
Simpler real-time
programming with the

transputer

INMOS Technical Note 51

Jamie Packer
Central Applications Group INMOS Bristol

May 1988
72-TCH-051-00

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4

2 The occam programming language 4
2.1 Occam programs . 4
2.2 Timers in occam . 9
2.3 Timer values . 9
2.4 Modulo operators . 10

3 Using timers 10
3.1 Measuring time intervals . 10
3.2 Generating a known delay . 11
3.3 Generating events at regular intervals 12
3.4 Use in ALTS . 14

3.4.1 Interleaving processing 14
3.4.2 Timeouts on channels 14
3.4.3 Multiple delayed inputs 15

4 Transputer implementation of timers 16
4.1 Scheduling latency . 17

4.1.1 Low priority processes 17
4.1.2 High priority processes 17

4.2 Timer instructions . 18
4.2.1 Delayed Inputs . 18

5 Some application examples 19
5.1 Interrupts . 19
5.2 Polling . 20
5.3 A real time clock/calender . 22
5.4 A task scheduler . 24
5.5 Very long delays . 24

6 Conclusions 25

References 25

3

1 Introduction

INMOS manufactures a range of high performance microprocessors, called
transputers, which combine all the essential elements of a computer (proces-
sor, memory and i/o) in a single component. Transputers provide support,
in hardware and microcode, for concurrency and communication. This sup-
port includes communication links for connecting transputers together and
two hardware timers which can be used for interval measurement or for
real-time scheduling.

The occam language was designed for programming systems composed of
concurrently executing, communicating processes and, as such, is especially
suitable for transputer based systems. An important application of modern
microprocessor systems is real-time control and occam provides many fea-
tures for this purpose. One of these is the timer, a means of measuring time
periods and generating time delays.

This technical note describes some aspects of timers on the transputer, using
occam. It introduces the basics of the occam language and then goes on to
show some simple ways in which timers can be used in programs. The next
section describes how the transputer implements timers. Finally there are
some examples taken from occam programs which illustrate various aspects
of the use of timers.

2 The occam programming language

The occam language enables a system to be described as a collection of
concurrent processes which communicate with one another, and with the
outside world, via communication channels.

2.1 Occam programs

This section is a brief introduction to occam and, as such, can be skipped
by those familiar with the language. Occam programs are built from three
primitive processes:

variable := expression assign value of expression to variable
channel ? variable input a value from channel to variable
channel ! expression output the value of expression to channel

Each occam channel provides a one way communication path between two
concurrent processes. Communication is synchronised and unbuffered. The
primitive processes can be combined to form constructs which are themselves

4

processes and can be used as components of other constructs.

Conventional sequential programs can be expressed by combining processes
with the sequential constructs SEQ, IF, CASE and WHILE. Concurrent
programs are expressed using the parallel construct PAR, the alternative
construct ALT and channel communication. PAR is used to run any number
of processes in parallel and these can communicate with one another via
communication channels. The alternative construct allows a process to wait
for input from any number of input channels. Input is taken from the first
of these channels to become ready and the associated process is executed.

Sequence

A sequential construct is represented by

SEQ
P1
P2
P3
...

The component processes P1, P2, P3 ... are executed one after another.
Each component process starts after the previous one terminates and the
construct terminates after the last component process terminates. For ex-
ample

SEQ
c1 ? x
x := x + 1
c2 ! x

inputs a value, adds one to it, and then outputs the result.

Sequential constructs in occam are similar to programs written in conven-
tional programming languages.

Parallel

A parallel construct is represented by

PAR
P1
P2
P3
...

5

The component processes P1, P2, P3 ... are executed together, and are called
concurrent processes. The construct terminates after all of the component
processes have terminated, for example:

PAR
c1 ? x
c2 ! y

allows the communications on channels c1 and c2 to take place together.

The parallel construct is unique to occam. It provides a straightforward
way of writing programs which directly reflects the concurrency inherent in
real systems. Concurrent processes communicate only by using channels,
and communication is synchronized. If a channel is used for input in one
process, and output in another, communication takes place when both the
inputting and the outputting processes are ready. The value to be output
is copied from the outputting process to the inputting process, and the
processes then proceed.

Conditional

A conditional construct

IF
condition1
P1

condition2
P2

...

means that P1 is executed if condition1 is true, otherwise P2 is executed if
condition2 is true, and so on. Only one of the processes is executed, and
then the construct terminates, for example:

IF
x=0
y := y + 1

x<>0
SKIP

increases y only if the value of x is 0.

Alternation

An alternative construct

6

ALT
input1
P1

input2
P2

input3
P3

...

waits until one of input1, input2, input3 ... is ready. If input1 first becomes
ready, input1 is performed, and then process P1 is executed. Similarly,
if input2 first becomes ready, input2 is performed, and then process P2
is executed. Only one of the inputs is performed, then its corresponding
process is executed and then the construct terminates, for example:

ALT
count ? signal
counter := counter + 1

total ? signal
SEQ
out ! counter
counter := 0

either inputs a signal from the channel count, and increases the variable
counter by 1, or alternatively inputs from the channel total, outputs the
current value of the counter, then resets it to zero. The ALT construct pro-
vides a formal language method of handling external and internal events that
must be handled by assembly level interrupt programming in conventional
languages.

Loop

WHILE condition
P

repeatedly executes the process P until the value of the condition is false,
for example:

WHILE (x - 5) > 0
x := x - 5

leaves x holding the value of (x remainder 5) if x were positive.

Selection

A selection construct

7

CASE s
n
P1

m,q
P2

...

means that P1 is executed if s has the same value as n, otherwise P2 is
executed if a has the same value as m or q, and so on, for example:

CASE direction
up
x := x + 1

down
x := x - 1

increases the value of x if direction is equal to up, otherwise if direction is
equal to down the value of x is decreased.

Replication

A replicator is used with a SEQ, PAR, IF or ALT construction to replicate
the component process a number of times. For example, a replicator can be
used with SEQ to provide a conventional loop.

SEQ i = 0 FOR n
P

causes the process P to be executed n times.

A replicator may be used with PAR to construct an array of concurrent
processes.

PAR i = 0 FOR n
Pi

constructs an array of n similar processes P0, P1, ..., Pn-1. The index i
takes the values 0, 1, ..., n-1, in P0, P1, ..., Pn-1 respectively.

This note contains some short program examples written in occam. These
should be readily understandable but, if necessary, a full definition of the
occam language can be found in the occam reference manual [1].

8

2.2 Timers in occam

This section gives more detail of the TIMER in occam.

An occam timer provides a clock which can be read to provide a value
representing the time. The timer is read by an input statement similar
to that used for receiving data from a channel. Unlike a communication
channel, a single timer can be shared by any number of concurrent processes.
Timers are declared in an occam program to be of type TIMER in the same
way as channels and variables are declared. An example of the use of timers
is shown below.

TIMER clock :
INT t :
SEQ
...
clock ? t -- read value of timer ‘clock’ into ‘t’
...

Figure 1: Cyclic timer values

2.3 Timer values

The value input from a timer is of type iNT. The value is derived from a
clock which increments by a fixed amount at regular intervals. The value of
the clock is cyclic, that is when the time reaches the most positive integer
value then the next increment results in the most negative value. An analogy
can be drawn here with a real clock. We normally understand whether a
particular time is before or after another from the context.

For example 11 o’clock would normally be considered to be before 12 o’clock,
and 12 o’clock to be before 1 o’clock. This comparison only works for limited
ranges of times. For example we may consider 6 pm to be after 12 noon,

9

but 7 am to be before noon (i.e. 7 am is before 6 pm even though 6 is less
than 7).

2.4 Modulo operators

A special operator, AFTER, can be used to compare times in occam. AF-
TER is one of a set of modulo operators, these perform arithmetic with no
overflow checking and thus produce cyclic results. Two other modulo opera-
tors useful with timer values are PLUS and MINUS which perform addition
and subtraction respectively. For example, if maxint is the largest value of
type INT that can be represented, then maxint PLUS 1 wraps around and
becomes the most negative representable integer (minint), this is illustrated
in Figure 1. a AFTER b is defined to be equivalent to (b MINUS a) > 0.
The value t2 AFTER t1 is true if the value of t2 represents a later time than
the value of t1. This comparison is only valid for times within half a timer
cycle of one another because (b MINUS a) must be positive.

The AFTER operator can also be used in a timer input to create a delayed
input. This specifies a time after which the input terminates. For example:

TIMER clock :
SEQ
...
clock ? AFTER t
...

This example will wait until the value of the timer clock is later than the
value of t.

3 Using timers

This section outlines the basic applications of timers in occam programs.

3.1 Measuring time intervals

Perhaps the most obvious use of a timer is for measuring time intervals.
Different timers are not guaranteed to have the same value so time intervals
must be measured using a single timer.

For example, when benchmarking programs written in occam, the timer can
be read before and after executing the main body of the code:

10

TIMER clock :
INT t1, t2, time :
SEQ
clock ? t1 -- read start time into t1
... run benchmark
clock ? t2 -- read end time into t2
time := t2 MINUS t1 -- calculate elapsed time
... print time taken

There are a few important points to note about this example.

• The use of the modulo operator, MINUS, to calculate the time taken.
If, at the start of the program, the timer has a very large positive value
then it may have ’wrapped-round’ to a negative value the second time
it is read. Using a normal subtraction on these values would cause
an arithmetic overflow error. The modulo operator gives the correct
elapsed time.

• As explained in Section 2.4 the time interval measured in this way
must be less than half the cycle time of the timer.

• The time measured in this way is elapsed time, not processor time
used by this process. This may cause ’incorrect’ results if there are
other processes running in parallel.

3.2 Generating a known delay

The next application of timers is to use the delayed input to generate a
known time delay. This is very simple as shown below:

TIMER clock :
INT now :
VAL delay IS 1000 : -- delay time in clock ‘ticks’
SEQ
clock ? now
clock ? AFTER now PLUS delay

This example reads the current value of the timer, then the delayed input
waits until the value of the timer is later then the value of now PLUS
delay. The process is descheduled while waiting so other processes can be
executed. An important practical point here is that there may be a delay
before the process is rescheduled. This latency may be due to a number of
factors, e.g. the number of other processes executing at the time, and may

11

be variable. The transputer implements process scheduling in hardware and
so the latency can be very small (see Section 4.1).

Again, note the use of the modulo operator PLUS to calculate the time to
wait until and the fact that the greatest delay is half the timer’s cycle time.
A technique for generating delays of arbitrary length is given in in Section
5.5.

3.3 Generating events at regular intervals

A program which must perform a task at regular intervals cannot do so
simply by means of a fixed delay between processing, as in the previous
example. If a simple delay were used then the time at which the task happens
will slip gradually because the delay does not account for the time taken
by the task itself (which may vary) and this error accumulates. This is
illustrated in Figures 2 & 3.

To make this more explicit, assume the task must be scheduled every mil-
lisecond and will execute for 10µs. The task executes and is then descheduled
for 1ms (plus the time required to reschedule the process). The interval be-
tween tasks is therefore at least 1.01 ms and this error will accumulate so,
after 1 second the task will have been executed only 990 times instead of
1000 times. It would be possible to adjust the delay to take the processing
time of the task into account, but this implies that the processing time is
both known and fixed. This is unlikely to be the case in a real system.
Consider the following example:

TIMER clock :
INT time :
SEQ
WHILE active
SEQ
... perform process P at intervals
-- wait for ‘delay’ clock ticks
clock ? time
clock ? AFTER time PLUS delay

The time taken to execute the loop is the delay time plus the execution time
of process P. Any variation in the processing required in P will vary the
frequency at which it is executed.

A far more accurate way to achieve the desired effect is shown below:

TIMER clock :
INT time :

12

Figure 2: Using timer to generate delays between processing

SEQ
clock ? time
WHILE active
SEQ
... perform process P at regular intervals
-- add interval to the time the process started
time := time PLUS interval
-- and wait until it is time to execute the process again
clock ? AFTER time

The important point to note here is that the value of the timer is only read
once, before the loop is entered.

After that the time is updated by adding a constant increment to the current
value. This ensures that the delayed input always waits until the desired
starting time, rather than for a fixed delay. This prevents any drift in the
timing of the processing.

Figure 3: Using timer to perform processing at fixed intervals

To take the previous example of a task being scheduled every millisecond,
it can be seen that the task is initiated at (or shortly after, because of
scheduling latency) the time specified by the value of time. When the task
has completed a constant amount is added to the value of time to calculate
the time the task should next be scheduled. This time is independent of the
time taken by the task. The possible variation in the time taken to schedule
a process may introduce some jitter into the timing of the task, but will not
cause it to slip.

13

3.4 Use in ALTS

Delayed timer inputs are often used in alternative constructs.

3.4.1 Interleaving processing

An alternative may be used to interleave processing at fixed times with
processing performed when data is received. As an example, a data logging
process may need to record data received from a channel and, at suitable
intervals, insert a time stamp in the recorded data. This could be written
with an ALT very simply:

TIMER clock :
INT time, data :
SEQ
clock ? time
WHILE active
SEQ
time := time PLUS one.second
PRI ALT
clock ? AFTER time
... insert time stamp in file

in ? data
... store data in file

Note that the delayed input is prioritised with respect to the channel input;
this ensures that, even if the channel in is always ready, the time stamping
process will be selected when it becomes ready.

3.4.2 Timeouts on channels

Another use of delayed inputs in alternatives is to provide some sort of
timeout on channel communication. This may be to execute a process if
no user command is received, or to detect an error condition. For example,
a disk controller may wish to ’park’ the heads (i.e. move them to a safe
position on the disk) if no commands are received within a time limit:

WHILE active
SEQ
clock ? time
ALT
(headsNotParked) & clock ? AFTER time PLUS timeout
... move heads to shipping track

14

in ? command
... execute command from file system

3.4.3 Multiple delayed inputs

An alternative may contain several delayed inputs with different delays. This
may be useful if it is necessary to handle a number of devices at different,
fixed intervals. For example, if the processor needs to be scheduled to service
two peripherals at different periods then an ALT can be used to correctly
interleave the handling of these devices:

TIMER clock :
INT timeA, timeB :
VAL intervalA IS 96 :
VAL intervalB IS 42 :
SEQ
clock ? timeA
clock ? timeB
WHILE active
ALT
clock ? AFTER timeA
SEQ
timeA := timeA PLUS intervalA
... handle device A at fixed intervals

clock ? AFTER timeB
SEQ
timeB := timeB PLUS intervalB
... handle device B at fixed intervals

Figure 4: Scheduling two processes, A and B, at different intervals

Only times that are within half a timer cycle can be compared by AFTER
so, if several times are being compared, they must all be within half a cycle
of one another. If an ALT contains more than one delayed input then all of
the times involved (including the present timer value) must be within half
a cycle of one another. A simpler, but sometimes more restrictive, rule is to
ensure that all times in the delayed inputs are within a quarter of a cycle of
the current timer value.

15

4 Transputer implementation of timers

The transputer [2] has hardware and microcode support for occam timers.
This allows timer instructions to be fast and, more importantly, delayed
inputs to be non-busy (i.e. to consume no processor time whilst waiting).
There are two timer clocks, with the same wordlength as the particular
device, which tick periodically. One timer is accessible only to high priority
processes and is incremented every microsecond. The other can only be
accessed by low priority processes and ticks every 64 µs, giving exactly
15,625 ticks per second. The cycle time of these timers depends on the
wordlength of the device. The approximate cycle times, for the current
range of 16 and 32 bit transputers, are shown in the table below.

Transputer type Priority
High Low

IMS T800 & IMS T414 1.2 hours 76 hours
IMS T212 & IMS M212 65.5 ms 4.2 s

It is important to have a resolution of 1 µs for precise timing. However,
on a 16 bit processor, this means a cycle time of only 65ms - too short for
many applications. To provide both high resolution and a long cycle time,
two timer rates were introduced. The same method was used on the 32 bit
processors, so the timers behave similarly on all transputer types.

Timers are local to each processor, so the absolute time values read by
processes on different transputers in a network will be different. However,
the rates of the timers on each transputer will be the same, independent of
processor speed etc.

Although timers can be shared between parallel processes, this can appear
rather odd if a timer is shared between processes at different priorities. This
would have the effect of a single timer producing different values in each
process. To make it clear which timer is being used within a process it is
good practice to declare timers local to each priority, for example:

PRI PAR
TIMER hiClock :
SEQ
... high priority process

TIMER loClock :
SEQ
... low priority process

16

4.1 Scheduling latency

The transputer has a microcoded scheduler which enables any number of
concurrent processes to be executed together, sharing processor time. Pro-
cesses which are descheduled, waiting for a communication or delayed input,
do not consume any processor time. The scheduler supports two levels of
priority.

The latency between the time a process becomes ready to execute and the
time it begins processing depends on the priority at which it is executing.
Low priority processes are executed whenever there are no high priority
processes which are ready to execute. A high priority process runs until it
has to wait for a communication or timer input, or until it has completed
processing.

4.1.1 Low priority processes

Low priority tasks are periodically timesliced to provide an even distribution
of processor time between computationally intensive processes. If there are n
low priority processes then the maximum latency is 2n - 2 timeslice periods.
The latency will generally be much less than this as processes, are usually
descheduled for communication or by a delayed input before the end of their
timeslice (see, for example, Section 5.2 on polling). The timeslice period is
approximately 1ms.

4.1.2 High priority processes

High priority processes run whenever they are able to, interrupting any cur-
rently executing low priority process if necessary. If a high priority process
is waiting on a timer input, and no other high priority processes are running,
then the interrupt latency is typically 19 processor cycles (0.95 µs with a
20Mhz processor clock). The maximum latency depends on the processor
type as shown in the table below.

Transputer type Maximum interrupt latency
processor cycles µs (at 20MHz)

IMS M212, IMS T212 53 2.65
IMS T414 58 2.9
IMS T800 (FPU in use) 78 3.9
IMS T800 (FPU not in use) 58 2.9

These times indicate that a transputer can handle many tens of thousands
of interrupts per second, even while engaged in computationally intensive

17

tasks involving floating point calculations.

4.2 Timer instructions

The user programming in occam (or other high level language) does not need
to know how the timers are implemented. However, the following description
of their implementation in terms of the transputer instruction set may be of
interest. Further details of the implementation of occam for the transputer
can be found in [4] and a complete description of the transputer instruction
set in [3].

The timers are initialised using the store timer instruction. This sets the
timer to a known value and starts it ’ticking’. This is normally done by the
bootstrap or loader code rather than by a user program. The value of a
timer can be read at any time with the load timer instruction.

4.2.1 Delayed Inputs

Delayed inputs are supported directly by the timer input instruction. The
transputer maintains a linked list of processes waiting on each timer, in or-
der of increasing time. The process at the front of each queue is pointed
to by a register in the CPU. Another register holds the time that this pro-
cess is waiting for. A comparator continuously performs the AFTER test
between this ’alarm’ time and the value of the clock, causing the process to
be rescheduled when the time is reached.

The timer input instruction requires a time to be specified. If this time
is in the ’past’ then the instruction does nothing, otherwise it deschedules
the process and adds it to the list of processes waiting on the timer. The
instruction searches down the list of processes and inserts the current process
and time value in the appropriate place. If this time is earlier than the
current value in the ’alarm’ register then the new value will be put in the
register.

An important feature of the timer input instruction is that it is interrupt-
able. Because there can be any number of processes in a timer queue, it is
important that searching the queue does not affect the interrupt latency of
the system. For this reason, unbounded instructions like this and the 2D
block moves of the IMS T800 can be interrupted by a higher priority process
becoming ready.

18

5 Some application examples

This section is intended to show how some real problems can be solved effi-
ciently. The traditional approaches to handling these problems would either
be through polling or interrupts. The disadvantages of these approaches are
described below, together with the ways in which occam can provide simple
solutions.

5.1 Interrupts

Interrupts are the usual way of handling devices that require infrequent
but fast servicing. Interrupt handlers are notoriously difficult to write and
debug, they are usually only supported by programming in assembler and
this is often very difficult to integrate with other code written in a high level
language. Occam and the transputer support both internal and external
interrupts in a very simple and efficient way. An example of an internal
interrupt is a communication or delayed input; external interrupts can be
generated from the transputer’s links or the event input. A transition on the
EventReq pin behaves just like a channel communication and can be used
to synchronise with an occam process. It is, therefore, very easy to write
an occam process which handles events - it simply has to perform an input
from the channel mapped on to EventReq and, when both the event channel
and the process are ready, the process is scheduled. The following example
shows how a UART1 which has its data received interrupt connected to the
transputer’s event input, would be handled in occam.

{{{ event handler
CHAN OF BYTE error :
PLACE event AT 8 : -- event channel control word

BYTE sync :
WHILE active
SEQ
event ? sync -- wait for input from EventReq
read.data (char) -- read data from UART
to.buffer ! char -- output to waiting process

}}}

If this process is run at high priority then it can interrupt a low priority
process:

1A peripheral device which controls a serial communications port, such as an RS232
interface.

19

PRI PAR
... event handler
PAR
...
... low priority (background) processes
...

The performance of transputer interrupts was detailed in Section 4.1.2.

Interrupts can have various disadvantages. With multiple sources of inter-
rupts there is inevitably a cost in determining which device generated the
interrupt. This may be extra hardware to encode and prioritise the inter-
rupts, or software to poll the devices on receipt of an interrupt to see which
are ready.

5.2 Polling

The main disadvantage of polling is that it is busy, i.e. it consumes processor
time. In the transputer this can have a wide impact on performance because
it will affect the scheduling of processes. Low priority processes are times-
liced to ensure that all processes get a fair share of processor time. However,
in most real occam programs, processes are frequently descheduled before
the end of the timeslice period because they perform some communication.
A process which is continuously polling a memory mapped device, for ex-
ample, can get a disproportionate amount of the processing resource simply
because other processes are descheduled more frequently for communication
purposes. If a process in parallel with the polling process is transmitting
individual bytes down a link, then each communication may appear to take
several milliseconds. This is because the polling process will be scheduled
between each byte transfer and not be descheduled for one or two timeslice
periods.

If a peripheral device must be polled then it is much more efficient to use a
delayed input to control exactly when, and how often, polling takes place.
In most cases this can be done with no degradation in the performance of
the device, as the maximum rate at which data can arrive is known. There
is no point polling the device more frequently than this as the data will not
be there.

An example of this is polling a UART. The maximum rate at which char-
acters arrive is baudrate

10 characters per second (assuming 8 data bits, 1 start
bit and 1 stop bit). In the example below the value interval is set to be
slightly less than the shortest possible time between received characters (i.e.

10
baudrate −∆).

20

SEQ
clock ? time
WHILE active
SEQ
-- wait until a character might be ready
time := time PLUS interval
clock ? AFTER time
{{{ poll and read data from UART
data.ready (ready) -- check UART status register
IF
ready
SEQ
read.data (char)
to.buffer ! char

TRUE
SKIP

}}}

This loop only consumes processor time whilst it is actually reading the
UART registers. After a character has been received and passed on, it is de-
scheduled until just before the next character is ready, freeing the processor
for other work.

This example can be readily extended to allow mixing of data from the serial
port and from an occam channel:

SEQ
clock ? time
WHILE active
SEQ
time := time PLUS interval
PRI ALT
clock ? AFTER time
... poll and read data from UART

source ? char
-- insert character from channel into buffer
to.buffer ! char

Another simple example is a program communicating with a transputer
system, emulating a terminal, and simultaneously checking the error flag of
the system. The system error flag only needs to be checked occasionally, say
10 times a second, to give the impression of instant response to an error.
The following code shows how the two data sources and the error flag are
all handled in a single loop:

SEQ

21

clock ? time
WHILE active
SEQ
ALT
clock ? AFTER time
SEQ
... check error pin
time := time PLUS interval

keyboard ? char
... send character to system

link ? char
... display character on screen

This process is only scheduled when data arrives (from the keyboard or the
transputer system) or it is time to check the error flag.

It is worth noting here why this code is structured as a single WHILE loop
rather than three parallel processes:

PAR
... check error flag
... copy data from keyboard to system
{{{ copy data from system to screen
WHILE active
SEQ
link ? char
... display character on screen

}}}

Although this approach appears simpler, it introduces the problem of caus-
ing three concurrently executing loops to terminate correctly. The solution
that would usually be adopted is for each process to have an extra input
channel and to terminate when a message arrives on that channel. This
then means that each loop requires an ALT and the initial simplicity of this
approach disappears.

5.3 A real time clock/calender

This example is taken from a simple disk filing system for transputers. It is
a process which uses the occam timer to maintain the date and time. The
program is organised as a number of communicating processes, so the real
time clock can be interrogated by any of a number of processes which wish
to know the current time or date.

INT hours, minutes, seconds, date :

22

PROC update.time (INT now)
INT new.now, delta :
SEQ
timer ? new.now
delta := new.now MINUS now
now := new.now
... use ’delta’ to update hours, minutes, seconds, and date

:

VAL one.hour IS ticks.per.second * 3600 :
INT now :
SEQ
... initialise
WHILE running
ALT
-- wait for a timeout
timer ? AFTER now PLUS one.hour
SEQ
update.time (now)

-- or commands from users
ALT i = 0 FOR users
request[i] ? command
SEQ
update.time (now)
CASE command
read.time
... output time to user i

... handle other requests

As the occam timer can only be used to measure relative times, the process
keeps track of the current time and date. Whenever a user requests the time
or date the timer is read. This value is subtracted from the previous timer
value and this difference used to update the stored time and date values
before the reply is returned to the requestor.

The occam timer will eventually wrap round, so it is important that the
stored time and date values are updated periodically. To ensure that this
happens, even if no requests are received from the users, there is a delayed
input in the ALT which times out after one hour. When this happens the
stored values are updated and the ALT reentered to wait for another request
or timeout.

23

5.4 A task scheduler

The use of multiple delayed inputs can even be extended to use a replicated
ALT where all the times and intervals are stored in arrays. This could form
the basis of a scheduler for handling a large number of peripheral devices.
For example:

WHILE active
ALT
control ? CASE
... change time interval for a device
... modify enable mask for a device
... other commands

ALT i = 0 FOR N
enabled[i] & clock ? AFTER time[i]
SEQ
... handle device i
time[i] := time[i] PLUS interval[i]

This loop schedules tasks to handle various peripheral devices at intervals.
Each peripheral has associated with it: a next time value; a boolean flag
which enables its task; and a frequency at which it needs attention. These
are stored in the arrays time, enabled and interval. There is also a channel,
control, for modifying these parameters of the tasks associated with each
device.

5.5 Very long delays

The example below is a procedure that can be used to generate arbitrarily
long delays. As noted earlier, the greatest delay that can be generated
directly by a delayed input is half the timer cycle time. This procedure
generates the desired delay as a number of shorter (in this case, one second)
delays. This prevents the duration of any one delayed input being a problem
and, on the transputer, is still very efficient. This process will be scheduled
once a second during the delay period to perform another delayed input -
this will amount to only about 2.5 µs of processor time per second.

PROC delay (VAL INT seconds)
TIMER clock :
INT time :
SEQ
clock ? time
SEQ i = 0 FOR seconds
SEQ

24

time := time PLUS ticks.per.second
clock ? AFTER time

:

6 Conclusions

An important application of microprocessors is in real time control. The
occam language provides support for programming real time systems. An
important aspect of this is the timer. This allows measurement of time
intervals, creation of delays and scheduling of processes for given times.
The timer operations are fully integrated with the control structures of the
language, providing many powerful facilities especially when used with an
alternative.

The transputer provides hardware and instruction level support for the
timer operations. This allows them to be fast (sub-microsecond process
scheduling) and efficient (processes use no processor time whilst waiting for
a timer). Because the transputer has microcode and hardware support for
occam timers, any language executing on a transputer can be provided with
the same facilities.

References

[1] Occam 2 reference manual. INMOS Limited Prentice Hall
ISBN 0-13-629312-3

[2] Transputer reference manual. INMOS Limited Prentice Hall
ISBN 0-13-929001-X

[3] The transputer instruction set: a compiler writers guide.
INMOS Limited

[4] The transputer implementation of occam - Technical Note 21.
INMOS Limited

25

	1 Introduction
	2 The occam programming language
	2.1 Occam programs
	2.2 Timers in occam
	2.3 Timer values
	2.4 Modulo operators

	3 Using timers
	3.1 Measuring time intervals
	3.2 Generating a known delay
	3.3 Generating events at regular intervals
	3.4 Use in ALTS
	3.4.1 Interleaving processing
	3.4.2 Timeouts on channels
	3.4.3 Multiple delayed inputs

	4 Transputer implementation of timers
	4.1 Scheduling latency
	4.1.1 Low priority processes
	4.1.2 High priority processes

	4.2 Timer instructions
	4.2.1 Delayed Inputs

	5 Some application examples
	5.1 Interrupts
	5.2 Polling
	5.3 A real time clock/calender
	5.4 A task scheduler
	5.5 Very long delays

	6 Conclusions
	References

