
Support for
debugging/breakpointing

in transputers

INMOS Technical Note 61

INMOS Limited

January 1989
72-TCH-061



You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2



Contents

1 Introduction 4

2 Breakpoint instructions 4

3 Other instructions 6

4 Summary of new instructions 7

5 Specification of new instructions 7

3



1 Introduction

Some transputers have additional instructions to support debugging. The
instructions allow breakpointing to be implemented, particularly for C and
Fortran programs.

The instructions provided fall into two groups. The first group provides
support for breakpointing (used in a debugging environment) in a way which
is upwards compatible with the transputers without breakpoint support.
The second group helps in the identification of transputers in an arbitrary
mixed array.

2 Breakpoint instructions

There is a need for a debugger to allow the user to stop execution of his
program at any point, in order to discover the values of variables and the
state of the program at that time. This can be done by a post compilation
process if any instruction produced by the compiler can be replaced with
a breakpoint instruction. The breakpoint instruction must switch control
to another context, and preserve all user values, in particular the proces-
sor stack contents. The user process under investigation is replaced by the
breakpoint process. Once completed the user instruction must be substi-
tuted back again, the user’s values in the processor stack must be replaced,
and the context switched back to the user process.

The provision of such a breakpoint facility allows single-stepping of instruc-
tions by the repeated application of the breakpoint instruction to subsequent
instructions.

The breakpoint instruction must be the same size as the shortest instruction
length in the instruction set. In the case of the transputer, this is one byte,
the length of the primary instructions. The op-code for the breakpoint is
#00, which corresponds with the instruction jump 0 (j 0). Jump 0 is in
some senses a no-op instruction, although it can be compiled by a compiler
in order to allow a low priority process to be timesliced. As a no-op, it can
also occur as the last entry in a jump table, for example. In order to ensure
that programs which do not use the breakpointing mechanism are unaffected
when jump 0 is executed, the effect of jump 0 to cause a breakpoint must
be explicitly switched on by a debugger.

The context of a process in the transputer model involves a workspace
pointer (Wptr) and an instruction pointer (Iptr). Wptr is a word address
pointer which points to a workspace in memory. Iptr points to the next
instruction to be executed, for the currently executed process. The context

4



switch performed by the breakpoint instruction exchanges the Wptr and
Iptr of the currently executing process with the Wptr and Iptr held above
MemStart. The address of MemStart can be found in the relevant datasheet.
There are two contexts held above MemStart, one for high priority and one
for low priority, to allow processes at both levels to have breakpoints simul-
taneously.

The address map above MemStart is as follows:

Purpose Word Offset from MemStart
IPtr (Low Priority) 3

WPtr (Low Priority) 2
IPtr (High Priority) 1

WPtr (High Priority) 0

The breakpoint mechanism has been implemented by providing a user mode
and a debugger mode. There is a user mode and a debugger mode at both
levels of priority. In addition to the single byte jump 0 breakpoint instruction
which can be enabled or disabled, there is a two byte op-code which forces
the breakpoint context swap even if jump 0 breakpoint is disabled; this
allows the debug process to disable the jump 0 breakpoint instruction, and
still return to the user process.

In addition, to allow the process queues to be manipulated in the debug
process, four instructions have been added to disable and enable the inter-
rupts from the two prioritised timer queues. The timer continues to count
time normally while the timer interrupts are disabled. However, any pend-
ing process waiting on the timer queue will not be placed on the back of the
corresponding active process queue (the queue of the same priority as the
pending process) until that timer queue’s interrupt is re-enabled.

An instruction ldmemstartval (load MemStart value) which returns the value
of the MemStart address in the Areg of the processor stack has been provided
to ease the setting up of the debug process at initialisation time.

On transputers with debugging support instructions, the effect when Reset
is taken low for a reset is to clear the ErrorFlag, HaltOnErrorFlag and En-
ableJ0BreakFlag. On transputers without debugger support, the ErrorFlag
and HaltOnErrorFlag are not initialised on reset. In all transputers analyse
leaves the processor flags unchanged.

5



3 Other instructions

The load device identity (lddevid) instruction pushes the device type identity
into Areg.

Each product is allocated a unique group of numbers for use with the lddevid
instruction, allowing several revisions of the same product to be differenti-
ated. The identity value for a specific product can be found in the relevant
datasheet.

The lddevid op-code is a no-op on the IMS T414, IMS T212, and IMS T222.

The lddevid op-code has the following effect on the IMS T800:

#17C load device identity op-code on T800

Areg’ = undefined
Breg’ = Creg

After executing the sequence

ldc 2; ldc 1; ldc 0; lddevid; stl temp

Areg contains 1 for a T414 or T212, 2 for a T800, and 0 for any product
with a device identifier (in which case temp contains the identifier).

The fptesterr op-code is a valid instruction on some processors, such as
the IMS T425, which do not incorporate a FPU. Bootstrap loaders which
incorporate this instruction will operate on all processors for which fptesterr
is a valid op-code. The fptesterr instruction (set Areg of the processor stack
to true if the FPU error flag is clear, set the Areg to false if the FPU error
flag is set) returns true in Areg on processors without a FPU. The other
op-codes used for FPU operations do not have any defined function on such
processors and should not be executed.

The pop (pop processor stack) instruction is available on some transputers.
This instruction discards the contents of Areg, placing the contents of Breg
in Areg and the contents of Creg in Breg. The final value of the Creg is not
defined.

6



4 Summary of new instructions

Code Abbreviation Cycles Name

#0 j 0 3 jump 0 (break not enabled)
11 jump 0 (break enabled, high priority)
13 jump 0 (break enabled, low priority)

#B1 break 9 break (high priority)
11 break (low priority)

#B2 clrj0break 1 clear jump 0 break enable flag
#B3 setj0break 1 set jump 0 break enable flag
#B4 testj0break 2 test if jump 0 break enable flag is set
#7A timerdisableh 1 disable high priority timer interrupt
#7B timerdisablel 1 disable low priority timer interrupt
#7C timerenableh 6 enable high priority timer interrupt
#7D timerenablel 6 enable low priority timer interrupt
#7E ldmemstartval 1 load value of MemStart address

#79 pop 1 pop processor stack

#17C lddevid 1 load device identity
#9C fptesterr 1 load value true (as FPU not present)

5 Specification of new instructions

In the following specifications the notation used is that defined in Ap-
pendix F of ”Transputer Instruction Set - a Compiler Writer’s Guide”.

j #0 jump

Oreg’ = 0
”break not enabled” ⇒

Iptr’ = ByteIndex NextInst Oreg◦

”break enabled” ∧ Oreg◦ 6= 0 ⇒
Iptr’ = ByteIndex NextInst Oreg◦

”break enabled” ∧ Oreg◦ = 0 ⇒
Mem’ = Mem ⊕ {Index MemStart Offset 7→ Wptr,

Index MemStart (Offset+1) 7→ Iptr}
Wptr’ = Mem (Index MemStart Offset)
Iptr’ = Mem (Index MemStart (Offset+1))
where ”at high priority” ⇒ Offset = 0

”at low priority” ⇒ Offset = 2
This instruction has the potential of causing a process to be timesliced

7



break #B1 break (swap process context)

Mem’ = Mem ⊕ {Index MemStart Offset 7→ Wptr,
Index MemStart (Offset+1) 7→ Iptr}

Wptr’ = Mem (Index MemStart Offset)
Iptr’ = Mem (Index MemStart (Offset+1))
where ”at high priority” ⇒ Offset = 0

”at low priority” ⇒ Offset = 2

clrj0break #B2 clear jump 0 break enable flag

EnableJ0BreakFlag’ = clear
Iptr’ = NextInst

setj0break #B3 set jump 0 break enable flag

EnableJ0BreakFlag’ = set
Iptr’ = NextInst

testj0break #B4 test if jump 0 break enable flag

Creg’ = Breg
Breg’ = Areg
EnableJ0BreakFlag’ = set ⇒ Areg’ = true
EnableJ0BreakFlag’ = clear ⇒ Areg’ = false
Iptr’ = NextInst

timerdisableh #7A disable high priority timer interrupt

”disable high priority timer interrupt”
Iptr’ = NextInst

timerdisablel #7B disable low priority timer interrupt

”disable low priority timer interrupt”
Iptr’ = NextInst

timerenableh #7C enable high priority timer interrupt

”enable high priority timer interrupt”
Iptr’ = NextInst

timerenablel #7D enable low priority timer interrupt

”enable low priority timer interrupt”
Iptr’ = NextInst

ldmemstartval #7E load value of MemStart address

Areg’ = MemStart
Breg’ = Areg
Creg’ = Breg
Iptr’ = NextInst

8



lddevid #17C load device identity

Areg’ = ”Product identity value”
Breg’ = Areg
Creg’ = Breg
Iptr’ = NextInst

pop #79 pop processor stack

Areg’ = Breg
Breg’ = Creg
Creg’ = Areg
Iptr’ = NextInst

fptesterr #9C load TRUE (as FPU not present)

Areg’ = true
Breg’ = Areg
Creg’ = Breg
Iptr’ = NextInst

9


	1 Introduction
	2 Breakpoint instructions
	3 Other instructions
	4 Summary of new instructions
	5 Specification of new instructions

