
THE T9000
TRANSPUTER
PRODUCTS
OVERVIEW
MANUAL
First Edition 1991

~ SGS-1HOMSON....,I ® ~D©[fJ@~[L~©1JOO@~O~
INMOS is a member of the SGS-THOMSON Microelectronics Group

INMOS Databook series

Transputer Databook

Military and Space Transputer Databook

Transputer Development and iq Systems Databook

Graphics Databook

Transputer Applications Notebook: Architecture and Software

Transputer Applications Notebook: Systems and Performance

The T9000 Transputer Products Overview Manual

Copyright © INMOS Limited 1991

·INMOS reserves the right to make changes in specifications at any time and without notice.
The information furnished by INMOS in this publication is believed to be accurate; however,
no responsibility is assumed for its use, nor for any infringement of patents or other rights of
third parties resulting from its use. No licence is granted under any patents, trademarks or oth­
er rights of INMOS.

e, ~[IT]mOS~IMS and occam· are trademarks of INMOS Limited.

~~itm~I~~1 is a registered trademark of SGS-THOMSON Microelectronics Group.

INMOS is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 TRN 228 00

ORDER CODE: DBTRANSPST/1

I Contents overview

Contents........................ . . v

Preface .. xiii

Part 1: Product Family Overview 1

1 Introducing the INMOS IMS T9000 family . 3

2 The IMS T9000 transputer 7

3 Simplicity of system design. 16

4 Protection and error handling 20

5 Support for multiprocessing . 22

6 Communication links 28

7 Network communications 35

8 Other communications devices . 43

9 Software and systems 45

10 References. 51

Part 2: Product Family Preliminary Information 53

IMS T9OO0 transputer . 55

IMS C104 packet routing switch 139

IMS C100 system protocol converter ~ .. 163

iv Contents overview

I Contents

Preface xiii

Part 1: Product Family Overview 1

1 Introducing the INMOS IMS T9000 family. 3

1.1 Performance. 3

1.2 MUltiprocessing. 3

1.3 Communications support devices. 4

1.4 Software. 4

1.5 Applications. 5

2 The IMS T9000 transputer 7

2.1 Overview . 7

Processor . 7
Hierarchical memory system 8
Communications system 8
Multiple internal buses 8
System services 9

2.2 The transputer architecture . 9

2.3 Support for concurrent processes . 10

2.4 Pipelined, superscalar implementation -. 10

The pipeline . 11
Grouping of instructions 11
Improvements over IMS T805 . 12

2.5 Hierarchical memory system. 12

2.5.1 Main cache 13
Cache operation 13
Use as on-chip RAM . 14

2.5.2 Workspace cache. 14
Cache operation 14

3 Simplicity of system design 16

3.1 Single 5MHz clock input 16

3.2 Programmable memory interface 16

3.3 Control links and configuration 16

3.4 Loading and bootstrapping '. 17

3.5 Examples. 18

4 Protection and error handling 20

4.1 Error handling 20

4.2 Protected mode 20

Protected mode processes 20
Executing illegal instructions 20
Memory management . 21

vi Contents

5 Support for multiprocessing . 22

Fast interrupt response and process switch. 22
5.1 The transputer model of concurrency 22

Processes and channels . 22
Program structure . 22
Example 23
Multiprocessor programs . 24

5.2 Other models of concurrency '. 25

Shared memory 25
5.3 Hardware scheduler 26

5.4 Interrupts, events and timers 26

5.5 Shared resources 27

6 Communication links -. 28

6.1 Using links between transputers '. 28

6.2 Advantages of using links . 28

Efficiency 28
Simplicity 28
Hardware independence . 29

6.3 IMS T9000 links . 29

6.3.1 Virtual channels 30
Virtual links . 30
Sending packets 31
Receiving packets. 31
The virtual channel processor . 31
Implementation . 32

6.3.2 Levels of link protocol. 32
Packet level protocol . 33
Token level protocol,. 33
Bit level protocol 33

7 Network communications .. 35

7.1 Message routing 35

Advantages for the programmer 35
Routers. 35
Separating routers and processors. 36
Parallel networks ,.......................... 36

7.2 The IMS C104 36

Wormhole routing . 36
Minimizing routing delays 37
Control links .. 38

7.2.1 Using IMS T9000s with IMS C104s . 38
Header deletion 38
Routing control channels. 40

7.3 Routing algorithms 40

7.3.1 Labelling networks. 41
7.3.2 Avoiding deadlock. 42

8 Other communications devices 43

8.1 Mixing transputer types: the IMS C100 43

Product family overview 23

to the main application process, which could even be placed on a separate processor. This use of separate
processors need not just be for performance reasons but might be done, for instance, if there are a large
number of peripheral devices which could be better handled by a low cost 16 bit transputer. One or more
high performance transputers could then be used for the main computing processes.

echo

to application

from application

Figure 5.1 Processes and channels

Example

The code for creating parallel processes in C is very simple. For example, if the three processes in the
example above are external functions, then the following code is all that is needed to run them in parallel:

#include <stdlib.h>
#include <channel.h>
#include <process.h>

/*
declare externally defined functions

*/
extern keyboard_handler (Process *p, Channel *to app, Channel *echo);
extern screen_handler (Process *p, Channel *echo, Channel *from_app);
extern application (Process *p, Channel *to_app, Channel *from_app);

/*
declare pointers to process and channel data structures

*/
Process *kbd_p, *scrn_p, *appn_p;
Channel *to_app, *from_app, *echo;

/*
allocate and initialize channel data structures

*/
to_app
from_app
echo

/*

ChanAlloc() ;
ChanAlloc() ;
ChanAlloc() ;

24 Product family overview

allocate and initialize the process data structures
*/
kbd_p
scrn_p
appn_p

/*

ProcAlloc (keyboard_handler, 0, 2, to_app, echo);
ProcAlloc (screen_handler, 0, 2, echo, from_app);
ProcAlloc (application, 0, 2, to_app, from_app);

now run the three processes in parallel, this call
will return when all three processes have terminated

*/
ProcPar (kbd_p, scrn_p, appn_p, NULL);

A more complete explanation of how parallel programs can be written for the transputer can be found in
INMOS Technical Note 68, "Developing parallel C programs for transputers" [5].

The equivalent program in occam would be:

CHAN OF BYTE to.app, from.app, echo
PAR

keyboard. handler (to.app, echo)
screen. handler (echo, from.app)
application (to.app, from.app)

Multiprocessor programs

Figure 5.2 Transputers and links

Every transputer implements these concepts of concurrency and communication. As a result, the same
model can be used to program an individual transputer or to program a network of transputers. Figure 5.2
shows a typical network of transputers connected by serial links. When a number of processes run on an
individual transputer, the processor shares its time between the concurrent processes, and channel com­
munication is implemented by moving data within memory. When this programming model is used to pro­
gram a network of transputers, each transputer executes the process, or processes, allocated to it.

Communication between processes on different transputers is implemented directly by transputer links.
Thus the same program can be implemented on a variety of transputer configurations, with one configura-

Product family overview 25

tion optimized for cost, another for performance, or another for an appropriate balance of cost and perform­
ance as illustrated in figure 5.3.

P

Figure 5.3 Mapping processes onto one or several transputers

5.2 Other models of concurrency

Although the transputer has direct support for concurrent process which communicate via channels, it is
possible to use the same features ofthetransputerto build other types of mUltiprocessor system orto sup­
port different scheduling models. The IMS T9000 includes a number of instructions for manipulating the
transputer process queues; these make it simple to write real-time kemels, exploiting the efficient task
switching of the transputer architecture. There are also instructions for ensuring that the data in the cache
and in memory are consistent. These can be very useful when implementing a shared memory system.

Shared memory

In a shared memory system, a number of processors have some sort of common area of memory which
they can all access. This has some advantages over the channel communication model, especially where
very large amounts of data need to be shared or moved between processors. The transputer has hardware
and software support for shared memory systems.

The PMI has a set of signals for controlling access to the extemal memory interface by an extemal device.
This is primarily intended for use with a DMA based co-processor. It can also be used, with extemal arbitra­
tion logic, to allow all of the processors in a system to access the shared memory.

Altematively, there may be a number of blocks of memory that can be switched into the memory map of
different processors under software control. These blocks can be used for exchanging data and passing
messages between processors. To synchronize the switching of these blocks of memory between proces­
sors, the ideal method is to pass messages over the transputer Iinks; as the memory is switched to a pro­
cessor's address space, it is sent a message from the previous user of the memory to inform it that it is
now the new 'owner' of the memory. This allows large amounts of data to be moved from one processor
to another but without the overhead of copying all of it over a link.

In any shared memory system, the use of a cache can be a problem. In the IMS T9000 there are instructions
for forcing changed data in the cache to be written out to main memory and for marking data in the cache
as invalid so that it will be read from main memory. As the exchange of data is synchronized between pro­
cessors, these instructions can be used to make sure that the correct data is in both the main memory and
the cache of the processors involved.

It is also possible to mark banks of extemal memory to be 'un-cacheable'; data from that area of memory
will never be put in the cache. This ensures that a number of processors or other devices which make ran­
dom reads and writes of that memory will always get the most up to date data. In this case there must still

26 Product family overview

be some synchronization of the memory accesses to make sure that information is not read by aprocessor
until it has been written; again, this synchronization can be done over the transputer links.

5.3 Hardware scheduler

The IMS T9000 processor includes a hardware scheduler which implements the transputer model of con­
currency. In many applications this will remove the need for a software kernel. However, the transputers
own scheduling mechanisms can be accessed from software to provide efficient support for the implemen­
tation of standard real-time kernels.

At any time, a transputer process may be:

active

inactive

being executed
on a list waiting to be executed

ready to input
ready to output
waiting until a specified time

The scheduler operates in such a way that inactive processes do not consume any processor time. The
active processes waiting to be executed are held on a list of process workspaces. This is implemented
using two registers, one of which points to the first process on the list, the other to the last. In figure 5.4,
P is executing, and Q, Rand S are active, awaiting execution.

A process runs until it is unable to proceed because it is waiting to input or output, or waiting for the timer.
Whenever a process is unable to proceed, its instruction pointer is saved in its workspace and the next
process is taken from the list. Actual process switch times are very small as little state needs to be saved;
it is not necessary for the processor to save the evaluation stack on descheduling.

Current process

Next Instruction
p

Workspace ptr

Active processes on queue

Front ptr

B~ck ptr

Figure 5.4 Transputer process queue

5.4 Interrupts, events and timers

As well as process scheduling and communications, the scheduling hardware also supports simple handl­
ing of interrupts and timers. Any event that aprocess might need to wait for (whether it be acommunication,

Product family overview 27

an interrupt or a timeout) can be treated in the same way as a communication. For example, an interrupt
handler simply has to wait for an input from a special channel which is mapped onto an interrupt ('Event')
input. Because inputs are synchronized, that process will not proceed until the 'input' becomes ready, i.e.
until there is an interrupt.

This makes interrupts on the transputer very easy to use. An interrupt handler is simply a process like any
other waiting on an input from the interrupt 'channel'. This contrasts greatly with the traditional idea of an
interrupt handler as something difficult which needs to use special instructions and be written in a very dif­
ferent way from other program code (usually in assembler).

The IMS T9000 has four sets of pins, known as 'Event' channels, which can be used for control and synchro­
nization purposes. Each Event channel can be configured either as an input or an output. As inputs they
can be used as interrupts, to cause a fast processor response to a extemal signals. When an Event channel
is configured as an output, the process outputting to it will be descheduled until the external device pro­
vides the necessary handshake signal.

The transputer has two timers; one of which 'ticks' every microsecond, the other ticks every 64 microsec­
onds. The current value of the processor timer can be read, or a process can perform a timer Input in which
case it wi II become ready to execute when a specified time has been reached. Both these uses of the timer
are treated as inputs similar to channel communication. If the timer is simply being read then the current
timer value is provided immediately; if the process is waiting for a particular time, then it is descheduled
until that time.

5.5 Shared resources

The IMS T9000 also provides efficient hardware support for controlling access to a shared resource. This
could be a hardware resource (e.g. a printer) or a piece of software running on a particular processor in
a network. Each process which wants to use the resource (a 'client') can make a request to the controlling
process (the 'server'). This request is done in the form of a channel communication and can, therefore, be
done across a network by using transputer links. If the resource is available then the requesting client is
given access to it, otherwise it is put on a queue until the resource becomes free. If multiple clients request
a resource then they are all automatically queued until it is available.

Client processes

Figure 5.5 Client/server model of resources

The resource mechanism can provide pairs of channels between the server and the processes accessing
it. This can be used, for example, to implement remote procedure calls across a transputer system.

28 Product family overview

6 Communication links

Transputer links provide a simple and regular way of interfacing to peripherals and host systems as well
as communicating between transputers. On a single transputer, processes can communicate via channels;
the provision of links allows processes on different transputers to communicate in the same way. The
IMS C104 routing device enables this communication to take place across a network, even between
transputers that are not directly connected.

The same communication model can be used to communicate with peripheral devices or a host system
using a link adaptor which converts from the bit-serial protocol of the links to a parallel port.

6.1 Using links between transputers

Transputer links can be used to implement point to point communication between transputers. This allows
transputer networks of arbitrary size and topology to be constructed. Point to point links have many advan­
tages over bus based communications in a multiprocessor system:

• There is no contention forthe communication mechanism, regardless ofthe number of processors
in the system.

• There is no capacitive load penalty as more processors are added to the system.

• The communications bandwidth does not saturate as more communicating devices are added
to the system. Rather, the larger the number of transputers, the greater the total communications
bandwidth of the system.

• Because each transputer in a system uses its own local memory, overall memory bandwidth is
proportional to the number of transputers in the system. This is in contrast to a large, global
memory where the processors must share the available memory bandwidth.

For small systems, the four transputer links on the IMS T9000 can provide complete connection between
up to five devices. By using additional message routing devices such as the IMS C104, networks of any
size can be built with complete connection between alllMS T9000s. If a system does not need complete
connection ortheflexibility of routing that the IMS C104provides, then networks can be built just from direct­
ly connected transputers.

6.2 Advantages of using links

The advantages of using links for communication are efficiency, simplicity and hardware independence.

Efficiency

There is a separate DMA controller for every input and every output channel which allows data to be trans­
ferred without processor involvement. To exploit this, the transputer deschedules a process which is waiting
for a communication to complete, freeing the processor to execute another process. When the communica­
tion is complete, the process is rescheduled, providing automatic synchronization with the data transfer.

Simplicity

The communication links are, however, very simple to use. The transputer has' simple instructions for per­
forming input and output and these are available to the programmer either as function/procedure calls in
a high level language or, in the case of occam, as an integral part of the language. For example, in a C
program, to transfer an array of 256 bytes from the array data to a channel c, the following call could be
used:

ChanOut (c, data, 256);

In occam, the same operation could be written as:

c ! 256:: data

Product family overview 29

This output operation requires four instructions: three to load the address of the channel, the address of
the data and the number of bytes, followed by the output instruction itself. It is worthwhile comparing this
with the complex code required to do the equivalent transfer on a traditional microprocessor. For example,
it would require a DMA controller to be programmed and, in order to allow some degree of multitasking,
it would be necessary to set up the interrupt hardware and write an interrupt handler to control the data trans­
fer. All of this is done automatically by the input and output instructions on the transputer.

As a more concrete example, consider the case of a file server running on a host system talking to a pro­
gram running on the transputer. This would provide the transputer program with all the host operating sys­
temfacilities such as filing system, terminal i/o etc. Atthetransputerend, the communication is very simple:
a single line of code, as outlined above. At the host end, a lot of complex code (probably written in assem­
bler) is required to handle the data transfer, either programming a DMA controller or polling the status regis­
ters of the memory mapped port. In the case of a Unix system, it will also be necessary to write a device
driver to interface to the hardware.

Of course, when the communication is between two transputers, then both ends of the communication are
equally simple.

Hardware independence

As well as being fast and easy to use, channel communications provide a degree of hardware indepen­
dence.

The same communication mechanism can be used to communicate between concurrent processes,with
peripherals or a host system, and even to handle interrupts. This simplifies the development and testing
of code as each process can be functionally tested before being used in the complete system. A good
description of program development for transputers can be found in [4].

Furthermore, exactly the same code can be used to communicate between processes on the same
transputer (using so called 'soft channels') and to communicate between transputers (using links, or 'hard
channels'). Not only is the source code the same, but the same transputer instructions are used - the
transputer determines at run time whether it is using a hard or a soft channel. This saves the programmer
from having to make decisions about the final hardware implementation while developing and testing code.
The IMS T9000 takes this separation of software from hardware one step further than previous transputers.

6.3 IMS T9000 links

On previous transputers the programmer was limited to assigning two channels, one in each direction, to
each link. To map a particular piece of software onto a given hardware configuration the programmer has
to map processes to processors within the constraints of available connectiVity. The problem is illustrated
in figure 6.1 where 3 channels are required between two processors, but only a single link connection is
avallabte.

One possible solution, and one that is frequently suggested by transputer users, is the addition of more
links. However this does not really solve the problems; there is still limited connectivity available. The num­
ber of extra links that can be added is limited by VLSI technology. This 'solution' does not address the more
general communication problems in networks, such as communication between non-adjacent processors,
or combining networks in a simple and regular way.

30 Product family overview

Process SA

Process 63C

Figure 6.1 Multiple communication channels required between processors

6.3.1 Virtual channels

The solution chosen in the IMS T9000 was to add multiplexing hardware to allow any number of processes
to use each link, so physical links can be shared transparently. These channels which share a link are
known as 'virtual channels'; they have the same behavior as software channels.

The IMS T9000 has four data communication links, each with a DMA controller and the ability to synchro­
nize with the scheduling of processes. The links and DMA engines are controlled by a separate communi­
cations processor, the virtual channel processor (VCP), which works concurrently with the CPU. This sup­
ports practically a large number of virtual channels on each link.

Process
A

Process
C

VCP VCP

Figure 6.2 Shared links between IMS T9000s

Virtual links

Each message sent across a link is divided into packets. Every packet requires a header to identify its
destination process. Packet$ from different messages are interleaved on the link. There are a number of
advantages to this:

• It makes the transputer simpler to use as it separates the software configuration from the hard­
ware. The programmer does not need to limit the number of channels between processors or ex­
plicitly allocate channels to links.

Product family overview 31

• Channels are, generally, not bUsy all the time therefore the VCP can make better use of hardware
resource by keeping the links bUSy with messages from different channels.

• Messages from different channels can effectively be sent concurrently - the processor does not
have to wait for a long message to complete before sending another.

Virtual channels are always created in pairs to form a 'virtual link'; this means there is no need for a return
address in packets, the acknowledgements are simply sent back along the other channel of the virtual link.

Sending packets

The IMS T9000 sends the first packet of a message and then waits for an acknowledgement from the receiv­
ing processor before sending the next. The process which sent the message cannot proceed until the last
packet of the message has been acknowledged. Messages and acknowledgements from other virtual
links can be sent while waiting for an acknowledgement on a virtual link. This ensures that a single virtual
link cannot monopolize a physical link.

Packets arriving on Iink

A

Figure 6.3 Multiple channels sharing a link

Receiving packets

The initial packet of a message is acknowledged if a process has requested a message on that virtual link.
The acknowledgement can be sent as soon as the inputting process is identified, as long as the inputter
is able to accept another packet. This means that the entire packet does not have to be received before
the acknowledgement is sent. In this way the acknowledgement can be received by the transmitter before
all of the data packet has been sent and the transmitter can send the next message packet immediately.

The IMS T9000 provides one packet buffer for each virtual link so that each input can be ready to accept
an unsolicited packet. This means that other virtual channels sharing a physical link are not delayed if one
virtual channel is not ready to input. This buffering of the first packet only takes place if the receiving process
is not ready to input, otherwise the data is written directly to the inputting process's workspace. This buffer
is not visible to the programmer; all communications are still synchronized at the message level.

The virtual channel processor

The VCP routes messages to and from processes on IMS T9000s. It shares each physical link between
any number of processes. It also supports non-local communications by using the IMS C1 04 to route mes-

32 Product family oveNlew

sages in a network of transputers. This can provide multiple virtual channels between any two transputers
in a network. Requests to send messages are queued by the VCP so that the main CPU is not delayed
waiting for packets to be sent.

Implementation

To achieve the speed required to match a faster processor, and to support the virtual channel protocol, a
new, simple link standard has been implemented. The original transputer links are referred to as over­
sampled (OS) links and use a pair of wires. The IMS T9000 links have four wires for each link (a data and
strobe line in each direction) and are known as OS links. All signals are TTL compatible.

The links are asynchronous; the receiving device synchronizes to the ir~~ming data. This simplifies clock
distribution within a system, the exact phase or frequency of the clock on a pair of communicating
IMS T9000s is not critical. It also means that devices with different processor speeds can communicate.

6.3.2 Levels of link protocol.

As with any communications system, the links can be be described at a number of levels with a hierarchy
of protocols. At the highest level a message consists of the data that the user sends down a channel from
one process to another. Any type of data or message can be sent in this way. This communication is syn­
chronized; it will not take place until both processes are ready and the two processes will not continue until
the message transfer is complete.

I header] 32 data bytes

•
•
•

I IFirstend of packet packet

header I

header ;

32 data bytes I end of packet]

1 to 32 data bytes I end of messageI ~~~et

Long message (greater than 32 bytes)

I header I oto 32 data bytes I end of message I

Short message (0 to 32 data bytes)

end of packet

Acknowledge packet

Figure 6.4 High Level protocol

Product family overview 33

Packet level protocol

In order to transfer a message from one IMS T9000 to another, the virtual channel processor sends it as
one or more packets. This allows packets from a number of different channels to be interleaved on the same
link. Each packet is acknowledged by the receiving IMS T90oo, to maintain synchronized communication
and to limit the amount of buffering required.

Every packet has a header defining the destination address followed by the data bytes and, finally, an 'end
of packet' or 'end of message' token. See figure 6.4.This simple protocol supports messages of any length;
the receiving device knows when each packet and message ends without needing to keep track of the
number of bytes received. It also maintains synchronization at the message level.

A packet can contain up to 32 data bytes. If a message is longer than 32 bytes then it is split up into a number
of packets all, except the last, terminated by an 'end of packet' token. The last packet of the message,
which may contain less than a full 32 bytes, is terminated by an 'end of message' token.

Shorter messages can be sent in a single packet, containing °to 32 bytes of data, terminated by the 'end
of message' token. With this protocol zero length messages can be sent, allowing efficient synchronization
between processors.

Packet acknowledgements are sent as zero length packets terminated with an 'end of packet' token. This
type of packet can never occur as part of a message because a zero length data packet must always be
the last, and only, packet of a message, and will therefore be terminated by an 'end of message' token.

Token level protocol

In orderto support the packet level protocol described above, a lower level protocol is needed for encoding
tokens which may contain a data byte or control information. Each token has a parity bit plus a control bit
which is used to distinguish between data and control tokens. In addition to the parity and control bits, data
tokens contain 8 bits of data and control tokens have two. bits to indicate the token type (e.g. 'end of mes­
sage').

Control bit

Parity bit 8 Data bits

~
A

/ "'-

Data token P ° D D D D D D D D
I

End of packet token _P__' __' _0 1

End of message token I_p__,_1-----.:....'_1__0------l1

Figure 6.5 Low level protocol

Bit level protocol

At the lowest, hardware, level the signals on the data and strobe lines of a link encode a sequence of bit
values. The protocol guarantees that only one of the two wires will have an edge in each bit time. The levels
on the data wire give the values of the transmitted bits. The strobe signal changes state whenever the data
wire does not. These two signals encode a clock along with the data which makes it easy to asynchronous­
ly detect the data at the receiving end.

34

o o o

Product family overview

o

Data

Strobe I n _
Figure 6.6 Hardware level

The first generation of transputers use a phase locked loop to synthesize a high frequency clock signal
which is then used to sample the link data. This is adequate for the data rates involved, but would not easily
support the bit rates of 100 Mbits/s and greater used by the IMS T9000.

Product family overview

7 Network communications

35

The use of INMOS links for directly connecting transputers hasalready been described. The new link proto­
col not only simplifies the use of links between processors but also provides hardware support for routing
messages across a network.

7.1 Message routing

The VCP (Virtual channel processor) on the sending IMS T9000 packetizes messages to be sent over a link
and adds a header to each packet to identify the destination process. At the receiving end, the VCP uses
the header to send the data in each packet to the intended process. These headers can also be used for
routing packets through a communication system connecting a number of IMS T9000s together. This ex­
tends the idea of multiple channels on a single hardware link to multiple channels through a communica­
tions system; a communications channel can be established between any two processes even if they are
running on transputers that are not directly connected. The header still just specifies the destination of the
packet; the programmer does not need to know how to route that message to its destination.

Advantages for the programmer

The ability to have channels between any two proces~es in a network has a number of significant advan­
tages for the programmer. It simplifies the description of mUltiprocessor systems by separating the hard­
ware architecture from the software configuration. The programmer doesn't need to be concerned with the
detatls of placing channels on links or routing messages through the network. This removes a lot of the
problems with placing of processes on processors - the decision now can be made just on the basis of
the resources (memory size, etc.) available on each processor without worrying about the available con­
nectivity.

The programming model for networks of IMS T9000 transputers is unchanged from that for the first genera­
tion of transputers. There is, however, greater flexibility in configuring software. An important feature is that
the hardware and software configurations, and therefore their descriptions, can be kept completely inde­
penpent. The same hardware, and the same description of that hardware, can be used for many different
programs.

Routers

The routing components in a network can be separated from the processing elements. Messages can be
passed from one processor, through any number of routing devices, to the destination processor. This
creates a temporary path through the routing system for that message so, from the programmers point of
view, there still appears to be a single channel directly connecting a process on one transputer with a pro­
cess on another.

T9000 T9000 T9000 T9000

I I I I

Routing system of one or
more routing devices

Figure 7. 1 A routing system

As a packet arrives on a link, the destination address must be inspected before the outgoing link can be
determined. The time before the output link can be determined is therefore proportional to the address

36 Product family overview

length. Further, the address itself must be transmitted through the network and consumes network band­
width. It is therefore important that this address be as short as possible, both to minimize latency and maxi­
mize bandwidth.

The router needs to arbitrate between packets which arrive at the same time and have to be sent out of
the same link. Ideally, it should start to output the packet as soon as possible; Le. immediately after the
output link is determined, provided that the link is not already in use by another packet. This keeps the
latency through the network small, in contrast to a typical packet switching network which uses a 'store
and forward' algorithm in which each packet is read into a buffer, the address information is decoded and
then the packet is sent out. The delay that would be introduced by this is unacceptable in a transputer net­
work. Also the amount of buffering needed would make a VLSI implementation of a large routing switch
impractical.

Separating routers and processors

There are a number of advantages to keeping the communications devices and processing elements sepa­
rate in a system. Processors can be directly connected where appropriate, which avoids the silicon costs
and eXtra routing delays in a small system that doesn't need to use the routers. Also, the design of the
routing devices and processing elements can be optimized for their different roles. For example, the routing
component can have a larger number of links than wou.ld be possible if the two devices were integrated,
because the processor already needs a large number of pins for the memory interface and other functions.
Having a routing device with many links means that large network with a small number of routers can be
built, hence minimizing cost and latency and maximizing bandwidth. If messages had to flow through the
processor, it would increase the pin count, power consumption and packaging costs. This approach also
allows the construction of scaleable architectures where the communications throughput and processing
power can be balanced.

Parallel networks

Because the new link architecture allows all the virtual channels of a transputer to use a single link, com­
plete, system-wide connectivity can be provided by connecting just one link from each transputer to the
routing network. This means that the IMS T9000, with its four links, can be connected to several different
networks. This can be exploited in a number of ways. For example, two or more networks can be used in
parallel to increase bandwidth, to provide a general purpose communications network and an independent
monitoring/debugging network, or as a 'user' network running in parallel with a physically separate 'sys­
tem' network.

7.2 The IMS C104

An important benefit of the IMS T9000's serial links is that it is easy to implement a full crossbar in VLSI,
even with a large number of links. The use of a crossbar allows packets to be passing through all links at
the same time, making the best possible use of the available bandwidth.

If the routing logic can be kept simple it can be provided for all the input links in the router. This avoids the
need to share the hardware, which would cause extra delays when several packets arrive at the same time.
It is also desirable to avoid the need for the large number of packet buffers commonly used in routing sys­
tems. The use of small buffers and simple routing hardware allows a single VLSI chip to provide efficient
routing between a large number of links.

Wormhole routing

The IMS C104 (figure 7.2) is one of a family of compatible communications support devices for the
IMS T9000. It includes a full 32 x 32 non-blocking crossbar switCh, enabling messages to be routed from
any of its links to any other link. In order to minimize latency, the switch uses 'wormhole routing' - the con­
nection through the crossbar is set up as soon as the header has been read. The header and the rest of
the packet can start being transmitted from the output link immediately. The path through the switch disap­
pears after the 'end of packet/message' token has passed through. This is illustrated in figure 7.3. This
method is simple to implement and provides very low latency as the entire packet doesn't have to be read
in before the connection is made.

Product family overview

System
services

32x32
Crossbar

switch

Command
processor

37

Figure 7.2 Block diagram of IMS C104

Minimizing routing delays

The ability to start outputling a packet while it is still being input-can significantly reduce delay, especially
in lightly loaded networks. The delay can be further minimized by keeping the headers short and by using
fast, simple hardware to determine the link to be used for output. The IMS C1 04 uses a simple routing algo­
rithm based on interval routing (described in section 7.3.1).

T9000 C104 T9000
or or

C104 C104

T9000
or

C104

T9000
or

C104

T9000
or

C104

T9000
or

C104

Figure 7.3 Packet passing through IMS C104

Because the route through each IMS C1 04 disappears as soon as the packet has passed through and the
packets from all the channels that pass through a particular link are interleaved, a single virtual channel
cannot 'hog' a route through a network. Messages will not be blocked waiting for another message to pass
through the system, they will only have to wait for one packet.

