Adding Devices to the Helios
I/O Server

Perihelion Software Technical Report No. 11

Bart Veer

December 1988

Perihelion Software Limited
The Maltings
Charlton Road
Shepton Mallet

Somerset
BA4 5QE
England
Telephone +44 749 4203
Fax. +44 749 4977

Copyright (c) 1988,1989 Perihelion Software Ltd.

Permission to copy this technical note without fee is hereby granted, provided
that the copyright message and this permission appears in all copies.

tirlainis
plujt]e[r

njelt|

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

Contents

1 Adding Devices to the Helios I/O Server

1 Adding Devices to the Helios I/O Server

One of the main reasons for purchasing the sources of the Helios I/O Server
is to modify them by adding an additional device or devices.
problem is how to make these modifications in a way that will not cause
problems when you receive upgrades of the Server sources. This document
gives some hints on how to achieve this.

The main

The Server is a fairly complicated program, and it is assumed that you are
fairly familiar with it before you try to make any changes. Technical report
number 10 explains the general workings of the Server.

To minimise the changes to the Server sources when adding new devices,
I recommend that you create two new files rather than modify the exist-
ing sources. The first file declares the device and incorporates it into the
Server. It should be #included inside routine Init(), module server.c, where
the various servers are initialised but just before the WalkList(WaitingCo
func(StartCo)) where the servers are started. The second file should con-
tain the handler routines for the device, and should be compiled separately
and combined with the Server at link time. In theory, when you get future
upgrades of the Server all you will need to do is add the #include line to
module server.c and change the makefile to incorporate your file of handler
routines.

A typical declaration file would be as follows:

/KoK sk ook ok sk sk sk ok ok sk ok ok sk sk sk ok ok ok ok ok sk sk sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
*okk Declaration file for a robot device *kk

**/

{
extern void Robot_InitServer();
#define Robot_TidyServer IgnoreVoid
#define Robot_Private Invalidfn_handler
#define Robot_Testfun Nullfn
extern void Robot_Open();
#define Robot_Locate Create_handler
#define Robot_Create Create_handler
#define Robot_Delete Invelidfn_handler
#define Robot_0ObjectInfo Device_ObjectInfo_handler
#define Robot_ServerInfo Invalidfn_handler
#define Robot_Rename Invalidfn_handler
#define Robot_Link Invalidfn_handler
#define Robot_Protect Invalidfn_handler
#define Robot_SetDate Invalidfn_handler
#define Robot_Refine Invalidfn_handler
#define Robot_Robot_Refine Invalidfn_handler

PRIVATE VoidFnPtr Robot_Handler [handler_maxl =
{ Robot_InitServer, Robot_TidyServer, Robot_Private,
Robot_Testfun,

Robot_0Open, Robot_Create, Robot_Locate,
Robot_0ObjectInfo, Robot_ServerInfo, Robot_Delete,
Robot_Rename, Robot_Link, Robot_Protect,
Robot_SetDate, Robot_Refine, Robot_CloseObj };
tempco = NewCo(General_Server) ;
unless(tempco) return(FALSE);

Device_count += 1;

AddTail (tempco, WaitingCo);

tempco->id = CoCount++;

tempco->timelimit = MAXINT;

strcpy (tempco->name, "robot");
tempco->handlers = Robot_Handlers;
tempco->extra = (ptr) Type_File;

The first part of the file defines the handler routines for a device called
robot, and is similar to much of the code in the header file fundefs.h. The
second part of the code declares the array of handlers, and is similar to the
declaration for Drive_Handlers in the header file server.h. The final part
creates a new server for the robot device just like the rest of the code in
routine Init(), module server.c. The whole file consists of a single block, so
it should be legal to include this in the middle of the Init() routine. In fact
you can have several of these blocks, each adding a new server to the list.

The second file must provide the handler routines. It is necessary to provide
InitServer and Open handlers, the remaining being taken care of by default
handlers built into the Server, including Invalidfn_handler(). Some typical
code would be as follows.

/KK ok sk ke ok sk ok ok sk ok K ok ok sk ok 3 ok ok ok sk 3k ok K ok ok 3 ok 3 3k ok 3 ok sk 3 ok 3 3k ok 3 ok k 3k ok 3 ok ok ok
*kk Handler routines for a robot device * kK
sk ok K ok sk 3 ok sk ok ok 3 ok ok 3 ok K ok ok 3 ok ok 3k ok K ok ok 3 ok sk 3k ok sk ok 3 ok K sk ok s ok ok ok ok sk ok ok ok ok sk k /

#include "helios.h"

PRIVATE int Robot_ready();
PRIVATE void write-to-robot();

void Robot_InitServer (myco)
Conode *myco;
{ /* Make the robot flash its Lights and give a beep */

write_to_robot(1l);

write_to_robot(97);

use (myco)
}
#define RobotInitStream Ignore
#define RobotTidyStream Ignore
#define RobotPrivateStream Invalidfn_handler
#define RobotRead Invalidfn_handler
extern void RobotWrite();
extern void RobotCtose();
#define RobotGetSize Invalidfn_handler
#define RobotSetSize Invalidfn_handler
#define RobotSeek Invalidfn_handler
#define RobotGetAttr Invalidfn_handter
#define RobotSetAttr Invalidfn_handler
#define RobotEnableEvents Invalidfn_handler
#define RobotAcknowledge IgnoreVoid
#define RobotNegAcknowledge IgnoreVoid

PRIVATE VoidFnPtr Robot_Handlers[Stream max] =

{ (VoidFnPtr) Robot_InitStream, (VoidFnPtr) Robot_TidyStream,

Robot_PrivateStream,

Robot_Read, Robot_Write, Robot_GetSize,
Robot_SetSize, Robot_Close, Robot_Seek,
Robot_GetAttr, Robot_SetAttr, Robot_EnableEvents,

Robot_Acknowledge, Robot_NegAcknowledge);

void Robot_Open(myco)
Conode *myco;

{ if (((mcb->Control) (OpenMode_off] & 0xOF) no O_WriteOnly)
{ Request_Return(EC_Error + SS_IOProc + EG_WrongFn +
EO_Server, OL, OL);
return;

}

NewStream(Type_File, Flags_Closable, NULL, Robot_Handlers);
use (myco)

}

void Robot_Close(myco)
Conode *mycco;
{ if (mcb->Msgsdr.RepLy ne OL)
Request_Return(Reply0OK, OL, OL);
Seppuku() ;
use (myco)

3

void Robot_Write(myco)
Conode *mycco;
{ BYTE buffer[16];
int curren_pos;
WORD timeout = mcb->Control (WriteTimeout_off];
WORD timelimit;
Port reply_port = mcb->MsgHdr.Reply;

if (mcb->MsgHdr.DataSize ne 16)
{ Request_Return(EC_Error + SS_IOProc + EG_WrongSize +
EO_Message, OL, OL);
return;

}

if (timeout eq -1L)
timelimit = MAXTIME;
else
timelimit = Now + (timeout / time-unit);

memcpy (buffer, mcb->Data, 16);
AddTail (Remove (myco), PollingCo);
myco->type = CoReady;
myco->timelimit = timetimit;

for (currenpos = 0; current_pos < 16;)
{ if (robot ready())
write_to_robot (buffer[current_pos++]);
else
{ Suspend();
if (myco->type eq CoSuicide)
Seppuku() ;
elif (myco->type eq CoTimeout)
break;

mcb->MsgMdr .Reply = reply_port;

if (current_pos eq 0)
Request_Return(EC_Recover + SS_IOProc + EG Timeout +
EO_Stream, OL, OL);
else
{ mcb->Control[Replyl off] = current_pos;
Request_Return(WriteRc_Done, 1L, OL);
}

PostInsert(Remove(myco), Heliosnode);

PRIVATE int robot_ready()
{ /* Your own routine */

}

PRIVATE void write_to_robot(data)
int data;

{ /* Your own routine */

}

This is all the code needed for a fairly simple server. All you can do with it
is open a stream in write-only mode, close the stream again, or write to the
stream in blocks of 16 bytes. However, it does illustrate the use of polling
inside the Server in relatively little code, including the need for a private
buffer to hold the data and the need to preserve the reply port whilst polling,
because the contents of the message buffer may get zapped during this time.
Obviously your own servers may need to be rather more complicated.

	1 Adding Devices to the Helios I/O Server

