Global positioning
by satellite

INMOS Technical Note 65

Philip Mattos

July 1989
72-TCH-065-00

tirlanis
plujt]e[r

njelt|

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

Contents

1

Introduction - background to the GPS

1.1 Space Segment
1.2 Command Segment
1.3 User Segment

2 The traditional approach
21 RF frontend,
2.2 Hardware signal processing loops
2.3 Processor

3 Why change?.. the problems

4 What the transputer brings to the party

5 The new approach - Software Signal Processing
5.1 Input.
5.2 Code Correlation, Down Conversion
5.3 Filtering
5.4 Detection - Coarse FFT
5.5 Detection - Fine FFT
5.6 Detection - Convolution

6 Achievements so far - now more satellites

7 Position Calculations

8 Mechanical Details, Display and Keyboard

9 Conclusions

References

10
11
12
13
14
15
15

16

17

18

19

20

1 Introduction - background to the GPS

GPS arose from early experimental American military programs interested
in clock stability and relativity, such as the ” Timation” program in the 70’s.
The specifications of the prototype system became public in 1978, with a
full issue of the (American) Institute of Navigation Journal being dedicated
to the subject.

It is based on the concept that if you know your exact range from three
known positions, you can calculate your position in three dimensions. The
range is determined by the propagation delay of the signals from the satel-
lites, which assumes you knew when they were transmitted. Short of carry-
ing an atomic clock in every receiver, this is solved by using a fourth satellite,
and using the redundancy in the position equations to solve for time also.
Whilst earlier satellite navigation systems such as TRANSIT used doppler
shift as the measuring domain, GPS uses propagation delay.

Contrary to popular opinion, the satellites are NOT geo-stationary. They
are in a inclined orbit that takes them over any point in their ground track
approximately every 12 hours. Figure 1 shows that geo-stationary satellites
cannot provide three dimensional positions, nor latitude accuracy near the
equator, nor any coverage of the polar regions.

Figure 1: GPS satellites

There are currently six operational satellites, so coverage is severely limited.
This is largely due to delays with the NASA shuttle. It is anticipated that
the full constellation will be in service by 1995, with useful coverage of the
UK by mid 1990.

1.1 Space Segment

The system consists of eighteen operational satellites in six orbits, with a
spare satellite also available in each of the six orbits. This is a relatively

recent change from the original spec, which had the satellites divided over
only three orbits. The spec may change again, as the current orbits, being
almost synchronous with the earths rotation, albeit at twice the frequency,
suffer cumulative orbit disturbance due to the sun and solar flux. Desyn-
chronising them would give a more stable orbit with less need for firing the
jets.

The satellites all transmit on the same frequency using a spread-spectrum
technique. To spread the spectrum of the signal, inherently only 100 Hz
wide, it is multiplied by a code-sequence known as a Gold code after its
inventor. As the chip-rate of the code is 1.023 MHz, this results in the
transmitted signal having a bandwidth of around 2 MHz, with a very low
power density (-163dBW). This is far below atmospheric and front-end noise.

Each satellite has a unique code, so when the signal is descrambled, the
energy from a particular satellite only can be extracted.

1.2 Command Segment

The satellites transmit a carrier modulated by the Gold code and also by
useful data needed in the receiver to work out both the satellite position and
the user position. Coefficients are transmitted that allow the exact position
of the satellite to be calculated, and also measured values of the ionospheric
propagation characteristics. This data is uplinked to the satellites by the
ground stations around the world, after considerable computation to perform
curve fitting such that the new parameters can remain valid for at least four
hours, even though they are uploaded every two hours. The ground stations
are at Ascension Island, Diego Garcia, Kwagale, Hawai, controlled from
the master station at Falcon Air Force Base, Colorado. These give global
coverage, so satellites are never out of sight of a control station for more
than the two hour uplink interval.

The data sent by a satellite consists of detailed information about its own
orbit and transmission parameters, and at a slower rate, less detailed in-
formation about all the other satellites. This latter data, known as the
almanac, is useful as it allows acquisition of satellites after the first to be
directed at the correct code, and also the correct doppler offset.

1.3 User Segment

The user has to receive the off-air signal, from at least four satellites, and
descramble it to determine both the timing information and the downloaded
data.

To receive the signal, he must use an aerial that can see almost an entire
hemisphere. The spec asks for down to 5 degrees above the horizon.

In order to descramble it, he must generate a copy of the satellite code
and multiply the incoming signal by it, at the correct offset to allow for
propagation delay, which must be found empirically. This then gathers the
energy from the required satellite, whilst spreading out the noise, and the
other satellites even further.

Finally he must use the offset and data to calculate first the satellites, and
then his own, position. For the satellites, this is largely a case of plugging
the downloaded coeflicients into given equations, but there is one small cal-
culation that must be performed iteratively. For the user position, a matrix
of four simultaneous equations must be solved, and it is most convenient to
handle this iteratively.

2 The traditional approach

The traditional approach consists of a dual conversion superhet front-end,
using coherent local oscillator and intermediate frequencies, then four or five
hardware signal processing paths that each deal with one satellite, feeding
their output to a processor which performs the calculations and handles the
user interface.

2.1 RF front end

The RF front end must take the incoming signal at 1575.42 MHz, 2 MHz
wide, with a received power of -163dB, and amplify it and down convert it
to a convenient frequency. The spectrum is shown in Figure 2. The wider
curve is the military signal, whose code is secret, so we cannot unscramble
it. The desired signal is the Coarse Acquisition (C/A) code, which forms
the central peak.

Coarse acquisition code
commercial

Precise code
military

-10.23 -1.023 +1.023 +10.23

1575.42 MHz

Figure 2: GPS signal spectrum

It is usual to use a first IF of 100-200 MHz, in order that the front end
image frequency is easily eliminated. Some systems only use the single IF,
but running phased locked loops at these frequencies is inconvenient, so most
use a second down conversion stage, to a frequency of 5-20 MHz.

All frequencies used in the satellite are a multiple of the 1.023 MHz basic
chipping rate, so it is convenient to use other multiples for IFs and local
oscillators. Thus the carrier is 1540 * 1.023 MHz. If the first IF is to be
120 * 1.023 MHz, ie 122.76 MHz, then the LO is 1420 * 1.023 MHz. Another
favorite is 160 * 1.023, ie 163.68 MHz.

Choosing such multiples means that all local signals can be generated syn-
chronously from the same chain, and thus be completely free of undesired
beat frequencies. The actual incoming carrier is of course not exactly on
frequency, due to doppler shift from the fast moving satellite.

2.2 Hardware signal processing loops

The signal tracking hardware is the most expensive section of the receiver. In
early sets, it consisted of a satellite code generator, a very narrow filter, and
a phase locked loop, with the offset of the code generator and the frequency
of the PLL being swept empirically until the signal was found.

The signal processing consisted of two mixing (or multiplying) stages. The
first multiplied the incoming signal by the locally generated satellite code.
This does not alter the centre frequency, but it does, when synchronised,
pull all the satellite energy from the 2MHz wide signal into a single narrow
carrier.

The output of the PLL was used in a down conversion mixer to make the
carrier, now only 100Hz wide, hit the passband of the filter. The filter had
to be very narrow in order to achieve the required noise performance, but
due to doppler shift, it would then miss the carrier without such tracking.

In order that the hardware could detect such a signal, the PLL normally
runs at twice the final carrier frequency, so that the BPSK modulation on
the carrier does not affect it. A divide by two and an exclusive-OR gate can
then extract the download data stream from the satellite.

The traditional hardware receivers require one of these hardware track-
ing channels per satellite, Figure 3 (a). Sections (b) and (c) are a tradi-
tional code tracking loop and a hardware tracking loop respectively. (Taken
from [4].)

Such hardware could, in 1980, use a card per satellite. However rapidly the
use of higher levels of integration, or even custom chips, allowed it to be

MHz IF MHz IF kHz IF 50 bps

a Code ' Carrier

@ tracker ’ .“ } tracker
Gain block Gain block CPU
10kHz BW >1kHz B/W

Control

IF signal + 1MHz IF siganal despread

(+ 50kHz data, 4kHz doppler)

(b)

Punctual Late

IF + data + doppler

Error signal
-5

Loop|
bed

Synthetic carrier at IF
Data modulation only 50 bps

(©

QOE 5]

Figure 3: Traditional GPS receivers

reduced, but it still remained the major section of the hardware.

2.3 Processor

In the earliest systems, the satellite tracking was almost entirely autonomous,
with the processor interested in only the code generator offset and the down
load data from each of the four or five channels. As faster micros became
available. the micro was used inside the hardware loop to command the
code generator, and command the PLL frequency.

The main task, however, was to perform the mathematics to calculate the
position, and to monitor the keyboard and drive the display.

As the hardware tracking loops became more integrated, they ceased to be
autonomous, so the micro workload grew, especially on receivers designed
for high-dynamics vehicles, where predicting the doppler shift becomes a
problem.

Despite the rapid increase in microprocessor performance, all the signal

processing was still done in the hardware tracking channels, as the micro
could not historically keep up with the speed demands.

3 Why change?.. the problems

It was decided to design a hand held receiver. That means low chip count
for size and for power consumption. It also means rapid satellite acquisition
time, both for convenience (ones arm starts to ache after a very few seconds
of holding something at arms length), and for battery life.

Thus the problem area to be attacked was the hardware signal processing.
This used a large number of chips, as the custom ASIC approach was not
open to me, and thus also space and power. It also is the section that deter-
mines the acquisition time... and the traditional approach takes an average
of 44 seconds to acquire a satellite, worst case of double that. The reason
for this long time is that it must search thru a large number of frequency
domains(say 10), and a large number of code offsets(2046), resulting in
20000 trials, each requiring the lock up time of the PLL.

4 What the transputer brings to the party

The transputer is a very high-speed general purpose processor, with on
chip serial communications that can transfer up to 1.8Mbytes per second
on each of 8 links (4 in, 4 out). The communications is autonomous from
the processor, which only authorises the communication at a cost of about
1 us per message, no matter what the message length.

So the transputer can perform i/o operations concurrently with the main
processing. Even more significant is the speed of the processing... the sim-
ple maths operations such as ADD or XOR needed for this type of signal
processing take 50 or 100 nanoseconds.

In order to allow such speeds of I/O and computation, the transputer pro-
vides 4Kbytes of static RAM on chip (Figure 4). Being on chip it cycles in
50ns on the 20MHz parts, avoiding the problems of driving pins and printed
circuit tracks to external memory.

If more than 4kBytes is needed, it can be added externally, and then slow

inexpensive memory can be used, as the time critical programs can be given
the fast internal RAM.

The availability of a 10MIPS machine rather than the 0.5MIP micro con-
ventionally used makes a significant difference to how the problem can be

approached. Suddenly it becomes possible to handle the signal directly with
the micro ... and in the case of GPS, this means 5 separate signals.

Another major feature of the transputer is the hardware scheduler. Even a
single transputer can handle multiple jobs at the same time. Conventional
processors doing this take a large percentage of the CPU time managing the
interaction between them, but in the transputer, this is performed entirely
in hardware at negligible time penalty. As a result the input job, performed
by the serial communications hardware, the signal processing job, and the
computation/user interface job can all run simultaneously, and the CPU will
switch from one to the other transparently.

System 16 bit
Services Processor

H

Link

] Services
Timers
Link

16} Interface

4k bytes |, N

of 16 16
On-chip N— U
RAM

Link
Interface

Link
16_ | Interface

% Link
External Interface
Memory | 16

Interface N~ V] Event

Figure 4: Transputer architecture

5 The new approach - Software Signal Processing

The new approach is to perform all the signal tracking in software. Essen-
tially the same RF front end is used, but to a lower frequency of around 1.5
MHz... the lowest frequency that can conveniently handle the bandwidth.
This is then fed into the transputer for processing as shown in Figure 5.

The signal has to be read in to the processor, multiplied by the locally
generated code, filtered and detected. The easiest way of achieving the last
two operations is to down convert to a low frequency and apply a low pass
filter, then perform an FFT if the frequency is unknown, or a synchronous
down conversion to DC if the frequency has already been determined. In
the following sections, we will cover the approach taken for a single satellite,
then later demonstrate how vast economies can be achieved when performing
the work for multiple signals.

10

5.1 Input

To input the signal two methods were tried - an analogue to digital converter,
or hard-limited one bit signals. With the former, one is severely limited in
I/0 bandwidth, and does not achieve a 100 per cent duty cycle. One takes a
few milliseconds of off-air signal, and processes them inside 20 milliseconds,
resulting in a 10 - 20 percent utilisation of the incoming signal.

With the hard limited approach, a faster sampling rate can be used without
hitting I/O limits, and by devious tricks that process a word’s worth of
samples (16 or 32) in a single instruction, a vast saving in processing

1.5MHz link adaptor

1575.42 120-160MHz
Oscillator chain | }(eyboarc{ l Screen
IMS T222
EPROM RAM Transputer

Figure 5: GPS navigation system hardware

can be achieved. Additionally no AGC circuits are needed in the front-end.

Thus the chosen design clocks a hard limited signal into a shift register, and
when a byte has been collected, feeds it down a transputer link using a link
adapter. This uses a link adapter plus two TTL chips (Figure 6). Because
the link is attached to an autonomous DMA engine in the transputer, no
CPU time is involved in input.

8 input pins
(3 keyboard, 5 spare)

Hard limited signal 8 bit Load
shift register|

Do-7 Links to

V| con transputer
—dock N /16 counter

7 bits to drive display
(5 shared display/keys)
(1 dedicated to display)
(1 shared bleep/serial)

Figure 6: Interface for 2.5MHz hard-limited samples

11

5.2 Code Correlation, Down Conversion

Once a buffer has been filled in the processor, the hardware scheduler wakes
the cpu, which switches buffers so that the next message will go into another
buffer while this one is processed. Thus the data is never copied, it is
processed in situ.

The code correlation function consists of multiplying the incoming samples
by a code stream which is held in memory. It is a binary stream, so is packed
one sample per bit.

The down conversion operation consists of multiplying by a locally generated
set of samples that represent a synthetic local oscillator. These are generated
once only, at start-up, or even kept in the ROM, and are also hard limited
one-bit samples. The result is then at around 4 KHz, plus or minus the
doppler shift.

Because these two multiplies represent the equation
y := signal[i] * code[i+offset] * local.oscillator[i]

it can be seen that once the correct code offset is achieved, code*local.oscillator
can be calculated once and saved, thus reducing the repetitive work in the
loop. Even before the offset is found, this is valid, as an offset applied to
the local oscillator only represents a phase shift, which is acceptable at this
stage. Note that whilst it is imperative in the analogue world to perform the
code correlate before the down conversion, to prevent the lower edge of the
bandwidth going negative, there is no such restriction in the mathematical
world, and hence no parentheses were used in the above equation. (occam
would require them)

So the equation becomes :

y := signal[i] * code.LO[i+offset]

which by redefining the base of code.LLO becomes
y := signal[i] * code.L0.offset[i]

Now we can remember that the signal is only one bit wide, and is packed 16
to a word on the T222 transputer. A one bit multiply is an exclusive-OR
operation so assuming a group of input samples in a buffer, one could use
the following code:

12

SEQ i = O FOR samples/16
y[i] := signal[i] >< code.LO0.offset[i]

Note that a 16 two microsecond multiplies have been reduced to a single
100nanosecond XOR operation, a speed up of 320 times!!!. Now the loop is
dominated by the loop control code, around a microsecond, and the array in-
dexing. Both these are solved by opening the loop out in-line. This removes
the loop control, and allows the transputer’s very efficient constant-index
instruction to be used. Assuming a buffer of 128 samples, ie 8 16bit words,
this becomes:

SEQ
y[0] := signall[0] >< code.LO.offset[0]
y[7] := signal[7] >< code.LO.offset[7]

This code generates the same number of output samples as there were input
samples, so although it has performed a huge amount of work, it has not
reduced the size of the data. This can be done in the filtering operation.

5.3 Filtering

The sample stream now represents a 4 KHz carrier sampled at 2.5 or 5
MHz. For 32 bit transputers, the higher rate is used, giving increased noise
performance. Either rate is far higher than required, so the samples are
decimated. Additionally, in order to filter the signal, a large number of
samples need to be averaged.

These two tasks can be combined, and the transputer has a very effective
instruction that will perform the task for a word’s worth of samples at a time.
This instruction is available directly in occam as the BITCNT predefine. By
careful choice of sample rates and buffer sizes, the filter bandwidth comes
out correctly in the wash... this one averages 128 samples, which represent
50 microseconds sampled at 2.5 MHz, giving a filter that has a deep null at
20KHz, but passes 0-8KHz.

Thus the following code will filter and decimate, counting the number of
bits set in each word cumulatively

SEQ
accumulate := 0
SEQ i = 0 FOR 8 --would be 4 on a 32 bit transputer

accumulate := BITCNT(y[i],accumulate)

13

The same rules can be applied to speed this up as before, opening the loop,
but in fact the best approach is to integrate the active line into the same
open loop with the correlate/convert operation, yielding:

SEQ
accumulate := 0
accumulate := BITCNT(signal[0] >< code.LO.offset[0],accumulate)
accumulate := BITCNT(signal[7] >< code.LO.offset[7],accumulate)

This code compiles into extremely efficient instructions.... it can be improved
by less than 5 percent by hand coding in assembler. The improvement comes
from eliminating the intermediate stores to the variable ”accumulate”, and
can also be achieved in occam by combining all eight lines into one, with
appropriate brackets.... however it is not proposed to demonstrate this on
the printed page as it is too narrow.

The assembly code instructions for the main expression are shown below.
For an explanation of the mnemonics, see [2] and [3].

LDL signal.b.i -- address of signal 2
LDNL J -- constant index 2
LDL LO.code.1i -— address 2
LDNL Jj -- constant index again 2
XOR -- (including prefix) 2
BITCNT -- (worst case) 32

-- mno. of 50ns cycles 44

On a T425-20, execution time is 2.2us per 32 samples. With overheads, this
becomes 327us per 5000 samples.

This combined code has now achieved a single sample representing 50 mi-
croseconds of off-air signal, and it has less than 20 microseconds of CPU
time to do it. All future work will be done on these slow samples, so absorbs
very little CPU time, as it runs only 1/128 as often.

5.4 Detection - Coarse FFT

In acquisition mode, we need to look at the output of processing using a
particular code offset to determine whether a signal has been found. If the
code offset is incorrect, we will be unable to find a signal.

14

Thus we continue in the fashion described above until sufficient slow samples
have been built up.... at this stage, 16. We then perform an FFT on these
samples, which will show the energy in each 1.25KHz band from zero to
20 KHz. We scan the output in the lowest 8 bands, and if it exceeds a
predetermined threshold, we have found the satellite code offset and can stop
searching. Otherwise, the processing repeats at a different code offset. The
coarse 16 point FFT takes around two milliseconds.... and only represents
one millisecond of input data, so is not feasible for a 100 percent duty
cycle system after acquisition, so now having determined the code offset,
we concentrate on determining the doppler frequency accurately.

5.5 Detection - Fine FFT

The input and processing system is then allowed to run for a longer period
at the offset thus found. When 1024 low-frequency samples have been ac-
cumulated, an FFT is run on these, giving a frequency resolution of about
20 Hz. Thus a new low frequency local oscillator stream can be generated,
which when multiplied by future incoming LF samples, will directly convert
them down to base band DC.

5.6 Detection - Convolution

Future incoming low-frequency sample streams are multiplied by the new
synthetic stream, yielding the down load data from the satellite. This new
final down conversion needs to be performed in phase and quadrature, in
order that gradual phase drift caused by slight error in the synthetic carrier
frequency can be monitored, and thus not interpreted as data, and also so
that the need to correct the synthetic carrier periodically can be detected.
The maximum rate of change is about 2KHz per hour, or 33 Hz per minute,
so a new carrier is needed every 40 seconds or so... so rare that it does not
impact CPU utilisation significantly.

The sample stream on which the convolution is performed can be analogue,
ie numbers in the range 0-127, or it can be hard limited and packed as it
is created. This latter case costs some noise performance, but works well
for the single satellite case, and takes negligible CPU time as the synthetic
stream can also be limited and the operations performed a word at a time
as before. However for ultimate performance, it can be done explicitly with
full word values, as there will only be around twenty points per millisecond
to be handled. In this case it takes about two percent of the CPU.

15

6 Achievements so far - now more satellites

Thus we have shown how we can acquire one satellite, taking some 36 percent
of the CPU in the high-speed signal processing and some two percent in the
low frequency processing. We need to track four satellites, and ideally a
fifth to allow a clean handover when one goes below the horizon, so either
we accept a less than 100 percent duty cycle, we add more processors, or we
think up some tricks.

Reducing the duty cycle makes synchronous operation difficult, makes car-
rier phase tracking difficult, and degrades the noise performance. Adding
processors is easy with the transputer.. they simply bolt together with no
additional hardware or software, but the lower end of the market, this may
not be economic. For high performance military systems, this would be the
approach to take.

The clever tricks approach seems to be most appropriate. The most produc-
tive of these is to avoid having to perform the high-speed signal processing
separately for each satellite, but to do it once for them all.

There are two approaches to this. One is to square the incoming signal. This
automatically multiplies the code and signal by themselves, resulting in a
term that is signal squared, with the code removed. However this removes
all code timing information, and tracking must be done from the the carrier
phase. Such systems are very hard to initialise, and could not use the hard
limited approach, as squaring a hard limited signal has no meaningful effect.

The second approach is to use a composite code method, where a synthetic
code is created that is the best approximation to all four or five codes re-
quired on a per bit basis. Initially this code is created with no offset between
the codes, and is run through the sample stream to find all the satellites.
Knowing their offsets, a new composite code is created so that the codes are
correctly offset, and a single pass over the data will pull out the signal for
all four satellites. Thus the same 36 percent of the CPU time will do the
work for all the satellites, and the same acquisition effort likewise.

The low frequency work must still be done separately, but this means that
the 2 percent becomes 8/10 for 4/5 satellites, or still negligible if one per-
forms it on a single bit basis.

Just as the synthetic carrier frequency will drift due to changes in the doppler
shift, the code offsets will change due to the satellites movement. They will
reduce for ascending (approaching) satellites, and increase for descending
ones. The maximum rate of change, however, is about one chip every 1.5
seconds, [4], so the creation of a new stream every half second would suffice,
again absorbing negligible CPU time. Once the first position fix has been

16

obtained, all these changes can be predicted, and additionally they can be
monitored .. this one by dithering the offset by one incoming sample and
establishing whether the advanced or retarded signal is stronger for each
satellite, allowing fine tuning of the prediction.

7 Position Calculations

We now have a system that can acquire and track the signal from five satel-
lites continuously with a 100 percent duty cycle, with 3 to 5 MIPS of CPU
resource still available for position calculation, the remainder having been
used by the signal processing.

The satellite position calculation requires simple calculations plugging in
the coefficients down loaded from the satellite, and this takes less than two
milliseconds of CPU time. The equations are given in the GPS spec [1].

The user position calculation is a solution to the four equations

2 2 2 2
(Range.i-ct) = (X - Xi) + (Y - Yi) + (Z - Zi)

for i = 1 to 4, where Range is the distance from satellite to receiver, calcu-
lated from the propagation delay assuming a perfect receiver clock, c is the
speed of light, t is the user clock error (unknown), XYZ is the user position
(unknown) and XYZi is the position of satellite i.

The user clock error becomes the fourth unknown, with XYZ, to be solved
for. Note that the first result will not be perfect, as the satellite positions
were calculated with respect to time, and the time used was ”"wrong”. How-
ever successive calculations will yield progressively more accurate results for
t, and thus for XYZi, and thus for XYZ.

The user does not need a position update more frequently than once every
five or ten seconds, so it is usual to put a filter on the data that averages
over such a period before running the position calculation. Such a filter can
also allow for short outages of a satellite signal caused by local obstructions
such as tall buildings. However on a portable set, a repetitive display is
probably unnecessary... the above equations could be solved iteratively until
the results stabilised, and then the complete set turned off except for the
display, in order to conserve power.

A marine (yacht) receiver would have an additional suite of software to
provide data such as average course and speed, to give distance, bearing and
estimated time of arrival at the next waypoint, to follow a route or sailplan

17

through a pre-selected group of waypoints; and to raise various alarms when
off course. It would also provide outputs to control an autopilot. All this
software has been written for the transputer based navigation system... it is
a lot of code, but executes relatively rarely, so does not impact on the CPU
time.

8 Mechanical Details, Display and Keyboard

The display of a handheld version need only be a position, either in lati-
tude and longitude or in local coordinates such as National Grid Reference.
However my implementation allows for the handheld to be used on boat, so
includes the larger display and a keyboard for mode selection and waypoint
entry. The prototype uses a display with two lines of forty characters, or-
ganised such that it can be exchanged for a 4 x 20 character version. These
have compatible interfaces, and the latter allows the face of the unit to be
100mm wide by 170mm high, suitable for a hand-held pocket set.

The Link Adapter described above for inputting the off-air signal also pro-
vides 8 output pins. These are use to drive the display module, and to
strobe the keyboard and operate a bleeper to acknowledge key depressions.
The shift register used to capture input samples also has a parallel input,
and this is activated to read the keyboard as necessary. Thus no additional
hardware is needed. This entails some slightly complex software to share
the transputer link, but is worthwhile on a portable. On the marine version
a second link adapter for the user functions has been used. This allows a
clean separation of the software, and also makes a separate control head for
the charthouse, the cockpit and the flying bridge very economic extensions.

The simple handheld version would have the transputer, three 28 pin chips
and 4 TTL packages. If the navigating functions are included, it would use
more memory, expanding to 5 28pin chips. The processor board is the same
size as the keyboard,about 90 x 70 mm, and lies beneath it, allowing a very
thin lower case, except in the bottom 30mm, where it thickens up to contain
the batteries (Figure 7).

The RF sections are built on a board 90 x 120 mm in the folding cover of the
set, with a patch aerial with the same size ground plane. Thus the combined
unit is about 25mm thick, that being dictated by the battery dimensions,
and opens into two hinged units about 13mm thick, with a convenient thicker
grip point around the base.

These sizes are using conventional packaging. Using surface mount com-
ponents would not gain anything on the full facilities model, as the size is
dictated by the keyboard, battery and display.

18

Aerial

[T T 1
(= =<
9
Front view Side view Side view (stowed)

Figure 7: Handset

On the position-only handheld, the size could be reduced to 80 x 125 x
25, using no keyboard and a smaller display, but could still use conven-
tional packaging. Any smaller than this would suffer badly from the reduced
groundplane under the aerial.

9 Conclusions

The use of an ultra-high speed general purpose microprocessor such as the
transputer allows the implementation of functions previously restricted to
hardware, with appropriate benefits in flexibility, space and assembly costs.

Using an off-the-shelf component rather than custom silicon signal process-
ing allows the smaller company access to the technology, rather than limiting
it to the vertically integrated companies that either have vast funds or in
house semiconductor operations.

The transputer card takes up no more space than the micro-controller it re-

19

places, but an entire suite of signal processing hardware has been removed,
allowing an implementation that is suitable for portable use or panel mount-
ing in terms of both size and power consumption, and brings the high tech-
nology accuracy of the GPS system to the level of cost of the old Decca and
LORAN systems that have been running since the war.

References
[1] MOD/NATO STANAG 4294 Draft H Feb 1987 Navstar Global Posi-
tioning System (GPS).
[2] The Transputer Databook, INMOS Ltd, 1989.

[3] The Transputer Instruction Set , A Compiler Writer’s Guide, INMOS
Ltd, 1988.

[4] GPS Signal Structure and Characteristics, J J Spilker, Journal of the
Institute of Navigation (USA), Vol 25 No 2 Summer 1978.

20

	1 Introduction - background to the GPS
	1.1 Space Segment
	1.2 Command Segment
	1.3 User Segment

	2 The traditional approach
	2.1 RF front end
	2.2 Hardware signal processing loops
	2.3 Processor

	3 Why change?.. the problems
	4 What the transputer brings to the party
	5 The new approach - Software Signal Processing
	5.1 Input
	5.2 Code Correlation, Down Conversion
	5.3 Filtering
	5.4 Detection - Coarse FFT
	5.5 Detection - Fine FFT
	5.6 Detection - Convolution

	6 Achievements so far - now more satellites
	7 Position Calculations
	8 Mechanical Details, Display and Keyboard
	9 Conclusions
	References

