the working memory is possible, but not very practicable as long as the

video RAMs are only available with access times of 100 ns. Both the working- and the video

memory have to have the same memory configuration.

Its unwise to try to use shorter cycle time than 190 ns. Even if there are no recognizable

memory errors, the higher power losses will cause the RAMs to age faster and the (resulting)

higher temperatures may damage other components.

GDS-U

J3 Processor Speed Select

60 Jumper Description

Description of ~umper ~3

Processor speed

17.5 20 25 30 MHz

13 sets the transputers "Processor

Clock ". The transputer is constantly

supplied with a 5 MHz input

frequency from which it generates its

own "Processor Clock" (using a PLL

circuit). Setting jumper J3

determines the factor with which the

5 MHz input frequency is multiplied.

The maximal "Processor Clock ",

Figure 4.3 Jumper 13 allowable for a transputer is printed

on its housing; IMSTSOOD 025S

means: INMOS T800; revision D; 25 MHz (the letter S signifies the housing type).

Never drive a transputer at a " Processor Clock" greater than the value printed on its housing.

Of course its possible to slow a transputer down with a lower frequency (e.g. running a 25 MHz

transputer at 17.5 MHz Processor Clock), but this rarely makes sense. You can run a ODS-II

with 25 MHz "Processor Clock" .even though all other network transputers are running at

20 MHz or even 17.5 MHz. Link communication between processors will function trouble-free

as long as they are all supplied with an identical input frequency (5 MHz).

GDS-I1 61 Jumper Desqlptlon

J4 Link Speed Select

Description of Jumper J4

(Pin Ifnk 'peed connected t9 yee)
Link 1.2.3 20""a (not: ol'l'ect.ed by J4)

20 ..,.10..,.

20..,.

(not. a~l'ect.ed by ~. >

20 ..,.Link 0

Link 1.2.3

(Pln link 'peed n9t connected)

(PIn lInk 'peed connected So GNP)

Figure 4.4 Jumper J4

By setting jumper J4 you can

determine wether the Link data

transfer rate will be 10 or 20 Mbit/s.

5 Mbit/s will not be supported. The

data transfer rates for Links 1, 2 and

3 cannot be set separately. The

"Link Speed" signal represents a

new development on Parsytec

boards. This signal can be accessed

on the (96-way) VG connector's 26B

pin and used for external Link

speed adjustments. The data transfer

rates of Links 1, 2 and 3 are set to 20 Mbits/s if this pin is set to VCC, and to 10 Mbits/s if the

pin is set to GND. The transfer rate can only be set via J4 if this pin is not connected Link O's

transfer rate is not affected by the" Link Speed" pin and can only be changed by resetting J4.

The " Link Speed" pin is an expansion that will be available in future systems.

Up till now, all backplanes have been delivered with a high resistance pin 26B (the pin is not

connected). The Link speed is therefore determined by the J4 setting.

.,

CDs-n 62 .Iumper Description

.IS GJOO Clock Select

Clock input for G300

Description o~ ~umper ~5

Figure 4.5 Jumper J5

32 MHZ

HOI
5 MHz

10HI

The ODS-IT is equipped with two frequency generators.

One of these generates the 5 MHz signal used by the

transputer to time its work cycles. This 5 MHz can also

be delivered to the 0300 by setting J5 appropriately. If

this is the case, the 0300 will use the signal to generate

its own internal "Pixel Clock" which can then be

programmed in steps of 5 MHz. l)"

J5, however, can also be used to rout the second

frequency generator's signal to the 0300 (usually

32 MHz). This is done in modes 2 and 3 (24 bit/pixel & 13 bit/pixel).

-',

.16• .17 Mode Select

Description of ~umper ~6

m
Mode 1

Belt/pI".,

Mode 2 + .3

12ea/pl".,
24el tIp 1".,

Use jumper J6 for internal switching. In the 0300's mode

1 there are 8 bit/pixel whereas in mode 2 (at a reduced

pixel resolution) you get 24 bit/pixel.

As the 0300 does not differentiate between modes 2 and

3 (13 bit/pixel) you will have to " tell" it by setting 17

appropriately.

Figure 4.7 Jumper J6

Description of ~umper ~7

10M IS01
Mode 1 + 2 Mode.3

Belt/pl"el 12elt/pl".,
24eft/pl".,

Figure 4.8 Jumper 17

l} Register" Boot Location" at address #20l00lAO; see chapter 3.4.1

GDS-n

"---..' J8•.I10 Mode Select

63 Jumper DeKri»tion

Description of ~umper ~a

100 HI I<H0 01 G:300A

100 HI 10 (M) 01 G:300B

Figure 4.9 Jumper J8

Description of ~umper ~'o

~ PLL enable

lSI PLL disable

Figure 4.10 Jumper 110

J9•.Ill

J8 is only used with the G300A chip. The G300A chip has

two different • Clock Inputs· and J8 determinates which

input is used.

When using the G300B it is not neccessary to change

jumper J8 when setting your GDS-n to another mode.

110 is used to short circuit the PLL's external

condensator. Every time you use the external 32 MHz

oscillator for generating the • Pixel Clock· (mode 2:

24 bit/pixel and mode 3: 13 bit/pixel) 110 you have to

set.

One of the following chapters will contain the jumper

setting for various modes in deta~r

:'--~~.~~

:...,/

Description of ..Jumper ..J9 and ..J11

..J9 ..J 1 1

Do not change this jumper

Reserved for testing!

Figure 4.11 Jumper J9 and 111

2) Chapter 9.1 •Appendix •

Jumpers J9 and Jumper J11 are only

used when starting the GDS-IT for

the fIrst time or when testing it.

Please, try not to change their

settings.

'- .,'

GDS-n

J12 Output ConOpration

Description o~ Jumper J12

64 Jumper Description

-,,.'

(_.

Clock input of G300

~ is not connected

~ is connected

to pin 22A o~ the
96 way connector

Figure 4.12 Jumper J12

By setting jumper 112 you can rout the " Vuleo Clock"

(5 MHz or 32 MHz depending on the setting of J5) via

the Link backplane to other systems (take a look at the

video output's pin layout)3)'

3) See chapter 2.2 and 8.8 - signal HCIk

GDS-IT 66 Dau&bterboard Connectors

5. Daughterboard Connectors

The following table lists, which additional modules can be inserted into which slots.

Slot C Slot B Slot A

DBI-x DBI-x DB-DHA
---- DB-CLUT ---- DB-DHA
---- DB-CLUT ---- DBT-1

DBI-x DBI-x DBT-l
DBJ-x ---- DBT-4 ----

DB-DMA:

.~)

This is an additional board that can only be used together with a ODS-II. It may only be

inserted into slot A, which means that you will have to configure the slot accordingly

with jumper J1. The DB-DMA is equipped with a second transputer that has no external

working memory1)' This transputer also (together with the base board transputer) has

access to the video memory, making it possible to transfer data to the video memory via

a total of eight Links. The DB-DMA is connected to Links 4 - 7 (see

figures 2.0 and 2.1).

DB-CLUT:

installed 1

Inst.ol I adapt.e,...

if DB-CLUT is not

Installing an adapter board if a

DB-CLUT is not used

Another additional board

that can only be used on

a ODS-II. It has to be

inserted into both slots B

and C. Since a DB-CLUT

needs signals that are not

obtainable on a standard

slot connector, slot B is

equipped with an addi­

tional (72-way) connec­

tor. An adapter IS

delivered together with

the ODS-II especially for

this connector, and

DB - Slot. ADB - Slot. B

Figure 5.0

1) From revision 1.1 on also with 1 MByte or 4 MByte working memory.

GDS-n 67 DauPterboard Connectors

'-

f)

should always be used when not using a DB-CLUT. The adapter also has to used if a

DBI-x is inserted in slot Cor B.

A DB-CLUT makes an additional mode (13 bit/pixel) possible. In this mode, two

pixels are stored per word, thus representing a compromise between high colour

resolution (24 bit/pixel) and high processing speeds (8 bit/pixel).

DBT-I:

This is a standard transputer node with a 1 MByte~) that may only be inserted in

slot A. Its Links are connected to the ODS-II's Links 4 - 7. Links 4, 5 and 7 are

accessible on the Backplane, Link 6, directly on the ODS-II (see Figures 2.0 and 2.1).

DBT-4:

Just like the DBT-1, except that it has a 4 MByte RA~r It has to be inserted into both

slots A and B, since it needs two slot connectors and only slot A has the necessary Link

connections.

DBI-x:

DBI-x stands for DBI-1, DBI-2, etc. Any time you insert a DBI-x module in slot A, you

will have to set jumper 11 appropriately.

2)
3)

4 MByte working memory if equipped with 4 Mbit DRAMs.
16 MByte working memory if equipped with 4 MBit DRAMs.

GDS-II 69 Video Timinl

6. Calculating a Video Timing:

Establishing a video timing is explained on hand of the following example using an EIZO

9070H-S.

The appropriate manual page copied in figure 5.0.

Timing Charts

F
K ~

Videa --, D I E L
~ : ,

"'-,)()(

Sync A W C

Preset Timing A 8 C 0 E F

Enhanced Graphics H u~ -0.1 4.9 1 .6 6.4 39.4 45.8

fH:21.85kHz V m~ 0.05 0.6 0.1 0.7 16.0 16.75

Personal System2 H u~ 0.6 3.8 1 .9 6.3 25.48 31.78

fH:31.5kHz.350Lines V m~ 1.2 0.06 1.9 3.16 1 1. 1 1 14.27

Personal System2 H u~ 0.6 3.9 1.9 6.3 25.48 31.78
(Analog)
fH:31.5kHz.350Lines V m!; 0.4 0.06 1 . 1 1.56 12.71 14.27

Personal System2 H u!; 0.6 3.9 1 .9 6.3 25.48 31.78
(Analog)
fH:31.5kHz.350Lines V m!; 0.35 0.06 1 .0 1 .41 15.26 16.67

CAO.CAM use H u~ 0.68 1.77 3.04 5.49 14.62 20.11
(Analog)
fH:49.8kHz.768Lines V m~ 0.48 0.12 0.60 1.2 15.44 16.64

Figure 5.0 The EIZO 9070's timing diagram

We want to use the monitor at its highest reolution (1024 ... 768), so only the bottom line will

be relevant.

Line time (F): t = 20.11 usz
Display length (E): t d = 14.62 us
Pixel Clock: f c = 1024 / 14.62 us = 70.04 MHz
Horizontal resolution = 1024 pixel

The " Pixel Clock" is set at 70 MHz. This results in:

Boot Location = 14

GDS-n

r
I

'-.. The horizontal resolution is 1024 pixel.

Display • ~ * 1024 • 256

70 Video Timlne

Linetime = %* t * f = %* 20.11 us * 70 MHz • 351.9z c
Linetime • 352

HSync (B):
BackPorch (C):

t h = 1. 77 us
t bp = 3.04 us

HalfSync = ~ * t h * % * fc = l/S * 1.77 us * 70 MHz = 15.5
HalfSync • 15

,'-,

BackPorch = t * ~ * fh = %* 3.04 us * 70 MHz = 53.2bp 4

BackPorch =53

The vertical resolution is 768 lines.

VDisplay • 768 * 2 • 1536

VSync (B):
VBackPorch (C):

VFrontPorch (A):
Vert. Blank (0):

tv = 0.12 ms
t vbp = 0.6 ms
t vfp = 0.48 ms
t Vb = 1.2 ms

It is not possible to adjust" Vertical Frontporch " and" Vertical Backporch " separately. The 0300

only allows you to alter the length of the" Vertical Blank ".

Note:

Vertical Blank = Pre Equalisation + VSync + Post Equalisation + VBlank

VSync =Pre Equalisation =VSync =Post Equalisation

For the parameters calculated at this point you get a line time of:

t z = 4 * Display Ifz = 4 * 352 I 70 MHz = 20.11 us

VSync = tv I t z = 120 us I 20.11 us = 6 lines
VSync • 12

GDS-U 71

Vertical Blank = t bit = 60 1inesv z

Video limina

VBlank = Vertical Blank - 3 * VSync
VBlank = 60 - (3 * 6) Rows • 42 lines

VBlank • 84

The other parameters result from the values established so far.

ShortDisplay =Display - ~ Linetime • 256 - 176 • 80
BroadPulse = Display - %Linetime + 2 HalfSync + BackPorch
BroadPulse =80 + 30 + 53 • 163

The calculation of the following values is explained in chapter 3.2.1:

TransferDelay = 14
Memlnit = 512 - 14 = 498
MemInit = 256 - 14 = 242
LineStart • 0

(25 MHz Transputer, 8 bit/pixel)

(Linear Addressing - panning not possible)

(Row-Oriented Addressing - panning possible)

(image starts at address #8.0000)

The screen refresh rate can be calculated using the following equation:

fv = [% * (VBlank + 3 * HalfSync + VDisplay) * rowlength] -1

= [% * 1656 * 20.11 us] -1 = 60 Hz

Checking to see if all conditions were met:

ShortDisplay> TransferDelay

BackPorch > TransferDelay

2 * HalfSync + BackPorch + Display > ~ * Linetime

80> 14

53> 14

339> 176

GDS-II 72 Video Timine

~~~,.,
~(

The table on the left summarizes our calculated parameters, the table on the right compares the

resulting values with the values theoretically required by the monitor.

Calculated resulting required
parameters Segments Time Time

Linetime = 352 Rows length 20.11 us 20.11 us
Display = 256 HSYNC 1.71 us 1.77 us
HalfSync 15 HFrontPorch : 0.74 us 0.68 us
BackPorch = 53 HBackPorch : 3.03 us 3.04 us
VDisplay = 1536 VSync 0.12 ms 0.12 ms
VSync 12 VFrontPorch : 0.12 ms 0.48 ms
VBlank = 84 VBackPorch 0.97 ms 0.60 ms

Vert.Blank : 1.21 ms 1.20 ms

As you can see in the right hand table, the calculated values are more or less equal to those

required by the monitor. The only major differences are in the time spans for VFrontPorch and

VBackPorch. The critical values for Vert.Blank and VSync, however, are exactly what they

should be.

rn everyday use, most monitors can usually handle moderate deviations in timing quite well.

The timing listed in the appendix for the EIZO 9070 is in some points a lot different from what

the manufacturer suggests, but is easily tolerated and shortens the time necessary for adapting

to the horizontal scan frequency.

Error analysis ( finding the &!itch );

The monitor screen stays black:

The monitor's not synchronizing - horizontal scan frequency

The G300's Mask Register isn't programmed and is blanking each pixel

TheVTG isn't running ( Control Register bit 0 =0 )

HSync is too short

TransferDelay> BackPorch

Linetime too short or BackPorch too long, this results in a negative horizontal

FrontPorch.

An error in the calculation of ShortDisplay or Broadpulse

VBlank or VSync too short

The monitor's" whistling ":

The monitor's not synchronizing - horizontal scan frequency

The picture'S left edge is hazy or unrecognizable:

The Horizontal BackPorch is too short



GDS-n 73 Video Timine

'.'-

Pale or wrong colours:

The Horizontal BackPorch is too short; the monitor isn't able to manage the

colour balance.

The upper edge of the picture is in a transient state:

Either VSync, VBlank or HSync are too short

Colour shifts within the picture or picture distortion:

The monitor has to be rebalanced or replaced.



GDS-II

7. Software Examples

7.1 Booting The GDS-II

7S Software

The way the GOS-ll's transputer is configured, it can be booted via any of its four Links. After

resetting (" PowerOn-Reset ", "Master Reset II or II Link Reset "), all Links have the same

function and are waiting for the boot-code. The first data that the transputer receives by any of

the Links will be interpreted as a programcode and executed.

The GOS-II can be used as a normal transputer node under MultiTool. The user will then have

~'\ a total of 4 MByte of memory with an access time of 100 ns. Since the working memory and the

video memory are immediately next to each other, the transputer will treat them as one.

The G300 will not perform any II Transfer Cycles II until the Video Timing-Generator has been

started by setting the II Control Register's II bit O. As a normal transputer node, the GOS-II with

perform exactly like any other 4 MByte transputer node ( e.g. TPM-4 ).

7.2 The GDS As A Host Under MultiTool

If you boot a GOS-II as a host with MultiTool, MultiTool will take up the entire memory,

including the video memory.

MultiTool5.0 offers an parameter that will limit the size of memory it will take over.

MTOOL -s ooסס#20

If you start MultiTool in this manor, it will only use the bottom 2 MByte of memory e.g. the

working memory. ( #200000 HEX =2,097,152 bit =2 MByte)

Your II EXE II may not work, ifyou don't to start MultiTool this way.



GDS-n

7.3 The GDS As A Slave Under Multitool

76 Software

...;....

The GOS-II is booted just like any other standard transputer node via one of its four links. The

G300 can be initialized in advance by a separate program or else during the main program by a

appropriate process. The complete parameter sets can be used directly1) or you can install a

library access1) into the program.

7.4 X - Windows Under Hellos On A GDS-n

There are only minor differences between using X-Windows on a GOS-II and using it on a

GOS:

Copy the GOS-II specific device driver" gds2.d " into the directory "/helios/lib ".

e.g.: cp /a/lib/gds2.d /helios/lib

The attribute II SELECT_MODE" has been added to the configuration directory ''xrc'',

making it easier to choose a certain mode of operation. Chapter 3.4.5 explains the

various parameters.

To have full access to the GOS-Il's working memory, specify it correctly in the

appropriate" Resource Map ". A node" GOS-II" could, for instance, be defined like this

( excerpt from the" Resource Map" )

terminal GDS2 {-Oa",; SYSTEM;

memory # 200000 ;

ptype TaOO ;

}

In this example, the video memory is used solely as a" Vuleo Buffer". Inserting the line

.( memory # 300000) will cause X-Windows to use the video memory's bottom Megabyte as a

working memory too, thus managing a total of 3 MBytes of free working memory.

Using a GDS-n as a Hos.t node under X-Windows is theoretically possible, but you don't want

to try it.

1) See chapter 9.2



GDS-rr

7.s Link Software Addresses

77 Software

After declaring the channels, use the following PlACE statements to coordinate the channels

to the physical links.

PLACE LinkO.Output AT #0 ··
PLACE Link1.0utput AT #1 ··
PLACE Link2.Output AT #2
PLACE Link3.0utput AT #3 ··
PLACE LinkO.Input AT #4
PLACE Link1.Input AT #5

. ....,
PLACE Link2.Input AT #6

_ ....,:1

PLACE Link3.Input AT #7

7.6 Initialising The G300

After resettin~) the system, you first have to program the register" Boot Location ". This

determines the" Pixel Clock tt.

Then program the" Control Register" choose the G300's operation mode. At this point, bit 0 of

the" Control Registers" has to be zero to keep the VTG from running.

The next step consists of programming the" Datapath Register" and the" Mask Register".

Since it will take a while for the monitor to get synchronized after starting the VTG, its a good

idea to leave the screen dark at the beginning. This can be done by setting the" Mask

Register" to zero before starting the VTG, and then loading its correct value a little later.

2) Master Reset, Power-on Reset or Software Reset via Reset-Pal



GDS-rr

7.7 The Transputer's Graphic Operations

78 Software

The transputer offers a few interesting additional instructions for graphic applications. When

using OCCAM 2 their names are Move2D, Draw2D and Clip2D ( see the following chapters for

details )3)"

When using Helios 'C' you have similar functions under" system call" bytblt!4)

7.7.1 Move2D

This command, also known as 2-dimensional Blockmove, can be used any time you want to copy

part of a 2-dimensional array into another array.

Move2D's function can illustrated by the following OCCAM2 procedure.

PRoe Move2D (VAL[] []BYTE Source, VAL INT sx, sy,

[][]BYTE Dest, VAL INT dx, dy, width, length)

SEQ y = 0 FOR length
[Dest[y+dy] FROM dx FOR width] :=

[Source [y+sy] FROM sx FOR width]

Source:
sx. sy:
Dest:
dx, dy:
width:
length:

Block you want ( partially) copied.
Coordinates of the first bytes you want copied out of Source "5)
Destination array
Coordinates of the destination. 6)
Width of the array you want to copy,
Length ( number of rows) of the array you want to copy.

3) See "INMOS Technical note 26: < Notes on Graphics Support and Perfonnance Improvements on the
IMS TBOO > " for detailed description!

4) See "HEUOS operating system part II; chapter 8 < calling he/ios > "
5) Coordinates of the lower left pixel of the array you want to copy
6) Source pixel { SIC, sy } is copied to the coordinates { dx, dy } of Dest



GDS-II

7.7.2 Draw2D

79 Software

This command can also be used any time you want to copy part of a 2-dimensional array into

another array. The difference to Move2D is that this time, only bytes with values different from

zero are copied. This, for instance, makes it very easy to place letters on a given background.

Define the letter in a 2-dimensional array so that everything except the letter is given the value

zero. Draw2D will then ignore everything in the array except those parts belonging to the letter.

Draw2D's function can illustrated by the following OCCAM2 procedure.

PRoe Draw2D (VAL[] []BYTE Source, VAL INT sx, sy,

[][]BYTE Dest, VAL INT dx, dy, width, length)
BYTE temp:

SEQ line := 0 FOR length

SEQ point = 0 FOR width

SEQ

temp := Source [line+sy] [point+sx]

IF

temp = (BYTE 0)

SKIP

TRUE
Dest[line+dy] [point+dx] := temp

Source:
sx, sy:
Dest:
dx, dy:
width:
length:

Block you want ( partially) copied.
Coordinates of the first bytes you want copied out of Source '7)
Destination array
Coordinates of the destination.8)
Width of the array you want to copy,
Length ( number of rows) of the array you want to copy,

7) Coordinates of the lower left pixel of the array you want to copy
8) Source pixel { sx, sy } is copied to the coordinates { dx, dy } of Dest



GDS-II

7.7.3 Clip2D

80 Software

)"
/

This is the inverse function to Draw2D. Clip2D will only copy bytes with the value zero.

CUp20's function can illustrated by the following OCCAM2 procedure.

PRoe Draw2D (VAL[] []BYTE Source, VAL INT sx, sy,
[][]BYTE Dest, VAL INT dx, dy, width, length)

BYTE temp:
SEQ line := 0 FOR length

SEQ point = 0 FOR width
SEQ

temp := Source [line+sy] [point+sx]

IF

temp = (BYTE 0)

Dest[line+dy] [point+dx] := temp

TRUE
SKIP

..
Source:
sx, sy:
Dest:
dx. dy:
width:
length:

Block you want ( partially) copied.
Coordinates of the first bytes you want copied out of Source '9)
Destination array
Coordinates of the destination. 10)
Width of the array you want to copy,
Length ( number of rows) of the array you want to copy.

9) Coordinates of the lower left pixel of the array you want to copy
10) Source pixel { sx, sy } is copied to the coordinates { dx, dy } of Dest



GDS-n

7.8 Synchronizing With The Vertical Blank

81 Software

The 0300 sends out a signal that is active throughout the entire duration of

the" Vertical Blank ft. This signal is connected to the transputer's" event input ft.

By accessing the" event channel II you can time certain procedures, so that they will only be

active during the" Vertical Blank". This would make it possible to avoid disturbances they might

otherwise cause.

A few examples:

Programming the Colour Lookup Table:

When programming the CLUT, it may happened that the CLUTs bits change their

values just when CLUT's output signal ( single pixels) is being latched into the 0300.

This causes short disturbances seen on the monitor screen.

You can avoid this be programming the CLUT only during" Vertical Blank ft.

Switching between two images ( II Double Buffering" )

You have to modify the n TopScreen Register" ifyou want to switch between images ( see

chapter 3.2.3 ). To avoid disturbances, try programming the" TopScreen Register" during

the" Vertical Blank ".

Moving images ( Hardware Panning)

Moving images is also only possible by " TopScreen Register" modification ( see chapter

3.2.2 ).

How the Event channel works:

The transputer's event input is controlled by pulse edges. In other words, a rising edge at this

input ( beginning of the VBlank ) activates the event channel11)" It stays active till inactivated by

an access. As a result, the transputer will only be able to react to a further rising pulse edge

after being accessed.

11) See INMOS T800 Data Sheet: • When all external event takes EventReq ( Event Input of T800 ) high the external
event channel is made ready to communicate with a process.•



GDS-ll 82 Software

-- 50 ms

-- Event channel deftnition

-- Dummy access activates the Event channel
-- Waiting for the next VBlank to begin
-- Copy CLUT values into CLUT

7.8.1 Programming the eLUT (one interrupt source)

Programming is fairly simple if interrupts can only be generated by the G300. The following

OCCAM2 excerpt should illustrate this :

PROC event ( )

TIMER clock
VAL timeout IS 780
INT time
CHAN OF ANY event
PLACE event AT #8

SEQ
clock ? time
ALT

event ? x -- Wait until event channel is activated
SKIP

clock? time PLUS timeout -- Wait 50 ms
SKIP

PROC set.CLUT ( [256] INT dummy. array )

[256] INT CLUT
PLACE CLUT AT #20100000:

SEQ
event ( )
event ( )
CLUT := dummy.array

..
PROC grey. colour. scale ( )

[256] INT dummy.array

SEQ
SEQ i = 0 FOR 256

dummy.array[i] := i + « i
set.CLUT ( dummy.array )

« 8 ) + ( i « 16 »

A " VBlank " usually lasts at least 1 ms. Always consider this time span when planning lengthier

operations. You also have to consider the" reaction time" for an event. This is influenced by

the number and priorities of any background pocesses.

In the example above, the event channel is accessed twice in a row. Synchronization is not

achieved the first time.

Since the event channel is controlled by pulse edges, it will be activated by the ftrst " VBlank " to

hit it. All further" VBlanks " will be ignored until an access sets it back. The above process will



GDS-II 83 Software

not wait for a " VB/ank " after the fIrst access - it will immediately deactivate the event channel

and proceed to the next command. The second time around, however, it will wait until the event

channel ( deactivated at that point) is reactivated by a new" VB/ank ".

7.8.2 Programming the eLUT (several interrupt source)

H the GDS-IT is connected to further interrupt causes (Daughterboards) you will be forced to

check what caused the event ( VBlank or something else ).

Example 1: ( OCCAM2 )

--100 ms

-- Event channel defmition

PROC waiting.for.event ( )

INT x, ident :
BOOL running :
CHAN OF ANY event
PLACE ident AT #20000000:
PLACE event AT #8

TIMER clock
VAL timeout IS 1560
INT time

SEQ

running := TRUE
clock ? time
ALT

WHILE running
SEQ

event ? x
IF

(ident/\#100) = #100
running : = FALSE

TRUE
SKIP

clock ? time PLUS timeout
SKIP

-- Check Ident Register's bit 8
-- Event caused by VBlank

-- Event caused by a Daughterboard

-- No event for 100 ms

-- Dummy access activates the Event channel
-- Waiting for the next VBlank to begin
-- Copy CLUT values into CLUT12)

PROC set.CLUT ( [256] INT dummy.array )

[256] INT CLUT
PLACE CLUT AT #20100000:

SEQ
waiting.for.event ( )
waiting.for.event ( )
CLUT := dummy.array

12) Definition of" dutnmy.array· in chapter 7.8.1



GDS-II

Example 2: ( Helios 'C' )

84 Software

Testroutine for VBlank • Pulses recognition ( several interrupt causes)

/*************************************************************/
/* */
/* Program demonstrates the use of the transputer event line */
/* on a GDS2 for synchronization with the VBlank */
/* */
/* Main waits on VBlank (Event line) and increments a counter*/
/* Every 50 VBlanks a message is displayed. */
/* */
/*************************************************************/
#include <syslib.h>
#include <stdio.h>
#include <event.h>
#include <sem.h>

/* function prototyping
void SetEvent (Event *handler);
void RemEvent (Event *handler);

/* should be in event.h but isn't
/* should be in event.h but isn't

*/
*/
*/

void eVhandler(word *data, Event *event);

/* initialize event handler struct
Event handler = {

NULL, NULL,
0,
evhandler,
NULL,
NULL

Semaphore ev;

int main ()
{

int i = 1;

*/
/* struct for HELlOS event handling */
/* see technical note # 13 ' Use of */
/* the Transputer Event Line from */
/* Helios'Jan.89 */
/* list pointer (internal use) */
/* priority (in list) */
/* event handler function pointer */
/* data vector */
/* reserved! */

InitSemaphore (&ev, 0);
SetEvent (&handler); /* install event handler in list */
printf ("Waiting for VSync of GDS2 ••• \n");
while (i < 1000) { /* get 1000 events */

wait (&ev); /* wait on event signal */
if «i % 50)==0) {
printf (IIEvent %d recognized. \n", i); /* print */

'.
.J

}

}
i++;

}
RemEvent (&handler); /* remove event handler from list
printf (IIProgram terminating. \n")·;
return (0);

*/



GDS-II 8S Software

void evhandler (word *data, Event *event)
{

if (gds2event(»
Signal (&ev);

return;
}

int gds2event ()
{

/* Event from GDS2??
1* yes: signal to main... and terminate

*/
*/

I 'I

int *pident = OxO; /* pointer to ident register */
return «*pident & OX100»; /* return bit 8 ofident register (VBlank)

*/

}



GDS-II

7.9 Reading The Datapath Register

86 Software

The following example in OCCAM 2 should give you an idea of how to disable the VTG.

The problem:

After G300's initialization you want to know the screen format.

PROC event ( )

TIMER clock
CHAN OF ANY event
PLACE event AT #8
VAL timeout IS 780
INT time

SEQ
clock ? time
ALT

event ? x
SKIP

clock ? time PLUS timeout
SKIP

-- 50 ms

-- Event received

-- No event since 50 ms

PROC disable.VTG ( )

INT Control
PLACE Control AT #20100160

SEQ
event ( )
event ( )
Control := Control /\ #FFFFFE..

PROC enable.VTG ( )

INT Control
PLACE Control AT #20100160

SEQ
Control := Control \I #1

-- Reset event channel
-- First received VBlank
-- Disable VTG

-- Enable VTG

PROC screen. format ( INT XSIZE, YSIZE )

INT Display ··INT VDisplay ··PLACE Display AT #20100123 ··
PLACE VDisplay AT #20100128 ··
SEQ

disable.VTG ( )

-', XSIZE :=' Display * 4I

> YSIZE := VDisplay / 2
''c enable.VTG ( )



GDS-n 88 GDS-n VS, GDS

) 8. GDS-II vs. GDS - A Comparison

ODS-II ODS

Working memory: 2 MByte 1 MByte

Video memory: 2MByte 1 MByte

Video Timing Controller: 0300 (INMOS) TS 68483 (Thomson)

Memory cycle time: 200ns 250ns

Backplane link layout: a: Link 0 a: Link 0
b: Link 1 b: not used
c: Link2 c:. Link 1

?} d: Link3 d: not used
e: ~ink 01) e: Link 2
f: Link 1

M
f: not used

g: video ut g: video out
h: Link 31) h: Link3

Colour lookup table:2) 3 * 8 bit 3 * 6 bit

Number of possible colours: 16,7TI,216 262,144

Colours used simultaneously ( 13 bpp ): 8192
Colours used simultaneously ( 8 bpp ): 256 256
Colours used simultaneously ( 4 bpp ): 16
Colours used simultaneously ( 2 bpp ): 4
Colours used simultaneously ( 1 bpp): 2

Number of basic colours: 256 256

II Pixel Clock "2): In 5 MHz steps up to 32 or 64 MHz
110 MHz

r'-",

Maximal resolution (1, 2, 4, 8 bpp ): 1280 * 1024 pixel 1024 * 768 pixel
Maximal resolution (13, 24 bpp ): 800 * 600 pixel

Video memory size (1 bpp ): 16,384 * 1024 pixel
Video memory size (2 bpp ): 8192 * 1024 pixel
Video memory size (4 bpp ): 4096 * 1024 pixel
Video memory size (8 bpp ): 2048 * 1024 pixel 1024 * 1024 pixel
Video memory size (13 bpp ): 1024 * 1024 pixel
Video memory size (24 bpp ): 524,288 pixel

Location of the left topmost monitor bottom video memory top video memory
pixel in the video memory: address address

Generation of the Transferaddresses Addresses are Addresses are
by the Video Timing Controller: incremented decremented

1) Links are connected to Oaughterboard-Slot A
2) ReITers to the 8 bits per pixel mode. 13 and 24 bit/pixel are only poSSlble on a GOS-rr (!)



GDS-rr

9. Appendix

90 Appendix

'._.. ',
~.,\

"

9.1

9.1.1

9.1.2

9.1.3

9.2

9.2.1

9.2.2

9.2.3

9.2.4

9.2.5

9.2.6

9.2.7

9.2.8

9.2.9

9.2.10

9.2.11

9.2.12

9.2.13

9.3

9.4

9.4.1

9.4.2

9.5

9.6

9.7

9.8

9.9

9.10

Configuration Examples

8 Bit/Pixel

13 Bit/Pixel

24 Bit/Pixel

Video Timings

EIZO FLEXSCAN 8060 - mode 1

EIZO FLEXSCAN 8060 - mode 2

EIZO FLEXSCAN 9070 - mode 1

EIZO FLEXSCAN 9070, 9500 - mode 2

EIZO FLEXSCAN 9500 - mode 1

NEC MULTISYNC GSII - mode 1

NEC MULTISYNC GSII - mode 2

NEC MULTISYNC XL

SONY GDM 1602

Philips cr 2064

SONY GDM 1950

Silicon Graphics

TV-Monitor - Interlaced

Testprograms

Installation

Installation On Multicluster System Units

Installation In ffiM PC/XT/AT Or Compatibles

Power Requirements

Jumper Overview

GDS-II Addressmap

Pinout Of The Daughterboard Slot

Pinout Of The 96-Way DIN 41612 Connector

Index - Register

92

93

94

95

96

96

99

101

104

107

110

112

114

115

116

117

118

119

121

128

128

129

130

132

134

136

138

140



GDS-n

9.1 Configuration examples

92 Appendix

Three examples for possible configurations are given on the next pages.

A jumper overview is given for the following configurations:

9.1.1 8 bit/pixel

variable II Pixel Clock II via PLL

20 MHz Transputer (4 processor cycles)

Slot A is configured for a DBI-x module

9.1.2 13 bit/pixel

32 MHz II Pixel Clock II

25 MHz Transputer (5 processor cycles)

Slot A is configured for a DBI-x module

9.1.3 24 bit/pixel

32 MHz " Pixel Clock II

20 MHz Transputer (5 processor cycles )

Slot A is configured for a DBI-x module



-
-
_

/
'

{
t

...
.v

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

J
~i
~

7
I

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

J
1

oe
-D

m
dl

s&
bl

e/
le

n&
bl

el

J2
n

e
.-

y
co

nf
i9

'&
'"

&
tlo

n

Ie ~ ;.. Q
O =... ~ "'C
l

~
.

ti
l -

I~

•
J3

P
ro

ce
ss

or
sp

ee
d

se
le

ct

J'
t

L
in

k
sp

ee
d

se
le

ct

J5
C

lo
cl

c
se

le
ct

W&
oe

0
0

0
XX

X
J6

tt
od

e
se

le
ct

PL
L

en
&

bl
el

C
dl

s&
bl

el

O
ut

pu
t

co
n

fl
g

u
n

tl
o

n

S
lo

t
A

···
···

J1
9

",

J7
I1

0d
e

se
le

ct
i
_
~
i
_
.

I J8
J9

v
~
v
&
o
e
O
O
O

.
.
.
.
.
.
.
.
.
.
.

~•
•

--
.-

.
•
•
•
•
•
•
•

(j)
(j)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

&&
....

.,
••

••
•

S
lo

t
B

r•
•

o
~
•
•
•
•
•
•
•
•
•
•
•

I•
•
•
•
•
•
•
•
•
•
•
•
•
•

S
lo

t
C

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

I
~



/"
"'t

?"
.....

r.
,

\

(,
--

4
.,

'

\C ~ N
1£

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

J
~i

~
7
I

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

0
B

-e
B

-e
0

o
B

-e
B

-e
01

J
1

D
B

-D
IfI

d
ln

b
le

/l
e
n

f.
b

le
l

O
B

-e
B

-e
O

O
B

-
e
-
-

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

X
i

J
2

I1
e

II
o

ry
c:

on
'fl

9U
rA

U
on

.... ~ = ~ ~. fD -

J3
P

ro
c:

es
so

r
sp

oo
d

so
lo

c:
t

J4
L

in
k

sp
ee

d
so

lo
c:

t
A

S
lo

t
A

O
ut

pu
t

c:
on

41
9U

rA
U

on

PL
L

en
A

b
le

lf
d

ls
A

b
lo

l

J5
C

lo
c:

k
so

lo
c:

t

jr
n

0

XX
X

J6
I1

od
o

se
lo

c:
t

0
0

0

I1
oc

Io
I
e

Ie
c:

t
J7

"'O
:-:

-"
""

"'O
...

B-
e:-

::'"
'O=

O,
..,O

,."
..

..
..

..
..

..
..

..
..

..
..

~
~

.
~
~

....
.,

••
••

•
S

lo
t

B

....
...-

.-
.

I•
•
•
•
•
•
•
•
•
•
•
•
•

S
lo

t
C

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••



••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

I;
i~

7
l

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

•.J.
• • • • •

(

o
e

;e
'e

-e
0

o
e

-e
e

-e
01

J
1

D
B

-D
tI'

l
d

ln
b

le
/l

ti
lA

b
le

l
o

e
-e

e
-e

0
o

e
-e

..
..

..
..

..
..

..
..

..-
-....

••
••

••
••

••
••

••
••

••
••

••
o

j
0

' ~I
J2

It
el

ac
ry

co
n

fl
CJ

1'-
A

tI
o

n

~
J
3
_

_
H

IK
t

o
e

-e

XX
J4

L
lri

c
sp

ee
d

se
le

ct
o

(\,
~

':c

~
1-

0 fM N oIl
o. t:r:
:l =: .....
... ""I
:l

~
.

ft> -

J5
C

lo
cI

c
se

le
ct

rn° XX
J6

M
od

e
s
e

le
c
t

0
0

0
P

LL
e

n
ib

le
li
d

ls
A

b
le

l

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

S
lo

t
C

I ••
••

••
••

••
••

•
••

••
••

••
••

••
•

S
lo

t
B

• • •
••

••
·1

••
••

•

M
od

e
se

le
ct

J7
""e

-e,
...

.,.
...

.",
o.,

.,o
,..

.e-
e,;

...
.",

...
".,

.o~
o

..
..

..
..

..
..

..
..

..
..

..
~
.

..
..

..
..

..
..

..
..

..
..

..
~
~

S
lo

t
A

ll
Il

tp
ll

t
C

on
fl

C
J1

'-l
tI

on

> = c. ~
.



. \

I
' ...... '

GDS-ll

9.2 Video Timings

9.2.1 EIZO FLEXSCAN 8060 • mode 1

96 Appendix

-- EXZO 8060 - 30 MHz dot clock - 640*480 dots - 68.5 Hz

LINETIME

DISPLAY

HALFSYNC

BACKPORCH

:= 210

:= 160

:= 12

:= 24

2

pll = 6

35.7 Khz Horiz.Scanning freq.

640 dots

Horiz. Sync = 3.2 us

Horiz. Backporch = 3.2 us

Horiz. Frontporch = 0.3 us

VDISPLAY := 960

VSYNC := 6

VBLANK := 64

TRDELAY : = 12

480 lines

3 lines = 0.084ms

32 lines

VFP = PreEqualisation = VSync = 0.084 ms

VBP = VBlank +PostEqualisation = 0.98 ms

total lines a 28 us = 521 lines

total time for each image = 14.6 ms

1.6 us



GDS-n 97

-- EXZO 8060 -35 MHz dot clock - 720*540 dots - 64.1 Hz

-'

LINETIME := 240

DISPLAY := 180

HALFSYNC := 12

BACKPORCH := 34

2

VDISPLAY := 1080

VSYNC := 6

VBLANK := 40

TRDELAY := 13

pll = 73

36.5 Khz Horiz.Scanning freq.

720 dots

Horiz. Sync = 2.7 us

Horiz. Backporch = 3.9 us

Horiz. Frontporch = 0.2 us

540 lines

3 lines = 0.082ms

20 lines

VFP = preEqualisation = VSync = 0.082 ms

VBP = VBlank + PostEqualisation = 0.631 ms

total lines a 27.4Us = 569 lines

total time for each image = 15.6 ms

1.5 us

-- EXZO 8060 - 35 MHz dot clock - 768*576 dots - 59.3 Hz

, \

LINETIME := 244

DISPLAY := 192

HALFSYNC := 12

BACKPORCH := 26

2

pll = 7

35.86 Khz Horiz.Scanning freq.

768 dots

Horiz. Sync = 2.7 us

Horiz. Backporch = 3.0 us

Horiz. Frontporch = 0.2 us

•)

VDISPLAY

VSYNC

VBLANK

TRDELAY

:= 1152

:= 6

:= 40

:= 13

576 lines

3 lines = 0.083ms

20 lines

VFP = PreEqualisation = VSync = 0.083 ms

VBP = VBlank + PostEqualisation = 0.891 ms

total lines a 27.9us = 605 lines

total time for each image = 16.86 ms

1.5 us



GDS-II 98 Appendix

-- EIZO 8060 - 40 MHz dot clock - 800*600 dots - 62.0 Hz

pll = 8

38.8 kHz Horiz.Scanning freq.

800 dots

Horiz. Sync = 2.4 us

Horiz. Backporch = 3.3 us

Horiz. Frontporch = 0.1 us

:= 258

:= 200

:= 12

33

1

LINETIME

DISPLAY

HALFSYNC

BACKPORCH : =

16.13 ms

= 0.077 ms

0.722 ms

= 625 lines

=

= 0.077ms3 lines

16 lines

VFP = PreEqualisation = VSync

VBP = VBlank + PostEqualisation =

total lines a 28.8us

total time for each image

600 lines:= 1200

:= 6

:= 32

VDISPLAY

VSYNC

VBLANK

TRDELAY := 14 1.4 us

-- EIZO 8060 - 40 MHz dot clock - 800*600 dots - 59.8 Hz

pll = 8

LINETIME := 266 37.6 kHz Horiz.Scanning freq.

- DISPLAY .- 200 800 dots, , .-
HALFSYNC := 12 Horiz. Sync = 2.4 us

BACKPORCH := 41 Horiz. Backporch = 4.1 us

1 Horiz. Frontporch = 0.1 us

VDISPLAY := 1200 600 lines

VSYNC := 6 3 lines = 0.079ms

VBLANK := 36 18 lines

VFP = PreEqualisation = VSync = 0.079 ms

VBP = VBlank + PostEqualisation = 0.797 ms

total lines a 26.6us = 627 lines

total time for each image = 16.7 ms

TRDELAY := 14 1.4 us

/



GDS-II 99 Appendix

"'I 1/11
"-' 9.2.2 EIZO FLEXSCAN 8060 - mode 2

-- E:IZO 8060 - 32 KHz dot clock - 640*480 dots - 70.0 Hz

pll = 0

LINETIME .- 220 36.36 Khz Horiz.Scanning freq..-
DISPLAY .- 160 640 dots.-
HALFSYNC := 12 Horiz. Sync = 3 us

BACKPORCH .:= 34 Horiz. Backporch = 4.3 us

2 Horiz. Frontporch = 0.3 us

VDISPLAY .- 960 480 lines.-
',......

VSYNC 6 3 lines = 0.082ms:=
"~_.

VBLANK := 64 31 lines

VFP = PreEqualisation = VSync = 0.082 ms

VBP = VBlank + PostEqualisation = 0.935 ms

total lines a 27.5us = 520 lines

total time for each image = 14.3 ms

TRDELAY := 11 1.4 us

us

us

us

freq.

= 3

= 3.3

= 0.3

Sync

Backporch

Frontporch

Horiz.

Horiz.

Horiz.

:= 232

:= 180

:= 12

:= 26

2

LINETIME

DISPLAY

HALFSYNC

BACKPORCH

-- E:IZO 8060 - 32 MHz dot clock - 720*540 dots - 61.4 Hz

pll = 0

34.5 Khz Horiz.Scanning

720 dots
I "~'.

VDISPLAY

VSYNC

VBLANK

TRDELAY

:= 1080

:= 6

:= 26

:= 11

540 lines

3 lines = 0.087ms

13 lines

VFP = PreEqualisation = VSync = 0.087 ms

VBP = VBlank + PostEqualisation = 0.464 ms

total lines a 29us = 562 lines

total time for each image = 16.3 ms

1.4 us



GPS-II 100 Appendix

.)
E:IZO 8060 32 MHz dot clock - 768*576 dots - 56.2 Hz--' - -

pll = 0

LINETIME := 240 33.3 kHz Horiz.Scanning freq.

DISPLAY := 192 768 dots

HALFSYNC .- 10 Horiz. Sync = 2.5 us.-
BACKPORCH := 27 Horiz. Backporch = 3.4 us

1 Horiz. Frontporch = 0.1 us

VDISPLAY := 1152 576 lines

VSYNC := 4 2 lines = 0.060ms

VBLANK := 26 13 lines

VFP = PreEqualisation = VSync = 0.060 ms

VBP = VBlank + postEqualisation = 0.450 ms- total lines a 30us = 595 lines

total time for each image = 17.8 ms

TRDELAY := 12 1.5 us

-- E:IZO 8060 - 32 KHz dot clock - 800*600 dots - 51.8 Hz

pll = 0

LINETIME := 248 32.3 kHz Horiz.scanning freq.

DISPLAY := 200 800 dots

r' HALFSYNC := 10 Horiz. Sync = 2.5 us

BACKPORCH 0- 26 Horiz. Backporch = 3.3 us.-
2 Horiz. Frontporch = 0.3 us

VDISPLAY := 1200 600 lines

VSYNC := 6 3 lines = 0.093ms

VBLANK .- 26 13 lines.-
VFP = PreEqualisation = VSync = 0.093 ms

VBP = VBlank + postEqualisation = 0.496 ms

total lines a 31us = 622 lines

total time for each image = 19.3 ms

TRDELAY .- 11 1.4 us.-
,....' ..

:.)
I



,,).
"

GDS-II

9.2.3 EIZO FLEXSCAN 9070 - mode 1

101 Appendix

-- SIze 9070 - 35 MHz dot clock - 640*480 dots - 80.0 Hz

LINETIME := 212

DISPLAY := 160

HALFSYNC := 12

BACKPORCH := 18

10

pll = 7

41.2 Khz Horiz.Scanning freq.

640 dots

Horiz. Sync = 2.7 us

Horiz. Backporch = 2.1 us

Horiz. Frontporch = 1.1 us

VDISPLAY

VSYNC

VBLANK

TRDELAY

:= 960

:= 8

:= 50

:= 10

480 lines

4 lines = 0.096ms

25 lines

VFP = PreEqualisation = VSync = 0.096 ms

VBP = VBlank + PostEqualisation = 0.702 ms

total lines a 24.2us = 517 lines

total time for each image = 12.5 ms

-- SIZe 9070 - 40 MHz dot clock - 720*540 dots - 76.3 Hz

/.

LINETIME := 228

DISPLAY := 180

HALFSYNC := 6

BACKPORCH := 28

8

VDISPLAY := 1080

VSYNC := 6

VBLANK := 50

TRDELAY : = 12

pll = 8

43.9 Khz Horiz.scanning freq.

720 dots

Horiz. Sync = 1.2 us

Horiz. Backporch = 2.8 us

Horiz. Frontporch = 0.8 us

540 lines

3 lines = 0.068ms

25 lines

VFP = PreEqualisation = VSync = 0.068 ms

VBP = VBlank + postEqualisation = 0.638 ms

total lines a 22.8us = 574 lines

total time for each image = 13.1 ms

1.2 us



GDS-n 102 Appendix

-- BIZO 9070 - 45 MHz dot clock - 768*576 dots - 74.1 Hz

:= 250

:= 192

pll = 9

45.0 kHz Horiz.Scanning freg.

768 dots

LINETIME

DISPLAY

HALFSYNC : = 6

BACKPORCH := 36

10

Horiz.

Horiz.

Horiz.

Sync

Backporch

Frontporch

= 1.1

= 3.2

= 0.9

us

us

us

VDISPLAY

VSYNC

VBLANK

TRDELAY

:= 1152

:= 6

:= 44

:= 13

576 lines

3 lines = 0.066ms

22 lines

VFP = PreEqualisation = VSync = 0.066 ms

VBP = VBlank + postEqualisation = 0.556 ms

total lines a 22.2us = 607 lines

total time for each image = 13.5 ms

1.2 us

-- EIZO 9070 - 45 MHz dot clock - 800*600 dots - 70.4 Hz

pll = 9

LINETIME .- 254 44.3 kHz Horiz.Scanning freg..-
DISPLAY .- 200 800 dots/' .-
HALFSYNC := 6 Horiz. Sync = 1.1 us

BACKPORCH := 34 Horiz. Backporch = 3.0 us

8 Horiz. Frontporch = 0.7 us

VDISPLAY := 1200 600 lines

VSYNC := 6 3 lines = 0.067ms

VBLANK .- 44 22 lines.-
VFP = PreEqualisation = VSync = 0.067 ms

VBP = VBlank + postEqualisation = 0.565 ms

total lines a 22.6us = 631 lines

total time for each image = 14.2 ms

TRDELAY := 14 1.2 us

r'·" ,\
<

"



GDS-II 103 Appendix

.~,~ -- EIZa 9070 - 65 MHz dot clock - 1024*768 dots - 61.7 Hz

pll = 13

LINETIME := 324 50.2 Khz Horiz.Scanning freq.

DISPLAY := 256 1024 dots

HALFSYNC := 11 Horiz. Sync = 1.4 us

BACKPORCH .- 40 Horiz. Backporch = 2.5 us.-
6 Horiz. Frontporch = 0.4 us

VDISPLAY .- 1536 768 lines.-
VSYNC .- 8 4 lines = 0.079ms.-
VBLANK .- 60 30 lines.-

VFP = preEqualisation = VSync = 0.079 ms
" -' VBP = VBlank + PostEqualisation = 0.678 ms

total lines a 19.9us = 810 lines

total time for each image = 16.2 ms

TRDELAY .- 18 1 us.-

-- EIZa 9070 - 70 MHz dot clock - 1080*810 dots - 59.9 Hz

pll = 14

LINETIME := 344 50.9 Khz Horiz.Scanning freq.

DISPLAY := 270 1080 dots

HALFSYNC .- 12 Horiz. Sync = 1.4 us.-
BACKPORCH := 44 Horiz. Backporch = 2.5 us

6 Horiz. Frontporch = 0.3 us

VDISPLAY .- 1620 810 lines.-
VSYNC := 6 3 lines = 0.058ms

VBLANK := 60 30 lines

VFP = preEqualisation = VSync = 0.058 ms

VBP = VBlank + PostEqualisation = 0.649 ms

total lines a 19.7us = 849 lines

total time for each image = 16.7 ms

TRDELAY := 18 1 us
r-..
'-



GDS-rr 104 Appendix

9.2.4 EIZO FLEXSCAN 9070,9500 - mode 2

-- BIZO 9070, 9500 - 32 KHz dot clock - '40*480 dots - 78.1 Hz

pll = 0

LINETIME .- 200 40.0 Khz Horiz.Scanning freq..-
DISPLAY := 160 640 dots

HALFSYNC := 10 Horiz. Sync = 2.5 us

BACKPORCH .- 12 Horiz. Backporch = 1.5 us.-
8 Horiz. Frontporch = 1.0 us

VDISPLAY .- 960 480 lines.-
'wIi'-¥' VSYNC .- 6 3 lines = 0.075ms.-

VBLANK := 50 25 lines

VFP = PreEqualisation = VSync = 0.075 ms

VBP = VBlank + PostEqualisation = 0.700 ms

total lines a 25us = 514 lines

total time for each image = 12.8 ms

TRDELAY := 10

-- EIZO 9070, 9500 - 32 KHz dot clock - 720*540 dots - '3.7 Hz

I".t pll = 0

LINETIME := 222 36.0 Khz Horiz.Scanning freq.

DISPLAY .- 180 720 dots.-
HALFSYNC := 7 Horiz. Sync = 1.8 us

BACKPORCH .- 26 Horiz. Backporch = 3.3 us.-
2 Horiz. Frontporch = 0.3 us

VDISPLAY := 1080 540 lines

VSYNC .- 6 3 lines = 0.083ms.-
VBLANK := 34 17 lines

VFP = preEqualisation = VSync = 0.083 ms

VBP = VBlank + PostEqualisation = 0.555 ms

total lines a 27.8us = 566 lines

.r'\ total time for each image = 15.7 ms

'" TRDELAY .- 10.-



GDS-II lOS ApPendix

-- EIZO 9070, 9500 - 32 MHz dot clock - 768*576 dots - 57.3 Hz

pll = 0

3405 kHz HorizoScanning freqo

768 dots

Horizo Sync = loS us

Horizo Backporch = 303 us

Horizo Frontporch = 003 us

:= 232

:= 192

:= 6

26

2

LINETIME

DISPLAY

HALFSYNC

BACKPORCH : =

VDISPLAY

VSYNC

VBLANK

TRDELAY

:= 1152

:= 6

:= 34

:= 10

576 lines

3 lines = 00087ms

17 lines

VFP = PreEqualisation = VSync = 0.087 ms

VBP = VBlank + PostEqualisation = 00580 ms

total lines a 29us = 602 lines

total time for each image = 17045 ms

1.3 us

-- EIZO 9070, 9500 - 32 KHz dot clock - 800*600 dots - 53.2 Hz

pll = 0

LINETIME := 240 3303 kHz Horiz 0Scanning freq.

I ......, DISPLAY := 200 800 dots

HALFSYNC := 6 Horizo Sync = loS us

BACKPORCH 0- 26 Horizo Backporch = 303 us0-

2 Horizo Frontporch = 003 us

VDISPLAY .- 1200 600 lines.-
VSYNC 0- 6 3 lines = 00090ms0-

VBLANK := 34 17 lines

VFP = PreEqualisation = VSync = 00090 ms

VBP = VBlank + PostEqualisation = 0.600 ms

total lines a 30us = 626 lines

total time for each image = 1808 ms

TRDELAY := 10 1.3 us
~,



GDS-II 106 Appendix

)
-- EIZO 9070, 9500 - 32 MHz dot clock - 800*600 dots - 56.8 Hz

LINETIME := 228

DISPLAY := 200

HALFSYNC : = 6

BACKPORCH := 14

2

VDISPLAY := 1200

VSYNC := 4

VBLANK := 20

pll = 0

35.1 kHz Horiz.scanning freq.

800 dots

Horiz. Sync = 1.5 us

Horiz. Backporch = 1.8 us

Horiz. Frontporch = 0.3 us

600 lines

2 lines = 0.057ms

10 lines

VFP = PreEqualisation = VSync = 0.057 ms

VBP = VBlank + PostEqualisation = 0.342 ms

total lines a 28.5us = 616 lines

total time for each image = 17.6 ms

TRDELAY := 10



"..... ' 9.2.5 EIZO FLEXSCAN 9500 • mode 1
( EIZO 9500 timings only tested with the new monitor version. The new version has two different inputs: RGB
and 9-pin D)

,
;

GDS-n 107 Appendix

EXZO 9500 - 35 MHz dot clock - 640*480 dots - 80.0 Hz

LINETIME := 212

DISPLAY := 160

HALFSYNC := 12

BACKPORCH := 18

10

pll = 7

41.2 Khz Horiz.Scanning freq.

640 dots

Horiz. Sync = 2.7 us

Horiz. Backporch = 2.1 us

Horiz. Frontporch = 1.1 us

VDISPLAY

VSYNC

VBLANK

TRDELAY

:= 960

:= 8

:= 50

:= 10

480 lines

4 lines = 0.096ms

25 lines

VFP = PreEqualisation = VSync = 0.096 ms

VBP = VBlank + PostEqualisation = 0.702 ms
total lines a 24.2us = 517 lines

total time for each image = 12.5 ms

-- EXZO 9500 - 40 MHz dot clock - 720*540 dots'- 76.3 Hz

LINETIME

DISPLAY

HALFSYNC
BACKPORCH

VDISPLAY

VSYNC

VBLANK

TRDELAY

:= 228

:=.180

:= 6

:= 28

8

:= 1080

:= 6

:= 50

:= 12

pll = 8

43.9 Khz Horiz.Scanning freq.

720 dots

Horiz. Sync 1.2 us

Horiz. Backporch = 2.8 us

Horiz. Frontporch = 0.8 us

540 lines

3 lines = 0.068ms

25 lines

VFP = preEqualisation = VSync = 0.068 ms

VBP = VBlank + PostEqualisation = 0.638 ms

total lines a 22.8us = 574 lines

total time for each image = 13.1 ms

1.2 us



GDS-II 108 Appendix

)
".. ,,: -- EIZO 9500 - 45 MHz dot clock - 768*576 dots - 74.1 Hz

pll = 9

LINETIME := 250 45.0 kHz Horiz.Scanning freq.

DISPLAY := 192 768 dots

HALFSYNC .- 6 Horiz. Sync = 1.1 us.-
BACKPORCH := 36 Horiz. Backporch = 3.2 us

10 Horiz. Frontporch = 0.9 us

VDISPLAY .- 1152 576 lines.-
VSYNC .- 6 3 lines = 0.066ms.-
VBLANK .- 44 22 lines.-

VFP = PreEqualisation = VSync = 0.066 ms
~.....,il VBP = VBlank + PostEqualisation = 0.556 ms

total lines a 22.2us = 607 lines

total time for each image = 13.5 ms

TRDELAY .- 13 1.2 us.-

-- EIZO 9500 - 45 MHz dot clock - 800*600 dots - 70.4 Hz

:= 254

:= 200

:= 6

pll = 9

44.3 kHz Horiz.Scanning freq.

800 dots

= 1.1

us

us

us

= 3.0

0.7

Sync

Backporch

Frontporch =

Horiz.

Horiz.

Horiz.

LINETIME

DISPLAY

HALFSYNC

BACKPORCH := 34

8

VDISPLAY

VSYNC

VBLANK

TRDELAY

:= 1200

:= 6

:= 44

:= 14

600 lines

3 lines = 0.067ms

22 lines

VFP = PreEqualisation = VSync = 0.067 ms

VBP = VBlank + PostEqualisation = 0.565 ms

total lines a 22.6us = 631 lines

total time for each image = 14.2 ms

1.2 us



GDS-II 109 Appendix

l...'''' -- szze 9500 - 65 MHz dot clock - 1024*768 dots - 61.7 Hz

LINETIME := 324

DISPLAY := 256

HALFSYNC := 11

BACKPORCH := 40

6

VDISPLAY := 1536

VSYNC := 8

VBLANK := 60

TRDELAY := 18

pll = 13

50.2 Khz Horiz.Scanning freq.

1024 dots

Horiz. Sync = 1.4 us

Horiz. Backporch = 2.5 us

Horiz. Frontporch = 0.4 us

768 lines

4 lines = 0.079ms

30 lines

VFP = PreEqualisation = VSync = 0.079 ms

VBP = VBlank + postEqualisation = 0.678 ms

total lines a 19.9us = 810 lines

total time for each image = 16.2 ms

1 us

-- EZZe 9500 - 70 MHz dot clock - 1280*1024 dots - 59.9 Hz

LINETIME := 344

DISPLAY := 270

HALFSYNC := 12

BACKPORCH := 44

6

VDISPLAY := 1620

VSYNC := 6

VBLANK := 60

TRDELAY : = 18

pll = 14

50.9 Khz Horiz.Scanning freq.

1080 dots

Horiz. Sync = 1.4 us

Horiz. Backporch = 2.5 us

Horiz. Frontporch = 0.3 us

810 lines

3 lines = 0.058ms

30 lines

VFP = preEqualisation = VSync = 0.058 ms

VBP = VBlank + postEqualisation = 0.649 ms

total lines a 19.7us ~ 849 lines

total time for each image = 16.7 ms

1 us



'110-"

GDS-II

9.2.6 NEe MULTISYNC GSII - mode 1

110 Appendix

-- NEC Gs:n: - 30 MHz dot clock - 640*480 dots - 68.0 Hz

pll = 6

LINETIME .- 210 35.7 Khz Horiz.Scanning freq..-
DISPIAY .- 160 640 dots.-
HALFSYNC .- 10 Horiz. Sync = 2.7 us.-
BACKPORCH .- 22 Horiz. Backporch = 2.9 us.-

8 Horiz. Frontporch = 1.1 us

VDISPIAY .- 960 480 lines.-
-- VSYNC := 6 3 lines = 0.084ms

VBIANK .- 70 35 lines.-
VFP = PreEqualisation = VSync = 0.084 ms

VBP = VBlank + postEqualisation = 1.06 ms

total lines a 28us = 524 lines

total time for each image = l4.7ms

TRDEIAY := 10 1.3 us

-- NEC GSII - 35 MHz dot clock - 720*540 dots - 68.0 Hz

pll = 7

39.6 Khz Horiz.Scanning freq.

720 dots

LINETIME

DISPIAY

HALFSYNC

BACKPORCH

:= 224

:= 180

:= 10

:= 16

8

Horiz.

Horiz.

Horiz.

Sync

Backporch

Frontporch

= 2.3

= 1.8

= 0.9

us

us

us

VDISPIAY

VSYNC

VBIANK

TRDEIAY

:= 1080

:= 4

:= 56

:= 10

540 lines

2 lines = 0.05lms

28 lines

VFP = PreEqualisation = VSync = 0.051 ms

VBP = VBlank + PostEqualisation = 0.768 ms

total lines a 25.6us = 574 lines

total time for each image = 14.7 ms

1.1 us



GDS-II 111 ADpendix

........ ' -- NEC GSII - 40 MHz dot clock - 800*600 dots - 66.2 Hz

pll = 8

LINETIME := 242 41.32 kHz Horiz.Scanning freq.

DISPLAY .- 200 800 dots.-
HALFSYNC .- 10 Horiz. Sync = 2.0 us.-
BACKPORCH .- 14 Horiz. Backporch = 1.4 us.-

8 Horiz. Frontporch = 0.8 us

VDISPLAY := 1200 600 lines

VSYNC := 4 2 lines = 0.048ms
VBLANK .- 36 18 lines.-

VFP = PreEqualisation = VSync = 0.048 ms- VBP = VBlank + PostEqualisation = 0.484 ms

total lines a 24.2us = 624 lines

total time for each image = 15.1 ms
TRDELAY .- 10 1.1 us.-



GDS-II 112 ADDendix

9.2.7 NEC MULTISYNC GSII - mode 2

NEC GSII - 32 MHz dot clock - 640*480 dots - 72.5 Hz

us

us

us

= 2.5

= 2.8

= 1.0

Sync

Backporch

Frontporch

Horiz.

Horiz.

Horiz.

pll = 0

38.1 Khz Horiz.Scanning freq.

640 dots

:= 210

:= 160

:= 10

22

8

LINETIME

DISPLAY

HALFSYNC

BACKPORCH : =

J VDISPLAY

VSYNC

VBLANK

TRDELAY

:= 960

:= 6

:= 70

:= 10

480 lines

3 lines = 0.078ms

35 lines

VFP = PreEqualisation = VSync = 0.078 ms

VBP = VBlank + PostEqualisation = 0.998 ms

- total lines a 26.25us = 524 lines

total time for each image = 13.8 ms

1.3 us

NEC GSII - 32 MHz dot clock - 720*540 dots - 62.1 Hz

I" pll = 0

LINETIME .- 224 35.71 Khz Horiz.Scanning freq.~ .-
DISPLAY .- 180 720 dots.-
HALFSYNC .- 10 Horiz. Sync = 2.5 us.-
BACKPORCH .- 16 Horiz. Backporch = 2.0 us.-

8 Horiz. Frontporch = 1.0 us

VDISPLAY := 1080 540 lines

VSYNC .- 4 2 lines = 0.056ms.-
VBLANK := 56 28 lines

VFP = PreEqualisation = VSync = 0.056 ms

VBP = VBlank + postEqualisation = 0.840 ms

total lines a 28us = 574 lines
I~'" total time for each image = 16.1 ms

I.'
TRDELAY .- 10 1.3 us.-



GDS-rr 113 Al!pendix

NEe GSII - 32 KHz dot clock - 800*600 dots - 52.9 Hz

LINETIME := 242

DISPLAY := 200

HALFSYNC : = 10
BACKPORCH := 14

8

pll = 0
33.1 kHz Horiz.Scanning freq.

800 dots

Horiz. Sync = 2.5 us

Horiz. Backporch = 1.8 us

Horiz. Frontporch = 1.0 us

...

._.

VDISPLAY

VSYNC

VBLANK

TRDELAY

:= 1200
:= 4

:= 36

:= 10

600 lines

2 lines = 0.060ms

18 lines

VFP = PreEqualisation = VSync = 0.060 ms

VBP = VBlank + PostEqualisation = 0.605 ms

total lines a 30.25us = 624 lines
total time for each image = 18.9 ms
1.3 us



GDS-ll

9.2.8 NEC MULTISYNC XL

114 Appendix

NEC XL - 65 MHz dot clock - 1024*768 dots - 60.2 Hz

pll = 13

LINETIME := 334 48.65 kHz Horiz.scanning freq.

DISPLAY := 256 1024 dots
HALFSYNC := 8 Horiz. Sync = 1.0 us

BACKPORCH .- 47 Horiz. Backporch = 2.9 us.-
15 Horiz. Frontporch = 0.9 us

~ VDISPLAY .- 1536 768 lines.-
..,;> VSYNC := 8 4 lines = 82.2 us

VBLANK := 56 28 lines

VFP = PreEqualisation = VSync = 82.2 us
VBP = VBlank + PostEqualisation = 657.7 us
total lines a 20.55 us = 808 lines

total time for each image = 16.6 ms
TRDELAY .- 18.-



........,'

GDS-n

9.2.9 SONY GDM 1602

115 Appendix

-- SONY GDK 1602 - 65 MHz dot clock - 1024*768 dots - 60.2 Hz

pll = 13

LINETIME .- 332 48.95 kHz Horiz.scanning freq..-
DISPLAY := 256 1024 dots

HALFSYNC .- 12 Horiz. Sync = 1.5 us.-
BACKPORCH := 32 Horiz. Backporch = 2.0 us

20 Horiz. Frontporch = 1.2 us

VDISPLAY := 1536 768 lines_.
VSYNC := 6 3 lines = 61 us

VBLANK := 72 36 lines

VFP = PreEqualisation = VSync = 61 us

VBP = VBlank + PostEqualisation = 796 us

total lines a 20.4us = 813 lines

total time for each image = 16.6 ms

TRDELAY := 18 1.1 us

; ......,



GDS-ll

9.2.10 Philips cr 2064

116 Appendix

-- Philips CT 2064 - 110 KHz dot clock - 1280*1024 dots - 60 Hz

pll = 22

LINETIME := 430 64 kHz Horiz.Scanning freq.

DISPLAY := 320 1280 dots

HALFSYNC .- 23 Horiz. Sync = 1.7 us.-
BACKPORCH .- 50 Horiz. Backporch = 1.8 us.-

14 Horiz. Frontporch = 0.5 us

~ VDISPLAY .- 2048 1024 lines,. .-
........... ~ VSYNC := 6 3 lines = 46 us

VBLANK .- 60 30 lines.-
VFP = PreEqualisation = VSync = 46 us

VBP = VBlank + PostEqualisation = 516 us

total lines a 15.63us = 1063 lines

total time for each image = 16.6 ms

TRDELAY .- 28 1.0 us.-



'.

GDS-n

9.2.11 SONY GDM 1950

117 Appendix

-- SONY GDM1601,1950 - 110 MHz dot elk - 1280*1024 dots - 60Hz

pll = 22

LINETIME := 434 63.36 kHz Horiz.Scanning freq.

DISPLAY .- 320 1280 dots.-
HALFSYNC := 23 Horiz. Sync = 1.7 us

BACKPORCH .- 57 Horiz. Backporch = 2.1 us.-
11 Horiz. Frontporch = 0.4 us

VDISPLAY .- 2048 1024 lines.-
VSYNC := 6 3 lines = 47 us

-.."....' VBLANK := 46 23 lines

VFP = PreEqualisation = VSync = 47 us

VBP = VBlank + PostEqualisation = 410 us

total lines a 15.78us = 1056 lines

total time for each image = 16.7 ms

TRDELAY := 28 1.0 us



\
'"

GDS-II

9.2.12 Silicon Graphics

118 Appendix

silicon Graphics - 105 MHz dot clk - 1280*1024 dots - 60 Hz

LINETIME := 410

DISPLAY := 320

HALFSYNC := 15

BACKPORCH : = 58

2

pll = 21

64 kHz Horiz.Scanninq freq.

1280 dots

Horiz. Sync = 1.1 us

Horiz. Backporch = 2.2 us

Horiz. Frontporch = 0.08 us

.....,.
VDISPLAY

VSYNC

VBLANK

TRDELAY

:= 2048

:= 6

:= 64

:= 28

1024 lines

3 lines = 46.0 us

32 lines

VFP = PreEqualisation = VSync

VBP = VBlank + PostEqualisation

total lines a l5.6us =

total time for each image

1.1 us

= 46.0 us

= 546 us

1065 lines

= 16.6 ms

-- Silicon Graphics - 110 MHz dot clk - 1376*1024 dots - 60 Hz

LINETIME := 430

DISPLAY := 344

HALFSYNC := 16

BACKPORCH := 53

1

pll = 22

64 kHz Horiz.Scanning freq.

1376 dots

Horiz. Sync = 1.2 us

Horiz. Backporch = 1.9 us

Horiz. Frontporch = 0.04 us

VDISPLAY

VSYNC

VBLANK

TRDELAY

:= 2048

:= 6

:= 64

:= 28

1024 lines

3 lines = 46.0 us

32 lines

VFP = PreEqualisation = VSync

VBP = VBlank + PostEqualisation

total lines a 15.6us =
total time for each image

1.0 us

= 46.0 us

= 547 us

1065 lines

= 16.6 ms



GDS-n 119

9.2.13 lV-Monitor - interlaced

-- TV Monitor - 20 KHz dot clock - 768*512 interlaced - 50.0 Hz

-- interlaced yet to set by control register! !

pll = 4

LINETIME := 320 15.625 Khz Horiz.Scanning freq.

DISPLAY := 192 768 dots

HALFSYNC .- 15 Horiz. Sync = 6.0 us.-
BACKPORCH := 58 Horiz. Backporch = 11.6 us

40 Horiz. Frontporch = 8.0 us

VDISPLAY := 512 256 lines

VSYNC := 26 13 lines = 0.832ms

VBLANK := 34 17 lines

VFP = PreEqualisation = VSync = 0.832 ms

VBP = VBlank + PostEqualisation = 1.92 ms

total lines a 64 us = 312 lines

total time for each image = 20 ms

TRDELAY .- 10.-

15 KHz dot clock - 512*512 interlaced - 50.0 Hz

-- interlaced yet to set by control register!!

pll = 3

15.625 Khz Horiz.Scanning freq.

512 dots

Horiz. Sync = 8.0 us

Horiz. Backporch = 12.3 us

Horiz. Frontporch = 9.6 us

:= 240

:= 128

:= 15

46

36

LINETIME

DISPLAY

HALFSYNC

BACKPORCH :=

-- TV Monitor -

VDISPLAY

VSYNC

VBLANK

:= 512

:= 26

:= 34

256 lines

13 lines = 0.832ms

17 lines

VFP = PreEqualisation = VSync = 0.832 ms

VBP = VBlank + PostEqualisation = 1.92 ms

total lines a 64 us = 312 lines

total time for each image = 20 ms

TRDELAY := 10



)

GDS-n

9.3 Testprograms

Introduction to the test- and driver software

Concept

121 Appendix

',f ~

The supplied software is designed to explain the handling of GDS IT and the programming of

GDS IT specific functions.

All given software is programmed under MULTITOOL OCCAM II.

Hardware and Software needed to run demo programs:

mM PC/XT/ATwith BBK-PC adaptor

Standard transputer-node as HOST (MTM2, MTMPC, TPM4, TPMPC,

TPMIO, etc. )

Parsytec Multitool (formerly named Megatool).

The main purpose of the given routines is to demonstrate the operation and programming of

the board. With the exception of the library 'GDSIT.uti!' most of the given fIles may not even be

used in your application, so don't stick too close to the way we programed but understand the

principles of the board and write your own !

How to use the software:

You will fmd a PC formated disk that holds a batch fIle and all utilities you need.

Put the supplied diskette in your drive, log to that drive and simply

call" install <sourcedrive>" (e.g." install c" for installation on drive c:). The

batchfIle will copy everything to a subdirectory named "GDSDEMO" under MTOOL ..



GDS-ll

Functionality of &iven promms

GDSII.util:

122 Appendix

GDSILutil is the central library me and supports the user with commands (that means the

necessary procedures and functions) to directly access the hardware. These library routines

operate on the lowest level. Some of the supplied functionallties are:

<x> = input variable x =output variable

event (EventError)
check.for.event (EventError.IdentError)
vertical.scan (EventError.IdentError.Scan)

EventError (BOOl) := TRUE
IdentError (BOOl) := TRUE
Scan (REAl32)

set.dot.clock «pll»
pll (INT)

different.palettes

delay «x»
x (INT)

simple pictures

G300 register operations

read. Control (Contr)
write.Control «Contr»

Contr (INT)

disable.VTG ( )
enable.VTG ( )

read.datapath (datapath)
write.datapath «datapath»

datapath ([20]INT)

ask.for.interlace (interlace)
interlace (BOOl) := TRUE

wa it for event
see if event has come
calculates vertical scan freq.
no event since sOms
error checking" Ident Register ..
vertical scan freq.

set pixel dot clock
multiplication factor for Pll

set ClUT with some palettes

just a delay routine
delay in x times of lOms

draw patterns

6300 register operations

read" Control Register ..
set" Control Register ..
value stored in .. Control Register ..

starts the .. Video Timing Generator ..
stops the .. Video Timing Generator ..

read" Datapath Registers ..
write" Datapath Registers ..
values stored in the" Datapath Registers ..

check for interlace mode
interlaced mode detected

.~
;
•

Be careful on changing the way the hardware is called, since the way most operations are

handled is highly hardware dependant. We suggest that you program your own graphic drivers

on using these routines (which are easy to call and mostly optimized on speed) or that your

alter these routines only after a very close analysis of the given examples !

Nevertheless, don't be afraid of opening the given folds and read through all routines.



1-

)

GDS-II

DATAPOOL

123 Appendix

Datapool is a library fIle and holds all monitor specific data (such as timing, horizontal and

vertical frequencies, etc.) and contains no active routines. Its simply a library and can be

extended to suit your needs by adding more datasets. To create a new dataset for your monitor

or your specific resolution, just copy an existing fold and change the timing data to your desired

( or more likely' tested' ) parameters.

MONITOR.utii

MONITORutil is a procedure called by the actual demo program and selects the desired

dataset from datapool. The calling parameters are: monitor.type, resolution, mode, pll, linear.

After giving ( in integer values) the monitor.type, resolution number, mode number and the

Boolean value 'linear' (TRUE for" Linear Addressing \) and FALSE for n Row-Oriented

Addressing"2) ), MONITORutilloads the corresponding data from datapool and programs the

GDS registers by using routines from the library file GDS/lutil.

PLL is returned by procedure and represents the multiplication factor for the internal pllioop

of the G3003)"

The general call syntax is:

MONITOR.uti! ( <monitor.type >, <resolution>, <mode> ,pll, <linear> )

Description of parameters:

monitor.type (!NT)

o TV Monitor

1 EIZO Flexscan 8060

2 EIZO Flexscan 9070

3 EIZO Flexscan 95004)

4 NEC MultisyncGSn

10 NEC Multisync XL5)

12 Sony GDM 16015)

1)
2)
3)
4)
5)

See chapter 3.2.2
See chapter 3.2.1
See chapter 3.4.1
Only the new version of the EIZO 9500 was tested !
Only mode 1 ( 8 bit/pixel): "Pixel Clock" > 32 MHz



GDS-n 124

14 Sony GDM 1602,16506)

16 Philips ccr 20646)

18 Silicon Graphics HR Monitor6)

resolution (INT)

Appendix

The resolution depends on the monitor.type. Look inside the fold datapool and choose

the right value:

( example for fixed Pixel Clock with EIZO 8060 )

1 640 * 480

2 720 * 540

3 768 * 576

4 800 * 600

linear

set linear to TRUE for II LinearAddressing Mode ..

set linear to false for" Row-OrientedAddressing Mode ..

Example for a EIZO 8060 with a 640 * 480 resolution and II Row-Oriented Addressing

Mode" ( Hardware Panning possible). GDS-n jumpered to 8 bit per pixel.

#USE GDSII.util

#USE MONITOR.util

VAL monitor. type IS 1

VAL resolution IS 1

VAL mode IS 1

VAL linear IS FALSE

INT pll

MONITOR.util ( monitor. type, resolution, mode, pll, TRUE)

6) Only mode 1 ( 8 bit/pixel): • Pixel Clock· > 32 MHz



\
"

CDS-II

INIT.utll

125 Appendix

INIT.util sets" Pixel Clock", "Control Register", "Mask Register", " Datapath Register", CLUT

and starts the VfG. No additional commands are required to initialize the G300.

The general call syntax is:

INIT.util ( < monitor.type >, <resolution>, < mode> ,pll, <linear> ,Error)

monitor.type, resolution, mode, plI, linear: see MONITORutil

Error: Integer value, gives you back an error code.

Error: = 0: No errors during INIT.util

DEMO programs

Every program needs an additional transputer node as a host. Connect link 2 of your host

transputer to link 0 of the GDS-II. Enter the directory" \MTOOL\GDSDEMO" and

start" multitool II with the command II MTOOL ". Than you can enter the several folds and load

the program code by pressing" <ALT>4". The program can be started by loading the

EXE II Link Monitor" with key II <F5> and by starting the EXE with key II <F6> ".

Real colour demo:

This program only runs in mode 2. The resolution is fIxed to 768 * 576 dots.

Demo:

This program is menu driven. You can choose between mode 1, mode 2, mode 3, linear­

and" Row-OrientedAddressing Mode ", different monitor types and different resolutions.

You will also fmd some simple drawing commands for testing the GDS-II and your

monitor.

Programming a new video timing:



GDS-ll 126 Appendix

.,..

After choosing resolution and monitor type restart the program with "back to main

menu". You are asked once again for a monitor type. Choose now the command" user

defined" and you will enter a menu where you can change all the different datapath

registers. The old values will be used as default for every new cycle.

Testing the DB-DMA

Connect link 0 of the DB-DMA to link 2 of the ODS-II.

Enter the fold" demo II and fmd the defmition for processor 1. Remove the II comment

fold II and recompile the program" demo ".



GDS-n

9.4 Installation

128 Appendix

9.4.1 Installation on Multicluster system units

When installing the GDS-ll module within Multicluster system or expansion units you may use

the BNC-connectors at the rear of the unit for feeding the video signals to your graphic

monitor.

The installation should only be done, if the unit is switched off !

you can insert the GDS-II module into any desired slot, even though the left slots

are preferred

the GDS-ll module will normally be used as a network processor, so connect its

link 0 to link 2 of your host transputer

The following step depends on your pcb rear backplane version, which is easy to

identify. In one version, the rear backplane contains a few integrated circuits

( refered to as "active rear backplane "). The other version does not contain any

active devices ( referred to as "passive rear backplane ").

active rear backplane:

Connect the video output of the GDS-ll module ( this is link 6 of the backplane)

to the active rear backplane's video link plug (this is the left-most connector

when viewed from the front of the MultiCluster system / expansion unit) with a

standard internal link cable.

passive rear backplane:

Connect the video output of the GDS-ll module ( this is link 6 of the backplane)

to the video link plug of the active rear backplane (this is the left-most

connector when viewed from the front of the MultiCluster system / expansion

unit) using a special video link cable.

This video cable has a 1 to 1 plug connection instead of the inverted plug

connection used in the standard link cables for internal use. In addition, lines 6

and 7 are crossed in the special cable. This special video link cable should only

be used within MultiCluster units!



GDS-II 129 Appendix

Connect your monitor to the BNC-connectors. All ROB-signals also carry the

synchronization signals. When using the "passive rear backplane" you should be

careful about a few incorrectly labelled signals at the rear of the unit. Youd

better switch the labels HSYNC and VSYNC !

9.4.2 Installation In IBM PCl1Cf/AT Or Compatibles

When installing the ODS module within IBM PC/x:f/ AT or compatible computers you will

need a BBK-PC adaptor. This has to be fIXed to the ODS-IT. After removing the front cover of

the ODS-II both modules form an add-on board that can be inserted into a long IBM slot. The

ODS is normally used as a network processor, so it may be necessary to disable the BBK-PC

adaptor to avoid addressing conflicts with other adaptors ( see the technical documentation of

the BBK-PC adaptor ).

To feed the video signals to your graphic monitor, connect the video output of the ODS-II

module ( Link 6 of the BBK-PC ) to one of the external 8-pin Link connectors at the back side

of the adaptor using a standard flat Link cable.

If you've got a new version of the BBK-PC, watch for the additional power connectors on the

upper side of the board. Connect the two power connectors to one of the 4-way power

connector inside the PC.



GDS-II

9.5 Power Requirements

Operating Temperature6):

Power Supply Voltage:

Power Supply Current; GDS-II:

130

o to 70 ·C

+ 5 Volt +/_ 5%

Appendix

standby; G300 is not working:

standby; G300 / model runs at 35 MHz:

standby; 0300 / model runs at 110 MHz:

standby; G300 / mode2 runs at 32 MHz:

blockmove; G300 / mode2 runs at 32 MHz:

Power Supply Current; GDS-II + DB-DMA:

standby; G300 is not working:

standby; G300 / mode2 runs at 32 MHz:

blockmove; G300 / mode2 runs at 32 MHz:

Power Supply Current; GDS-II + DB-DMA + DB-CLUT:

standby; G300 is not working:

standby; G300 / mode3 runs at 32 MHz:

blockmove; 0300 / mode3 runs at 32 MHz:

ca. 1.4 A

ca. 1.5A

ca. 1.8A

ca. 1.85 A

ca. 2.2 A

ca. 1.9 A

ca. 2.3A

ca. 2.6A

ca. 2.5 A

ca. 2.9A

ca. 3.2A

When installing your ODS-II in an IBM PC/x:f/AT make sure, that your Power Supply is

"strong enough ". Use the additional Power Connectors on your BBK-PC.

The best way to run your GDS-II is using a " MuitiCluster " unit. Power supply and cooling

fans are provided for these kind of boards !

6) Sometimes additional cooling is required !



,)
..

.I

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

o
&

of
>

&
of

>
0

o
&

of
>

&
of

>
01

J
1

D
B

-D
I1

l
d

ln
b

le
/(

en
A

b
le

)
o

&
of

>
&

of
>

0
o

&
of

>

••
••

••
••

••
••

••
••

••
••

••
..~

.
Xl ,g,

J2
l1

et
oo

r)
'

co
n

fl
l)

lr
d

lo
n

01 .0
.

\C '" 1 ~ ~ ti
l ~ f

S
lo

t
B

~ ~

···
···

J1
0

PL
L

en
A

bl
e/

ld
ls

ab
le

)

J3
Pr

oc
es

sO
l'"

sp
ee

d
se

le
ct

J4
L

in
k

sp
ee

d
se

le
ct

J5
C

lo
cl

c
se

le
ct

~&o
f>

0
0

0
XX

X
J6

IIo
de

se
le

ct

lN
tp

ut
co

n
fl

l)
lr

d
lo

n

S
lo

t
A

I
".

II
od

e
se

le
ct

J7
J8

J9
o

&
of

>
0

&
of

>
0

0
0

•
•
•
•
.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

ljl
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

&
....

.,
••

••
•

• •

••
••

••
••

••
••

••
••

••
••

••
•• •• •• • • • • • • • • • •

,
.

••
••

••
••

••
••

•
S

lo
t

C
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••

"-
n

o
r)

'
c0

n4
ll

)l
rA

ti
on

P
ro

c
sp

ee
d

se
le

ct
li

n
k

sp
ee

d
se

le
ct

C
lo

ck
se

le
ct

IIo
de

se
le

ct
T

es
t

Ju
ll

pO
r'

Jl
e

PL
L

en
A

bl
e/

di
sA

bl
e

·I
I~

IJ
2

m
I!!J

L
e

2e
It

V
s

10
&o

f>
1

C
lk

•
S

It
iz

10
&o

f>
1

I1
0d

e
I

;
II

od
e

2

D
[
~
l

PL
L

d
is

ab
le

~
0
2
S
1
t
i
z

0
0

L
I,

2
,3

2e
It

V
s

I&
of

>
01

C
lk

•
ex

t
C

lk
!C

H
>0

1
I1

0d
e

3

a
D

L
e

Ie
It

V
s

J5
J7

J9
ID

O
no

t
ch

an
ge

o
&

of
>

2e
It

tz
XX

L
I,

2
,3

Ie
It

V
s

PL
L

en
A

bl
e/

di
sa

bl
e

th
e

te
st

ju
m

pe
r

o
&

of
>

M
od

e
se

le
ct

~
>

_
"
"
Ia

m
eL

e
Ie

It
V

s
10

0
0

1

G
30

0B
T

es
t

ju
ll

pe
r"

J9
an

d
J1

1
(
!)

..
.

0
17

,5
It

iz
XX

X
M

od
e

I
!o

&
of

>
o!

Ig
&o
f>
IO
~1

1
P

ro
c

cy
cl

es
o

&
of

>
o

L
I,

2
,3

2e
It

V
s

0
0

0
0

5
P

ro
c

cy
cl

es
J3

G
Je

eR
J1

1
6

P
ro

c
cy

cl
es

9
Le

2e
It

V
s
m

II
od

e
21

[0
C?

eH
!I

PL
L

en
A

bl
e

J>
X

L
I,

2
,3

Ie
It

V
s

0
0

0
M

od
e

3
~
.
O

QI
PL

L
d

iu
b

le
J4

J6
J8



GDS-II

9.7 GDS-II Addressmap

Hardware-addr. OCCAM-word-addr.Name

134

function

Appendix

8000.0000
801F.FFFF

80Z0.0000
803F.FFFF

0000.0000

OOOO.OOCO

0008.0000
OOOF.FFFF
0010.0000
0017.FFFF
0018.0000
001F.FFFF
OOZO.OOOO
00Z7.FFFF
00Z8.0000
OOZF.FFFF
0030.0000
0037.FFFF

10000.0000
#0007.FFFF

#0008.0000
10009.FFFF

#ZOOO.OOOO

#ZOOO.0030

IZOOZ.OOOO
#2003.FFFF
#Z004.0000
IZ005.FFFF
#Z006.0000
#Z007.FFFF
IZ008.0000
#Z009.FFFF
IZOOA.OOOO
#ZOOB.FFFF
#ZOOC.OOOO
IZOOD.FFFF

DRAM - Start
DRAM - End

VRAM - Start
VRAM - End

Ident-register
( read-only)

Reset-register
( write-only)

PCSO - Start
PCSO - End
PCS1 - Start
PCS1 - End
PCSZ - Start
PCSZ - End
PCS3 - Start
PCS3 - End
PCS4 - Start
PCS4 - End
PCS5 - Start
PCS5 - End

Z MByte working memory

Z MByte video memory

bitO =0
bit8 =1: Event by VSYNC ( "Frame" =active)

bitO - 3: Link Reset Out
bit4: Reset for 6300

Chipselect 0 for DB-Slot A ( l/Z MByte )

Chipselect 1 for DB-Slot A ( l/Z MByte )

Chipselect 0 for DB-Slot B ( l/Z MByte )

Chipselect 1 for DB-Slot B ( l/Z MByte )

Chipselect 0 for DB-Slot C ( l/Z MByte )

Chipselect 1 for DB-Slot C ( 1/2 MByte )

0038.0000
003F.FFFF

0040.0000

'ZOOE.OOOO
IZOOF.FFFF

'Z010.0000

CS-CLUT - Start ChipSelect for 1Z bit-expansion ( DBCLUT )
CS-CLUT - End

Base address 6300

0040.0000
0040.03FC

#Z010.0000
'Z010.00FF

CLUT - Start
CLUT - End

6300's Internal CLUT ( Z56 Words A Z4 bit )7)

0040.0500
0040.0580
0040.0600
0040.0680

0040.0484
0040.04BO

#Z010.0140
IZ010.0160
#Z010.0180
'2010.01AO

'Z010.01Zl
'Z010.0l2C

Mask register Read/write
Control RegisterRead/write
Top of Screen Read-only
Boot Location8) Write-only 1

Datapath Register - Start9)
Datapath Register - End

7)
8)
9)

The tranputers addresses 256 words Ii 32 bit but only the lowest three bytes of every word are used !
Once programmed" Boot Location " can't be changed.
Access to Dataparh Registers only possible with enabled vrG !



)
...

J

I,
C Qo "'C
:l S" 8 ... c

GN
D

o
o.

GN
D

UC
C

UC
C

..,
-0

0
o

0
5r

AD
20

o
0

nW
R,

D
0

IT
]

AN
A

o
0

nS
0

~

...
...

.
0

c.

AD
21

o
0

nR
F,

D
1

:J
I
-
-
t

ER
R

o
0

nS
1

"c
AD

22
o

0
AD

2
x

W
AI

T
o

0
nS

2
~

AD
23

AD
3

I
-
-
'

PO
R

nS
3

;;-
o

0
0

(J
)

o
0

.. =
'

AD
24

o
0

AD
4

n
I
-
-
'

TR
ES

o
0

nS
4

i
AD

25
o

0
AD

5
s:u

0
M

RE
Q

o
0

nW
R0

a. {
II

AD
26

o
0

AD
6

rt
-

rt
-

M
GR

T
nW

R1
-

o
0

c ..
A

D
2?

AD
?

...
...

.
0

ER
EQ

nW
R2

o
0

0
n

o
0

AD
28

o
0

AD
8

:J
0

EA
CK

nW
R3

AD
29

o
0

AD
9

:J
PC

O
nR

D
AD

30
o

0
A

D
10

:J
Cl

K
nR

F
~

AD
Sl

o
0

AD
11

m
GN

D
0

1
1

0
GN

D
n

lA
2

o
0

A
D

12
rt

-

lA
3

o
0

A
D

13
0

lA
4

o
0

AD
14

~
o

0

lA
5

o
0

A
D

15
o

0

nP
C

S0
,2

,4
o

0
A

D
16

o
0

nP
CS

1
,3

,5
o

0
A

D
1?

o
0

CO
NF

o
0

A
D

18
o

0

BF
R

o
0

A
D

19
o

0

UC
C

o
0

UC
C

GN
D

o
0/

11
GN

D

> 13 :>;
"



GDS-TI 138 Appendix

9.9 Pinout Of The (96-Way) DIN 41612 Connector

The pinout is compatible to the 8 Link PARSYTEC boards (MTM2, TPM-IO). The video

signals are placed at the position of Link 6. The signals of Link 6 are connected to an additional

lO-pin BERG-connector on the board.

c b a

1 Reset 0 out + Reset lout + Reset 0 out -
2 Link 0 out + Reset lout - Link 0 out -
3 GND Link lout + GND
4 Link 0 in - Link lout - Link 0 in +

5 Reset 0 in - Link 1 in - Reset 0 in +

6 Link 1 in + Reset 1 in - Reset 1 in +

7 Reset 2 out + Reset 3 out + Reset 2 out -
8 Link 2 out + Reset 3 out - Link 2 out -
9 GND Link 3 out + GND
10 Link 2 in - Link 3 out - Link 2 in +

11 Reset 2 in - Link 3 in - Reset 2 in +

12 Link 3 in + Reset 3 in - Reset 3 in +

13 Reset 4 out + Reset 5 out + Reset 4 out -
14 Link 4 out + Reset 5 out - Link 4 out -
15 GND Link 5 out + GND
16 Link 4 in - Link 5 out - Link 4 in +

17 Reset 4 in - Link 5 in - Reset 4 in +

18 Link 5 in + Reset 5 in - Reset 5 in +

19 HSYNC Reset 7 out + GND
20 BLUE Reset 7 out - GREEN
21 GND Link 7 out + GND
22 RED Link 7 out - HCLK
23 VSYNC Link 7 in - GND
24 Link 7 in + Reset 7 in + Master Reset
25 Reset 7 in -
26 LinkSpeed
27 + 5V + 5V + 5V
28 + 5V + 5V + 5V
29 + 5V + 5V + 5V
30 GND GND GND
31 GND GND GND
32 GND GND GND



,
I

GDS-ll

9.10 Index - Register

13 bit/pixel 19, 21, 34, 94
24 bit/pixel 19, 21, 32, 95
8 bit/pixel 19, 20, 35, 93
Address Space 40
Backplane 11
BackPorch 51
BBK-PC 11
Blockmove 78
Boot Location 41
BroadPulse 51
Bytblt 78
CCIR studio television standard 49
Clip2D 80

Clock Input 41
Clock Select 62
CLUT 15,54
Colour-Looku~Table 15
Column-Address 17,24,25
Composite Sync 46, 47
Control Register 43
D/ A Converter 15
Datapath Register 51
Daughterboard Connectors 66
DB-CLUT 66
DB-DMA 58,66
DBI-x 67
DBT-167
DBT-467
Display 51
Double Buffering 37
Draw2D 79
EIA-343 studio television standard 49
EIZO FLEXSCAN 8060 96
EIZO FLEXSCAN 9070 101
EIZO FLEXSCAN 9500 107
Equalisation Cycle 52
Even field 49
Event 81
G300 14,41
GDS-II Addressmap 133
HalfSync 51
Hardware Panning 24
Helios 76
Horizontal Timing 51
HSYNC 46
IBM PC{}IT/AT 128
Ident Register 55
Initialisation examples 22
Initialising The G300 77
Interlaced 45, 48
JumperJ1 58
Jumper J10 63
Jumper J11 63
JumperJ2 59
JumperJ3 60

140 Appendix



I)

"~.

GDS-ll

JumperJ4 61
JumperJ562
JumperJ6 62
JumperJ762
JumperJ863
JumperJ9 63
Jumper overview 131
Jumper 112 64
Line Start SO
Linear Addressing 31, 36
LineStart 51
Linetime 51
Link In 10
LinkOut 10
Link Software Addresses 77
Link Speed 61
Link Speed Select 61
Link-Reset-In 12
Link-Reset-Out 12
Mask Register SO
Master-Reset 12
Memlnit 27,51,54
Memory access 59
Memory Configuration 59
Mixed Synchronisation 46
Mode Select 62, 63
Move2D 78
Multicluster 127
MultITool 75
NEC MULTISYNC Gsn 110
NEC MULTISYNC XL 114
Non-interlaced 45,48
NTSC - standard 49
Odd field 49
Output Configuration 64
PAL - standard 49
Philips cr 2064 116
Pixel Qock 41, 62
Plain Composite Sync 46
Post Equalise Cycle 53
Power Requirements 129
Power-On-Reset 12
Pre Equalise Cycle 52
Processor Clock 60
Processor Cycles 59
Processor Speed Select 60
Rear backplane 127
·Reset In 10
Reset Out 10
Row-Address 17,24,25
Row-Oriented Addressing 18
Screen Refresh 14
Short Scan Line 52
ShortDisplay 51
Silicon Graphics 118
SONY GDM 1602 115
SONYGDM 1950 117
Standard Full Ccan Line 51
Tesselate Composite Sync 46

141 Appendix



;

GDS-n

Top orScreen 24, 32, 50
Transfer Cycle 27, 44, 53
TransferDelay 27, 28, 51, 53
TV-Monitor 119
UniLinks 10
VBlank 51
VDisplay 51
Vertical Backporch 53
Vertical Frontporch 53
Vertical Sync Cycle 52
Vertical Timing 52
Video Qock 64
Video memory 17
Video Timing ,69
Video Timing-Generator 44
VSYNC 46, 51, 52
X - Windows 76

142 Appendix


	Contents
	Preface
	1 Introduction To The GDS-II
	2 Transputer-Node Description
	2.1 The Processor
	2.2 The Parsytec UniLinks
	2.3 The Backplane Link Layout
	2.4 The Reset Mechanism

	3. The GDS-II Video Section
	3.1 Graphic System Basics
	3.1.1 How An Image Is Built Up
	3.1.2 The Number of Available Colours
	3.1.3 The G300's Colour-Lookup-Table
	3.1.4 Programming The G300

	3.2 The Organization Of The Video Memory
	3.2.1 Row-Oriented Addressing
	3.2.1.1 Hardware Panning With The G300
	3.2.1.2 The Importance Of The Registers MemInit And TransferDelay

	3.2.2 Linear Addressing
	3.2.2.1 Calculating Top Of Screen
	3.2.2.2 Linear Addressing A Summary

	3.2.3 Double Buffering

	3.3 The GDS-ll's Address Space
	3.4 The G300 Registers
	3.4.1 Boot Location
	3.4.2 Control Register
	3.4.3 Mask Register
	3.4.4 Top Of Screen
	3.4.5 Datapath Register
	3.4.6 CLUT
	3.4.7 Ident Register


	4 Jumper Layout
	J1 Configuration Of Slot A
	J2 Memory Configuration
	J3 Processor Speed Select
	J4 Link Speed Select
	J5 G300 Clock Select
	J6, J7 Mode Select
	J8, J10 Mode Select
	J9, J11 Reserved
	J12 Output Configuration

	5 Daughterboard Connectors
	6 Calculating a Video Timing
	7 Software Examples
	7.1 Booting The GDS-II
	7.2 The GDS As A Host Under MultiTool
	7.3 The GDS As A Slave Under Multitool
	7.4 X - Windows Under Helios On A GDS-II
	7.5 Link Software Addresses
	7.6 Initialising The G300
	7.7 The Transputer's Graphic Operations
	7.7.1 Move2D
	7.7.2 Draw2D
	7.7.3 Clip2D

	7.8 Synchronizing With The Vertical Blank
	7.8.1 Programming the CLUT (one interrupt source)
	7.8.2 Programming the CLUT (several interrupt source)

	7.9 Reading The Datapath Register

	8. GDS-II vs. GDS - A Comparison
	9. Appendix
	9.1 Configuration examples
	9.1.1 8 bit/pixel
	9.1.2 13 bit/pixel
	9.1.3 24 bit/pixel

	9.2 Video Timings
	9.2.1 EIZO FLEXSCAN 8060 - mode 1
	9.2.2 EIZO FLEXSCAN 8060 - mode 2
	9.2.3 EIZO FLEXSCAN 9070 - mode 1
	9.2.4 EIZO FLEXSCAN 9070, 9500 - mode 2
	9.2.5 EIZO FLEXSCAN 9500 - mode 1
	9.2.6 NEC MULTISYNC GSII - mode 1
	9.2.7 NEC MULTISYNC GSII - mode 2
	9.2.8 NEC MULTISYNC XL
	9.2.9 SONY GDM 1602
	9.2.10 Philips CT 2064
	9.2.11 SONY GDM 1950
	9.2.12 Silicon Graphics
	9.2.13 TV-Monitor - interlaced

	9.3 Testprograms
	9.4 Installation
	9.4.1 Installation on Multicluster system units
	9.4.2 Installation in IBM PC/XT/AT or Compatibles

	9.5 Power Requirements
	9.6 Jumper overview
	9.7 GDS-II Addressmap
	9.8 Pinout of the daughterboard slot
	9.9 Pinout of the (96-Way) DIN 41612 Connector

	10 Index

