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1 Transputers and Routers:
Components for Concurrent
Machines

1.1 Introduction

This chapter describes an architecture for concurrent machines constructed from two types of
component: ‘transputers’ and ‘routers’.  In subsequent chapters we consider the details of these
two components, and show the architecture can be adapted to include other types of component.

A transputer is a complete microcomputer integrated in a single VLSI chip.  Each transputer has
a number of communication links, allowing transputers to be interconnected to form concurrent
processing systems.  The transputer instruction set contains instructions to send and receive mes-
sages through these links, minimizing delays in inter-transputer communication.  Transputers can
be directly connected to form specialised networks, or can be interconnected via routing chips.
Routing chips are VLSI building blocks for interconnection networks: they can support system-
wide message routing at high throughput and low delay.

1.2 Transputers

VLSI technology enables a complete computer to be constructed on a single silicon chip.  The
INMOS T800 transputer [1], integrates a central processor, a floating point unit, four kilobytes
of static random access memory plus an interface for external memory, and a communications
system onto a chip about 1 square centimetre in area.
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T800 Transputer

As a microcomputer, the transputer is unusual in that it has the ability to communicate with other
transputers via its communication links; this enables transputers to be connected together to
construct multiprocessor systems to tackle specific problems.  The transputer is also unusual in
that it has the ability to execute many software processes, sharing its time between them automati-



cally, to create new processes rapidly, and to perform communication between processes within
a transputer and between processes in different transputers.  All of these capabilities are inte-
grated into the hardware of the transputer, and are very efficient.  This is discussed in more detail
in chapter 2.

The use of transputers for parallel programming has been greatly simplified by the development
of the occam programming language [2].  The occam language allows an application to be ex-
pressed as a collection of concurrent processes which communicate via channels.  Each channel
is a point-to-point connection between two processes; one process always inputs from the channel
and the other always outputs to it.  Communication is synchronised; the first process ready to
communicate waits until the second is also ready, then the data is copied from the outputting pro-
cesses to the inputting process and both processes continue.

Each transputer has a process scheduler which allows it to share its time between a number of
processes.  Communication between processes on the same transputer is performed using the lo-
cal memory; communication between processes on different transputers is performed using a link
between the two transputers.  Consequently, a program can be executed either by a single trans-
puter or by a collection of transputers connected in a network.  Three different ways of using
transputers to execute the component processes of a typical program are shown below.

1 transputer 5 transputers3 transputers

Figure 1.1 Allocations of processes to processors

Figure 1.1 shows the same collection of processes executed on three different specialised net-
works.  In the first network, which is a single transputer, each communication channel connecting
two processes is implemented using the local memory of the transputer.  In the other examples
some or all of the channels are implemented by physical links between different transputers.

Transputers have also been used to construct a number of general purpose computers, which all
consist of an array of transputers connected together in a network.  In some machines the network
can be configured by software, for example by connecting the links via a programmable crossbar
switch.  Many applications have been successfully ported to these machines and have demon-
strated efficient parallel processing.

One of the problems with existing general purpose transputer machines is the need to carefully
match algorithms to the interconnection networks of specific machines, which results in a lack
of software portability.  It has become clear that a standard architecture is needed for these general
purpose message-passing machines.  An attractive candidate is a collection of transputers con-
nected by a high throughput, low delay communication network supporting communication
channels between processes anywhere in the network.

1.3 Routers

There are many parallel algorithms in which the number of communication channels between
processes on different transputers is much greater than the number of physical links available to



connect the transputers.  In some of these algorithms, a process executed on one transputer must
communicate with processes on a large number of other transputers.  These requirements for sys-
tem-wide communication between processes can be met by:

� new transputers including hardware to multiplex many ‘virtual links’ along a single physi-
cal link (see chapter 2)

� new VLSI message-routing chips (routers) which can be used to construct efficient com-
munication networks

This new communications architecture allows communication channels to be established be-
tween any two processes, regardless of where they are physically located in the system.  This sim-
plifies programming because processes can be allocated to transputers to optimize performance
after the program has been written.  For general purpose message-passing computers, a further
benefit is that processes can be allocated to transputers by a compiler, which effectively removes
configuration details from the program, thereby enhancing portability.
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Figure 1.2 Network constructed from routers

The use of two separate chips, one to perform computing (the transputer) and one to perform com-
munication (the router) has several practical advantages:

� Transputers can be directly connected without routers in systems which do not require
message routing, so avoiding the silicon cost and routing delays.

� It allows routers to have many links (e.g.32) which in turn allows large networks to be
constructed from a small number of routers, minimizing the delay through the network.
For example, 48 such routers can connect 512 terminals with only 3 routing delays, as
in figure 1.2.



� It avoids the need for messages to flow through the transputer, reducing the total through-
put of the chip interface.  This reduces the pin count, power consumption and package
costs of the transputer.

� It supports scalable architectures in which communication throughput must be balanced
with processing throughput.  In such architectures, it is known that overall communica-
tion capacity must grow faster than the total number of processors - a larger machine
must have proportionately more routers.

Since the new architecture allows all the virtual links of a transputer to pass through a single
physical link, system-wide communication can be provided by connecting each transputer to a
routing network via a single link.  The provision of several links on transputers allows each trans-
puter to be connected to several different networks.  Examples of the use of this technique are:

� The use of two (or more) identical networks in parallel to increase throughput and fault–
tolerance [7]

� The use of a main network and an (independent) monitoring and debugging network

� The use of a main network and an independent network for input and output (or for access
to discs)

Another technique for increasing the communications throughput is to construct the network us-
ing two (or more) links in parallel for each connection.  An example of a 2-dimensional network
of this kind is shown in figure 1.4.

In some cases, it is convenient to construct a network from routers and attach transputers to its
terminal links.  An example is the multi-stage network shown in figure 1.2.  An alternative is to
construct a network such as a hypercube or an array from a number of nodes, each node consisting
of one or more transputers and a router as shown in figure 1.4.
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Figure 1.3 Node combining a transputer and a router

Operation of Routers

Each router has a number of communication links and operates as follows:

� It uses the header of each packet arriving on each link to determine the link to be used to
output the packet;

� It arbitrates between two (or more) packets which must both be output through the same
link, and causes them to be output one after another;



� It starts to output each packet as early as possible (immediately after the output link is de-
termined, provided that the output link is not already in use for another packet).

The overall throughput of the router is determined by the number of links which can be operating
concurrently.  An important benefit of employing serial links for packet routing is that it is simple
to implement a full crossbar switch in VLSI, even for a large number of links.  Use of a full cross-
bar allows packets to be passing through all of the links at the same time.

The ability to start outputting a packet whilst it is still being input can significantly reduce delay,
especially in networks which are lightly loaded.  This technique is known as wormhole routing.
In wormhole routing, the delay through the switch can be minimized by keeping headers short
and by using fast, simple, hardware to determine the link to be used for output.

The use of simple routing hardware allows this capability to be provided for every link in the rout-
er.  This avoids the need to share it between many links which would increase delay in the event
of several packets arriving at once.  Equally, it is desirable to avoid the need for the large number
of packet buffers commonly provided in some packet routing systems (in which each packet is
input to a buffer before output starts).  The use of small buffers together with simple routing hard-
ware allows a single VLSI chip to provide efficient routing between a large number of links.

The simple communications architecture allows a wide variety of implementations:

� CMOS VLSI can be used to construct routers with a large number of links;

� It is straightforward to combine transputers and small routers on a single chip;

� It is possible to construct routers in ECL or Gallium Arsenide technology to support ex-
tremely high speed implementations of the link.

For some purposes, it may be useful to combine a router together with each transputer in a single
chip (or a single package).  One example is the construction of a two dimensional array of simple
transputers for image processing (for this application, no off-chip memory is needed, and most
communication is local).  The architecture of the routing system makes such a combination pos-
sible, as in figure 1.4.

Figure 1.4 Two dimensional array of nodes



1.4 Message Routing

1.4.1 Avoiding Deadlock

The purpose of a communications network is to support efficient and reliable communication be-
tween processes.  Consequently, an essential property of a communications network is that it
should not deadlock, i.e. arrive in a state where further progress is impossible.  However, dead-
lock can occur in most networks unless the routing algorithm is designed to prevent it.  For exam-
ple, consider the square of four nodes shown in figure 1.5.  Suppose that every node attempts to
send a packet to the opposite corner at the same time, and that the routing algorithm routes packets
in a clockwise direction.  Then each link will become ‘busy’ sending a packet to the adjacent cor-
ner and the network will deadlock.

Figure 1.5 Deadlock in a simple network

It is important to understand that deadlock is a property of the network topology and the routing
algorithm used; it can also arise with buffered packet routing.  In the above example, a single
packet buffer at each node is sufficient to remove the deadlock but, in general, the number of
packet buffers needed to eliminate deadlock depends on the network topology, the routing algo-
rithm and the applications program.  This is clearly not a satisfactory basis for a general purpose
routing system.

All of the above problems can be avoided by choosing networks for which deadlock-free worm-
hole routing algorithms exist.  In such networks, buffers are employed only to smooth the flow
of data through the network and to reduce congestion; often a buffer of size much less than the
length of a packet is sufficient for this purpose.  Most important of all, the buffering needed is
not dependent on the network size or the applications program.  It is possible to construct a single
universal router which can be used for networks of arbitrary size and for programs of arbitrary
complexity.  An essential property of such a router is that, like a transputer, it can communicate
on all of its links concurrently.

It turns out that many regular networks constructed from such routers have deadlock free routing
algorithms.  Important examples are trees, hypercubes and grids.

A deadlock free routing algorithm for Trees

A tree consists of a collection of nodes with a single external link from the root.  Assume that



two trees1 ��  with root link ��and ��  with root link ��  are both deadlock free; they will always
perform internal communication without deadlock, and will accept and transmit packets along
the root link without deadlock.

A new tree is formed by connecting the root links ��  and ��  to a new root node �; a further link
� on this node is the root link of the newly constructed tree �.

Any packet arriving at � along ��  is routed either to ��  or to �.  If it is routed to �� , it will be con-
sumed by �� , because ��  is deadlock free.  If it is routed to �, it will eventually be consumed by
the environment.  By symmetry, packets arriving along ��will also be consumed.  A packet arriv-
ing along � will be routed to either ��  or ��; in either case it will be consumed because both ��and
��  are deadlock free.

It remains to show that a tree with only one node is deadlock free; this is true because the node
can send and receive packets concurrently along its single (root) link.
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Figure 1.6 Hypercube constructed from 2N+2 Nodes

1.  Note that this construction can easily be generalized from binary to n-ary trees.



A deadlock free routing algorithm for Hypercubes

To avoid deadlock in a hypercube, each packet is successively routed through the dimensions,
starting from the highest.

A simple inductive argument can be used to show that this routing algorithm is free of deadlocks.
Suppose that the order-� hypercube is deadlock free.  Combine two such order-� hypercubes
��  and ��  to form an order-(�+1) hypercube by linking corresponding nodes of ��  and �� .  Any
packet originating at a node � in ��  and destined for a node in ��  will first travel along the link
joining � to the corresponding node in ��; from this node it will be delivered by routing within
��  and this is deadlock free by assumption.  Similarly, any packet originating at a node � in ��
and destined for a node in ��  will first travel along the link joining � to the corresponding node
in ��; from this node it will be delivered by routing within ��  and this is deadlock free by as-
sumption.  An important property of the node is that it is able to send and receive along a link
at the same time; this is needed to ensure that a packet can flow from node ��  in ��  to the corre-
sponding node ��  in ��  at the same time as a packet flows into ��  from �� .

It remains to show that the order-0 hypercube is deadlock free (which it is, being just a single
node)!

The effect of the routing algorithm can easily be understood in terms of the example shown in
figure 1.5 above, which shows a 2–cube.  Instead of routing all packets in a clockwise direction,
the deadlock-free algorithm routes two of the packets anti-clockwise.  Since the links are bi–
directional this allows all of the packets to be routed without deadlock, as illustrated in figure 1.7.

Figure 1.7 Avoiding deadlock in a simple network

The fact that the hypercube is symmetrical means that the order of sequencing through the dimen-
sions does not matter; it is important only that every packet is sequenced in the same order.

A deadlock free routing algorithm for Arrays

The technique of routing a packet by systematically sequencing through the dimensions can be
applied to any processor array.  In fact, any rectangular processor array - whatever its size and
dimension - is deadlock free! To prove this it is first necessary to establish that a line of processing
nodes (a one-dimensional array) is deadlock free; this is guaranteed if a packet generated at a node
takes the shortest path to its destination node.

A simple inductive argument similar to that used for the hypercube can now be used to establish
that this routing algorithm is deadlock free.



1.5 Addressing

Every packet must carry with it the address of its destination; this might be the address of a trans-
puter, or the address of one of a number of virtual channels forming input channels to a transputer.
As a packet arrives at a router, the destination address must be inspected before the outgoing link
can be determined; the delay through the router is therefore proportional to the address length.
Further, the address must itself be transmitted through the network and therefore consumes net-
work bandwidth.

It is therefore important that this address be as short as possible, both to optimize network latency
and network bandwidth.  However, it is also important that the destination link can be derived
from the address quickly and with minimal hardware.  An addressing system which meets both
of these requirements is interval labelling.

1.5.1 Interval Labelling

An interval labelling scheme [6] assigns a distinct label to each transputer in a network.  For sim-
plicity, the labels for an � transputer network can be numbers in the range [0,1, . . .  ,�–1].  At
each router in the network, each output link has one or more associated intervals, where an inter-
val is a set of consecutive labels.  The intervals associated with the links on a router are non-over-
lapping and every label will occur in exactly one interval.

As a packet arrives at a router, the address is examined to determine which interval contains a
matching label; the packet is then forwarded along the associated output link.

The interval labelling scheme requires minimal hardware; at most a pair of comparators for each
of the outgoing links.  It is also very fast, since the output link can be determined, once the address
has been input, after only a single comparison delay provided all the comparisons are done con-
currently.

There remains the question of how to assign labels to an arbitrary network.  The following exam-
ples give labelings for networks constructed from nodes as shown in figure 1.3.  Intervals are rep-
resented with the notation [�,�), which means the set of labels greater than or equal to � and less
than �; note however that the comparisons are performed modulo the total number of labels, and
intervals are permitted to ‘wrap around’ through zero.

Trees can be labelled

The transputers in a binary tree2 with � nodes are labelled as follows.  Suppose there are � nodes
to the left of the root node.  Then the transputers to the left of the root are numbered 0, . . .  , �–1;
the transputer of the root node is labelled �; the transputers to the right are labelled �+1,. . .
,��1,

Any node � in the tree is itself the root node of a subtree � with nodes �� , . . .  , �	 .  The interval
associated with the left link of � is [�� , . . .  , �); that associated with the right link is [�+1,
. . .,�	+1); that associated with the root link is [�	+1, . . .  ,��).  The interval [�	+1, . . .  ,��) consists
of all of the labels in the tree apart from those in �; numerically it consists of the two intervals
[�	+1, . . .  ,�+1) and [0, . . .  ,��).  An example is shown in figure 1.8.  This shows the labels as-
signed to each node, and the intervals assigned to the links of two of the nodes.

2.  This construction can easily be generalized from binary to general trees, as illustrated in figure 1.8.
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Figure 1.8 A Tree with Interval Labelling

Hypercubes can be labelled

The labelling of the hypercube follows the construction given for the deadlock free routing algo-
rithm.  In combining the two order-� hypercubes ��  and �� , the transputers in ��  are labelled
0, . . .  , 2�– 1 and those in ��  are labelled 2�, . . .  ,2��� – 1.  The link from each node ��  in ��

to the corresponding node ��  in ��  is labelled with the interval [2�, . . .  ,2���) at �� , and with
[0, . . .  ,2�) at �� .  This inductively constructs a hypercube together with the deadlock-free rout-
ing algorithm described above.

Arrays can be labelled

The labelling for an array follows the construction of the deadlock free routing algorithm.  An
�-dimensional array is composed of � arrays of dimension �–1, with � corresponding nodes
(one from each �–1 dimensional array) joined to form a line.  If each of the �–1 dimensional ar-
rays has � nodes, the nodes in the �–1 dimensional arrays are numbered 0, . . ., �–1; �, . . ., 2�–1;
. . .; (�–1)�, . . ., ��–1.  On every line the link joining the �	� node to the (�+1) 	� node is labelled
[��, . . ., ��) and the link to the (�–1)	� node is labelled [0, . . ., (�–1)�).  This inductively labels
an array to route packets according to the deadlock free algorithm described above.  An example
is shown in figure 1.9.  This shows the labels assigned to each node, and the intervals assigned
to the links of one of the nodes.
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Figure 1.9 An Array with Interval Labelling

Labelling arbitrary networks

The above labelings provide optimal routing, so that each packet takes one of the shortest paths
to its destination.  It can easily be shown [6] that any network can be labelled so as to provide
deadlock free routing; it is only necessary to construct a spanning tree and label it as described
above.  This may produce a non-optimal routing which cannot exploit all of the links present in
the network as a whole.  Optimal labelings are known for all of the networks shown below:

trees 
hypercubes 
arrays 
multi-stage networks
butterfly networks 
rings3

In high performance embedded applications (or in reconfigurable computers) specialised net-
works are often used to minimize interconnect costs or to avoid the need for message routing.
In these systems, a non-optimal labelling can be used to provide low-speed system-wide commu-
nications such as would be needed for system configuration and monitoring.

1.5.2 Header Deletion

The main disadvantages of the interval labelling system are that it does not permit arbitrary routes
through a network, and it does not allow a message to be routed through a series of networks.
These problems can be overcome by a simple extension: header deletion.  Any link of a router
can be set to delete the header of every packet which passes out through it; the result is that the
data immediately following becomes the new header as the packet enters the next node.

Header deletion can be used to minimize delays in the routing network.  To do this, an initial head-
er is used to route the packet to a destination transputer; this header is deleted as it leaves the final
router and enters the transputer.  A second header is then used to identify the virtual link within
3.  Note that the optimal labelling of a ring requires that one of the connections be duplicated in order to avoid
deadlock.



the destination transputer.  As the number of transputers is normally much less than the number
of virtual links, the initial header can be short, minimizing the delay through each router.

Another important use of header deletion is in the construction of hierarchical networks.  In the
2-dimensional array of figure 1.4, each transputer could be replaced with a local network of trans-
puters as shown in figure 1.10.  Headers are deleted as packets leave or enter a local network.
A single header can be used to route a packet within a local network, whilst three headers are
needed to route a packet via the 2-dimensional array.
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Figure 1.10 Local network of transputers and a router

1.6 Universal Routing

The routing algorithms described so far provide efficient deadlock free communications and al-
low a wide range of networks to be constructed from a standard router.  Packets are delivered at
high speed and with low latency provided that there are no collisions between packets travelling
through the same link.

Unfortunately, for general purpose concurrent computers, this may not be enough.  In any sparse
communication network, some communication patterns cannot be realized without collisions.
Such collisions within the network can reduce system performance drastically.  For example,
some parallel algorithms require that all messages from one phase of a computation are delivered
before the next phase starts; the late arrival of a single message delays all of the processors.  In
the absence of any bound on message latency it is difficult - and in many cases impossible - to
design efficient concurrent programs.  The problem of constructing general purpose concurrent
computers therefore depends on the answer to the following question:

Is it possible to design a universal routing system: a realizable network and a routing algorithm
which can implement all communication patterns with bounded message latency?

In fact, a universal routing system allowing the construction of scalable general purpose parallel
computers was discovered by Valiant in 1980 [3].  This meets two important requirements:

� The throughput of the network increases proportionately with the number of nodes.



� The delay through the network increases only slowly with the number of nodes (propor-
tional to ���(�� for � nodes).

Notice that the aim is to maximize capacity and minimize delay under heavy load conditions -
a parallel communications network is a vital component of a parallel computer.  This is not the
same as, for example, minimizing delay through an otherwise empty network.

A �-node hypercube has a delay of proportional to ���(�) (written �(���(�))) if there are no colli-
sions between packets.  This is an unreasonable assumption, however, as all of the transputers
will be communicating via the network simultaneously.  An important case of communication
is that of performing a permutation in which every transputer simultaneously transmits a message
and no two messages head for the same destination.  Valiant’s proof [4] demonstrates construc-
tively that permutation routing is possible in a time proportional to ���(�) on a sparse �-node net-
work even at high communication load.

To eliminate the network hot-spots which commonly arise when packets from many different
sources collide at a link in a sparse network, two phase routing is employed.  Every packet is first
dispatched to a randomly chosen intermediate destination; from the intermediate destination it
continues to its final destination.  This is a distributed algorithm - it does not require any central
co-ordination - so it is straightforward to implement and scales easily.  Randomization does not,
in fact, strictly guarantee a delivery time which is �(���(�)) - but it gives it a sufficiently high
probability to achieve the universality result.  The processors will occasionally be held up for a
late message, but not often enough to noticeably affect performance.  Simulated results of univer-
sal routing are presented in chapter 7.

1.6.1 Randomizing Headers

How is the two-phase algorithm implemented? As a packet enters a randomizing network, it must
be supplied with a new, random, header; this header will be used to route the packet to a router
which will serve as the intermediate destination.  Any input link of a router can be set to random-
ize packets as they arrive.  Whenever a packet starts to arrive along such a link, the link first gener-
ates a random number and behaves as if this number were the packet header.  The remainder of
the packet follows the newly supplied random header through the network until the header reach-
es the intermediate (random) destination.

At this point, the first (randomizing) phase of the routing is complete and the random header is
removed to allow the header to progress to its final destination in the second (destination) phase.
The removal of the random header is performed by a portal in each router which recognizes the
random header associated with the router.  The portal deletes the random header with the result
that the original header is at the front of the packet, as it was when the packet first entered the
network.  This header is now used to route the packet to its final destination.

Unfortunately, performing routing in two phases in the same network makes the paths of the
packets more complicated.  The result is that deadlock can now occur.

1.6.2 Avoiding Deadlock

A simple way to avoid deadlock is to ensure that the two phases of the packet transmission use
completely separate links.  The node numbers are partitioned into two halves: one half contains
the numbers used for the randomizing phase.  The numbers in the other half are used for the des-
tination phase.  Similarly the links are partitioned into two sets: one set is used in the randomizing
phase and the other set in the destination phase.

Effectively this scheme provides two separate networks, one for the randomizing phase, and one
for the destination phase, with only one set of routers.  The combination of the two networks will



be deadlock free if both of the networks are deadlock free.  The simplest arrangement is to make
the randomizing network have the same structure as the destination network - and to make both
employ one of the known deadlock free routing algorithms.

Universal routing can be applied to a wide variety of networks including hypercubes and arrays
[5].

1.7 Conclusions

Concurrent machines can be constructed from two components: transputers and routers.  Trans-
puters can be connected via their links to form dedicated processing systems in which commu-
nication takes place only between directly connected transputers.  They can also be connected
via routers allowing system-wide communication.

The provision of system-wide inter-process communication simplifies the design and program-
ming of concurrent machines.  It allows processes to be allocated to transputers after a program
is written in order to optimize performance or minimize cost.  It ensures that programs will be
portable between different machines, although their performance will vary depending on the ca-
pabilities of the specific communications network used.

The communications architecture allows a wide variety of implementations.  VLSI routers can
provide routing between a large number of links, minimizing network delays.  Very fast routers
with fewer links can be constructed using high-speed technology.  Transputers and routers can
be combined on VLSI chips to provide network nodes.

Transputers and routers can be used to build machines in which a balance is maintained between
communication throughput and processing throughput.  Universal routing can be used to achieve
bounded communication delay, and fast process scheduling within the transputers allows this
communication delay to be hidden by a small amount of excess parallelism.  An immediate possi-
bility is the development of a standard architecture for scalable general purpose concurrent com-
puters, as discussed in chapter 8.
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