
An introduction to using the
IMS B419 graphics TRAM

INMOS Technical Note 66

Ian Bennett
Graphics Department Bristol

February 1990
72-TCH-066-00

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 5

2 The IMS B419 graphics TRAM 5

3 Use as host or target 6

4 IMS B419 jumper options 7
4.1 Jumper 1 . 7
4.2 Jumpers 2 and 3 . 7
4.3 Jumpers 4 and 5 . 8

5 Address map of the IMS B419 8

6 Placing registers 9

7 A simple program example 9
7.1 Initialising the G300 . 11
7.2 Programming the palette . 11
7.3 Comments on the simple program example 12

8 A high performance line drawing algorithm 13

9 3-D modelling and rendering 13

10 Screen flipping 16

11 Animation with the IMS B419 18
11.1 Using an external multiprocessor system 18
11.2 Animation using multiple frame flipping 18
11.3 Demonstration of simple animation 20
11.4 Extending the simple animation 20
11.5 Number of displayable colours 21

12 Scrolling and panning 21
12.1 Scrolling . 21
12.2 Panning . 22
12.3 Summary of actions . 22
12.4 The wobbler routine . 22
12.5 N-dimensional event handler without lockout 23

13 Movement by palette cycling 24
13.1 Demonstration program . 26
13.2 Use of the N-dimensional event handler 26
13.3 Extension to mode 2 . 26

3

14 Using the IMS B419 in mode 2 26

15 The IMS G300B 28
15.1 Different number of bits per pixel 28
15.2 Use of the palette In mode 2 30
15.3 Address step control . 30
15.4 Blank I/O . 31

16 Demonstration programs 31

17 Common graphics operations performance on the IMS B419 32

18 Conclusion 32

19 Example programs in occam 33
19.1 Programming the colour palette to a colour spectrum 33
19.2 Full colour parameters . 35
19.3 A high performance line drawing algorithm 35
19.4 The wobbler routine . 40
19.5 An N-dimensional event handler without lockout 42

20 Functionally equivalent example programs in Parallel C 43
20.1 The simple example . 43
20.2 The event handler . 46

References 50

4

1 Introduction

This text is intended to help the first time user of the IMS B419 understand
how to write a graphics program to execute on the graphics TRAM. It
will also be useful to users of the IMS G300 in general, as many routines
will be similar, if not identical, to those included here, on other IMS G300
based video display systems. There are several initialisation tasks that a
program must achieve, using memory mapped variables, before the screen
memory contents will be displayed on the output display device. The jumper
settings on the TRAM are explained for different operating modes. Several
more advanced topics are also discussed, with extensive examples given in
the text. These examples and other useful demonstration programs are
available from your local INMOS sales outlet.

Programming examples are given in occam [1], with some INMOS Parallel C
equivalents given in section 20. Clearly the language used could be occam,
C, FORTRAN, PASCAL, or ADA or some other language supported by a
transputer compiler (perhaps FORTH, BASIC, LISP, or PROLOG). The
principles of operation remain the same, however, whatever programming
language is used. The example occam programs have been written using
release 2 of the INMOS Transputer Development System (TDS) [2], the
example parallel C programs [3] were written using the INMOS C Compiler
(ICC) [4], run in conjunction with the INMOS Toolset [5], and the author
assumes some familiarity with these.

2 The IMS B419 graphics TRAM

A recent addition to the INMOS range of TRAnsputer Modules (TRAMs)
is the IMS B419 graphics TRAM, providing a complete high performance
graphics subsystem on a single 6.5” by 3.5” (size 6) printed circuit board.

Incorporated on the IMS B419 is an IMS T800 floating point transputer
running at 20 MHz, an IMS G300 Colour Video Controller, 2 Mbyte 200
ns cycle DRAM, and 2 Mbyte 200 ns cycle dual port VRAM. A jumper
option on the IMS B419 allows the VRAM to be used as contiguous program
memory, if required.

The IMS B419 enables a wide range of arbitrary display resolutions to be
supported, from VGA, 640 by 480 (30 MHz)1 to 1280 by 1024 (110 MHz),
using 8 bits per pixel (or with the latest version, the IMS G300B, 1, 2, 4,

1The IMS B419 was designed to operate at video frequencies of 75 to 110 MHz, but by
changing the configuration PAL on the board, the microport can be slowed down to allow
operation down to 30 MHz, (512 by 512).

5

or 8 bpp). With resolutions of up to 1024 by 1024, multiple bitmaps can be
supported. This enables frame flipping during frame flyback for animation
purposes and elimination of disturbing visual effects during image updates.

The 20 MHz IMS T800 processor provides 10 MIPS, and 1.5 MFLOPS
sustained performance, and has 4 Kbytes of fast internal SRAM for criti-
cal sections of code and frequently accessed variables. The IMS T800 can
perform two dimensional block moves, in one of three modes, move, draw
and clip [6], allowing windowing, panning, scrolling, character drawing, and
screen block updating. Panning and scrolling can be performed more ef-
ficiently by the IMS G300 CVC, by modifying the Top of Screen register,
depending upon the memory and screen dimensions.

The IMS T800 controls the IMS G300 CVC, programming the registers and
colour palette, and enabling the video timing generator, and has full access
to the bitmap. The phase-locked loop oscillator of the IMS G300 CVC can
be programmed to integer multiples of either the processor input clock or a
clock module plugged onto the board. This allows multiples of frequencies
other than the 5 MHz processor clock to be obtained. The IMS T800 can
also control a subsystem of transputer boards, using the hierarchical reset,
analyse and error control signals.

3 Use as host or target

The IMS B419 may be used as the host transputer board, running the TDS
or some other programming environment, or as a target board, communi-
cating with the host transputer board via a high speed communication link.

If the IMS B419 is being used as the host board, then programs can be
compiled and executed as EXEs under TDS, or as PROGRAMS, extracted
and written in host format using the TDS filer utilities, then executed from
DOS using the normal INMOS Toolset Utilities.

Alternatively, if the graphics TRAM is being used as a target board, then
programs are compiled as PROGRAMS under TDS, and loaded onto the
target board using the TDS utilities, or using ISKIP in the Toolset Utilities.

The appropriate programming environment documentation should be con-
sulted if the reader has any doubt about executing programs on a transputer
board.

6

4 IMS B419 jumper options

The IMS B419 has five jumper positions, JP1-JP5. Their functions are listed
below [7].

Jumper Function When Connected
JP1 PLL disabled
JP2* Oscillator Module to IMS G300 Pixel Clock In
JP3* External Pixel Clock In to IMS G300 Pixel Clock In
JP4+ Select VRAM start address as #80200000 (Contiguous)
JP5+ Select VRAM start address as #C0000000 (Non-contiguous)
Key: * and + Mutually exclusive connections

4.1 Jumper 1

To enable the IMS G300 phase locked loop, jumper 1 is not installed. It may
be noted here that if an IMS G300B is being used, the phase locked loop
can be enabled and disabled by writing bit 5 high or low respectively in the
Boot Location (Adding 3210 to the PLL multiplier factor). This cannot be
performed with the IMS G300A, so the jumper must be installed if required.

4.2 Jumpers 2 and 3

Jumpers 2 and 3 are mutually exclusive, in that either one should be in-
stalled, or the other, but not both. With the IMS G300A, jumper 2 selects
the on-board oscillator module and jumper 3 selects an off-board frequency
source. The phase locked loop must be disabled in order to use either of
these frequency sources.

If an IMS G300B is being used, the function of the SMB connector 6 will
change from External Pixel Clock In to CBlank Input/Output. An off board
frequency source can no longer be used. Selection can be made between the
system clock and the oscillator module clock using the Oscillator Select
Register (and no jumper changes). Neither JP2 or JP3 are required for this.
Setting the Oscillator Select Register bit 0 low causes the IMS T800 system
clock (5 MHz) to be used as the IMS G300 pixel clock in. If bit 0 is set high,
the IMS G300B pixel clock input is from the on-board oscillator module.
The phase locked loop must be disabled when using the oscillator module.
jumper 3 should be installed in order to use CBlank input/output.

7

4.3 Jumpers 4 and 5

The VRAM memory can be selected to start at the end of the DRAM
(contiguous) (#80200000) by installing Jumper 4 or at a different address
(non-contiguous) (#C0000000) by installing jumper 5. These two jumpers
are mutually exclusive, and exactly one of them should be connected. This
allows applications to expand, utilising VRAM as program and data area in
addition to DRAM.

5 Address map of the IMS B419

The addresses of the relevant IMS B419 components is shown below [7, 8].

Description Hardware occam
address address

IMS G300 Base #40000000 #30000000
IMS G300 Reset #000000F0 #2000003C
IMS B419 Oscillator Select Register #000000F4 #2000003D
Subsystem Reset (write only) #00000000 #20000000
Subsystem Analyse (write only) #00000004 #20000001
Subsystem Error (read only) #00000000 #20000000
VRAM base address
Non-contiguous #C0000000 #10000000
Contiguous #80200000 #00080000
Event Input address #80000020 #00000008

The VRAM always appears to start at #00000000 to the IMS G300, whether
it appears contiguous or noncontiguous (with the DRAM) to the IMS T800.
The IMS G300 registers and palette are indexed on word address boundaries
from the G300 register base as below:

Register Offset Register Offset
from base from base

Boot Location #1A0 VSync #126
Top of Screen #180 VBlank #127
Control Register #160 VDisplay #128
Mask Register #140 LineTime #129
HalfSync #121 LineStart #12A
BackPorch #122 Memlnit #12B
Display #123 TransferDelay #12C
ShortDisplay #124 ColourPalette start #000
BroadPulse #125 ColourPalette end #0FF

8

6 Placing registers

In order to program the IMS G300, an INT array of size #1BF can be
placed at the IMS G300 register base, and the individual registers accessed
from within this. Note that in occam, the occam address must be used
for the placement, this being word addressed from 0, as compared with the
hardware byte address being addressed from #80000000. To calculate an
occam address from a hardware address on an IMS T800 [9]:

occam.address := ((hardware.address >> 2) -
(MOSTNEG INT >> 2)) /\ #3FFFFFFF

Individual INT variables and channels can be declared and placed at the
appropriate addresses, in order to control subsystems, reset and control the
G300, and access the Event input signal (Frame Flyback).

7 A simple program example

A complete example program to draw a box on the screen is shown below.
This demonstrates many of the requirements of a program executing on the
IMS 8419.

VAL g300.register.base IS #30000000:
VAL vram.base IS #10000000:
VAL INT boot.location IS #1A0:
VAL INT top.of.screen IS #180:
VAL INT control.register IS #160:
VAL INT mask.register IS #140:
VAL INT half.sync IS #121:
VAL INT back.porch IS #122:
VAL INT display IS #123:
VAL INT short.display IS #124:
VAL INT broad.pulse IS #125:
VAL INT v.sync IS #126:
VAL INT v.blank IS #127:
VAL INT v.display IS #128:
VAL INT line.time IS #129:
VAL INT line.start IS #12A:
VAL INT mem.init IS #12B:
VAL INT transfer.delay IS #12C:
VAL INT colour.palette IS #000:

VAL width IS 1024 :
VAL height IS 1024 :

9

[#1BF] INT registers:
PLACE registers AT g300.register.base:
[height * width] BYTE screen :
PLACE screen AT vram.base:
BYTE g300.reset.reg :
PLACE g300.reset.reg AT #2000003C :
BYTE g300.clock.sel.reg :
PLACE g300.clock.sel.reg AT #2000003D :

PROC setColour (VAL INT colour, r, g, b)
SEQ
registers [colour] := (r \/ (g << 8)) \/ (b << 16)

:
... PROC set. colour.spectrum.palette ()
PROC init.display()
VAL prog.regs IS [half.sync,

back.porch,
display,
short.display,
broad.pulse,
v.sync,
v.blank,
v.display,
line.time,
line.start,
mem.init,
transfer.delay,
mask.register]:

VAL prog.vals IS [11, --half sync
60, --back porch
256, --display
82, --short display
164, --broad pulse
8, --v sync
70, --v blank
2048, --v display
348, --line time
0, --line start
494, --mem init
18, --transfer delay
255]: --mask register

SEQ
g300.reset.reg := 1 (BYTE) -- reset IMS G300
g300.reset.reg := 0 (BYTE)
registers[boot.location] := 17
registers[control.register] := 0
SEQ i = 0 FOR SIZE prog.regs
registers[prog.regs[i]] := prog.vals[i]

10

registers[control.register] := 1 -- start VTG, mode 1
:
PROC cls ([] BYTE screen, VAL INT colour)
VAL screen.size.m.4 IS (SIZE screen) - 4
SEQ
screen[0] := BYTE colour
screen[1] := BYTE colour
screen[2] := BYTE colour
screen[3] := BYTE colour
[screen FROM 4 FOR screen.size.m.4] :=
[screen FROM 0 FOR screen.size.m.4]

:
-- main program starts here
INT offset :
VAL start.x IS 100 :
VAL start.y IS 200 :
VAL length.x IS 200 :
VAL length.y IS 100 :
VAL colour IS 255 :
SEQ
cls(screen, 0)
init.display()
set.colour.spectrum.palette ()
offset := (start.y TIMES width) + start.x
SEQ col = 0 FOR length.x
screen [offset + col] := BYTE colour

SEQ row = 0 FOR length.y - 1
SEQ
[screen FROM offset + width FOR length.x] :=
[screen FROM offset FOR length.x]
offset := offset + width

7.1 Initialising the G300

The IMS G300 is first reset, although this may not be required if the trans-
puter has been reset prior to booting, as the IMS G300 will also have been
reset. The Control Register is initialised, then the phase locked loop clock
multiplier value is written, and the remaining registers written with their
respective values.

7.2 Programming the palette

The 256 locations of the colour palette are programmed using the procedure
setColour. The setColour procedure makes a 24 bit colour value by shifting
the red, green, and blue 8 bit components to the correct places within the
32 bit word. This is then written at the address specified by colour in the

11

colour palette.

In the example program a colour spectrum palette is programmed, but the
procedure for this has been omitted for clarity; it can be found in section
19.1.

7.3 Comments on the simple program example

The program above has executed on an IMS B419 as shown, and draws
a white box 100 by 200 on the screen. It may be interesting to note a
couple of techniques used in the coding. The screen is cleared before the
VTG is enabled, to avoid the random power up state of the VRAMs being
instantaneously displayed. The cls procedure clears the screen using the
most efficient method possible, but does require that alias, usage and range
checking are disabled to compile and run. Other techniques that are almost
as fast, but allow these checks to be performed can be found in [9]. Note
that these techniques may also be performed with two dimensional screens,
using a single dimensional retyped screen within the procedure.

Other efficient techniques shown include the use of the fast unchecked multi-
plier TIMES for multiplying by the screen width. This takes 15 cycles using
a screen width of 1024 or 210, and is faster than using the multiplication
operator , which takes 39 cycles [10]. Use could have been made of the left
shift operation << 10 to multiply by 1024, but as this takes 13 cycles, little
is lost to keep the multiplication general, for any screen width.

Use is made of a variable, offset pointing to the start position on the last
screen line. This offset is incremented by the screen width after each line
write to the screen. This is more efficient than computing the screen offset
each time.

A single dimensional screen is used, instead of a two dimensional screen, for
reasons of efficiency. Using an incrementing offset, as discussed above, is
faster than using X,Y addressing with a two dimensional screen. Referring
to the two techniques shown in (a) and (b) below, the X,Y addressing per-
formance of (a) is equivalent to the alternative technique (b), but both are
slower than the technique implemented using an offset in (c):

(a) screen [y][x] := BYTE colour

(b) screen [(y TIMES width) + x] := BYTE colour

(c) screen [offset] := BYTE colour

A functionally equivalent Parallel C version of this simple example is shown
in section 20.1.

12

8 A high performance line drawing algorithm

The theory of line drawing is extensively discussed elsewhere [11, 12]. The
most efficient of the algorithms published is that of Bresenham [13]. This
uses incremental techniques and an error term, adding 1 to the driving
axis, and conditionally adding +/- 1 to the other axis. The use of a fixed
point slope value is discussed in [12], and the author has found that the
performance is approximately the same as using a floating point value on
the IMS T800.

The author has developed a significantly faster routine, however, based on
Bresenhams, but over 50% faster (when implemented on a transputer). This
takes advantage of several performance enhancement techniques, and imple-
mentational specifics on transputers. No floating point is used, so the exe-
cution speed should be comparable on IMS T2XX and IMS T4XX devices
to that on IMS T8XX devices (disregarding different memory cycle times).

The complete procedure is listed in section 19.3, for both driving axes. Fold
creases have been left in, to allow the code to be refolded if desired. Some
inner loop unrolling has been implemented, which would make the listing
unwieldy, so the latter three steps of the unrolled inner loops have been left
folded up. They are each identical to the first step of the loop. This routine
has been measured on the IMS B419 to plot a line from (0,0) to (1279,1023)
in 2473µs. This equals 1280 pixels in 2473µs, or 518K pixels per second, or
1.93µs per pixel.

9 3-D modelling and rendering

The IMS B419 is well suited for 3-D modelling and manipulation, using
realistic shading techniques. The IMS T800 can perform 55,000 3-D floating
point matrix transforms per second (1 by 4 multiplied by 4 by 4), allowing
models to be translated, rotated, and scaled at high speed. Clearly the
complexity of the model and the transformations and manipulations that
are performed on it will affect the speed of response. Simple 3-D models can
be rotated (x, y, z) and displayed using flat or Gouraud shading (with hidden
surface removal) in real time. Rendering techniques including Wireframe,
and Flat, Gouraud and Phong shading have all been implemented on the
IMS B419, using various models including the standard Utah Teapot (using
a polygonal mesh surface approximation derived from the original Bezier
Patch representation) (see figures 1a-d).

The IMS B419 can also be used to perform more realistic rendering, such
as Ray Tracing [14, 15]. Ray tracing is one of the most realistic techniques

13

(a) Wireframe (b) Flat shading

(c) Gouraud shading (d) Phong shading

Figure 1: Different display representations for 3-D models

available today (as well as radiosity), but is an extremely computationally
intensive task. Extra transputer modules can be connected to the IMS B419
links, to provide more processing power.

An example ray traced image is shown in figure 2a. This image, titled
’Chaos’ has approximately 150 assorted objects of random proportions and
colours, mostly spheres, but also includes cones, cylinders, and disks. There
is also a mirror on the ’floor’. This image took approximately one hour to
compute (with anti aliasing) on a pipeline of nine IMS T800 based IMS B404
transputer modules. A more computationally intensive image is shown in
figure 2b. This is a ray traced image of three ’dancing’ teapots. Solving the
intersection of a ray with the curved 3-D surfaces (Bezier Patches) is complex
and non-trivial, and involves recursion. It took ten hours to compute ’Waltz’
on the pipeline of nine IMS T800 transputers (again with anti aliasing), or
approximately 5 ∗ 1011 floating point operations.

14

(a) ’Chaos’- 150 random objects

(b) ’Waltz’ - dancing teapots

Figure 2: Ray traced images with anti-aliasing

15

10 Screen flipping

When writing to the screen in the simple example above, the screen update is
very fast. Other screen writing tasks may not be so fast, however, especially
when performing polygon shading incorporating hidden surface removal. In
order to present a fast and smooth screen update to the user, and hide the
screen updating process, screen flipping is often used. The screen that is
being updated is not visible to the user until it is complete, whereupon the
screens are flipped, and the display is instantaneously updated with the new
image. The previously displayed screen can then be updated, without the
user seeing it.

The value to write to the Top of Screen register depends upon the size of
the screen declared, and which screen array is to be displayed. It is often
convenient to declare screens as multidimensional arrays, so that an index
into the screen array indexes the appropriate screen. This ensures that the
screens used are contiguous (useful for scrolling), no VRAM is wasted, and
a variable (visible. screen in the example below) can be used in the user
program to write directly to either the visible screen, or a non visible screen.
Many screens can be used, by declaring the screen array appropriately, and
cycling through the allowable values for the variable visible. screen. The
formula for the Top of Screen register value is:

VAL screen.flip.value IS
((width * height) * (visible.screen * 4)) / 2048 :

The screen size must be a multiple of 2048, however, due to the VRAM and
memory architecture on the IMS B419.

Screen flipping can be performed at any time, by writing to the Top of
Screen register in the IMS G300, but this can cause a glitch to appear on
the display. If it is done during the frame flyback time, however, then an
imperceptible swap is obtained, with no lines or other noise being displayed.
This can easily be achieved on the IMS B419 using the procedures and
techniques below, making use of the frame flyback signal connected to the
Event input on the IMS T800 [7].

PROC EventHandler (CHAN OF ANY EventReq, EventAck, stop)
CHAN OF ANY Event :
PLACE Event AT 8 :
INT any :
BOOL running :
SEQ
running := TRUE
WHILE running

16

PRI ALT
Event ? any
SKIP

ALT
EventReq ? any
SEQ
Event ? any
EventAck ! any

stop ? any
running := FALSE

:
[2][width * height] BYTE screen.12 : -- two screens
INT visible.screen :
PROC toggle.screen (INT visible.screen)
SEQ
visible.screen := 1 - visible.screen
VAL screen.flip.value IS
((width TIMES height) TIMES (visible.screen << 2)) >> 11 :

SEQ
registers [top.of.screen] := screen.flip.value

:
CHAN OF ANY EventReq, EventAck, stop :
PRI PAR
EventHandler (EventReq, EventAck, stop)
{{{ user process
visible.screen := 0
... user code
... write to screen[1-visible.screen]
EventReq ! any -- wait for frame flyback
EventAck ? any -- frame flyback signal
toggle.screen (visible.screen) -- flip screens
... user code
stop ! 1 -- terminate the EventHandler process
}}}

A process EventHandler executes at high priority in parallel with the user
process, continually receiving event inputs that signify frame flyback times.
This process will consume approximately 1% of the processor resource.
When the user wants to synchronise with the frame flyback time, an output
is made to the EventHandler process, which, on the next event input, out-
puts an acknowledge to the user process. The Top of Screen register in the
IMS G300 CVC can then be updated with the new value.

The channel stop is included to allow the user process to terminate the
parallel EventHandler process, if required. This is generally only necessary if
executing the program from within the host programming environment. The
user process must output to this channel before terminating, as otherwise
the EventHandler process would continue executing, thereby locking out the

17

host environment.

A functionally equivalent Parallel C version of the EventHandler process, to-
gether with the required user synchronisation commands, is listed in section
20.2.

11 Animation with the IMS B419

11.1 Using an external multiprocessor system

Simple animation can be performed on the IMS B419. This could be
achieved using the graphics TRAM as an output display driver being sup-
plied with display data by many extra processors connected via the four high
speed links. The multi-processor system would perform the model movement
and shading calculations, and could feed pixel data to the IMS B419. Using
8 bits per pixel and 512 by 512 display resolution, a theoretical maximum
speed would be approximately 24 frames per second. This assumes that
the limiting factor would be the speed of the four links, and not the ex-
ternal model manipulation and shading computation. This is unfortunately
beyond the scope of this text.

11.2 Animation using multiple frame flipping

This section explores the possibilities for animation using only the IMS B419.
The Graphics TRAM has 2 Mbyte of VRAM and 2 Mbyte of DRAM. If a
screen display resolution of 512 by 512 with 8 bits per pixel is used (256
Kbytes per screen), a user program can declare 16 screen arrays, 8 placed in
VRAM, and 8 placed in DRAM. Allowing 256 Kbytes for the user program
code and variables, this reduces to 7 screen arrays in DRAM. These screens
might be declared, in occam as below:

[8] [512 * 512] BYTE vram.screens :
PLACE vram.screens AT vram.base :
spare.screen IS vram.screens [7] :
[7] [512 * 512] BYTE dram.screens :
PLACE dram.screens IN VECSPACE :

If a model is rendered into each of the first 7 VRAM screens and the 7 DRAM
screens (the last VRAM screen is used as a spare screen), with some form
of cumulative movement, rotation or distortion being applied to the model
before each rendering, then these 14 frames can easily be cycled through on
the display monitor. One way of performing this is shown below:

18

VAL screen.size IS 512 * 512 :
PROC set.screen (VAL INT visible.screen)
SEQ
... synchronise with frame flyback
registers [top.of.screen] :=
(screen.size TIMES (visible.screen << 2)) >> 11

:
SEQ
set.screen (0) -- display vram.screens [0]
{{{ render model start position into first screen
cls (vram.screens [0], black)
... render model into vram.screens [0]
}}}
{{{ render model into other 13 screens
spare.screen := vram.screens [0] -- save first screen
SEQ i = 1 FOR 6 -- prepare VRAM screens, done 1st
SEQ
... move / rotate / distort model
cls (vram.screens [0], black)
... render model into vram.screens [0]
vram.screens [i] :=
vram.screens [0] -- save into appropriate scrn

SEQ i = 0 FOR 7 -- prepare DRAM screens
SEQ
... move / rotate / distort model
cls (vram.screens [0], black)
... render model into vram.screens [0]
dram.screens [i] :=
vram.screens [0] -- save into appropriate screen

vram.screens [0] := spare.screen -- retrieve 1st screen
}}}
{{{ cycle through the 14 frames
WHILE running
SEQ i = 0 FOR 7
SEQ
set.screen ((i + 1) \ 7) -- select scrn to disp
spare.screen :=
vram.screens [i] -- \
vram.screens [i] := -- \
dram.screens [i] -- } swap last displayed scrn
dram.screens [i] := -- /
spare.screen -- /

}}}

Referring to the above occam listing, the model is always rendered into the
displayed screen, vram.screens [0], so that the progress can be monitored.
This is then copied into the appropriate VRAM or DRAM screen array.
The model is then moved, distorted, or rotated by 1/14 of the total amount

19

desired (for rotation, this could be 360/14 degrees so as to return to the start
position after 14 frames). The 7 VRAM screens are then displayed in turn,
with the last displayed VRAM screen being swapped with the appropriate
DRAM screen each time. The display cycle loop is then repeated, with the
former DRAM screen frames now in VRAM, and each of these are displayed
once, again swapping over the last displayed frame with that in DRAM. Note
that this cycling loop must repeat twice for the 14 frames to be displayed
once each. This is necessary because whilst the IMS G300 can display any
area of VRAM (by setting Top of Screen appropriately), it cannot display
the contents of DRAM, as DRAM does not have the dual port shift register
access, so these must be swapped, one at a time, with the VRAM frames).

11.3 Demonstration of simple animation

A demonstration of this technique has been written, which renders a Gouraud
shaded Utah Teapot into the 14 screens. The Teapot was rotated about one
of the X, Y or Z axes 360/14 degrees each time, then transformed with a
view transformation matrix (for perspective) before being rendered (with
hidden surface removal). The final effect is quite startling, as although only
14 frames are being displayed, the eye is fooled into interpolating the move-
ment between successive frames, and effectively smoothes the movement.
The 14 frames are displayed in approximately 2 seconds, this being deter-
mined by the time taken to swap the previous frame over, from VRAM to
DRAM via the spare screen.

Clearly this technique does not demonstrate elaborate animation, as only 14
frames are being used, and the content of those frames is not being altered
dynamically, but the potential of the IMS B419 for this type of task is
apparent.

11.4 Extending the simple animation

Consider the use of the IMS G300B with 4, 2 or 1 bits per pixel. The use of
a lower number of bits per pixel, still at 512 by 512 resolution, decreases the
amount of memory required for each frame, so more frames can be declared
and used, as shown below.

Bits per pixel Frames per Mbyte Total frames in memory
8 4 16
4 8 32
2 16 64
1 32 128

20

In the extreme case, using 1 bit per pixel, 128 frames can be declared in
memory, although less than this number could be used for the animation
due to the spare screen needed and the requirements of the user program
code and variable space, as discussed above. Even so, say 125 were used
(allowing a spare VRAM screen and 64 Kbytes for code and variables) then
this could allow an animation sequence of 20 frames per second, lasting for
over six seconds. Note that the frame cycling loop would execute faster, in
inverse proportion to the size of the frame being used. This may need to be
kept to the desirable frame rate by the use of a timed delay. If the ability
was added to update non-visible screens, (whilst the screen cycling loop
was descheduled waiting for the timed delay to elapse), then quite complex
animations could be achieved using only the IMS B419.

11.5 Number of displayable colours

The use of 1 bit per pixel in this discussion would seem to limit the number of
displayable colours to 2, but whilst this is strictly true for any one frame, it
would not necessarily be the case when performing the animation. A simple
palette updating procedure could be synchronised to the frame flipping, (as
discussed elsewhere in this text) so that the actual 24 bit colour values in
the palette addressed by the pixel values could be changed dynamically.
The palette could also be altered during the display of each frame, while
the screen arrays were being swapped, and/or during the timed delay. This
could effectively greatly extend the number of displayable colours during the
animation, clearly depending upon the frame cycling rate being used, and
the frame rate of the display monitor.

12 Scrolling and panning

Scrolling and panning may be efficiently performed on the IMS B419 by
writing to the IMS G300 Top of Screen register [16].

12.1 Scrolling

To perform scrolling, the screen array width must be a multiple of 512, due
to the way that the VRAM shift registers are updated on the IMS B419.
To scroll the display up by two lines, the Top of Screen register contents
must be incremented by four, assuming the screen width is 1024. If the
width is 512, the display will scroll by 4 lines. Single line scrolls cannot be
performed on the IMS B419 due to the memory organisation and VRAM
register length. Clearly decrementing the Top of Screen register contents by

21

four will scroll the screen display down, as long as the register value does
not become negative.

Scrolling with a normal screen array will display uninitialised memory. If
the screen array is initialised to have more lines than are displayed, however,
then the screen may be used as a display window scrolling on a larger than
displayed image. Alternatively, a second screen array contiguously placed
in memory (or a double screen using a 2-D array) could be scrolled onto the
display. This is implemented in the ’Wobbler’ routine (section 12.4).

12.2 Panning

Incrementing the Top of Screen register by 4096 increments the SAM start
address field within the Top of Screen register, and causes the display to
pan to the left by four pixels. Clearly decrementing by 4096 will pan to the
right, again keeping the register value positive.

Performing panning with a normal wholly displayed screen array achieves a
’pseudo-pan’ or a rotation, with the displayed image wrapping around from
one side of the screen to the other, one line above or below. If the screen
line length is actually longer than that displayed, however, then the screen
can be used as a display window panning on a larger than displayed image.
Due to the length of the VRAM shift registers on the IMS B419, the width
of the declared screen array must be a multiple of 2048, in order have some
non-displayed RAM to pan into. This means that with a screen display
of 1024 wide, for example, a screen array of width 2048 must be declared.
In this case, Memlnit and TransferDelay must add up to 1024/4 = 256, so
Memlnit must be set to 256- TransferDelay, = 238 using the simple example
program above. TransferDelay remains unchanged.

12.3 Summary of actions

Scrolling and panning may be achieved together, incrementing the Top of
Screen register fields appropriately. This is best performed during frame
flyback time, using the EventHandler process described above. The scrolling
and panning actions are summarised below.

12.4 The wobbler routine

A demonstration routine has been written to demonstrate the scrolling and
panning of the display. The routine is self contained, and executes at low
priority, in parallel with a user graphics program.

22

Action (Scroll/Pan) Top of Screen register
Scroll Display up (1) + 4
Scroll Display down (1) - 4
Pan Display left four pixels + 4096
Pan Display right four pixels - 4096
(1) width = 1024, scroll 2 lines, width = 512, scroll 4 lines.
Note: The value of Top of Screen must be kept positive.

The routine is listed in section 19.4, and essentially scrolls and pans the
display continuously, keeping a note of how many lines and pixels have been
scrolled and panned. This prevents the value written to the Top of Screen
register from becoming negative. Two screens must have been declared, as
in section 10 Screen flipping. The routine copies the visible screen to the
invisible screen before updating the Top of Screen register, so that scrolls
appear to wrap around from the top of the screen to the bottom. Pseudo-
pans also cause the display to wrap around the sides of the display.

The effect of the Wobbler, when combined with graphics drawing (and
palette cycling) is quite effective and eye catching.

This clearly shows the use of such pan and scroll operations, allowing either
the whole display to be moved, almost ’for free’, or to use the display as a
window on a larger than displayed image.

12.5 N-dimensional event handler without lockout

Note that a second pair of frame synchronisation channels are used in the
Wobbler, and the EventHandler must be modified to cope with these re-
quests in parallel. The standard EventHandler routine (modified for two
Event request channel pairs, say) would serve the first active Event request
on the next Event input, then wait for the subsequent Event input before
serving the second Event request. Clearly this would result in the second
process being locked out (and descheduled), until two Event inputs have
occurred.

An improved EventHandler routine that can serve n channel pairs (without
lockout while waiting for the Event input) is shown in section 19.5. This
routine has the advantage that two asynchronous Event requests will both
be served on the next Event input, and neither will be forced to wait the
extra frame time as discussed above. Note that sometimes it is advantageous
however, to only allow one process to access the IMS G300 per frame flyback.

23

13 Movement by palette cycling

Interesting effects can be obtained by cycling the palette of a displayed
image (in mode 1). Performing this, for example, on a Mandelbrot display
can yield some spectacular effects.

Fast movement can be achieved with minimal processor loading by palette
cycling. This enables the processor to perform other more computationally
intensive tasks without affecting the ’background’ movement. This is per-
formed in the examples in mode 1, 8 bits per pixel, but if the latest version
of the G300 is used, the G300B, then this could also be performed in mode
1, using 1, 2, 4 or 8 bits per pixel. Palette cycling may also be performed in
mode 2 using 24 bits per pixel. In mode 2, the 8 bits per colour are passed
through the palette, which can be used for gamma correction, or, in this
case, to simulate movement.

A simple example of movement by palette cycling is the ’rotation’ of heli-
copter blades. Blades are drawn as radial triangular polygons, with each
polygon colour value being different, as shown below. Note that various
VAL and VAR declarations have been omitted from the example listing for
clarity.

poly [0][0] := x0 -- centre of blades
poly [0][1] := y0
VAL theta IS 360.0 (REAL32) / (REAL32 ROUND rotors) :
SEQ i = 1 FOR rotors
VAL angle IS ((REAL32 ROUND i) * theta) * degrees.to.radians :
VAL small.angle IS (theta / 1.1(REAL32)) * degrees.to.radians :
INT dx, dy, dx1, dy1 :
SEQ
dx := INT TRUNC ((SIN (angle)) * radius)
dy := INT TRUNC ((COS (angle)) * radius)
dx1 := INT TRUNC ((SIN (angle + small.angle)) * radius)
dy1 := INT TRUNC ((COS (angle + small.angle)) * radius)
poly [1][0] := x0 + dx
poly [1][1] := y0 + dy
poly [2][0] := x0 + dx1
poly [2][1] := y0 + dy1
fillPoly (3, poly, i, screen[visible.screen], width, height)
filledCircle (x0, y0,
INT TRUNC (radius / 10.0(REAL32)), 255, width, height,
screen (visible. screen])

The listing above also shows a red filled circle being drawn at the centre of
the blades, in order to hide the quantisation noise due to all the triangles
meeting at the centre. Below is an example listing of a routine to initialise

24

and cycle the colour palette. This routine would normally run at high pri-
ority, in parallel to the main user code, so that the updating of the colour
palette is not timesliced, which would result in the same effect as updating
the palette without synchronisation with the frame flyback signal, i.e. noise
and streaking at the top of the display. The effect this palette cycling gives
is to produce two rotor blades on opposite sides of the rotor, one blue and
the other green. The rotor appears to rotate, with the blue and green rotors
moving gradually around the centre.

INT i :
[256] INT palette :
SEQ
SEQ i = 0 FOR 256
SEQ
palette[i] := 0
setColour (i, 0, 0, 0)

palette [(rotors / 2) - 1] := #FF0000 -- b
palette [rotors - 1] := #00FF00 -- g
palette [((3 * rotors) / 2) - 1] := #FF0000 -- b
setColour (255, 255, 0, 0) -- bright red
i := 0
WHILE TRUE
INT any :
SEQ
INT any : -- wait for frame flyback
SEQ
EventReq ! any
EventAck ? any

[registers FROM 1 FOR rotors] := [palette FROM i FOR rotors]
i := (i + 1) \ rotors

Referring to the listing above, a couple of important points may be noted.
The palette is always updated during frame flyback time, to avoid any noise
and lines appearing on the screen. The palette is updated with a single slice
assignment, rather than individual word assignments, to ensure that the
frame flyback time is not exceeded. The number of palette locations used
by the movement routine is dependent on the number of rotors declared,
where

No of locations used = (3 * rotors) / 2

plus one for the centre circle and one for the background colour. If the two
blades are drawn with the same colour (white for example), then the number
of palette locations can be reduced to

No of locations used = rotors

25

taking advantage of the semicircular symmetry, where rotor blade 1 effec-
tively becomes rotor blade 2 halfway around, and the palette pointer only
varied from 0 to rotors / 2.

Clearly the speed of rotation of the rotor is dependent on the number of
blades declared, and the frame rate of the screen display being used. Alter-
natively it is possible to only wait for alternate frame flyback times, thus
doubling the speed of rotation, but this tends to yield less aesthetically
pleasing results. This is due to the palette being cycled twice per frame, in
which case both palette states may not be apparent on the display.

13.1 Demonstration program

A demonstration program was written using these techniques, yielding two
rotors of different sizes and numbers of blades rotating in opposite direc-
tions at different speeds, and a continually moving block around the screen
border. In addition, to simulate the main task, the entire centre section of
the screen was moved gradually up and down, (using a second screen and
frame flipping), to yield an eye catching and interesting display.

13.2 Use of the N-dimensional event handler

This demonstration required two asynchronous frame flyback synchronisa-
tion in parallel, as in the Scrolling and Panning Wobbler example above, to
perform the palette cycling, and the frame flipping. The EventHandler.n
process (listed in section 19.5) was thus used, with order two, to perform
the dual parallel process frame synchronisation.

13.3 Extension to mode 2

Palette cycling can be performed in mode 2, 24 bits per pixel (described
below), whereby ’moving’ objects may non-destructively overlap or move
over each other, something that is not possible in mode 1. The objects thus
overlapping will, of course, be a combination of two or three different shades
of colours from red, green and blue, allowing any of the full range of 16
million colours to be displayed.

14 Using the IMS B419 in mode 2

The IMS B419 may be used in mode 2, allowing full colour 24 bits per
pixel displays to be obtained. To achieve this, an external 85-100 MHz

26

signal must be supplied to the external frequency input, or alternatively an
85 MHz oscillator module plugged into the vacant socket on the board, and
the phase locked loop disabled by connecting jumper JP1 on the board. The
oscillator is selected by removing jumper JP3 and installing J P2.

If the board has an IMS G300B, then the oscillator module can be selected
by writing a 1 (BYTE) to the g300. clock. sel.reg. The phase locked loop
can be disabled with the IMS G300B by writing a zero to bit location 5 in
the Control Register.

The IMS G300 vertical parameters are calculated as in [7, 8], but the hori-
zontal parameters must be calculated differently. These are:

Half Sync
BackPorch
Display
ShortDisplay
BroadPulse
LineTime
TransferDelay

Effectively these horizontal parameters are calculated for the horizontal reso-
lution as with the 8 bit mode, but are multiplied by 4. Memlnit is calculated
from 512 - the new value of TransferDelay. The Control Register must be
set to #101, instead of the normal mode 1 value of #1.

A full set of parameters is given in section 19.2 for full colour mode using
an NEC Multisync XL, at 512 by 512 resolution. Note that the parameters
shown were generated (by the Parameter Calculation Program - see section
16, Demonstration programs) for a screen of 512 by 512, then the horizontal
parameters were multiplied by 4.

When used in mode 2, a screen array must be declared to be of type INT,
which yields 24 bits of colour information and 8 bits of (at present) unused
data. Bits 0 to 7 are red, bits 8 to 15 are green, and bits 16 to 23 are blue.
These can either be accessed by shifting up the bytes (as with procedure
setColour above), or retyping a [4] BYTE array onto each INT, and accessing
the subscripted elements, [0] = red, [1] = green, and [2] = blue. Alternatively
a [] BYTE screen array of four times the screen size could be retyped onto
the []INT. screen, or a [] [4] BYTE screen array used.

It should be noted that if an IMS G300B is used in the IMS B419, then the
function of the SMB edge connector changes from External Pixel Clock In
to CBlank input / output. An external frequency source can no longer be
input to the IMS G300B. An oscillator module may still be used, however,
to generate particular video frequencies, or for running in mode 2.

27

A number of demonstration programs have been written, to show the IMS B419
working in mode 2. These are available from your local INMOS sales outlet.

15 The IMS G300B

A number of features and enhancements have been incorporated in the latest
version of the IMS G300, the IMS G300B [17]. This may be fitted as a direct
replacement for the IMS G300A on the IMS B419.

15.1 Different number of bits per pixel

The number of bits per pixel can be 1, 2, 4, or 8 in mode 1. The main use
of this is to increase the speed of drawing shapes, PIXBLT operations, and
moving (expanding) text to the screen. A demonstration program has been
written (adapted from the IMS G300A version of the Random Squares) that
switches between the different bits per pixel. This clearly shows the speed
of drawing the squares to the screen progressively doubling as the number of
bits per pixel is halved. It was found that when using 1 or 2 bits per pixel,
the update rate to the screen was so fast that squares were being drawn,
and overdrawn, before a complete frame had been displayed on the display.

When using lower numbers of bits per pixel, the little endian convention
is adhered to, in terms of bytes and bits. It may be noted that reducing
the number of bits per pixel means that pixels cannot be manipulated using
BYTE writes, as with 8 bits per pixel. One technique used in the demon-
stration program is to write multiple pixels using a composed 8 bit colour
byte value. This technique would only be used when the number of pixel
bits to be written was a multiple of a byte. Clearly the number of pixels
written will be:

Number of pixels written := 8 / bits per pixel

The colour byte value was constructed using the technique below.

IF
bpp = 8
SKIP

bpp = 4
SEQ
colour.byte := colour \/ (colour << 4)

bpp = 2
SEQ

28

colour.byte := colour \/ (colour << 2)
colour.byte := colour.byte \/ (colour.byte << 4)

TRUE -- 1 bpp
IF
colour = 0
colour.byte := 0

TRUE
colour.byte := #FF

Clearly if a read modify write operation is to be performed, using less than
8 bits per pixel, then shift and mask operations will be necessary.

The colour palette will also need to be reprogrammed, when using less than
8 bits per pixel, as this reduces the number of colours that can be displayed
on screen at any one time. In 4 bpp mode, palette locations 0 to 15 are
used. In 2 bpp mode, palette locations 0 to 3 are used, and in 1 bpp mode
only palette locations 0 and 1 are used. All other palette locations are not
used in these modes.

To alter the number of bits per pixel, bits 18 and 17 are set appropriately
in the IMS G300B Control Register, as shown below.

Bits Per Pixel Bits 18 and 17
8 11
4 10
2 01
1 00

One important point must be noted when changing the number of bits per
pixel, in order to keep the memory organisation continuous. Normally, in
8 bits per pixel, the TransferDelay and MemInit sum to the VRAM shift
register length (512). With 4 bits per pixel, however, they must sum to
twice this value, 1024, as the VRAM register length now corresponds to
twice the number of pixels. TransferDelay remains constant, and MemInit
is therefore calculated to be the difference. Similarly, when using 2 bits per
pixel, these two parameters must sum to 2048, and 1 bit per pixel, to 4096.
These values are summarised below.

Bits per pixel TransferDelay + MemInit
8 512
4 1024
2 2048
1 4096

In the examples above, TransferDelay was set to 18 (for 1024 by 1024), and
MemInit set to 494. The values for different bits per pixel are therefore:

29

Bits per pixel TransferDelay MemInit
8 18 494
4 18 1006
2 18 2030
1 18 4078

If MemInit is not altered as shown above, then the displayed memory will
not be continuous, and will have line gaps after each displayed line, due to
the shorter length pixels. The screen display would also be totally wrong.

The major disadvantage that reducing the number of bits per pixel has is,
of course, that the number of colours that can be displayed at one time is
reduced, to 2n, where n is the number of bits per pixel, as mentioned above.
Another disadvantage is that the drawing of lines, figures and objects is
different, and is not BYTE oriented anymore.

15.2 Use of the palette In mode 2

In mode 2 on the IMS G300A, 8 bit pixel data for red, green, and blue
was passed straight through to the DACs. On the IMS G300B, however,
the 8 bit values are used to address the corresponding part of the palette,
accessing a previously stored 8 bit value.

This facility enables the palette to be initialised to provide some look up ta-
ble function, such as gamma correction, using different transfer functions for
each of the red, green, and blue colours, without incurring any performance
penalty.

As mentioned in section 13, this can also be used to provide a ’background’
movement function, with overlapping objects, by continually changing the
contents of the palette.

15.3 Address step control

Bits 20 and 19 together with the interlace bit, bit 2 in the IMS G300B
Control Register allow the size of the VRAM transfer address increment to
be specified. This was fixed with the IMS G300A, but can now be set to be
one of 8 different values. This facility allows greater flexibility when using
interlace mode, allowing the framestore format to remain the same as for
non-interlace mode. With the G300A, the screen bitmap has to be split
into the relevant fields in interlace mode. This address step control also
allows the correct field to be incremented when the IMS G300B addresses
the VRAMs. Incrementing by 256, 512 or 1024 allows the use of different

30

sized VRAMs (64Kbit, 1 Mbit and 4 Mbit devices respectively). This is
dealt with in more detail in [17] and [7].

15.4 Blank I/O

The IMS G300B has a Blank I/O pin that allows one IMS G300B to blank
the output from another IMS G300B. Bit 16 in the Control Register config-
ures this pin as either an input or an output. It should be noted that the use
of an IMS G300B changes the use of the SMB connector on the IMS B419
from External Pixel Clock In to CBlank input/output.

16 Demonstration programs

A number of demonstration programs have been written, to demonstrate
different aspects of the IMS B419. These include a bouncing ball and tri-
angular polygon, random squares, random concentric circles, and random
’spirograph’ type shapes made from lines. Versions of these have also been
modified for the IMS G300B, using various features on the latest version that
were not on the A revision, including different numbers of bits per pixel in
mode 1. There are also a few programs that cycle the colour palette, includ-
ing the program mentioned in section 13.

An automatic IMS G300 datapath parameter calculation program is also
available from INMOS, on request. This program greatly facilitates the
setting up of the IMS G300 to drive any particular monitor and screen
resolution. Primary screen parameters are specified, and the IMS G300
parameters calculated and written to the IMS B419 automatically. In this
way, the optimal parameters can be found interactively for the monitor and
primary screen parameters being used.

A number of test display images can be generated, at the specified resolution,
in order to test the display parameters. A functional testcard can also be
generated, in order to check the correct connection and functionality of the
red, green, and blue colours, adjust monitor brightness and contrast, and
check the screen display horizontal and vertical alignment, adjustment, and
distortion.

31

17 Common graphics operations performance on
the IMS B419

Timings obtained below were executed on the IMS B419 Graphics TRAM.

Description pixels time/µs µs/pixel
Line (0,0) to (1279,1023)1 1280 2473 1.93
filled circle radius 200 125663 19072 0.152
filled circle radius 20 1256 598 0.476
non-filled circle radius 200 1256 3570 2.8
non-filled circle radius 20 125 386 3
filled square sides 200, 200 40000 3177 0.08
filled square sides 20, 20 400 92 0.23
Flat Shaded Triangle (1230-8770)2 100 114-811 1.14-8.11
Gouraud Shaded Triangle (1500-2000)2 100 500-667 5-6.67

Note 1: This yields 517,590 pixels per second, and approximately 25,000 ten
pixel vectors per second.

Note 2: (∆s per sec) Both these triangle shading figures depend upon the
shape and orientation of the triangle (average, best and worst cases used).

The IMS B419 can also perform 55,000 floating point (4 by 4) by (4 by 1)
matrix multiplications per second (3-D transforms).

18 Conclusion

The text has described all the initialisation and tasks that must be per-
formed by a graphics program executing on the IMS B419, to allow data to
be displayed on the screen output device. The text has discussed declara-
tion and placement of variables and arrays, resetting and programming the
IMS G300 registers, and programming the colour palette.

Furthermore, a simple program example has been given that fills a box
with a specific colour. Several programming hints and techniques have been
presented and discussed. A high performance line drawing algorithm has
been included, being one of the fundamental graphics routines.

Slightly more advanced techniques have been presented, including screen
flipping, using frame flyback synchronisation, panning, scrolling, and simple
animation. Declaration of larger than displayed screen RAM arrays has also
been covered for panning and scrolling within larger than displayed screens.
Movement by colour palette cycling has been discussed, and the performance
gains using this ’background’ task highlighted.

32

Features and facilities available on the IMS G300B have been presented
and discussed, including enhancing graphics performance by reducing the
number of bits per pixel, and gamma correction in full colour mode without
any performance penalty.

Running the IMS B419 in full colour 24 bits per pixel (mode 2) has been
discussed, and the different parameter calculations explained. The parame-
ters required for an NEC Multisync XL have been included. The required
screen RAM declaration has been featured, and methods for red, green, and
blue colour byte access suggested.

The IMS B419 is therefore a high performance, versatile, and inexpensive
graphics system. Using the transputer, extra computational power can be
connected directly to the IMS B419, to increase the speed of response, ren-
dering complex models, and/or using using extremely complex rendering
techniques.

The example source code shown in this text, and the demonstration pro-
grams mentioned are available from your local INMOS sales outlet.

19 Example programs in occam

19.1 Programming the colour palette to a colour spectrum

This procedure programs the IMS G300 colour palette to an approximation
to a colour spectrum, from black (0) through blue (37), cyan (73), green
(110), yellow (146), red (183), and magenta (219) to white (255). Note that
the colours are not gamma corrected. This could be performed within the
setColour procedure, using a pre-initialised gamma correction look up table
for each colour component.

PROC set.colour.spectrum.palette ()
VAL r.fsd IS 255 :
VAL g.fsd IS 255 :
VAL b.fsd IS 255 :
INT r, g, b :
REAL32 steps :
INT no.steps :
INT steps.done :
INT colour :
SEQ
colour := 0
steps.done := 0
steps := 256.0 (REAL32) / 7.0 (REAL32)
r := 0

33

g := 0
no.steps := (INT ROUND (1.0 (REAL32) * steps)) - steps.done
SEQ i = 0 FOR no.steps -- ramp up b
SEQ
b := (b.fsd * i)/(no.steps - 1)
setColour (colour, r, g, b)
colour := colour + 1

steps.done := steps.done + no.steps
b := b.fsd
r := 0
no.steps := (INT ROUND (2.0 (REAL32) * steps)) - steps.done
SEQ i = 1 FOR no.steps -- ramp up g
SEQ
g := (g.fsd * i) / no.steps
setColour (colour, r, g, b)
colour := colour + 1

steps.done := steps.done + no.steps
g := g.fsd
r := 0
no.steps := (INT ROUND (3.0 (REAL32) * steps)) - steps.done
SEQ i = 1 FOR no.steps -- ramp down b
SEQ
b := (b.fsd * (no.steps - i))/no.steps
setColour (colour, r, g, b)
colour := colour + 1

steps.done := steps.done + no.steps
g := g.fsd
b := 0
no.steps := (INT ROUND (4.0 (REAL32) * steps)) - steps.done
SEQ i = 1 FOR no.steps -- ramp up r
SEQ
r := (r.fsd * i) / no.steps
setColour (colour, r, g, b)
colour := colour + 1

steps.done := steps.done + no.steps
r := r.fsd
b := 0
no.steps := (INT ROUND (5.0 (REAL32) * steps)) - steps.done
SEQ i = 1 FOR no.steps -- ramp down g
SEQ
g := (g.fsd * (no.steps - i))/no.steps
setColour (colour, r, g, b)
colour := colour + 1

steps.done := steps.done + no.steps
r := r.fsd
g := 0
no.steps := (INT ROUND (6.0 (REAL32) * steps)) - steps.done
SEQ i = 1 FOR no.steps -- ramp up b
SEQ

34

b := (b.fsd * i) / no.steps
setColour (colour, r, g, b)
colour := colour + 1

steps.done := steps.done + no.steps
b := b.fsd
r := r.fsd
no.steps := (INT ROUND (7.0 (REAL32) * steps)) - steps.done
SEQ i = 1 FOR no.steps -- ramp up g
SEQ
g := (g.fsd * i) / no.steps
setColour (colour, r, g, b)
colour := colour + 1

steps.done := steps.done + no.steps
:

19.2 Full colour parameters

Parameters for full colour operation, using NEC Multisync XL, 512 by 512
resolution.

VAL prog.vals IS [16, --half sync
92, --back porch
512, --display
180, --short display
308, --broad pulse
8, --v sync
56, --v blank
1024, --v display
664, --line time
0, --line start
428, --mem snit
84, --transfer
delay 255]: --mask register

19.3 A high performance line drawing algorithm

{{{ PROC bres.line
PROC bres.line (VAL INT x.start, y.start, x.end, y.end, [] BYTE screen,
VAL INT width, height, VAL INT colour)
-- Modified Bresenham’s Line Algorithm
{{{ abbr
[] BYTE vram IS screen :
VAL colour IS colour :
}}}
INT dx, dy :
SEQ

35

{{{ calc dx
IF
x.end > x.start
dx := x.end - x.start

TRUE
dx := x.start - x.end

}}}
{{{ calc dy
IF
y.end > y.start
dy := y.end - y.start

TRUE
dy := y.start - y.end

}}}
IF
{{{ single point plot
(dx = 0) AND (dy = 0) -- chk for point plot
SEQ
vram [(y.start TIMES width) + x.start] := BYTE colour

}}}
{{{ driving y.axis
dx < dy -- move along y.axis
{{{ vars
INT incr1, incr2, d, x, y, yend :
INT dx.move, offset, d.offset :
}}}
SEQ
{{{ init
d := (dx << 1) - dy
incr1 := dx << 1
incr2 := (dx - dy) << 1
IF
{{{ y.start > y.end
y.start > y.end
SEQ
x := x.end
y := y.end
yend := y.start
{{{ calc dx.move
IF
dx = 0
dx.move := 0

TRUE
dx.move := (x.start - x.end) / dx

}}} M
{{{ else
TRUE
SEQ
x := x.start

36

y := y.start
yend := y.end
{{{ calc dx.move
IF
dx = 0
dx.move := 0

TRUE
dx.move := (x.end - x.start) / dx

}}}
}}}

offset := (y TIMES width) + x
d.offset := width + dx.move
}}}
{{{ 1st point
vram [offset] := BYTE colour
}}}
{{{ do groups of 4 pixels
{{{ abbr
[] BYTE vram IS screen :
VAL colour IS colour :
}}}
SEQ i = 0 FOR (yend - y) >> 2
SEQ
{{{ 1st group
{{{ add on bits
IF
d < 0
SEQ
d := d + incr1
offset := offset + width

TRUE
SEQ
offset := offset + d.offset
d := d + incr2

}}}
vram [offset] := BYTE colour
}}}
... 2nd group
... 3rd group
... 4th group

}}}
{{{ do final pixel(s)
{{{ abbr
[] BYTE vram IS screen :
VAL colour IS colour :
}}}
SEQ i = 0 FOR (yend - y) /\ 3
SEQ
{{{ g4i

37

{{{ add on bits
IF
d < 0
SEQ
d := d + incr1
offset := offset + width

TRUE
SEQ
offset := offset + d.offset
d := d + incr2

}}}
vram [offset] := BYTE colour
}}}

}}}
}}}
{{{ driving x.axis
TRUE -- move along x.axis
{{{ vars
INT x, y, xend, dy.move :
INT incr1, incr2, d.offset, d, offset :
}}}
SEQ
{{{ init
d := (dy << 1) - dx
incr1 := dy << 1
incr2 := (dy - dx) << 1
IF
{{{ x.start > x.end
x.start > x.end
SEQ
x := x.end
y := y.end
xend := x.start
{{{ calc dy.move
IF
dy = 0
dy.move := 0

TRUE
dy.move := (y.start - y.end) / dy

}}}
}}}
{{{ else
TRUE
SEQ
x := x.start
y := y.start
xend := x.end
{{{ calc dy.move
IF

38

dy = 0
dy.move := 0

TRUE
dy.move := (y.end - y.start) / dy

}}}
}}}

d.offset := (dy.move TIMES width) + 1
offset := (y TIMES width) + x
}}}
{{{ 1st point
vram [offset] := BYTE colour
}}}
{{{ do groups of four pixels
{{{ abbr
[] BYTE vram IS screen :
VAL colour IS colour :
}}}
SEQ i = 0 FOR (xend - x) >> 2
SEQ
{{{ 1st group
{{{ add on bits
IF
d < 0
SEQ
d := d + incr1
offset := offset + 1

TRUE
SEQ
d := d + incr2
offset := offset + d.offset

}}}
vram [offset] := BYTE colour
}}}
... 2nd group
... 3rd group
... 4th group

}}}
{{{ do final pixel(s)
{{{ abbr
[] BYTE vram IS screen :
VAL Colour IS colour :
}}}
SEQ i = 0 FOR (xend - x) /\ 3
SEQ
{{{ g4i
{{{ add on bits
IF
d < 0
SEQ

39

d := d + incr1
offset := offset + 1

TRUE
SEQ
d := d + incr2
offset := offset + d.offset

}}}
vram [offset] := BYTE colour
}}}

}}}
}}}

:
}}}

19.4 The wobbler routine

{{{ wobbler
-- assume screen.width is 1024
INT value, no.lines.up, no.pixels.across, any :
BOOL inc.up.down, inc.side.side :
VAL up.down.delta IS 4 :
VAL side.side.delta IS 4096 :
SEQ
inc.up.down := TRUE
inc.side.side := TRUE
value := up.down.delta
no.lines.up := 0
no.pixels.across := 0
WHILE TRUE
SEQ
screen[1] := screen[0]
{{{ wait for frame fly back
INT any :
SEQ
EventReq1 ! any
EventAck1 ? any

}}}
registers [top.of.screen] := value
registers [top.of.screen] := value >> 8
registers [top.of.screen] := value >> 16
{{{ up / down
IF
{{{ inc
inc.up.down
SEQ
value := value + up.down.delta
no.lines.up := no.lines.up + 2
IF

40

no.lines.up >= screen.height
SEQ
value := value - up.down.delta
no.lines.up := no.lines.up - 2
inc.up.down := FALSE

TRUE
SKIP

}}}
{{{ dec
TRUE
SEQ
value := value - up.down.delta
no.lines.up := no.lines.up - 2
IF
no.lines.up <= 0
SEQ
value := value + up.down.delta
no.lines.up := no.lines.up + 2
inc.up.down := TRUE

TRUE
SKIP

}}}
}}}
{{{ side to side
IF
{{{ inc
inc.side.side
SEQ
value := value + side.side.delta
no.pixels.across := no.pixels.across + 4
IF
no.pixels.across >= screen.width
SEQ
value := value - side.side.delta
no.pixels.across := no.pixels.across - 4
inc.side.side := FALSE

TRUE
SKIP

}}}
{{{ dec
TRUE
SEQ
value := value - side.side.delta
no.pixels.across := no.pixels.across - 4
IF
no.pixels.across <= 0
SEQ
value := value + side.side.delta
no.pixels.across := no.pixels.across + 4

41

inc.side.side := TRUE
TRUE
SKIP

}}}
}}}

}}}

19.5 An N-dimensional event handler without lockout

The listing for an N-dimensional event handler routine is shown below. This
can be used whenever more than one process must synchronise with frame
flyback, such as palette cycling, Wobbling, and screen flipping in parallel.
The EventHandler.n routine will accept asynchronous user Event requests,
then serve all the active channels on the next Event input. This process
must be invoked at high priority, with appropriately declared actual channel
array parameters. Channel elements of the arrays of channels are then
used as actual parameters to the parallel user processes that require frame
synchronisation.

VAL no.event.chans IS 3 : -- number of EventReq, EventAck pairs
[no.event.chans] CHAN OF INT EventReq, EventAck :

PROC EventHandler.n ([no.event.chans] CHAN OF INT EventReq, EventAck,
CHAN OF INT stop)
CHAN OF ANY Event :
PLACE Event AT 8 :
[no.event.chans] BOOL requested :
BOOL any.requested, running :
INT int :
SEQ
{{{ initialise
SEQ i = 0 FOR no.event.chans
requested [i] := FALSE

any.requested := FALSE
running := TRUE
}}}

WHILE running
PRI ALT
NOT any.requested & Event ? int
SKIP

ALT
ALT i = 0 FOR no.event.chans
NOT requested [i] & EventReq [i] ? int
SEQ
requested [i] := TRUE
any.requested := TRUE

42

any.requested & Event ? int
SEQ
SEQ i = 0 FOR no.event.chans
IF
requested [i]
SEQ
EventAck [i] ! 1
requested [i] := FALSE

TRUE
SKIP

any.requested := FALSE
stop ? int
SEQ
SEQ i = 0 FOR no.event.chans
IF
requested [i]
SEQ
EventAck [i] ! 1

TRUE
SKIP

running := FALSE
:

20 Functionally equivalent example programs in
Parallel C

20.1 The simple example

The simple example, to draw a white square on the screen, has been per-
formed in C, using the INMOS Parallel C Compiler (ICC), and the INMOS
IMS D714 ANSI C Toolset. The complete listing is given below. This illus-
trates the use of memory mapped variables to access the IMS G300. Note
that for clarity, the spectrum palette procedure has been folded up.

#include <stdio.h>

#define FALSE 0
#define TRUE 1
#define G300_REGISTER_BASE 0X40000000 /* hardware addresses */
#define VRAM_BASE 0X00000000
#define BOOT_LOCATION 0X1A0
#define TOP_OF_SCREEN 0X180
#define CONTROL_REGISTER 0X160
#define MASK_REGISTER 0X140
#define HALF_SYNC 0X121
#define BACK_PORCH 0X122

43

#define DISPLAY 0X123
#define SHORT_DISPLAY 0X124
#define BROAD_PULSE 0X125
#define V_SYNC 0X126
#define V_BLANK 0X127
#define V_DISPLAY 0X128
#define LINE_TIME 0X129
#define LINE_START 0X12A
#define MEM_INIT 0X12B
#define TRANSFER_DELAY 0X12C
#define COLOUR_PALETTE 0X000
#define WIDTH 1024
#define HEIGHT 1024
#define SCREEN SIZE (WIDTH * HEIGHT)
#define NO_OF_BEGS 13

int *registers;
char *G300_RESET_REG;
char *G300_CLOCK_SEL_REG;

static void init_display()
{
/* parms for NEC multisync at 1024 by 1024 */
static int PROG_REGS [NO_OF_REGS] = {HALF_SYNC,

BACK_PORCH,
DISPLAY,
SHORT_DISPLAY,
BROAD_PULSE,
V_SYNC,
V_BLANK,
V_DISPLAY,
LINE_TIME,
LINE_START,
MEM_INIT,
TRANSFER_DELAY,
MASK_REGISTER};

static int PROG_VALS [NO_OF_REGS] = {11,
60,
256,
82,
164,
8,
70,
2048,
348,
0,
494,
18,
255};

44

int i;

G300_RESET_REG = (char *) 0XF0; /* placements */
G300_LOCK_SEL_REG = (char *) 0XF4;
G300_RESET_REG = 1; / reset IMS~G300 */
*G300_RESET_REG = 0;
registers [BOOT_LOCATION] = 17;
registers [CONTROL_REGISTER] = 0;
for (i = 0;i < NO OF REGS;i++)

registers [PROG_REGS [i]] = PROG_VALS [i];
registers [CONTROL_REGISTER] = 1; /* start VTG */

void cls (screen, colour)
char screen [];
int colour;
{
int i;
for (i = 0;i < SCREEN SIZE;i++)

screen [i] = (char) colour;
}

void setColour (colour, r, g, b)
int colour, r, g, b;
{
registers [colour] = (r | (g << 8)) | (b << 16);
}

static void set_colour_spectrum_palette ()
...

int main() /* main program starts here */
{
#define start_x 100
#define start_y 200
#define length_x 200
#define length_y 100
#define colour 255

char *screen;
int row, col;
long int offset;
registers = (int *) G300_REGISTER_BASE; /* place registers */
screen = (char *) VRAM_BASE; /* place screen */

cls (screen, 0);
init_display ();
set_colour_spectrum_palette ();

45

offset = (start_y * WIDTH) + start_x;
for (row = 0; row < length_y; row++)

{
for (col = 0; col < length_x; col++)

screen [offset + col] = colour;
offset = offset + WIDTH;
}

}

20.2 The event handler

The EventHandler used in the examples above has been translated into Par-
allel C, using the INMOS extensions to C supporting the occam constructs
and primitives. The C version of the EventHandler has been compiled and
run on the IMS B419 using the INMOS IMS D714 ANSI C Toolset. The
listing below illustrates:

• Spawning a non-synchronous high priority parallel process (PRI PAR)

• Initialisation, placement and use of soft and hard channels

• Passing channels as parameters to a parallel process

• Communication across the channels

• The use of the INMOS Parallel C equivalent to ALT

Note that for clarity, constant declarations and common procedures have
been folded up, these being identical to the simple example in C above.

#include <stdio.h>
#include <process.h>
#include <channel.h>

... constant declarations

int *registers;
char *G300_RESET_REG;
char *G300_CLOCK_SEL_REG;

void EventHandler (Process *dummy,
Channel *EventReq,
Channel *EventAck,
Channel *stop)

{
#define EVENT ((Channel *) 0x80000020) /* h/w addr */

46

Channel *Event; /* declare hard channel */
int running, any, chan;

/* place hard channel at Event input */
Event = (Channel *) EVENT;
ChanInit (Event); /* initialise */

running = TRUE;
while (running == TRUE)

{
/* ALT list terminated by NULL */
chan = ProcAlt (Event, EventReq, stop, NULL);
switch (chan)

{
case 0:

{
any = ChanInInt (Event); /* consume Event */
break;
}

case 1:
{
any = ChanInInt (EventReq); /* consume input */
any = Chanlnlnt (Event); /* wait for Event */
ChanOutInt (EventAck, any); /* signal Event */
break;
}

case 2:
{
any = ChanInInt (stop); /* consume input */
running = FALSE;
break;
}

default:
break;

}
}

}

... init display()

... cls (screen, colour)

... void setColour (colour, r, g, b)

int main() /* main program starts here */
{
... define block starts and ends

char *screen;
any ;
Process *p; /* process pointer */

47

/* declare soft channels */
Channel *EventReq, *EventAck, *stop;

/* allocate soft channels */
if ((EventReq = ChanAlloc ()) == NULL)

printf("\nCannot allocate EventReq channel");
if ((EventAck = ChanAlloc ()) == NULL)

printf("\nCannot allocate EventAck channel");
if ((stop = ChanAlloc ()) == NULL)

printf("\nCannot allocate stop channel");

/* allocate Eventfandler process */
if ((p = ProcAlloc (EventHandler, 0, 3,

EventReq, EventAck, stop)) == NULL)
printf("\nCannot allocate EventBandler process");

/* place registers */
registers = (int *) G300_REGISTER_BASE;
screen = (char *) VRAM_BASE; /* place screen */

cls (screen, 0);
init_display ();
set_colour_spectrum_palette ();

ProcRunHigh (p); /* Spawn proc at high priority */

... do lots of work

/* request frame flyback synchronisation */
ChanOutInt (EventReq, any);
any = ChanInInt (EventAck); /* receive it */

... perform task (s) during frame flyback

... do lots of work

ChanOutInt (stop, any); /* terminate the EventHandler */
/* end of user program (ISERVER terminates automatically) */
}

48

Figure 3: IMS B419 graphics TRAM

49

References

[1] Occam Reference Manual. INMOS Limited, Prentice-Hall, 1989.

[2] The Transputer Development System. INMOS Limited, Prentice-Hall,
1989.

[3] The C Programming Language B.W. Kernigan, D.M. Ritchie, Prentice
Hall, 1988 (second edition).

[4] The INMOS Parallel C Compiler INMOS Limited, 1990.

[5] The INMOS IMS D714 ANSI C Toolset INMOS Limited, 1990.

[6] Notes on Graphics Support and Performance Improvements on the
IMS T800 G. Harriman, INMOS Technical Note 26.

[7] The Design of a High Performance Graphics System using the IMS G300
Colour Video Controller. D. Japp, INMOS Technical Note 62,1989.

[8] The IMS G300 Colour Video Controller Data Sheet. INMOS 1989.

[9] Performance Maximisation. P. Atkin, INMOS Technical Note 17, 1987.

[10] The Transputer Databook. INMOS Limited, Prentice-Hall, 1989.

[11] Fundamentals of Interactive Computer Graphics. J.D. Foley, A. Van
Dam, Addison-Webley, 1982.

[12] High Performance Graphics with the IMS T800. P. Atkin, J. Packer,
INMOS Technical Note 37.

[13] Algorithm for Computer Control of Digital Plotter. J. E. Bresenham,
(reprinted in) Tutorial and selected Readings in Interactive Computer
Graphics, H.E. Freeman (ed, IEEE Computer Society Press, 1980.

[14] An Introduction to Ray Tracing. A.S. Glassner (ed), Academic Press,
1989.

[15] Exploiting Concurrency: A Ray Tracing Example. J. Packer, INMOS
Technical Note 7.

[16] Using the IMS G300 CVC Automatic Screen Refresh Function. P.
McGuinness, INMOS Ltd., 1989.

[17] IMS G300B Colour Video Controller. Preliminary Datasheet - INMOS
Ltd, 1990.

50

	1 Introduction
	2 The IMS B419 graphics TRAM
	3 Use as host or target
	4 IMS B419 jumper options
	4.1 Jumper 1
	4.2 Jumpers 2 and 3
	4.3 Jumpers 4 and 5

	5 Address map of the IMS B419
	6 Placing registers
	7 A simple program example
	7.1 Initialising the G300
	7.2 Programming the palette
	7.3 Comments on the simple program example

	8 A high performance line drawing algorithm
	9 3-D modelling and rendering
	10 Screen flipping
	11 Animation with the IMS B419
	11.1 Using an external multiprocessor system
	11.2 Animation using multiple frame flipping
	11.3 Demonstration of simple animation
	11.4 Extending the simple animation
	11.5 Number of displayable colours

	12 Scrolling and panning
	12.1 Scrolling
	12.2 Panning
	12.3 Summary of actions
	12.4 The wobbler routine
	12.5 N-dimensional event handler without lockout

	13 Movement by palette cycling
	13.1 Demonstration program
	13.2 Use of the N-dimensional event handler
	13.3 Extension to mode 2

	14 Using the IMS B419 in mode 2
	15 The IMS G300B
	15.1 Different number of bits per pixel
	15.2 Use of the palette In mode 2
	15.3 Address step control
	15.4 Blank I/O

	16 Demonstration programs
	17 Common graphics operations performance on the IMS B419
	18 Conclusion
	19 Example programs in occam
	19.1 Programming the colour palette to a colour spectrum
	19.2 Full colour parameters
	19.3 A high performance line drawing algorithm
	19.4 The wobbler routine
	19.5 An N-dimensional event handler without lockout

	20 Functionally equivalent example programs in Parallel C
	20.1 The simple example
	20.2 The event handler

	References

