Transputer versions

MIKE's Technical Note 2

\section*{$\mathbf{t} \mathbf{r} \mathbf{a} \mathbf{n} \mathbf{s}$ | \mathbf{p} | \mathbf{u} | \mathbf{t} | \mathbf{e} | \mathbf{r} | . | \mathbf{n} | \mathbf{e} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{t} | | | | | | | |}

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public display, performance, sale or rental;
2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

Contents

Introduction 4
References 5
Transputer major differences 6
Transputer pin differences 7
Transputer instruction set differences 8
Transputer package options 9

Introduction

This technical note lists the differences of the various transputer versions. It covers only the first-generation transputers known collectively as the Txxx series.

There are three main types of first generation transputers; the 32 bit transputers with a floating point unit (known as the T 8 or T 8 xx), the 32 bit transputers without a floating point unit (known as the T 4 or T 4 xx) and the 16 bit transputers (known as the T 2 or T 2 xx).

The T212 is a 16 -bit processor with 2 K of on-chip RAM and a 64 K address range (using separate address and data buses).

The M212 is a T212 with a ST506/ST412, SA400/450 compatible interface and 4 K of on-chip ROM.

The T222 is an updated T212 with 4 K of on-chip RAM and links with overlapped acknowledge.

The T225 is an updated T222 with additional instructions for program debugging and double buffered links. The T225 also has some additional instructions found on T800 series transputers.

The $\mathbf{T 4 1 4}$ is a 32 -bit processor with 2 K of on-chip RAM and a 4 G address range (using multiplexed address and data lines).

The T425 is an updated version of the T414 with additional instructions for program debugging. The T425 also has the (two-dimensional) block move instructions and some other instructions found on T800 series transputers.

The T426 is a T425 with a new external memory interface which has built in support for parity checking of memory.

The T400 is a cut-down, low-cost version of the T425 with only 2 links and only 2 K of on-chip RAM.

The T800 is a superset of the T414 in that it is a 32-bit processor with a floating point coprocessor on-chip, additional instructions, and 4K of on-chip RAM.

The T801 is an updated T800 with separate address and data buses, thus speeding up memory accesses and additional instructions for program debugging.

The T805 is an updated T800 with additional instructions for program debugging.

There are several variations of each of these but all first-generation trans-
puters have the same architecture, essential similar instruction sets and fully compatible communication links.

References

[1] Transputer Hardware and System Design Jeremy Hinton \& Alan Pinder (1993)
ISBN-10 0-13-953001-0
[2] Transputer Assembler Language Programming John Roberts (1992)
ISBN-10 0-442-00872-4
[3] Transputer Databook - Third Edition INMOS Limited (1992) 72-TRN-203-02
[4] Transputer Databook - Second Edition INMOS Limited (1989)
72-TRN-203-01
[5] Transputer Databook - First Edition INMOS Limited (1989)
72-TRN-203-00
[6] The Transputer Handbook
Ian Graham \& Tim King (1990)
ISBN-10 0-13-929134-2

	T212	M212	T222	T225	T414	T400	T425	T426	T800	T801	T805
Word length (bits)	16	16	16	16	32	32	32	32	32	32	32
Floating point hardware	-	-	-	-	-	-	-	-	\checkmark	\checkmark	\checkmark
On-chip memory (bytes)	2 k	2 k	4 k	4 k	2 k	2 k	4 k	4 k	4 k	4 k	4 k
Number of links	4	2	4	4	4	2	4	4	4	4	4
Overlapped acknowledge	-	-	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Double-buffered link output	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Programmable DRAM controller	-	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
Memory Parity	-	-	-	-	-	-	-	\checkmark	-	-	-
External data bus width	16	8	16	16	32	32	32	32	32	32	32
Minimum external cycles	2	2	2	2	3	3	3	3	3	2	3
Disk interface	-	\checkmark	-	-	-	-	-	-	-	-	-
In production 1992	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark

Table 1: Transputer major differences

	T212	M212	T222	T225	T414	T400	T425	T426	T800	T801	T805
Number of pins (PGA)	68	68	68	68	84	84	84	100	84	100	84
Separate address and data	\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-
Multiplexed address and data	-	-/ \checkmark	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
Parity pins	-	-	-	-	-	-	-	\checkmark	-	-	-
Disk interface	-	\checkmark	-	-	-	-	-	-	-	-	-
ErrorIn	-	-	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
RefreshPending	-	-	-	-	-	\checkmark	\checkmark	\checkmark	-	-	\checkmark
EventWaiting	-	-	-	-	-	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
ProcSpeedSelect	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
DisableIntRam	-	-	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
MemBAcc	\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	-	-

Table 2: Transputer pin differences

	T212	M212	T222	T225	T414	T400	T425	T426	T800	T801	T805
Floating point unit (52)	-	-	-	-	-	-	-	-	\checkmark	\checkmark	\checkmark
fptesterror (1)	-	-	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Floating point support (5)	-	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-
fmul (1)	-	-	-	-	\checkmark						
2 D block moves (4)	-	-	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CRC operations (2)	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Bit operations (3)	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Break-point debugging (8)	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
Fast negative prod	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
dup (1)	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
pop (1)	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
wsubdb (1)	-	-	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
lddevid (1)	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
Device identity numbers	-	-	-	40-49	-	50-59	00-09	30-39	-	20-29	10-19
ldmemstartval (1)	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
Memstart (byteoffset)	24	24	24	24	48	70	70	70	70	70	70

Table 3: Transputer instruction set differences

	T212	M212	T222	T225	T414	T400	T425	T426	T800	T801	T805
PGA - 15MHz (G17)	68	68	-	-	84	-	-	-	-	-	-
PGA - 17MHz (G17)	68	-	68	-	-	-	84	-	84	-	-
PGA - 20MHz (G20)	68	68	68	68	84	84	84	-	84	100	84
PGA - 25MHz (G25)	-	-	-	68	-	84	84	-	84	100	84
PGA - 30MHz (G30)	-	-	-	-	-	-	84	-	-	-	84
PLCC - 15MHz (J15)	-	68	68	-	84	-	-	-	-	-	-
PLCC - 17MHz (J17)	-	-	68	-	-	-	84	-	-	-	-
PLCC - 20MHz (J20)	-	68	68	68	-	84	84	-	-	-	84
PLCC - 25MHz (J25)	-	-	-	68	-	84	84	-	-	-	84
PLCC - 30MHz (J30)	-	-	-	-	-	-	-	-	-	-	84
CQFP - 20MHz (F20)	-	-	-	100	-	100	100	100	-	-	100
CQFP - 25MHz (F25)	-	-	-	100	-	-	100	100	-	-	100
CQFP - 30MHz (F30)	-	-	-	-	-	-	-	-	-	-	100
PQFP - 20MHz (X20)	-	-	-	-	-	100	-	-	-	-	-
PQFP - 25MHz (X25)	-	-	-	-	-	-	100	-	-	-	-

Table 4: Transputer package options

