
DmmOS"

IMS F003C
2D graphics
occam & C Libraries

A software support package
for iq systems' graphics TRAMs.
(lMS DX05B, DX205, DX214 toolset compatible)

J:.•• SCS-T1fOMSON
•J'8 t\1JJ©Ja@~~~a

INMOS is a member of the SGS-THOMSON Microeleclrooics Group

72 OEK 264 01 May 1992

Copyright © INMOS Limited 1992. This document may not be copied, in whole or
in part, without prior written consent of INMOS.

• 1$, rr[1jfl)08@, IMS and occam are trademarks of INMOS limited.

INMOS is a member of the SGS·THOMSON Microelectronics Group.

72 OEK 264 01 May 1992

I Contents

1.2

1 Introduction to the IMS F003C •........•......•...•...

1.1 Prerequisites.•.

1.1.1 Hardware .
1.1.2 Software•.
Organisation of the manual ..
1.2.1 Manual conventions•........•.

1

1

1
1
2
2

2 Software installation••.•••.••••.••.... 3

3

4

Overview of the IMS F003C••.•.•...

3.1 CGI display server•....•.
3.1.1 ANSI C and OCCAM libraries•.
3.1.2 Graphics board support libraries•....•...

CGI concepts•.....

4.1 The IMS F003e CGllibrary

4.2 Screens. . . .
4.3 Colour representation .

4.4 CGI drawing modes•.
4.4.1 Plot styles .
4.4.2 Filler modes
4.4.3 Pixel replace modes ..

5
5
8
8

9
12

13
15
15
15
16
17

20
21

22
23
23
24
24

5.3
5.4

Graphics board concepts............................ 19

5.1 Board initialisation .

5.2 Video memory management .

5.2.1 Mapping physical CGf screens to VRAM .
Colour palelle .

The iq Systems graphics boards ..

5.4.1 lMS 8419 graphics TRAM .
5.4.2 IMS 8437 compact display TRAM ..

5

6 CGllibraries. • 25

6.1

6.2

Initialisation alld termination .

Alphabetical list of CGI primitives ...

25

26

7 Graphics board functions.•. 95

7.1 listoffunctions.. .•. 95

Contents

8 ANSI C user guide 103
8.1 Toolset search path.................................. 103

8.1.1 IMSFOO3Clibraryandilcludefiles 103
8.2 Invoking the CGI display selVer 104

8.2.1 Single processor, single prl){1'8m. 104
8.2.2 Multiprocessor, multi program . 106

8.3 Configuring transputer memOlY sizes . . . 107
8.4 Opening the graphics board ... 108
8.5 Compiling and linking IMS F003C programs 109

8.5.1 Compiling 109
8.5.2 Linking.. 109

8.6 Example program•....•. 109

9 occam user guide 111

9.1 Toolset search path 111
9.1.1 IMS FOO3C library and include files 111

9.2 Invoking the CGI display server 112
9.2.1 Single processor, single program................ 112
9.2.2 Multiprocessor, multi program•..... 114

9.3 Configuring transputer memory sizes 114
9.4 Opening the graphics board 114
9.5 Compiling and linking IMS F003C programs 116

9.5.1 Compiling 116
9.5.2 Linking 116

9.6 Example program 116

10 Further use of the CGI system 117

10.1 Using and defining text fonts 117
10.2 Using CGI saeens for windowing..... 119
10.3 Simple animation techniques.... 122
10.4 Writing a board support library 124

Contents

Appendices

iii

A Directory structure 125

B IMS B419 hardware overview 127
B.1 Description . . 127

B.1.1 Introduction........... 127
8.1.2 Screen sizes 128
8.1.3 SubSystem signals............ 128
8.1.4 Memory Map. 129
8.1.5 Pixel clock selection 130
8.1.6 Jumper selection. 130

8.2 80ard layout. 131
8.2.1 Video and sync outputs 132

elMS B437 hardware overview 133
C.1 Description... 133
C.2 Memory map.. 134
C.3 Display formals 134
C.4 Colour video controller 134
C.S Control register programming 136
C.6 Hardware cursor 137
C.l Events. .. 137
C.8 80ard control registers. 138

10.4.1 Colour mode select register 138
10.4.2 IMS G332 reset register 138
10.4.3 Startup procedure... 139

C.9 Video outputs 139
C.10 Board layout .. 140
C.11 Accessories. 140

o References•......•....•.•....•............ 141

IMS F003C 20 graphics occam and C libraries 13

Image functions
eqi_copy

eqi_zoom

cgi_rot

cgi_shear

cgi_search

cgi_setpelstyle

Control functions
cgi_init

cgi_terminate

cgi_setdrawmode

cgi_setdrawscreen

cgi_setorient

Error handling
O9i errs tat

4.2 Screens

Image copy

Image copy with zoom

Image rotation

Image shear
Search for colour change

Set custom pel pattern

Initialise CGI system

Terminate CGI system

Set drawing modes

Sel current CGI saeen

Seltext and image orientation

Expound current CGI error

All CGI operations are performed on an abstract data structure called a screen. A
screen represents a bounded two dimensional area that contains the graphical
output of CGI functions. Cartesian coordinates are used to address points located
on a screen and all CGI operations, when applied to a screen, are dipped to its
extent The CGI system uses the screen abstraction to represent various types of
graphical object. For example, screens are used to hold character images when
expanded from a packed fonl.

In IMS F003C, the ANSI C and occam implementations of a screen are defined
as follows:

ANSI C struct occam INT array

struct [SCREEN.SIZE]INT screen:

{

char "'raster; screen [SCREEN.RASTER]

int xsize; screen[SCREEN.XSIZE]

int ysize; screen[SCREEN.YSIZE]

int stride; screen[SCREEN.STRIDE]

int multiMode; screen[SCREEN.MULTIMODE]
) screen;

72 OEK 264 01 May 1992

14

raster Is the transputer address of aregion ofmemory used to hold a tINa dimen­
sional image, called a raster. It is JUlIize pixels wide by ysize pixels high. The
stride value specifies the horizontal stride to take when stepping 10an equivalent
position on the next horizontal line. mul tiMed. is used internally by the CGI sys­
tem.

x.as

2~LLLLJ
raster memory

y size

stride

Figure 4.1 The CGI saeen abstraction

The CGI system maintains the notion of a current drawing sueen. This is a screen
that has been identified as a target for future CGI operations: the majority of the
CGI functions implicitly address the current drawing screen. It is assigned with
cgi_s.tdrawscr••n.

Any number of screens may exist in a system and some may be related 10 others.
For example. to build a windowing system one could use the screen abstracUon
to represent the hierarchies that exist between parent windows and theirchiJd sub­
windows. The only restriction concerning the use of the saeen abstraction is that
the memory associated with a screen must be located on the transputer running
the CGI display server.

Ascreen may be displayed on an output monitor if its horizontaland vertical dimen­
sions match the physical display resolution. Such ascreen isreferred to as a physi­
cal screen. Physical screens are usually implemented with video memory on the
graphics board. When displayed on a monitor their cartesian origin (0,0) Is lo­
cated at the top left hand comer of the display.

CGI screens can be allocated statically, ordynamicaJly, on the transputer that runs
the CGI displayserver. Anewscreen may be derived from an existing one by refer­
encing asub-area of the existing saeen's raster memory. Physical screens are al-

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries 15

located dynamically using f. in!ucreen and have their rasters stored in video
memay on the graphics board.

4.3 Colour representation

The IMS FOO3C implementation of CGI uses 8 bit pixels resulting in saeens c0n­

taining upto 256different colours. Pixel values are used to address ac:olour palette
which generates the adual display colour from apossibly larger range. The resolu­
tion of the coIout palette is graphics board dependent, see section 5.3 for specific
details of this.

4.4 CGI drawing modes

The CGI system may operate in a number of different drawing modes that define
the run-time behaviourofgraphical primitives. Drawing modes are concerned with
the following:

• Plot style

• Filler mode

Pixel replace mode

Ultimately, most graphical primitives are implemented by plotting a sequence of
pixels. The pixel replace mode defines how a pixel is written inlo screen melTlOfY.
The plot style is used to control the generation of pixel values, for example, when
drawing a line, and the fill mode relates to the different methods available for per­
forming area flood fill.

The CGI system applies the current platstyle, fill and pixel replaoe modes implicitly,
during normal operation. They may be initialised with cgi_utdrawmode and de­
pending on the CGI function may combine to produce a resultant visual etreet. In
other situations only a subset may have an impact.

4.4.1 Plot styles

Plot sty1es atreet the outcome of the CGI plotting and outline functions, such as
cgi_dot., cgi_circle or cgiJX>lyline.

When tracing the outline of an object, orwhen plolting a sequence of slraightlines,
the current plot style determines the size, shape and visibility ofevery point plotted.
There are five plol styles:

PIXEL

PEL

L1NESTYLE

72 OEK264 01 May 1992

16

• L1NESTYLE·TRANSPARENT

L1NESTYlE·PEl

PIXEL

A single pixel is plotted to represent each point This gives solid outlines of mini­
mum display thickness drawn in the current foreground colour. See cgi_••tf­
col.

PEL

Each point is represented by a small, two dimensional pattern, called a pel. The
pel pattern is established with cgi_lIetpelatyle and used whenever a poinl
would otherwise have been plotted. Pels are useful for repeatedly plotting custo­
mised shapes such as cursors or bullet mam,

The pixel values defined by a pel pattern determine Its colour. In the default pixel
replace mode (overwrite) only pixels which have non-zerovalues are plotted. This
means that if the pel background colour is always zero, then the foreground can
consist of any number d non-zero colours, all of which will be plotted normally. By
selecting an appropriate pixel replace mode the zero-valued background can be
plotted, or the foreground ignored.

L1NESTYLE

A line style is a one dimensional array ofpixel values that is used to determine the
value of consecutive points on a line. The CGI system keeps track of which pixel
value to use fOf the next point and cycles repeatedly through the pixel array assign­
i'lg values to new points. Apixel value can be used a variable number of times be­
fore moving on to the next value, this Is controlled by the line sly'e zoom factor and
achieves a stretch elfect. lila styles are initialised with cqi_uUineatyle
which defines the pixel array contents, and its zoom factor.

lINESTYLE·TRANSPARENT

This is a variant of the line style. Atransparency effect is achieved by only p10lting
points that have non-zero values as defined by the line style array. All other points
are plotted normally. Zero valued pixels define positioos where background
c:otours will be visible through the line style.

lINESTYLE·PEL

Anothervarianl oflhe line sty1e mode, this combines a line slyle with a pel pattern.
Non-zero valued points defined by the line style are replaced by the pel pattern.

4.4.2 Filler modes

The CGI area fill primitives operate aCCOl'ding to the current fill mode. This defines
the method for filling amas aeated by functions such as cqi_ frect orcqi_fan­
fill. There are two fill modes:

72 OEK264 01 May 1992

IMS F003C 20 graphics occam and C libraries

• SOLID

PATIERN

17

SOLID

Areas are filled with a solid colour. The colour is defined by the cUlTent foreground
colour, see cgi_setfcol.

PATTERN

A customised two dimensional pattern caned a til style is used. This is tiled over
the fill area and dipped to it's boundary. The current fill style is intialised with
cgi_sett"illllltyle to define the pixel values contained in the fiB style pattern.
By selecting a suitable pixel replace mode, zero valued pixels may be treated spe­
cially if required, otherwise they are 'Mitten to the current saeen along with the
noil-"zero valued pixels.

4.4.3 Pixel replace modes

The pixel replace modes define how pixels are ultimately written into sasen
memory. They are fundamental 10 the operation of the CGI system: the result of
every CGI primitive in conjunction with the higher level drawing modes is in­
nuenced by the current pixel replace mode. There are three types of pixel replace
mode:

OVERWRITE

lOGICAl

• TRANSPUTER

OVERWRITE

The basic replace mode. Screen memory Is overwritten with new pixel values.

LOGICAL

The logical replace modes are implemented by perfooning a read modify write 0p­
eration on saeen melllOl)'. An existing pixel Is combined, using a logical operator,
with the new pixel value and the resultant pixel written into screen melTlOlY. The
logical modes supported are:

Operator Result

AND bitwise AND

OR bitwise OR

XOR bitwise XOR

NAND bitwise NAND

NOR bitiwse NOR

72 OEK 264 01 May 1992

18

TRANSPUTER
The transputer replace modes correspond directly to the two dimensional blodt
move lnstructions supported by the transputer. They are:

Operator Result

l4OVE2DALL block copy

MOVE2DZERO zero block copy

MOVE2DNONZERO non-zero block. copy

72 OEK264 01 May 1992

19

5 Graphics board
concepts

The iq Systems graphics board products supported by IMS F003C all have a simi­
lar hardware architedure. They all feature a transputer(of some sort), have normal
dynamic random access memory for program and data storage and an additional
area of special purpose video memory for image output 10 a graphics monitor. All
the boards have a colour video controller (eVe) chip capable of driving a wide
range of monitors al di1'l'erent pixel rates and at different display resolutions.

The JMS FOO3C CGllibrary contains a number of functions for Initialising and c0n­
trolling the hardware on agraphics board In adevice independent way. This allows
software developed for one graphics board to run on anotherwilhoot changing any
source code. The programmer's interface to the graphics board hardware Is de­
fined by the following functions:

Function Description

fs_sc.reenaddr Return the address of 8 screen's raster

fa_dillplaybank DIsplay a bank 01 vkieo memory

fs_initscr••n Map 8 physical screen to video memory
t._lIetpalette Set colour palette entry

rll_openboar;cl DevIce independent board cpon function
ra_cloaaboar;d Devioe independent board close function

fa writerega Write graphics board registers

These functioos cause the CGI display server to caU a similar set offunctions from
a device dependent library that achieve an equivalent elfed on whatever graphics
hardware is actuaDy present The CGI server is linked against a device dependent
library when building an application program for a partiaJlar graphics bocr'd. De­
vice dependent libraries for the following iq Systems I13phics board products are
provided with IMS FOO3C:

iq Systems graphics board IMS F003C library

IMS 8419 graphics TRAM BU9.LIB
IMS 8419 graphics TRAM with G300A B419A.LIB

IMS 8437 compact display TRAM B437.LIB

72 OEK 264 01 May 1992

