
Using transputers as
embedded controllers

INMOS Technical Note 57

Philip Mattos & Jamie Packer
Central Applications Group Bristol

April 1989
72-TCH-057-00

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4

2 Transputer hardware 4
2.1 Easy to use . 4
2.2 Communication links . 4
2.3 Concurrency and communication 5
2.4 Low power . 6
2.5 External memory interface . 7

3 Programming transputers 7
3.1 The occam programming language 7

4 Processing performance 7

5 Interrupt handling 8
5.1 Microcoded process scheduler 8
5.2 Low priority processes . 9
5.3 High priority processes . 9
5.4 Interrupt latency . 9
5.5 Interrupt programming . 10

6 Link communication 11

7 Application examples 11
7.1 A VCR controller . 12

7.1.1 The original VCR design 12
7.1.2 Keyboard and display control 12
7.1.3 Channel selection/tuner control 13
7.1.4 Drum synchronisation 13
7.1.5 Programming display on screen 13
7.1.6 Communication with the peripheral chips 14
7.1.7 The transputer based approach 14
7.1.8 Keyboard and display control 15
7.1.9 Channel selection/tuner control 17
7.1.10 Motor control . 20

7.2 Engine control . 21
7.2.1 Conventional approach 22
7.2.2 Transputer approach 22

8 Conclusions 24

References 24

3

1 Introduction

INMOS manufacture a range of high performance microprocessors called
transputers [1]. These combine all the essential elements of a computer
(processor, memory and I/O) in a single component. Transputers can also
include an external memory interface (EMI), to increase the amount of avail-
able memory, and possibly other, application specific, hardware. The table
below summarises the current range of transputer products:

Part Processor Memory I/O Other
IMS T222 16bit, 10MIPS 4KB RAM 4links, 16bit EMI -
IMS T414 32bit, 10MIPS 2KB RAM 4links, 32bit EMI -
IMS T800 32bit, 10MIPS 4KB RAM 4links, 32bit EMI 1MFLOP FPU
IMS M212 16bit, 10MIPS 2KB RAM 2links, 8bit EMI Disk control

4KB ROM 2 x 8bit ports logic
disk interface

An important application area for transputers is as embedded controllers.
This technical note describes the features that make transputers particularly
useful as controller chips. The emphasis is on a new 16 bit device, the IMS
T222.

2 Transputer hardware

A block diagram of the IMS T222 is shown in Figure 1

2.1 Easy to use

Transputers are designed to be easy to use. A transputer requires only a 5 V
supply and a 5 MHz clock in order to function as a usable computer. Minimal
external ‘glue’ logic is required to build a system with additional external
memory or peripherals - typically 10 times less than other processors for a
comparable system.

2.2 Communication links

Transputers can be connected together via the serial links. Each link uses
only two wires and connects two transputers together. This allows IMS T222’s

4

Figure 1: IMS T222 block diagram

to communicate at data rates up to 20 Mbits/second. The links are con-
trolled by autonomous DMA engines and so can transfer data independently
of, and concurrently with, the processor.

The links allow transputers to be used to build distributed systems, where
processors are local to the equipment they control but can transfer informa-
tion via the links. They can also be used to construct highly parallel sys-
tems for tasks requiring large amounts of computing power. Alternatively
the links allow some processing to be farmed out to a second processor.
For example several IMS T222’s could share a single IMS T800 acting as a
floating point co-processor (see Figure 2).

2.3 Concurrency and communication

Transputers provide support, in hardware and microcode, for concurrency
and communication. There is a microcoded scheduler which allows any
number of concurrently executing processes to share the processor’s time.
The scheduler supports two levels of priority. Low priority processes are
executed whenever there are no high priority processes which are ready to
execute. A high priority process runs until it has to wait for a communication
or timer input, or until it has completed processing. When a high priority
process becomes ready it can interrupt any currently executing low priority
process. Processes which are descheduled, waiting for a communication or
delayed input, do not consume any processor time.

5

Figure 2: T800 as a co-processor

The IMS T222 has a typical context switch time of 600 ns and a maximum
interrupt latency of 53 processor cycles (approximately 22µs).

Transputers include a large degree of on-chip concurrency, e.g. an IMS T800
can communicate through 8 link channels, perform integer processing and
floating point arithmetic all at the same time. Writes to external memory
can overlap with processing or accesses to on-chip RAM.

2.4 Low power

The IMS T222 also consumes little power; a system with external memory
will consume approximately 100 mA. When the processor and links are idle,
or if there is no external memory, then the current drawn will be only 80 mA.
Although not guaranteed by INMOS, experiment has shown that the supply
voltage can safely be reduced to 3 Volts when the processor is idle. This
further reduces the power consumption to about 60 mW. Active power con-
sumption can also be approximately halved by running the transputer with
a 2.5 MHz input clock. Compatibility with other transputers is maintained
if the links are set to run at ’20 Mbits/second’ when they will actually work
at the standard link speed of 10 Mbits/second.

6

2.5 External memory interface

Transputers can be bootstrapped from ROM or from a message received
down one of the links. This makes it possible to build a multiprocessor
system with only a single ROM to bootstrap all the transputers. The IMS
T222 has a simple, 16 bit wide, non-multiplexed memory interface. This
allows access to up to 64 Kbytes of memory via separate address and data
buses. The data bus can be configured for either 8 bit or 16 bit wide memory,
allowing the use of a single bank of byte-wide memory. Both word-wide and
byte-wide accesses can be mixed in a single memory system.

3 Programming transputers

Compilers are available to program transputers in a range of high level lan-
guages. INMOS supplies compilers for C, Fortran, Pascal and occam 2.
Occam was designed to allow simple and efficient exploitation of the trans-
puters unique features. Occam is used in this note to provide programming
examples to avoid the need for assembly language or a special dialect of a
standard language.

3.1 The occam programming language

Occam describes systems in terms of concurrently executing, communicating
processes (see Figure 3). This model is probably more readily assimilated
by hardware engineers than programmers who have been brought up in a se-
quential programming environment. The ability to have multiple processes
active at the same time removes much of the need for interrupt handlers and
real-time kernels required with other processors. Because there is microcode
and hardware support for concurrency and communication, structuring pro-
grams in this way is as efficient as traditional procedure/subroutine ap-
proaches.

4 Processing performance

The processor in the IMS T222 typically executes 10 million instructions per
second at 20 MHz. Many instructions are one byte long and execute in a
single cycle. There is a fast, unchecked multiply instruction; this is designed
primarily for array subscript calculations but can be used for normal maths
if overflow checking is not required. There are also instructions to support
multiple length arithmetic.

7

Figure 3: Occam Model of Communicating Processes

A number of standard benchmarks have been run on the IMS T222 giving
the following performance figures:

Benchmark Performance
Whetstone 180K Whetstones/sec
Dhrystone 8711 Dhrystones/sec

Savage 21.9 seconds (abs. err. 1.2E-9)

The IMS T222 is very fast at floating point arithmetic (in the Whetstone
benchmark it performs slightly faster than the Intel 8086/7 combination and
about ten times faster than a 68000).

5 Interrupt handling

Interrupts are the usual way of handling devices that require infrequent but
fast servicing.

5.1 Microcoded process scheduler

The transputer has a microcoded scheduler which enables any number of
concurrent processes to be executed together, sharing processor time. Pro-
cesses which are descheduled, waiting for a communication or delayed input,
do not consume any processor time. The scheduler supports two levels of
priority.

8

The latency between the time a process becomes ready to execute and the
time it begins processing depends on the priority at which it is executing.
Low priority processes are executed whenever there are no high priority
processes which are ready to execute. A high priority process runs until it
has to wait for a communication or timer input, or until it has completed
processing.

5.2 Low priority processes

Low priority tasks are periodically timesliced to provide an even distribution
of processor time between computationally intensive processes. If there are n
low priority processes then the maximum latency is 2n−2 timeslice periods.
The latency will generally be much less than this as processes are usually
descheduled for communication or by a delayed input before the end of their
timeslice. The timeslice period is approximately 1 ms.

5.3 High priority processes

High priority processes run whenever they are able to, interrupting any
currently executing low priority process if necessary.

PRI PAR
... interrupt handler
... background tasks

There are several sources of interrupt on the transputer, these can be internal
or external. Internal sources are the completion of a channel communication
or a delayed timer input becoming ready. External interrupt sources are
the communication links and the event input pin; these are all mapped
onto communication channels. As a transputer can support any number of
processes communicating on channels and waiting on timers, there can be a
very large number of interrupt sources.

5.4 Interrupt latency

If a high priority process is scheduled, and no other high priority pro-
cesses are running, then the interrupt latency is typically 19 processor cycles
(0.95 µs with a 20 MHz processor clock). The maximum interrupt latency
is 53 cycles (2.65 µs).

These times indicate that the IMS T222 can handle hundreds of thousands
of interrupts per second, even while engaged in computationally intensive

9

tasks involving floating point calculations. For example, if the background
tasks is the Whetstone benchmark and the timer is used as a source of
interrupts then the following figures are obtained:

Interrupts/sec Whetstones/sec
0 180,000

10,000 165,000
50,000 116,000

100,000 74,000
250,000 2,500

The interrupt handling routine in this test was an empty loop, so what is
being measured is the overhead of handling an interrupt. If the interrupt
handler performs some useful work then time taken for that is simply taken
from the total CPU time available - i.e. the time available for the background
task will be reduced in direct proportion to the time used by the interrupt
handler.

5.5 Interrupt programming

All sources of interrupts are handled very simply and regularly on the trans-
puter. This is very important as interrupts handlers are notoriously difficult
to write and debug; they are usually only supported by programming in as-
sembler and this is often very difficult to integrate with other code written
in a high level language. All interrupts are seen by the transputer program-
mer as communications or timer waits. So, the high piority process in the
previous example can be scheduled by a communication on a channel:

PRI PAR
-- interrupt handler
SEQ
interrupt ? x
... service interrupt

... background tasks

This communication can be on an internal channel from another process on
the same transputer, a link from another processor or a transition on the
EventReq pin. The difference is simply the address of the communication
channel. So, if the example above were preceded by PLACE interrupt AT 8,
the interrupt source would be the EventReq pin (8 is the address of the
event channel logic). Without an explicit placement the source of interrupts
will be the process at the other end of the channel interrupt.

10

So, code which handles an external event, for example, can easily be tested
by using a normal communication channel in place of the event channel.
When the behaviour of that process has been tested then it is only neces-
sary to place the channel at the address of the event input and the process
becomes an event handler.

6 Link communication

The serial communication links provide a simple and fast means of transfer-
ring information between transputers. Each link requires only two wires and
provides bidirectional communication (i.e. two occam channels) between two
transputers. The links are controlled by their own DMA engines which can
each operate concurrently with, and independently of, the processor. This
allows the links to transfer data at the same time as the processor is execut-
ing another process; when the communication completes the process which
initiated it will be rescheduled.

The INMOS standard link speed is 10 Mbits/second, but the links on the
IMS T222 support data rates up to 20 Mbits/second. This gives a bandwidth
on each link of 1.48 Mbytes/second unidirectionally or 2.05 Mbytes/second
bidirectionally.

7 Application examples

The charter for the study was to demonstrate the suitability of the 16-bit
members of the transputer family, the IMS T212, and the IMS M212, for
controller applications. There were two vehicles for the study. The main
one was a video cassette recorder (VCR) controller, and a subsidiary was an
engine controller for a car. The previous generation VCR was to be taken as
a basis, and its multi-chip control circuitry replaced with a transputer based
board. On the engine controller, the mission was to allow much finer-grain
control of the engine, and possibly to generate the control parameters on
line, rather than using a lookup table approach as is necessary using slower
controllers. 1

1The software examples in this document are shortened versions of software produced
under the IMS D700C development system for demonstrations. Whilst the full versions
have been demonstrated to function correctly, the programs shown here are incomplete
and require further detail added before use.

11

7.1 A VCR controller

7.1.1 The original VCR design

The original VCR used a low performance 8-bit micro-controller, and sev-
eral intelligent peripherals. The main functions were keyboard and display
control, including time of day if the display was idle, channel selection and
control of the UHF tuner. In addition, via peripheral chips, it controlled the
locking of the drum motor to incoming video sync signals, and the display
on the screen, superimposed on off-air video, of programming information
such as channel, start time, end time, for future programmes.

Figure 4: Old VCR architecture

7.1.2 Keyboard and display control

The keyboard was a matrix of simple contact switches arranged 4 x 4. The
display was a plasma display requiring a 7 bit segment pattern and one
strobe signal for each digit.

In order to economise on IO pins, the four drive signals to the keyboard
columns re-used four of the digit strobes. Four further pins detected if a key
in any of the four rows was depressed.

Figure 5: VCR keyboard and Display Circuit

12

In another version, an LCD display was used with its own controller chip
(Hitachi’s 44780 or LCD II). This required a four bit bus, an enable, a write
line and a register select (command/data). In this case, the same four bit
bus is used to activate the keyboard matrix.

7.1.3 Channel selection/tuner control

The UHF tuner is controlled by means of an analogue voltage applied to a
varicap diode. The analogue voltage is generated by a pulse width modu-
lator (PWM), varying the mark space ratio to achieve an accurate control
voltage. In order to isolate analogue, digital and RF signals, the tuner hard-
ware is designed to take a digital PWM signal, so that the ratio is taken of
the well regulated 30 Volt supply within the tuner. The frequency to tune
to is selected by the user as channel n, which is then fine tuned by feedback
from the demodulator (the S curve). The original design had an integrated
PWM circuit on the micro. It implemented a 14 bit accuracy, 7 bits every
cycle, and a further 7 bits by inserting an extra bit-time every nth cycle,
where n is the 7 bit value.

7.1.4 Drum synchronisation

On a VCR, it is necessary to ensure that the helical scanning of the tape
is achieved in synchronism with the incoming video signal, such that the
changeover between heads on the drum occurs during the frame flyback
time and no video is lost. In order to achieve this an optical or magnetic
sensor on the drum generates a sync signal, and the speed of the motor must
be altered in two modes, first to achieve the desired speed, then to maintain
synchronism with the incoming video.

7.1.5 Programming display on screen

The previous generation of VCR displayed the programming information
on the television screen on demand, about ten lines of about 30 characters
giving day, date, time and program. This was achieved with a dedicated
display chip. It was an aim of this project that the transputer take over this
role. No frame store was available, so the three hundred or so characters
had to be generated to the screen at video rate, about 300 ns per character
pixel.

13

7.1.6 Communication with the peripheral chips

Although this part of the project was made obsolete by taking the function of
all the peripheral chips into the transputer, one step in the project involved
implementing RS232 style serial communications with the display controller
and the motor controller. This was provided in hardware on the traditional
microcontroller, but was implemented in software on the transputer.

7.1.7 The transputer based approach

The transputer, even working alone, i.e. a single processor, supports con-
currency. Thus it can run several intercommunicating tasks at the same
time, with negligible inefficiency switching between them. This is achieved
using a hardware scheduler, with no operating system or executive involved.
The occam language allows such tasks to be described. Thus the function
diagram of Fig 4 can be expressed in occam as:

CHAN OF msg1 control.to.display, control.to.motor:
CHAN OF msg2 keyboard.to.control:
PAR
... controller
... video manager
... motor controller
... keyboard/display driver
... tuner

This could be expressed pictorially as shown in Fig 6

Figure 6: Transputer based VCR Software

Note the similarity between the software structure and the original hardware
design.

14

7.1.8 Keyboard and display control

Although separate functions, these are historically combined in order to save
IO pins, even on calculators etc.

Two versions have been demonstrated, the plasma display and the LCD,
the latter via a driver chip. The latter is most appropriate where the front
panel display uses a preassembled display module that includes the driver.

The plasma display required a drive signal to each of seven commonned
segments, and to a digit select pin, with special high voltage open drain
transistors on these particular output pins. A pull-down resistor took the
pins to -15 Volts when the transistor was off.

To drive the display, the following code was used:

BYTE segments, strobes, keys:
PLACE segments AT #4000: --port locations
PLACE strobes AT #4001:
PLACE keys AT #4002: --example addresses only
SEQ
... init
WHILE TRUE -- ie forever
ALT
clock ? AFTER next.update
SEQ
--*********HANDLE DISPLAY*************

digit := (digit+l)\max.digits --REM makes it cycle round

strobes := 0 --so that segment change
--does not corrupt current char

segments := seven.seg[chars[digit]]

strobes := 1 << digit --least significant digit numbered 0

next.update := next.update PLUS time.per.char

--*********READ KEYBOARD**************

key.lines := keys --staticise by single read

IF
key.lines <> 0
IF
(key.lines = old.key.lines[digit]) AND

(NOT reported[digit]) -- debounce
SEQ

15

--lookup and transmit char to controller
key.to.control ! key.table[digit][key.lines]
reported[digit] := TRUE

TRUE --ie otherwise
SEQ
old.key.lines[digit] := key.lines
reported[digit] := TRUE

TRUE
SKIP --no auto-repeat supported

--*************COMMAND from CONTROLLER***************

control.to.display ? chars[next]
next :=(next + 1) REM max.chars --simple version,

--controller does
--scroll and blank

The LCD display model was much simpler. Its controller provided all the
display timing operations, so the refresh is not required. Instead, a timing
operation is needed to feed the character received from the VCR control
process. This simply puts the data on a 4 bit bus to the LCD, and raises
and lowers the enable line with another pin. It must still be done within
this ALT statement, as the keyboard handler shares the same pins.

Thus the line starting segments is omitted above, and the COMMAND from
CONTROLLER section becomes:

control.to.display ? char
BYTE bus: --memory mapped io
PLACE bus AT #4010: --example only
SEQ
clock ? now
bus := char /\ #F0 --top four bits on D4 thru D7
now := now PLUS set.up.time --modulo arithmetic
clock ? AFTER now
bus := (char /\ #F0) \/ enable.bit
now := now PLUS write.time
clock ? AFTER now
bus := char /\ #F0
now := now PLUS hold.time
clock ? AFTER now

char := (char /\ #F) << 4 --bottom 4 bits on D4 thru D7
... pin wiggling as above for second nibble

16

7.1.9 Channel selection/tuner control

Discrete channels were chosen by the user numerically. From this the micro
was required to look up the necessary control voltage required by the tuner
from a table, apply it to the tuner, and then fine tune it by monitoring
the S-curve of the demodulator. For the transputer version the S-curve was
thresholded into separate tune-up and tune-down pins.

Different countries have different standards for tuning. The version chosen
was that the user should select a channel number, then hand tune this up or
down to the station he wished, then press a ”store” button, and from then on
whenever he selected that channel number, he would get that same station.
An auto-search version would actually have been easier to implement, as the
processor can track the S-curve to detect each station.

The program consists of two parallel processes, one maintaining the tuning
database, at the rate that user keystrokes can be input, the other maintain-
ing the PWM analogue output. In this example, ASCII control codes were
used, with a number (0-9) selecting a channel, whose lookup-table value
would be passed to the PWM. Codes ’U’ and ’D’ were used to tune the
channel up and down, and code ’S’ to store the value permanently.

Figure 7: Tuner Processes

PRI PAR
... tuner manager/PWM
... channel manager

The tuner being at high priority minimises jitter on the output waveform as
the job is scheduled immediately. It also gives it access to the 1 microsecond
clock.

The channel manager becomes

... decls
SEQ
... init
WHILE TRUE --ie forever

17

SEQ
control.to.tuner ? control.code
IF
(control.code >= ’0’) AND (control.code <= ’9’)
SEQ
channel := control.code - (INT ’0’)
pwm.value := chans[channel]
tuner.to.pwm ! pwm.value

control.code = ’U’
SEQ
pwm.value := pwm.value + step.size
tuner.to.pwm ! pwm value

control.code = ’D’
SEQ
pwm.value := pwm.value - step.size
tuner.to.pwm ! pwm value

control.code = ’S’
chans[channel] := pwm.value

TRUE --all other cases
SKIP --ignore

Note that the demonstration version written actually had coarse and fine
tune, i.e. different stepsizes, depending whether the control code was upper
or lower case, but this has been omitted for brevity.

The PWM program was written as a direct emulation of the old hardware,
i.e. 14 bits divided 7 and 7. If written for production, it would of course use
16 bits, 8 + 8, as being much more suitable for software implementation.

The algorithm used here allows semi-infinite accuracy over time, with jitter
as allowed by the 2 microsecond timeslot specified. It is a discrete differential
analysis (DDA) algorithm, where every step performs an addition of the
accumulated error, and when the error reaches half a unit, the integer count
is incremented and the error decremented by a normalised unity (in this case
127).

The time domain is divided into three phases.The first is the off time, defined
by the upper 7 bits of the 14 bit pwm value. Next is the on time, defined by
the remaining time in the nominally constant cycle time. The third phase is
the extra on time, added periodically as needed to the cycle length, as the
value in the lower 7 bits of the pwm value accumulate. Note that the DDA
approach means that there is no step change, eg from one insertion every 5
cycles to one every 6. It would go from 5,5,5,5,5 to 5,5,5,6,5 for example, to
achieve very fine tuning. Note that the DDA approach does not require any
multiplication or division.

The reason, in the original hardware and this software, for using two halfwidth
controls is to minimise the filtering required to convert the signal to DC.

18

This method yields a period of 512 microseconds, i.e. 2 KHz, which is eas-
ily low pass filtered. If a single 14 bit value were used, the period would
be 32 milliseconds, i.e. 30 Hertz, very inconvenient, and any filtering that
could handle it would also prevent fast tuning across the band.

The pwm part of the program becomes:

... decls -- initialisation
SEQ
clock ? start
pin := 0
running := TRUE
pwm.value := 63 << 7 -- real program start
upper := pwm.value >> 7
lower := pwm.value /\ #7F
error := 0
extra := 0
WHILE running
ALT
clock ? AFTER start PLUS extra
SEQ
pin := 0
clock ? AFTER start PLUS ((upper << 1) + 1) ie 2 us units
pin := 1
start := start PLUS full.period
error := error + (norm.one - lower) --minus to reverse
IF --as extra is on time
error >= norm.half --while upper is offtime
SEQ
error := error - norm.one --DDA
extra := 2 --microseconds
sync := 1 --to drive oscilloscope

TRUE --for demo
SEQ
extra := 0
sync := 0

to.pwm ? pwm.value --retune request
IF
pwm.value < 0
running := FALSE --stop demo

TRUE
SEQ
upper := pwm.value >> 7 --offtime
lower := pwm.value /\ #7F --accumulate for extra

19

7.1.10 Motor control

The motor control is required to keep the head drum of the VCR in synchro-
nisation with incoming video. To do this the frame sync signal, and that
from a sensor on the drum are fed to the transputer as two separate input
bits, and also fed, ORed together, to the event pin of the transputer.

For the transputer based version, it is arranged that the drum signal is syn-
chronous with, but not in phase with the video, so that the two high priority
interrupts do not occur simultaneously. This is achieved by positioning the
optical sensor appropriately.

The transputer timestamps the two signals, aiming to keep them the correct
number of microseconds apart.

The first task, however, is to accelerate the drum to the correct speed. This
is achieved by timing the drum sync signals, and sending values to a PWM
as described above, which after an analogue amplifier, controls the DC mo-
tor. Note that the version below is a first order filter and will overshoot and
ring due to the mass of the motor and drum. It is deemed accurate enough
after it has been sampled as correct sufficient times. The first few ”cor-
rect” samples will be transitions sampled during the ringing. The number
required must ensure that the speed is within limits for a defined interval.
A more sophisticated version would have several stepsizes depending on the
magnitude of the error, and could then be critically damped.

The second task is then to track the relative phase of the two signals, by a
very similar algorithm.

... decls
SEQ
... init
WHILE accelerating
SEQ
drum.sync ? any
clock ? drum.time.2
VAL period IS (drum.time.2 MINUS drum.time.1)
IF
period > max.period
motor.power := motor.power + step.size

period < min.period
motor.power := motor.power - step.size

TRUE
SEQ
accurate := accurate + 1
IF
accurate > enough
accelerating := FALSE

20

TRUE
SKIP

drum.time.1 := drum.time.2

to.pwm ! motor.power

WHILE tracking
SEQ
PAR
SEQ
drum.sync ? any
clock ? drum.time

SEQ
video.sync ? any
clock ? video.time

IF
(drum.time MINUS video.time) < min.phase
motor.power := motor.power + tiny.step

(drum.time MINUS video.time) > max.phase
motor.power := motor.power - tiny.step

TRUE
SKIP

to.pwm ! motor.power --tell motor

PRI ALT --accept command
command ? tracking --to stop
SKIP --if sent,

TRUE & SKIP --otherwise proceed
SKIP

It can be seen that by taking a functional division approach to implementing
the problem, each element of the program is simple to write and can be
tested and or demonstrated separately, then used as a building block in the
overall application. The inherent parallelism of the transputer’s hardware
scheduler means that, within the limits of the amount of CPU time available,
any number of this style of task can be run simultaneously, i.e. in parallel
sharing the same microprocessor. The final test in situ is required to ensure
that under real-life loads, any crisis times are met, but a well designed system
will show trivial degradation under critical coincidences of CPU demand.

7.2 Engine control

Another project that evaluated the transputers suitability for controller ap-
plications was an engine controller. The demands on CPU-time here are

21

traditionally very high, due to the possibility of needing a spark every 2.5
milliseconds (based on a 4-stroke V8 engine at 6000rpm). There is little
point in recalculating for every spark, however, if the engine rotation sensor
only gives a signal once per revolution.

In addition to ignition control, there is fuel flow control. This again is tra-
ditionally calculated every injection time, which is overkill against a driver
who has a time constant measured in seconds, an engine with a time con-
stant in tenths of a second, and a vehicle mass with a time constant even
slower than the driver. The advantage of the transputer in this application
is that it is powerful enough to support the traditional sledgehammer ap-
proach, but it can also do that little extra calculation that allows a second
order calculation (i.e. prediction, using acceleration), in order that the basic
calculation need be done far less frequently.

7.2.1 Conventional approach

The conventional approach is to use two micros, one responsible for the
ignition system, the other for the fuel system. Input sensors are the accel-
erator position (i.e. demand), the engine position (one pulse per rev), and
the engine load, normally given by a manifold vacuum sensor. The accel-
erator position can be omitted, as unsatisfied demand can be derived from
the vacuum (or lack of). For fuel economy on overrun, a throttle sensor is
preferred, and once provided, it simplifies implementation.

The traditional micro cannot, due to lack of processing power, support either
calculation on a per cylinder basis, nor prediction. Thus the approach is to
use the two micros, and to use a look-up table to get fuel quantity and
ignition timing. However, this approach is limited by the size of ROM
available, so results in a very poor granularity on the engine control.

Thus the approach used is to look up the four corners of the enclosing
rectangle in the operating environment, and to use one of these as an initial
approximation, then during the next few revolutions develop an interpolated,
more accurate solution.

Result . . . poor acceleration, as only at constant speed is the tuning accu-
rate.

7.2.2 Transputer approach

On the transputer, it is possible to do either of the new methods, due to the
order of magnitude speed increase over conventional microcontrollers.

The first method, the sledgehammer approach, is to calculate the timing

22

and fuel quantity for every cylinder as necessary, from scratch.

The calculation required is to implement the following equation, where
a,b,c,d,e,f are constant coefficients:

fuel := (a ∗ load+ b ∗ load2 + c ∗ load3) ∗ (d ∗ revs+ e ∗ revs2 + f ∗ revs3)

where conventional operator precedence is used. Additional brackets are
needed for occam. An identical equation, with different coefficients is then
used for ignition timing. This equation requires 11 multiplies and 4 adds,
and executes (integer) in under 30 microseconds on a transputer. The second
equation re-uses the squared and cubed terms, so needs only an additional
7 multiplies and four adds, so the entire calculation can be performed in
a total of 50 microseconds, assuming preconditioned sensor inputs. With
a required repetition rate of 2500 microseconds, there is plenty of time for
signal conditioning.

Note that this calculation is again an emulation of the traditional method,
and as such takes no note of engine history, i.e. accelerating needs richer
mixture, for example. A complete approach, previously impossible due to
the slow processors then available, would include terms relating to previous
load, previous speed etc, and there would be simpler terms relating to engine
temperature, inlet air temperature, humidity and pressure.

Figure 8: Engine Look Up Table Surface

The second method is to calculate the expected timing/quantity and its rate
of change, and to extrapolate forwards until the next complete recalculation.
This means doing the above calculation twice to determine the gradients wrt
time at the current acceleration rate, and then only one multiply and add
for each of fuel and timing on a per spark basis.

23

The latter is preferable, as it allows the calculations to be as complex as
desired, while the intervening engine revolutions are still accurately con-
trolled. Because of the greater processor availability, the ignition and fuel
can be controlled by one transputer, as well as the cruise control and other
functions.

8 Conclusions

This report has shown the benefits of a very high performance micropro-
cessor, and how its parallelism allows good I/O responsiveness at the same
time as performing compute intensive tasks.

The applications section has shown a fully detailed implementation of a
VCR controller, and a less detailed study of an engine controller. In both
cases the transputer and occams total transparency in terms of time and
parallelism, scheduling and communications mean that many tasks can be
run at the same time. The 10 MIPS performance means that many hardware
functions be brought into software, and the ease of programming means
that groups of engineers unfamiliar with computers (i.e. VCR designers and
engine designers) can rapidly achieve their desired goals.

References

[1] Transputer reference manual INMOS Limited Prentice Hall
ISBN 0-13-929001-X

[2] occam reference manual INMOS Limited Prentice Hall
ISBN 0-13-629312-3

[3] Extraordinary use of transputer links Technical Note 1 INMOS Limited

[4] Connecting INMOS links Technical Note 18 INMOS Limited

[5] Dual-inline transputer modules (TRAMS) Technical Note 29

24

	1 Introduction
	2 Transputer hardware
	2.1 Easy to use
	2.2 Communication links
	2.3 Concurrency and communication
	2.4 Low power
	2.5 External memory interface

	3 Programming transputers
	3.1 The occam programming language

	4 Processing performance
	5 Interrupt handling
	5.1 Microcoded process scheduler
	5.2 Low priority processes
	5.3 High priority processes
	5.4 Interrupt latency
	5.5 Interrupt programming

	6 Link communication
	7 Application examples
	7.1 A VCR controller
	7.1.1 The original VCR design
	7.1.2 Keyboard and display control
	7.1.3 Channel selection/tuner control
	7.1.4 Drum synchronisation
	7.1.5 Programming display on screen
	7.1.6 Communication with the peripheral chips
	7.1.7 The transputer based approach
	7.1.8 Keyboard and display control
	7.1.9 Channel selection/tuner control
	7.1.10 Motor control

	7.2 Engine control
	7.2.1 Conventional approach
	7.2.2 Transputer approach

	8 Conclusions
	References

