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1 Introduction

1.1 Background

Until recently, cost-effective parallel processing was not available to com-
merce and industry. Software was designed and implemented sequentially.
Performance upgrades were achieved by using faster hardware and dirty
tricks. Ultimately, though, the Von Neumann bottleneck limits the perfor-
mance of such a system.

The INMOS transputer [1] avails new opportunities in performance, flexibil-
ity, and cost-effectiveness. Software can now be written to execute concur-
rently over a transputer network of arbitrary size, depending on the required
performance.

INMOS developed a programming language called occam [2] to express par-
allel requirements. Occam is the preferred programming language for the
transputer. However, to protect the existing software investments of appli-
cations not written in occam, INMOS provide a set of so-called scientific-
language compilers for the languages C, Pascal, and FORTRAN. Ada is
under development. These compilers allow applications written before the
advent of the transputer to take advantage of the performance and expand-
ability of the transputer architecture.

This document demonstrates how easy it is to use existing application soft-
ware with INMOS transputers. The techniques, which are all incremental
and progressively testable, do not require the application to be rewritten.
Each intermediate stage produces useful operable software, allowing any
amount of time and effort expended to result in an inherently better prod-
uct. By observing the problems associated with porting and paralleling ex-
isting applications, a framework and guidelines for writing future non-occam
applications becomes apparent.

In performing a port to transputers, there is often very little occam to be
written. Much of this occam falls into standard frameworks, which are avail-
able from INMOS. This helps to remove some of the ’tedious’ supervisory
aspects.

1.2 Document notes

Since C developers are expected to represent the largest body of people
undertaking application porting, a lot of this document will refer to C ter-
minology and examples, but without any loss of generality. The INMOS
scientific-language compilers are all handled and used the same way, as far
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as a mixed language application is concerned. The main software tools re-
quired to implement the techniques shown are contained within the INMOS
occam-2 toolsets.

This document does not fully explore worked solutions, but rather provides
examples and offers suggestions for programmers to work with. The code
fragments written in occam should be readily understandable, but it is not
important for the reader to understand the occam in order to understand
the examples and concepts.

Three dots ... will be used to represent areas of concealed source text in both
occam and non-occam examples. It will be assumed that any applications
referred to are not written in occam.

The assistance of Phil Atkin, Jamie Packer, Steve Ghee, David Shepherd,
Sara Xavier, and Malcolm Boffey is gratefully acknowledged.

2 Preliminary information

Before discussing the porting of an application to a transputer system, there
are a few preliminary details that are appropriately explained at this junc-
ture.

2.1 Transputers

The INMOS transputer consists of a high-performance processor, on-chip
RAM, and inter-processor links, all on a single chip of silicon. The on-chip
RAM is very fast (40ns access time on the 25 MHz part), and allows fast
data access and fast code execution in comparison to off-chip performance
(the INMOS development tools allow the user’s application to make use
of the on-chip RAM [3]). The inter-processor links are autonomous DMA
engines, and permit any number of transputers to be connected together in
arbitrary networks, allowing extra processing power to be injected into a
system very easily. The external memory interface allows linear access to a
total memory space of 4 gigabytes on the 32-bit devices.

The transputer family includes 16-bit and 32-bit architecture processors. For
further information on the transputer family, the reader is directed to [1].
For comparative guidelines on the most suitable transputer / board products
for your application, refer to [4].
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2.2 Processes

Transputers are hardware processors. Transputer processors execute soft-
ware processes. Any number of processes can be executed on a single trans-
puter processor at the same time. The architecture and instructions of
the transputer family have been designed to efficiently support high level
languages. Transputers can be programmed in conventional sequential lan-
guages such as C, Pascal, and FORTRAN.

The programming model for transputers is defined by occam. Occam offers
best support for utilizing the concurrency and communication facilities of-
fered by transputers. Using occam, a system framework can be described
in terms of a collection of concurrent processes which communicate with
each other and with the outside world. These processes can be written
in any language. Processes not written in occam can be encapsulated in
a standard and simple occam framework which makes them appear as an
equivalent occam processes (the EOP, [3]). This allows them to be used
without restriction in mufti-process environment.

Processes are connected together using synchronized, un-buffered, point-
to-point, uni-directional communication channels. An example of this is
shown in Figure 1, where each circle represents a process, and each arrow
represents a communications channel. Each process may be written in a
different language.

Figure 1: A collection of processes and their communication channels

Processes can be mapped onto transputers in an arbitrary configuration,
which is independent of the processes themselves. It is not necessary to
recompile any of the processes in order to change the way they are mapped
onto the available hardware.

In the context of application porting, part or all of the application will be
compiled and made to appear as an occam process in the system.
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2.3 The transputer / host development relationship

In the development environment, the transputer is normally employed as
an addition to an existing computer, referred to as the host. Through the
host, the transputer application can receive the services of a file store, a
screen, and a keyboard. Presently, the host computer can be an IBM PC or
compatible, a NEC PC, a DEC MicroVAX II, or a Sun-3: One example of
this arrangement is shown in Figure 2. In all cases, the development tools
execute on the transputer connected to the host. In addition, the VAX- and
Sun-hosted systems offer tools and utilities which execute directly on that
host. For a more thorough guide to product availability, please refer to [4].

Figure 2: The transputer / host development relationship

The transputer communicates with the host along a single INMOS link.
A program, called a server, executes on the host at the same time as the
program on the transputer network is run. All communications between
the application running on the transputer and the host services (like screen,
keyboard, and filing resources) take the form of messages. Software written
with the INMOS occam toolsets and scientific-language compilers, to use
the standard INMOS servers, assume master status in a master / slave
relationship between the transputer and the host. In this situation, messages
are always initiated by the transputer system.

The root transputer in a network is the transputer connecting to the host
bus via the link adapter. Any other transputers in the network are connected
together using INMOS links, to the root transputer. A transputer network
can contain any size and mix of transputer types.

The relationship between the transputer and the host during software devel-
opment does not impose restrictions on the way the transputer is employed
in the target environment.
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2.4 Why port to a transputer?

Before proceeding further, consider why one may wish to port all or part of
an existing application onto a transputer system.

• Scalable performance: Superb performance is offered by even a
single transputer. The more transputers involved, the faster the ap-
plication will run.

• Incremental expandability: Opportunities exist for achieving greater
performance through parallelizing the application (Chapter 4), and
through mufti-processor techniques and farming (Chapter 7). INMOS
TRAMS [4] are off-the-shelf board products containing a transputer
and memory. These devices can be incrementally purchased and intro-
duced to a system as the need / means avails itself. There is no need
to dispose of hardware already obtained. The software development
tools permit this incremental integration without loss of development
effort. Nothing is ever wasted. The hardware and software adapt to
the current climate.

• Straightforward implementation: There can be minimal / no
modification to the application source. It can be as simple as two
commands to prepare an existing application for execution on a trans-
puter. In other cases, tools exist to allow source-level manipulation
of the application to take advantage of new processing power. These
tools are provided by INMOS and a growing number of third-party
developers.

• Portability: Any application executing on a transputer, using one
of the standard INMOS servers, is completely host-independent. The
server (thoroughly documented, of low complexity, and shipped with
source and build instructions with the occam toolsets) translates the
host-independent commands from the transputer to the host-dependent
implementation actions. Literally any computer with a memory-mapped
link adapter and a C compiler (to build a server from INMOS sources)
can be used to host transputer applications developed using the toolset
development systems, because only the server must be implemented
on the host. For example, transputer software written using the PC-
based development tools can run unmodified on any supported plat-
form, such as the Sun-3.

OK, so you just can’t wait to get started. What do you hope to achieve
with your port? Let’s look at a few categories of porting open to you:
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2.5 Different categories of application porting

Depending on the requirements of the port, the time available, and the
characteristics of the application, the following list outlines the categories of
application porting:

1. Minimum modification porting

This involves porting all the application onto a single transputer, with
no attempt at parallelization of the code. The standard services offered
by the host server are assumed. This is the fastest to implement, but
is the most restricted in terms of suitable applications.

2. Use with other microprocessors

For various reasons, it may not be desirable or suitable for the whole
application to operate on a transputer system. In this case, a trans-
puter system can be implemented to accommodate part of the appli-
cation; a so-called part port.

3. Performance port

This involves attempting to inject some computation power exactly
where it’s needed in an application. The transputer software is frag-
mented into a small number of modules that execute concurrently, and
these can then be distributed across multiple transputers using vari-
ous application-specific and general-purpose techniques. Examples of
this, discussed later, would be to introduce algorithmic, geometric, or
farming parallelism.

Each category of porting offers a phased, progressive implementation. Each
step builds on the workings of a previous, operational stage. For example,
the transputer software would be initially ported without introducing par-
allelism, to execute on a single transputer. Then, it would be fragmented
into a small number of modules, using a stub technique to minimize disar-
ray in the source environment. Then, a multiplicity of transputers would
be introduced. Each stage results in a useful working product, building
incrementally on a working platform.

The remainder of the document discusses these categories of application
porting, and the incremental tuning stages, in more detail. But first, let’s
survey what tools exist to help.

2.5.1 Transputer software development tools

INMOS provide a range of scientific-language development systems for C,
Pascal, and FORTRAN. All these support the 32-bit transputer family. In

11



conjunction with Alsys, an Ada environment is being developed, which can
additionally target to the 16-bit transputers. On there own, the vanilla
scientific-language development systems permit a single transputer, single
process application to be constructed.

To build a multiple processor system, one is advised to use an INMOS occam-
2 toolset, in conjunction with the appropriate scientific-language compiler.
The toolsets are available for PC, Sun-3, and VAX environments, and offer
debugging facilities. The examples in this document will refer to tools for
the PC environment, and in particular, the D705B occam toolset. Access
to [3] is useful. Remember though, that for example C software compiled
using the PC development system can be integrated with other parts of an
application on a VAX platform, with the ultimate intention of hosting it
on a Sun-3 etc. This trans-platformal portability overcomes limitations of
availability of development tools across the spectrum of platforms.

There are, of course, other development systems to select from. The INMOS
Parallel C and Parallel FORTRAN systems permit multiple process systems
to be accommodated, without requiring any occam to ”connect” the modules
together.

Many third parry development systems exist. In addition to the C, Pascal,
and FORTRAN compilers, there are third party offerings for Lisp, Prolog,
Modula-2, Strand, and BASIC. Some tools are aimed specifically at one lan-
guage on one platform, offering an integrated range of compilers, profilers,
and debuggers, such as Meiko’s CStools for Sun-3 C applications, or Para-
soft’s Express. In addition, some standard libraries are available for scientific
and engineering applications (such as NAG, FLOLIB etc). Caplin Cyber-
netics offer a range of MicroVAX development tools to allow communication
between the VAX and a transputer application (the Caplin VAX/CSP li-
braries). A number of transputer operating systems are also available, such
as HELIOS, transIDRIS, and Hobbes.

Reference to [18] will show a selection of development products available
from third party developers. Make sure you get your copy. INMOS would
be pleased to advise individual customers on any aspects of software devel-
opment tool applicability.

3 Altering the application as little as possible

This chapter considers the simplest porting situation for an application. The
application is to be lifted from an arbitrary computer system, and executed
on a single transputer connected to a supported host platform.

Compliance with the goal of altering the application as little as possible
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requires that the entire application is executed on a single transputer. This
is because the programmer can overlook the additional overheads of decom-
posing the application into a distributed interacting parallel system, and
can use the standard INMOS occam supporting software.

The goal is to modify the application as little as possible, while achieving
significant performance increase.

3.1 The scenario

Before the porting to transputers, the application looks like Figure 3. No
assumptions are made about the nature and capabilities of the original com-
pute engine, except that the application uses only the following facilities
through standard function calls to the language’s run-time library:

• Keyboard

• Screen, and

• File system.

It is significant that the Figure does not show the application as having
access to any special host-dependent interfacing features, and the original
host’s identity is not important.

Figure 3: The starting point

The ported application is shown in Figure 4. It is shown in the context
of a PC host. This can be thought of as a flat port, in the sense that no
articulation or re-arrangement of the program structure is performed.

The host system, shown as an IBM PC, runs a simple program called a server
which ensures that the access requirements of the application in terms of
keyboard, screen, and filing, are fully satisfied. The standard INMOS server
supplied with the scientific-language development systems and the D705A
occam toolset is called AFserver. This server is not recommended for use
with application ports.
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Figure 4: The entire application on one transputer

The occam-2 toolsets use a different server called iserver. it must be stressed
that all new software tools / applications should be written to use the IN-
MOS iserver where-ever possible. This server is available on a growing num-
ber of host platforms (such as VAX and Sun-3) and environments (such as
HELIOS). It’s adoption brings immediate binary-level platform portability
for the software concerned.

A small amount of software support is required on the transputer, shown
in the Figure. In this specific situation of minimal modification to the ap-
plication, the support is concealed from the programmer and is supplied by
INMOS with the development systems.

3.2 Suitable applications

3.2.1 Requirements

For the fastest and simplest route to implement an application on transput-
ers, then ideally all of the following apply:

• All the application source code is available, and can be easily trans-
ferred to a host platform for transputer compilation targeting. It is
particularly important to remember that the application need not orig-
inally come from that platform.

• The application is written in C, Pascal, FORTRAN, or occam. Any
mixture of these languages can be employed, but this involves addi-
tional steps [3] to operate the development tools. Third parties provide
support for other languages, such as Lisp, Prolog, Modula-2, Strand,
and even BASIC (!).

• The application source does not deviate from the appropriate Interna-
tional standards for these languages, to which the INMOS scientific-
language compilers conform [4, 3].
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• The application does not use any special host dependent features like
memory-mapped screen I/O, sound, etc. Keyboard input, file oper-
ations, and simple screen output, are all permissible in this category
of application as long as they are performed using standard run-time
library function calls. Interactive-type programs that perform simple
cursor-addressing and all facilities concordant with the ANSI device
driver (in the case of a PC host) can be safely placed on a transputer
and used with the standard servers.

This is the scenario depicted by Figure 4, which also shows the server running
on the host computer, and some invisible software support on the transputer.

3.2.2 Good candidates

Good candidates for transputer porting would be compute-intensive pro-
grams, which do not require much interaction with any host services (and
therefore with a user at run-time). Generally, the smaller the amount of host
interaction, the faster an application will execute. This is because availing
host services usually takes a long time compared to the processing capa-
bilities of the transputer. By avoiding user-interaction, a transputer host
combination can operate together at maximum speed without intervention.
Batch-type applications are generally well suited to this, providing the quan-
tity of file traffic is small in relation to the computation performed on the
data.

Transputers can be particularly impressive with applications employing a
lot of floating point mathematics.

3.3 Identifying the best transputer for your application

An outline of transputers has already been given. Here is a summary of
some important areas in connection with device suitability in specific cases.

• If an application is integer-based, then a 32-bit IMS T414/IMS T425
would be appropriate. These both offer 20MIPS peak performance,
with the latter offering a higher performance 25MIPS version, su-
perior link bandwidth, and additional microcoded instructions for 2-
dimensional block moving (useful in graphics applications, and in block
memory initialization) and CRC error detection facilities.

• If the application uses a lot of floating-point mathematics, then one
should consider using an IMS T800. This is also a 32-bit 25MIPS
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processor with 3MFLOPS peak performance on a 25 MHz part. The
T800 can overlap floating point operations with normal CPU activity,
and with link operations. A flavour of T800 called the IMS T801 is
also available, which has a non-multiplexed address/data bus. This
allows faster (2 cycle) interfacing to external memory, offering higher
memory bandwidth.

Evaluation boards and TRAM modules [4] are available from INMOS and
third parties, offering different combinations of transputers and external
memory in off-the-shelf units.

3.4 Some potential porting difficulties

Certain parts of any application will have been fine-tuned to run on the
original host computer. This tends to make parts of the application less
general than they would otherwise be.

For example, the following areas can present difficulties in a total port to a
transputer system:

• Some programmers use their own compilers with language extensions
for their software. This could require some re-work to get the software
through the INMOS scientific-language compilers. As an example,
strings in Pascal can make porting difficult because almost all Pascal
compilers implement this aspect slightly differently. This applies to
any language extension not covered by an appropriate international
standard.

• Timing facilities offered by most languages tend to be host-dependent,
and fall outwith the scope of international standards. Programs mak-
ing use of non-standard host-dependent facilities like this can be ac-
commodated by making small modifications to the server.

• Some applications making heavy and intimate use of host-dependent
hardware or peripherals are best left partly on the original host com-
puter. For example, to keep graphical WIMP1-type applications with
memory-mapped screens interactive and responsive, the host-dependent
graphics and mouse interfacing is best left on the host. Such an im-
plementation is known as a part port, discussed in Chapter 6.

• Portability of tightly coded optimized assembler instructions between
processors is notoriously difficult. However, most companies would

1Windows, Icons, Mice, and Pull-down Menus
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write an entire application in a high level language (like C) as part
of the normal application development route, and then write selected
parts in assembler following program profiling. So, it is reasonable
to expect that (most) low-level functions will have their high-level
counterparts available for porting, in a transputer-supported scientific-
language. If the high-level counterpart is not in one of the transputer’s
supported scientific-languages, it should be easier to express it as such
than would a specific non-transputer assembler source.

If some source is not available or suitable for porting, then it must present
a well-defined ”interface” to other parts of the system. In this case, a small
amount of glue-software could be written to mesh and interact between this
code and some transputer software.

3.5 An implementation overview

To implement an application on a single transputer, involves three logical
steps

• Source compilation: All the application source must be compiled
for the target transputer. The INMOS scientific-language compilation
systems permit separate compilation of source units down to the func-
tion / procedure / subroutine level. This means that it is possible to
take an application which is fragmented over many source files, each
containing one or more functions / procedures / subroutines, and com-
pile each file independently of any others. Once all source has been
compiled, the application can be linked.

• Object linking: Following source compilation, the object binaries are
linked together with the relevant run-time library and a proprietary
occam support harness. The support harness ensures that the appli-
cation has correct access to the server running on the host platform.

• Bootstrap prepending: Before an application can be loaded onto
a transputer, a bootstrap must be presented to the linked file. The
bootstrap ensures the transputer is correctly initialized before the ap-
plication is loaded.

For this scenario, it is not necessary to make use of the INMOS occam
toolsets. The scientific-language development systems are sufficient for port-
ing an application this way.

However, the occam toolsets additionally offer the INMOS symbolic debug-
ger. This can be used to help identify execution difficulties in the ported
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application. Luckily, because in this situation the entire application is run-
ning as a single transputer process, any execution difficulties are likely to
be of the traditional sequential domain type, rather than be due to the
interaction of communicating parallel processes.

The result of this implementation is an executable file for one transputer,
connected to any of the iserver supported development platforms.

3.6 Porting example: SPICE

Here is an example of a real application that was ported in it’s entirety onto
transputers, with barely any modification. An overview is presented here,
but the detail can be found in [5].

3.6.1 About SPICE

SPICE is a large public-domain industry-standard electrical circuit simulator
program. It is very computationally intensive, and is well-suited to being
placed entirely on a transputer due to its total independence of the host
machine. SPICE is written in FORTRAN 77, receives all its input from
one file and generates all output to another file (i.e., it’s a batch-mode
program, rather than an interactive program). It is an ideal candidate for the
IMS T800 transputer due to it’s extensive use of floating point mathematics.

The time taken to port SPICE onto a transputer, once all the source files
were available, could be measured in a number of days. There were only
three files (out of 130 files) that had to be slightly adjusted to get them
through the V1.1 transputer FORTRAN compiler. One part of SPICE is
written in C, and used a transputer assembler-insert to establish the address
of a variable. This part is the only transputer-dependent aspect.

3.6.2 Performance

The code compiled down to just under 500 Kbytes of object, which meant it
could be run with a 2 Mbyte B004 (preferably fitted with a T800), or on a
B008 with a B404 2 Mbyte T800 module. The performance figures using a
20 MHz T800 were every bit as good as a VAX 11/785, and ten times that
of a Sun-3 - not bad for one T800 transputer

The high usage of floating point mathematics in SPICE lends itself much
better to the IMS T800 transputer than the IMS T414. The equivalent im-
plementation on a T414 required almost 75k of software support for floating
point routines, and the performance penalty incurred was observed to be
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about a factor of ten when compared to the IMS T800 on the same jobs
(this is still a very respectable figure).

The table below gives an indication of the performance of some randomly
selected SPICE input decks when run on a variety of different machines.
Comparisons were made between a Sun-3 (with and without a 68881 numeric
co-processor), a VAX 11/785 with FPA2, and the IMS T800 transputer
hosted by a Tandon PC.

The timings, in seconds, represent the CPU time used, apart for the T800
timings which represent the total job time including disk I/O.

Machine Resist Invert Corclk SenseAmp
Sun-3/160C 0.20 19.40 356.90 1855.50
Sun-3+68881 0.30 4.60 44.20 266.70

VAX 11/785+FPA 0.38 4.51 30.22 141.55
IMS T800-20 1.48 5.17 23.72 153.04

For more information on the porting of SPICE to transputers, the inter-
ested reader is referred to [5]. This reference also discusses various farming
opportunities for SPICE in more detail.

3.7 Porting example: TEX

3.7.1 About TEX

TEXis a document formatting and preparation system, originally developed
by Donald Knuth. Because INMOS use a TEXmacro package called LATEXfor
internal document preparation, it was decided to port TEXto a transputer
to relieve VAX CPU loading.

TEXis most widely available in source as a large single-file Pascal program.
However, a public-domain version, written in C, was obtained. It consisted
of around 20 C files, each of which contained many functions. Each file was
separately compiled using the V1.3 transputer C compiler - there were no
difficulties involved in getting the source through the compiler. The binary
objects were then linked with the standard run-time support library, and an
invisible occam harness. This loaded and ran successfully first time on an
8 Mbyte transputer evaluation board - the application was marginally too
large for the 2 Mbyte board. Only the standard C compiler was used; there
was no need to use the occam toolset in this case.

2FPA - Floating Point Accelerator
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A small change was made to the C source code in order to reduce the size
of the boot file. This was done because the transputer C compiler handles
initialization of static arrays by storing a byte of initialization data for each
byte of the static array. In the TEXsource, there were around 5 such static
arrays which were resulting in a boot file much larger than it need be.
This prevented the application from executing on a 2 Mbyte board. The
arrays were made non-static, and given simple run-time initialization code,
resulting in a smaller boot file, which loaded and executed on a 2 Mbyte
board.

For greater flexibility, a minor change was made to TEX’s path parsing
mechanism to allow drive names to be specified as part of a path name.
This is useful for a PC-based host, but was not necessary in the original
host which would have been a sizable mini-computer. A small fragment of
C was also procured to convert the time obtained from the host server using
the standard C function (in seconds) into an actual date.

3.7.2 Performance

There is little floating point mathematics involved in TEX. This results in
a boot file around 300k in size when compiled for either a T414 or a T800.
As a consequence, the performance on the T414 and T800 is very similar.

TEXperforms a lot of disk I/O in addition to heavy computation. This means
that the efficiency of the server program and the link communications can
have a considerable impact on the performance of the application.

The table below indicates the performance achieved for different document
sizes over a range of machines. The transputer is PC-hosted. The timings
are given in seconds.

Machine Loading 1 page 16 page
time letter paper

PC-AT, fast disk 6.04 15.54 112.74
PC-AT with T414-20 30.32 33.40 65.98

VAX 11/785 10.96 14.37 66.82

When loading up TEXto a transputer, a 30 second penalty is incurred while
the program boots and loads up about 500k of format data. A transputer
and PC combination attains a performance around that of the Sun-3, with
a boot file around half as big again as that produced by the Sun GNU-C
compiler. The performance degrades to around half that of the Sun-3 for
larger tasks because the Sun’s disk I/O is so much faster than the host
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PC’s. However, even this is more than three times faster than PCTEX run-
ning the same large jobs directly on an 80286-based PC. The VAX timings
shown represent the CPU time; consequently the elapsed time would be
much longer.

The PC version is not directly comparable because its format file consists of
16-bit words, which makes it half the size of the 32-bit versions used by the
transputer. This results in a correspondingly smaller heap requirement. The
effect of this is that for small documents, the 16-bit PC has the advantage
over the transputer implementation. But for larger documents, the trans-
puter streaks ahead, and can also be re-run consecutively without incurring
the re-load penalty.

Using the HELIOS transputer operating system [6], developed at Perihelion
Software Limited, it is possible to load the transputer application and the
disk-resident format files from a host PC into transputer board ”RAM-disks”
before execution. This has the effect of reducing disk-bound I/O bottlenecks,
and gives even higher performance.

3.8 Further work

Once the application port at this level of complexity is operating, a few steps
can be taken without altering any of the application source to hopefully
increase performance. These steps will be most effective if the application
is compute-bound, rather than communication-bound with the host server.

[3] shows how to build an occam harness for the application that makes
better use of the transputer’s on-chip RAM. This is because for applications
requiring more than 512 (32-bit) words of run-time stack space, the standard
harness places the whole stack off-chip, but prevents a valuable 2048 bytes
of on-chip RAM being used for other purposes (like speed-critical code seg-
ments). Most reasonably-sized applications will require more than 512 words
of stack space.

[3] also describes how to force the linker to order the object modules of the
application to squeeze critical modules on-chip. The word module is used in
this context as meaning the smallest unit of selective loading that the linker
can process. A knowledge of which are the most heavily used routines in
the application is required (perhaps from profiling data acquired from the
original host system), but the usage of run-time library modules must also
be considered.
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4 Parallelizing the application

Following a successful implementation of an application on a single trans-
puter, as described in the previous chapter, the road to increased perfor-
mance begins by attempting to introduce some parallelism. This is done by
expressing the application as a number of independent entities which can be
made to execute concurrently. These entities will be referred to as modules,
and are the atomic components of the parallelism in the system,

4.1 Types of parallelism

There are three broad types of parallelism that can be introduced to an
application, all of which lead ultimately to multiple-transputer solutions:

• Algorithmic: The application is divided into modules, each one of
which can execute concurrently on different transputers. This is the
easiest to implement, because there is no need to change much of the
existing application. The idea is to allow modules to process data
concurrently with only occasional communication. There is no neces-
sity to divide up the problem-space or modify the structure of the
application,

• Geometric: The application input data space is divided up into in-
dependent data sets according to the ”geometry” of the problem. For
example, in image processing, a rectangular grid of transputers could
be used to operate on an image, with each transputer responsible for
a fixed area and position in the scene. This approach works best
where the amount of work done in each fragment of the geometry is
the same. Introducing geometric parallelism is more complex than
algorithmic parallelism, because the data space must be sub-divided.

• Farming: Similar to geometric parallelism, the input data is par-
titioned into independent sets of data, which are distributed over a
transputer network. The difference here is that farming is a more
general-purpose technique than geometric parallelism, and the farm
topology is independent of the application geometry. Farming is also
best suited to applications where the unit of work varies in complexity.

It is advised to begin with an algorithmic parallelization, and then proceed
to geometric or farm parallelizations as required. These classifications all
utilize the same module concept.
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4.2 Why parallelize?

There are a number of advantages to be gained by fragmenting an applica-
tion into the concurrently executing modules described in this document

• The functional / data-flow decomposition of an application into inde-
pendent and self-contained fragments allows best exploitation of the
architecture and parallel processing capabilities of the INMOS trans-
puter. Performance opportunities for concurrent processing, multiple
processor solutions, farming, and pipelining are within reach.

• There is a clean, well definable interface between the module and all
external modules. This facilitates development by independent teams
of programmers who work only to the specification of the interface.

• The source for each module is separately compiled and linked, allowing
fast implementation of specific updates and revisions to a large system.

• Any module can be re-implemented in a different way, in a different
language, or on a different processor, without any impact on the rest
of the system, providing it retains the same well defined interface to
other modules.

• Each module’s memory is logically separate from the memory used by
all other modules.

• If several functions which operate on a data structure exist within a
module, then since only one function in a module can be active at
once, mutual exclusion of access is afforded.

• The scoping of functions is restricted to the module they are con-
tained within. This is similar to the PACKAGE concept in Ada, or
the MODULE concept in Modula-2, and has important consequences
in providing security by means of data abstraction. The INMOS trans-
puter Pascal compiler offers a similar module concept with good con-
trol over the visibility of functions and procedures. Instead of pro-
viding this security by a public specification of the procedures and
functions available, one provides a specification of the channels and
protocols available for use with the module.

• An implementation can be configured to run easily on a variety of hard-
ware topologies, which also aids portability between different hosted
machines. Operating systems like HELIOS [6] allow an application,
comprising of concurrent modules, to adapt at run-time to the existing
hardware available. The application requests certain services such as
floating-point transputers, or graphics facilities, or filestores. It is not
constrained to any pre-determined hardware topology.
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Converting an application to modules in an attempt to introduce algorith-
mic parallelism will itself only give speedup if the programmer can arrange
for computation activity during periods of screen / keyboard / file system
interaction. The greatest performance benefits will come from distributing
a modular system over a number of transputers.

Attempting to parallelize an application is not as simple as the flat-port to
a single transputer described in the previous chapter, because one has to
identify specific parts of the application involved that could be (profitably)
executed in parallel. This is very dependent on the application concerned,
and how it is structured.

4.3 Definitions

The following definitions apply rigorously to the remainder of this document

• The word function is used to represent code units written in a non-
occam language. The code units could be functions (as in C and
Pascal), procedures (as in Pascal), or subroutines (as in FORTRAN).

• A function grouping consists of a collection / hierarchy of functions
that call each other in some structured way. This is generally the same
structure (or a branch of it) as in the flat-ported implementation. The
senior function is the single function that can be thought of as the
”entry point” or ”call” to the grouping.

• A ”module” is a collection of function groupings which is executed
concurrently with other modules. This usage of the word module
should not be confused with that generally associated with separately
compiled object binaries, which are not complete self-contained ”sub-
programs”. The module is the unit of concurrency in a system. A
module represents the so-called non-occam process (NOP), which is
made to appear as an equivalent occam process (EOP) by a small
occam support harness [3].

• The root module is the module that communicates directly with the
host server.

• Modules communicate with each other in pairs. A super-ordinate mod-
ule ”calls” or ”accesses” services provided by a sub-ordinate module.
Generally, the root module is the most super-ordinate module, i.e.,
it ultimately controls all other modules in the system. Generally, to
avoid software overheads, a sub-ordinate module is always accessed by
the same super-ordinate module.
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• The module interface is the only gateway for modules to communicate
with each other and access data and code items. This communica-
tion always takes the form of message-passing, which conforms to a
specified protocol for the modules concerned.

• The environment of a module represents all the data and functions
contained within the module. Figure 5 shows each module consisting
of an environment boundary, enclosing a number of items, which are
code items (i.e. functions), and data items.

• The expressions non-local and remote are used to indicate access to
code or data items in a different module. Access to code or data items
in the current module are local accesses. All non local accesses are
accomplished by a communication interchange on specified commu-
nications channels between the two participating modules. All local
accesses are unchanged from the original non-ported application (and
the same as the flat-ported application) by reading variables or calling
functions by name, for example.

Armed with these definitions, and a really hot cup of tea, consider the work
involved

4.4 The stages in modularizing

To take an application and decompose it into modules, the following stages
will generally be involved

• Decomposing the application into several independent function group-
ings that can be profitably executed in parallel.

• Enclosing these function hierarchies with a standard piece of simple
source code (in their own language) to make them appear as message-
passing modules.

• Generation of simple occam support for the modules, to make the so-
called equivalent occam process (EOP) [3]. This allows the module to
be freely used within a multiple process system.

The EOP modules, with their encapsulating occam, are interconnected using
a simple top-level occam harness. Each transputer in the system will have
a top-level harness to bind all the processes together. A single configura-
tion description then maps all the software components onto the transputer
network.
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If the application is written entirely in C or FORTRAN, the INMOS Parallel
C and Parallel FORTRAN development systems allow the entire intercon-
nectivity of the application to be expressed without using occam. This
is done using a meta-language, but achieves the capabilities as the occam
toolsets. This document refers to the use of the occam toolsets in the ex-
amples.

4.5 Modules

This section discusses modules, as they relate to the fragmentation of an
application into a series of parallel processes. The system is under the
control of a single module, derived from the main control structure of the
original application. This requires the minimum of occam support.

4.5.1 Module properties

Fundamentally, the use of non-occam languages on transputers is controlled
by occam statements to instantiate sub-programs and allocate workspaces [3].
The occam model imposes certain restrictions on parallel processes in a
transputer system, for example, communication is restricted to the form of
messages propagating on unidirectional point-to-point unbuffered channels.
Since a module is represented as a single parallel process on a transputer,
modules themselves can only communicate with other modules by message
passing.

A summary of module properties is now listed

• Contains many functions from the original application, almost all of
which are unaltered.

• Normally written in one language.

• Communicates with modules implemented in any language - all IN-
MOS development systems share the same internal representations for
the most common data types. Thus, characters sent by a Pascal mod-
ule will be interpreted as the same characters by a C or FORTRAN or
occam module. Similarly, integers and floating point representations
are standardized in so far as the languages permit them to be, allowing
free interchange of standard data types throughout a mixed-language
system.

• Possesses one entry point which can be used to select any of several
internal function groupings.
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• Communicates with other modules exclusively through channels by
means of point-to-point messagepassing.

• Has a completely self-contained environment, making no ”background”
accesses to data or capabilities in other modules except by a message-
based communication.

• Independent of the hardware topology upon which it is executed.

• Is instanced very infrequently (usually only once at the start of exe-
cution of the system), but utilized very frequently by sending it work
request messages and awaiting result replies.

• Terminates cleanly and in a controlled way.

These aspects are now considered in more detail.

4.5.2 Modules provided by the INMOS tools

The INMOS development tools offer the best support and least run-time
overheads if each module performs a fairly substantial amount of work (in
the computation sense).

A non-occam unit in a transputer system is almost a complete sub-program.
It is separately compiled. It has run-time library support linked in with it.
It has a main entry point that initializes data structures. Each module
has its own run-time library support, even if more than one module uses
the same routines from the library. This leads to a certain overhead in
memory space, which increases with the number of non-occam modules in
the system. In addition, there are temporal overheads involved in instancing
a module, which are caused by the module start-up routines relocating static
initialized data from the tail of the module code area to the run-time heap
for the module.

Concerning the collection of functions contained within a module, consider
Figure 5.

With reference to the Figure, the small shaded rounded boxes represent func-
tions, and the large unshaded boxes represent the boundaries of a module.
Three different modules are shown

• Module 1 consists of a single function body and some data items used
only by that function. A data structure and all the functions required
to access and update the data structure are generally packaged to-
gether in the same module. This is normally a sensible way to bundle
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Figure 5: Examples of a module contents

a function grouping, in the sense of localizing information and it’s ma-
nipulation functions. As a corollary, in an implementation of this type
only one function may be executing at once, thereby offering a ”crit-
ical section” mutual exclusion feature of the type originally proposed
by Hoare in his schema for Monitors [7].

• Module 2 shows the main entrypoint function (F1) calling other func-
tions (within the same module).

• Module 3 consists of two function groupings, the F1, F2, and F3 group-
ing shown on the left, and the F4 and F5 grouping shown on the right.

A module would generally contain many functions and function groupings.

4.5.3 Instancing modules

Modules require some supporting occam, known as the harness. The har-
ness can be thought of at two levels. Each module is firstly enclosed in an
occam wrapping which allocates workspace to satisfy the stack and heap re-
quirements of the module. This harness and the module together represent
an equivalent occam process (EOP). It is written as a PROC, allowing it to
easily connect to other EOPs using only channels. Then, all the EOPs are
interconnected using a top-level harness, one per-transputer. Refer to [3] for
guidelines on all aspects of harnessing.

Modules communicate by passing messages. Modules can utilize an arbitrary
number of channels to communicate externally. These channels are set-up
by the occam harness.

Occam statements are used to control execution of each EOP module. Be-
cause all the useful application code is confined to non-occam modules, the
system instantiation pattern is for the occam top-level harness to instance
all modules together in parallel at the start of system execution, and let the
application control itself until termination.
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... define interconnect channels
PAR
... instance module 1
... instance module 2
... instance module 3

Once a module terminates, it cannot be restarted under the control of mod-
ule. Only occam can be used to instance a module.

4.5.4 Module structure

A module has to be structured such that once it is entered (upon instanti-
ation by the occam code), it does not terminate until the application has
finished with it. It is useful at this point to compare the temporal existence
of modules and functions.

4.5.5 Module communication requirements

Modules communicate with other modules using messages sent on channels.
Absolutely anything non-local that is required by a sub-ordinate module
must be copied from the super-ordinate module into the local environment.
This falls into two categories

• Parameter requirements.

• Non-parameter requirements, i.e., free variables.

Some data items will only have to be read into the module, and not exported
afterwards. Examples of this would be ”value” parameters and free variables
that are not written to in the module. Some data items must be sent both
ways, for example, any ”reference” parameter or written-to free-variables.
Non-local data items such as strings and arrays, which are generally referred
to by pointers, must have their entire body communicated (both ways if the
data item could be written to) instead of the pointer value.

Any data item used outwith the current environment must be message
passed for every interaction with the module. The messages represent the
values of the parameters and free variables that would have been passed to
and from the module if it were still implemented as a function call in a flat
system.
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4.5.6 Module communication protocol

It is vitally important to ensure that each interaction between two modules
observes a constant, fixed, defined protocol sequence. This is the only safe
way to prevent deadlock, and prevent parameters getting muddled up. For
example, Figure 6 shows the consequences of an inconsistent message order-
ing in the sending and receiving environment. Referring to the Figure, if
data elements C and D are the same size, then they will end up at the Con-
troller module having each other’s value. If they have different workspace
requirements, then the system will possibly hang, depending on the primi-
tives used at each end to transfer the data - but the results will definitely
be incorrect.

Figure 6: Incorrect message ordering on a single channel

Figure 7 shows a system deadlock, caused by an inconsistent ordering of
channel reading, between the sender and receiver modules. Although the
Worker and Controller are transferring data in the correct order, the dead-
lock arises from the Worker module sending data on channel 1 while the
Controller is waiting on data from channel 2. This data will never arrive on
channel 2 because the Worker won’t send anything else until it’s message on
channel 1 has been accepted. If the language allowed both transfers to occur
in parallel as in occam then there would be no deadlock potential here.

Figure 7: Deadlock due to incorrect channel ordering
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4.6 Guidelines on dividing an application into modules

This section discusses some guidelines to follow when planning the decom-
position of an application into independent message-passing modules. This
part of an application porting is very dependent on the way the applica-
tion is structured. One must have a knowledge of the data flow within the
application to allow effective partitioning of the program into orthogonal
modules.

The objectives are that each module performs a lot of computation, but
with minimal communication between neighbors.

• Coarse Granularity: Parallelize the application into a manageable
number of separate modules, say around ten, executing concurrently
on one transputer (initially). This means that within each module,
there can be a large number of completely unchanged functions. The
structure of the original application is mostly preserved, offering even
better maintainability than before, and the port is correspondingly
simpler and faster, and more rugged. The burden of interconnect-
ing the modules is also lessened. In almost all cases, there are more
software processes (modules) than hardware processors.

• Minimizing inter-module communications: Anything referenced
outwith the current module’s environment has to be copied into lo-
cal environment store before use. One will be able to estimate the
amount of inter-module traffic by the size of each item and the fre-
quency of usage of the module by it’s super-ordinate. A cost can be
associated with each message interchange between two environments.
Every communication adds to this cost. Aim to minimize it.

• Restrict host-dependent constructs: It is important to try and
restrict the number of modules that make use of host-dependent ser-
vices, preferably to only the root module.

For example, any construct performing screen, keyboard, or file system
interaction is host-dependent. If several modules use full language
input / output capabilities, then it is necessary to arrange, by means of
multiplexers, for these modules to have a communication path routed
to the root module that communicates with the server. Due to the
limited number of links on each transputer, it is best to try and avoid
the overheads of multiplexing messages along chains of modules. The
best approach is to have only the root module performing full language
input / output.

Supposing an application has been written in such a way that sev-
eral clearly delineated operations proceed sequentially. Each operation
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reads some input from a file, processes it, and writes the results out
to another file. A particular speech synthesis system springs to mind.
If such an application were to be converted to modules with a view
to distributing it across a transputer network, then there would be
serious penalties paid for accessing the data files. Several approaches
can be taken. One approach is to pay the disk access penalty and
arrange for occam software to route messages to the host for file ac-
cess. Another approach is to tweak the application to write and read
from a RAM-resident FIFO data buffer3. This removes the bottle-
necks associated with host dependency. A further method is to use
the HELIOS transputer operating system to use local processor RAM
as disk storage and FIFO.

• Profiling: If a profiling knowledge of the application is available, per-
haps from studies performed on the host system or an examination of
the source code, the functions responsible for the most computationally-
intensive tasks can be identified. Attempt to isolate pockets of compute-
intensive activity. There is no current profiling support offered by the
INMOS development systems. However, Parasoft’s ”Express” devel-
opment system offers profiling assistance with C applications.

Note that, a detailed data-flow knowledge of the way the application is
written is needed to establish blocks of code that could be completely
self-contained, and operate effectively in parallel with other parts.

• Grouping data structures and their access operations: If one
has a data structure and a number of functions that initialize and
access the structure, then it could be appropriate to group the data
structure and these functions into one module. The only way to ac-
cess the data structure would be by these access functions contained
within the module. This is most appropriate when several other super-
ordinate modules would access this module, otherwise all the data and
functions would be put in the same module as everything that accessed
them. This object-oriented approach offers portability and freedom to
alter the implementation details, providing the interfaces to external
modules are unchanged.

The usual considerations of module traffic compared to computation
performed per access should be used to establish the effectiveness of
this grouping. Note that if more than one module requires to access
another, a control channel and occam multiplexes, shown in Section
5.3, is required.

• Large or global data structures: If a large ”global” data structure
3Note that the application itself need not be modified - an intelligent occam filter can be

used to intercept host-bound file access commands and convert them into FIFO accesses.
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exists, it is probably best to package the structure and all its access
functions into a module to maintain coherency and integrity of access
to the structure.

For example, a compiler or spreadsheet will contain a number of global
data structures. The structures and all functions that operate on them
could be packaged up as a module. This ensures consistency and
integrity of the data structure and provides a clean, well-documented
interface, to the outside world.

It is important to ensure that a different module does not attempt
to access any parameters or free variables while they are being used
(and possibly altered) by any other environment. This would lead to
an inconsistency in the data values, which may not be appropriate
behaviour for the application. This is normally prevented by a care-
ful and strategic decomposition of the application, and by using an
access protocol that forces read-modify-write operations to the data
structure.

If a large collection of unrelated veritable global variables have to be
shared amongst a number of concurrent modules, one has to consider
the overheads of broadcasting (both ways) the global data. Using
protocol to ”lock” access to the module (to prevent unscheduled mod-
ifications) can reduce performance because other parts of the system
can become blocked. One could decide not to parallelise at the level
that would require heavy overheads in frequently broadcasting and re-
ceiving global variables. Select a level of modularity that minimizes
the traffic on such broadcasts, since these have to be done both ways
for each access by a module.

Under very special and limited circumstances, a suitably robust ap-
plication may not suffer if infrequently the ”most recent” data values
held in a large global array are not used for current computations.
In this case, given that all the modules using this data structure are
actually guaranteed to be executing on the same transputer as the
data structure, then the address of the item can be used to directly
write into the memory of the (single-copy) data item. This memory
is outwith that of the module using the data item. Beware of parallel
modules attempting read / modify / write operations, because there
will be non-deterministic effects using this technique.

5 Implementing modules

Given that a ported application has been examined with a view to intro-
ducing some algorithmic parallelism, the next stage is to implement the
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identified function groupings as modules. A strategy for implementing the
modules with minimal changes to the application is now discussed by way
of examples.

5.1 The technique

The method involves making no changes to the bodies of any functions /
procedures, or to the way in which they are normally called. It is unaf-
fected by recursion or un-clean exiting from loops and nested conditional
statements. It is independent of the topology of the transputer network.
The technique is also appropriate for part-porting situations, described in
Chapter 6.

5.1.1 Overview

Briefly, the method replaces the call to a function grouping of functions with
a message-passing stub, and uses a standard fragment of non-occam code
in the called module to re-create the original environment of the function.
This offers the immediate benefits of portability of modules throughout the
hardware in a system, but without explicit parallelism between modules.
Then, by a simple extension of the method, parallelism amongst the modules
is introduced, offering even greater performance when used in conjunction
with several transputers.

The technique is as follows:

• The group of functions to be made into a module is placed in a separate
file from the functions that call them. These two files will represent two
modules, which will be separately compiled and linked. Think of the
modules as a sub-ordinate (containing the functions just picked out)
and a super-ordinate (containing the calls/accesses to these functions).

• The communications protocol between the sub-ordinate and the super-
ordinate modules, in both directions, is specified. This consists of
a sequence of messages, firstly from the super-ordinate to the sub-
ordinate module, then in the other direction. Remember that one
channel is required for each direction. If several different functions in
the module need to be individually ”requested”, part of the message
protocol should identify which service is being requested.

• In the super-ordinate, the original definition of any functions now in
the sub-ordinate module is replaced by a stub which communicates
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(with the sub-ordinate) using the agreed message protocol. This en-
sures that all references to a service in the sub-ordinate are converted
to a message interchange. The stub takes the same name as the func-
tion(s) involved.

• In the sub-ordinate, a standard format in the same language is wrapped
around the calls to the functions in the module. This standard format
will communicate (with the super-ordinate) using the agreed message
protocol, and also ensure that the module does not terminate until
requested specifically.

• The occam support for each module is written according to guidelines
in [3]. The support ensures each module has sufficient workspace. The
modules are connected to each other using standard occam channel
specifications.

Consider now the benefits provided by the technique.

5.1.2 Benefits

The technique is a fast and safe way to implement parts of an application
in parallel, because:

• There is no change to either the function bodies or their parameters.

• In the super-ordinate (calling) environment, only one point in the code
has to be changed to call a module, using message passing. Stubs
detach all references to a module from its physical position.

• All references to the function within the calling environment are au-
tomatically intercepted by the stub, and fired off to the module per-
forming the behaviour of the original function.

• The stub conveniently collects together the values of any global vari-
ables and strings etc. required by the module, and can re-assign to
these ”globals” after the module returns control.

• It accommodates assignment of function values from a function return
(data) operation.

• It allows simple alteration of the module access protocol in the calling
and receiving environments, because all message passing is localized
into just one function in each case.

• New capabilities can be added to a module by virtue of a tagged pro-
tocol used to identify the service requested.
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Figure 8 shows how stubs impact the execution of two modules, M0 and
M1. The shaded boxes represent active processing. Module M0 processes
activities 0, 1, 2, 6, 7, 9, and 11. Module M1 processes activities 3, 4, 5, 8,
and 10. Notice that the system about to be described does not yet allow
any explicit overlapping of module processing.

Figure 8: Module execution pattern using stubs

5.2 Example of module implementation

It is assumed that the application has been decomposed into several groups
of function hierarchies, as shown in Figure 9. The lines represent hierar-
chy between the functions, with an implied reference to some free variables
(global data).

Figure 9: Functions to be modularized

Function F1 is considered to be the top-level function in the grouping com-
prising F1, F2, F3, and F4. F1 is itself called from F0, which will be rep-
resented by a different module. The method of converting the F1 grouping
into a module, and referencing it from the F0 module, will now be discussed,
with the objective of not changing the content or declarations of any of the
functions l procedures within the F1 grouping, and also not changing any
actual ”calls” to the F1 grouping made within F0. These objectives are
realized using the technique described above.

The creation of a sub-ordinate module (M1) and its reference from a super-
ordinate (M0) are explained. An overview of what the two module system
will become is given in Figure 10.

• Before changing anything
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Figure 10: The twin module system

In the pre-modular system, suppose the C function F1() looks some-
thing like this:

int F1(param1, param2, param3, param4)
int param1, *param2;
double *param3;
char param4[];
{

... local variables defined and initialized

... COMPUTE !! (Calls to F2, F3, and F4)
return (answer)

}

F1 is the top-level function in this grouping. It references functions
F2, F3, and F4.

• Making the M1 sub-ordinate module

The M1 module consists of F1, F2, F3, and F4. The call to F1 is
enclosed by a controller loop, to ensure the module never terminates
until specifically instructed. This is represented by the controller in
Figure 10. Because the functions are written in C, the standard struc-
ture for M1 is also written in C:

main(argc, argv, envp, in, inlen, out, outlen)
int argc, inlen, outlen;
char *argv[], *envp[];
CHAN *in[], *out[];
{

int running = 1, tag;
... decls for non-local data
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while (running) /** main loop **/
{

... receive tag from calling process
if (tag = COMPUTE)
{

... receive and unpack data from super-o
F1(value, &reference, &bigref, string)
... pack and return data to super-o

}
else if (tag = INITIALIZE)

... receive and unpack data from super-o
else running = 0; /** termination **/

}
}
... source for F1 and dependent functions

Using this arrangement for calling F1 means that none of the bodies or
parameters for any of the constituent functions in the module need be
changed. All parameters needed are received and unpacked by the sur-
rounding controller loop. All non-parameter variables required are also
received as messages and made available in the background, exactly as
in the original environment. All results and changed free variables are
packaged and returned as messages to the stub that ”called” the mod-
ule. Don’t worry about the arguments to main () they are required to
allow the message communications [3].

In effect, the structure described above creates the exact environment
that the function would have experienced in its original place.

• Making the M0 super-ordinate module reference the M1 mod-
ule

The M0 super-ordinate module contains a stub function F1 which takes
the same parameters as the original F1. Its purpose is to perform
message-based communication with the M1 module. The structure of
the F1 stub could look like this:

int F1(param1, param2, param3, param4)
int param1, *param2;
double *param3;
char param4[];
{

... send messages to M1 module

... receive messages from M1 module
return(answer)

}

The stub contains only the message passing aspects required by the
real body of F1 in the other module. Figure 10 shows the stub of F1
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being called from F0. The actual computation, originally performed
by F1, is now performed by module M1, also shown in Figure 10.

This technique can be applied to software being used with any of the INMOS
development systems.

5.3 Implementation notes

There are a few general implementation points to note here

• Start at the bottom

It is important to convert the most subordinate items into modules
first. This is so that when a super-ordinate item refers to functions
within a sub-ordinate module, all the sub-ordinate’s access channels
and protocols will have already been defined - all the information re-
quired to reference the other module is available.

• Protocol

It is advisable to use the equivalent of an occam tagged protocol when
defining the protocol for access to a module. As well as identifying
which one of several possible senior functions is to be executed, it is
easily extended to incorporate new facilities. For example, module
termination is cleanly addressed using this technique, simply by the
use of an additional tag. It also simplifies including a module loop-
back ”debugging” mode which can be used to test that messages are
being sent, modified, and returned correctly.

In this example, the tag INITIALIZE is used to handle an infrequent
distribution of system data which does not form part of the regular
interchanges with the module (to minimize traffic). Here is an out-
line for the controller loop in a module. Notice how simple it is to
implement a termination tag.

main( ... )
{

int running = 1, tag;

while (running)
{
... receive tag from super-o module
switch (tag)
{
case COMPUTE:

... handle computation request
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break;
case INITIALIZE:

... handle initialization request
break;

case NEWMODE5:
... handle this computation request
break;

case DEBUG:
... handle debug mode request
break;

case TERMINATE:
... handle termination
/** sets running = 0 **/
/** may propagate terminate signal **/
break;

} /* switch */
} /* while */

}

The COMPUTE tag could indicate normal work for the process, and
would invoke a standard message interchange between the calling mod-
ule and called module. Imported free variables would be declared out-
side of main (), and assigned to as part of the message input protocol.
The DEBUG tag could be used to select a different operation mode
tuned to debugging, perhaps to produce additional message traffic or
return checkable results. A retro-fitted function grouping could be
accessed with NEWMODE5.

• System termination

It is important that all processes in a transputer system complete their
application processing cleanly. This is often done by the root module
initiating a termination condition which spreads to each module in the
system on a predetermined route. This option is pursued in Figure 11,
where the termination signal propagates clockwise from the root mod-
ule. This can be implemented using a termination tag described above,
which. is forwarded to sub-ordinate modules from super-ordinates.

The shut-down is more secure if each module handshakes the shut-
down with all it’s sub-ordinates before handshaking with it’s own
super-ordinate. Modules are therefore shut down remotest first.

It is possible to arrange for the root module to send a terminate com-
mand to the host server, and neglect to shut down any of the modules.
This causes control to be returned to the host operating system, but
the transputer network is left running. This can allow the system to
be re-run without re-booting the transputers.

• Why there’s no name clashing
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Figure 11: A system termination example

Once F1 has been implemented using a stub, it means that within the
system, as a whole, there are two entities called F1. One is the original,
real, F1, and the other is the stub used to call it. This does not lead to
any name-clash problems, because each module is separately compiled
and linked before inclusion to the rest of the system.

In general, names of stubs, real functions, or data item do not clash
with those in other modules.

• Multiple super-ordinates

If a module has to be accessed from many super-ordinate modules,
then it is important to realize that all the tag messages will be sent
on the same channel. This is because most non-occam languages do
not permit the simultaneous testing of data arrival on several channels
(akin to the occam ALT). A simple occam ALT would be used to funnel
access request tags from all super ordinates to the module. A module
expecting access from several super-ordinates has, as part of the ac-
cess protocol, an identification tag which it uses to select channels for
communication with the successful super-ordinate. The actual data
messages (i.e., everything except the tag) travel on different channels,
an input and an output channel per super-ordinate. Only the identity
of the current super-ordinate must be sent on the same channel, which
is why a simple occam ALT is used to select one of several.

This is shown in Figure 12.

To terminate the multiplexes, one of the super-ordinates should have
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Figure 12: Sharing a common sub-ordinate module

an additional channel, and as part of its termination protocol it ter-
minates the multiplexes.

• Handling compile-time shared data

If a large global compile-time constant base exists with respect to a
number of modules, that has to be available to a system of processes,
then the easiest way to handle this is to place definitions shared be-
tween several modules in an #include file (for C and Pascal). With C,
the pre-processor #define facility would be used to prevent declaring
run-time storage for any of these constants.

In this way, changes to the values of any compile-time constants can
be easily made available to all separately compiled modules that need
them. Unfortunately, the V1.1 FORTRAN compiler does not support
file inclusion mechanisms because this is not part of the ANSI X3.9-
1978 standard4, so one would have to make explicit textual inserts for
all global constants (which would probably take the form of COMMON
and PARAMETER statements).

Since compile-time constants, such as C’s #define do not occupy any
storage, there is no penalty in having them #included in lots of mod-
ules.

Note that with the current INMOS C compilers (V1 .3 and 2.00), static
initialized arrays are implemented inefficiently with respect to the size
of boot file. A static initialized image is stored with the bootable
code, meaning that large arrays lead to large boot files. Try to avoid
using static initialized arrays, especially those defined across several
modules.

• Handling runtime shared data
4Version 2.00 Parallel FORTRAN does support file inclusion
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To ensure the integrity and consistency of run-time initialized data
shared between several modules, with each module performing the
initialization rather than a broadcast reception, any source code shared
by more than one module should be #included. This ensures that all
modules supposed to hold the same data actually do.

There are cases where the infrequent broadcasting of global constants,
which are initialized at run time by another module, is very useful. For
example, where a module has to perform some intensive computations
to initialize a data structure which is thereafter unaltered but shared
between several other modules. Another example might be where a
shared read-only database has to be loaded once from slow disk drives
and is broadcast once to modules requiring it.

In these situations, this information can be broadcast once only to all
the modules that require it, allowing smaller message protocols to be
used for all subsequent interactions.

It is straight-forward to implement any number of these data broad-
casts, using the tagged message protocol described. The sizes of these
broadcasts are not so important because of their infrequency of occur-
rence (usually only once), and also because the transputer can overlap
computation with message passing. Each module in the system may
require a different set of global constants to be sent to it, because the
concept of globality is made with respect to the given module.

If the initialization of the run-time shared constants is trivial in the
computation sense, then instead of calculating once and broadcasting,
each module can calculate locally as well as store locally. If too many
modules require frequent access to shared run-time constants, then the
application may be better decomposed.

5.4 Some coding examples

This section contains some coding examples of handling parameters and
accessing non-local environment data, with stubs and the message-passing
functions. The examples are trivial, in that they only show the handling of
a single type of parameter or free variable at once. However, by combining
the techniques shown, the interface to a module of any complexity can be
derived.

Consider again the F1 function grouping in module M1, being called from
function F0 in Module M0. These examples assume that communications
between the modules take place using element 2 of the input and output
channel vectors of each module. So, the C examples use out[2] and in[2]
for communication, using messaging functions called _inmess and _outmess
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from the C run-time library. Although not shown, each sub-ordinate message
fragment is within the main controller loop to ensure services are available
until the module is instructed to terminate.

• Scalar value parameters

A value parameter is one for which any changes that may occur to it
in a function / procedure, are not reflected back to the caller. In C,
consider a real value parameter called by_value sent by the stub F1
in module M0 as follows:

int F1(by_value) /** stub **/
float by_value;
{

_outword(COMPUTE , out[2]);
_outword(by_value, out[2]);

}

This would be received by the co-ordinator in sub-ordinate module M1
as follows:

float by_value; /** local storage **/
{

_inmess(in[2], &by_value, 4);
F1(by_value);

}
... Body of F1 in here

This is the mechanism used for all scalar value parameters. Consider
the same situation in Pascal. Here is the stub, placed in the calling
module:

procedure F1 (ByValue:real); {stub}
begin
outmess(channel, COMPUTE, 4);
outmess(channel, ByValue, 4);

end;

This would be received by the co-ordinator in sub-ordinate module M1
as follows:

... Body of F1 in here
var ByValue:real; {local storage}
begin {main body}
inmess(channel, ByValue, 4);
F1(ByValue);

end.
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• Scalar reference parameters

A reference parameter is one for which any changes that may occur to
it in a function / procedure, are propagated back to the caller. In C,
this is implemented by passing in the address of the item to be used,
allowing changes to be directly written into that item. With modules,
the actual data (and not just the reference to it) must be passed. Here,
a reference parameter called by_ref is sent by the stub F1 in module
M0 as follows:

int F1(by_ref) /** stub **/
int *by_ref;
{

_outword(COMPUTE, out[2]);
_outword(*by_ref, out[2]); /* sent data */
_inmess(in[2], by_ref, 4); /* received data */

}

Notice that the new value for the changed parameter is slotted back
into the same memory location as original - the stub does not declare
additional storage for it.

The corresponding communications in the co-ordinator in sub-ordinate
module M1 are as follows:

main( ... )
{

int by_ref; /** local storage **/
_inmess(in[2], &by_ref, 4);
F1(&by_ref); /** call FS the same way! **/
_outmess(out[2], &by_ref, 4);

}
... Body of F1 in here

Parameters that are not four bytes long are handled exactly the same
way as four byte parameters, except that the predefines _inmess and
_outmess are used. All parameters can be handled this way, even
complex records and structures.

In Pascal, the situation is very similar to that in the previous section,
except that the Pascal keyword var, used to define reference parame-
ters, indicates that the value must form part of the outgoing message
protocol as well as the incoming message protocol.

With FORTRAN, all parameters are passed by reference. Exami-
nation of the code would indicate whether the parameter must be re-
turned to the calling environment, or whether it can never be changed.
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• Function value returns

Supposing F1 happened to return a function value, which may have
been used in the original environment like this:

answer = F1(&by_ref);

This is easily implemented using the stub approach. An extra message
is used in the communications protocol for the result. The stub in the
super-ordinate becomes:

int F1(by_ref) /** stub **/
int *by_ref;
{

int result; /** F1’s return value **/
_outword(COMPUTE, out[2]);
_outword(*by_ref, out[2]); /* sent data */
_inmess(in[2], by_ref, 4); /* received data */
_inmess(in[2], &result, 4);
return(result);

}

Here, the stub declares local storage for the return parameter.

The corresponding communications in the co-ordinator in sub-ordinate
module M1 are as follows:

main( ... )
{

int by_ref, answer; /** local storage **/
_inmess(in[2], &by_ref, 4);
answer = F1(&by_ref); /** call F1 the same way! **/
_outmess(out[2], &by_ref, 4);
_outmess(out[2], &answer, 4);

}
... Body of F1 in here

• Strings

Variable length messages, for example, strings, must be handled by
sending as part of the protocol the length of the string to send. By
specifying the length of the string before the actual byte vector con-
taining the data, source and destination modules always know how
much data to expect.

A particular efficiency observation is appropriate for C programs. Rather
than use the C function strlen() to calculate the current size of the
string, it is faster to block-send the entire area reserved for the string.
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As well as avoiding timely computation in determining the string size,
the block transfer can be overlapped with useful computation in other
modules. This is true even for strings occupying only a small part of
their reserved storage area.

In C, the zero byte (’\0’) is used to denote the end-of-string sen-
tinel. In occam and other languages, this is not necessarily the case.
Therefore, a little recipient-end processing is useful. Any C recipient
module receiving from a non-C module must append the zero byte
sentinel before availing the string to any other C routines. The posi-
tion can be determined from the length information prepended to the
communication.

As an example of handling strings, consider a C source and C des-
tination module. The constant MAXSTRINGSIZE is declared in both
modules at compile-time. Here is the code for the stub in the source
module:

int F1(string) /** stub **/
char string[];
{

_outword(COMPUTE, out[2]);
_outmess(out[2], string, MAXSTRINGSIZE);
_inmess( in[2], string, MAXSTRINGSIZE);

}

The C destination sub-ordinate contains the following:

main( ... )
{

char newstring[MAXSTRINGSIZE]; /** local storage **/
int len;
_inmess( in[2], newstring, len);
F1(newstring);
_outmess(out[2], newstring, len);

}
... F1 body in here

If the source module were not implemented in C, the zero byte sentinel
should be appended in the C destination. This would also require the
transmission of the true length of the string, rather than the maximum
possible length.

• Pointers

Similarly to strings, any items that are referenced by pointers, either
through parameters or free variables must be sent in their entirety. If

47



any alteration could be made, the entire item must be passed back to
the calling process after use. As an example, consider a small array
of double-length floating point numbers required by a C module envi-
ronment. Given that the number of elements in the array is declared
as a #define compile-time constant called SIZE_VEC, then the stub in
the calling environment might look like this:

int F1(dbl_array) /** stub **/
double dbl_array[];
{

int i;
_outword(COMPUTE, out[2]) ;
for (i=0; i<SIZE_VEC; i++)

_outmess(out[2], dbl_array[i], 8);
for (i=0; i<SIZE_VEC; i++)

_inmess( out[2], dbl_array[i], 8);
}

Each element of the array occupies 8 bytes, and is accordingly handled
by the _inmess and _outmess routines. It is not necessary to send the
size of the array with the transmission, because the C destination must
know this in order to declare a suitable amount of local environment
storage (achieved using the #define usage described earlier).

The C sub-ordinate destination may contain the following:

main( ... )
{

double dbl_array[SIZE_VEC]; /** local storage **/
for (i=0; i<SIZE_VEC; i++)

_inmess( out[2], dbl_array[i], 8);
F1(dbl_array);
for (i=0; i<SIZE_VEC; i++)

_outmess(out[2], dbl-array[i], 8);
}

If the size of the array were not specified in a #define statement, then
it is necessary for the stub message protocol to include the number of
elements being transported at each usage - as an additional param-
eter. Ensure that a sufficient maximum local memory is declared to
accommodate the biggest ever array transfer.

An observation on efficiency is appropriate. All array elements are
stored contiguously. If the sub ordinate and super-ordinate modules
allocate array storage ”compatibly”, then it would be advisable to
block-send the appropriate number of bytes occupied by the array, in
one operation. Again, this avoids computation and looping overheads.
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This is straight-forward if the two modules are written in the same
language. If this is not the case, differences in the number of bytes
per element, array index subscripting, and mufti-dimensional storage
must be accommodated.

If a pointer happens to point to an actual function rather than data
(as permitted in C for example), then this would be a good instance of
including that function in the same module as the one that references
it by a pointer, rather than in different modules.

To avoid the overheads of sending strings and arrays as messages, a short-
cut is possible if it is guaranteed that the participating modules are resident
on the same transputer. In this case, the start address of the data area may
be passed a parameter into another module. This approach can be used in
any language, because it is possible to call a C function to determine the
address of any data item. Remember - if this approach is used and the
modules execute on different transputers, the results will be interesting to
say the least.

5.5 Software methods of increasing performance

Once one has a system operating, there are several areas one can explore
to increase the system performance, for example, by a greater overlapping
execution of interacting modules. Some ideas are explored in this section.

5.5.1 Good ideas

This section lists a few useful techniques for increasing performance in a
module-based system.

• Using two stubs per module

The use of a single stub to call a module means that explicit execution
overlapping between the super-ordinate module and the sub-ordinate
module is not possible - the super-ordinate sends messages to the sub-
ordinate module then deschedules until the sub-ordinate completes.
At the expense of including some additional synchronization code to
the application, two stubs per function entry in a module can be used.

The existing function stub in the super-ordinate module is split into
two parts. The outgoing message protocol goes in a ”start stub”,
having the name originally used to access the module. The incoming
messages go in an ”end stub”, with a (uniformly) slightly different but
meaningful name. The programmer inserts a ”call’ to the end stub at
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the latest possible moment in the super-ordinate, following the start
call, which serves to prevent the super-ordinate doing anything with
results or changed parameters from the sub-ordinate. This allows the
super-ordinate to continue processing while the sub-ordinate executes.
The performance increase is most apparent when the modules are on
separate transputers. The re-synchronization is provided by the occam
channel mechanisms. One then still retains all the stub advantages
and also has the capability to overlap executions. This is shown in
Figure 13. Note that evaluating 6 and 7 does not depend on results of
3, 4, or 5.

Figure 13: Overlapping execution using two stubs per module

Not every function entry point in a module need be converted to two-
stubs, and of course neither must every module. The stub technique
is a convenient way to achieve this.

• Send results before house-keeping

The implementation of modules often allows a previously unexploited
execution overlap between communicating modules.

For example, a sub-ordinate module could return all results to the
super-ordinate module, and then do any house-keeping and re-initialization.
In cases where a call to a particular function in a module does not
return anything, but just cause some action to be done on a data
structure; there is no need to re-synchronize with the super-ordinate
module.

• Byte vector communications

If the module access protocol involves many, many wonderful messages,
it may be more efficient to package them all up into a byte vector
and communicate that in one go. This approach requires that both
partners undertake some encoding / decoding of data items. However,
since each communication has an associated small overhead in setting
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it up, regardless of the size of the communication, these overheads are
significantly reduced. A further advantage is that this type of protocol
is easy to route in farming situations. If the vectors are too large (more
than a few Kbytes) then latency penalties may be unacceptable.

Another approach would be to look at the division of the application
into modules, since module should be selected so as to be compute-
intensive with relatively low inter-module traffic.

• Mingling communications and computation in the subordi-
nate

In the sub-ordinate module (containing the actual bodies of the func-
tion grouping being stubbed), it would be possible to have the message-
passing inputs interleaved with calculation (once the identity of the
requested service had been established). Similarly, some results may
be returnable before the end of the module’s work. If the message
protocol is carefully chosen, this can be intermingled with output cal-
culations.

The extent of mingling in either of the above cases requires the pro-
grammer to make decisions about the earliest moments that commu-
nications can be performed. The modifications to the structure of the
functions in the sub-ordinate require to be done only once.

For example, consider a function FX with six parameters and a return
value. The first three parameters are part of the module access pro-
tocol, the last three and a result are output only. The sub-ordinate
scenario might look like this:

while (running) /** main loop **/
{
... receive command tag from super-o
if (tag == DO_FX)
{
... read a, b, c from super-o
result = FX(a, b, c, &d, &e, &f)
... write d, e, f, result to super-o
}

... else other things
}

... source for FX(a, b, c, d, e, f)

By having the protocol changed between the super-ordinate and the
sub-ordinate, to facilitate maximum overlap in execution between the
two participating modules, the message reception can be interleaved
with the body of FX. The body of FX becomes:
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int FX()
{

... get a from super-o

... do calculations

... get c,b from super-o

... do lots of calculations

... send f to super-o

... do even more calculations

... send d, result, and a to super-o
}

This technique will usually result in parameters being transferred in a
different order to that in which the function is instanced with.

5.5.2 Bad ideas

These ideas are fast, but lead to loss of structure and lose some (or all) of
the portability aspects offered by stubs. Basically, these approaches should
only be used when one is certain that the communications protocols won’t
change between neighbours. The bullets are in order of increasing nastiness!

• Unbunched in-line code substitution in the super-ordinate

Using knowledge of when certain items of data are available, it is pos-
sible to replace sub-ordinate module access stubs by in-line messaging
primitives in the super-ordinate module. This involves sending param-
eters as soon as they are available, and may even involve interleaving
accesses to several sub-ordinate modules at the same time. For maxi-
mum effectiveness in module overlap, an in-line code substitution for
the message-handling body of each stub must be done, where ever the
stub is referenced (i.e. frequently). This can be macro-automated us-
ing an interesting text editor, to minimize risk of error. Then, each
messaging primitive is pushed as far down the source code as possible,
thereby increasing potential module overlap.

While this approach (coupled with the others) introduces the maxi-
mum possible opportunity for parallelism in a system (without intro-
ducing new modules), it is desperately difficult to modify the commu-
nications protocol between neighboring modules. Also, the likelihood
of errors and deadlock introduced by unsuspecting subtle modifications
to the logic of the application code is increased.

For example, referring to the use of FX in the super-ordinate module, a
stub would normally be used to ensure all references to FX conformed
to the correct protocol. The FX stub would be frequently used within
the module:
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while (running) /** super-o **/
{

... chuff
result = FX(a, b, c, &d, &e, &f)
... chuff chuff
result = FX(a, b, c, &d, &e, &f)
... chuff chuff chuff
result = FX(a, b, c, &d, &e, &f)

}

Using the technique just described would result in this

while (running) /** super-o **/
{

... chuff

... send a to sub-o

... mingled chuff on outgoing

... send c, b to sub-o

... mingled chuff not involving FX

... receive f from sub-o

... mingled chuff on incoming

... mingled chuff not involving FX

... receive d, result from sub-o

... mingled chuff on incoming
... receive a from sub-0
/* we’ve just done ONE access to FX */

... do other two accesses in the same way
}

The performance increase at this stage is overshadowed in compari-
son to the problems that could be introduced. All appeal from the
standpoint of maintaining a clear structure and the ease of changing
protocols is lost. It’s a lot of work to implement and the code size
penalty can be large.

Don’t do it!!

• Making assumptions about data storage

By making assumptions about the way the compilers store data, it
is possible to communicate many discrete values as byte vectors and
save on the encoding / decoding of parameters. This is done by taking
the address of the first of a list of variables, and sending a certain
number of bytes of data from that address. The assumptions are that
the variables to be transmitted occupy consecutive byte locations (yet
could be of mixed type). Remember that currently, successive array
elements occupy ascending memory addresses and are allocated from
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the module’s heap storage [3]. Further, by declaring the data items
identically in the destination module, it is possible to stream the byte
vector into memory used by the required variables.

This is a very dangerous technique, which is very dependent on the
current revision of the compiler being used - INMOS make no guaran-
tees about the persistence of storage allocation strategies between tool
releases. This is safest if participating modules are implemented in the
same language. Yet, in some situations this is a useful technique.

5.6 Further work

Only after a single-transputer working system is demonstrable, one may
elect to implement the following

• Optimize the performance by ensuring that the development tools are
being used to the best advantage, in terms of using on-chip RAM for
the stacks of the most compute-intensive modules, and also in terms
of code-utilization. Refer to [3] for guidelines.

• Incorporate additional processors into the system. Considerations of
link interconnectivity, processor loading, and memory availability [8]
can be used to guide the distribution of modules over various hard-
ware topologies. This distribution has a dramatic effect on the overall
system performance.

• One can further optimize system performance by injecting hardware
compute power just where it’s needed in a transputer network. The
pin-compatibility between the IMS T800 and IMS T414 makes it straight-
forward to have a mixed-processor network on non-TRAM boards like
the INMOS B003. The range of INMOS TRAM modules [4] offers a
selection of processors, speeds, and memory configurations which can
be tailored to the requirements of the application.

• Retro-parallelize existing modules into finer-granularity systems, fol-
lowing careful study of the computation and communication require-
ments of the module concerned.

• Introduce multiple-stub techniques at strategic places to obtain more
processing overlap.
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6 Using transputers with other processors

In some applications, it is advisable to consider retaining an original pro-
cessor in addition to using a transputer. This is known as a part port. In
some cases, the other processor will be the host development platform, and
in other cases the target environment will be a custom processor card. For
the remainder of the discussions on using transputers with other processors,
the word processor will be used to refer to a non-transputer processor. The
words host and target will be used interchangeably and without loss of gen-
erality for the remainder of this document, to indicate processors operating
symbiotically with a transputer (network).

Figure 14 shows an arbitrary processor which interacts with a range of de-
vices and peripherals. A layered software structure is shown.

Figure 14: Before a mixed-processor porting

The lowest-level device driver interfaces operate intimately with the hard-
ware of the original processor. The computation part of the application is
quite separate from the low-level interfacing code, and uses clearly identifi-
able requests to the device handlers to obtain the required device services.
The application is independent of the implementation details of these de-
vices.

The software situation following a part port is shown in Figure 15. The non-
transputer part still handles the machine-dependent interfacing, and need
hardly be changed. This saves time in putting together a mixed processor
implementation. The lowest-level device handlers are left alone, and the
computation parts are replaced by stubs. Before, device requests from the
computation part of the application were directly handled by the low-level
device drivers. Now, device requests from the computation elements on the
transputer pass through a communications medium (a transputer link) and
are reproduced exactly on the other processor using the stubs.

The part of the application that is implemented on a transputer is subject
to all the previous considerations and techniques in the previous chapter, on
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Figure 15: After the mixed-processor porting

the subject of parallelizing an application.

6.1 Suitable applications

Retaining another processor in a system is sensible in applications that make
intricate use of some target dependent facilities, yet are heavily computa-
tionally intensive in some clearly identifiable areas. This is often the case in
embedded systems, where the transputer can offer invaluable performance
rewards.

For example, the following cases could be considered as suitable for partly
leaving on host/target hardware in a mixed processor environment:

• If the application has normal but heavy host I/O references scattered
uncleanly throughout it putting all this on a transputer and paralleliz-
ing it would involve through-routing overheads in multiplexing to the
host server, and bottle-necking at the transputer’s link adapter. In
this case, leave all the heavy I/O on the original host - don’t give data
further to travel by placing code on a (distant) transputer.

• If part of application is written in a language other than C, Pas-
cal, FORTRAN, or occam e.g., 80286 assembler (or any other non-
supported language), then clearly it has to stay where it is. This is
also true if some source is not available at all, or is proprietary to
another company, or would compromise maintenance and update ar-
rangements, or is under the jurisdiction of another vendor. In these
cases, don’t move the affected parts from there original host.

• If the application makes intimate assumptions about target environ-
ment interfaces, peripherals, or specialized hardware, (such as DMA5

controllers, blitters, SCSI interfaces, memory-mapped graphics, VME
5DMA - Direct Memory Access.
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devices...) then leave it! Software that talk directly to hardware
is notoriously difficult to write, debug and is usually timing-critical.
It would be inadvisable to disturb such software, so only move the
hardware-independent parts that need some compute-power.

Envisage a system solution which retains the specialist hardware prod-
ucts currently in use, yet employs a transputer network to increase
performance where it’s needed. This is certainly to be advised as a
first approach, as the existing hardware investment and interfacing
which already operates, is guaranteed to be working.

Some examples of applications which may contain segments to be left
undisturbed are those including:

– Acoustics: from simple host ”beeps” to advanced mufti-instrument
control using MIDI6.

– Laboratory instrument control and monitoring using IEEE 4887.

– A memory-mapped menu-based graphics user-interface system,
with a pointer device for inputting commands (in addition to the
keyboard). For speed, this would directly write bytes into host’s
screen RAM. Such WIMP8 applications are very attractive to use,
and are normally a friendly interface to something computation-
ally heavy. For example, the type of WIMP interface presented
by Turbo C and Turbo Pascal would be ideal for leaving on the
host.
Many non-WIMP user interfaces are assembler-based for respon-
siveness. For example, the Lotus 1-2-3 spreadsheet user interface.
If an application like Lotus were to be ported to transputers, the
fast user interface would stay on the host, and the computa-
tionally intensive parts would be run on transputers. The result
would run faster than implementing the whole application on a
transputer, because of the communication overheads between the
host and the transputer network. For example, this technique
was adopted in Risk Decisions’ ”Predict” Monte-Carlo simula-
tion package.

Working with other processors requires awareness of a few architectural dif-
ferences that can exist between these processors and the transputer network.

6MIDI - Musical Instrument Digital Interface - an industry standard for interconnecting
musical equipment.

7GPIB - The General Purpose Interface Bus - sometimes known as the Hewlett-Packard
Bus - an industry standard for laboratory equipment interfacing and interconnection.

8WIMP - Windows, Icons, Mice, and Pull-down menus.
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6.2 Software support for mixed processor systems

In dealing with mixed processor systems, some software support is required
to handle problems presented by the interactions of several heterogeneous
processors.

6.2.1 Accommodating architectural differences

When dealing with other processors, certain inevitable differences between
the machine architectures have to be allowed for. These differences are
most cleanly handled by the code at each end of the communication link
between the target/host and the root transputer, directly involved with data
interchanges. This has the effect of minimizing the amount of code that has
to accommodate these differences. The differences in question include the
following:

• Differences in word lengths. Generally, the other processor will not be
a 32-bit word length machine.

• The compilers on both machines will probably allocate different num-
bers of bytes for certain fundamental data types. As an example of
this, an IBM PC with Microsoft C will allocate 16 bits for an integer,
whereas the transputer C compiler will allocate 32 bits. Therefore, in
transferring integers between the host, this difference must be accom-
modated.

• Differences in byte ordering within words.

• Differences in bit ordering within bytes.

• Differences in floating-point representation. Any two software imple-
mentations of floating-point support are almost guaranteed to be dif-
ferent. Most software implementations do not conform to the ANSI/IEEE
754-1985 floating-point standard, with which all INMOS software com-
plies. For example, real numbers in Turbo Pascal on a PC occupy
6 bytes, (unless a floating-point co-processor chip is available for the
PC). Therefore, to transfer real numbers between the PC and the
transputer, 4 or 8 bytes (for single or double precision) must be de-
rived in IEEE 754-1985 format for the transputer - a similar conversion
must be performed to exchange data the other way round.

Caplin Cybernetics offers a VAX/CSP library package to automatically han-
dle data exchange and format conversion between MicroVAX and a trans-
puter network.
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6.2.2 Using services provided by another processor

There are some implications concerning the software support required on
both processor types if code on one processor references something provided
by the other processor. For example, consider the transputer-host relation-
ship:

If the transputer requires any file, screen, or keyboard operations, obtained
by calling standard run-time library functions, then host software must be
capable of supporting the standard server protocol in addition to any other
programmer-defined protocols required by the application9. This implies
that, during this time at least, the host software assumes a slave role to the
transputer. If this is always the case, then one way to implement this while
taking advantage of existing INMOS software is to embody the application
within the standard server structure, and simply add any new protocols to
the repertoire. This has the further advantage of providing a capability to
boot the transputer code and ”serve” it in one neat manoeuvre. However,
if the host code is normally the master of the pair, then it may be easier to
embody all relevant parts of the server (to provide protocol support) into
the host part of application (rather than the other way round which has
just been described). In this scheme, the host part will temporarily delegate
master status to the transputer while the server communications are under
way.

In the relationship between the transputer and other non-host processors, a
custom protocol must be devised to allow the partners to request services
provided by the other. As long as all partners are kept synchronized to the
extent of one master and one slave at any one time for any one communi-
cation, there should be no problems. Once this synchronization is achieved,
a simple stub technique like that used on a wholly-transputer system offers
little disruption to the actual operation of the functions being performed
remotely.

6.3 Hardware support for mixed processor systems

The interface between a transputer network and any other processor is nor-
mally achieved by using an INMOS link adapter10. This is a byte-wide
peripheral that is memory-mapped into the I/O address space of the other

9The run-time library translates anything requiring host services into a protocol se-
quence, and sends this protocol to the host server.

10In some cases it is legitimate to memory-map other devices into the address space of
the transputer, rather than the other way round as is discussed here. This is not normally
done for other processors, but usually only for peripheral devices having a small number
of registers and high requirements for data exchange rate.
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processor. It can be read from or written to by the other processor, in the
same way as for other peripherals.

The first step to implementing a transputer to any foreign host would be
to establish operation of a link adapter. This then permits both processor
types to communicate. The rest involves writing software to exchange data
meaningfully, bearing in mind the architectural differences that may exist.

Depending on the total system scenario, it may be necessary to permit the
other processor to reset or analyse the transputer at will, or to boot code
into it, or monitor the error flag11. These supervisor functions are most
easily accommodated by mapping in an 8-bit register (in addition to the
link adapter), at a different address of course. Reference to any INMOS
board-product documentation will demonstrate the relevant hardware tech-
niques. Conformity to the INMOS techniques for implementing link adpater
/ system supervisory services is advised.

At application run-time, the transputer code must be booted onto the net-
work. If the development host is part of the run-time configuration, then the
host can be used to boot the network. The standard toolset server can be
used to boot the transputer network, without the need for the programmer
to build code into the host part of the application to fulfill this requirement.
The host part of the application can then be started up. For example, to
boot the transputer with transbit.btl associated with hostbit.exe, the fol-
lowing simple DOS batch file could be used

iserver /sc transbit.btl /sr /sl #300
hostbit

This has the effect of resetting the root transputer and copying the boot
file to it, using the link adapter at address hex 300. In addition to booting
the transputer, the target part may also be used to monitor the transputer
error flag.

Alternatively, the transputer code can be booted from ROM; this is prob-
ably the preferred option in embedded systems. Previously, the technique
here was to have the root transputer explicitly boot from ROM by tying the
transputer’s BootFromRom pin high. This places certain requirements on
where the ROM has to be in the transputer’s memory map, and adds design
complexity to the external memory system. However, it is now possible to
have a transputer network boot from ROM by streaming the network boot

11When dealing with multiple transputer solutions, there are opportunities for allowing
some transputers to have reset control over others. This hierarchy is implemented using
the INMOS triplet of subsystem control ports Up, Down and Subsystem. Refer to any
INMOS board product documentation.
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data in any link on the root transputer. Phil Atkin’s published design of a
suitable TRAM, called the TransBooter, is given in [9]. As well as simplify-
ing the system design by allowing off-the-shelf only-RAM TRAM boards to
be used, the transBooter TRAM also allows fewer ROMS to be employed
than would be required in a direct boot from ROM situation (because it
doesn’t require word-wide ROMs; only byte-wide), it also overcomes the
64 Kbyte limitation of a 16-bit transputer based BootFromRom system by
allowing up to 512 Kbytes of EPROM.

Depending on the physical arrangement of the mixed processor system, some
special considerations may be appropriate. The transputer links should be
buffered if used between equipment racks, or where the electrical environ-
ment is ”noisy”. RS-422 differential transceivers can be used reliably at up
to 20 Mbits/second over respectable distances (tens of meters). Fiber-optic
communications products should be considered where electrical isolation or
greater distances are involved.

As far as the transputer software is concerned, a link is a DMA engine.
The other processor(s) can use this to advantage if they have the necessary
hardware to support this (i.e., a DMA controller), or they can simply use
”busy” polling techniques to exchange data. There is clearly a performance
implication here, which needs some discussion. The subject of heterogeneous
processor communication is explored further in the next section.

6.4 Communication mechanisms

The transputer communicates with other processors by reading and writing
messages down the links. This is how the transputer communicates with the
development host, for example. There are several different ways to handle
this communication. In each case, any architectural differences between
the communicating processors have to be accommodated. Some of these
communication methods are described now.

6.4.1 Communication by explicit polling

This is the easiest method of communicating between the transputer and
another processor. Transputer development boards such as the IMS B004 are
communicated with by a host server program using ”polling”. While this is
the simplest method for the host to communicate, it is also the slowest. This
is because every byte is explicitly transferred and a polled handshaking is in
operation (a particular bit a status register port). The ease of accessing port
addresses depends on the compiler’s implementation of low-level facilities for
the language in question. Some source examples in C and Turbo Pascal of
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poll-based communication are now given, for use on any processor other
than the transputers.

• C communications

The following examples of C host-source for communicating with the
link adapter are taken from INMOS server source:

#define BIT_0 1

int byte_from_link()
/* Read a byte from the link adaptor. */
{

while (!(inp(link_in_status) & BIT_0))
;

return (inp(link_read));
}

void byte_to_link(ch)
int ch;
/* Write a byte to the link adaptor. */
{

while (!(inp(link_out_status) & BIT_0))
;

outp (link_write, ch);
}

int word_from_link()
/* Read a word from the link adaptor. */
/* A host INT is 2 bytes, and a transputer INT is 4 bytes. */
{

register int t, ch;
t = byte_from_link(); /* l.s. byte */
ch = byte_from_link(); /* m.s. byte */
t = t | ( ch << 8 );
ch = byte_from_link(); /* Ignore upper 16-bits */
ch = byte_from_link(); /* sent by transputer */
return (t);

}

void word_to_link(w)
/* Write a word to the link, least significant byte first. */
/* A host INT is 2 bytes, and a transputer INT is 4 bytes. */
int w;
{

byte_to_link(w & 0xff); /* l.s. byte */
byte_to_link((w >> 8) & 0xff); /* m.s. byte */
if (w < 0)
{
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byte_to_link(0xff);
byte_to_link(0xff);

}
else
{
byte_to_link(0);
byte_to_link(0);

}
}

Notice that the last two functions, word_from_link and word_to_link,
accommodate the architectural differences between the transputer and
the host, in terms of word length and endian considerations.

• Pascal communications

The following examples of Pascal host-source for communicating with
the link adapter are taken from an example shipped with the IMS B008
PC-format TRAM motherboard:

const
linkBaseAddress = $150;
inputData = 0;
outputData = 1;
inputStatus = 2;
outputStatus = 3;

procedure outByte (b : integer);
begin
while not odd (port[linkBaseAddress + outputStatus]) do
begin
{ do nothing }

end;
port[linkBaseAddress + outputData] := b;

end;

function inByte : integer;
begin
while not odd (port[linkBaseAddress + inputStatus]) do
begin
{ nothing }

end;
inByte:= port[linkBaseAddress + inputData];

end;

procedure outWord (w : integer);
begin
outByte (w and $FF);
outByte ((w shr 8) and $FF);
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if w < 0
then
begin
outByte ($FF);
outByte ($FF);

end
else
begin
outByte (0);
outByte (0);

end;
end;

function inWord : integer;
var
b0,b1,junk: integer;

begin
b0 := inByte;
b1 := inByte;
junk := inByte;
junk := inByte;
inWord:= b0 + (b1 shl 8);

end;

Again, the architectural differences are accommodated in these low-
level routines. Once written and tested, all communications use these
routines. Architectural dependencies are localized.

In communications-limited situations, if several link adapters are available,
then it is possible for the other processor to send bytes to each one cyclically
(i.e., round-robin), which can almost linearly increase the data transfer rate.
This is because time which was previously dead-time is now used produc-
tively and once polling begins there is much less time to wait before one can
proceed with the next transfer.

For large amounts of traffic, the ”status register polling” technique can be
more time consuming than necessary, even with additional link adapters.
An alternative technique is to use DMA.

6.4.2 Communication by explicit DMA

Some INMOS development boards (such as the IMS B008) support a more
complex method of data transfer, well suited to moving blocks of memory
at high speed, between the host and the transputer. This method is known
as DMA (Direct Memory Access), and can be used to achieve higher perfor-
mance in communication limited situations between the host and transputer
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(network). It operates by freeing the other processor of the supervising of
data transfer, allowing it to do other things in the meantime.

DMA is particularly well suited for large blocks of memory, such as image
data perhaps, being transferred from a device on the PC bus to the trans-
puter for processing. This is because the actual data transfer is performed by
additional hardware circuitry which supervises the transfer independently
of activity on the main host processor. DMA can also be used between the
transputer and any other processor in the system, providing each processor
concerned is equipped with a DMA controller.

The initialization of a DMA transfer is fully dependent on the DMA con-
troller chip used by each participating processor. It typically involves setting
up a few memory-mapped registers, used by the DMA controller, to specify
the direction of DMA (i.e., from the transputer to another processor, or the
other way round), the number of bytes to transfer, and the address. The
memory transfer is then handled invisibly by the DMA controllers. Again,
architectural differences between the processor types have to be accommo-
dated.

The performance improvement over the simple polling technique is typically
a factor of two, rising for large block movements.

6.4.3 Communication by device drivers

Although this technique is not likely to be applicable to an embedded system,
a processor which runs a full general-purpose operating system can offer the
previous techniques of polling and DMA transfer implicitly, without the
application having to be aware of the mechanisms employed. Assume that
the application runs partly on such a processor, and partly on a transputer
system.

Many operating systems allow the programmer to add device handling capa-
bilities, known as Device Drivers. They allow any program running on the
machine to access the device via the operating system. By using a device
driver to handle communications, programs can gain access to the trans-
puter card in an efficient way, without needing to know anything about
the specific hardware interface. Caplin Cybernetics implements communi-
cation between a transputer network and a MicroVAX using device driver
techniques.

In UNIX on a Sun-3, adding new device drivers requires the operating system
kernel to be recompiled and linked with the new device driver. In MS-DOS,
all device drivers are installed at boot-time, which makes adding new ones
simple. There are two distinct kinds of device under MS-DOS:
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• Block Devices: These are devices which usually support a disk file
structure. A block device driver tells MS-DOS about the physical
characteristics of its device (Block Size, Maximum Device Capacity
etc.) at start up time and thereafter DOS will only make calls to read
and write blocks on the device. A block device cannot be opened as
if it were a file because it is itself a File System. In this way only
MS-DOS can access the device directly, the application program may
only access the device indirectly through files held on it.

• Character Devices: These devices have support for transferring ran-
dom amounts of data to and from the device. Unlike block devices,
character devices can be opened as if they were files. This allows data
to be transferred to and from the device using the normal MS-DOS
read and write to file calls.

If an MSDOS character device driver [10] is installed on the PC to service
the link adapter, then the host part of the application can communicate
with the transputer simply by opening a ”file” and reading l writing data in
the normal manner. The transputer software would read and writes bytes
to and from the link connected to the host, and form these bytes into the
correct numeric representations.

For example, the following fragment of host Turbo Pascal attempts to open
a device driver installed under the name of IMS_B004 for reading and writing
data to the transputer software:

program DeviceTalkerToTransputer (input, output);
var
toLink, fromLink : text ;

... procedure definitions
begin
writeln (’Device Driven communications’);
if fopen (toLink, ’IMS_B004’, ’w’) and

fopen (fromLink, ’IMS_B004’, ’r’) then
begin
... initialize link adapter and transputer
... perform comma using toLink and fromLink

end
else
writeln (’Error opening link device driver’)

end.

In a PC system, the list of device drivers is specified in the config.sys file.
For the link adapter device driver, the configuration file might have this line
in it:
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device = c:\bin\linkdriver.sys 150 160 IMS_B004

The linkdriver.sys file is the device driver image, 150 and 160 represent the
link adapter reset and analyse addresses (on the host bus), and IMS_B004 is
the name of the device. The INMOS IMS B004 transputer evaluation board
uses addresses #150 and #160 on the host PC’s bus. This technique allows
the same device driver to be installed, with a different name, at a different
address. So, for example, if the same PC had an IMS B008 card at address
#300, then the config.sys file could also have this line

device = c:\bin\linkdriver.sys 300 310 IMS_B008

To use this environment, the following host Turbo Pascal fragments read
and write integers to the transputer:

var
start, finish, i, j : integer;

begin
... initializations
for i := start to finish do
begin
write (’sending ’,i);
writeln (toLink,i);
readln (fromLink,j);
writeln (’ .. and received ’,j);

end
end;

The communication of these integers must be handled on the transputer by
software expecting to send and receive bytes. So, for example, the following
occam PROC could be matched to the Turbo Pascal above:

PROC the.transputer.test (CHAN OF BYTE from.link,
CHAN OF BYTE to.link )

#USE "string.lib"

PROC readint (CHAN OF BYTE in, INT n)
-- convert byte stream into transputer integer
[100]BYTE string :
INT str.l :
BOOL err :
SEQ
GETSTRING (in, err, str.l, string)
STRINGTOINT (err, n, [string FROM 0 FOR str.l])

:
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PROC writeint (CHAN OF BYTE out, INT n)
-- convert transputer integer to a byte stream
[100]BYTE string :
INT str.l :
BOOL err :
SEQ
INTTOSTRING (str.l, string, n)
SEQ i = 0 FOR str.l
out ! BYTE string[i]

:

WHILE TRUE -- main body
INT data :
SEQ
readint (from.link, data)
... operate on data
writeint (to.link, data)
to.link ! ’*n’
to.link ! ’*c’ -- allows readln in Pascal host

:

The device drivers can be used from any host language supporting file access.
By using device drivers and transfering information as ”human-readable”
quantities, all the architectural differences between the host and the trans-
puter are nullified, as far as the application programs are concerned. So,
considerations for endian, wordlength, and data-type representation incom-
patibilities are no longer important, as long as the transputer packages up
the textual representation of data into suitable transputer format. This has
considerable benefit in exchanging floating-point information, but there is
an unavoidable inefficiency because more bytes have to be exchanged than
for data encoded in the normal host representation.

A further benefit exists when it comes to testing the part ported system. It
is possible to test one part without the other, by using real files containing
dummy information which represents the data being transcommunicated.

For example, to test the host input and output messaging under a spe-
cific execution path, an ASCII file would be prepared containing expected
responses from the transputer system. The host would open that file for
input in place of the incoming channel from the link adapter. The resulting
output communications from the host part can be fed to file and analysed
afterwards. Because all data is human-readable, it is easy to prepare and
check test cases.
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6.4.4 Increasing data exchange bandwidth by software means

If the hardware implementation of a communications interface between a
transputer system and another processor is most efficient at exchanging
”large” data blocks (100 to 10000 bytes say), then performing mostly single-
byte transfers is far from ideal. To take best advantage of this, it may be
necessary to arrange for the application to perform mostly multiple byte
transfers. For example, a typical file loading would sequentially read bytes
from a file until the end was reached. By either placing a filter on the
channels between the application and the file store, or by adjusting the
application slightly, large data blocks can be requested for transfer. The
situation is depicted in Figure 16.

Figure 16: Using a filter to block-up data exchange requests

The filter technique is application independent. It consists of a software
process on the transputer connected to the other processor. The filter de-
tects a request from the transputer application for a byte held (in a file
perhaps) on the other processor, and a delay servicing this until the next
request has been examined. If the request is exactly the same, the filter
blocks these up until (say) 128 byte reads (or writes) have been processed in
succession. The filter then arranges for an appropriate interaction with the
other processor in an efficient block transfer. If the request is different, it
will purge its current backlog. This technique can be used to good advantage
on DMA-type interfaces. The overheads in running the filter are dwarfed by
the increase in performance due to efficient operation of the inter-processor
communications.

6.5 Implementation strategy

The best implementation strategy for a mixed processor system is very sim-
ilar to the methods of modularizing an application described in the previous
chapter. The concept of using message passing stubs in the target parts,

69



and unmodified original parts on the transputers, is unchanged.

• Transputer code: API transputer code should be implemented in
one module on one transputer. This requires minimal occam sup-
port [3]. Depending on whether host services are required, either the
full or standalone run-time libraries are used. A tagged protocol be-
tween the transputer and the other processor is used to select one
of several function groupings in the module. The module structure
on the transputer is exactly the same as described in the previous
chapter, making allowances for possible changes in the master / slave
relationship.

• The other processors: All code now implemented on the transputer
should be implemented as stubs on the other processors which access
communication primitives to exchange information with the transputer
(using the selected communications method). This localizes and con-
fines all parts which communicate across the link adapter, and help to
make the interface between the target and the transputer ”clean”. It
also clearly minimizes the amount of recoding that would have to be
done to re-implement them (the communications primitives) in target
assembler for performance reasons. Ensure all communications use the
same set of primitives; otherwise something mutually incompatible is
bound to show up at an inconvenient moment.

6.6 Testing strategy

There are several areas which could cause problems in a mixed processor
system, so a phased testing and implementation is to be recommended. The
following ordering is suggested

• Initially, check that code can be booted to the transputer, and the
exchange and modification of the fundamental data types (characters,
integers, and real numbers etc.) is operable. Initially this is done
between any two adjacent hardware partners. This will also serve to
test the software frameworks implemented on the transputer. Further-
more, any difficulties concerning floating point representation, differ-
ences in machine word length / endian possibilities etc. will also show
up. This test should be performed using some dummy functions, in a
dummy module written explicitly for test purposes, but conforming to
the ultimate module structure and using the ultimate occam harness
techniques.

• Once this has been shown to operate, the next stage is to implement
one real function grouping (in only one module, and on only one trans-
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puter). This will test the proposed control structures operating be-
tween the two systems.

• Once operational, proceed to incrementally implement all the func-
tion groupings required, building on the working steps of the previous
stages. This involves making stubs of the functions left on the other
processors. Phase the stub implementation and test systematically as
you go. Confine everything to one module for simplicity.

One unique feature of a system incorporating transputers is the ease by
which the system can be investigated by software means when behavior is
unexpected. For example, simply connect any unused transputer link to
a host platform supporting the iserver, (and arrange for the transputer to
boot from link), and wheel in the toolsets’ symbolic debugger. This allows an
embedded system to be examined, or to have diagnostic code loaded instead,
even if the debugger platform is not part of the normal configuration. A
network memory dump can be taken at a remote customer site by a field
engineer, and taken back to the laboratory for analysis and reproduction by
the debugger.

6.7 Further work

Once the mixed processor system is operational, and all code intended for
transputer targeting is implemented on the transputer, there are some other
areas that can be looked into.

• Use the development tools to make best use of the transputer’s on-chip
RAM.

• Apply modularizing techniques from Chapter 4 to the transputer code.

• Then apply multiple transputers to the problem.

6.8 Mixed processor example

The implementation techniques discussed above are now illustrated by con-
sidering a Turbo Pascal application on a PC. Part of the application is to be
ported and executed on a transputer, using the Transputer Pascal compiler.

Suppose only function HugeTask is to be ported to a transputer. It has
two value integer parameters, and returns an integer result. It uses no free
variables. The actions of the function are not important. The stub for this,
left on the host PC, may look like this.
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function HugeTask (a, b : integer) : integer; { stub !! }
begin
outWord(OpCalc1);
outWord(a);
outWord(b);
HugeTask := inWord;

end;

The integer tag OpCalc1 is simply used to identify that the HugeTask func-
tion is required, rather than some other function which may be subsequently
implemented. The procedure outWord and function inWord accommodate
architectural differences between the PC and the transputer.

The Pascal on the transputer represents a module. A standard ”entry-point
handler” called runController is used to read the tag identifying the action
requested, and then passes control to a message-passing procedure for the
action; DoHugeTask in this case. This structure allows simple accommoda-
tion of many different functions on the transputer:

module remote;

$include ’\tp1v2\channels.inc’

const
OutChannel = 2;
InChannel = 2;
OpCalc1 = 0;

function HugeTask (a, b:integer): integer;
{ Define the original function here }

procedure DoHugeTask; { Message handler for HugeTask }
var
a, b, result:integer; { local storage }

begin
inmess(InChannel, a, 4);
inmess(InChannel, b, 4);
result := HugeTask(a, b);
outmess(Outchannel, result, 4);

end;

procedure runcontroller; { Standard component }
var
stopping : boolean;
command : integer;

begin { runController }
stopping:= FALSE;
repeat
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inmess(InChannel, command, 4);
if (command = OpCalc1) then
DoHugeTask { List all module entry points here }

else stopping := TRUE;
until stopping;

end; { runcontroller }

begin { main }
runController;

end.

A standard occam harness connects the Pascal module channels to the link
adapter connected to the host.

The same structure of software components is used for any application, in
any language. On the other processor, message-passing stubs replace the
functions to be ported. On the transputer are placed all the ported func-
tions (like HugeTask), a message-passing handler for each one (DoHugeTask
performs communications to reproduce the original environment, calls Huge-
Task, and sends the results back), and one standard runController frame-
work.

7 Farming an application

Farming involves using additional processing power (in the form of transput-
ers) to work concurrently on a problem and thereby achieve a performance
or through-put increase.

A processor farm consists of a transputer network, frequently of regular
topology, which routes work to worker processors and retrieves the results
when they are ready. The general farm structure is shown in Figure 17. It is
independent of the application, and requires only minimal implementation
modifications to a suitable modular application.

In a processor farm, the work to be done for a single job is decomposed into
a set of independent tasks which can be executed concurrently, with each
processor performing a part of the total task. For example, the Mandelbrot
Set [11, 12] is a infamous example of a transputer farm. Each processor
calculates a small part of a scene, which is gradually built up in patches.
Only a small amount of input data is required to enable a worker to calculate
the image for that patch of the total scene. Ray tracing [11, 12]] is another
good opportunity for processor farming. A database of world objects is
broadcast to all workers. Each processor then computes an image tile for a
small segment of the image.
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Figure 17: A general farm structure

Alternatively, a farm of entire applications can be constructed. This is useful
where the same application has to be run many times, each with different sets
of input data, and where the outputs can be stored independently (perhaps
on the host’s filestore). Each transputer executes the entire application,
which is completely unmodified.

Before looking in detail at some different categories of processor farm, con-
sider what affects an application’s suitability for farming.

7.1 Suitable applications

The requirements for introducing farming to an application include

• Independent sets of input data are available (or can be determined
automatically) at the start of execution.

• The application does not require user interaction to be associated with
each data set while operating, i.e., autonomous operation.

• The application is easily ported onto (initially) a single transputer.
This involves satisfying the requirements given in Section 3.2.
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7.2 General farm discussion

This section discusses farming in general, beginning with the various com-
ponents found in a farm. Each transputer in the farm typically executes
identical ”worker” code.

7.2.1 The software components

There are three key software components in any farm, in addition to the
application to be farmed. These are explained with reference to Figure 17.

• Router process - R: This process feeds work tasks into the farm. If
the local worker application is busy, work is passed onto the neighbor
processor.

• Results merger process - M: This process combines results from
the local worker with those from the neighbor worker in the farm, and
returns them towards the controller process.

• Farm control process - FC: This process controls the distribution
of work and data around the system by sending jobs out whenever a
processor is free, until no more are left. It never sends more work than
there are workers. The control process closes down the farm once all
the work has been done.

All these processes are written in occam, but the application itself remains
in C, Pascal, or FORTRAN. Each farm worker node requires a router and
merger to be run in parallel with the application. The root transputer usu-
ally controls the farm, and therefore additionally executes the farm controller
process, (although a farm can have it’s root anywhere within a transputer
network). Various data buffers employed for performance reasons are not
shown in the diagram. Reference [11] gives good advice and many practical
examples.

7.2.2 The farm protocol

All traffic within the farm should be made to conform to a rigid protocol.
The design of the protocol is trivial in relation to the actual application,
and can be made independent of the application. The usual procedure is
for the protocol to allow control and data information to travel on the same
channels. This protocol is a typically variant, with less than five variants. In
particular, a Work Request variant would be sent by the farm controller, and
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accepted by the first available processor; and a Results statement variant
would be sent back to the farm controller from a worker. Other variants
may allow debugging messages to be transported, and allow the farm to
terminate cleanly.

In a farm, results often come back to the controller in a different order to
which they were sent. This implies that with each results packet, information
must be supplied to allow the non-farmed environment to receive the results
and ”put them in the correct place”. A neat way to do this is to consider the
specification of the work packet to include any necessary pointers / addresses
useful to the receiving process. So, for example, any veritable parameters,
results, or free variables passed between the module to be farmed and it’s
calling environment, must also have storage addresses sent as part of the
work request protocol. These addresses also form part of the results protocol,
and allow the receiver outside the farm to store data in specific memory
locations. An example of this is given later.

7.3 Interfacing to the farm

Usually only part of an application is farmed. This requires interfacing to the
non-farmed bit. To achieve this, the farm control process has two channels
to the outside world - one accepts work requests, and one delivers results.
The occam model of communication ensures synchronization between all the
participating processes.

There are two cases worth looking at.

7.3.1 Interfacing to another transputer process

The FarmInterface process shown below is sent work requests on Com-
mandToFarm by the rest of the application. Replies from the farm are
collated and returned to the application on FarmReply. The farm protocol
is defined as farm. p. Work is only injected to the farm if the controller
has received a t. ready tag, indicating an available worker. The controller
keeps a count of the number of available processors to which work has not
yet been dispensed.

PROC FarmInterface (CHAN OF farm.p fromFarm, toFarm,
CHAN OF ANY CommandToFarm,
CHAN OF ANY FarmReply)

SEQ
... initialise
WHILE farmActive
PRI ALT
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-- Test for free workers needing tasks
(FreeWorkers > 0) & CommandToFarm ? len::data
SEQ
... send work to farm
FreeWorkers := FreeWorkers - 1

-- Handle data from farm
fromFarm ? CASE
t.ready; processor
PRI ALT
... if work to send then send it
... remember available worker has no work

t.results; processor; len::data
FarmReply ! len::data -- data to rest of appl.

:

7.3.2 Interfacing to a process on a non-transputer processor

In the situation where work is being dispensed from a non-transputer pro-
cessor, the synchronization offered by a purely transputer-based system is
lost. The other processor, say the host, in order to synchronize with trans-
puter activity, must be allowed to ”free run” and send task after task to
the farm before any results are received. This can be accommodated in a
handshaking protocol between the host and the transputer, and encapsu-
lated in a HostInterface process which connects directly to the host and the
FarmInterface process.

The HostInterface implementation shown below operates as follows. If a
valid job specification is received, it sends it onto the farm directly. If the
farm is fully busy, it will be unable to receive any further correspondence
from the host. If there are any results from the farm, they are returned
as part of the handshaking; otherwise a null result is returned. At the end
of the application, this mechanism will have resulted in fewer valid results
received than job specifications issued. An enquiry tag t.Enquiry is used to
return results if there are any - this can be used by the host until all results
have been received.

PROC HostInterface (CHAN OF HostToTP.p fromHost,
CHAN OF TPToHost.p toHost,
CHAN OF ANY CommandToFarm,
CHAN OF ANY FarmReply)

SEQ
... initialize
WHILE going
SEQ
fromHost ? CASE
-- Valid job for the farm
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t.ValidJob; len::data
PAR
CommandToFarm ! len::data
PRI ALT
FarmReply ? len2::data2
toHost ! t.ValidResults; len2::data2

TRUE & SKIP -- no results yet
toHost ! t.NullResults -- null reply

-- Farm enquiry
t.Enquiry
PRI ALT
FarmReply ? len::data
toHost ! t.ValidResults; len::data

TRUE & SKIP -- no results
toHost ! t.NullResults

:

7.4 Performance issues

7.4.1 Linearity

Farming can offer a linear performance increase for an application. In some
cases, this can be super-linear. For example, in the ray tracer farm, ten
transputers can perform at eleven times that of one transputer. The rea-
sons for this are two-fold. Firstly, the use of each transputer’s on-chip RAM
means that more of the ”total” task can be accommodated in ultra-fast
memory. Secondly, in any application there is generally an initialization
portion which only has to be done once. In the ray-tracing case, the over-
heads of initialization are minimized because each processor does their own
portion.

7.4.2 Priority

All routing processes are run at high priority to ensure that traffic is kept
moving in the farm. This helps to ensure that workers at the extremities of
the farm are kept serviced [13]. If the workspace of the routing processes is
in internal on-chip RAM, the latency of response to link inputs is reduced12.

The application code is executed at low priority.
12When a process is scheduled, several words are written into the workspace of the

descheduled process. If this workspace is on-chip, the process swap-time is reduced.
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7.4.3 Protocol

Counted byte vectors are frequently used within farms because this serves
to make routing and merging simple, and is more efficient per byte sent -
the amount of processing resource used by a communication depends more
on the number of communications than the amount of data in each commu-
nication. However, for large byte vectors, there is a transfer latency penalty
to be paid. By breaking a long message into shorter ones, several proces-
sors can transfer the data concurrently which reduces inter-processor latency
(this is useful when broadcasting data throughout an array) [12].

7.4.4 Overheads

There is virtually no overhead in running the additional farm routing and
control processes [11]. This is because the transputer can perform com-
munication and computation concurrently and independently of each other.
Processes waiting to communicate are descheduled by the transputer hard-
ware, thereby freeing some processor resource for other processes. There is a
penalty paid for setting up each communication. This is independent of the
amount of data in the communication, favoring the use of efficient counted
byte-vector communications protocols.

7.4.5 Buffering

Software buffers should be used to decouple communication and computa-
tion, allowing a greater overlap between them. In particular, buffers should
be used on all routing and merging channels to decouple the communica-
tions from computation, allowing a very high compute-utilization [11, 12].
Copying data in buffers is inefficient, so a swing-buffer approach would be
used - data fills one buffer while work is drawn from another, then the other
buffer fills etc. This can have a dramatic effect on the overall system per-
formance [11]. These buffers are easy to implement in occam. For example,
work packets can be pre-fetched and buffered locally by each worker trans-
puter. This allows a new work task to begin immediately the old one is
completed. Buffering on each input to the merger process allows a greater
throughput, again by allowing a new task to begin immediately and achieve
computation overlap with communication.

7.4.6 Load balancing

The farm achieves a run-time dynamic load balancing throughout itself, with
the whole system keeping itself as busy as possible [13]. This is because work-
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ers accept work automatically as and when they finish a work packet. If the
time taken to process a work packet is longer than the time taken to receive
a new work packet from the controller, then each worker is automatically
kept busy all the time. The end-latency in a dynamically load-balanced
processor farm is much lower than in a statically load-balanced system.

7.4.7 General farming principles

The following list contains some additional points concerning processor farm-
ing:

• Farming is generally independent of the application, and if the entire
application is being farmed it requires absolutely no modifications.

• Each worker activity operates on orthogonal (i.e., independent) data
sets with respect to other workers. A data set may correspond to an
entire application’s work information, or more probably it will repre-
sent a small proportion of a total task.

• The worker module should have preferably only one channel of ”input”
and one channel of ”output” messages. If this is not the case, either
modify the worker to satisfy this criterion, or make the Router and
Merger processes reproduce the mufti-channel environment locally on
each worker transputer (otherwise the farm is not independent of the
application).

• Farming is a particularly useful technique when the amount of com-
putation required in any given sub-task is not constant [13].

• The work packet is devised to cause a suitable amount of work to be
done by each worker, in relation to the overheads of routing the work
request packets through the farm. This parameter is termed the ratio
of computation to communication, and should be as large as possible.

• The ratio of computation to communication can vary with the hard-
ware used. For example, [12] shows that introducing a floating-point
transputer to a farm will drastically alter the computation load of a
Mandelbrot Set worker. As a consequence, the size of work packet
should be increased to retain a favorable ratio.

• Generally, farming implies that the same execution code is used for
each worker transputer. The INMOS development tools create the
smallest boot files if the code on each processor is exactly the same.
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• In systems where some farm-wide read-only data has to be shared by
all participating workers, (such as a physical model for a ray-tracer),
this database can be broadcast once-only at start-up to minimize traffic
per work packet during rendering requests.

• If smaller tasks can be sent to a farm towards the end of a job, this
helps to keep all processors busy for the longest time. This is because
all tasks take a different time to execute, when the jobs run out there
will be successively more processors inactive before the farm shuts
down. Saving short tasks until the end helps to minimize the amount
of non-utilization.

• Farms arranged as a linear pipes are easiest to handle routing and
distribution requirements. However, a structure having the minimum
depth will result in the greatest performance because non-local com-
munications slightly degrade performance.

Armed with this general farm information, it’s time to look at three specific
types of farm, and consider how they differ from the general farm discussion
above.

7.5 Farming part of an application

7.5.1 Scenario

Start with an application that has already been ported to a transputer, and
has been split into modules. Assume that a module can be assembled that
represents the part of the application to be farmed (which is of course very
compute intensive in relation to the amount of data that has to be provided
with each work task). This might be the case where a non-farmed user in-
terface package dispenses work to a farmable computation module. It could
also be a part ported application, providing that not all of the original trans-
puter code is farmed. Figure 18(a) illustrates this situation, with Module D
to be farmed. No assumptions are made about other processors the farmed
module may require to interact with, but in this case the best results will
come from farming a module that directly (or otherwise) makes no accesses
to a host processor (because Module D is distant from the host and would
require protocol routing on intermediate modules).

7.5.2 Implementation

The implementation starts with a ported application that has been decom-
posed into modules. One or more modules will be identified as the part of
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the application that is to be farmed - the worker; Module D in Figure 18(a).

Figure 18: Farming part of an application

With reference to Figure 18(b): Between the non-farmed part of the ap-
plication and the worker module, a farm control module, EC, is written in
occam. This communicates with the rest of the application via a stub, in
such a way that the channels and protocols to the rest of the application
are minimally modified. The farm controller divides the total task into a
number of sub-tasks, and injects these into the farm using the Routers R.
Module D is replicated in the farm, completely without change. Addition-
ally, the farm controller FC ensures that results, which will be returned in
a non-deterministic order via Mergers M, are suitably returned to the rest
of the application (the results protocol will include enough information to
allow them to be correctly slotted in).

7.6 Farming an entire application

7.6.1 Scenario

Consider farming an entire application, which is already successfully ported
to a single transputer (this precludes a part ported application). The ap-
plication uses host services, so it is necessary for these host accesses to be
correctly interleaved to prevent cross-interference. The application is not
modified - it doesn’t even know it’s in a farming environment. With refer-
ence to Figure 18(a), this would correspond to farming the whole of Modules
A, B, C, and D, with Module A connected to the host. In this case, the
controller FC of (b), instead of being a stub to the rest of the application,
would enquire of the host the work to be done. The host will provide a list
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of (independent) tasks to be performed. Each transputer will perform an
entire ”application’s worth” of work.

7.6.2 Implementation

This farm is implemented without modification to the application. Some
issues are:

• Task specification: A file of tasks to be executed is provided by the
user, and the farm controller reads this and distributes information to
available processors. The lines of this task file are sent (usually) to
appear as the command line parameters to the application programs
running in the farm. These will typically represent the names of files
which must be opened and used by each application - all the files must
be different per application! The rest of the command line parameters
to the farm program could be appended and also sent to the farmed
application.

• Sharing server access: Although the farm will support multiple ap-
plications accessing the server concurrently, the server facilities being
used determine the suitability of the application for this type of farm.
For instance, if the application participates in screen output, then it
will appear interleaved with all the other applications in the farm.

• Common keyboard input: Keyboard input which would be com-
mon to all applications is also readable from a file, and the manager
distributes this along with the tasks specifications. This avoids any
user interaction with the farm once it is running, which ensures the
fastest possible through-put. Alternatively, the farm can arrange to
read keyboard input whenever a task is to be sent to a free processor.

• Handling the host server: In this type of farm, results are ”achieved”
by writing data in little pieces to files held on the host, rather than
a single block result at the end of the task. To keep the farm inde-
pendent from the application, an occam filter can be used to intercept
server access commands and package them into a suitable byte vec-
tor before releasing it to the farm. The farm controller unpacks the
vector and forwards commands to the server. A paired decoding filter
operates on the input channel to the application.

A further technique used here is to give short-circuit replies to the
workers in place of the server. The need for this arises because all
server communications involve a reply handshake, which is frequently
ignored by the application anyway. The server filter can detect the
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use of commands to which this technique is appropriate, and immedi-
ately acknowledge them. Handling commands like this where possible
also reduces the amount of traffic in the rest of the network, further
contributing to overall performance.

• Commandline parameters: With C applications, the command-
line parameter mechanism often employed is still operable. The farm
manager takes information from its task specification file and makes
them available to the application. Note that the application does not
need to be modified at all. For Pascal and FORTRAN applications, it
is not possible to read the command line parameters, so the job spec-
ification is provided excursively through keyboard data information
sent to the application.

7.6.3 Alternative implementation

An alternative implementation of a farm requiring many workers to access
the host, but requiring no user interaction at all, is to simply use server
protocol multiplexers as routers. The multiplexers understand a superset of
the standard server protocol (so that workers can ask the farm controller
for new tasks when they are ready for work). By ensuring that the route
that the worker’s request packet has to travel in order to reach the farm
manager is locked by the multiplexes until the farm manager responds, the
system avoids having to make routing decisions at each node if the network
is not simply linear (e.g., trees, forks, pipes, stars). Although simpler to
implement, this type of arrangement will typically give lower performance
than the Router/Merger approach.

This approach was used with SPICE in [5] for a simple star network of three
worker transputers.

7.7 Farming a heterogeneous processor application

7.7.1 Scenario

Consider farming any application which co-executes on another processor
type, where all the transputer code is to be farmed. The case of farming
part of a mixed-processor system is the same as in Section 7.5, because
the other processor does not communicate directly with the module to be
farmed.

A good starting point for farming a heterogeneous processor application is
a working non-farmed system, with the transputer module to be farmed
clearly identified.
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7.7.2 Implementation

The host source needs to be altered slightly for maximum effectiveness, be-
cause results are likely to be returned out of order. Also, using the HostInter-
face source shown earlier, does not guarantee that every job request leads to
a valid result. The original access protocol between the host and transputer
is modified to accommodate out-of-sequence results and dummy results. The
protocol still follows the same pattern of an outgoing followed by an incom-
ing sequence, but the important thing is that the incoming message must
identify what work packet the result corresponds to, and how to integrate
the results into the host environment.

Often, calling a function or procedure causes variables to be written to which
are dependent on the value of the parameters at the time off the function
call. For example, a parameter i would be passed to a function, and used
to reference an array element or scalar variable in the calling environment.
Farming will result in out-of-sequence data being returned, which obviously
must be used with care in the calling environment. Any writeable variables
should be handled by a ResultsManager procedure which ensures that the
returned results are correctly matched up with the original parameters, and
correctly integrated. To achieve this, additional data is sent to the farm and
returned with the results.

Incoming work requests to the farm from the host will be not accepted by
the farm controller until there is a worker available (therefore the host can
be held up at this point). The host keeps track of how many items the farm
is processing, by incrementing a counter each time work is sent to the farm,
and decrementing it for every valid reply returned.

For example, consider the farming of the part ported function HugeTask,
originally part ported in Section 6.8. The host stub for HugeTask now only
handles outgoing messages directly:

procedure HugeTask (a, b:integer); { stub }
begin
outbyte(ValidJob); { intercepted by Hostinterface }
outword(OpCalc1); { Do HugeTask operation }
... send any info to slot results into original environment
outword(a);
outword(b);

{ originally, HugeTask := inWord; }
ResultsManager(1);
{ Handles ALL incoming messages }
{ The parameter 1 increments what’s in the farm }

end;
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Originally HugeTask was a host function. It has been converted to a host
procedure to prevent anything writeable being written to directly following
execution of HugeTask - this is because the result returned is unlikely to
correspond to the same set of parameters as were just sent to the farm. All
writeable variables must be handled by the ResultsManager, unless it does
not matter in what order the data is written.

To allow the results to be returned out of sequence, a host ResultsManager
procedure is used to handle all received handshakes from the transputer
farm controller

procedure ResultsManager (AddToFarmCount: integer);
var
... declarations

begin
InFarm := InFarm + AddToFarmCount;
ReplyTag := inbyte; { Valid or not valid results }

if (ReplyTag = ValidResults) then
begin
InFarm := InFarm - 1;
Command := inWord;
if (Command = OpCalc1) then begin
... receive data from HugeTask operation
... handle all order-sensitive writes
end { OpCalc1 }
{ list other operations here }

end { ValidResults }
end;

To purge the farm of all tasks in it, the host PurgeFarm procedure gathers
all results together by sending enquiries to the transputer Hostinterface:

procedure PurgeFarm;
begin
repeat
outbyte(EnqFarm); { intercepted by Hostinterface }
ResultsManager(0);

until InFarm <= 0
end;

7.7.3 Alternative implementation

By altering the application structure slightly, the complexity of a part port
farm described above can be reduced to that of just a part port. This is
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done by arranging that instead of actions on the host (or other processor)
directly feeding to the Hostinterface, they instead feed a small stub-like
auxiliary routine on the root transputer with a total job specification. By
specifying the total amount of work to be done at the outset, the host is freed
from the issues of handling out-of-sequence results. The auxiliary routine
on the transputer divides up the task into sub-tasks and farms it out to
the Farminterface. When all the work is done, the results are packaged up
and returned in one consolidated communication to the host. The host part
of the application would typically receive an entire array containing all the
results in one go.

In this way, the host does not know that farming has occurred, and therefore
needs no modification if the original part port was implemented to commu-
nicate in this way.

7.8 Part port farm example: Second Sight

7.8.1 About Second Sight

Second Sight13 2 is a Turbo Pascal application, with a snazzy front-end using
pull-down menus and host graphics. It analyses sets of data and detects
trends in them, allowing forecasting future values. The application is suited
to farming, because all the sets of data can be operated on independently and
concurrently. The code was split into a computational part that executed on
a transputer system (doing data modeling), and a user-interface part that
executed on the host (unchanged).

All host service accesses are confined to the host computer itself, thereby
obviating the need for a standard server. All message passing between the
host and the transputer farm was done according to a custom protocol de-
vised for the application. Using techniques outlined in the previous chapters,
message passing stubs in the host part communicated with the real func-
tion bodies on the farm. Certain global data items were broadcast to the
transputer farm beforehand the application began in earnest.

For speed of implementation, all the functions that were to run on a trans-
puter were grouped as a single process, and a tagged message protocol was
used to indicate which function to run at any time.

The work took about longer than normal (two weeks), because the trans-
puter parts had to be converted from Pascal to occam since at the time
(1986), the scientific-language tools were not as powerful as they are now.

13Second Sight 2 Copyrights P.H.Todd 1985, and INMOS 1986

87



7.8.2 Performance

Second Sight running on a single T414-G20 runs about 10 times faster than
an 80286/80287 host combination. One T800 transputer runs about 25 times
faster. With four T800-G20 transputers, this figure rose to around a factor
100 performance improvement.

7.9 Further work

7.9.1 Flood-filling a transputer network

The INMOS development tools are best suited to generating transputer
programs for transputer networks of pre-determined size. In other words,
prior to run-time, the number and arrangement of transputers is known.
Using worm-technology [14], it is possible to write programs that flood-fill
a transputer network at boot-time.

The Parallel C and Parallel FORTRAN compilers include utilities for per-
forming a so-called network flood-fill in a homogeneous transputer network.
In this way, at boot time all the available processors are utilized depending
on their presence, without having to change the software if the hardware
arrangement changes. These compilers also support rudimentary but useful
farming based on master and worker tasks14. The application makes explicit
calls to run-time library functions which transparently farm the total work
load specified by the Master task [15].

7.9.2 Extraordinary use of transputer links

It is possible to make a transputer network more resilient to the environment
by performing all off-chip communications using the link communication
recovery facilities. Occam provides a set of procedures which can be used
to recover from communications that do not complete successfully for some
reason [16, 11]. So, for example, the router and merger processes associated
with each farm worker would perform ”safe” communications for off-chip
channels.

The incorporation of additional communication facilities is very much like
adding another layer of abstraction. Again, this layer is independent of the
application. The application does not need to be aware of this additional
framework, and therefore doesn’t require modification.

[16] discusses the use of the facilities provided at the occam level. [11] gives
14The worker task cannot access any host facilities.
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a practical application of using safe link communications in a linear topology
farm, showing firstly how a system will continue to operate at reduced per-
formance and with loss of data as transputers begin to fail, and then showing
how automatic error recovery (as well as detection) can be achieved.

The Parallel C and Parallel FORTRAN run-time libraries allow direct use of
link recovery primitives from C and FORTRAN [15]. This approach involves
modification to all applications that want to use this facility.

7.9.3 Overcoming I/O bottlenecks

The nature of farming can impose additional demands on the host services,
for example, in terms of much greater access to the host file store. In these
situations, there are a few practical steps that can be taken in an attempt
to alleviate I/O bottleneck problems.

• Operate the link adapter between the host and the transputer at the
maximum speed - 20 Mbit/second communications. This may not
assist in disk-bandwidth limited situations, but it will serve to reduce
servicing latency.

• Use several link adapters on the host bus, each connecting to a trans-
puter link in the farm. If two link adapters are available, affix one
to each end of the farm and stream data through the farm in one di-
rection - in at one end and out at the other. Alternatively, connect
all adapters at the farm controller end and use it to increase host to
transputer throughput.

• Use a more efficient form of data communication between the host
and the transputer. For example, use efficient counted byte vector
communications in both directions, coupled with DMA or device driver
operation run from the host.

• If disk bandwidth is the real problem, then the above techniques will
not significantly result in speedup. The only way to go is for faster disk
drives (lower access latency), or use host operating system caching to
achieve apparently faster disk drives, or ...

• Use several disk drives. For maximum effectiveness, these should each
have local busses to avoid performance degradation due to contention
clashing. Better still would be for each worker transputer to have ex-
clusive access to a disk drive using the INMOS IMS M212 disk control
chip. This can avail data at high speeds directly into transputer links,
and is by far the fastest solution. Even if each worker didn’t have a
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whole drive to themselves, the performance increase will still be sig-
nificant. INMOS has source code available that makes an IMS B00515

appear as an MS-DOS disk drive [10], allowing easy exchange of files
between the bandwidth-limited host drives and the B005 drives before
and alter the farm application executes. An example of this is Steve
Ghee’s near-real-time pipelined animation machine, which used eight
B005 disk drives to store part of a screen’s image on each drive.

These techniques can also be used to good effect in increasing communica-
tions bandwidth between a transputer farm and non-transputer processor.

7.9.4 Comparison between farms and application pipelining

[12] compares the farming concept with that of introducing pipelining into an
application. Pipelining is very dependent on the application, has a through-
put limited by the slowest element of the pipeline, and is very sensitive
to buffering between stages. However, the code required in each stage of a
pipeline is generally less than that for a farm worker. Pipelining also accom-
modates sequential dependencies in an application which would be difficult
to deal with in a processor farm.

Pipelining falls outside the scope of this document.

7.9.5 Farms of farms

It is possible to operate a farm of farms, whereby an entire application is
farmed, but each application consists of a farm of worker sub-tasks. This
would be implemented by getting a farm of non-farmed applications work-
ing first. The communications protocol between the application and the
farm would be carefully documented. Then, the application itself would be
decomposed.

7.9.6 Dynamic link switching

In some cases it is important to get data into or out of a farm in a critical
time period. In other words, the latency in moving results about must be
minimized. It is possible to construct a farm where instead of routing results
(or work specification packets) up and down the farm, a direct link connec-
tion between the two participating transputers is transiently established for

15A B005 is a double-extended Eurocard board which contains a 20 Mbyte winchester
and a 3.5” floppy drive, both under the control of an IMS M212 16-bit transputer.
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the duration of the exchange. A necklace is still required to permanently
connect all transputers, but this is only used for low-bandwidth connection
requests and acknowledges. Figure 19 shows such a dynamic switched farm,
where results are directly routed out of the farm. In the Figure, the work
request packets are still distributed conventionally.

Figure 19: A dynamically re-configurable farm

This hardware could be constructed using an off-the-shelf B008 or B012
TRAM motherboard, which both contain INMOS B004 cross-bar link switches.
A dynamic switched farm similar to this was found to give 15% to 20% better
performance in a farmed MandelBrot application16.

8 Planning the structure of a new application

This document has concentrated on taking existing non-occam applications
and showing how they can be executed on transputers in a variety of cir-
cumstances. Now, a few reminders are called for concerning how one would
structure a new application so as to make a future transition to the trans-
puter architecture easy.

Here is a summary of some key ideas to guide writing a new application:

• Confine all input / output to a small part of the application. In a
16Using the Esprit P1085 SuperNode’s analogue link cross-bar switching. Research by

Sally Baker at RSRE, Malvern.
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transputer implementation, this part should be held within the root
module to avoid incurring routing overheads.

• Confine all machine-dependent parts to a small part of the applica-
tion. This is similar to the above requirement, except that the target-
dependent parts may have to stay on the target in a transputer imple-
mentation, suggesting some type of part port.

• Structure the application in independent blocks, with well defined in-
terfaces between the blocks. This simplifies implementation as mod-
ules. Be aware of the frequency and amount of traffic that would have
to pass between these interfaces in a modular scenario.

• Try to arrange that the compute-intensive parts operate on indepen-
dent data, which facilitates a farm implementation.

• Try to arrange for some computation opportunities during periods of
I/O, especially those involving user interactions.

• Take into account the underlying hardware booting/reset authorities.

9 Summary and Conclusions

Existing applications spanning a wide spectrum of target environments are
easily adapted to the transputer. Transputer software is fast, expandable,
maintainable, and portable.

The techniques described have all been incremental. Each step builds log-
ically on the operable stages before them. Capabilities and sophistication
introduced in this phased way minimize the risks of failure and delay in
porting, allowing stratification of the amount of effort in a project.

INMOS provide off-the-shelf slot-in hardware and software components to
assist with application porting, parallelization, and farming using transput-
ers. On the hardware side is the TRAM module and motherboard range. On
the software side is the farming support, mixed-processor communications
support, and the development tools.

Together, these provide an unrivaled facility for quickly putting together a
cost-effective system tailored to the exact requirements of the application.
The modular nature of both the hardware and the software components
allow an implementation to adapt to the changing requirements of an appli-
cation.
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