Software Tools Strategy

Tony Debling

February 16, 1988

1 Introduction

This outline document identifies the issues to be considered in producing
the software development plan for the next two years.

1.1 General Strategy

We have almost completed the IBM TDS. This will provide a good quality
interactive development system for a single user or small team of developers
building embedded systems based largely on occam. We must now aim to
support larger scale developments in mixed programming languages.

To support larger scale multi-user development the basic strategy is to build
a more conventional programming toolset, designed so that the components
can be easily integrated into emerging project support environments. The
tools will support modular software development.

We must provide a general framework for access to system services, and
provide the basic services for supported hosts.

We need to continue to improve the basic software development tools and
how they fit together, and to fill in the gaps in these tools. High quality
basic products are essential for our credibility. The quality of the compilers
we produce directly affects the performance achieved using our processors.
More effort will be spent on supporting scientific languages. Most effort
should be spent on supporting C. Support for debugging mixed systems is
required.

We must produce timely support for new variants of the transputer.

A team should evaluate and demonstrate opportunities for advanced devel-
opment environments.

We need to make considerable improvements to our own software develop-
ment environment and engineering practices. The quality of our current soft-
ware in terms of design documentation, version and configuration control,
and engineering standards is poor, even though the quality of algorithms
and programming may be good.



1.2 Very general user requirements

1. Make it easy to develop and debug software for transputers
2. Tools should fit together well as a set

3. Tools should fit into their own environment

4. Tools should support multi-user development

5. Tools should support scientific languages in addition to occam

1.3 Understanding the market
We need more information about our intended markets; retrospective infor-
mation about sales and trends.

How many sales do we expect to make to PC, VAX, SUN3, SUN4 customers
over the next two to three years? What kind of development environments
are they using now, will they be using?

What kind of tools are these customers expecting now, in two years time?

1.4 Hosts to be supported

Now: IBM/NEC PCs, VAX and SUN 3
Later: add SUN 4, SONY Workstation, ATARI, others?

What hardware will we be plugging into these hosts?

1.5 Portability

For the core development tools (compilers, configurers etc) portability should
be easily achieved through careful use of C and restricted use of host ser-
vices. The use of C however can be very ill-disciplined and error prone, I
would favour choosing C++ as an alternative (it can be pre-processed into
C retaining the portability). C++ is more secure and better supports larger
scale software development. Objective C is another candidate.



2 Influencing factors

2.1 Toolset environment

The current toolset products have been extracted from the TDS (initially to
provide a cheap compiler for Microway). There are a number of shortcomings
with the existing product. The compiler will only detect a single error. Order
of compilation of source becomes an apparent problem as it is no longer
done for free by the TDS. The library mechanism is poor. It is basically an
evolution of a short term solution.

The sources for each target machine are in variants of Bl-occam as these are
the only compilers we have which target to the VAX and SUN machines.

The toolset products are not compatible with the TDS; file formats, notion
of what a library is etc.

2.2 Gaps in existing tools

1. Debugging for scientific languages.

2. Profiling.

3. Monitoring of program execution.

4. Message routing across transputer networks.

5. Software design tools.

2.3 Transputer evolution

The evolutionary transputers are likely to provide some additional instruc-
tions and hardware message routing.

The instruction extensions are likely to cause some small changes to the
compiler and configurer. It will be important to have a redesigned library
scheme which addresses the transputer type X error mode problem.

The virtual link support will require:

1. Software simulation of the virtual links. Message routing processes are
added to the network of application processes to simulate the virtual
links. This scheme can be supported with the existing compiler and
configurer.



2. New definition for configuration language; including a hardware de-
scription language. A configurer which automatically inserts message
routing processes for existing generation transputers and invokes hard-
ware message routing for new transputers.

3 In-house development environment

We take too long to develop software.

3.1 Hardware requirements and Software tools

Significant time has been wasted by not having appropriate tools for the
job (VAX and SUN toolset developments) and inadequate version control
(libraries, servers, linker formats). Rebuilding a product can be a long,
tedious and error prone task; in terms of collecting the components required
build the product, finding a large enough home for the components, and
processing them into the end result.

We have clear need for...

Ethernet connections between our PCs

VT220 emulation for PC

Shared Software and Documentation Database

Version control and configuration control system

Bug reporting and change control systems

Electronic mail

Diagram drawing tools

C programming and debugging tools on the PC

Easy access to printers (a laser printer and line printer in wing)

We should set up a project to work out how to best meet these requirements.

3.2 Education and training

New methods of working, hew languages and environments will require train-
ing.

3.3 Organisation and standards

We require a framework for projects. What kind of documentation should
be produced by who and when? How should software designs be expressed?



What should be delivered at each stage of the development process? How
is development work reviewed?

3.4 Software support

We will be very much under resourced to support the emerging toolset prod-
ucts.

4 Development areas and issues

4.1 TDS development

We should freeze the TDS development after the product release. We must
expect to provide a maintenance update in about one year. The upgrade
should fix reported bugs and provide minor enhancements. We will also
need to give consideration to compatibility with toolset products.

4.2 Toolset environment
Short term adjustments

The syntax checker (front end of the occam compiler in C) should be supplied
as part of the occam 2 toolset. Without this facility for quickly checking
the syntax (with multiple errors reported) I fear that the toolset will be
unusable for software development: but ok for re-building systems.

The public domain make utility should be made available as a giveaway for
VAX and PC customers.

Interfaces between tools

In order to support multi-user development we need to rethink how the
components of the toolset fit together. Firstly we need to review and define
standard file formats for linkage and debug information, secondly we need
to reimplement the linker/librarian in C.

The key objectives of this development work are to

1. Provide file level interfaces between toolset components, and define
how the tools should work with one another.



2. Provide a module structure for occam which separates interface syn-
tax specification and the module implementation, and which provides
a basis for separate compilation. References between separately com-
piled components and libraries should be machine independent in as
far as is practically possible.

3. Support larger scale development. Modular system supporting infor-
mation hiding: particularly restricting the scope of names within a
large system.

4. Support mixed language systems. Review of calling conventions be-
tween different languages. We should aim to avoid wheeling in separate
copies of the run time libraries for each scientific language process.

5. Relax the constraints on order of compilation. It is impractical to
re-compile the whole system if a low level interface routine changes.

6. A library system which supports transputer variants and error modes
in an efficient manner. Which provides proper scoping for names, and
which provides an appropriate mechanism for code sharing

7. Improved interfaces and definitions for third party developers and the
CAD system support.

System services

Host filing and terminal services are required both by our tools and by the
programs developed by our tools.

We need to review the method by which host services are accessed by pro-
grams running, on transputers. The existing file and terminal servers should
be based on a two layer protocol, the lower level routing packets across the
transputer network and the upper level supporting requests to and responses
from particular services.

We should provide improved versions of servers at the basic level we provide
currently, and more explicit instruction on how developers can make their
own services available across the network by adding to the upper level pro-
tocol. SUN developers for example are bound to want to windowing services
for their application programs.

Access to these services currently makes programming networks of trans-
puters much harder than necessary; it is awkward to embed terminal write
statements in processes for debugging, tricky multiplexing is required to
when running scientific language components over a network. Improvements
in this area would make programming easier.



It would be appropriate to base the lower level protocol on the simulation
work required for the virtual link development.

We require more flexible schemes for loading software to networks of trans-
puters and running programs on networks of transputers.

This work should be done collaboratively with the CAD system developers
where there is already some significant experience.

4.3 Integrated toolsets
Folding editor

We currently have no folding editor to support the toolset. We could write
a new one in C. adapt the public domain EMACS editor, supply macros
for the EMACS editor, adapt the TDS editor, leave users to use their own
editor. We need a folding editor which uses text files and which runs on PC,
VAX and SUN for our in-house development.

We should define a standard text file format for folded files.

Simple integration of tools on host

We need to ensure that our tools fit into the individual host systems and
write command files and small programs to support this requirement. For
example on the SUN we should be able to generate make files.

IPSES

Emphasis should be placed on fitting into other vendors support environ-
ments rather than building one from scratch ourselves. We need more details
of the interfaces which would have to be satisfied; for PCTE or to fit within
ISTAR for example. We need to go out into the world and see what is being
used. There is scope for collaboration here.

Advanced Development Tools

User Interface Development (especially for debug, profiling and monitor-
ing tools). We should look at object oriented languages for building these
interfaces.

Network Monitoring Tools. What do Parsytec have at present? We should
develop these ourselves on top of the message routing services.



Graphical design tools; animation of designs. There should be opportunities
to develop such tools as part of collaboration.

Steps towards program proving.

We should pick up GRAIL, make it work with the SUN toolset, see what
SUN developers think of it. This would be the fastest way to provide a
profiling tool for occam.

4.4 OCCAM support

OCCAM is a unique INMOS offering, we must continue to develop it. We
should look towards exploiting the OCCAM formalisms. We should spend
effort optimising the OCCAM compiler code generation.

OCCAM compiler in C

Considerable effort has been made on this compiler already. It offers a
number of advantages over the existing occam compiler; more portable,
executes faster, provides multiple error detection in occam source, provides
slightly improved code efficiency, provides a better basis for further code
optimisations and support of new transputer variants. The first phase of this
development should produce a replacement for the current toolset compiler.

OCCAM compiler/configurer in C

The second phase of the compiler development will be to extend the compiler
to perform the configuration functions. The current configuration language
restrictions will be removed; in particular all code for a given processor will
not need to be within a single SC, scientific language components can be
directly imported.

OCCAM profiler

A profiler is an obvious omission from our current toolset. It is a useful tool
for developers wishing to tune transputer performance. We should build a
portable OCCAM profiler with a view to extending the profiler to mixed
language programs. It would be best to start with the GRAIL work before
designing the profiler from scratch.



OCCAM for non-transputer targets

1. Helps development on hosts like diskless SUN nodes. Perhaps running
occam using the simulator will be sufficient if not much better.

2. Helps spread occam. No need to invest in special hardware to write
and run occam programs. Give it away to universities.

3. Improves the portability of occam. Gives us an option to use occam
rather than C for hosted software.

On balance here it seems to be a good thing to do if someone else will do it
for us. We could provide sources for occam compiler in C and kernel for SUN
or VAX under some agreement. Meiko expressed an interest in producing a
68000 (and SPARC?) version of the new occam compiler.

OCCAM language development

OCCAM 3?7 Records, Recursion, Modules, ...7

4.5 Scientific Languages

We should have full source control of the key scientific language compilers
so that we are able to improve the code generated, to support new silicon
directly and quickly, and to exploit our position as silicon manufacturer.

Much compiler development must happen outside of INMOS. We should
actively promote this development work. Do we have worldwide white pages,
how up to date is it?

Currently we spend little development resource in this area; Anthony has
spent significant amounts of time negotiating with suppliers or fending off
customers in this camp. We very much need to build on and extend our
compiler expertise.

We should buy copies of other people’s compilers and evaluate them both
for performance and as products.

C

Assuming appropriate business terms can be agreed we should produce a C
compiler and debugger based on the Perihelion C compiler. The compiler
will provide a direct replacement for the Lattice C compiler; the debugger



should integrate in a seamless manner with the occam debugger. Perihelion
only has a very crude debugger at present. If the Perihelion deal falls through
we should find another source supplier as soon as possible.

We should continue to optimise the code generation of the C compiler.

A parallel C compiler?

FORTRAN

We currently have no alternative for the Lattice FORTRAN. The only other
contender here is Meiko? Ideally we would have C sources for the compiler!

The FORTRAN compiler needs to be considered more in the context of the
accelerator market than the development market. I have recently had a
request for a VAX FORTRAN compiler for transputer.

Parallelising FORTRAN compilers are emerging in the US.
PASCAL
ADA

Other Languages

LISP? Modula-2, Prolog, C++.
There are a lot of COBOL programs.

4.6 Board and Hardware Support

The software group should be responsible for the board support software.
The software will be developed jointly by board and software engineers, the
software group will be responsible for masters, archiving and delivery to
manufacturing.

Module Motherboard System

The motherboard configuration software should be distributed as a stan-
dalone product with the motherboards. There are extensions required to
this software to support connections across boards. This software should be
supplied as a standalone product with the motherboard.

10



Memory Interface and EPROM support

Only support for these is through the TDS. We must make some provision
for these facilities for VAX and SUN developers using the toolset.

Ethernet support

We are currently planning to provide low level packet passing procedures
which allow packets to be passed between Ethernet boards.

We need to support standard communications protocols over Ethernet. In-
vestment in obtaining and building on expertise in this area is very impor-
tant.

Board interface drivers
4.7 External developers

We should create explicit products available to, external developers.

New hosts

We should provide explicit support and documentation for developers wish-
ing to port our software to their hosts. We currently provide source releases
of our software. We should improve the technical documentation of what
needs to be done.

External compiler writers

The compiler writer’s guide, standalone compiler implementor’s guide, and
T414 simulator should be packaged as an identifiable product to support
external compiler writers.

Simulators for other transputers: T8? This is required both for in-house
and external compiler writers.

4.8 Source Releases

In general our software sources should be made available under licence. This
should be produced to meet internal requirements as a matter of course. We

11



currently have some difficulty with our VAX and SUN hosted products; in
these cases we have to supply the host compilers in an unsupported form.

12



	1 Introduction
	1.1 General Strategy
	1.2 Very general user requirements
	1.3 Understanding the market
	1.4 Hosts to be supported
	1.5 Portability

	2 Influencing factors
	2.1 Toolset environment
	2.2 Gaps in existing tools
	2.3 Transputer evolution

	3 In-house development environment
	3.1 Hardware requirements and Software tools
	3.2 Education and training
	3.3 Organisation and standards
	3.4 Software support

	4 Development areas and issues
	4.1 TDS development
	4.2 Toolset environment
	 Short term adjustments
	 Interfaces between tools
	 System services

	4.3 Integrated toolsets
	 Folding editor
	 Simple integration of tools on host
	 IPSES
	 Advanced Development Tools

	4.4 OCCAM support
	 OCCAM compiler in C
	 OCCAM compiler/configurer in C
	 OCCAM profiler
	 OCCAM for non-transputer targets
	 OCCAM language development

	4.5 Scientific Languages
	 C
	 FORTRAN
	 PASCAL
	 ADA
	 Other Languages

	4.6 Board and Hardware Support
	 Module Motherboard System
	 Memory Interface and EPROM support
	 Ethernet support
	 Board interface drivers

	4.7 External developers
	 New hosts
	 External compiler writers

	4.8 Source Releases


