Example programs
in the TDS

INMOS Technical Note 56

Michael Poole

September 1988
72-TCH-056-00

tirlanis
plujt]e[r

njelt|

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

Contents

1

Introduction 5
1.1 A pictorial representation for parallel processes 6
1.2 Structure of thisnote 6
Tutorial examples 7
2.1 The pipeline sorter o o oL 7
2.2 The debugger exampleo 8
Examples showing the use of the input/output library 8
3.1 exl - Extreme numbers to screen 9
3.2 ex2 - Read a list of real numbers and display it 9
3.3 ex3 - Extreme numbers to screen and/or a file. 9
3.4 ex4 - Real numbers fromafile. 10
3.5 exb - Screen multiplexor demonstration 10
3.6 ex6 - Create a nested fold structure 11
3.7 exT7 - Display text from folded structure 11
3.8 ex8 - Select folds of a particular kind 11
3.9 ex11 - Diagnostic folded text display from nested structure . 12
3.10 ex13 - Copy folded stream 12
3.11 ex15 - User filer workout 12
3.12 ex19 - Tryout string procs, 12
3.13 ex20 - Elementary function demonstration 13
Simple transputer network examples 13
4.1 One T212onanIMSB0O06 13
4.2 One T414 on an IMS B002 14
4.3 An IMS B004 and an attached IMS B003 14
4.4 Subsystem error monitor oL 16
The lecture simulation examples 16
5.1 lectl - An EXE using the user filer interface 18
5.2 lect2 - An EXE using a process to simulate the user filer . . . 19
5.3 lect3 - An EXE using the kernel filer interface to DOS files . 20
5.4 lect4d - A PROGRAM bootabte directly by the TDS server . . 21
5.5 lectb - A PROGRAM bootabte by the host file server 21
5.6 lect6 - A PROGRAM loadable from the TDS into a B006 (T2) 22
5.7 lect7 - A PROGRAM loadable from the TDS into a B0O06 and

aB002 23
5.8 lect8 - A PROGRAM loadable into a B006 and a B002 with

asupport EXE o 24
5.9 lect9 - A PROGRAM loadable into any T4 and supported by

an EXE 24

6 Library code and software tools supplied as source
6.1 Library sources Lo o
6.2 Tools sourceso

References

1 Introduction

The INMOS Transputer Development System IMS D700D (TDS) is a pack-
age of software and associated documentation for the development of occam
programs for transputers and networks of transputers.

The software supplied includes a variety of occam programs as examples
which users can study, compile, run, or use as a basis for their own experi-
ments. Most of these examples are not discussed at all in the documentation,
and the purpose of this note is to describe these programs so that readers
may see if any are likely to be of interest without needing to study all the
occam source text.

All occam source text supplied in the TDS may be used, copied and adapted
by users at their own risk. Some sources of tools which are part of the TDS
system itself may include copyright notices, but permission to copy these
sources will not normally be withheld if requested.

The TDS presents the user with a screen interface based on the concept
of a folding editor, which is a tree structure or hierarchy (strictly a set of
hierarchies) entered at a root and traversed by means of commands from the
keyboard. Program source is held within this structure in folds, which may
be opened to examine their contents. Some folds also correspond directly to
files in the underlying file system.

Most of the examples are coded as programs to be executed within the TDS
itself (EXEs). Such programs have the advantage that they can use the TDS
as a run-time system for accessing a keyboard, screen and filing system and
so users do not need to concern themselves with the more intimate details
of these matters. There are also examples of PROGRAMS written to run
on networks of transputers. Some of these need run-time support from
an EXE running in the TDS or directly from a server running on a host
computer. Others communicate solely through a terminal attached to an
INMOS evaluation board. The lecture simulation examples described in
section 5 below show how a program can evolve form a single EXE running
within the TDS to a variety of network PROGRAMS, without the need to
change the principal procedures of the example, or even to recompile them
if the network is built from the same kind of processors.

A reference manual is supplied with the TDS. References to sections of this
manual are given below in the form 'Refman 4.2.

1.1 A pictorial representation for parallel processes

Some of the examples described in this note involve several processes running
in parallel. As an aid to the appreciation of this parallelism, the coding of
which is natural in occam, a pictorial representation has been designed.
Fach picture represents a snapshot of the execution of the program at a
time when most of the principal processes are running in parallel. Each
process is represented by a box, which is drawn as a rectangle with rounded
corners, communicating with other boxes by channels represented by dotted
or dashed lines.

Each box is named strictly by reference to the occam source code it describes.
This is usually a procedure name, but in some cases is the name given to
a process as a comment on the fold containing its source code. The arrows
representing channels are drawn with different styles of dots and dashes for
different protocols. The variety of protocols is infinite and so the actual
choice of styles has been made on an arbitrary basis for the purpose of this
technical note. An arrow is named with the name of the channel as declared
in the enclosing procedure.

It is a feature of occam processes that they can contain within themselves
nested structures of parallel processes, this process nesting is directly repre-
sented by the nesting of the boxes in the pictures.

1.2 Structure of this note

The rest of this note is written assuming that readers have an appreciation
of the TDS folded file store so that they can locate the programs on their
development machines and find their way around them. Newcomers can
gain this appreciation by means of the TDS on-line tutorial.

Section 2 briefly discusses this tutorial and other introductory examples
described in detail in the User Guide chapters of the Refman.

Section 3 describes a sequence of examples showing how simple input and
output operations may be coded in occam by calling procedures from the
input/output library. These programs all run as EXEs within the TDS.

Section 4 describes some introductory PROGRAMS for simple networks of
transputers on INMOS evaluation boards. They start with single proces-
sor networks on boards with RS232 terminal ports, and extend to multi-
processor networks, supported at run time by the host in a variety of ways.

Section 5 describes a more extensive example which is supplied in a variety of
different configurations, as an illustration of the ease of adaptation of occam
programs to such different structures with minimal need for recompilation.

Finally in Section 6 a brief mention is made of various software tools and
other programs which are supplied with the TDS as occam source. These
may be used as a source of useful ideas, especially by more advanced users,
who may be considering such exercises as rehosting the TDS. Some of these
tools are more fully described in other technical notes.

Where subsections of this note refer to particular example programs, the sub-
section heading matches the fold comment on the example program source.

2 Tutorial examples

These are supplied in the directory \TDS2\TUTOR.

By means of the TDS tutorial (see Refman 4.3) a user is taken to the stage
where a simple program sending a message to the screen and waiting for a
response from the keyboard may be written, compiled and run, using the
TDS as the run time support environment.

Also in this directory are the pipeline sorter examples mentioned in various
places in the Refman, and the Debugger example mentioned in Refman 9.6.

These are both relatively complex programs involving several processes run-
ning in parallel. Newcomers may prefer to look at the input/output library
examples mentioned below, before returning to these.

2.1 The pipeline sorter

This example is introduced by Pountain and May in their Tutorial introduc-
tion to occam programming, and is revisited in Refman 6.6. The example is
fully described in those books. The example program is supplied in a variety
of configurations for T4 transputers. If it is being compiled for T8 transput-
ers it is desirable to replace all occurrences of T4 by T8 in the source before
compilation. If a multi-processor version of the program is being built then
it is possible to use a mixture of transputer types. This will need especial
care. If the host transputer is a module (TRAM) on an IMS B008 or similar
motherboard it may be necessary to change the link numbers used in some
of the configurations.

Each version of this program reads lines of text from the keyboard (a line
is terminated by a , and the program then sorts the characters
into ascending order and sends the sorted line back to the screen. A line
containing a single percent sign terminates the program.

2.2 The debugger example

The debugger example program is a simple example of a single processor
program containing several processes running in parallel, cooperating on
the simple task of computing factorials and summing their squares. The
number of factorials computed, squared and summed is determined by a
number read from the keyboard. If this exceeds 99, then an arithmetic
overflow occurs and the debugger may be entered to locate the cause. The
use of the debugger on this example is discussed in Refman 9.6.

3 Examples showing the use of the input/output
library

These examples are in the directory \TDS2\EXAMPLES.

This is a progressive set of simple example programs originally written to aid
in testing the procedures in the input/output libraries. These libraries are
defined in Refman 14.10 - 14.16 and are also discussed more fully in Technical
Note 28 which covers the design principles and coding conventions used.

Their value is in showing these library procedures in use, and acting as a
basis for simple programs written by the user who is starting to write occam
programs for the first time.

All the examples are EXEs designed to be called from and supported by
the TDS. When an EXE is called by the TDS, channels are passed to it
in the same way as parameters are passed to an occam procedure. These
channels connect the EXE with processes running in parallel with it inside
the TDS, which in turn communicate with a multiplexing process which
communicates across the hardware link to the host processor. On the host
processor a server program provides access to the terminal and filing system
of the host.

These channels include the keyboard channel (input to the EXE in key
stream protocol), the screen channel (output from the EXE in screen stream
protocol), and user filer channels. In the pictures these three kinds of chan-
nels are represented respectively by arrows with dashed lines, dotted lines
and solid lines. The pictures do not show the TDS itself; arrows going off
the edges of the pictures are channels to and from the TDS run-time system.

All these examples may be compiled with all compiler checks switched on,
either for a T4 or for a T8. Note that code compiled for a T4 will run
unchanged on a T8 (IMS T800) if and only if it does not do any floating
point operations. Code compiled for a T8 cannot be run on a T4. The use

of the TDS compiler is introduced in Refman 5.4.

3.1 exl - Extreme numbers to screen

This example sends a few lines of output to the screen, using a variety
of number output procedures from the library userio. The output display
includes the values of the largest numbers in the various number types in
occam.

To run, the EXE and press .

3.2 ex2 - Read a list of real numbers and display it

This example demonstrates the use of number input procedures, with par-
ticular reference to the need to read ahead for the first character of a number
and the special precautions needed to handle numbers which might be out
of range or invalid.

To run, the EXE and press [RUN EXE| Then type a sequence

of real numbers in decimal or hexadecimal notation, terminated by 0.0, at
the keyboard. Any character that cannot be part of such a number acts
as a separator. The list will be tabulated in a standard form with invalid
numbers noted as either Inf or Nan if necessary.

3.3 ex3 - Extreme numbers to screen and/or a file

This example is derived directly from ex1. It shows how an output stream
may be duplicated to be sent to a file as well as to the screen. This
is achieved by calling the application process in parallel with the inter-
face procedure scrstream.fan.out and a protocol conversion procedure
scrstream.to.file which takes a stream in screen stream protocol and
writes its contents into a file in the TDS folded file store.

ex3
keyboard "
------------- | scrstream.fan.out scrstream.to.file ,
to.user filer{0]
tofile — >
from.user filer[0]
s s
screen L
=3
2
o
E
£
big.numbers
L _J

To run, |GET CODE | the EXE and press | RUN EXE | with the cursor on an

empty fold.

3.4 ex4 - Real numbers from a file

This example is derived directly from ex2. It shows how a filed fold in the
TDS folded file store may be read by the procedure keystream.from.file,
which generates a stream of character codes as integers in key stream pro-
tocol. This interface procedure is called in parallel with the application
process which is written without any knowledge of whether a real or simu-
lated keyboard is generating its input.

ex4
_____ keyboard_ _ _ | o l/ application]
screen
-
/ *.
e %o
d EON
keystream.from.file to.user filer(0]
< from.user.filer[{0]

To run, the EXE and press with the cursor on any

fold containing a sequence of decimal or hexadecimal real numbers, termi-
nated by a 0.0.

3.5 ex5 - Screen multiplexor demonstration

This is a somewhat contrived example designed to show how messages from
more than one parallel process may be multiplexed to a single screen. One
of the streams in screen stream protocol is also duplicated to a filed fold.

([ex5 \
keyboard

e ——
_____________ . application scrstream.fan.out
inter1

——
/

A
s \
o

t Itipl t to. fil
- | scrstream.muttiplexor & scrsiream.to.flle to.userfiler{0]

||

~ [ofziewi

— _J

To run, the EXE and press with the cursor on an

empty fold. Each line of input typed at the keyboard should consist of any

from.user.filer[0]

10

text, any integer and any more text, terminated by a IRETURNg these
values are sent to the screen, where echoed input and generated output are
identified by tags created by the multiplexor. The action repeats until the
integer is a 0.

3.6 ex6 - Create a nested fold structure

Before studying this and the following examples the reader is recommended
to read the description of the user filer interface in Refman 16.2. Although
the interface is substantially hidden in the examples by the use of library
procedures it is useful to have an appreciation of how the interface supports
the concepts of folded streams.

The library userio includes a set of procedures (see Refman 14.3.6) which
may be used to generate a nested fold structure in the TDS folded file store.
This example shows how a simple sequence of calls to these procedures may
be coded.

To run, |GET CODE | the EXE and press | RUN EXE | with the cursor on an

empty fold.

3.7 ex7 - Display text from folded structure

This example demonstrates the use of folded stream input procedures to
scan a fold from the TDS folded file store and, in this case, to display its
contents as text on the screen. In particular it demonstrates the use of the
fsd.tags as indicators of the type of the next element in the stream. The
folded stream input library procedures used in this example are described
in Refman 14.3.7.

To run, the EXE and press with the cursor on any

fold whose contents are to be displayed.

3.8 ex8 - Select folds of a particular kind

This more substantial example demonstrates some of the more advanced
procedures for reading folded streams from the TDS fold structure. Folds
whose contexts are not needed are skipped. It also demonstrates the ability
simultaneously to read and write folds within a fold bundle.

To run, the EXE and press with the cursor on a fold

bundle within which is one or more nested structures, including some CODE
EXE folds. A new fold will be created at the end of the bundle containing

11

copies of all CODE EXE folds which are not at the outermost nesting level.

3.9 ex11 - Diagnostic folded text display from nested struc-
ture

This example allows the user to explore an arbitrary TDS folded data struc-
ture. Any records (including numbers, fold headers, etc.) may be displayed
as requested. Folds may be entered, skipped or repeated in response to
commands from the keyboard.

To run, | GET CODE | the EXE and press | RUN EXE | with the cursor on a

fold to be explored. The program will display a menu of possible operations
which may be requested.

3.10 ex13 - Copy folded stream

This is a simple fold copying example which may be used as a basis for any
program which reads a fold structure and outputs a derived one with the
same, or a similar, pattern of nested folds.

To run, the EXE and press with the cursor on a fold

bundle, the first fold inside which will be copied to a new fold at the end of
the bundle.

3.11 ex15 - User filer workout

This example allows the user to exercise most of the user filer commands
described in Refman 16.2.5. The calls to this interface are coded using
appropriate procedures from the library ufiler.

To run, the EXE and press with the cursor on a fold

bundle. A menu of user filer operations is then presented to the user, and
these operations may be requested in turn.

3.12 ex19 - Tryout string procs

This example, written to test the procedures and functions of the library
strings (Refman 14.12), demonstrates the use of all the routines in this
library.

All output is to the screen, and consists of instructions for the performance
of a sequence of editing and other exercises on a string entered by the user.
These exercises cover string comparison, deletion, insertion, range tests, case

12

conversion and searching. Fach question asked should be answered either
by a string terminated by , or an integer which is interpreted as a
position within the string or a count of bytes within the string as appropriate.
If difficulties are experienced running this program, it is suggested that the
user studies the program source.

3.13 ex20 - Elementary function demonstration

This example displays the values of = and v/3 on the screen. The output
first uses REAL32 arithmetic and then REAL64 arithmetic. It is the only
example using the mathematical function libraries. See Refman 14.8 and
14.9.

Note that as supplied this example uses the libraries snglmath and dblmath
which calculate elementary functions using floating point arithmetic, which
is available on all processor types either in hardware or in software. Faster
functions are available on the T4 using the library t4math which uses fixed
point arithmetic.

4 Simple transputer network examples

These examples are also in the directory \TDS2\EXAMPLES. They may be
found in the fold labelled ’simple example PROGRAMS, some with support-
ing EXEs’. They are useful as a user’s first attempts to compile, configure
and load network PROGRAMS. See Refman 7.2.

4.1 One T212 on an IMS B006

An IMS B006 is an INMOS evaluation board containing one or more T212
transputers. The master T212 is supported by 64K bytes of memory and
an RS232 terminal driver.

This example consists of examples ex20, ex1 and ex2 called in sequence. The
whole lot is called in parallel with the RS232 UART driver BOO6.term.p.driver.
See the notes on the separate examples above.

one T212 on an IMS B006

examples screen BO006.term.p.driver
[Xeyboard |

13

4.2 One T414 on an IMS B002

An IMS B002 is an INMOS evaluation board containing one T414 transputer
supported by 2M bytes of memory and an RS232 terminal driver.

This example consists of examples ex20, ex1 and ex2 called in sequence. The
whole lot is called in parallel with the RS232 UART driver B0Ox.term.p.driver.
See the notes on the separate examples above.

one T414 on an IMS B002

examples soreen B0Ox.term.p.driver
[Reyboard

4.3 An IMS B004 and an attached IMS B003

This example includes two variants of a simple 4 processor program suitable
for running on an IMS B003. The IMS B003 has four T414 transputers
each with 256K bytes of memory connected in a square configuration. In
addition to the hard wired connections on the B003 another connection is
required across the middle of the square. Each processor is loaded with a
simple program which, on request, will send back its identity to one of the
four acting as a master, which sends an identification message to the screen.
The master in turn communicates with the host for keyboard and screen
access.

The first variant runs an EXE on the host which talks to a 4 processor
PROGRAM.

The second variant has all 5 processes in the PROGRAM and is loadable
directly by the TDS server.

A valuable exercise would be to construct the corresponding program load-

able by the host file server. This is most easily written using the library

procedure af .multiplexor to multiplex keyboard and screen access to the

server, replacing the procedures keystream.from.B004.1link and scrstream.to.B004.1ink.
Alternatively advantage could be taken of the known sequence of keyboard

inputs and responses to write a simpler version using read.key.wait and

write.block.

14

([PROGRAM b3b4)

SC hello “

=15 e
S NP
F «s"‘,‘%’\‘ ey
] 7 %S
&1 ieitag
from.root[2] SC hello
L to.roof2]
1 AN
! .
%

o o,
H Y,
£ 2,

1 &,
I
Ell .

, ~

N
' EXE b3supp ~
keyboard.buffer Jo.soroen

A
2, z
g 3
> S
2 v

l TDS]

[PROGRAM b3bdex ™

SC hello SC hello

g -
g g N
g2 RIS
G PO AL

€1
&1
SC hello0

-
-
-
Nz
i'C)

i 2
(1 % sCBoo4)
by
[doscreen
s|
<1
2 1
1 i:]
' =
| '""—T_’ﬁs,,
' T,
H " N
keystream.from.B004.link scrstream.t0.B004.link
g
g B
&=
Y
| TDSSERVER |

15

4.4 Subsystem error monitor

This simple example demonstrates the use of an occam PORT to access
the IMS B004 subsystem control. A simple PROGRAM which sets error is
also supplied. The subsystem control on an INMOS evaluation board is a
mapping into transputer address space of the reset, analyse and error signals
to and from an attached network. The connection is realised by a 4-wire
reset cable, which must be connected to the network in addition to the link
cable(s).

In order to run this example the PROGRAM must be loaded into the net-
work, and then the EXE should be run. The PROGRAM will immediately
set error and this condition will be detected by the EXE and reported to
the user.

5 The lecture simulation examples

These examples are also in the directory \TDS2\EXAMPLES.

The origin of these examples was a need to have a fairly simple example
which could be used to support an introductory lecture on occam to a branch
meeting of the British Computer Society. The principal requirements were
to include examples of use of all the constructs of the language and to be
able to show parallel activity on the screen in a reasonably short execution
time.

The program was originally written to run on a single processor. The pos-
sibility of distributing variants of the program over two or more processors
was in mind when it was originally written, and it has since become a useful
example program for different styles of program construction, running on
transputers with or without run-time support from a file server. Sequential
processes in the program have also been rewritten in FORTRAN and Pascal
during exercises in building mixed language programs in various ways.

The program simulates a lecture given to a replicated class of students pa-
rameterised solely by independent speeds of note-taking. The lecturer reads
a file of titles of his slides and writes these titles in a box on one side of the
screen. The students write their (trivial) notes in boxes on the other side
of the screen. There is a count-down clock whose value is displayed at one
second intervals in another box on the screen. The lecture ends either when
the clock reaches zero or when the file of titles is exhausted, and so running
time may be reduced by using a shorter file of titles. A report on the lecture
is written into an output file.

16

There is a screen handler which is a simple sequential command driven
process. The simulation itself is mapped directly on to an appropriate nested
set of parallel processes. The simulation is essentially clock driven, with a
small degree of indeterminism introduced by means of random numbers
determining the time intervals.

In the following sections the various versions of the program are described.
Each description includes a diagram showing the principal processes and the
channels connecting them. The different protocols used on different channels
are represented by arrow lines drawn with different dot/dash patterns. It
is instructive to note how the same procedures recur in the various versions
of the program. One copy of each such recurring procedure is needed for
each processor type for which it is used. The names used on the arrows
representing channels are the names of the actual parameters used in the
calls of the procedures.

Complete compilation and running instructions are provided with the source
text of each example. Users will only be able to try out those versions for
which they have the appropriate hardware. The production of alternative
versions for different combinations of evaluation boards, etc., is a valuable
training exercise.

Nine different configurations of this program are included as examples in
the TDS. These all use a pair of common processes which are managed as
a library (simlect.tsr) for ease of code sharing. Other processes common
to some of the configurations are also kept in the library. The hardware
addresses of the transputer links and a set of protocols used on the channels
between the principal processes are also held in libraries (hardlink.tsr and
lectprot.tsr).

The separate compilation units in the library simlect.tsr include two
copies of each of the central procedures lecture.room and display.as.requested
and the procedure file.simulator. These have been written in such a way

that they will work on both 16-bit and 32-bit processors without changing

the source code.

The two copies of each procedure share access to a common source file.
This has been achieved by attaching the file to two distinct folds. This
technique should be used with extreme care as accidental deletion of any
one of these folds will delete the file attached to the other one also. However
the technique is valuable if it is genuinely desired to ensure that the source
stays identical in the two folds, as is the case here. Users intending to build
versions of this program for networks of different types of transputers should
compile each of these procedures for each transputer type to be used. If any
of the existing folds are not to be used then the text file should be detached
before being deleted. The procedure filed.fold.reader is suitable only

17

for a T4 or T8 running the TDS and so need not be compiled for T2.

This picture shows the processes inside lecture.room which are active while
the simulation is under way. The lecturer, clock and class processes all gen-
erate commands for the screen handler and these commands are multiplexed
by the procedure output.multiplex on to a single channel out which goes
to the procedure display.as.requested. The initiative to terminate the
simulation can arise either within the clock process if time runs out, or
within the lecturer if his slides run out. These processes are therefore able
to terminate each other. The class processes are terminated by messages
along the channels instruct from the lecturer. The report stream is writ-

ten by the main body of lecture.room before the internal processes start
and after they have finished.

lecture.room \

the lecturer the class[0]
insiucto]

——.inter |

request.fne

N the class[1]
. N

\ 'g\/‘} AN the class[2]
\ S
= AY

bel
gy
e
.

\ 1;\ the class[3]
i o
\ c}

[plyred

*V y y

Y
the clock output.multiplex
L pathis],

out .

lectl - An EXE using the user filer interface

This is the basic version of the simulation. It takes a list of titles in a TDS
filed fold and displays the simulation on the screen using TDS screen stream
protocol. It also stores a report on the lecture in another filed fold. The
procedure filed.fold.reader reads the input file from the TDS folded

18

file store and passes it to the simulation in the procedure lecture.room
along the channel slides using the protocol LINES. As in all versions the
commands from the simulation to the screen handler are passed along the
channel display.path using the protocol DISP.REQ.

(lect1 - EXE simple.lecture.B004.uf)

—_—
lecture.room display.as.requested
display.path
f’f \\\ Yoy
e
& PN
’/' TN
A
scrstream.to.file filed.fold.reader
@
8
S
& B J
= = ﬁl
gl
g.l
Y A 2
| TDS]

5.2 lect2 - An EXE using a process to simulate the user filer

This is a simplified version which does not make any filing system access.
The input file is simulated by a call of the procedure file.simulator
which generates lines of text internally and communicates it using the pro-
tocol LINES. The report is consumed by a call of the library procedure
scrstream.sink which generates no output.

(" lect2 - EXE simple.lecture.B004.fsimu)

lecture.room display.as.requested
display.path

o+ %
& NS %o
e KON
¥ A

scrstream.sink file.simulator 2
8

g

Y

[DS]

19

5.3 lect3 - An EXE using the kernel filer interface to DOS
files

This version, still running as an EXE in the TDS, uses DOS text files
both as input file and as output file. The user is asked for the name of
the input file; the output file is called REPORT.LIS. The library procedures
keystream.from.server and scrstream.to.server are used for these ac-
cesses. As the kernel filer interface only allows one DOS file to be opened at
any one time, the output file is buffered in an internal array as it is generated,
and then the contents of this array are streamed into the output file when
the simulation has finished. The library procedures scrstream.to.array
and scrstream.from.array are used for this purpose. The two pictures
show the process structure during the simulation and during the output of
the report.

It is recommended that applications requiring access to several host files in
parallel are not coded in this way as EXEs but as PROGRAMS loaded by
and served by the host file server (see lect5 below).

f lect3 - EXE simple.lecture.B004.dosf)

lecture.room display.as.requested
display.path

ot Yo,
’ - ve,
p, N

L)
Pa RN
;

NN
y.d A
[scrstream.to.array] [text.from.dos file \

_ il D

“op-.,

ueaIds

from.sv
boe!

[TDS]

usa108

[scrslream.from.array\i [scrstream.to.server }

- .)

from.sv
As'0)
board
L2270

key

| TDS |

20

5.4 lect4 - A PROGRAM bootabte directly by the TDS

server

A user program may be loaded directly by the TDS server, and must then
communicate with the server using the protocols defined in Refman 16.4.
This is a simple example of such a program using the interface only for
keyboard and screen communications. The filing system accesses could be
added, with some difficulty as a complex multipexor is needed, such as the
one used in the TDS itself. Such a multiplexor is included in the source of
the TDS system loader (see section 6.2 below). In this example the input
file is simulated by calling file.simulator and the output file is buffered
during the simulation and then displayed on the screen.

The advantage of this approach over that used in lect3 is that the TDS code
and workspace do not consume some of the transputer board’s memory.
However use of the TDS server in the host for supporting such programs is
not usually appropriate in practice, and a simpler server such as the host
file server (Refman 16.3), or an even simpler one designed specifically for
the application is often to be preferred. See lect5 below.

(lect4 - PROGRAM lecture.B004.no.TDS

r SC B004.n0.TDS ﬁ

lecture.room display.as.requested
display.path
7 T

.
o Y%,

ueasos

[scrstream.to.array } file.simulator]

[keyslrearn.from.B004.IinkJ Fcrslream.to.BOM.linj

)

[TDSSERVER ‘,

-

0

from.ligk
Hu

5.5 lect5 - A PROGRAM bootabte by the host file server

This is the preferred style of program loadable from the host, and with run
time access to the terminal and filing system of the host via the host file
server. The program asks the user for the name of a DOS file to be used

21

as input file and creates an output file called AFREPORT.LIS. Terminal and
filing system accesses to the host file server are multiplexed using the library
procedure af .multiplexor.

f

SC simple.lecture.B004.af

(lect5 - PROGRAM simple.lecture.dos.af \

~

User.process

Iecture room
|sp|ay path

display.as.requested
S

~

V/X .’

:/fs%
*”ve‘,\
} A
scrstream.to.afserver text.from.af
g
- g
7 =4
e ’
/ . a
/7 . 5
~ ///,/ ’¢'
= i3 2
S B ~<§ ° N
g Y, o
/S
.

y

&

ApIpr

from.jnl

L

AFSERVER

y)
|

5.6
(T2)

lect6 - A PROGRAM loadable from the TDS into a B006

This is an example of a single processor network program designed to run
on an IMS B006 evaluation board. This has an IMS T212 transputer and
support for a terminal connected by an RS232 port. The adaptation of this
program for an IMS B002 (with a T4 transputer) is straightforward and has
been supplied as example lect6a.

This version uses the file.simulator and is derived from lect2 by adding
a call of the RS232 UART handler BO06.term.p.driver to drive the screen
in parallel with everything else.

22

a lects - PROGRAM lect.simuf.B006 W
[SC simple.lecture.B006 j

lecture.room display.as.requested
display path |
“.*‘/4',
%,
V3
V4 s S
Y d A Y
[scrstream.sink] { file.simulator] [Booe,term,pdriver}

.)

u8a10s

5.7 lect7- A PROGRAM loadable from the TDS into a B006
and a B002

This is an example of a two processor program, with the two central pro-
cedures on separate processors. The example is set up for an IMS B006
and an IMS B002 but could easily be adapted for any other combination of
boards, with terminal ports on each. Note that, in order to be independent
of transputer type, the protocol DISP.REQ on the channel display.path
between the processors is word length independent; in particular it does not
use the type INT whose meaning depends on the word length.

This version of the program uses file.simulator for the input file and
sends the report to the screen connected to the IMS B002. The output of the
simulation goes to the screen connected to the IMS B006. The configuration
code defines the connections between the boards and the load path from the
host, which is connected in this case to the IMS B006, demonstrating that
T4 code can be loaded through a 12 processor.

(lect7 - PROGRAM lect.simuf.B002.B006 W
(SClectsimB0o02) (SC display.from.B0O6)

lecture.room display.as.requested
display.path o

B! iy N Y @
8! A % E
s NG g
2 SN

NoA A

.
[BOOXIerm.pdriverl [file.simulator ‘

B006.term.p.driver \’

= L J)

23

5.8 lect8 - A PROGRAM loadable into a B006 and a B002
with a support EXE

This version is an extension of lect7 making access to the TDS folded file
store for its input file. This is done by an EXE using filed.fold.reader

which is run in parallel with the rest of the PROGRAM running on the
external transputer boards.

In order to run this combination of programs it is necessary to | LOAD | the

PROGRAM into the network and then the EXE with the cursor
on a fold containing the filed fold of titles to be read.

(lect8 - PROGRAM lect.B002.B006 N
(sc lect.sim.report.B002 T (sc display.from.BOO@

lecture.room display.as.requested
display.path

A
\
\ -
\ -

BOOx.term.p.driver ‘-\ B B006.term.p.driver

L\ JL &

nt

I ~
—
[usslos

oY
woreP®

=

—

— A

\ -

¥
EXE file.suppé(i.external.b004
-

filed.fold.reader l

[DS]

[+hn
usalos

5.9 lect9 - A PROGRAM loadable into any T4 and sup-
ported by an EXE

This version runs the simulation on a single external T4 with no access to
its own terminal. This could conveniently be a second TRAM module on
an IMS B008 motherboard, or one processor of an IMS B003 connected
externally. The processor type may be changed to T8 if necessary. The
PROGRAM is supported by an EXE on the host transputer to which it is
connected by two link cables, one for the terminal screen output and one
for the report which is filed in the folded file store. The support EXE is

24

very straightforward, consisting of calls of scrstream.copy for the screen
output, and scrstream.to.file for the report, in parallel.

As written, the input file is generated by file.simulator, but an interesting
extension would be to use a third link cable, or a multiplexed link cable, to
get read access to the TDS folded file store.

(" lectd - PROGRAM lect.simuf.external. T4 T
[SC lect.external. T4 1

lecture.room

display.path

haNY KA
%
| E\’:

display.as.requested

1
i
H

NG
file.simulator

lissi0s

J)

- .;epm_.,_ S—

EXE support.external. T4

y
scrstreamtoﬂle} { scrstream.copy]

[

ugaIs

6 Library code and software tools supplied as source

The input/output and mathematical libraries, and many of the TDS tools,
are also supplied as source, and are available to be studied, recompiled or

modified as the user wishes.
These will be found in the directories:

\TDS2\IOLIBS\SRC
\TDS2\MATBLIBS\SRC
\TDS2\TOOLS\SRC

6.1 Library sources

The libraries are listed in a table at the beginning of Refman 14. Sources are
available of all libraries named in this table except for reinit and blockcrec.

25

One reason for supplying these sources is to avoid the need to supply com-
piled libraries for all the combinations of target processor type and stopping
mode. Another reason is to allow users with particularly tight space con-
straints to build libraries from which all unused code has been removed.
The third reason is that the procedures supplied are not an exhaustive set
covering all conceivable situations. There are many situations when users
will want to write their own library procedures, using the supplied ones as
models.

6.2 Tools sources

The sources supplied in this directory include those of most of the tools in
the toolkit fold. The only such tools not supplied as source are the memory
interface program and the transputer network tester. Tools available as
source are:

Selective lister see Refman 4.9.1
Unlister see Refman 4.9.1
Link transfer program see Refman 4.10
EPROM hex program see Refman 15.4

hex to programmer program see Refman 15.5

There is a ’Simple worm’ program, which is an early version of the transputer
network tester, and the following additional programs:

INMOS EPROM monitor For a load-from-ROM board such as B002

EPROM network loader For loading networks from ROM

TDS extractor and network loader TDS loader as an EXE

TDS network memory browser This is the low level part of the debugger

Worm converter/preamble adder Adds loading preamble to a CODE SC

TDS loader Loaded by the TDS server to load and run
the TDS (see Refman 16.4.4)

Analyse worms For the network memory browser

Loader worm Simple boot from link loader

Disassembles To look at compiled code

Descriptions of all these tools are provided with the source. Some of the
tools are discussed in greater detail in INMOS Technical Notes (see the
Bibliography).

Many of the programs in both these groups are substantial programs which
may also be treated as coding examples. Users are recommended to browse
around looking for code which interests them.

26

References

[1]

A tutorial introduction to occam programming, Dick Pountain and
David May, BSP Professional Books 1987.

Transputer development system, INMOS Limited, Prentice Hall 1988.

Occam program development using the IMS D700D transputer devel-
opment system, M D Poole,
INMOS Technical Note 16. 72-TCH-016

Occam input and output procedures for the TDS, M D Poole,
INMOS Technical Note 28. 72-TCH-028

Analysing transputer networks, J M Wilson,
INMOS Technical Note 33. 72-TCH-033

Loading transputer networks, J M Wilson,
INMOS Technical Note 34. 72-TCH-034

Implementing data structures and recursion in occam, S Redfern,
INMOS Technical Note 38. 72-TCH-038

Module motherboard architecture, T Watson,
INMOS Technical Note 49. 72-TCH-049

27

	1 Introduction
	1.1 A pictorial representation for parallel processes
	1.2 Structure of this note

	2 Tutorial examples
	2.1 The pipeline sorter
	2.2 The debugger example

	3 Examples showing the use of the input/output library
	3.1 ex1 - Extreme numbers to screen
	3.2 ex2 - Read a list of real numbers and display it
	3.3 ex3 - Extreme numbers to screen and/or a file
	3.4 ex4 - Real numbers from a file
	3.5 ex5 - Screen multiplexor demonstration
	3.6 ex6 - Create a nested fold structure
	3.7 ex7 - Display text from folded structure
	3.8 ex8 - Select folds of a particular kind
	3.9 ex11 - Diagnostic folded text display from nested structure
	3.10 ex13 - Copy folded stream
	3.11 ex15 - User filer workout
	3.12 ex19 - Tryout string procs
	3.13 ex20 - Elementary function demonstration

	4 Simple transputer network examples
	4.1 One T212 on an IMS B006
	4.2 One T414 on an IMS B002
	4.3 An IMS B004 and an attached IMS B003
	4.4 Subsystem error monitor

	5 The lecture simulation examples
	5.1 lect1 - An EXE using the user filer interface
	5.2 lect2 - An EXE using a process to simulate the user filer
	5.3 lect3 - An EXE using the kernel filer interface to DOS files
	5.4 lect4 - A PROGRAM bootabte directly by the TDS server
	5.5 lect5 - A PROGRAM bootabte by the host file server
	5.6 lect6 - A PROGRAM loadable from the TDS into a B006 (T2)
	5.7 lect7 - A PROGRAM loadable from the TDS into a B006 and a B002
	5.8 lect8 - A PROGRAM loadable into a B006 and a B002 with a support EXE
	5.9 lect9 - A PROGRAM loadable into any T4 and supported by an EXE

	6 Library code and software tools supplied as source
	6.1 Library sources
	6.2 Tools sources

	References

