
The MiniServer and
ServerTask

Perihelion Software Technical Report No. 12

Bart Veer

May 1989



Perihelion Software Limited
The Maltings

Charlton Road
Shepton Mallet

Somerset
BA4 5QE
England

Telephone +44 749 4203
Fax. +44 749 4977

Copyright (c) 1988,1989 Perihelion Software Ltd.

Permission to copy this technical note without fee is hereby granted, provided
that the copyright message and this permission appears in all copies.

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

2



Contents

1 The Bootstrap Process 5

2 The Various Protocols 7

3 The ServerTask and Networking 12

3



The standard Helios hardware configuration has one or more I/O processors
connected to a transputer network. Every I/O processor runs a program,
called the I/O Server, which provides a number of servers for the various
devices which are provided by the host. The I/O server also communicates
with the transputer network in accordance with Helios protocols, so that the
host machine looks and behaves like any other Helios node, with the sole
exception that you cannot use it to execute transputer programs. The type
of processor contained in the host machine is unimportant.

The main advantage in having an intelligent I/O server is that input and
output operations make use of the host’s resources, and not those of the
transputer network. This means that I/O operations do not use up valuable
processing time within the transputer network, and they do not use up the
transputers’ memory. If the resources are directly connected to a transputer,
then the transputer’s CPU time and memory are needed, and the host’s
resources are wasted.

Unfortunately, the I/O. Server is a large program which needs a minimum
of about 512Kbytes of memory. In addition to this, it is often difficult to
port the full Server to some machines, particularly those which are still in
prototype form, or are using experimental software. To cope with these
problems a separate environment, the MiniServer/ServerTask combination
has been developed.

In outline the MiniServer is a simple program that runs on the host, boot-
ing up the root transputer and providing input/output facilities. The sys-
tem image booted into the root transputer contains an extra program, the
ServerTask, which contains Helios servers for various devices. The Server-
Task communicates with the MiniServer down a dumb link using its own
protocol, rather than the usual Helios protocols. Hence the bulk of the pro-
cessing is now done on the root transputer, and only the low-level I/O still
takes place in the I/O processor.

There are major difficulties with this system. First the ServerTask uses up
between 100K and 200K of transputer memory, depending on load, as well
as some of the CPU time. Secondly this program is difficult to write, debug,
and maintain, because it is part of the system image and therefore cannot
use any of the posix or C library routines. It is difficult to get any text
debugging out until the ServerTask is fully initialised, which takes quite a
long time, so when things go wrong it is hard to find out why. Many of these
problems are caused by subtle interactions between the ServerTask and the
system and server libraries, and unless you have access to the sources of
these libraries it is difficult to determine what is happening.

It is particularly difficult to increase the number of facilities which are avail-
able, because it involves modifying two programs, that is, both the MiniS-

4



erver and the ServerTask. At present the ServerTask only provides a simple
console device and file I/O, and not the multiple windows, communication
ports, X-Windows support, and other facilities available in the I/O Server.
It is also difficult to port the MiniServer/ServerTask to work with different
host machines, as this involves modifying the ServerTask on the transputer
side, as well as the MiniServer on the host side. This compares unfavourably
with the standard Helios system where all the machine-dependency is iso-
lated in the I/O Server, and exactly the same version of Helios runs on all
the transputers.

On the plus side, the MiniServer/ServerTask does provide a number of fa-
cilities not available in standard Helios. During periods of inactivity it is
possible to arrange for the two programs to disconnect, and reconnect at
some later stage without rebooting the transputer network. The MiniServer
is sufficiently small that, given an interrupt-driven link interface, it could run
in the background or as a Terminate-Stay-Resident program. This would
allow the transputer network to be used as an accelerator for the host, rather
than as the main machine. It is possible for the host to send commands to
the ServerTask to be executed in the transputer network, using a special
command protocol, and it is possible for transputer programs to communi-
cate with the host using Helios messages.

1 The Bootstrap Process

Booting Helios into the root transputer is tedious rather than difficult, as
there are a large number of steps.

1. Reset the root transputer.

2. Read the file, nboot.i, which contains a simple transputer bootstrap
program. The first 8 bytes should be ignored, the next 4 bytes form
a single 32-bit little-endian word, which is the size of the bootstrap
program. This program starts at the 13th byte.

3. Send a single byte, the size of the bootstrap program.

4. Send the bootstrap program itself, starting at the 13th byte of nboot.i.
The transputer now starts to run this bootstrap program.

5. Clear parity memory, if any, by sending a byte, 5, followed by the
memory size as a 32-bit word. Wait for a single byte reply from the
transputer, which can be discarded.

6. Send a single byte, 4. This instructs the bootstrap program to read in
a system image.

5



7. Send all of the file, linknuc, which is a system image containing the
kernel, system library, server library, utility library, processor manager,
loader, and ServerTask. The first word of the file contains the size of
the whole file.

8. The bootstrap program now transfers control to the kernel, which
requires some configuration information. The MiniServer should send
the size of the configuration as a single word. The configuration below
may be used if desired, it is exactly 0x48 bytes long.

9. Send the configuration information. You may either construct your
own, using the data structure defined in the Helios header file config.h,
or you can use the following sequence of hex bytes

00 04 00 00 01 00 00 00
00 10 00 80 yy yy yy yy
xx xx xx xx 06 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 1c 00 00 00
1c 00 00 00 04 00 00 00
70 01 02 00 00 02 06 01
00 02 06 02 00 02 06 03
2f 30 30 00 2f 49 4f 00

Two of the fields in the configuration need patching at run-time.
yyyyyyyy should be the size of the system image, i.e. the first four
bytes of the file linknuc. xxxxxxxx should be the current time ex-
pressed as a unix time stamp, i.e. the number of seconds since the
first of January 1970.

10. The kernel can now initialise itself and start up the processor manager,
which in turn starts up the other programs in the system image. In
this case the programs are the loader and the ServerTask. The Server-
Task needs some additional configuration information which must be
provided by the MiniServer.

11. The ServerTask and the MiniServer need to synchronise with each
other. To do this the ServerTask will send a single byte 0xF1 down
the link, and the MiniServer should respond with a byte 0xF2.

12. The MiniServer should now send a single byte specifying the size of
the information below.

13. The MiniServer should send the following configuration

byte 1 : identifies host, 1 = PC, 2 = DP2, etc.
byte 2 : flags byte, currently unused

6



byte 3 : the number of disk drives connected to
the host which must accessible from Helios

bytes 4-7 : a message limit, indicating the maximum
number of bytes which should be transferred
between the host and the root in one message.
This should be at least 1K, but preferably
no larger than about 32K to avoid excessively
large buffers on the root transputer

bytes 8- : the name of the Helios directory, for example,
c:\helios, terminated by a byte ’\0’

remainder : the names of the other drives, all null
terminated

Note that the MiniServer uses local filenames throughout, and it is upto the
ServerTask to do all the name conversion. Once the ServerTask has received
its configuration information it can finish initialising itself and fork off Helios
servers for all the devices. The ServerTask then runs /helios/lib/init, which
reads the file, /helios/etc/initrc, as per the usual bootstrap.

2 The Various Protocols

There are various protocols used between the ServerTask and the MiniS-
erver. All these protocols are introduced by a special header byte, as follows:

0 : synchronisation protocol
1 : IOServer protocol
2 : command protocol
3 : message protocol
4 : polling protocol
5 : exit protocol
6 : sleep protocol
7 : wakeup protocol

The polling protocol and the wakeup protocol only go from the MiniServer
to the ServerTask. The exit protocol and the sleep protocol only go from the
ServerTask to the MiniServer. The other four protocols are bi-directional.

The purpose of the synchronisation protocol is to inform both sides that the
other side is still alive. Both sides should send a single byte, 0, down the link
at regular intervals. At present these bytes are ignored by the ServerTask,
but the PC version of the MiniServer will exit with a suitable message if
it does not receive a synchronisation byte once every 10 seconds, on the
assumption that the transputer side has crashed. It may be desirable to
disable this protocol when using the transputer network as an accelerator,

7



because it causes link activity even when the transputer network is not
currently in use.

The exit protocol consists of a single byte, 5, sent by the ServerTask. This
will happen if the user logs out of the login shell, which is interpreted at
present as a request to return to the host system. On receiving this byte
the MiniServer should just exit.

The sleep protocol consists of a single byte, 6, sent by the ServerTask to the
MiniServer to disconnect the two programs for a period of time. There is
a sleep.c program which makes the ServerTask send this protocol byte. On
receiving the sleep byte the MiniServer can exit. At some later stage the
MiniServer may be run again, and instead of rebooting the root transputer
it can send a single wakeup byte, 7, to the ServerTask. The sleep protocol
should be used only when the transputer is not running any software that
needs to perform I/O.

The remaining protocols are more complicated and will be described below.

The IOServer Protocol

This is the protocol used between the ServerTask and the MiniServer to
perform I/O of some sort, and always consists of a single message from the
ServerTask followed by a single reply from the MiniServer. The ServerTask
will not send any other requests until the reply has beta received, and the
MiniServer should not send any other messages.

The protocol byte from the ServerTask is followed by the following four bytes

1 : a function code
2 : an extra byte for additional information
3 : a high byte and
4 : a low byte.

This package may be followed by a data vector of upto 64K of additional
information, the amount being controlled by the high and low bytes. The
reply sent by the MiniServer consists of the same package, with the function
code replaced by a reply code. At present there are only two reply codes,
0x80 (128) for success and 0x81 (129) for failure. The following function
codes are defined.

OpenFile = 1
The extra byte specifies the mode; 1 for read-only, 2 for write-only,
with an implicit truncate to 0 length; 3 for read-write. The data

8



vector contains the name of the file to be opened as a null-terminated
string, in local format rather than Helios format, and as an absolute
name rather than relative to the current directory. On success the
MiniServer should return a two-byte integer in the data vector, which
is interpreted as a stream identifier and used for subsequent stream
requests.

CloseFile = 2
The data vector contains the stream identifier returned by OpenFile.

ReadFile = 3
The first two bytes in the data vector contain the stream identifier
returned by OpenFile, and the next two bytes specify the amount of
data to be read. The MiniServer should return the amount of data
requested, and may return less if, and only if, the end of file is reached.

WriteFile = 4
The data vector contains the stream identifier, followed by the data to
be written.

SeekInFile = 5
The extra field contains 1 for seek from start, 2 for seek from end. The
data vector contains the 32-bit offset in the file, 0 or positive if seeking
from the start, 0 or negative if seeking from the end. This offset is
followed by the stream identifier. On success the MiniServer should
return the new 32-bit offset in the data vector.

CreateFile = 6
The data vector contains the null-terminated name of the file to be
created or truncated to zero length.

DeleteFile = 7
The data vector contains the name of the file to be deleted.

Rename = 8
The data vector contains the current filename, followed by the new
filename. Renaming of directories is not supported.

Locate = 9
The data vector contains the name of the file or directory to be located.
On success the extra field in the reply packet should contain 1 if the
object is a file, or 2 if it is a directory. Note that this function should
be implemented as efficiently as possible, because it is invoked before
most of the other routines.

ReadDir = 10
The data vector contains the name of the directory to be read. If

9



successful, the first two bytes of the data vector of the reply should be
the number of entries in the directory. This should be followed by the
actual entries, each entry consisting of a byte 1 for a file or a byte 2
for a subdirectory, followed by a null-terminated name.

For example, if a directory contains three entries aa, bb and cc where
aa and bb are files and cc is a directory, the data vector should contain
the following: 00 03 01 41 41 00 01 42 42 00 02 43 43 00

CreateDir = 11
The data vector contains the name of the directory to be created.

RemoveDir = 12
The data vector contains the name of the directory to be deleted.

FileInfo = 13
The data vector contains the name of the file to be examined. On
success the MiniServer should return a 32-bit file size, followed by a
32-bit unix time stamp for the file specified. This time stamp should
correspond to the time last modified.

DiskUsage = 14
The data vector contains the name of a file or directory. The MiniS-
erver should use this name to determine some statistics for the corre-
sponding disk drive. The first word in the reply should be the size of
the disk drive in kilobytes, and the second word should be the space
left on the disk in kilobytes.

WriteToScreen = 15
The data vector contains some text to be written to the screen. The
ServerTask contains an ANSI screen emulator, which must be modified
for different hardware.

ChangeDate = 16
The data vector contains a file name. The MiniServer should set the
date-last-modified of that file to the current time. This is used by the
touch command.

The Polling Protocol

The MiniServer is responsible for polling devices such as the keyboard, and
sending any data received to the ServerTask using the polling protocol. The
packet format is similar to that used by the IOServer protocol. The function
code specifies the source of the data, the keyboard being source 1, and no
other sources being defined at present. The extra field contains the first
byte of data. If there is more than one byte of data, this follows in the data

10



vector. The ServerTask should not acknowledge receipt of data, i.e. this
protocol is used only from the MiniServer to the ServerTask.

The Message Protocol

The ServerTask contains a device called /dp2mess, which may be opened
by Helios programs. Once these programs have an open stream they can
send messages to the host via this stream, and the host can use the message
port in the first message to send data to the transputer. There is no facility
for the host to send the first message. It is up to the applications on both
sides to use message passing correctly, i.e. correct use of full and empty reply
ports and the MsgHdr Flags preserve flag. An example program, dp2mess.c,
illustrates such message passing.

When the ServerTask receives a message sent to /dp2mess, it transmits this
down the link as follows: the Message protocol byte; the message header’s
flag field; the control vector size; the data vector size; the destination port;
the reply port; the function code; the control vector if any; and the data
vector if any. Messages can be sent from the host to the transputer using
the same format.

The Command Protocol

The ServerTask contains code allowing it to run programs under the control
of the host. It can also run compiled CDL scripts if a Task Force Manager
is running. The ServerTask contains its own interpreter rather than using
a shell, so it is not possible to execute shell scripts and uncompiled CDL
scripts in this way.

The command protocol works as follows. The ServerTask receives a protocol
byte followed by the usual four byte packet. The function code is ignored.
The extra byte contains an integer identifier for the program, which will
be returned by the ServerTask in its replies. The data vector contains the
command to be executed, in a format described below; it may consist of
upto 512 bytes. The ServerTask will send back replies at various stages,
using the same packet format. The following reply codes are defined:

0x01 : the program is ruining
0x02 : the program has finished
0x81 : the ServerTask failed to parse the command provided
0x82 : failed to locate the current directory
0x83 : failed to open stdin
0x84 : failed to open stdout
0x85 : failed to open stderr

11



0x86 : failed to find command
0x87 : failed to load command
0x88 : failed to start command running
0x89 : failed to send environment to command
0x8a : failed to set up signal handling for command

All except the first two reply codes indicate a fatal error and will prevent
the program from running. A typical command would be:

ls @/helios/etc { /null, /helios/output, /Logger } -l

This means that the command to be executed is ls. This command should
be in the /helios/bin directory, although an absolute filename may be given
instead. The program should run using /helios/etc as the current directory,
the default being /helios. The standard streams are /cull for stdin (always
returns end-of-file straightaway), the file /helios/output for stdout, and the
error logger for stderr (data written to stderr will go to the screen). The
default standard streams are /null, /logger and /logger. There is just one
argument, ”-1”, although any number may be given subject to the 512-byte
upper limit for a command. The parser is fairly flexible, so the following are
also valid commands,

ls { , /helios/output } -l @/helios/etc
/helios/bin/ls -l @/helios/etc

3 The ServerTask and Networking

Using a special nucleus for the root transputer creates a small problem when
booting up a network of transputers, as it is no longer possible to use the
existing nucleus to boot up the neighbour, as that neighbour would then
run another ServerTask which installs its own servers and expects to talk
down a dumb link 0 to a MiniServer. To get around this problem there is a
special version of rboot, ms rboot, which should replace the rboot normally
shipped. ms rboot will load a system image off disk when required and
use that to boot a neighbour, rather than always use the current one. In
addition to this, the resource map which is used to boot the transputer
network, should not contain a reference to the I/O processor, as this is not
an intelligent Helios node.

12


	1 The Bootstrap Process
	2 The Various Protocols
	3 The ServerTask and Networking

