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1 Introduction

This technical note describes the use of INMOS transputers as end-application
accelerators to a larger computing resource. As well as describing a specific
implementation, some general ideas and arguments are discussed.

1.1 A modern trend

In contrast to the prominence of centralized computing facilities tradition-
ally associated with large companies and institutions, nowadays the trend is
towards desktop personal computers and networked diskless-node worksta-
tions.

This trend has been brought about by the decreasing cost and increasing
performance of personal computers and networking options, which are being
offered by a growing number of manufacturers.

By having desk-top processing power at one’s finger tips, users have the
response, flexibility and the control they want over the software they use.
In addition, they are not as dependent on the loading and reliability (or
otherwise) of a centralized machine and its communications network.

As an example of this, it is not at all uncommon to see a centralized cluster
of VAX machines, spanned by networks, with various satellite MicroVAX’s
and DECnet-DOS personal computers. This network is frequently composed
of several sub-nets, spanning the geographical distances between the sites of
a company. A fairly typical company network is shown below in figure 1. In
the figure, the geographical dispersion of the computers may extend across
several buildings, towns, or countries.

Figure 1: A typical computer network
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1.2 Resolving the loading problem

Despite the proliferation of networked workstations and localized personal-
computer processing power, the centralized resources are often overloaded
with requests for large amounts of compute-power. Many tasks are just too
large for the workstations and personal computers to handle in a reasonable
timescale. It only takes a few such compilations and simulations to be
concurrently executing on most machines to bring them to a virtual halt.
How can this be avoided?

One approach would be to use an organization’s existing infrastructure of
networks and remote workstations to offload work from the centralized com-
puters and MicroVAX’s. This could be achieved by having, at any physical
location on a connected network, a PC- or MicroVAX-hosted server, con-
nected to a transputer farm capable of extensive number crunching. In the
remainder of this document, the word ’farm’ will be used to signify a collec-
tion of transputers, all executing the same application but on different data
sets.

Such a system could be totally transparent to users of the services that most
incapacitate the computing resources. They would invoke the application in
exactly the normal way, except that the work would be performed remotely,
by transputers, and the results would be returned shortly afterwards. Trans-
puters can offer a previously impossible amount of compute-power in a small
box.

A PC-hosted transputer server system can run existing applications, un-
modified, and reduce loading from overworked machines, in a manner that
is attractive because of it’s flexible and infinite expandability. Further more,
once the application has been ported to a transputer, it is independent of
any of the other computer or communications equipment owned.

If you’re still interested, read on ....

2 The systems involved

This chapter will discuss the hardware and software systems involved in the
implementation to be described, with a view to placing the requirements and
demands made of everything in some sort of perspective. The discussion
focuses on specific systems, although the arguments are appropriate in a
more general sense too.

The items that have to be discussed are the INMOS transputer, the trans-
puter host, the centralized computing resource, and the communications
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network. The arrangement is as shown below in figure 2.

Figure 2: From the VAX to the transputer

2.1 The INMOS transputer

The INMOS transputer is a high performance micro-processor, offering a
CPU, RAM, fast serial links, and various applications-specific facilities on a
single chip of silicon. The IMS T800 transputer combines a 32-bit 10 MIPS
integer CPU, a 1.5 MFlops 64-bit floating point processor (compliant to the
ANSI/IEEE 754-1985 floating point arithmetic standard [1]), four 20 MHz
serial links, and four kilobytes of fast single-cycle RAM (50ns access on the
20 MHz part). This technical note will make particular reference to the
IMS T800, since the applications described make good use of the in-built
floating point processor.

For a proper technical description of the INMOS transputer family, the
reader is directed towards [2].

2.2 The transputer host

The transputer is normally employed as an addition to an existing computer,
known as the host. In the context of this discussion, the host is a personal
computer - an IBM PC or compatible. Through the host, the transputer
application can receive the services of a file store, a screen, and keyboard.

The selection of the transputer host is important for two main reasons:
firstly, it has to be able to accommodate and communicate with transputer
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hardware; secondly, it has to be capable of appearing as a node on the
network to the centralized computing resource. It should also possess some
local file store such as a 20 Mbyte Winchester, although our implementation
used a virtual disk on the VAX.

The IBM PC and most of its clones fulfil the main requirements.

2.3 The existing computing resource

This will typically consist of a centralized or distributed cluster of large
mini-computers or main-frame computers, interconnected by one or more
networks. The machines may all be of different type, manufacture, and
specification.

In this technical note, the existing computing resources are represented by a
pair of DEC VAX 11/785 mini computers, a number of DEC MicroVAX II’s,
and an Ethernet LAN (Local Area Network). The network involved is in
fact more extensive than suggested here, but this document discusses the
only relevant part of it.

2.4 The communications network

This section gives an overview of the network. In hardware terms, the
relevant part of our network was an Ethernet network. An Ethernet network
is a finite capacity shared-channel LAN. Sites on the network, called nodes,
are connected by using vampire taps on a single coax cable.

In software terms, we used DECnet software to control the network activity.

DECnet Introduction

The term DECnet refers to a range of software that provides a network
interface for Digital Equipment Corporation operating systems. A set of
standards called the Digital Network Architecture defines the relationships
between the various network components.

DECnet allows multiple computer systems to communicate and share re-
sources within a network. Each computer system, called a node, is con-
nected by some physical communications medium. Tasks that run on dif-
ferent nodes and exchange data are connected by logical links. Logical links
are temporary software information paths established between two commu-
nicating tasks in a DECnet network.

DECnet-DOS is installed on a PC node in the network, on top of the existing
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MS-DOS operating system. It is said to be a non-routing implementation
of the Phase IV Digital Network Architecture.

DECnet concepts

A client task is the program that initiates a connect request with another
task. The server task waits for and accepts/rejects the pending connect
request. Client and server1 tasks communicate through sockets. These tasks
exchange data over logical links.

Sockets are the basic building blocks for DECnet-DOS task-to-task com-
munication, and are created by tasks for sending and receiving data. They
contain information about the status of the logical link connection.

Each system in a DECnet network has a unique node name and address.
When initiating a connect request with a remote node; the node is identified
by its name or address.

DECnet-DOS allows C and assembly-language programs to use sockets to
perform DECnet functions. This allows a user application to communicate
with another application running on a different node, using DECnet.

Refer to the DECnet-DOS programmer’s reference manual [3] for further
information.

2.5 How everything fits together

On local storage (or virtual disk) media, the PC will have copies of all the
application code that may be required (suitably prepared for execution on
the transputer). The relevant piece of application code is initially booted to
the transputer network using a special PC file server / loader. The special
server monitors DECnet instead of the PC’s keyboard. This means that it
can accept tasks over the network from the VAX automatically, and act as
a completely un-attended autonomous system.

When the user wishes to send a task specification, the VAX software estab-
lishes a logical link by means of a connect request procedure. The logical
link allows the exchange of data between the VAX and the PC server, be-
cause the PC has a unique node name and address on the network. The
input data is forwarded to the transputer by the server, and the results are
collected afterwards and returned to the originator of the task request.

Depending on the transputer hardware available in the system, several con-
current tasks can be underway at once. It is possible for all these tasks to

1The word server is used here in a different context from the rest of this document.

9



be different applications entirely. It’s up to you, and is easily altered to suit
the demands made on the transputer workers.

3 A specific implementation

This chapter describes a specific implementation of a DECnet hosted trans-
puter server, undertaken at INMOS in Bristol. The system is extendible,
transparent to the user, and involved little change to the application code.
It is also simple to maintain from both hardware and a software point of
view.

Firstly, an overview of the system is given, and then some design issues are
discussed. Then, the PC, transputer, and VAX support detail is explored,
followed by an outline of how the system was operated.

3.1 Overview

INMOS Corporation (Colorado) used a version of SPICE, written in FOR-
TRAN, for intensive circuit simulation on a VAX. To relieve VAX CPU
overhead, it was planned to offload SPICE jobs to a server which would
simply return the results to the VAX. The system is referred to as Multi-
SPICE.

The implementation consisted of three concurrently executing copies of SPICE
each running on their own T800 transputer, shown in figure 3.

Figure 3: A four processor SPICE system

This level of parallelism granularity is at the job-level, in that there was to
be no attempt to alter the code of SPICE itself to explicitly run parts of
the application in parallel. Speedup can be achieved by means of adding
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more processors, each running another completely independent version of
the application code. The transputer network was hosted by a PC, from
which it obtained local filing facilities. For this application, each SPICE
worker packs about the same computation power as a VAX 11/785 with
FPA support.

Each SPICE worker ran on a B405 TRAM module, offering an IMS T800-
20 transputer with 8 Mbytes of RAM. For smaller simulations, the B404
TRAMs, which have 2 Mbytes of RAM with an IMS T800 transputer, were
used. The connection to the IBM PC was by means of a single IMS B004
evaluation board with an IMS T414 transputer, which was used for the
multiplexer.

3.2 System design notes

Requirements

The system had to be simple to operate and maintain, capable of operating
with several transputers in a processor ’farm’, capable of integrating ad-
ditional applications, it had to be extensible, and it had to offer a useful
service to the users. In the event of the application crashing, the system
should endeavour to recover itself automatically. This had a bearing on
the network topologies permitted and the distribution of support processes
in the farm network. The interface to DECnet would be through the PC
server, which would be modified to accommodate this requirement.

Some of these requirements are discussed below.

Overall system floorplan and development strategy

Each SPICE program runs on a separate T800 transputer, to obtain the
maximum performance. In this and the following discussions, the term
’worker transputer’ will be used to indicate a transputer which executes the
target application.

Since the server would have to be modified anyway to communicate with
DECnet, it was decided to delegate to the server the allocation of tasks
to each worker transputer. A multiplexer was written in occam to ensure
correct processor interleaving when communicating with the server.
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Automated failure recovery and network topology implica-
tions

The occam multiplexer sits between all tasks on the worker transputers
and the host server, as shown in figure 3. As such, it is aware of every
inter-communication between any worker and the server. In addition to
performing message interleaving between all the workers, it provides timeout
facilities to identify if any worker has been ’silent’ for greater than some
specified time interval. This information can be used by the server to notify
the VAX if any jobs fail to complete for some reason. This maintains the
reliability and throughput of the system in the event of a partial failure, and
allows a graceful degradation of the system. Individual jobs do not see any
degradation.

The requirement for this capability arises from the fact that the SPICE
program does occasionally crash while performing a simulation (not just on
transputer systems).

By placing each SPICE on a transputer which is separate from the multi-
plexer transputer used by other worker transputers, it can be guaranteed
that should any SPICE job crash a transputer, the multiplexer can detect
this and take action to complete current jobs and re-boot the network auto-
matically. The guarantee of automatic recovery from a crashed task arises
from the fact that the multiplexer has a transputer to itself (which excludes
parasitic shared-memory problems with rogue processes on other transput-
ers), is written purely in occam and is significantly less complex than SPICE
- it will not crash.

One consequence of the ’separate multiplexer per transputer’ approach, as
well as the cost, concerns the maximum number of SPICE workers that can
be connected without compromising the recovery capability of the system.
Because each transputer has four links, it can multiplex three inputs down
to one output. So, up to three SPICE processors can be run with one
multiplexer.

By cascading multiplexers, additional hardware links become available to
accommodate more task processors. As an example, up to three ’worker
multiplexers’ (denoted Wkr Mux in figure 4) may be controlled from an
’intermediate multiplexer’ (denoted Int Mux), and each worker multiplexer
can of course accommodate three SPICE tasks. The distinction between
the multiplexer types is as follows: a worker multiplexer connects directly
to application workers and has the additional role of timeout monitoring to
detect ’dead’ workers; the intermediate multiplexer connects only to occam
worker multiplexers and does not require to perform timeout detection.

This design of point-to-point communication allows for more T800s to be
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controlled if necessary, and also serves to contain any ’failed’ SPICE jobs,
as discussed above. The multiplexers can be connected into quite complex
configurations, providing that no implementation limits of the host, it’s
operating system, or the server are exceeded (for example, there may be a
host operating system limit on the maximum number of files that can be
open at once). Some possibilities are outlined in figure 4.

Figure 4: Multiplexer connectivity example

Had a pipeline-based topology been employed, this would have necessitated
a multiplexer and SPICE to reside on each transputer. While this is straight-
forward to arrange, it is conceivable (although improbable) that should a
SPICE task fail, this sharing of hardware by a rogue process and a healthy
one might prevent the multiplexer from sending a failed signal to the host
server, which would thereby prevent the network from automatically reboot-
ing.

In most practical systems, however, this requirement for failure recovery can
be satisfied to an almost equivalent level without the need for a transputer
per multiplexer - this is useful in keeping the cost of the system realistic.
The method we adopted is only one of several options we could have chosen.

3.3 PC support

The PC support is provided by modifications to the standard file server /
loader program, called AFserver. These modifications allow the server to
control bi-directional communications between the PC and the VAX, via
DECnet.
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An outline of the PC server

The PC server has two important functions to perform. Firstly, it must
communicate with the transputer board, which will send requests for work.
Secondly, it must communicate with DECnet and transceiver work requests
and results between the PC file-store and the VAX.

The original PC server, called AFserver, is written in C. It consists of a
small collection of functions which allow communication between the trans-
puter system and the PC host. Normal server functions include file access
and stream management etc. This communication is implemented using an
INMOS link-adaptor, which interfaces a transputer link to the host PC’s
bus.

The small collection of routines provided by the server are grouped together
in a flexible way, facilitating ’hooks’ for adding additional commands into
the body of the server. In different situations, where a lot of application
code has to remain on the PC host, the source of the AFserver could be
built into the PC-part of the application [4].

The transputer and the host conform to a master / slave relationship. The
transputer is the master, implying that that all commands, which form
part of the so-called ’AFserver protocol’, are initiated from the transputer
system. The function that decodes the command coming from the INMOS
link-adaptor (connected to the transputer system) is called read_link().
This is outlined below:

void read_link ()
/* Read a message coming down the link. */
{

if (read_integer (&command))
{

switch (command)
{

case TERMINATE_CMD:
filer_close ();
write_integer (F_OK);
terminate_server (T_TERMINATED);
break;

.

.

.
default:

terminate_server (T_ILLEGAL_COMMAND);
}

};
}
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It should be apparent how additional cases can be added to the AFserver
protocol to accommodate the user’s specific requirements, by providing fur-
ther alternatives in the switch statement.

The design of the server, in connection with the protocols involved in man-
aging interactions with the transputer on the one hand, and interactions
with DECnet on the other hand, is now discussed.

Server extensions

It was decided to change the transputer’s AFserver protocol as little as
possible, and make the PC server contain all the DECnet accessing soft-
ware (although this has the effect of making the PC server less general
purpose). Only two additional commands were added to the AFserver’s
protocol. These were:

• FinishedTask.Cmd : Sent to the server from a SPICE worker trans-
puter to identify a completed task and request more work. Parameters
identify the current task completed, and the name of the new task to
be started is returned.

• Failed.Cmd : Sent to the server by the occam multiplexer, following
an extended period of inactivity by a SPICE worker. There are no
parameters for this command.

The operation of the SPICE system, and its use of these commands is now
outlined.

System operation

The FinishedTask.Cmd is sent to the server from an IMS T800 transputer
running a SPICE task. When idle, each SPICE sends a FinishedTask.Cmd
command with a null filename every second. If a SPICE has just completed
a task, it sends the name of the completed task as a parameter to Fin-
ishedTask.Cmd. When the server receives a FinishedTask.Cmd, it checks
the filename parameter. If the filename was a valid one, the server copies
the output file to the VAX. Then, regardless of the filename parameter, the
server polls DECnet (on the listening socket) to see if any new connect re-
quests have been received. If so, the connect request is accepted, the logical
link is attached to the data socket, and transfer can occur. The new file
name is read, the file is copied onto local disk, and the local file name is sent
to the available SPICE worker.
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The server initially allocates a socket on which to listen for incoming connect
requests (for task number 242 - see the implementation notes in the next
section). It maintains a local list of file names, their corresponding VAX
destinations, and their data socket numbers. This is because SPICE tasks
can originate from any of several VAX’s on the network, from different users,
and from different directories, so the local filename is insufficient information
to allow the results to be returned to the sender.

The Failed.Cmd, is sent to the server when an occam multiplexer believes
that a SPICE simulation has failed. After receiving this command, the server
does not accept any new connect requests. The server doesn’t know which
SPICE task has failed until the other tasks finish or fail, because it does
not maintain a correspondence list of transputers executing specific tasks.
When all current tasks complete, or fail, the server reboots the transputer
network and sends messages down the remaining logical links to explain the
failure to the VAX users. The whole network has to be rebooted because of
the use of the standard Subsystem ports on the evaluation boards - it is not
easy to reboot individual transputers in the network.

The server only polls DECnet when there is a transputer available to do
work. The main reason for doing this was to improve the file server response
for the transputer system, since polling DECnet is time consuming and only
needs to be done when a SPICE processor is waiting for a task filename.

Implementation of the new server commands

This section discusses in some detail the C extensions written for the AF-
server.

The read_link() function is shown here with the two additional hooks to
implement the extra AFserver protocol tags, called FINISHEDTASK_CMD and
FAILED_CMD:

void read_link ()
/* Read a message coming down the link. */
{

if (read_integer (&command))
{

switch (command)
{

case TERMINATE_CMD:
filer_close ();
write_integer (F_OK);
terminate_server (T_TERMINATED);
break;

.
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.

.
/* new AFserver protocol commands for SPICE farm */
case FINISHEDTASK_CMD:

finished_task ();
break;

case FAILED_CMD:
failed ();
break;

default:
terminate_server (T_ILLEGAL_COMMAND);

}
};

}

Consider the FINISHEDTASK_CMD first.

Implementing the FINISHEDTASK CMD command

The FINISHEDTASK_CMD is sent by a SPICE application when it is available
to do work. It is processed by the set of functions shown in figure 5. This
figure also shows the hierarchy of these functions.

Figure 5: The FINISHEDTASK CMD function hierarchy

When the server receives the FINISHEDTASK_CMD, it knows that there could
be an output file ready to send to the VAX. If so, then it sends the file to
the VAX using the return_file() function. Next, it polls DECnet to see if
there are any connection requests. This is outlined in the finished_task()
function

void finished_task()
/* Just received FINISHEDTASK_CMD from worker multiplexer, */
/* so send output file back to the VAX and check for a new */
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/* input file to be processed by the transputer farm. */
{

int block_size;
char buffer [RECORD_LENGTH + 1];

if (read_record (&block_size, buffer))
{

buffer [block_size] = ’\0’;
/* buffer is the name of the finished task */
if (block_size > 0)

return_file(buffer, block_size);
if (aborted)
{

write_record(0, "");
write_integer(OPERATIONFAILED_ERR);

}
else
{

strcpy(buffer, check_dnet());
/* about to write filename info to transputer */
write_record(strlen(buffer), buffer);
write_integer(F_OK);

}
}

}

Notice the use of the aborted flag in the above function, which is set as part
of the FAILED_CMD handler. If the aborted flag is set, then the network will
shortly reboot so no further polling of DECnet is entertained.

If the system is still allowed to poll DECnet, then it does so using the
check_dnet() function

char *check_dnet()
/* Check DECNet for incoming connect requests, */
/* returns pointer to a filename or NULL */

{
struct timeval
{

long tv_sec; /* seconds */
long tv_usec; /* and microseconds */

} tim;
unsigned long read;
int nfds;
int i;
int ready_bits;

tim.tv_sec = 0;
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tim.tv_uses = 25; /* check for activity for 25 microsec */
read = 1<<sock_no;
nfds = sock_no + 1;

if (keyb_input())
net_err(NULL, 0);

/* check active sockets for input */
if (select(nfds, &read, 0, 0, &tim) > 0)

conn_accept();
/* conn request received, wait for fnam */

read = in_use_mask;
nfds = MAX_SLAVES + 3;
ready_bits= select(nfds, &read, 0, 0, &tim);
if (ready_bits > 0)

return( read_vax_record( read));

if (ready_bits < 0)
net_err("Cannot select data sockets:\n",errno);

return( NULL );
}

The check_dnet() function polls DECnet and listens for connect requests.
If it receives a connect request, it uses low level DECnet socket interfacing
commands in conn_accept to establish a data logical link over a new data
socket. The routine uses a number of global variables, most of which are con-
cerned with managing the available/used DECnet sockets. check_dnet()
uses read_vax_record() to read one of the sockets specified, display the
record on the console, and return a pointer to valid local filename. This is
done using get_filename() which performs NFT (Network File Transfer)
commands to copy the input file from the VAX to the PC.

Implementing the FAILED CMD command

The FAILED_CMD is received by the server from an occam multiplexer, rather
than from a SPICE application - how could a SPICE application know it
had failed if it was, itself, out of control? It is used to set a global flag in
the server called aborted to prevent any further polling of DECnet for new
tasks.

void failed()
/* Just received a FAILED CMD from worker multiplexer, */
/* so set aborted flag to prevent further DECnet testing */

{
write_integer(F_OK);
aborted = TRUE;
active_task_count-- ;

}
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Initializing and closing down

There is, of course, a lot of additional code required to initialize DECnet
and to close things down in an orderly manner.

For example, the following initialization sequence uses DECnet-DOS socket
interface calls, and is called as part of the booting sequence:

void decnet_init()
/* Initialise the DECNet side of things, */
/* - return the socket number of the listening socket */

{
slaves_init();
if (system("NCP SET KNOWN LINKS STATE OFF"))

net_err("NCP Call failed:\n",errno);
printf("\n\t Inmos PC Server, Version 2.0\n\n");

/* open a DECnet socket */
if ((sock_no = socket( AF_DECnet, SOCK_SEQPACKET, 0 )) < 0)

net_err("Socket allocation failed:\n",errno);
/* bind an object num to the socket */
bzero( &socket_char, sizeof( socket_char));
socket_char.sdn_family = AF_DECnet;
socket_char.adn_objnum = 242;
/* 242 is DECnet server task number */

if (bind( sock_no, &socket_char, sizeof( socket_char)) < 0)
net_err("Bind to socket failed:\n",errno);

/* listen for connect requests */
if (listen( sock_no, backlog) < 0)

net_err("Listen failed:\n",errno);
return;

}

The following function is used to close all active sockets before the transputer
system is rebooted after FAILED_CMD.

void remove_socks()
/* Shut down all sockets still active, and */
/* tell Vax user that his job has failed */

{
int i;
char msg[MAX_BUY_SIZE];
char command buff[MAX_BUY_SIZE];

for (i=1; i<MAX_SOCK; i++)
if (file_names[i].filename != NULL)
{
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strcpy(msg,"Abnormal Completion for file : ");
strcat(msg,file_names[i].file_name );
strcat(msg,"\n");
swrite(i,msg,strlen(msg));
sclose(i);
strcpy( command_buff, "NFT COPY ");
strcat( command_buff, file names[ i ].file_name);
strcat( command_buff, ".OUT " );
strcat( command_buff, file names[ i ].full_spec);
strcat( command_buff, ".OUT >>NFT.LOG" );
system( command_buff );

}
}

Hopefully, the above functions give some appreciation of the work involved
in this part of the project - about 30k (source size) of specially-written
C was required to interface to the DECnet-DOS software at the PC end.
This amounts to more than half of the source size of the original AFserver.
[3] gives useful examples and guidance for doing this type of work.

Once the appropriate network communications software exists for the envi-
ronment, the stages to incorporate it into the AFserver software are trivial.

3.4 Transputer support

In arranging for an application to be incorporated into an ’autonomous
worker’ environment, there are two options concerning the amount of trans-
puter support required. These are directly related to the mechanism of how
new tasks are allocated to workers within the farm.

• New work tasks can be explicitly requested in the non-occam appli-
cation code itself, and their dispensement can be controlled from the
server. This results in minimal transputer-resident support software,
because it removes the need for a transputer-resident farm controller
(task allocator). A simple server-protocol multiplex is sufficient to in-
terleave work requests to the server, and the server is extended to cope
with additional protocols to handle work assignment in the farm and
DECnet interfacing.

• A set of farm controller processes, written in occam, can be used to re-
ceive work tasks (from the DECnet server) and allocate them amongst
available worker processors. This approach is the more general-purpose
of the two, because it is completely host-independent, and it obviates
the need to modify the application code or the host server-transputer
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protocols. The application does not need to know it is in an au-
tonomous working environment, or that it may be one of several run-
ning on the same transputer network.

In both cases, a process on a transputer is responsible for requesting more
work from the server. In the first instance, the application itself directly
asks the server for work. In the second case, an available worker application
asks the transputer-resident farm controller for work, and the farm controller
then asks the server. In both cases, once the server receives a request for
work, it would check DECnet for any pending requests.

In our implementation, the first of these two options was selected. The
application was slightly modified to ’ask for work’ from the server, and the
server assumes the responsibility of dispensing tasks.

Modifications to the application

Like SPICE itself, the modifications were written in FORTRAN, and placed
around the ’root’ part of the application. The modifications simply con-
cerned the requesting for work (using the extended AFserver protocol de-
fined earlier), and the establishment of data input and output file names for
each simulation to run. It is an obvious requirement that since each SPICE
worker is served from the same file store, the local file names being processed
concurrently must not clash with any others. This is handled by the server.

The message-passing routines provided by the run-time libraries supplied
with all the scientific-language compilers are used to communicate with the
PC server, using the newly defined protocol. These protocols handle the
requests for new work, and have already been explained at the host server
end. Here, at the application end, the standard FORTRAN message passing
routines called CHANINMESSAGE(), CHANOUTMESSAGE(), CHANOUTBYTE(), and
CHANOUTWORD() are used [6], as shown overleaf in our implementation for the
SPICE farm.

C ************************************************************
C * Communication with DECnet file Server *
C ************************************************************

SUBROUTINE ReadInteger( N )
INTEGER Tag
CALL CHANINMESSAGE( 1, Tag, 1 )
CALL CHANINMESSAGE( 1, N, 4 )
RETURN

END
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SUBROUTINE WriteInteger( N )
INTEGER Int32Value
PARAMETER (Int32Value = 4)
CALL CHANOUTBYTE( Int32Value, 1 )
CALL CHANOUTWORD( N, 1 )
RETURN

END

SUBROUTINE ReadRecord( Len, Record )
INTEGER NilRecordvalue, Record32Value
INTEGER Tag
PARAMETER (NilRecordValue = 8, Record32Value = 12)
DATA Tag / 0 /
CALL CHANINMESSAGE( 1, Tag, 1 )
IF (Tag.EQ.NilRecordValue) THEN
Len = 0

ELSE
CALL CHANINMESSAGE( 1, Len, 4 )
IF (Len.GT.0) CALL CHANINMESSAGE( 1, Record, Len )

END IF
RETURN

END

SUBROUTINE WriteRecord( Len, Record )
INTEGER NilRecordValue, Record32Value
PARAMETER (NilRecordValue = 8, Record32Value = 12)
IF (Len.EQ.0) THEN
CALL CHANOUTBYTE( NilRecordValue, 1 )

ELSE
CALL CHANOUTBYTE( Record32Value, 1 )
CALL CHANOUTWORD( Len, 1 )
CALL CHANOUTMESSAGE( 1, Record, Len )

END IF
RETURN

END

SUBROUTINE FinishedTask( SizeOldTaskName, OldTaskName,
1 SizeNewTaskName, NewTaskName,
2 Result )

INTEGER FinishedTaskCmd
PARAMETER (FinishedTaskCmd = 127 )
CALL WriteInteger( FinishedTaskCmd )
CALL WriteRecord( SizeOldTaskName, OldTaskName )
CALL ReadRecord( SizeNewTaskName, NewTaskName )
CALL ReadInteger( Result )
RETURN

END

The subroutine FinishedTask() makes use of one of the additional tags
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to the AFserver protocol, called FinishedTaskCmd. It is used in the main
top-level part of the application as follows:

PROGRAM SPICE
IMPLICIT NONE

INTEGER MaxFileNameSize
INTEGER SizeOldTaskName, SizeNewTaskName
INTEGER OneSecond
INTEGER Result
PARAMETER (OneSecond = 120000, MaxFileNameSize = 20)
CHARACTER*(MaxPileNameSize) OldTaskName, NewTaskName
CHARACTER*(MaxFileNamesize) SpiceIn, SpiceOut

5 CALL Delay( Onesecond )

CALL FinishedTask( 0, OldTaskName,
1 SizeNewTaskName, NewTaskName,
2 Result )

20 IF (SizeNewTaskName.EQ.0) GO TO 5

SpiceIn = NewTaskName( 1: SizeNewTaskName ) // ’.in’
SpiceOut = NewTaskName( 1: SizeNewTaskName ) // ’.out’
OPEN (UNIT=5,FILE= SpiceIn, STATUS=’OLD’)
OPEN (UNIT=6,FILE= SpiceOut,STATUS=’NEW’)

CALL SpicRoot()

CLOSE (UNIT=5)
CLOSE (UNIT=6)
SizeOldTaskName = SizeNewTaskName
OldTaskName = NewTaskName
CALL FinishedTask( SizeOldTaskName, OldTaskName,

1 SizeNewTaskName, NewTaskName,
2 Result )

GO TO 20
END

The line CALL SpicRoot() is the new call to the main SPICE application.
Since the application has been delegated the responsibility of requesting
more work, it has been made into a non-terminating work request loop. This
means that once MultiSPICE is running, it will accept work continuously.
Within this non terminating work request loop is a small delay, which is used
to prevent an available worker from pestering the server continuously in cases
where there is no new work, but where other workers may be busy. In [4], a
general-purpose farming technique, which does not involve modifications to
the application, is presented.
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The occam harness

A SPICE worker is encapsulated by a small amount of occam, known as the
harness. The harness is required to ensure that the FORTRAN application
receives access to the server for filing, screen, and keyboard facilities. For a
description of the occam language, developed to express and exploit the par-
allelism offered by the INMOS transputer, the reader is directed towards [5].
For information concerning the content and creation of an occam harness
for non-occam programs, please refer to [6].

Due to MultiSPICE being an autonomous computing engine, none of the
software is written to self-terminate. In this situation, either the application
code or the harness must never terminate. Due to an earlier decision to
modify the application to request work, the application itself was made
non-terminating. This allowed the standard occam harness, as supplied
with the scientific-language compilers and the D705A occam-2 toolset, to be
used for each SPICE worker. All this work is still relevant in the context
of the D705B occam 2 toolset. To stop MultiSPICE requires deliberate and
specific user interaction on the host PC. Refer to section 3.6 for operation
details.

The occam multiplexers

Running several SPICE jobs concurrently requires that their accesses to the
host PC be dynamically inter leaved. This is most easily done in occam by
having a single transputer that talks down the single channel to the AFserver
on the PC.

A worker multiplexer sits between the IMS T800 transputers running the
application code, and the server on the PC. It provides message interleav-
ing and time-out services for each application transputer. The timeout is
determined empirically. The multiplexer should sit on its own transputer,
so as to preserve the crash-recovery capability of the MultiSPICE system.
Its general structure is illustrated below:

WHILE TRUE
BYTE Tag :
SEQ
ALT
(NOT WorkerFail[0]) & FromWorker0 ? Tag
ActOnMesage( FromWorker0, ToWorker0, 0, Tag )

(NOT WorkerFail[0]) &
Clock ? AFTER LastInput[0] PLUS InactiveDelay
ActOnTimeOut( 0 )
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(NOT WorkerFail[1]) & FromWorker1 ? Tag
ActOnMesage( FromWorker1, ToWorker1, 1, Tag )

(NOT WorkerFail[1]) &
Clock ? AFTER LastInput[1] PLUS InactiveDelay
ActOnTimeOut( 1 )

(NOT WorkerFail[2]) & FromWorker2 ? Tag
ActOnMesage( FromWorker2, ToWorker2, 2, Tag )

(NOT WorkerFail[2]) &
Clock ? AFTER LastInput[2] PLUS InactiveDelay
ActOnTimeOut( 2 )

This code fragment has the effect of allowing the first SPICE worker requir-
ing access to the server, exclusive use of the server for a single AFserver
protocol transaction. It also allows for inactivity timeout monitoring on any
worker, and prevents workers previously identified as ’dead’ from further
servicing by the system.

Not shown here is the use of occam’s PRI ALTS, which can be used to ensure
fairness of servicing worker requests for all the participating workers.

The ActOnTimeOut() procedure is responsible for the origination of the
Failed.Cmd. The ActOnMesage() procedure uses the InputOrFail.t and
OutputOrFail.t communications procedures [7], allowing controlled recov-
ery from failure of transputer link input / output.

The parameter InactiveDelay is designed to trap a crashed simulation. The
nature of SPICE is such that it has a high computation to communication
ratio. This means that relatively long periods of time can elapse between
communication bursts and any observable link activity to the host server.
Occam allows simple handling of timeout issues in comparison to other high-
and low-level languages. Occam has constructs to allow the reading of the
transputer’s timers, and to cause delays until certain periods have elapsed.
The transputer has two timers, one accessible during high priority execution,
and the other accessible during low priority execution. In high priority
execution, the timer tick once every micro-second. In low priority, the timer
ticks once every 64 micro-seconds.

The InactiveDelay is set to correspond to a time interval of around an hour
or so. It’s value is specified in the occam configuration description for the
system, and passed in to each processor as parameter. This allows its value
to be changed easily without recompiling anything. The timeout period is
calculated to be larger than the longest time taken by the largest simulation
intended to run on MultiSPICE.

The simple design of the multiplexer software means that while a Finished-
Task.Cmd request from a SPICE processor is being serviced, the server
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blocks any of the other transputers from receiving or sending data to / from
the PC. While this avoids routing overheads within the SPICE array (be-
cause there is no need to pass source and destination information with the
message and explicitly route it within the farm), it also means that SPICE
applications can remain unserviced for several minutes while file transfers
over the Ethernet are taking place. This is not as severe a problem as it
might seem, because only one device can have access to the file store at once
anyway.

The multiplexer software can be compiled for execution on the 16-bit T212/T222
transputers, or for the 32-bit T414/T425 transputers - there is no real need
to use a T800 here.

The afore-mentioned intermediate multiplexer connect only to occam worker
multiplexers and does not require to perform timeout detection. This is
because the worker multiplexers, by virtue of their design, will always be
capable of identifying inactivity problems with any of their applications.
Therefore the intermediate multiplexer need only have the capability to
through-route timeout messages to the server.

3.5 VAX support

The VAX is the main central computing resource in this system. The PC
has a unique node name and address on DECnet. When the user wishes to
send a task specification, the VAX establishes a logical link which allows the
exchange of data between the VAX and the PC server.

Two DCL2 command files on the VAX were written to arrange for the SPICE
input file on the VAX to be sent to the PC node on DECnet. This input
file is then sent to an available transputer by the server.

The first command file, called SPICE.COM, receives from the user the name
of the SPICE input deck to send to the PC server, the destination node, and
the password. It then spawns a subprocess to do the actual data exchanges.
Our implementation of SPICE.COM is shown below.

$ ! Command file used to talk to IBM PC SPICE Server
$ ! P1 is node name of target PC
$ ! Prompts for users password and list of filenames (1 per line)
$ ! A subprocess is spawned for each filename given.
$ ! All subprocess messages are displayed on the screen.

$ set NoOn
$ on control_c then goto cleanup

2DCL - Digital Command Language
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$ IF P1 .EQS. "" THEN Inquire P1 "Node"
$ Set ter/noecho
$ Inquire Password
$ Set ter/echo
$Loop:
$ inquire record "Filename"
$ if record .EQS. "" then goto loop
$ File_spec = F$Parse(record)
$ File_spec = File spec - " "
$ Node = F$Logical("SYS$NODE")
$ Colon = F$Locate(":",Node)
$ Node = F$Extract(0,Colon,Node)’
$ Node = Node - " "
$ User = F$Getjpi("","USERNAME")
$ Space = F$Locate(" ",User)
$ User = F$Extract(0,Space,User)
$ spawn /nowait -
@subproc ’P3’ ’Node’ ’User’ ’Password’ ’File_Spec’
$ goto loop
$
$cleanup:
$ Del/sym Password
$Exit
$

The subprocess spawned by SPICE.COM opens a logical link to the PC (a
DECnet node) and specifies the ’task number’ to run at the PC. The task
number specified is 242. Since the PC can only run one task at a time (the
server), it has to be running this task before the VAX attempts to talk to
it.

Here is the code for our implementation of the SUBPROC.COM DCL file

$ !Called by SPICE.COM to communicate with PC Server
$
$ set NoOn
$ open/read/write link ’P1’::"242="
$ write link "’’P2’""’’P3’ ’’P4’""::’’P5’"
$ read link record
$ write sys$output "’’f$getjpi("","PRCNAM")’"
$ write sys$output record
$ close link

The SUBPROC.COM file operates at a much lower-level than the SPICE.COM
file that spawns it. It uses non-transparent DECnet commands. The choice
of a task number of 242 was completely arbitrary, but mainly because the
first and ultimate choice, 42, was already in use by DEC. The selected iden-
tifier 242 must correspond to the task number in the special PC server,
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otherwise communication between the PC server and the VAX will not be
possible.

3.6 Operating the system

MultiSPICE receives jobs over DECnet from the VAX. It is important to
run the PC server to boot the transputer network before any attempt at the
VAX is made to send work; otherwise the system is likely to fail to establish
communication before a VAX timeout takes effect.

Running MultiSPICE at the PC end

On the PC, the special server was called SERVER.EXE. It understands
the same command-line parameters as the INMOS AFserver, so to boot
the transputer system with the SPICE workers and multiplexer file, called
spicfarm.bt, the following MS-DOS command could be used:

server -:b spicfarm.bt

It may be necessary to perform some one-off set-up commands concerning
the PC and DECnet, for example, ensuring that there are sufficient ’file
links’3 available over the network.

MultiSPICE will now load, execute, and wait for incoming jobs. Our version
was tested and operated with up to three SPICE Applications executing
concurrently. The system as it stands will not accept job assignments from
MS-DOS; only requests from DECnet are recognised.

Running MultiSPICE at the VAX end

The VAX is responsible for sending jobs to MultiSPICE, and retrieving the
results. To run the VAX DCL command file, called SPICE, one could invoke
the command by typing @SPICE.

The command file prompts the user for the name of the node on DECnet that
MultiSPICE can be found, a password to allow access to the file on the VAX,
and the filename of the job to be simulated. Everything else happens in the
background without the user being aware of anything exciting happening,
until a message is displayed on the terminal screen describing the final status
of the job. The job is either successful or aborted.

3This term is used in the DECnet context, rather than a transputer links context.
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As files are being transferred, the support software at both the VAX and
the PC ends issues messages to indicate the current activities. For example,
the VAX shows the task completion status message, and the PC shows file
transfer messages. These are also written into a log file called NFT.LOG
for post-mortem debugging, by redirecting the output of the DECnet-DOS
NFT command.

4 Other considerations

4.1 Implementation guidelines

Tools required

To reproduce any of the work described in this document, the occam-2
toolset is required to create and manipulate the transputer components.
A transputer compiler for the non-occam application will also be required.
To modify the AFserver, which is supplied in C source form on the PC,
a (Microsoft) C compiler for the host computer is needed. This will allow
the compiled server module to be linked with the C library supplied with
DECnet-DOS.

Suitable applications

INMOS provide scientific language compilers for C, Pascal, and FORTRAN.
The INMOS development systems allow applications written in mixtures
of these languages, including occam to be easily executed on a transputer
system. The range of INMOS’ scientific language compilers is growing con-
stantly - please refer to [8] for current product availability.

The applications should preferably be batch-like in nature, i.e. they take an
input file, perform some compute intensive operations, and produce output
files, without user interaction or screen access.

Especially appropriate are applications in which the ratio of ’computation
to communication’ is high. This means that the overheads in sending the
input data to the transputer, and receiving the results back over the net-
work, are low in comparison to the amount of computation that is to be
performed on the said input data. Typical applications that fall into the
category include simulation packages (chemical, thermal, dynamic, electri-
cal), technical modelling packages, compilers, and text formatting packages
(e.g. TX, troff, PostScript processors etc).

The more interactive an application, the less suitable it is for the type of
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implementation which is described here. This is due to the latency and
overheads in transporting the interactive commands and replies, between
the user at one end of the network, and the transputer server at the other
end of the network. Network latency is concerned with the delay before
processing starts, between the user invoking the command on his / her
terminal, and the transputer worker starting on the job. It consists of the
time taken to get the input data sent from the VAX to the transputer host.
There is an additional small delay due to the time taken by the transputer
to read the input work task from the local file store. The response times
normally associated with real-time interaction may be unacceptable given
these overheads.

At times of heavy loading, the network latency will increase and the transfer
rates will correspondingly drop. This will depend on the nature of the
network. In non-deterministic Local Area Network’s (LAN’s) like Ethernet,
one can observe almost order of magnitude fluctuations in response time,
depending on the instantaneous system loading. So remember, use only
applications with a high ratio of compute-time to communicate-time.

Implementation strategy

To implement a remote transputer server of the form described in this docu-
ment, the first stage is to get a single un-modified version of the application
running on a transputer board. This may involve making small changes to
the application in order to get it through the scientific language compilers
that INMOS provide. This is not because of any particular deficiency in
the INMOS scientific-language compilers, but rather because many appli-
cations tend to make use of non-standard language-extensions provided on
their native environment compilers.

The result of this is software that can be used to obtain performance mea-
surements of the application running on a transputer. [4] discusses some
application porting issues.

The next stage would be to replicate the application over a number of trans-
puter workers, using techniques described previously or in [4]. Alternatively,
one may wish to have only a single transputer worker in the system.

Next, modify the server to communicate with the network, DECnet in this
case. The DECnet-DOS programmer’s reference manual [3] is invaluable
here, giving examples of how to establish two-way communication between
any two nodes on the network. If you are using a different network, there will
be a corresponding technical reference manual. Test the server with a small
stub of occam or C (for example), on the transputer, to be certain that
something on the transputer network can request and receive the correct
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information over the network.

Finally, combine the modified server with the real application, and every-
thing should operate correctly. If this is successful, then you can go live!

Timescales

Timescales for a project such as this are difficult to estimate. Many fac-
tors are involved. For example, depending on the application’s use of non-
standard language features, there may be effort required to reimplement
these parts of the application in a standard manner before the INMOS
scientific-language compilers will accept the source input.

The time and effort to make a suitable server will depend on the avail-
able documentation describing the interfacing and protocols between the
PC server and your network. In the case of DECnet, the examples given in
this technical note should be of use.

4.2 Multiple task farms

If a farm is created which has several different tasks running, each on their
own transputer, then it would be necessary for each job request to be ac-
companied by some means of identifying the task. In such situations, a need
for additional hardware to allow individual transputers to be reset/loaded
could be identified.

If the code for that task is not currently loaded onto the farm, then it must
be fetched from local file store and loaded into the appropriate transputer.
A discussion of how to organize such a system, and how it might be imple-
mented, is given in [4].

4.3 Receiving work from DOS rather than DECnet

Work done in February 1988 by the INMOS Central Applications Group pro-
duced a version of MultiSPICE which accepts jobs in a batch fashion from
MS-DOS, and can run an arbitrary number of concurrent SPICES by using
a pipeline of tasks run on B404 TRAMs on a B008 motherboard [8]. (B404’s
have an IMS T800 and 2 Mbytes of dynamic RAM on a size 2 TRAM mod-
ule). The system was more general purpose than the one described in this
technical note, for two main reasons. Firstly, the SPICE application was not
modified. Secondly, the task allocation was controlled from processes exe-
cuting on the transputer array rather than the on the host, which makes the
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software more portable and more applicable in different host relationships.
[4] discusses this approach in detail.

4.4 Network monitoring software

Our network had a traffic-monitoring system program which could detect
periods of inactivity on ’open connections’, and log-off users or applications
that had not corresponded with the VAX for a certain time.

One of the main reasons for choosing SPICE as a candidate for a dedicated
remote application server is it’s good ratio of computation to communica-
tion. SPICE in particular produces all its output in one go at the end of
each simulation, and hence will tend to communicate over DECnet in bursts,
separated by (possibly) extended periods of inactivity, rather than in any
continuous fashion.

This temporal distribution of activity (as far as the VAX is concerned)
caused a few headaches initially, resulting in the transputer workers getting
logged off before the results were produced. Once the network monitor had
been instructed correctly, there were no more unintentional detachments.

4.5 Other transputer hosts

More recently, a number of manufacturers have produced a range of transputer-
based boards for use with a DEC MicroVAX II. If your network includes
MicroVAX’s, this might be a preferable route to follow compared to using
a PC host for the transputer board(s). Factors of cost, available driving
software, and network performance would have to examine - as well as that
of technical challenge!

The scope of this work would also be appropriate in connection with Sun’s
NFS4 environment.

4.6 Is it worth it? - Weighing up the pros and cons of using
transputers

In an effort to establish the suitability of a hosted transputer server to reduce
the loading on existing computer facilities, the following discussion may be
relevant.

To implement the system described requires a node on the network to host
4NFS is a network file system developed by Sun Microsystems to allow machines of

different types to share files.
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a transputer motherboard. Such a node could take the form of a personal
computer, with an Ethernet card. The personal computer can accommodate
several transputer modules, all of which can be performing the same or
different tasks. As a rough guide, a single B404 transputer module [8],
consisting of a 32-bit IMS T800 transputer [2] and 2 Mbytes of dynamic
RAM, can give the same performance as a VAX 11/785 with floating point
accelerator hardware, when executing non-modified non-occam code [9].

If the application is written in a largely standard dialect of a supported-
language, then it is unlikely that there will be major problems in ’porting’
the application onto a single transputer, in a timescale that could be mea-
sured in days. Several such applications can then be run together in a
farm. The best results will come from applications that are highly compute-
intensive, perform only limited file access and perform no user-interaction.

The personal computer host can also be used as a normal PC at times when
it is not used by the network users. The effort of running your software
on a transputer means that the software can now execute on any machine
hosting a transputer product; given a suitable server. This opens up useful
portability opportunities that were previously not feasible. The unparalleled
inter-connectivity of the INMOS transputer means that once the application
is running on a single transputer, one can explore the possibilities for further
performance increases by re-structuring parts of the software and by using
additional hardware. Not least of course is the impressive performance one
would obtain even when using only one transputer.

Everything reduces down to the question ’How much does CPU time cost
me on my existing computing facilities?’. This cost has to include factors for
equipment maintenance contracts, spares, upgrades etc. What could that
time have been better spent on doing? Just think ... with a modest amount
of effort, all the benefits discussed previously become a reality. So, ’is it
worth it?’. Yes.

5 Summary and conclusions

The transputer farm accelerator described in this document has proved to
be a powerful, reliable and cost effective dedicated application accelerator.
For example, in general, a single transputer is more than one and a half
times faster than the Sun with 68881 (especially on larger jobs), and on-par
with VAX 11/785 (with FPA) performance [9].

Another advantage of this system is that the node being used to host the
transputer need not always be used as a server in this way. It can still be
used as a normal networked / standalone PC, running normal PC software,

34



and indeed, running non-networked transputer software on a demand basis.

As well as the cross-host application portability that the transputer offers,
there is also great flexibility and extensibility at the system design level.
More and more power and capability can be added easily at any stage,
by interconnecting different combinations of transputers and memory. By
using the INMOS module motherboards and TRAM modules, one can ’pick
and match’ the appropriate performance and memory requirements for each
stage of a progressive and well defined upgrade path.

In addition, this work could be extended to cover different network commu-
nication software such as Suns’ NFS, by altering only the code that ran on
the host – the transputer part wouldn’t even require re-compilation.

It’s this modular and flexible extensibility that promotes the transputer as
a candidate for dedicated ’grow as you do’ transparent job-level application
acceleration. This technical note has discussed only one scenario to which
transputers can be applied that of using a network to offload work from
over-used resources. There are many other scenarios possible; limited only
by imagination.

So modular, so flexible, so powerful. So buy some.
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