
COMPUTER SCIENCE TEXTS

Inside the Transputer

DAVID A. P. MITCHELL
BSc

Researcher, Department of Computer Science
Sheffield University

JONATHAN A. THOMPSON
BSc, MPhil

Senior Experimental Officer, Department of Computer Science
Sheffield University

GORDON A. MANSON
BSc, PhD, MSc

Lecturer, Department of Computer Science
Sheffield University

GRAHAM R. BROOKES
MA, PhD, MSc

Professor of Computer Science, Department of Computer Science
Hull University

BLACKWELL SCIENTIFIC PUBLICATIONS

OXFORD LONDON EDINBURGH
BOSTON MELBOURNE

•



© D. A. Mitchell, J. A. Thompson,
G. A. Manson, G. R. Brookes, 1990

Blackwell Scientific Publications
Editorial offices:
Osney Mead, Oxford OX2 OEL
25 John Street, London WC1N 2EU
23 Ainslie Place, Edinburgh EH3 6AJ
3 Cambridge Center, Suite 208

Cambridge, Massachusetts 02142, USA
107 Barry Street, Carlton

Victoria 3053, Australia

All rights reserved. No part of this
publication may be reproduced, stored in a
retrieval system, or transmitted, in any form
or by any means, electronic, mechanical,
photocopying, recording or otherwise
without the prior permission of the
copyright owner.

First published 1990

Printed and bound in Great Britain by
Mackays of Chatham PLC, Chatham, Kent

DISTRIBUTORS

Marston Book Services Ltd
PO Box 87
Oxford OX2 ODT
(Orders: Tel: 0865 791155

Fax: 0865 791927
Telex: 837515

USA
Publishers' Business Services
PO Box 447
Brookline Village
Massachusetts 02147
(Orders: Tel (617) 524-7678)

Canada
Oxford University Press
70 Wynford Drive
Don Mills
Ontario M3C 1J9
(Orders: Tel (416) 441-2941)

Australia
Blackwell Scientific Publications
(Australia) Pty Ltd
107 Barry Street
Carlton, Victoria 3053
(Orders: Tel: (03) 347-0300)

British Library
Cataloguing in Publication Data
Inside the transputer. - (Computer
science texts).

1. Multiprogramming microprocessor
systems
I. Mitchell, David A. P. II. Series
004'.32

ISBN 0-632-01689-2

Library of Congress
Cataloging in Publication Data
Inside the transputer/David A. P. Mitchell ...

[et al.]. p. cm.-(Computer science texts)
Includes bibliographical references.
ISBN 0-632-01689-2
1. Transputers. I. Mitchell, David A. P.
II. Series.

TK7895.T731551990
621.39'16---dc20



Contents

Preface, vii

1 The Transputer, 1
1.1 Background, 1
1.2 The occam Language, 2
1.3 Processes and Concurrency, 3
1.4 occam Instructions, 4

2 Transputer Hardware Description, 12
2.1 Introduction, 12
2.2 Registers, 14
2.3 The Workspace Pointer, 15
2.4 The Instruction Pointer, 16
2.5 The Operand Register, 17
2.6 Communications Links, 18
2.7 Communication Protocol, 20
2.8 Errors, 21
2.9 Time, 22
2.10 Reset, Analyse and Booting, 23

3 Instruction Set Overview, 26
3.1 Addressing and Memory Access, 26
3.2 Arithmetic and Logical, 29
3.3 Branching and Program Control, 33
3.4 Process Scheduling and Control, 35
3.5 Inter-process Communication, 41
3.6 Miscellaneous, 48

v



vi Contents

4 Example Programs, 51
4.1 Introduction, 51
4.2 Introductory Examples, 52
4.3 Communication Examples, 58
4.4 Description and Examples Using the ALT Instructions, 67
4.5 An Example of Recursion Within a GUY Construct, 75
4.6 Idle Time Example, 76
4.7 Simple Loader, 80
4.8 Conclusions, 85

5 Reference Section, 87

Appendices
A Transputer Opcodes, 224
B Symbols, 225
C Workspace Usage, 226
D Instruction Cross-references, 227

Bibliography, 229

Index, 230



Preface

The transputer is a family of high performance microprocessors pro­
duced by INMOS Limited. One of its most significant features is the
ability to perform multi-tasking in hardware, with sub-microsecond con­
text switching. Communication between processes is also provided by
hardware, both for internal data transfers, and transfers between differ­
ent processors.

Unfortunately, there is a dearth of information regarding low-level
aspects of the transputer. For a long time, INMOS claimed that since the
transputer was specifically designed to efficiently execute the high-level
language occam, it was not necessary for programmers to be aware of
the machine-code instruction set. They have since had a change of heart,
and have released The Compiler Writer's Guide [4], which describes the
instruction set from the point of view of someone wishing to produce a
compiler, as well as giving a brief formal definition of each instruction.

While The Compiler Writer's Guide is very good in what it sets out
to achieve, it fails to show how the transputer works. For example, it
is possible, using a short sequence of instructions, to make a process
runnillg on a transputer sleep while waiting for one of several events,
such as input from a channel, or a particular time to come to pass.
The Compiler Writer's Guide explains how to code such an instruction
sequence; what it does not tell you is how this particular instruction
sequence actually works. In this book, we have set out to fill this gap.

Chapter 1 gives an introduction to the transputer and occam, while
chapter 2 describes the transputer's architecture.

Chapter 3 gives an overview of the instruction set. We have ar­
ranged this chapter from the point of view of a machine-code program­
mer, rather than a compiler writer. For example, all instructions that
cause a branch or change in execution address are dealt with together,
whereas in The Compiler Writer's Guide they would be dealt with under
different categories, such as loops and procedure calls.

vii



viii Prefa.ce

Chapter 4 contains many examples of programs written in machine­
code, both to give a feel for assembly language programming, and to
show some of the things that are impossible to do from occam.

Chapter 5 forms a reference section. Here, each transputer instruc­
tion is defined, one per page. We have included a formal definition
for each instruction, which we have tried to make as readable as pos­
sible, whilst maintaining preciseness. There then follows an informal
description of each instruction and finally, in most cases, a short exam­
ple showing a typical use for that instruction.

Overall, we see this book as being complementary to, rather than in
competition with, The Compiler Writer's Guide, and would recommend
that the reader obtains a copy of that document too. _

We have only'ncluded the 'core' transputer instructions in this book,
that is to say, ones that are implemented on the T414. This has been
done chiefly due to time and space considerations. Nevertheless, these
instructions include amongst other things, all the process scheduling
and communication instructions, which are the ones most in need of a
detailed description.

The authors wish to acknowledge the assistance and encouragement
of colleagues at both the Universities of Sheffield and Hull during the
preparation of this book.

Finally, please note that INMOS and occam are trademarks of the
INMOS group of companies.











20 Chapter 2

The INMOS links may be interfaced to peripherals via an INMOS
link adapter, which converts a serial link into an 8-bit parallel port.
Additionally, the transputer provides an input pin, EventReq and an
output pin, EventAck which provide interrupt facilities. A peripheral
may signal an interrupt to the transputer via the EventReq pin, which
the transputer acknowledges using EventAck. Internally, the transputer
makes available a special hardware channel which behaves as if a syn­
chronising message has been received on each low to high transition of
the EventReq pin. A process may wait on this 'channel', in which case
it serves as an interrupt handler. An occam channel may be associated
with the EventReq pin by a channel association. The conventional name
and the address used for this channel are:

PLACE Event AT #80000020:

Event then behaves like an ordinary channel, and an occam process may
synchronise with a low to high transition on the EventReq pin by using
the occam construct

Event ? signal

The process then waits until the channel Event is ready. If the process
waiting on the channel is high priority, then it will interrupt any low
priority process running when EventReq goes from low to high.

2.7 Communication Protocol

Communication over both internal and external channels is essentially
byte orientated. The instructions concerned are IN, 0tJT, 0 UTWO RD
and OUTBYTE.

Communication over internal channels observes the following proto­
col. Before any communication is attempted, the channel word must be
initialised to contain Minlnt. This operation is done when the channel
is declared and space is reserved for the channel word. When an input
or output is subsequently attempted, the channel word is inspected: if
it contains Minlnt, then the process descriptor of the current process is
placed in the channel word and the process is descheduled. In this case
the instruction pointer and the address of the message to be transferred
are stored at locations which have offsets of -1 and -3 relative to the
workspace pointer, respectively. If however, the content of the channel
word is not Minlnt, thereby indicating that the other process involved



Transputer Hardware Description 21

is already waiting to communicate, then the communication may be
performed.

The communication itself is achieved by copying the required block
of data from the source to the destination. This is possible since the
data address is available through the process descriptor stored in the
channel word. Once the transfer is completed, the process that arrived
first and was descheduled, is rescheduled and the channel word is reset
to contain Minlnt.

External links behave in a similar manner. The only difference as far
as software is concerned is that the control word of an external link is at
one of the addresses #80000000 to #8000001C rather than an arbitrary
address in memory. The same instructions are used for input and output
on both external links and internal channels.

2.8 Errors

High-level language execution is luade secure with, for example, array
bound checking and arithmetic overflow detection. If the compiler is
unable to check that a given construct contains only valid expressions
and processes, then extra instructions are compiled in order to perform
the necessary check at runtime. If the result of this check indicates that
an error has occurred then the processor's Error flag is set. This error
can be handled either internally by software, or externally by using the
Error pin. It is also possible, by setting the HaltOnError flag, to make
the processor halt if the Error flag ever gets set. If the processor halts
as a result of an error, then the links will continue with any outstand­
ing transfers, the memory continues to provide refresh cycles and the
transputer may be analysed.

When a high priority process pre-empts a low priority process then
the status of the Error and HaltOnError Flags, and all the registers are
saved in internal RAM in the area below AlemStart for the duration
of the high priority process, and restored at the conclusion of it. The
status of the Error flag is transmitted to the high priority process, but
the HaltOnError flag is cleared before the process starts. Either flag can
be altered in the process without upsetting the error status of the pre~

empted low priority process. When tllere are no high priority processes
to run, then the current state of the Error flag is lost and the preserved
state is restored, as part of cOlunlencing to execute the pre-empted low
priority process.



22 Chapter 2

In the event of the transputer halting because of the HaltOnError
flag, the links will finish outstanding transfers before shutting down. If
the Analyse pin is asserted, then all inputs continue, but outputs will
not make another access to memory for data.

After halting due to the Error flag becoming set whilst HaltOnError
is set, the instruction pointer points to two bytes past the instruction
which set the Error flag. After halting due to Analyse being taken high,
the instruction pointer points one byte past the instruction which is
being executed. In both of these cases the instruction pointer will be
copied into the A register.

2.9 Time

Timing in occam is provided by use of a timer channel which can only
provide input. The value which is input is the current time, which is
represented as an integer value. The cycle of the clock depends on the
wordsize, on the amount by which the reading is incremented at each
clock tick and on the frequency of the clock ticks. Each of these param­
eters will depend on the particular irnplenlentation of the hardware on
which the occam program is running. In the transputer, the clock ticks
for low priority processes are in units of (input clockrate)/(5*64), which
normally works out at 64 microseconds per tick. With a 64 microsecond
tick and a 16-bit integer, then the cycle time would be approximately
4.2 seconds; with a 32-bit integer the corresponding cycle time would be
approximately 76 hours.

The processor has timers to support two levels of priority. The prior­
ity 1 (low priority) processes are executed whenever there are no active
priority 0 (high priority) processes. High priori ty processes are expected
to execute for short time intervals. If one or more such processes can
proceed, then one is selected and allowed to execute until it has to wait
for a communication, a timer input, or until the process is completed.
However, if no high priority process is able to proceed and one or more
low priority processes are able to proceed, then one of the low priority
processes is selected. Low priority processes are time-sliced to provide
an even distribution of the processor time between computationally in­
tensive tasks. If there are n low priority processes, then the maximum
latency, expressed as the time from when a lov{ priority process becomes
active to the time at which it starts processing is (2n - 2) time-slice peri­
ods. The low priority timer increlnents every 64 nlicroseconds, whereas



Transputer Hardware Description 23

the high priority timer increments every 1 microsecond. A single time­
slice period lasts for 1024 high priority time periods. In order to ensure
that low priority processes do proceed, high priority processes must not
continuously occupy the processor for a period equal to that of a time
slice. If a low priority process is waiting for an external channel to be­
come ready, and there are no active high priority processes, then the
interrupt latency, which is the time interval from when the channel be­
comes ready until the process starts executing, is typically 19 processor
cycles, though it may extend to a maximum of 58 cycles, all assuming
the use of on-cllip RAM.

2.10 Reset, Analyse and Booting

The system services comprise the clocks, power and initialisation used
by the whole of the transputer. The Reset and Analyse input pins en­
able the transputer to be initialised or halted in a way which preserves
its state for subsequent analysis. While the transputer is running, both
Reset and Analyse are held low. The transputer is initialised by pulsing
Reset high whilst holding Analyse low. Operation ceases immediately
and all current state information is lost. When Reset goes low the trans­
puter sets up the memory interface configuration as appropriate. The
processor and links start operating after the memory interface configu­
ration cycle is complete and sufficient refresh cycles have been executed
to initialise any dynamic RAM. The processor then bootstraps.

The transputer can be bootstrapped either from a link or from ex­
ternal ROM. If BootFromRom is connected high, then the transputer
starts to execute code from the top two bytes in external memory, at
address #7FFFFFFE. This location should contain a backward jump
to a program in ROM. The processor is in a low priority state. The
workspace register points to MemStart, which is \vhere the user memory
begins and is at address location #80000048 for the T414.

If BootFromRom is connected low, the transputer will wait for the
first ~ootstrap message to arrive on anyone of its serial links. The
transputer itself is ready to receive the first, or control byte, on the link
within two processor cycles after Reset goes low. If the control byte
received is greater than 1, then it is taken as the number of bytes to be
input. The following bytes, up to this specified number, are then placed
in internal memory starting at location AlernStart. Following the receipt
of the last byte, the transputer will start executing code atMemStart as



24 Chapter 2

a low priority process. The memory space immediately above the loaded
code is used as workspace. Messages arriving on other links after the
control byte has been received, or on the bootstrapping link after the
last bootstrap byte, will be retained until a process inputs. from the
appropriate link.

The other options for the value of the control byte are 0 and 1, and
use of these values allow the facility to 'peek' and 'poke'. Any location
in either internal or external memory can be interrogated and altered
when the transputer is waiting to boot from a link. If the control byte
is 0 then eight more bytes are expected on the same link. The first 4
byte word is taken as an internal or external memory address at which
to poke, i.e. write, the second 4 byte word. If the control byte is 1 the
next four bytes are used as the address from which to peek, Le. read,
a word of data-this data word is sent down the output channel of the
same link. After a peek or poke operation, the transputer returns to
its previously held state. There is no limit to the number of peek and
poke operations that may take place before the control byte has a value
greater than 1, when the transputer will then begin to read its bootstrap
code. When performing the peek and poke operations, any of the links
may be used except that the addresses and data must be transmitted
via the same link as that of the control byte.

When initialising after power-on, a time is specified during which the
5V supply, Vcc, must be within specification, Reset must be high, and
the input on Clockln must be oscillating. Reset is taken low after this
specified time has elapsed.

In order to analyse a system following a reset, the first step is for
the Analyse pin to be taken high. This causes the transputer to halt
within three time-slice periods, approximately 3 milliseconds, plus the
time taken for any high priority process to stop processing. Any out­
putting links continue to operate until they complete the remainder of
the current word. Input links continue to receive data. Provided that
there are no delays in sending acknowledgements, the links in the system
will therefore cease activity within a few microseconds. Sufficient time
must be allowed both for the processor to halt and for all the link traffic
to be completed before Reset is asserted. The memory interface is not
affected by Analyse, or Reset while Analyse is held high. If refresh cycles
are enabled, then it continues to refresh external dynamic RAM.

After the end of a valid reset or analyse sequence, the processor's
registers are initialised to specific values, depending on how the processor
was started up. These values are as follows:



Transputer Ha.rdwa.re Description

W MemStart if bootstrapping from ROM, or the address
of the first free word after a bootstrap program if boot­
strapping from link.

I MemStart if bootstrapping from a link, or the external
memory bootstrap address (#7FFFFFFE) if bootstrap­
ping from ROM.

A The value of I when the processor halted.
B The value of W when the processor halted, together with

the priority of the process when the transputer halted.
C The identity of the bootstrapping link if bootstrapping

from a link.

25



Chapter 3

Instruction Set Overview

The T414 has exactly one hundred instructions. These can be broken
down as follows:

• 16 addressing and memory access,

• 41 arithmetic and logical,

• 6 branching and program control,

• 12 process scheduling and control,

• 16 inter-process communication,

• 9 miscellaneous.

It is interesting to note that instructions for dealing with concurrency
amount to over a quarter of the total, or nearly five times the number
of branching and program control instructions!

This chapter is designed to give an overview of the instruction set,
with each instruction discussed within one of the groupings mentioned
above. A more detailed explanation of each instruction will be found in
the reference section of this book (Chapter 5).

3.1 Addressing and MeInory Access

The transputer provides two main ways of addressing memory: addresses
may be specified as a fixed offset froIn an address held in either the
workspace pointer, or in the A register. The former is referred to as
local access, since the workspace pointer conventionally points to an
area of memory used to hold the local variables for a procedure. In
fact, the first few words in memory offset from the workspace pointer

26



Instruction Set Overview 27

are often referred to as 'local 0', 'local l' etc. Conversely, access via the
A register is called non-local.

Instructions are provided to read and write words from memory us­
ing the above addressing scheme; also provided are instructions to read
and write bytes, to move a block of bytes, to perform word-length inde­
pendent addressing calculations, to modify the value of the workspace
pointer, and finally to specify an address relative to the instruction
pointer.

3.1.1 Loading and Storing

The transputer provides the following general-purpose instructions for
loading and storing words in memory:

LDL n
STL n
LDNL n
STNL n

Load Local
Store Local
Load Non-Local
Store Non-Local

LDL n loads a word onto the evaluation stack (Le. into the A register)
which lies offset n words from the address pointed to by the workspace
pointer, where n is the instruction's opera.nd. The original value in A is
pushed into B, and B into C. STL n performs the reverse, storing the
value of the A register at the specified address. LDNL nand STNL n
are similar, except that that they use the A register as the base address,
rather than the workspace pointer. LDN L n loads the word into the
A register, overwriting the address already stored there, while STN L n
stores the value contained in the B register, afterwards popping both A
and B.

LDLP n
LDNLP n

Load Local Pointer
Load Non- Local Pointer

are similar to the previous instructions, except that they store in A the
effective address that is calculated, rather than the value of the word
stored at that address. This is useful for subsequent instructions which
require an address on the stack as one of their operands.

3.1.2 Byte Accesses

The transputer normally accesses ll1emory a \vord at a time; however, it
can be persuaded to access individual bytes with the next three instruc­
tions:



28

L8
S8
MOVE

Cllapter 3

Load Byte
Store Byte
Move Message

LB loads the byte at the address contained in the A register into the
A register, overwriting its previous contents. Unlike word addressing,
the bottom couple of bits of the address, which form the byte offset, are
used to select a particular byte from within the word. SB stores a byte
contained in the bottom eight bits of B at the address pointed to by
A. Finally, MOVE copies a block of bytes from the address in C to the
address in B, the number of bytes to move specified in A. The MOVE
instruction is intelligent enough to read or write a word's worth of bytes
in a single cycle wherever possible.

3.1.3 Addressing Arithmetic

The two instructions

WSUB
BSUB

Word Subscript
Byte Subscript

allow indexing of arrays, or their equivalents. WS UB increments the
address in the A register by the number of words specified in the B
register, whereas BSUB increments it by the number of bytes. The
existence of these instructions allows address arithmetic to be word­
length independent; for example on the T414, the returned value of
WSU B is equivalent to a +4b, while the T212 would return a +2b.

Two further instructions,

WCNT
BCNT

Word Count
Byte Count

are provided for word-length independent addressing. WCNT bre~ks the
address in the A register into its word address and byte offset compo­
nents, storing the two values in A and B, while BCNT multiplies the
value in A by the number of bytes in a word. This would be useful in
calculating the number of bytes in an array of words for a (byte oriented)
MOVE command, for example.

3.1.4 Other Addressing Instructions

There are two instructions that Inodify the value of the workspace point­
er:



AJW n

GAJW

Instruction Set Overview

Adjust Workspace
General Adjust Workspace

29

AJW n increments the workspace pointer by the number of words spec­
ified by its operand n (or decrements if n is negative). This instruction
is most commonly used at the beginning and end of a procedure call,
to allocate some more stack space and then relinquish it. Since the
stack normally grows down in memory, the usual sequence of instruc­
tions would be AJW -k; ... ; AJW +k, where k is the number of extra
words to allocate.

GAJW is a more general instruction, which simply exchanges the
contents of the workspace pointer and the A register.

Finally, the instruction

LDPI Load Pointer To Instruction

calculates an address, which consists of the current value of the instruc­
tion pointer (which always points to the next instruction), incremented
by the number of bytes specified by the value in the A register. This
address then replaces the value in A. So, LOC 2; LOPI would leave an
address in A which points two bytes on from the instruction following
the LDPI. This is very useful for producing relocatable code, since a
program's data can be specified relative to its code.

3.2 ArithIlletic and Logical

The three simplest instructions are

REV
LDC n
MINT

Reverse
Load Constant
Minimum Integer

It could be argued that these are not really arithmetic instructions;
however, this is the most convenient place to discuss them. REV sim­
ply swaps the contents of the top two elements of the evaluation stack,
i.e. the A and B registers. LDC pushes the constant specified by its
operand onto the evaluation stack, that is to say, storing it in the A
register, pushing A onto B, B onto C, and losing the value in C. Finally,
MINT pushes the constant Minlnt onto the evaluation stack; this is a
single-word value with the top bit set to 1 and all other bits to O. This
instruction is word-length independent. It is very useful, especially for
channel communication (see later).



30 Cllapter 3

3.2.1 Single Length Aritllmetic

Next there is the

ADC n Add Constant

instruction, which adds its operand to the value in the A register, rather
than just pushing it.

Then there are a group of eight arithmetic operators which take their
operands from the A and B registers, leaving the result in the A register.

ADD Signed Addition
5 UB Signed Subtraction
MU l Multiply
DIV Divide
REM Remainder

all perform signed single-length arithmetic, with the error flag being set
on overflow, whereas

SUM Unsigned Addition
DIFF Unsigned Subtraction
PROD Unsigned Multiplication

are similar, except that carry and overflow are ignored. Finally,

FM Ul Fractional Multiply

multiplies two single-word values together, but gives as its answer the
high word of the result (more or less), rather than the low, as in MUl.

3.2.2 Comparing

There are two main comparison instructions.

EQC n Equals Constant

compares the value of the A register with the operand. If they are equal,
true (1) is stored in A, else false (0) is stored.

GT Greater Than

compares the values in the A and B registers; if B is greater than A,
then it returns true in the A register. Together with the logical/bitwise
instructions discussed next, these two instructions can evaluate all the
various types of arithmetic comparison. This is an example of where the
transputer has the flavour of a RISe processor.

There are a further two comparison instructions which are designed
mainly to check the range of array subscripts:



CSUBO
CCNTl

Instruction Set Overview

Check Subscript From Zero
Check Count From One

31

Both these instructions check the range of the value in the B register,
and if it is outside, set the error flag. The range is specified by the value
of the A register; for CS UBO, the valid range is O... a; for CCNTl, the
valid range is 1... a.

3.2.3 Bit Operators

There are six bitwise operators.

AN D Bitwise AN D
OR Bitwise OR
XOR Bitwise Exclusive-OR

perform boolean operations between corresponding bits in the A and B
registers.

NOT Complement

complements every bit in the A register, while

SHL Shift Left
SHR Shift Right

both shift the value in the B register left or right by the number of places
specified by the A register, filling the extra bits with zeros.

3.2.4 Multiple Word Aritlllnetic

There are versions of most of the above arithmetic instructions designed
to deal with multiple word-length data.

LADD
LSUM
LSUB
LDIFF

Long Add
Long Sum
Long Subtract
Long Difference

have the same effect as their single-word counterparts, except that a sin­
gle bit carry or borrow is contained in the C register. LSUM and LDIFF
are used for the low order words of the calculation, while LADD and
LS UB are used for the top word, since they perform overflow checking.

LMUL Long Multiply



32 Cllapter 3

multiplies the values in the A and B registers together and adds in the
'carry' in the C register. The double word result is stored in the A and B
registers, the high word in B. The value in B thus becomes the carry-in
for higher order words.

lDIV long Divide

divides the double-length word in register pair BA by the value in C,
storing the integer result in A and the remainder in B. Note that to
avoid overflow, B must be less than C.

The two instructions

lSHl
lSHR

long Shift left
long Shift Right

shift the double word value contained in register pair BA a number of
places specified by the C register, filling the extra bits with zeros.

Finally,

XDBLE
CSNGL

Extend To Double
Check Single

convert a single word value into a double word value and vice versa.
CSNGL sets the error flag if the value cannot be squeezed into a single
word.

3.2.5 Partword Arithmetic

Partword arithmetic (that is to say, using signed numbers represented by
less bits than there are in a word) is supported by the two instructions

XWORD
CWORD

Extend To Word
Check Word.

The idea is that partword values are first sign-extended to full words
using XWORD; normal arithlnetic operations are then carried out, and
the result is checked with (WORD, which sets the error flag if the value
is out of the partword range.

3.2.6 Floating-Point Support

The instruction

NORM Normalise



Instruction Set Overview 33

normalises the double word value in BA by shifting it left until the top
bit is set. The number of places shifted left is stored in C.

There are a further set of instructions

CFLERR
LDINF
POSTNORMSN
ROUNDSN
UNPACKSN

Check Floating Point Infinity or Not-a-Number
Load Single Length Infinity
Post-Normalise Correction
Round Single Length Floating Point Number
Unpack Single Length Floating Point Number

which are specific to the T414, and are designed to provide hardware
support for (software) floating-point packages. For obvious reasons they
have not been included in the floating-point T800 transputer. Inci­
dentally, it is the existence of these instructions that gives the T414
a floating-point performance which is comparable to processors with
dedicated floating-point co-processors (such as the 68020/68881 combi­
nation).

3.3 Branching and Program Control

The transputer provides only six instructions for altering the flow of
control of the program. In this respect, it again comes close to being a
RISC processor.

3.3.1 Branching

The three instructions

CJ n
J n
LEND

Conditional Jump
Jump
Loop End

provide branching. CJ n examines the value in the A register. If it is
false (0), then the instruction pointer is incremented by the-number of
bytes specified by n, causing a branch. If A is non-zero, tllen no branch
is taken, but the value in A is popped. J n is similar, except that it is
unconditional.

LE ND is designed to implement deterministic loops. It takes two
parameters: in A there is a displacement which is to be subtracted from
the instruction pointer should the instruction succeed; in the B register,
there is a pointer to a two-word control block. Each time the instruction
is executed, the value of the first word is incremented, and the second



34 Cllapter 3

decremented. If the value remaining in the second word is greater than
zero, the branch is taken, using the offset specified in the A register.
Note that the value in A specifies how many bytes to go back by.

As an example, the Pascal code

FOR i := 3 Ta 8 DO
j := j + i;

would be implemented as

LDC 3; STL block;
LDC 8-3+1; STL block+1;

L1: LDL j; LDL block; ADD; STL j;
LDLP block;
LDC L2-L1;
LEND;

L2:

The two instructions J and LEN D provide the points where the trans­
puter may time-slice between low priority processes. Consequently, if a
section of code does not make use of these two (for example, it uses CJ in­
stead), then the process will never be time-sliced out, unless pre-empted
by a high priority process.

3.3.2 Subroutine Callillg

The remaining three instructions are designed to implement procedure
calls.

CALL n

RET
GCALL

Call
Return
General Call

CALL n decrements the workspace pointer by four bytes, stores at
the four words thus allocated (in descending order) the current contents
of the C, B, A and instruction pointer registers and then increments the
instruction pointer by the number of bytes specified by the operand n.
It thus implements a relative call instruction. RET loads the instruc­
tion pointer with the value pointed to by the workspace pointer, and
increments the workspace pointer by four words. Thus RET will always
return from a CALL as long as the workspace pointer remains unchanged.

If this procedure call mechanism is found to be too restricting, a more
general one may be implemented using GCALL, which just exchanges the
contents of the A register and the instruction pointer. It is then up to
the programmer to sort out such things as storing the return address
and so on.



Instruction Set Overview

3.4 Process Scheduling and Control

3.4.1 Background

35

The transputer has built-in mechanisms to support the concurrent exe­
cution of processes. Processes may be operated at two levels of priority.
Two queues of active processes are maintained, one for high, and one for
low priority processes. A process can be in one of four states: executing;
waiting to execute, which implies that it is in one of the active process
queues; waiting for a timer event, which implies that it is in a timer
queue, or waiting for a communication event, in which case it is in no
queue.

A high priority process will execute without interruption until it ter­
minates, or waits for a timer or communication event to take place. In
this case, if there are any further high priority processes waiting to pro­
ceed then the process at the head of the high priority active process
queue will be scheduled. If there are no high priority processes waiting
to execute, then the next waiting low priority process will be scheduled.
Low priority processes may be pre-empted at any time by a high prior­
ity process that becomes ready to execute. Low priority processes are
time-sliced; if a low priority process executes a Jump or loop End in­
struction, and has been executing for more than its time-slice period, it
is descheduled and placed at the back of the low priority active queue,
with the process at the head of the queue commencing execution.

3.4.2 Start Process and End Process

The transputer provides five instructions to allow the setting up of new
processes, and the killing off of others. Two of the instructions are
designed to directly support the occam view of concurrency, or more
specifically, the occam PAR construct. In the occam program shown in
figure 3.1, section P is executed first, and then (conceptually, at least),
the current process is suspended, and three new processes are started
which execute sections Q, Rand S in parallel. Only when all three of
these child processes have successfully terminated, is the parent process
rescheduled, w"hich then executes section T. If any of the children fail to
terminate successfully, then the parent process will never be rescheduled.

The way that an occam compiler would treat the above code is in
fact slightly different from that just described. Only two child processes
would be set up, with the parent process taking over the execution of
section S. The first two of the three processes to finisll their section of


