
Using the IMS M212
with the MS-DOS
operating system

INMOS Technical Note 50

Jamie Packer
Central Applications Group INMOS Bristol

April 1988
72-TCH-050-00

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 5

2 The IMS M212 disk controller 6
2.1 The transputer . 6
2.2 IMS M212 internals . 7
2.3 IMS M212 programming . 7

2.3.1 Mode 1 functions . 8
2.4 The IMS B005 evaluation board 9
2.5 The occam programming language 10

3 The MS-DOS operating system 11
3.1 The structure of MS-DOS . 11
3.2 Installable device drivers . 12
3.3 MSDOS disk format . 13

3.3.1 The boot sector . 14
3.3.2 The file allocation tables 15
3.3.3 The root directory . 16
3.3.4 The files area . 16

4 Interfacing between MS-DOS and the IMS M212 17
4.1 Link adaptors . 17

4.1.1 Interlacing to the 8086 18
4.1.2 Interface software . 18

4.2 The device driver . 21
4.3 Support software . 23

4.3.1 Pascal routines for link I/O 23
4.3.2 A disk formatting program 24

5 A shared disk store 25
5.1 The hardware . 25

5.1.1 The IMS B402 transputer module 26
5.1.2 The IMS B012 motherboard 26

5.2 The control software . 27
5.2.1 The communication protocol 27
5.2.2 The message routing process 28
5.2.3 The disk control process 31
5.2.4 A buffer process . 32
5.2.5 The user interface process 33
5.2.6 Configuring the IMS B012 34

5.3 The device driver . 34
5.4 Optimisations & alternative implementations 35

6 Some common pitfalls 36

3

7 Conclusions 38

References 39

4

1 Introduction

This technical note describes work undertaken to interface the IMS M212
disk controller to an MS-DOS based personal computer. This work was done
in two stages, firstly the addition of a single extra Winchester disk, controlled
by an IMS M212, to a PC. This shows how an IMS M212 can be used, with
very few extra components, as a disk controller in a standard computer. The
second step was the creation of a large, shared file store consisting of several
Winchester disks connected to a number of user PCs. Each user can access
any of the disks allowing common code and data, such as compilers and
libraries, to be kept in one central place. This work demonstrates how easy
it is to build, and program, systems with large numbers of communicating
transputers.

The communication between the PC and the IMS M212 is by means of an
INMOS serial link. This is connected to the 8086 processor in the PC via a
link adaptor, a device which converts serial data from the link to a byte wide
interface. The link adaptor is mapped into the 8086 I/O (input/output) port
address space.

The software for these systems consists of two main components: an MS-
DOS device driver and some routing software. The device driver commu-
nicates with the link adaptor, controlling the IMS M212 through it, and
allowing the attached disk to be accessed as an MS-DOS disk drive. The
mapping from MS-DOS disk access requests to IMS M212 commands is very
simple. The shared disk system requires routing software to pass disk access
commands from users to the desired drive and then return results to the user.
This sort of program is particularly suited to implementation in occam, a
language designed for expressing concurrency and communication. There
are also a number of simple tools, mainly written in Pascal, for formatting
disks etc.

This document gives an introduction to transputers (and particularly the
IMS M212), the occam programming language and the MS-DOS operating
system (specifically device drivers). This will enable the reader to to un-
derstand the systems described in this document and to implement similar
systems.

The first part of this document describes the architecture and functions of
the IMS M212 disk controller. This includes an introduction to transputer
architecture and the occam programming language. The next section starts
with an overview of the MS-DOS operating system and installable device
drivers. This includes a description of the format of data on MS-DOS disks.
Next there is a description of a device driver to control a single IMS M212 via
a link adaptor, which includes details of the software which interfaces to the

5

link adaptor. A, knowledge of 8086 architecture and assembly language will
be helpful for a full understanding of this section. Finally the shared disk
store is described. The current implementation of this is based on standard
INMOS evaluation cards and modules, and provides access to up to 16 disks
by up to 15 users.

2 The IMS M212 disk controller

2.1 The transputer

The INMOS transputer [1] is a family of VLSI microcomputers with pro-
cessor, memory, and communication links for direct connection to other
transputers on a single chip. Transputers may also include application spe-
cific hardware. The general architecture of the transputer family is shown
in Figure 1. Highly parallel systems can be constructed from collections of
transputers which operate concurrently and communicate through links. To
provide maximum communication bandwidth with minimum hardware the
transputer uses point to point serial communication links.

Figure 1: Transputer architecture

The transputer instruction set has been designed for the efficient and simple
compilation of high level languages. Transputers can be programmed in
sequential languages such as C, PASCAL and FORTRAN. However the
occam language (see Section 2.5) allows the programmer to fully exploit

6

the facilities for concurrency and communication provided by the transputer
architecture.

The on-chip memory is not a cache, but part of the transputer’s total address
space. It can be thought of as replacing the register set found on conventional
processors, operating as a very fast access data area and program store.

2.2 IMS M212 internals

The IMS M212 [2] is a transputer containing the same 16 bit, 10 MIPS
(million instructions per second) processor as the IMS T212 but with the
addition of hardware for peripheral control applications, see Fig 2.2. This
interface provides two general purpose 8 bit parallel ports or an interface to
up to 4 disk drives.

The disk interface has been designed to provide easy connection to disk
drives using standard interfaces. There is sufficient flexibility to allow a wide
variety of drive types and formats to be used. Both Winchester disks com-
patible with the ST506/ST412 interface and SA400/450 compatible floppy
drives are supported. The disk interface logic provides all the necessary
functions on-chip, such as data separation and hardware for error detection
and correction.

The IMS M212 also includes two 20 MHz INMOS serial links, 2 Kbytes of
RAM, 4 Kbytes of ROM and an external memory interface which can be
used to extend the total memory available to 64 Kbytes. The on-chip ROM
contains software to allow the IMS M212 to be used as a stand-alone disk
controller, with commands and data being transferred across the serial links.
Alternatively, the internal ROM can be disabled and the disk processor
programmed in a high level language.

The IMS M212 can be interfaced to Winchester or floppy disks with very
few external components. Figure 3 shows a typical circuit for use with
Winchester disks. This system can either be used in Mode 1 (described in
the next section) or booted from one of its links.

2.3 IMS M212 programming

The internal ROM program can be used to control disk operations by sending
it commands and data down a link and reading results and data back from
the link. This is known as Mode 1 operation and provides a very simple way
to implement a Winchester and floppy disk controller. Mode 2 operation,
where the disk processor is programmed in a high level language, provides
greater flexibility and the ability to offload some of the file system operations

7

Figure 2: IMS M212 block diagram

from the main processor in a system.

2.3.1 Mode 1 functions

The systems described in this note use the IMS M212 in Mode 1, i.e. the
internal ROM is enabled and commands are sent down one of the transputers
serial links. This provides the simplest way of getting a system working.

For each drive the IMS M212 maintains a block of data containing all the
required control information for that drive. Each byte of control data is
called a parameter; a number of parameters are common to all drives. When
a drive is selected the parameters for that drive are made accessible, this is
then the current drive. Commands are sent as byte values followed by zero
or more data bytes. The commands supported are shown in Table 1.

8

Figure 3: Using the IMS M212 with Winchester disks

2.4 The IMS B005 evaluation board

The IMS B005 is one of the range of INMOS evaluation boards. It is a
double extended eurocard containing an IMS M212 with 64 Kbytes of static
RAM, a 20 Mbyte Winchester, and a 3.5 inch floppy disk drive. This allows
the use of the IMS M212 in a transputer system with no further hardware
design. Using the disk controller in Mode 1 allows data on the drives to be
read and written with very simple software.

9

end of sequence end of command sequence on this link
initialise initialise the specified drive parameters
read parameter read value of a parameter for current drive
write parameter update parameter for the current drive
read buffer read data from specified sector buffer
write buffer write data to sector buffer
read sector read data from specified sector into buffer
write sector write contents of buffer to specified sector
restore move heads towards outermost track until track 0
seek move heads to specified cylinder
select head selects specified head of current drive
select drive select the specified drive
poll drive wait for first drive to become ready
format track initialise the specified track on the current drive
boot execute code in the sector buffer

Table 1: IMS M212 Mode 1 command summary

2.5 The occam programming language

The occam language enables a system to be described as a collection of
concurrent processes which communicate with one another, and with the
outside world, via communication channels. Occam programs are built from
three primitive processes:

variable := expression assign value of expression to variable
channel ? variable input a value from channel to variable
channel ! expression output the value of expression to channel

Each occam channel provides a one way communication path between two
concurrent processes. Communication is synchronised and unbuffered. The
primitive processes can be combined to form constructs which are themselves
processes and can be used as components of another construct.

Conventional sequential programs can be expressed by combining processes
with the sequential constructs SEQ, IF, CASE and WHILE. Concurrent
programs are expressed using the parallel construct Pox, the alternative
construct ALT and channel communication. PAR is used to run any number
of processes in parallel and these can communicate with one another via
communication channels. The alternative construct allows a process to wait
for input from any number of input channels. Input is taken from the first
of these channels to become ready and the associated process is executed.

This note contains some short program examples, including a few written
in occam. These should be readily understandable but, if necessary, a full

10

definition of the occam language can be found in the occam reference man-
ual [3].

3 The MS-DOS operating system

MS-DOS is the most widely used operating system on IBM personal com-
puters and compatibles. It was originally derived from CP/M but adds
many features such as hierarchical directory structures and improved hard-
ware independence. It is also supplied by IBM as PC-DOS. Version 2.0 of
MS-DOS was released in March 1983 and contained many Unix-like fea-
tures: the hierarchical file structure; I/O redirection and pipes. Version 3
became available in 1984 and included improved support for hard disks; the
code described in this note was written for, and has only been tested under,
versions 3.1 and 3.2.

3.1 The structure of MS-DOS

Like most operating systems MS-DOS is split into several modules. This
allows the hardware dependent parts to be isolated from the kernel or body
of the operating system and the kernel from the user interface.
The three layers in MS-DOS are:

The command processor or shell, is what the user perceives as being
MS-DOS. It waits for the user to enter commands which it then parses
and executes. This will often involve the loading from disk and running
of other programs. The standard command processor in MS-DOS is a
program called COMMAND. COM provided by Microsoft.

The DOS kernel forms the main body of MS-DOS. It is supplied by Mi-
crosoft and provides a number of hardware independent system func-
tions. These include:

• File and directory operations

• Character I/O

• Execution of other programs

• Memory management

Assembler level programs can call these functions via software inter-
rupts. High level languages, such as C, generally provide a library of
routines to access the systems functions.

11

The basic I/O system (BIOS) is the most hardware dependent part of
the system. It is different for each computer system and is provided
by the manufacturer. It contains the resident device drivers for the
built in disk drives and for the standard devices:
CON The console (display and keyboard)
PRN Line printer output
AUX Auxiliary I/O device
CLOCK The real time clock and calendar

Device drivers are the modules of an operating system which control
the hardware. They isolate the other parts of the system from the
peculiar characteristics of particular devices. The terms resident and
installable are used to distinguish between drivers built into the BIOS
and those loaded at system boot time. The DOS kernel makes I/O
requests to the device drivers, the driver then translates these into the
necessary commands to the hardware to perform the desired action.

3.2 Installable device drivers

In many operating systems all the device drivers are embedded in the body
of the kernel making modification or extension of the system very difficult.
One of the most powerful features added to MS-DOS versions 2 onwards is
the installable device driver. These are used with the system configuration
file (CONFIG. SYS), which is read on startup, to load extensions to the
operating system to handle new or non-standard devices. This allows a user
to easily customise the machine. Also, from the programmers point of view,
there is a well defined interface with the hardware independent DOS kernel
which allows any device to be interfaced to MS-DOS without requiring any
special knowledge about the internals of the operating system.

A device driver consists of three sections: a header; the strategy routine;
and the interrupt routine (see Figure 4). MS-DOS stores device drivers as
a linked list, and the first item in the header is a pointer to the next device.
The header also contains an attribute word, which describes the type of
the device, and pointers to the entry points of the strategy and interrupt
routines.

The strategy routine is called (via the pointer in the header) by MS-DOS
when the device is loaded and subsequently whenever an application pro-
gram performs I/O to the device. MS-DOS passes a pointer to a data
structure called a request header which contains details of the operation to
be performed. The strategy routine does not actually service these requests
but simply saves the pointer for later use by the interrupt routine.

The interrupt routine is called by MS-DOS, immediately after the call to

12

Figure 4: Layout of an installable device driver

the strategy routine, and services the I/O request. This routine is the main
part of the driver and will normally consist of a number of subroutines to
implement the requested action. The same data structure that is used to
pass the parameters of the request is also used to return an error/status flag
and other results. The first call is always with an initialise request which
causes the device driver to perform any necessary initialisation and report
back its memory usage requirement to MS-DOS. The initialisation code will
never be executed again so it is normally placed at the end of the program
so that the memory occupied by it can be reclaimed by MS-DOS.

This apparently complex structure is intended to support future upgrades of
MS-DOS to a mufti-tasking operating system. Full details of the structure
of, and interface to, an MS-DOS device driver can be found in Advanced
MS-DOS [8].

A disk device driver receives requests at the read-sector/write-sector level;
MSDOS maintains file pointers and directory structures and translates these
into logical sector addresses. However, in order to implement and debug
a device driver, it is helpful to have an understanding of how disks are
structured.

3.3 MSDOS disk format

MS-DOS disks are organised in a fixed way that is very easy to use. Each
disk is presented as one or more logical volumes with a drive code (A, B etc),
an optional volume label, a root directory and a number of files and subdi-
rectories. MS-DOS provides functions which allow programmers to access
files without being concerned with the details of how the data are physically
stored on the disk. Requests for file operations normally go through two
levels of translation in order to access the disk data:

1. Each logical volume is viewed as a continuous sequence of sectors num-

13

bered from 0. File and directory accesses by an application program
are translated by MS-DOS into requests for transfer of one or more
of these logical sectors. This is done using the information in the file
allocation tables (see Section 3.3.2) and directories (Section 3.3.3).

2. Logical sectors have to be mapped into physical disk addresses (head,
track and sector). This is normally done by the disk’s device driver.

Each MS-DOS logical volume is divided into a number of fixed size system
areas and the files area (see Figure 5), The size of the various system areas
can vary between different disk types and computers but there is enough in-
formation in the boot sector to interpret the structure of any particular disk.
The contents of the system sectors are written when the disk is formatted.

Figure 5: Map of an MS-DOS disk

3.3.1 The boot sector

Logical sector zero is known as the boot sector and contains all essential
information regarding the layout of information on the disk (see Figure 6).
The first 3 bytes form an 8086 jump instruction, the destination of which
is the entry point of the bootstrap code at the end of the sector. If this
disk is used to bootstrap the computer then sector zero is read into memory
and execution transferred to the bootstrap code via the jump. Following the
jump instruction is an 8 byte field which is used by the system manufacturer
for an identification string.

The next 19 bytes contain the BIOS parameter block (BPB). This con-
tains all the values required by MS-DOS to find the other system areas and
calculate the mapping from file level accesses to logical sector addresses.

14

Figure 6: Layout of boot sector

Immediately following this are three 2 byte values which contain other disk
format information, this is not used by MS-DOS but is intended to help
the device driver translate from logical sectors to physical disk addresses.
Finally the rest of sector zero is taken up with the bootstrap program.

The boot sector is only the first sector of a reserved area that can be one or
more sectors long. The size of this reserved area is specified by the reserved
sectors word in the BPB.

3.3.2 The file allocation tables

The file allocation table (FAT) is used to record how sectors are assigned to
files and directories. MS-DOS allocates sectors from the files area of the disk
to files in ’clusters’ or ’allocation units’. The number of sectors in a cluster
is a power of 2 and is specified in the sectors per allocation unit byte. Each
entry in the FAT corresponds directly to a cluster. In version 3 of MS-DOS
each entry may be 12 or 16 bits long, depending on the number of sectors
on the disk. If the disk contains less than 4087 clusters then the FAT entries
are 12 bits long, otherwise they are 16 bits. The first two entries in the FAT
are always reserved. On IBM compatible disks the first 8 bits of the first
entry contain a copy of the media descriptor byte - this defines the type of

15

disk - a copy is also present in the BPB in the boot sector. The remainder
of the reserved bytes contain FF16.

The entries in the FAT after the reserved bytes record how clusters are used.
The directory entry for a file contains the number of the first cluster assigned
to that file. This is also used as a pointer into the FAT and, from that point
on, each entry in the FAT contains the number of the next cluster in the
file until a last cluster value is encountered. Other FAT entry values have
special meanings: a value of zero indicates an unused cluster and there are
values to indicate bad sectors.

For maximum data security it is usual to have more than one copy of the
file allocation table. These are updated simultaneously by MS-DOS and if
a read of a sector in one copy of the FAT should fail another copy is tried.

3.3.3 The root directory

Disk directories contain information about, and pointers to, all the files on
the disk. The root directory, unlike its subdirectories, is of fixed size and is
in a fixed position on the disk. The size and position of the root directory
can be determined from the BPB.

The internal structure of all the directories is, however, the same. Each file
has a 32 byte entry in a directory; this defines the filename and extension,
the file attributes, the time and date the file was created or last updated, a
pointer to its first cluster and the file size. The structure of each entry is
shown in Figure 7.

The attribute byte records information about this entry, such as whether it
is a file or a subdirectory, whether it is write protected etc.

3.3.4 The files area

The rest of the disk is used for storing files and subdirectories. Space is allo-
cated from the files area when a file or subdirectory is created or extended.
When a large number of files have been created, edited, deleted etc. then
new files may become fragmented, i.e. the clusters they are allocated will
be spread out over the disk. The next cluster is found by reference to the
FAT. This can slow access to data because the disk heads will have to be
moved more frequently.

16

Figure 7: Format of a directory entry

4 Interfacing between MS-DOS and the IMS M212

4.1 Link adaptors

The simplest way to allow a non-transputer system to communicate with a
transputer is to provide it with an INMOS serial link. This is done with
a link adaptor, a device which converts between 8 bit parallel data and
INMOS serial link format. Two versions of the link adaptor are available,
the IMS C011 converts between a serial link and two byte-wide, handshakes
ports. The other, the IMS C012 (Figure 8), has a standard microprocessor
bus interface to allow processors such as the 8086 family to communicate
with transputers. Full details of these devices can be found in the transputer
reference manual [1].

Figure 8: IMS C012 link adaptor

The IMS C012 has four registers as shown in Table 2. These consist of

17

a read-only data input register, a write-only data output register and a
read/write status register for each.

Offset from base address Register
0016 input data (read only)
0116 output data (write only)
0216 input status
0316 output status

Table 2: Addresses of link adaptor registers

The input status register contains the data present flag and an interrupt
enable control bit for received data. The data present bit is set to indicate
that the input data register holds valid data. The output status register
contains the output ready flag and an interrupt enable control bit for output
data. The output ready bit is set to indicate that the output data register
is empty.

The IMS C012 is used on the IMS B004 and IMS B008 development boards
for the IBM PC. In order to interface to the IMS M212, exactly the same
circuit as on the IMS B004 was used but with the address decoding modified
to select the link adaptor at a different I/O address. This allows the disks
accessed via this link adaptor to be used at the same time as the transputer
development system (TDS) running on an IMS B004.

4.1.1 Interlacing to the 8086

A simplified diagram of the interface between the PC bus and the link adap-
tor is shown in Figure 9. The address decoding and other timing signals are
generated in two of the PALS (programmable logic arrays) on the board.
The base address of the link adaptor on the IMS B004 is 15016; the link
adaptor used to communicate with the IMS M212 is addressed at 20016.

More details of the IMS B004 interface can be found in the board reference
manual and in another INMOS Technical Note [5].

4.1.2 Interface software

In order to communicate with the link adaptor, a set of macros were written
which write bytes to, or read bytes from, the appropriate I/O port. Note that
the base address of the link adaptor is kept in a variable, LinkBaseAddress,
this is initialised, when the device driver is installed, from a parameter on the
DEVICE = command line in the CONFIG. SYS file. This allows several link
adaptors at different addresses to be accessed by installing multiple copies

18

Figure 9: Link adaptor interface

of the device driver. The device driver code was written using the Microsoft
macro assembler.

The first two macros are used to poll the status registers while waiting for
input data to arrive or output data to be transmitted:

StatusBit equ 1
; offsets of registers
LinklnDataReg equ 0
LinkOutDataBeg equ 1
LinkInStatusReg equ 2
LinkOutStatusReg equ 3

; waitForOutReady
; wait for the ouput ready bit to be set in link adaptor
; Input parameters:
; None
; Output parameters:
; None
; Registers used:
; dx used to read status register

waitForOutReady macro
local loop
mov dx, [LinkBaseAddress]
add dx, LinkOutStatusReg
push ax

loop: in al, dx
and al, StatusBit

19

jz loop
pop ax
endm

; waitForDataPresent
; wait for the data present bit to be set in link adaptor
; Input parameters:
; None
; Output parameters:
; None
; Registers used:
; dx used to read status register

waitForDataPresent macro
local loop
mov dx, [LinkBaseAddress]
add dx, LinkInStatusReg
push ax

loop: in al, dx
and al, StatusBit
jz loop
pop ax
endm

Then there are two macros for sending and receiving bytes, as shown below:

; BYTEfromLink
; read a byte from the link adaptor and return in al
; Input parameters:
; None
; Output parameters:
; al contains the byte read from the link
; Registers used:
; al, dx used to read the byte

BYTEfromLink macro
waitForDataPresent
mov dx, [LinkBaseAddress]
add dx, LinkInDataReg
in al, dx
endm

; BYTEtoLink
; send a byte down the link
; Input parameters:
; al contains the byte to be written
; Output parameters:
; None

20

; Registers used:
; al, dx used to write the byte

BYTEtoLink macro
waitForOutReady
mov dx, [LinkBaseAddress]
add dx, LinkOutDatafeg
out dx, al
endm

Other data types, such as 16 bit integers or arrays of sector data, are trans-
ferred using multiple instances of the byte transfer macros. Note that the
BYTEtoLink macro polls the output ready bit first and then writes the data
to the output register. This allows the 8086 to continue processing while the
link adaptor transmits this data byte; when the 8086 has another byte to
send it checks the status register first to ensure the previous byte has been
sent. In fact, even when doing block transfers of data, the link data rate is
faster than the 8086 can move data to or from memory so it is really only
necessary to synchronise on the first byte of each message.

The program uses variations of these basic macros which allow timeouts or
user interrupts (using the Break key) during data transfers.

4.2 The device driver

The device driver for the IMS M212 only needs to handle a subset of the
the possible I/O requests from the DOS kernel. This is because some com-
mands are only used by serial I/O devices and others are optional. Each
command has a number of parameters in the request header; these specify
which drive is being referred to, the number of sectors to be transferred etc.
The commands supported are:

• initialise

The initialise request causes the device driver to reset and initialise
the link adaptor and IMS M212. The driver tests for the presence of
an IMS M212 by sending a read parameter command and waiting for
a reply. If either the output, or the following input fail, then a value is
returned that stops MS-DOS installing the driver. If an IMS M212 is
present then a sequence of commands is sent to initialise it and set up
the parameters for the MS-DOS disk format. Generally the IMS M212
defaults for the Winchester and floppy parameters are used with the
exceptions shown in Table 3.

• media check

21

When a media check request is received the driver should return a code
to indicate if the disk has changed since it was last accessed. In general
it is not possible far the driver to tell if a floppy disk has been swapped
so the following strategy is adopted: if the drive referred to is a floppy
disk drive then the disk may have changed value is returned; if the
drive is a Winchester then the disk has not changed value is returned.
If it is told that the disk may have changed then MS-DOS will read
sectors from the disk, rather than using values cached in RAM.

• build BPS

Build BPS requests the driver to return a pointer to the BIOS param-
eter block in the driver. This contains the information required for
MS-DOS to calculate the sector addresses of the various data areas on
the disk. In the case of the floppy disk drive, the BPB is read from
disk to ensure the array of values pointed to is consistent with the
current disk. The values for the Winchester are held in a table in the
device driver.

• read sectors

The read sectors request causes a number of sectors to be read from
the specified disk into a buffer in RAM, the data transfer area. This is
done by sending a number of read sector and read buffer commands to
the IMS M212. The Error and Reason parameters in the IMS M212
are read after each read sector operation. If an error has occurred
then no more reads are performed, the appropriate MS-DOS error
code (see Table 4) is written to the status word and the number of
sectors successfully read is returned.

• write sectors

The write sectors command instructs the device driver o transfer data
from RAM o the specified disk. This uses the write buffer and write
sector commands, again the error flags are checked after each opera-
tion.

Parameter Floppy Winchester Comments
SectorSizeLg2 9 9 512 byte sectorsa

NumberOfSectors 9 17 Nr of sectors per track
NumberOfCylinders0 80 102 102 is low byte of 614
NumberOfCylinders1 0 2 2 is high byte of 614

alog2(512) = 9

Table 3: Differences from default disk formats

22

IMS M212 error MSDOS errora

timed out drive not ready
drive not ready
seek error seek error
read only write protect
others during read read fault
others during write write fault

aThe device driver sets the done bit of the status word in the request header even if
an error has occurred.

Table 4: Mapping from IMS M212 to MS-DOS error codes

The IMS M212, used in Mode 1, has a logical addressing mode in which
disk addresses are specified as logical sectors. This maps exactly onto the
requests made of the device driver by MS-DOS and greatly simplifies the
code of the device driver. The driver simply has to select the specified drive
and then attempt to transfer the requested number of sectors. The driver
also has to translate any error values returned by the IMS M212 into the
equivalent MS-DOS error codes.

4.3 Support software

In order o provide a complete set of software tools for using the IMS B005
as an extra PC disk a few extra support programs were written. These
included some test programs, e.g. o read and display the contents of a disk
sector, and some useful utilities. These were mainly written in Turbo Pascal
(version 4.0).

4.3.1 Pascal routines for link I/O

The procedures and functions for accessing the link adaptor were compiled
as a ‘unit’ or library which scan be linked with each application program. As
an example here are the routines for reading and writing bytes to and from
the link adaptor (the identifier port is a predefined array in Turbo Pascal
which is mapped onto I/O address space). These routines are equivalent
to the assembler code given in Section 4.1.2. The variable linkBaseAddress
contains the base address of the link adaptor and is initialised at the start
of the program.

const
inputData = 0;
outputData = 1;

23

inputStatus = 2;
outputStatus = 3;

procedure outByte (b : integer);
begin
while not odd (port[linkBaseAddress + outputStatus]) do
begin
{ do nothing (wait for output ready bit to be set) }

end;
port[linkBasekddress + outputData] := b;

end;

function inByte : integer;
begin
while not odd (port[linkBaseAddress + inputStatus]) do
begin
{ do nothing (wait for data present bit to be set) }

end;
inByte := port[linkBaseAddress + inputData];

end;

Further routines allow the transfer of other data types and perform I/O with
a time-out (useful if a link connection, or the program being communicated
with, might not be reliable).

4.3.2 A disk formatting program

A program to format disks on the IMS B005 is essential and was one of the
first programs written. This program formats Winchester or floppy disks,
performing a low-level format (using the IMS M212 format track command)
and then writing the following data in the system sectors:

• The boot sector: The data written in the boot sector does not
include the 8086 JMP instruction or any bootstrap code, neither of
these are necessary as the PC cannot be booted via the IMS M212
(unless a new BIOS were written). The three values following the
BPB in the boot sector were written even though this device driver
does not use them.

• The file allocation tables: There are two copies of the FAT to be
initialised. The non-reserved FAT entries are all set to 0, the unused
cluster value. This is the greatest shortcoming of this program - ideally
it would test the disk (writing and reading each sector several times)
and mark any clusters which failed as bad.

24

• The root directory: All the fields of all the root directory entries
are set to zero.

Another useful program ’parks’ the heads of the Winchester disk, i.e, moves
them to a shipping track near the centre of the disk. This is to avoid the
risk of loss of data when the power is turned off and the heads land on the
surface of the disk.

5 A shared disk store

The initial ’one PC - one IMS B005’ system described above has been ex-
tended to provide multiple users with access to a shared disk system. An
ITEM1 rack containing a number of IMS B005 boards is connected to each
user’s PC via transputer link cables. The programs and data stored on
these disks are available to all of the users. This allows common software
and libraries to be moved from the individual PC’s Winchester disks onto
the shared disk store. To avoid inconsistent data being read by a user, each
PC normally only has read access to each drive. When new files are to be
installed on a drive, one PC is temporarily allocated write access. This locks
out all other users from reading or writing the disk until the file copying is
complete. Afterwards all other PCs are forced to perform sufficient extra
sector reads to ensure that any cached data they may have is consistent with
the disk.

This system can be easily extended to allow other shared resources, such as
a printer which would be accessed via a character device driver. In future,
as more users are added in more distant locations, it may be convenient to
provide a mail facility between users.

5.1 The hardware

In order to allow read/write requests from any user to any disk, the shared
disk system is implemented with a ring of IMS T212s for routing commands
and data. Each of these nodes then has one link available for connection
to an IMS M212 and one link for connection to a user PC. This is shown
in Figure 10. This topology has the advantages of simplicity: the routing
software on each node simply has to decide whether a request or reply is
for the disk or PC connected to this node otherwise the command is simply
passed on to the next node. It also allows the system to be built from
standard INMOS evaluation boards; an IMS B012 motherboard with 16

1INMOS transputer evaluation module - IMS B201

25

IMS B402 modules. This allows up to 16 disks and 15 PCs to be connected
using one IMS B012 board, this number can easily be increased by adding
more boards and modules.

Figure 10: Disk network hardware

Currently all the PCs connected to the disk network are in fairly close prox-
imity (all in one room) and the link connections are made via twisted pairs.
The link outputs on the IMS B012 have series termination and it has been
calculated that this will allow links to be used over distances up to 10 metres.
For greater distances the signals will require some sort of buffering, see the
appropriate INMOS Technical Note [6] for more details of these calculations.

5.1.1 The IMS B402 transputer module

The IMS B402 is one of the range of INMOS transputer modules. These
modules have an IMS T212 and 8 Kbytes of static RAM (this gives a total of
10 Kbytes including the transputers on-chip RAM). The module has 16 pins
which supply power, control and dock signals to the transputer and provide
connection to the transputers serial links. A full specification of transputer
modules can be found in another INMOS Technical Note [7].

5.1.2 The IMS B012 motherboard

The IMS B012 is a double extended eurocard with sockets for 1 6 trans-
puter modules such as the IMS B402. There are also two IMS C004 link
crossbar switches controlled by an IMS T212, this allows a wide range of
interconnection topologies to be implemented under software control. The

26

connections can be changed by sending control data to the link switches
down a configuration link.

One of the two connectors on the back of the board gives access to a pair of
links at each end of a pipeline which goes through the transputer modules,
and to the IMS T212 controlling the link switches. In this application the
two ends of the pipeline are connected together to give a ring of processors.
The link switches can then be programmed to provide two link connections
from each module to the second edge connector. These links are used to
connect to the IMS B005 boards and the user PCs.

5.2 The control software

This system is inherently more complex than the simple system described
in Section 4. However, this complexity is made manageable by the use of
the occam programming language. This language was specifically designed
for describing and programming systems made up of many communicating
processes. The use of occam for the control software means that the device
driver, which is written in assembler, can be far simpler. The use of occam
also allows a large amount of security to be built into the system.

The control of message routing is entirely distributed around the system.
There is no central database or controller with information about the drives
and users connected. Each node in the network makes decisions based on its
own local status and either services requests locally or passes them on to be
handled elsewhere (it neither knows nor cares if or where they are serviced).
Each node is identified by an identification number, id, which is passed as a
component of each message.

The control software has two main tasks: routing disk access requests from
users; and interfacing to the disks. The first action performed by each node
in the system is to determine if a disk is connected. This is tested in the
same way as described in Section 4.2. In this case the occam standard
library InputOrFail.t() and OutputOrFail.t() [4] are used to timeout the
communications with the IMS M212. The result of this test is passed as
a parameter to the routing process described below (Section 5.2.2). Next
the main part of the code is entered; this consists of a number of parallel
processes as shown in Figure 11.

5.2.1 The communication protocol

Messages requesting a disk read or write are routed around the system with
a protocol consisting of: a command tag; the id value of the sender; the des-
tination drive and then any other parameters required. Replies are similar,

27

Figure 11: The concurrent processes running on each node

generally consisting of the tag; the original sender’s id; and a status/error
code followed by any other parameters. Values are all of type BYTE or
iNT16, this removes the problem of communicating between different word
length machines. A subset of the protocol definition is shown below:

PROTOCOL network.p
CASE
-- write request; source; drive; sector number; sector data
sectorWriteReq; BYTE; BYTE; INT16; [BytesPerSector]BYTE

-- write ack; dest; status
sectorWriteAck; BYTE; INT16

-- read request; source; drive; sector
sectorReadReq; BYTE; BYTE; INT16

-- read ack; dent; status; data
sectorReadAck; BYTE; INT16; [BytesPerSector]BYTE

:

Further details of occam communication protocols can be found in [3].

5.2.2 The message routing process

The message routing process solves two problems:

28

1. It can receive messages from one of three sources:

(i) The device driver of the attached PC;

(ii) The previous node in the ring;

(iii) The disk control process.

2. It must be able to route messages to the correct destination:

(i) The PC attached to this node;

(ii) The disk control process on this node;

(iii) Another node in the ring.

The three input sources are multiplexed together via an occam alternative
process [3]. An alternative is a way of waiting for input from any one of a
number of input channels:

ALT
chan1 ? message
... process 1

chan2 ? message
... process 2

chan3 ? message
... process 3

In this example, the ALT process will wait for the first of the three input
channels to receive a message and will then execute the corresponding pro-
cess. This operation is supported very efficiently in the transputer hardware
and no processor time is used while waiting for a message. Each of the
input statements, or guards, can also have a boolean condition attached to
it. This allows certain input channels to be effectively disabled depending
on the state of the system. This is very important for preventing deadlock,
one of the biggest problems in concurrent systems. As an example consider:

ALT
(count > 0) & chan1 ? message
... process 1

ready & chan2 ? message
... process 2

chan3 ? message
... process 3

In this example the input from chant will only be enabled when the value of
the variable count is greater than zero; the input from chant is only enabled
when the boolean variable ready has the value TRUE.

29

The messages received by the router, from each of the three sources, are
basically treated identically. The only difference being that messages from
the attached PC have the value of the node id inserted in the message.

A routing decision is made for each message based on the type of message,
and the source and destination values. There are basically two classes of
message (as described in Section 5.2.1); requests and acknowledgements.

• Requests can be received from the attached user or from the previous
node in the ring. The drive code in the message is compared with
the range of values for drives connected to this node (if any). If the
requested drive is connected to this node then the message is sent to
the disk control process, otherwise it is passed on to the next node.

• Replies, or acknowledgements, can be received from the drive on this
node or from a previous node in the ring. In either case the destination
user id is compared with the id of the user on this node. If the message
is destined for this user it is sent on to the device driver on the PC,
otherwise it is passed on round the ring.

A check is also made for messages which have gone right round the ring
without being routed to their destination. This may occur because the
requested drive does not exist, for example. This situation is indicated by
the source id in the message being equal to the id of the current node.
When this type of error is detected (it can only realistically occur with
requests to drives) an acknowledgement is generated by the router to return
an appropriate error code (no such drive) to the user who initiated the
request.

To prevent deadlock occurring when several users make requests of the same
drive simultaneously, it is necessary to add a boolean guard to the ALT in
the router. If this is not done the disk control process may be unable to get
a reply out to the router because the router has received a message for the
control process. But the router cannot forward this message to the control
process because the control process is not ready to receive a message until
it has output its reply to the router.

ALT
-- request from user
(NOT diskBusy) & fromuser ? CASE
... set diskBusy := TRUE if request for this disk

-- message from ring
(NOT diskBusy) & inRing ? CASE
... set diskBusy := TRUE if request for this disk

30

-- a result back from disk
(diskBusy AND drivesConnected) & fromDisk ? CASE
... route result and reset diskBusy flag

The guard on the ALT prevents the router accepting messages from either
the user or the previous node in the ring when a reply is pending from the
disk controller. This may occasionally cause a slight bottleneck as replies
cannot be routed through a node while that node is processing a disk request,
but this is far better than the system stopping completely.

Because of the simplicity of the decisions to be made at each node, routing
processes like this are very easy to implement in occam with a high degree
of confidence in their correctness. The use of a protocol across channels and
guarded inputs in alternatives, eliminate the most common causes of dead-
lock in communicating processes. The compiler is able to perform checks
that both processes using a channel are performing compatible outputs and
inputs. The boolean guards in the ALT prevent the router attempting to
send a message to the disk controller whilst it is attempting to talk to the
router.

5.2.3 The disk control process

The disk control process performs most of the work that would normally be
done by a device driver. Because it is written in a high level language it is
easier to implement, can provide greater functionality and be more securely
checked (both at compile time and run time).

The main functions of this process are:

• Initialise all variables and the necessary parameters in the IMS M212
(see Table 3).

• Service the disk access requests received from device drivers (as de-
scribed in Section 4.2).

• Allocate write access to a user on request. Only one user can be
granted write permission at any time. If, while write access is allo-
cated to a user, another user attempts to access the disk or requests
permission to update the disk then a write protect error is returned.
If the disk is written to, flags are set to ensure that all other users
are returned a disk maybe changed value when they perform a media
check request.

• If no accesses to disk are made within some time, then park the heads
for safety when power is removed.

31

The last of these is an example of a useful feature which is very simple to
implement in occam using an ALT. In this case one of the guards, rather
than being a normal input, is a special kind of input from a timer [3]. For
example, the input clock ? AFTER t will wait until the value of the timer
clock is later than the value of t. This delayed input can be used to generate
a known time delay with no processor overhead.

SEQ
clock ? now
clock ? AFTER now PLUS delay

This sequence inputs a value representing the current time to the variable
now; the delayed input then waits until the value of clock is later than now
PLUS delay. More usefully, a delayed input can be used in an alternative
to provide a timeout on a channel input:

SEQ
clock ? now
ALT
char ? message
... do something with message

clock ? AFTER now PLUS timeout
... no message within timeout; do something else

This sequence will wait for an input from the channel char for the period of
time specified by timeout.

In the disk control process an ALT like the above is used to wait for disk
requests from the router. If no requests are received within the specified
time then the Winchester heads are moved to the shipping track. If this
feature were to be provided in the simple device driver described earlier it
would require an interrupt handler for the MS-DOS timer to be installed as
well as the device driver. This would share a variable count with the device
driver - count would be set to zero whenever the drive was accessed and
incremented on each tick of the timer. When count reached some maximum
value the drive’s heads would be parked. Interrupt handlers are notoriously
difficult to write and debug and even this simple example shows how easy
it is to solve problems involving time and communication using occam.

5.2.4 A buffer process

Processes to provide buffering on channels are very frequently used in occam
programs to decouple channel communication from computation. This is a

32

simple way of allowing the processor to continue processing while the link
engines transfer data. In its simplest form a buffer will simply consist of:

BYTE b :
WHILE TRUE -- repeat for ever
SEQ
in ? b
out ! b

This simple loop will repeatedly input a byte value from one channel and
output it on another. Normally at least one of these channels will be mapped
onto transputer links. Buffer processes should be run as high priority pro-
cesses so that messages can be passed on as quickly as possible. A buffer
consumes very little processor time as all it has to do is initiate the commu-
nication which is then handled by the link engine.

In the program described here, the buffer process must handle the protocol
described in Section 5.2.1, Using a CASE input makes this very straight
forward. Each message, consisting of a tag and a sequence of values, is
simply input and then output:

... declare variables used by buffer process
WHILE TRUE -- repeat for ever
SEQ
in ? CASE
sectorWriteReq; source; drive; sector.number; sector.data
out ! sectorWriteReq; source; drive;

sector.number; sector.data

sectorWriteAck; dest; status
out ! sectorWriteAck; dest; status

... other cases

This is also more efficient than the simple BYTE buffer above, as it can
transfer arrays of data making best use of the autonomous link engines.

5.2.5 The user interface process

The user interface process has two functions: it provides a level of message
buffering between the link and the router; and it allows for failure of the link
to a user PC. This communication link is the least reliable in the system
partly because of its length, but also because a PC may be turned on or off
at any time generating electrical noise on the link.

33

This process communicates with the router process using the protocol de-
scribed above, but simply transmits arrays of bytes to the PC. This is done
using the InputOrFail.t() and OutputOrFail.t() library procedures [4] which
support communication through unreliable channels. If a communication
fails then two things must be done: the link logic on the transputer must be
reset (using another library procedure Reinitialise()); and the the processes
at each end of the link must be resynchronised. This is done by exchanging
a special sequence of messages until the expected values are received and
returned.

5.2.6 Configuring the IMS B012

The IMS C004 link switches on the IMS B012 board are used in a rather
odd way; each transputer link connection consists of two wires and on this
board each wire goes to a different IMS C004. The simplest configuration is
for connections straight through the IMS C004s i.e. linkln; to linkOut; for
all links on each switch. This brings all the required link connections out to
the edge connector. A process running on the IMS T212 which controls the
link switch sends the necessary commands to the IMS C004.

5.3 The device driver

The device driver is much simpler than that in Section 4 as most of the
work - generating IMS M212 commands, checking for errors etc. - is done in
the occam program. The driver communicates with the network using the
occam communication protocol, i.e it simply translates from DOS kernel
requests to the appropriate protocol messages. However, no checking is
done of tag values received; it is assumed that the network is sufficiently
secure to send only the data expected at any time. Generally, each routine
in the driver simply has to send a byte (corresponding to the value of the
relevant protocol tag) followed by the necessary parameters extracted from
the request header. The id field of the message is sent, in order to comply
with the protocol, but the value is not meaningful. The driver then waits
for the reply to come back from the network, the tag and id are input but
ignored, then the results of the operation are read from the link and simply
put into the appropriate fields of the request header.

To allow for communication failure the link I/O routines check for an MS-
DOS break key (control-C or control Break) whilst polling the link adaptor
status registers. This allows the user to regain control if the link fails. If
this sort of exit is made from the device driver it is then necessary to run a
program on the PC to resynchronise the communications with the network
(see Section 5.2.5).

34

5.4 Optimisations & alternative implementations

Although the current system performs adequately, there are a number of
areas where optimisations could be made. If data is read continuously from
a Winchester disk then quite high data rates can be achieved (typically
500 Kbytes per second). However, in a realistic situation, this performance
is hard to achieve because of head movements required to locate the data.
There are two reasons for moving the heads when reading an MS-DOS disk:
(i) to refer back to the directory and FAT entries to locate files and sec-
tors within files; (ii) to locate the next sector of the file when it becomes
fragmented across the disk.

MS-DOS does some caching of sectors which reduces the number of accesses
to the FAT on disk. If the disk control process kept copies of commonly
accessed data (the FAT, root directory, etc.) in a cache then performance
could be further improved. Similarly, when MS-DOS requests a sector, the
next request will probably be for the next sector in that duster which means
it may be efficient for the disk control process to cache clusters (or maybe
even entire tracks). Data caching has not been added to the system as it
stands because of the use of the IMS B402 module which has only 10 Kbytes
total memory space. To add caching as described would require at least
an extra 37 Kbytes of buffer space (16 Kbytes for the root directory and
21 Kbytes for the FAT) and more if cluster caching were to be implemented
(at least one cluster would have to be cached for each user). The program
could be run on modules with more memory (e.g. an IMS B404 with an
IMS T600 32 bit processor and 2 Mbytes of RAM) however this is probably
overkill in terms of cost and would reduce the maximum number of users
and disks as the modules are bigger.

In a multi-user system, there will be even more head movement as disk
requests from the various users (almost certainly for different sectors) are
interleaved. A solution to this is to sort the requests to minimise head
movement. This may cause some requests to be delayed for too long so
the sorting algorithm must take this into account. Again this has not been
implemented due to lack of memory in the current system.

An alternative and more cost effective implementation is to have a single
transputer to provide all message routing facilities and move the disk control
code onto the IMS M212. The central routing processor would have to be a
32 bit device (e.g. an IMS T414) in order to provide the required amounts
of memory. It would also require more than the 4 links on the transputer so
a number of link adaptors would be memory mapped to provide a number
of ’virtual’ links. These virtual links could be used very nearly as efficiently
as the internal links if the interrupt outputs are connected, via an interrupt
controller, to the EventReq pin of the transputer. The EventReq acts like

35

an interrupt to the transputer but appears to the programmer simply as a
channel input. This makes event handlers on the transputer very easy to
implement and test, as they are exactly the same as any other piece of code.
After receiving the event input, the transputer would read the number of
the link adaptor generating the interrupt and then simply transfer the data.
An outline of this scheme is shown in Figure 12.

Figure 12: One transputer network controller

6 Some common pitfalls

This section summarises of some of the things which can cause problems
when using the IMS M212 or programming for MS-DOS.

These fall into two groups:

1. MS-DOS and device driver pitfalls

• The initialise and build BPB requests to a device driver both ex-
pect information about the BIOS parameter block to be returned.
It is important to note that the initialise request returns a pointer

36

to an array of pointers to the BPB; whereas build BPB should
return a pointer to the BPB itself.

• The first version of the device driver worked very successfully
until it was tried on a PC running Microsoft Windows. Any at-
tempt to access the driver would cause the PC to crash, requiring
a reboot. This was found to be due to stack overflow. The de-
vice driver initially just used the stack space passed by MS-DOS.
The Windows environment obviously provides a slightly smaller
stack. The problem was solved by providing the device driver
with its own local stack This had the added advantages of al-
lowing a more structured approach in the code with no danger
of too many subroutines causing stack overflow, and allowing an
’emergency exit’ from any part of the code.

• It is very important to conform exactly to the interface between
MS-DOS and device drivers, especially when handling errors.
One return value that was initially overlooked was the count of
sectors successfully read. If the correct value is not returned (very
easy to do when an error occurs) then unpredictable results can
occur.

2. IMS M212 programming traps

• Ensure that the correct drive is selected when an operation is
performed, and that the parameters are initialised for the correct
drive type (Winchester or floppy).

• When an error occurs accessing the disk, an error code is returned
in the Error parameter. No further commands which access the
disk will be executed until the error value is cleared.

• The IMS M212 requires a write clock signal whenever it is not ac-
tually reading from the disk This signal can be selected from one
of two sources: internal or external. Because the external write
clock may not always be present, the internal clock is selected
when the IMS M212 is reset. The internal clock is generated
from the processor clock and, if the frequency of this is not ap-
propriate the external clock must be selected. Note that if an
auto-boot from disk is performed then the external clock source
is automatically selected.

• The communication to and from the IMS M212 is not easy to
define as an occam protocol so it is easy to make mistakes with
the number of bytes transferred. For example when resetting the
Error parameter it is very easy to write the following:

SEQ
...

37

toM2 ! writeParameter; Error; 0
...

The mistake here is that the number 0 is assumed to be of type
INT unless otherwise specified:

SEQ
...
toM2 ! writeParameter; Error; 0(BYTE)
...

• Normally the position of the heads is determined by reading the
address data from the disk. When the disk is being formatted
this cannot be done so it is important to move the heads to track
zero before formatting. This is done with the restore command.
If this is not done then very odd effects can occur, where the
track marked as ’zero’ may be at an arbitrary position on the
disk (and indeed there may be multiple tracks marked as track
zero) causing supposedly deleted data to reappear.

• There are some other problems that may arise when designing
hardware for the IMS M212 outlined in the IMS M212 product
manual [2]).

7 Conclusions

This note has described how it possible to add extra disk drives to a typical
MS-DOS based system using the IMS M212 disk processor. The advantages
of the IMS M212 in this application are:

• A minimal number of external components are required to interface
up to 4 drives to the IMS M212.

• The on-chip ROM allows the IMS M212 to be easily controlled with
simple software on the host system.

• The use of the IMS M212’s logical addressing mode simplifies the in-
terface to MS-DOS which specifies sector addresses in a compatible
way.

This single disk system was then extended to allow multiple users shared ac-
cess to a number of centrally located disk drives. This system used an array
of IMS T212s to route commands and data from users to the appropriate
disk. The advantages provided by this system are:

38

• A simple and effective centralised disk store.

• Provides each user with a very large amount of disk storage.

• Allows commonly used software and data to be moved from individual
users machines, simplifying version control and allowing more space
for users own files.

• A fast and simple means of backing up the contents of the Winchester
disks in the attached PCs.

• Multiprocessor systems can be very easily implemented with transput-
ers programmed in occam.

Both of the systems described here were constructed from standard INMOS
evaluation cards and are being used by a number of people within INMOS.

The shared disk system can easily be extended to allow other shared re-
sources to be attached (e.g. a printer) and to allow data transfers between
attached PCs. A small amount of extra work also needs to be done on
the shared disk system to make it completely self contained. Currently the
network code is loaded from one of the attached PCs, a better solution is
to bootstrap the system from ROM or from one of the Winchesters. It is
also possible to improve the interface to the PC to take advantage of in-
terrupts and DMA (direct memory access) data transfer on the PC. These
are supported on new IBM PC plug in evaluation board from INMOS, the
IMS B008. Details of this interface will be found in the reference manual
for that board.

References

[1] Transputer reference manual. INMOS Limited Prentice Hall
ISBN 0-13-929001-X

[2] IMS M212 disk processor product data. INMOS Limited

[3] Occam 2 reference manual. INMOS Limited Prentice Hall
ISBN 0-13-629312-3

[4] Extraordinary use of transputer links - Technical Note 1.
INMOS Limited

[5] IMS B004 IBM PC add-in board - Technical Note 11.
INMOS Limited

39

[6] Connecting INMOS links - Technical Note 18.
INMOS Limited

[7] Dual-inline transputer modules (TRAMS) - Technical Note 29.
INMOS Limited

[8] Advanced MS-DOS, Ray Duncan, Microsoft Press.
ISBN 0-914845-77-2

40

	1 Introduction
	2 The IMS M212 disk controller
	2.1 The transputer
	2.2 IMS M212 internals
	2.3 IMS M212 programming
	2.3.1 Mode 1 functions

	2.4 The IMS B005 evaluation board
	2.5 The occam programming language

	3 The MS-DOS operating system
	3.1 The structure of MS-DOS
	3.2 Installable device drivers
	3.3 MSDOS disk format
	3.3.1 The boot sector
	3.3.2 The file allocation tables
	3.3.3 The root directory
	3.3.4 The files area

	4 Interfacing between MS-DOS and the IMS M212
	4.1 Link adaptors
	4.1.1 Interlacing to the 8086
	4.1.2 Interface software

	4.2 The device driver
	4.3 Support software
	4.3.1 Pascal routines for link I/O
	4.3.2 A disk formatting program

	5 A shared disk store
	5.1 The hardware
	5.1.1 The IMS B402 transputer module
	5.1.2 The IMS B012 motherboard

	5.2 The control software
	5.2.1 The communication protocol
	5.2.2 The message routing process
	5.2.3 The disk control process
	5.2.4 A buffer process
	5.2.5 The user interface process
	5.2.6 Configuring the IMS B012

	5.3 The device driver
	5.4 Optimisations & alternative implementations

	6 Some common pitfalls
	7 Conclusions
	References

