
A transputer based
distributed graphics display

INMOS Technical Note 46

INMOS Limited

72-TCH-046

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 5

2 A brief history 5
2.1 Introduction . 5
2.2 Displays . 6
2.3 The frame store . 8
2.4 Colour . 9
2.5 System performance . 10
2.6 Graphics display system . 12

3 Overview of a parallel graphics system 12
3.1 Introduction . 12
3.2 Transputers and occam . 14

3.2.1 The IMS T800 transputer 14
3.2.2 Serial links . 15
3.2.3 On-chip floating point unit 16
3.2.4 2-D Block move instructions 16
3.2.5 The occam programming language 16

3.3 Transputer modules (TRAMs) 17
3.4 Introduction to graphics TRAMs 18
3.5 Introduction to the serial port TRAM 19
3.6 Introduction to the display backend TRAM 19

4 Serial port TRAM 20
4.1 Introduction . 20

4.1.1 Memory map . 21
4.1.2 Frame store addressing and the video RAM 21
4.1.3 Pixel mappings . 22
4.1.4 Double buffered frame store addressing 23
4.1.5 Frame store distribution 24

4.2 Random access port . 26
4.2.1 Memory upgrades . 26
4.2.2 Memory cycles . 26
4.2.3 Address latches and multiplexing 28
4.2.4 Decoding . 29

4.3 Serial access port . 29
4.3.1 Introduction . 29
4.3.2 Address generator . 30
4.3.3 Address sequencer . 31
4.3.4 Pixel counter . 32
4.3.5 Distributed control . 32

3

5 Display TRAMs 33
5.1 Introduction . 33
5.2 An example display TRAM 33

5.2.1 Pixel channels . 33
5.2.2 Display modes . 34

6 System configurations 35
6.1 Driving the frame store . 35
6.2 Frame store configurations . 36

7 Conclusion 38

8 Transputer memory interface 39
8.1 Memory interface timing . 40
8.2 Configurable strobes . 41
8.3 Multiplexed address-data bus 42
8.4 Byte selection . 42
8.5 Refresh . 43
8.6 Wait states . 44
8.7 MemReq, MemGranted and direct memory access 44
8.8 Termination . 45
8.9 Configuration of the memory interface 45
8.10 The memory interface program 46

9 Video RAMs 47
9.1 What is a video RAM . 47
9.2 Video RAM logic operations 48

References 49

4

1 Introduction

This technical note examines a frame store distribution technique using the
IMS T800 for high performance computer graphics systems.

In the beginning there is a brief introduction to some of the techniques and
terminology used in typical graphic systems including comments on system
implementation and processing implications.

Following this, section three provides an overview of parallel graphics sys-
tems and frame store distribution. There are also brief descriptions of the
transputer, specifically the IMS T800 architecture, the occam language and
transputer module architecture. Following this there is an introduction to
the two TRAMs used to implement the distributed graphics system.

The next two sections describe the graphics TRAMs in detail, and how the
distribution methods are implemented.

Finally some example system configurations are described using the graphics
TRAMs and some performance implications of the configurations.

2 A brief history

2.1 Introduction

In the early days of computing, user interaction with computers usually
consisted of a teletype machine with a built in keyboard. This was costly in
terms of maintaining the mechanics and producing reams of partially used
paper. It wasn’t long before electronic displays began to be commonly used.
The first displays were essentially glass teletypes, providing the user with an
electronic alphanumeric display. The visual display was constructed from
a two dimensional array of dots called pixels. Each pixel had one colour
and could be illuminated individually - either on or off, hence the name
monochrome (monochromatic) display. From this any character could be
represented provided it was constructed from a small array of dots that
fitted into one character matrix size on the screen. Since then these displays
have become more sophisticated, having large numbers of displayable colours
and higher numbers of unique displayable dots per square unit of the screen
surface.

5

2.2 Displays

Most electronic displays consist of an evacuated sealed glass tube, with a
coating on the inside surface of the display screen. A beam of electrons
are fired onto the coating, which makes it glow, producing a small spot of
light. Because the beam is moving charge, it can be deflected using either
electrostatic or magnetic fields. Its intensity can also be controlled, changing
the brightness of the spot. This allows the path of the spot and its brightness
to be controlled by electronic circuitry (see figure 1).

Figure 1: Display scanning

These circuits are designed to make the beam scan in a series of horizontal
sweeps, left to right across the display. When the beam reaches the end of
the line, its brightness will be switched off (blanked) and it will fly back
at high speed to the start of the next line, slightly below the previous line.
This is known as line flyback (see figure 2). This scanning will continue until
the entire display has been scanned. When the beam reaches the end of the
last line it will be blanked and will fly back at high speed to the top of the
display. This is known as frame flyback (see figure 1). This happens so fast
that the human eye cannot see the spot, and the lines are so close together
that they are not individually perceivable at normal viewing distances. A
small spot of light can produce a complete frame so fast that it can be
animated without being perceived as individual frames. This is a similar
technique to that of the film industry, where multiple still frames give the
illusion of a moving picture.

Some systems use a technique known as interlace. Each frame of a scene
is split into two fields. Each field contains every other line of the complete
frame. So, one field contains all the odd numbered lines and the other all
the even lines. This technique allows each field to be displayed for the same
period as a complete frame, without causing much of a flickering effect. This
halves the rate of data that needs to be displayed, reducing the necessary

6

speed of the electronics. Television systems use this technique to reduce the
bandwidth of the transmitted signal.

The circuitry controlling the horizontal and vertical scanning frequencies of
the beam and the brightness of the spot can be controlled using an input
control signal. This control signal is continuously variable in the range of
0 to 1 Volt. The brightness of the spot is represented by the input signal
voltage level in the range 0.3 to 1 Volt. Synchronisation pulses (pulses that
control the frequency of the scanning spot) are represented by the control
input signal voltage level in the range 0 to 0.3 Volt (see figure 2). The
synchronisation pulses are superimposed onto this signal by the graphics
hardware, so that the display scanning circuitry will scan in lockstep to
the scanning of the frame store. This ensures that the data representing a
particular pixel on the display will always be at the same place on the screen
(see figure 2).

Figure 2: Analogue control voltage waveforms

These control signals have characteristics which have defined standards (such
as the RS170 video standard) and therefore standard displays, called mon-
itors, can be used. These monitors usually come in ranges classified by the
screen dot size and the overall size of the display. It is these two factors
which define the range of scanning frequencies that the monitor is designed
to lock onto.

7

2.3 The frame store

The analogue control signal is derived from a digital source. It is the job of
the graphics hardware to scan and retrieve digital video data from a frame
store (a digital representation of the display screen) and convert it into the
analogue control signal outlined above.

There are generally two methods of implementing a frame store. These are:

Bitmapped pixels: Data is stored (see figure 3) so that a single bit from
each word of a processors store will illuminate a pixel either on or off. The
method for storing the data in this way has become known as a bitplane.
Monochromatic displays use a single bitplane as a frame store.

Figure 3: A bit plane

Once monochrome bitplanes were in common use, it became necessary to
add colour. The extra colours are the result of adding more bitplanes and
more pixels are the result of having larger bitmaps (see figure 4).

Figure 4: Multiple bitplane address map

Notice that an individual pixels data is spread to several locations in store,
so that an update will require several accesses to store. This allows more
planes to be added to a system by increasing the amount of ram, of course the
hardware must be in place to take advantage of the extra colours available.

Packed pixels: Data is stored so that each pixel is located at a single

8

address in store. This provides an efficient memory access utilisation at the
cost of fixed numbers of colours per pixel.

Figure 5: Packed pixel organisation

Any frame store implementation must be scanned by hardware continuously
so that the pixel information can be encoded onto the analogue control
signal. Also, the frame store must be available for modification by the
processor. The hardware must therefore arbitrate the frame store access
between the display scanning and processing (see figure 7).

2.4 Colour

Colour monitors use three different colour sub-pixels (as close to the three
primary colours, red, green and blue, as possible) that can be illuminated
separately. For this, three separate control signals, which vary the brightness
of each colour, are necessary.

To produce these colour signals, the digital data is separated into the three
colour components red, green and blue. Each is fed into a separate digital
to analogue converter (DAC). The analogue signal now consists of the three
separate signals representing the primary colours. By varying the digital
input to these DACs the voltage levels of each these signals can be changed
producing a large number of possible colours on the monitor. This can be
extended so that digital pixel data can represent an address in a table which
has been preloaded with various colour values for each output DAC (see
figure 6).

This intermediate Colour lookup table (CLUT) can increase the total num-
ber of possible displayable colours. This is because the table width is not
related to the addressable entries to the table (see figure 6). Each entry
can output data to each DAC, presenting more bits to all three DACs than
the input pixel data contains. Only a small number of the total displayable

9

colours can be displayed at any one time though (the number of unique
addressable entries to the table).

For example (see figure 6), the colour table may contain 256 entries, each
entry is 18 bits wide, presenting 6 bits of colour value to each DAC. This
gives 262144 (218) possible colour values. Any combination of these colours
is allowed since the table is preloadable, but only 256 colours are displayable
at any one time.

Figure 6: Colour lookup table

2.5 System performance

In many graphics systems, there are aspects of the design where system
performance is reduced, such as in a multiple bitplane addressing (see sec-
tion 2.3). Many systems become special purpose to overcome these per-
formance problems and thereby increase the cost of the system by using
custom built hardware and reducing flexibility. The following are typical
areas where these problems can arise:

Pixel addressing: Each pixel may not have a unique address, i.e. when
using multiple bit planes. Single bits in many locations in the frame store
represent a single pixel, requiring accesses to many locations to change this
pixel value. General purpose processors do not usually have the ability to
manipulate data addressed in this way. Special high speed graphic proces-
sors with hardware engines need to be placed between the general purpose
processor and the frame store to map pixel data into the frame store (see
figure 7). These processors come in a range of configurations, ranging from
full blown processors with large instruction sets, to a collection of engines

10

designed for highly specific purposes.

Figure 7: Special graphic processor

Frame store access conflicts: The processor must perform drawing tasks
into the frame store when the display scanning hardware is not using the
frame store. This can consume processor performance because any drawing
into the frame store is restricted due to the sheer amount of data that has
to be shuffled out of the frame store by the display scanning hardware. This
is especially so in high resolution systems. This is referred to as the frame
store bottleneck (see figure 7). Consider a 512 by 512 by 8 bit pixel display.
If we assume that a 32 bit read from the frame store takes 200 × 10−9 s,
and the store is scanned 50 times a second (20 × 10−3 s). Then to read all
the data will take 65536 reads and will take 13.1 × 10−3 s. This leaves the
processor (20 × (13.1 × 10−3) = 6.9 × 10−3 s. to update the display. This
leaves only 34% of the total frame store bandwidth for the processor to do
anything useful.

Doubling the horizontal and vertical resolution (R) quadruples the frame
store data (proportional to R2). Also, doubling the number of colours (C)
will increase frame store access bandwidth. It follows that the processors
access to the frame store is proportional to a CR2 law. This is doubled
when we consider that the scanning hardware needs to read all this data
as well. This can somewhat be relieved by using several banks of ram and
using a ping-pong mechanism to switch the busses between the processor
and display hardware. This is only useful in animation systems where each
frame has to be completely redrawn and therefore becomes somewhat special
purpose.

Compute performance: Consider animating a graphic image which con-
sists of 12,000 points (where FLOPs means ’Floating Point Operations’).

11

Operation Units
Rotate, translate, scale 300 KFLOPs
Clip (display viewable surfaces) 72 KFLOPs
Converting to screen coordinates 130 KFLOPs
Shading 360 KFLOPs
Interpolation (rounding flat surfaces) 300 KFLOPs
The approximate total is: 1.2 MFLOPs

Assuming 25 frames a second, the grand total becomes 30 million FLOPs
per second. This level of performance is well beyond single processor perfor-
mance, indeed just shuffling the data around is beyond memory bus band-
widths of many processors.

2.6 Graphics display system

From the above brief discussion, several requirements arise for a general
purpose graphics system can satisfy the needs described:

Compute performance: Any required compute performance desired for
any given application.

Drawing performance: Any required drawing performance into the frame
store for a given application.

Display access: The display scanning must have separate access to the
frame store to remove the conflict between the processor and the display
scanning hardware.

Display resolution and colour depth: Any required display resolutions
and colour depth (bits per colour).

Display drivers: Any required display output (to follow above). For in-
stance, very high speed device technology may be necessary for a very high
resolution display.

This technical note will describe a transputer based, distributed graphics
system which resolves the problems outlined above.

3 Overview of a parallel graphics system

3.1 Introduction

In the previous section (section 2.6), several aspects of a graphics system
were discussed.

12

To provide any desired processing performance requires that the processing
task is divided into smaller subtasks and as many processors that are nec-
essary to provide the appropriate performance must be used. This allows
a system to be built to achieve any drawing bandwidth, with any compute
performance. The problem is now one of distribution and how this is imple-
mented.

Here are some methods for distributing processing tasks:

Spatial: The display is broken up into a number of tiles. Each file is
distributed to a different processor or a group of processors (see figure 8).

Figure 8: Spatial distribution

Chronological: This method distributes the entire display to all processors
in the system, but only one will display all it’s data at any one time. Each
frame of the display is produced by a processor or a group of processors (see
figure 9).

Figure 9: Chronological distribution

Objective: This method distributes different objects in a scene to different
processors. This is deceptively difficult - consider the problem of handling
hidden and intersecting objects (see figure 10).

13

Figure 10: Objective distribution

Characteristic: This method distributes characteristics of the scene, such
as colour, to different processors (see figure 11).

Figure 11: Characteristic distribution

These distribution methods are simplified using the occam model of localised
data and process communication, applied with the transputer localised pro-
cessor bus and interprocessor communication.

3.2 Transputers and occam

3.2.1 The IMS T800 transputer

The IMS T800 is the latest member of the INMOS transputer family [1]. It
integrates a 32 bit 10 MIP processor (CPU), 4 serial communication links,
4 Kbytes of RAM and a floating point unit (FPU) on a single chip. An
external memory interface allows access to a total memory of 4 gigabytes
(see figure 12).

The transputer family has been designed for the efficient implementation of
high level language compilers. Transputers can be programmed in sequen-

14

Figure 12: IMS T800 block diagram

tial languages such as C, PASCAL and FORTRAN (compilers for which
are available from INMOS). However the occam language allows the pro-
grammer to fully exploit the facilities for concurrency and communication
provided by the transputer architecture.

The on-chip memory is not a cache, but part of the transputer’s total address
space. It can be thought of as replacing the register set found on conventional
processors, operating as a very fast access data area, but can also act as
program store for small pieces of code.

3.2.2 Serial links

The 4 serial links on the IMS T800 allow it to communicate with other
transputers. Each serial link provides a data rate of 1.7 MBytes per second
unidirectional, or 2.35 MBytes per second when operating bidirectional [2].

Since the links are autonomous DMA engines, the processor is free to per-
form computation concurrently with link communication. With all four
links receiving simultaneously, the maximum data rate into an IMS T800
is 6.8 Mbytes per second. This allows a graphics system based around
IMS T800s to act as image sinks, accepting pixels down serial links and
placing them directly into the frame store.

15

3.2.3 On-chip floating point unit

The IMS T800 FPU is a co-processor integrated on the same chip as the
CPU, and can operate concurrently with the CPU. The FPU performs float-
ing point arithmetic on single and double length (32 and 64 bit) quantities
to IEEE 754. The concurrent operation allows floating point computation
and address calculation to fully overlap, giving a realistically achievable per-
formance of 1.5 Mflops (4 million Whetstones [3]/second) on the 20 MHz
part; 2.25 Mflops (6 million Whetstones/second) at 30 MHz.

3.2.4 2-D Block move instructions

Among the new instructions in the IMS T800 are those for graphics support.
The IMS T800 has a set of microcoded 2-dimensional block move instruc-
tions which allows it to perform cut and paste operations on irregularly
shaped objects at full memory bandwidth.

The three MOVE2D operations are:

MOVE2DALL which copies an entire area of memory
MOVE2DZER0 which copies only zero bytes
MOVE2DNONZERO which copies only non-zero bytes

The use of these instructions is described more fully elsewhere [2].

3.2.5 The occam programming language

The occam language enables a system to be described as a collection of
concurrent processes which communicate with one another, and with the
outside world, via communication channels. Occam programs are built from
three primitive processes:

variable := expression assign value of expression to variable
channel ? variable input a value from channel to variable
channel ! expression output the value of expression to channel

Each occam channel provides a one way communication path between two
concurrent processes. Communication is synchronised and unbuffered. The
primitive processes can be combined to form constructs which are them-
selves processes and can be used as components of another construct. Con-
ventional sequential programs can be expressed by combining processes with
the sequential constructs SEQ, IF, CASE and WHILE.

Concurrent programs are expressed using the parallel construct PAR, the
alternative construct ALT and channel communication. PAR is used to run

16

any number of processes in parallel and these can communicate with one
another via communication channels. The alternative construct allows a
process to wait for input from any number of input channels. Input is taken
from the first of these channels to become ready and the associated process
is executed. A full definition of the occam language can be found in the
occam reference manual [4].

3.3 Transputer modules (TRAMs)

Transputer Modules [5] or TRAMs are subassemblies of transputers (or other
components with INMOS links), a few discrete components, and sometimes
some RAM and/or application specific circuitry. All TRAMs:

• Have a standard interface using serial links.

• Have a standard pinout.

• Have standard sizes.

• Are designed to a published specification [5].

These TRAM standards make it very simple for users to build customised
TRAMs or motherboards with sockets for TRAMs. The TRAM pinout
standard is independent of:

• Transputer type (IMS T212, T414, T800, M212, etc.)

• Number of transputers (0, 1, 4, 8, 16, etc.)

• Wordlength of transputer.

• Speed of transputer.

• Function (transputer plus RAM, disk control, other peripheral control)

• Memory size.

• Package (68 pin PGA, 84 pin PGA, PLCC, and other transputer pack-
ages)

• Implementation (PCB, hybrid, silicon, etc)

17

3.4 Introduction to graphics TRAMs

If the graphical display processors are implemented as modular transputer
compute elements, each with transputer, memory and logic to implement
special functions, the problem of designing a distributed graphics system
becomes much simpler.

To provide the distributed frame store requirements and any display output
type (see section 2.6), different TRAMs are deemed necessary.

Serial port TRAM: This contains an IMS T800 and all the logic necessary
for a complete frame store. It can be connected to other identical TRAMs so
that distribution of the frame store becomes a matter of simple replication
of this TRAM. This is known as the Serial port TRAM because of the serial
nature of the output data.

Display backend driver TRAM: This contains all the logic necessary
to drive a particular display type, This TRAM interfaces directly to, and
receives it’s high speed data from, the serial port TRAM. This TRAM will
be known as the Display Backend TRAM.

Separation of frame store scanning from the processor address and data bus
is achieved on the serial port TRAM using video RAMs (see section 9).
Video RAMs have a separate serial port (a port in this context means a
separate access path to shared data) for video data. This allows the frame
buffer to be scanned in a serial fashion without causing significant loss of
processor access to the RAM, relieving the arbitration problems associated
with conventional RAMs (see section 2.5).

The serial port TRAM supplies a continuous stream of high speed serial
data from the frame store. The Display Backend can drive display monitors
using this stream of data in a variety of display modes. These TRAMs are
connected together by a 60 way ribbon cable, which contains a control bus
and a distributed data bus. All serial port TRAMs in the system connect
in parallel to this cable (see figure 13).

Figure 13: Connectivity of graphics TRAMs

18

3.5 Introduction to the serial port TRAM

This section contains a short introduction to the serial port TRAM. A de-
tailed description can be found in section 4.

The serial port TRAM (see figure 14) consists of:

A transputer: An IMS T800, which maintains the frame store.

Memory: The standard serial port TRAM contains a total of 2.25 Mbytes
of 4 cycle dynamic RAM. Of this 1 Mbyte is standard dynamic RAM and
1.25 Mbytes is Video RAM.

Video RAM address generator: This controls the VRAM serial port
addressing. It is in turn controlled by the distributed control bus.

Serial bus interface: This is the distributed serial data and control bus
interface. It connects the distributed control bus to the various timing com-
ponents on the TRAM and the VRAM serial data to the distributed data
bus.

Figure 14 shows a block diagram of the serial port TRAM, outlining some
of the blocks previously described.

Figure 14: Serial port TRAM block diagram

3.6 Introduction to the display backend TRAM

All display TRAMs have a generic architecture. Figure 15 shows the generic
block diagram of the display backed TRAM architecture. A detailed descrip-
tion of the Display Backend can be found in section 5.

The Display Backend TRAM consists of:

A transputer link: Communication to this module via at least one INMOS

19

Figure 15: Generic display TRAMs

link, as a processor may not be necessary as it is used only for control and
initialisation of the backend hardware.

Video system clock generator: This provides the video system clock.
The video system is timed from this clock.

A video timing generator: From this, all synchronisation and system
control is derived.

Serial control and data bus interface: This drives the distributed serial
control bus and takes data from the distributed data bus.

Application specific display hardware: This hardware produces the
application specific output derived from the 32 bit input data.

4 Serial port TRAM

In the short introduction to the serial port TRAM (section 1 and in figure 14)
the functional blocks were briefly discussed. This section will discuss the
serial port TRAM in more detail.

4.1 Introduction

The serial port TRAM can be considered as a transputer with memory, some
of which is dual ported video RAM. The VRAM has a serial and a random
access port to the frame store. These two ports can be considered more or
less as separate entities, see figure 14. This section will give an overview of
the serial port TRAM and then describe each port separately.

20

4.1.1 Memory map

Figure 16: Memory map

The serial port module has 2.25 Mbytes of usable dynamic RAM. Of this
1 MByte is conventional dynamic RAM and 1.25 Mbytes is dual ported
video RAM. Referring to figure 16 the RAM has been placed so that the
video RAM abuts the 1 Mbyte of workspace RAM, this allows the video
RAM to be used as extra workspace RAM if required.

The video RAM is mapped twice into the decoded memory map so that
the special logic modes (marked Logic Mode) used in some video RAMs,
which need special interfacing cycling, can be used (see section 9). These
special logic modes can be set by writing data to the area of store reserved
for this purpose (marked Logic Set). Registers which control the serial port
addressing and frame synchronisation are mapped into the positive address
space (marked System Control).

4.1.2 Frame store addressing and the video RAM

The serial port TRAMs frame store is designed around the Packed Pixel
architecture (see section 2.3). There are two addressing schemes that can
be used with video RAMs, when using packed pixel architecture:

Memory relative: Data is placed into the frame store with addressing
related to the physical addressing of the video RAM. Put simply, the VRAM
row and column addresses have a direct relationship with the frame stores X

21

and Y coordinates, but the display can have a different horizontal dimension
than the frame store. Notice that the maximum width of display is the size
of the dual port buffer in the VRAM, i.e. 1024 8 bit pixels (see figure 17).

Figure 17: Frame buffer relative addressing

Display relative: The VRAM row and column addressing have no direct
relationship to the frame stores X and Y coordinates. Instead the frame
store addressing and the visible display have the same horizontal dimension
(see figure 18). This scheme needs the video RAM real time data transfer
mechanism (see section 9), which allows the display horizontal dimension
to be longer than the VRAM dual port buffer, i.e. longer than 1024 8 bit
pixels.

The serial port TRAM normally uses the display relative addressing scheme.
When interlace is used, which can be set at initialisation, it is switched into
memory relative mode, and the frame store has a fixed horizontal dimension
of 1024 bytes (although the display can be smaller). These methods reduce
the logic necessary to construct the address generator.

4.1.3 Pixel mappings

The video RAM can be used for various pixel types and screen sizes. The
usage of the frame store entirely depends upon the user software and the
backend display TRAM. Recommended mappings are (see figure 19):

22

Figure 18: Display relative addressing

8 bit packed pixels: Pixels mapped as bytes, four pixels per word. This
allows 256 colours per pixel with a maximum of 1310720 pixels. This can
be used for high resolution CAD, i.e. one serial port module can produce a
1280 by 1024 by 8 bit display, with an appropriate display backend.

32 bit packed pixels: Pixels can be mapped as 32 bit words, allowing a
maximum of 232 colours per pixel. One serial port TRAM can have a total
of 327680 pixels. Applications include any system that needs real colour
displays.

The method of mapping the frame store to the processor can have a profound
effect on the performance of the graphical operations a single IMS T800 can
achieve. To achieve most efficient use of the IMS T800 performance, pixels
should be mapped as either bytes or 32 bit word data types as this takes
advantage of the IMS T800s internal datapath representation.

4.1.4 Double buffered frame store addressing

It is useful, when maximising performance in some graphic applications such
as animation, to have at least two displays mapped onto the frame store.
This allows one to be displayed whilst another is being updated.

To facilitate this, the address of the first pixel at the top left of the display
can be preset. This address presetting allows the display to be flipped to al-
ternate areas of the frame store (see section 4.3). Flipping the display during

23

Figure 19: Pixel mapping

frame flyback allows complete frames to be drawn before being displayed.
This prevents disturbing visual artefacts.

The transputer can be informed of the state of the frame flyback condi-
tion so as to synchronise the frame flip to the frame flyback period. It is
also sometimes necessary to synchronise with other serial port TRAMs in
a system when some system wide or global event has occurred. Each serial
port TRAM can cause a system event or can respond to it from an external
source.

For this reason logic has been included so that the serial port TRAM can be
informed when a frame flyback or system event has occurred. This logic uses
the IMS T800 Event input (similar to a transputer link but it is only able
to convey information about when external events have occurred). Alter-
natively the transputer can poll some registers which have bits representing
the state of these signals.

4.1.5 Frame store distribution

The method of frame store distribution (see section 3.1) can have dramatic
effects upon the design of the hardware to implement it. For the serial post
TRAM the design rests on the specification of the distributed data bus,
which consists of a synchronous (clocked) inverted open-collector bus (see
figure 20).

24

Figure 20: Distributed data bus open-collector arrangement

The open-collector arrangement allows any serial port TRAM to output
data onto the bus at any time without fear of bus contention. This removes
any need for any bus arbitration logic hence, allows arbitrary distribution
of screen space amongst an arbitrary number of serial port TRAMs. Each
serial port TRAM has enough memory to be able to address any pixel of
the display. Since all serial port TRAMs are synchronised any one of them
can alter the pixel data presently on the distributed data bus. If any serial
port TRAM is not responsible for any particular pixel, it simply writes a
null (zero) into that location in the frame store. This fits neatly into the
IMS T800 2D block move instructions (see section 3.2), as null has special
meaning when moving data with these instructions [2].

This distribution technique is simple, and provides the spatial and charac-
teristic distribution methods described in section 3.1. To further enhance
the flexibility of this, an output enable control bit is mapped into the IMS
T800 address space. Any serial port TRAM output can be switched off
(or nulled) completely. This provides the chronological distribution method
discussed in section 3.1.

The objective distribution method also discussed in section 1 has not been
implemented due to its complex nature. It is suggested that the reader refer
to 6 and 7 both of which deal with distribution of solid object geometry and
some implementation methods.

25

4.2 Random access port

This section will describe the implementation of the transputers access to
the frame store. It also describes the mechanisms used to take full advantage
of video RAM architecture.

4.2.1 Memory upgrades

As memory technology progresses, memory speeds increase as well as mem-
ory densities. Usually a designer, where possible, will incorporate the logic
and PCB tracking necessary for a memory upgrade. To upgrade designs to
more memory is quite straightforward, but to upgrade to a higher speed can
mean a redesign, an option that can be economically unacceptable.

The IMS T800 allows the designer to upgrade memory speeds by changing
the memory interface Configuration (see section 8.9). The serial port TRAM
has the configuration data stored in a PAL (programmable array logic) which
also controls the IMS T800s speed selection (as this has a bearing on the
memory interface timings). This means that a speed upgrade requires only
a PAL change (assuming logic delays are taken into consideration).

The upgrade paths allowed for in the design of the serial port TRAM are:

Memory size: An increase in the size of the workspace RAM from 1 Mbyte
to 4 Mbytes, using 4 Mbit rams when available. For the 4 Mbit RAMs extra
addressing bits were included with no real cost. The upgrade involves a
decode PAL and an option resistor (to change an address bit to a decoding
PAL). The decoding needs to be changed because the video RAM will be
pushed further up the address space.

Memory speed: The speed of the interface can also be changed with the
configuration PAL which also contains the speed selection for the IMS T800
as discussed above.

4.2.2 Memory cycles

The serial port TRAM has eight different types of memory access:

Internal read/write: This cycle is the fastest. It is internal to the
IMS T800 and lasts for a single cycle (50 ns on the 20 MHz transputers)

External read/write: This cycle is the basic external memory cycle. It
lasts for four processor cycles (200 ns on the 20 MHz transputer) and consists
of a conventional dynamic RAM multiplexed addressed cycle (see figure 21).

26

Figure 21: External read/write cycle

Refresh: This is a CAS before RAS refresh cycle (see section 8.5), due to
an addressing complication of the video RAMs. The notMemRf strobe is
used to cause the relative timings of RAS and CAS to change.

Video update: This cycle is controlled by the video update logic. It
allows the video RAM serial port to be updated. The video logic proceeds
after gaining control of the data and multiplexed address buses and cycles
the video RAM with a serial port update cycle. This cycle only happens
infrequently, when data in the serial port is about to run out of data.

Logic operation set: The logic operation unit available in some video
RAMs is activated using a CAS before RAS write cycle (see section 9). The
logic mode remains set until a Reset Logic Mode or another Logic Operation
Set Mode is issued.

Logic operation: The Logic Operation cycle is a conventional RAS-CAS
cycle but is six cycles long. This cycle needs a special extended RAS pulse,
which is generated from a combination of the interface strobes notMemS1,
notMemS2 and notMemS4. This cycle is forced to six cycles using not-
MemS4 strobe fed back into the Wait input of the IMS T800. This is done
as a function of the addressing, and is controlled by a PAL,

Serial port control logic: This cycle allows the transputer to access the
serial port control logic. It is initiated when A31 is low. All RAMs are
disabled in this cycle.

Configuration: The configuration sequence is a conventional external read
cycle that is used only after the transputer has just been reset (see sec-
tion 8.9). The configuration data is generated from the configuration PAL
using the six least significant unlatched address bits. The configuration data

27

is then latched into a single bit of the decode address latch to hold the data
until the end of the cycle.

4.2.3 Address latches and multiplexing

Due to the multiplexed address-data bus of the IMS T800 the addresses are
only available at the beginning of the external memory cycle. The addresses
have to be demultiplexed from the data (see section 8.3). This is done using
the transputer strobe notMemS0 driving the latch enable inputs (marked LE
on figure 22) of two ten bit transparent latches. The latches used are high
speed CMOS, as these have low propagation delays and have high output
drive.

Figure 22: Multiplex arrangements with dynamic RAMs

Due to the multiplexed address bus used with dynamic RAMs, the now
demultiplexed transputer addresses have to be multiplexed onto the RAM
address bus (see figure 22). To achieve this the output enables of the address
latches are controlled from a high speed PAL. The outputs from two latches
are connected together.

This control is a function of the transputer memory interface strobes not-
MemS2 and MemGranted (see section 8). MemGranted is used because the
video logic needs to drive the multiplexed address bus during a video update
and therefore the multiplexer outputs have to be turned off completely.

A slight complication concerning the order of the multiplexed addresses
presented to the video RAM, arises due to the way data is stored in the
video ram. The most significant address bits are presented as row addresses,
which can cause the a problem with the refresh address, which is on the low
order address bits (see Memory cycles).

28

4.2.4 Decoding

The top address bits AD31, AD23..18 and the Configuration data are latched
into a separate eight bit transparent latch. These address bits are used for
the decoding.

The RAM is arranged as:

• A single bank of general workspace RAM arranged as eight 256 Kbit
by 4 RAMs (1 Mbit by 4 with the upgrade).

• Five banks of eight 64 Kbit by 4 (256 Kbit) video RAMs.

The high speed PAL that controls the operation of the address multiplexer
also generates four RAS strobes, one for the workspace RAM and three for
the video RAM. Pairs of video RAM banks share RAS strobes The last
VRAM bank and the workspace RAM have their own RAS strobe.

The CAS strobes are supplied from another high speed PAL. This essen-
tially is the RAM decoder, having six separate CAS strobes The decoding
is a function of the latched addresses A20..18, A31 and the Option input
(see Memory upgrades). The CAS strobes are timed from notMemS3 on a
External Read/Write cycle.

Decoding with RAS is not essential if a full decode with CAS is used, as in
this case, but it has several advantages:

Less heat dissipation: It will cause less heat to generated by the memo-
ries. This is so because RAMs consume more current when RAS is cycled,
even when not completely selected by a subsequent CAS strobe. Heat dis-
sipation can be a problem in non forced air enclosures.

Speed: Using several RAS strobes instead of one decreases the capacitive
loading on the respective strobe, so the strobe can meet critical timings.

4.3 Serial access port

This section will describe the implementation of the serial interface on the
serial port TRAM.

4.3.1 Introduction

At the heart of the distributed frame store are two clocks which are syn-
chronous. Both clocks are distributed to all serial port TRAMs in the sys-
tem. One is known as the sequencer clock and the other is known as the

29

VRAM clock (the VRAM clock can run slower than the pixel rate, so that
the 32 bits of data can be multiplexed at a higher clock rate to the dis-
play). The VRAM clock is stoppable, controlled by the display TRAM, and
is switched off just before the start of, and switched on just before the end
of, the horizontal blanking period.

Figure 23: Serial interface block diagram

The serial port is built from several distinct groups of logic all synchronised
to the previously mentioned clocks:

The address generator: This generates the new serial address for the
VRAM during a serial port update. The address generator has tri-state bus
drivers connected to the multiplexed address bus of the VRAM.

Address sequencer: This orchestrates control of the address generator
during the update the serial port. The address sequencer takes over from
the transputers memory interface and then cycles the VRAM in a data
transfer cycle.

Pixel counter: This starts the sequencer when serial data in the VRAM is
about to run out. It is simply a counter that counts the data read out from
the serial port, which resets itself immediately after the update occurs.

Serial bus interface: This is the interface to the distributed data and
control bus. This interface is clocked using the sequences clock.

4.3.2 Address generator

The address generator is used when a video update cycle has been initiated.
It provides 19 address bits, some of which are presented to the VRAM during
a serial port update cycle (see section 9) and some of which are used as

30

decode selectors. These addresses only form the start address for the serial
data, subsequent data is accessed by clocking the VRAM (see figure 24).

Figure 24: Address generation scheme

The lower 8 bits of the address are fixed but are presetable. This forms the
column address to the VRAM during the update cycle. This determines
which data appears at the VRAM serial output after the VRAM has been
updated.

The next 11 address bits are generated from a preloadable counter that
increment just after every update cycle. This address points to the first
VRAM row to be accessed after each new frame is started. The lower 8 bits
from this form the row address in the VRAM during the update cycle. The
top 3 bits of the counter are used to control the serial output enables of
the five banks of VRAM, see figure 24. There is no decoding on the update
cycle, i.e. all VRAMs are updated at the same time.

The counters top 5 bits are preloaded from a 5 bit register which the user
can preset so that the display can start from various addresses of the video
ram. This provides the frame flipping mechanism mentioned in section 4.1.

4.3.3 Address sequencer

This logic interfaces the address generator to the VRAM and determines the
timing of the serial update control strobes. It arbitrates this update cycle
between the address generator and the IMS T800s memory interface logic.

The sequencer is designed to update the serial port without interrupting the
pixel stream. To do this the pixel counter informs the sequencer that the
serial data is about to run out. The entire sequencer operation last for 31

31

sequencer clocks, (new data appears at the VRAM serial outputs after 30
sequencer clock periods).

The sequencer requests the VRAM address bus by asserting MemReq (see
section 8). When MemGranted is asserted by the transputer, the sequences
cycles the VRAM in a serial port update cycle. This cycle updates the serial
port via the random port when the VRAM strobe DT/OE is brought high
synchronised with the VRAM serial clock (see section 9). This is known as
Real Time Read Data Transfer, see figure 36.

4.3.4 Pixel counter

The serial port of the VRAM wraps around after 256 clocks. It therefore
needs reloading every 256 VRAM clock cycles if data is not to be redisplayed.
To implement this: The pixel counter signals to the sequencer when the end
of serial data is about to occur. This end of data signal knows that the
update will occur 30 clock periods later, so it signals the sequencer early.

A slight complication of the sequencer operation concerns the line flyback
period. The sequencer must finish its operation before line flyback occurs,
otherwise data destined for the start of the next line will be lost. The pixel
counter will not cause an update to occur if an end of line is due, so that
the update cannot occur during the line flyback period. The timing of this
is critical, as the data which finds its way to the display is pipelined twice
(at the distributed data bus output driver and at the display TRAM) before
getting to the display. This means the pipeline must be precharged with
data before the display line starts and emptied before the line ends. To this
end, the VRAM clock is turned on two clock periods before the start of the
line and switched off two clocks before the end of the line.

4.3.5 Distributed control

The serial port TRAM is designed to function as part of a distributed graph-
ics system. For this reason the control necessary to drive the distributed data
bus has to be common to all serial port TRAMs in the system. All clocking
and control strobes are distributed using parallel terminated transmission
lines.

The transmission lines are driven at the source (Display TRAM) using high
speed CMOS logic with high output drive capability. This is terminated with
a resistor to ground equal to the characteristic impedance of the transmission
cable (this resistance will be anything between 50 and 100 Ohm). All control
inputs to the serial port TRAM are short stubs to buffers, which offers little
disturbance to the transmission line.

32

5 Display TRAMs

5.1 Introduction

It would be impractical to build a graphics system that is capable of practi-
cally any present day graphical display output. It is seasonable that a display
TRAM should have application specific display output driving hardware.

5.2 An example display TRAM

This particular display TRAM has been designed with some features that
allow it to be used in a variety of applications. This display TRAM has:

A transputer: A IMS T212 is used purely as a logic controller to initialise
the video timing logic, colour look up tables and the mode selection.

Distributed control bus interface: This consists of a few transmission
line drivers, distributing the control signals to all the serial port TRAMs.

Video clocks and timing generator: The pixel clocks and video timing
generation used to synchronise all serial port TRAMs are controlled by the
display TRAM.

Three pixel channels: Each display channel converts 32 bits of input data
from three distributed data bus inputs into the analogue control signals to
drive standard display monitors.

5.2.1 Pixel channels

The display TRAM consists of three independent 8 bit pixel channels, all
with common clock and video timing generators (see figure 25). Each chan-
nel has:

Premultiplexer: An eight bit premultiplexer which links 8 bits of data
from channel 0 onto channel 1 and 8 bits of data from channel 0 onto channel
2. This then maps 24 input bits of channel 0 onto the lowest 8 bits of channels
0, 1 and 2.

Input latch: Distributed data bus 32 bit input latch.

Multiplexer: 32 bit input 4 to 1 multiplexer

CLUT: 256 location colour lookup table.

33

Figure 25: Pixel channels

5.2.2 Display modes

There are three modes that the display TRAM has been designed for:

8 bit mode: This mode treats the 32 bit pixel data entering the display
TRAM as four 8 bit pixel values. This data is multiplexed to the colour
look up table. All three pixel channels operate separately sharing only the
distributed control, (see figure 26).

Figure 26: 8 bit mode

Low resolution 24 bit mode: This mode treats the 32 bit pixel data
entering the display TRAM as a single 32 bit word of pixel data. The
top 8 bits are not used, leaving the lower 24 bits as pixel data. The three
pixel channels contribute to the display, one channel per primary colour (see
figure 27).

The 24 bit mode has a different clocking arrangement. Since data is being
displayed at the same clock speed (pixel clock) but four times as much data
is being used by the display, the input clock speed must be increased, i.e.

34

Figure 27: 24 bit mode

pixel clock runs at the same speed as the pixel bus. The mode selection can
change the clocking arrangements to suit these modes.

High resolution 24 bit mode: This mode is similar to the 8 bit mode,
except all three channels are used to provide each of the primary colours
(see figure 28).

Figure 28: High resolution 24 bit mode

6 System configurations

6.1 Driving the frame store

The serial port TRAM can be used in a varied and non specific manner, but
the techniques fall into several distinct classes.

35

Data generator: The serial port TRAM receives high level graphical com-
mands from another TRAM and satisfies these commands by generating
the drawing data into the frame store. The serial port TRAM becomes a
programmable graphical drawing engine.

Data sink: No graphical tasks are executed on the serial port TRAM. The
serial port TRAM acts purely as a data sink; receiving data from the serial
links and places this data directly into the frame store. The frame store
data is generated elsewhere on other TRAMs with transputers or specific
hardware.

Data generator and sink: A mixture of both the above methods. The
performance of the above techniques can be improved by adding more Serial
Port TRAMs and distributing the drawing tasks appropriately, thus improv-
ing the effective drawing speed or the total serial link bandwidth into the
frame store (see figure 29).

Figure 29: Conceptualisation of the distributed frame Store

6.2 Frame store configurations

Using a combination of serial port TRAMs and the Display TRAM many
system configurations can be constructed.

Minimal 8 bit display system: The minimal system consists of a single
serial port TRAM and is connected as shown in figure 13. This minimal
system provides all that is necessary for a 8 bit pixel (256 colour) graphic
display, to a maximum of 1280 by 1024 pixels.

Distributed 8 bit display system: Figure 13 shows a distributed 8 bit
graphic display system. This distribution provides increased drawing speed
and transputer link bandwidth into the frame store.

36

For example in [7], a multi-user flight simulator is described in detail. The
system produces an 8 bit 512 by 512 pixel display at 23 frames/sec. The sys-
tem is based upon a transformation pipeline, and at the end of the pipeline
are the polygon shaders. These are transputers that produce display data
and send it to the graphics transputer using the data sink method described
in section 6.1. An upgrade to higher resolution would consist of placing these
polygon shaders onto four serial port TRAMs, turning the display system
into a data generator (see figure 30). The display resolution can now be
increased with no impact on performance.

Figure 30: Modified high resolution flight simulator

Minimal low resolution 24 bit display system: The system in figure 13
can also be used as a low, resolution (maximum of 327680 pixels) 32 bit pixel
system. The Display TRAMs premultiplexer is used in this configuration
and provides a maximum of 24 bits of output colour (8 bits per primary).
Each pixel channel is used as a single primary colour output.

Distributed low resolution 24 bit display system: The system in
figure 13 can also provide a low resolution 32 bit display. The display TRAM
is set into 24 bit mode as above, but the system provides increased possible
drawing and link bandwidth into the frame store as in the distributed 8 bit
system, but with more colours.

High resolution 24 bit display system: This system (figure 31) is es-
sentially 3 separate 8 bit systems. This method separates the red green and
blue components into three 8 bit high resolution display channels as in the
8 bit system. It has all the characteristics of the 8 bit system but each of the
3 pixel channels on the Display TRAM operate independently to provide a
primary colour as in the low resolution 24 bit system.

High resolution distributed 24 bit display system: This system (fig-
ure 31) is essentially the same as the previous system except that each 8 bit

37

pixel channel is distributed in the same way as the 8 bit system. Again this
method separates the red green and blue components into three 8 bit high
resolution display channels, but the possible drawing and link bandwidth
into the frame store has been increased.

Figure 31: High resolution 24 bit display

7 Conclusion

This technical note has shown that the performance of the frame store can be
increased without using special hardware by using video RAMs. The video
RAM provides a flexible and efficient frame store by mapping the display
data directly onto the transputers address map without degradation of bus
usage.

This note has looked at the problems associated with frame stores, and has
highlighted the problems of single processor bus bottlenecks. It has shown
how these bottlenecks can be removed by distributing the frame store, and
that this distribution is simplified using transputers.

It has been shown that the large amount of processing necessary to perform
typical graphical operations rapidly swamps single processor systems. In
high performance systems it becomes necessary to distribute the processing
task into smaller more manageable tasks. The complexity and control of this
distribution is considerably reduced using transputers and occam, and the
distribution of the frame store compliments such a system by providing a
convenient interface to the display. Once the distribution has been achieved,
adding more transputers into the system, at the display or at the processing
front end, can produce any desired system performance.

38

8 Transputer memory interface

The IMS T800 has a configurable memory interface designed to allow easy
interfacing of a variety of memory types with a minimum of extra com-
ponents. The interface can directly support DRAMs, SRAMs, ROMs and
memory mapped peripherals.

Figure 32: IMS T800 memory interface

The IMS T800 has a 32 bit multiplexed data and address bus with a linear
address space of 4 Gbytes. The interface has:

• 4 byte write strobes, for controlling byte write operations.

• A read strobe.

• A refresh strobe, for signalling refresh cycles when using dynamic
RAMs.

• 5 configurable strobes, for general interfacing of memories.

• A wait input, for extending the interface period.

• A memory configuration input, used to configure the interface at after
reset.

• A bus request input and bus grant output, to relinquish control of the
memory interface.

39

Figure 32 shows the inputs and outputs for the T800 transputer that are
associated with the memory interface.

All RAM appears to the IMS T800 as 232 bytes mapped as 32 bit words in
a linear signed address space. Addresses, therefore, run from 8000000016
through FFFFFFFF16 to 7FFFFFFF16. As shown in figure 33 the IMS T800
has 4 Kbytes of internal single cycle (50 ns on 20 MHz part) RAM from
byte address 8000000016 to 80000FFF16. Of this RAM the first 7016 bytes
are reserved for processor use. The IMS T800 has MemStart at 8000007016
and start of external memory at 8000100016.

Figure 33: T800 memory map

It is advisable for the address range 8000000016 to FFFFFFFF16 to be used
for RAM and 0000000016 to 7FFFFFFF16 to be used for ROM and I/O. If
external memory exists it will overlap internal memory, but if the memory
map is not completely decoded, it is usually possible to access the hidden
external memory at another address.

8.1 Memory interface timing

The IMS T800 memory interface cycle has six timing states, referred to as
Tstates. The Tstates have the nominal functions:

Tstate
T1 address setup time before address valid strobe
T2 address hold time after address valid strobe
T3 read cycle tristate/write cycle data setup
T4 extended for wait states
T5 read or write data
T6 end tristate/data hold

The duration of each Tstate is configurable to suit the memory devices used
and can be from one to four Tm periods. One Tm period is half the processor

40

cycle time, i.e. half the period of ProcClockOut. Thus, Tm is 25 nsec for
an IMS T800-20 (20MHz transputer). T4 may be extended by wait states
in the form of additional Tms.

With this flexible arrangement, a variety of memory timing controls can be
obtained with little external hardware. The bus timing is shown in figure 34.

Every memory interface cycle must consist of a number of complete cycles of
ProcClockOut: i.e. it must consist of an even number of Tms. If there are
an odd number of Tm periods up to and including T6, an extra Tm shown
as ”E” by the memory interface program (see section 8.9) will be inserted
after T6.

8.2 Configurable strobes

The use of the strobes notMemS0 to notMemS4 will depend upon the mem-
ory system. The rising edge of notMemS1 and the falling edges of notMemS2
to notMemS4 can be configured to occur from 1 to 31 Tm periods after the
start of T2. This is summarised in figure 34 and in the table below.

Figure 34: The configurable strobes

Signal Starts Ends
notMemS0 T2 T6
notMemS1 T2 T2+(Tm*s1) ... or end of T6 if this occurs first
notMemS2 T2+(Tm*s2) T6
notMemS3 T2+(Tm*s3) T6
notMemS4 T2+(Tm*s4) T6

41

Where s1, s2, s3 and s4 are the configured number of Tm periods for each
respective strobe.

It should be noted that the use of wait states can advance the rising edge
of notMemS1 in relation to that of the other strobes. Care must be taken if
this signal is being used when Wait states are being used.

8.3 Multiplexed address-data bus

The address and data buses are multiplexed onto the MemAd bus. Addresses
are available from the beginning of the cycle until the end of T2. Whereupon
the MemAd bus will go either tri-state (a passive state) or have data present
depending whether a read or write cycle is in progress (if the cycle is a single
or multiple byte-write cycle, bytes which are not to be written will go tri-
state)

The address bus can be demultiplexed using transparent latches (latches that
act as buffers until the latch control is used, whereupon the data becomes
held), controlled by notMemS0 directly (not a configurable strobe). The
transparent latch will buffer the MemAd bus whilst notMemS0 is not ac-
tive. When notMemS0 goes active at start of T2, the addresses are held. Us-
ing transparent latches makes the demultiplexing simple (using notMemS0
directly) and gives as much address set up time as possible.

8.4 Byte selection

During a write cycle, byte addressing is achieved by the four write byte
strobes notMemWrB[0..3]. Only the write strobes corresponding to the bytes
to be written are active. During a read cycle complete words are read, and
the bytes to be used are selected internally. Thus, the two lowest order
address bits A0 and A1 are not needed and are not output with the rest
of the addresses. However, care must be taken when mapping byte wide
peripherals onto the interface, as they are addressed on word boundaries.

The two lowest order data bits during the address period, are used to give
early indication of the type of cycle which is in progress:

• MemnotWrD0 is low during T1 and T2 of a write cycle.

• MemnotRfD1 is low during T1 and T2 of a refresh cycle.

The notMemWrB strobes can be configured to fall either at the beginning
of T3 (early write) or at the beginning of T4 (late write); the rising edge is

42

always at the beginning of T6. Early write gives a longer set up time for the
write strobe but data is only valid on the rising edge of the pulse. For late
write, data is valid on the falling edge of the strobe but the pulse is shorter.

8.5 Refresh

The IMS T800 has an on-chip refresh controller and 10 bit refresh address
counter and can, therefore, refresh DRAMs of up to 4 Mbit capacity (since
these are arranged as 1024 rows of 4096 bit columns) without requiring the
counter to be extended externally.

Refresh can be configured to be either enabled or disabled. If enabled, the
refresh interval can be configured to be 18, 36, 54 or 72 Clockln periods;
though if a refresh cycle is due, the current memory cycle is always com-
pleted first. The time between refresh cycles is thus almost independent of
transputer speed and the length of memory cycles.

Refresh cycles are flagged by notMemRf going low before T1 and remaining
low until the end of T6. Refresh is also indicated by MemnotRfD1 going
low during T1 and T2 with the same timing as address signals. The address
output during refresh is:

AD0 = MemnotWrD0 high, indicates a read
AD1 = MemnotRfD1 low, to indicate refresh
AD2 - AD11 refresh address
AD12 - AD30 high
AD31 low

During refresh cycles, the strobes notMemS0 - notMemS4 are generated as
normal.

Several choices for the designer exist for refresh schemes with the IMS T800.
These are

RAS only Refresh: This requires an address supplied by the interface to
refresh the selected row. The row address is incremented after every
refresh cycle. Note that no CAS is necessary during refresh and all
RAMs are RAS selected.

CAS Before RAS Refresh: This causes an internal counter in the RAM
to be used as the refresh address. It requires that the CAS strobe
goes active before the RAS strobe. This can be arranged because
the notMemRf strobe is active at the beginning of memory cycle and
appears at the same time as addresses and can therefore be used to
switch the timing of the RAS and CAS strobes.

43

Where:

CAS: Refers to the Column Address Strobe input on the dynamic RAMs.
RAS: Refers to the Row Address Strobe input on the dynamic RAMs.

As all RAMs need to be refreshed simultaneously, all RAMs are RAS se-
lected. As RAMs will consume current when RAS goes active, this is usually
the most power hungry cycle of a dynamic RAM interface.

Care has to be taken to ensure that the power supply is not left with a
problem of supplying high current surges at refresh, and thereby causing a
power supply noise. This can be a particular problem if many transputers
with lots of dynamic RAM are used with a common power supply. The
refresh may well be nearly synchronous due to the common reset signal.
This problem will be made worse if the transputers have a common input
clock. The clocking may be near synchronous (albeit on different phases due
to the phase locked clock multiplier on each transputer).

It is suggested that large capacitors are used as near to the dynamic RAM
as possible, as this will reduce the supply noise to acceptable levels.

8.6 Wait states

Memory cycles can be extended by wait states. MemWait is sampled close
to the falling edge of ProcClock Out prior to, but not at, the end of T4. If
it is high, T4 is extended by additional Tms (shown as ’W’ by the memory
interface program). Wait states are inserted for as long as MemWait is held
high, T5 proceeds when MemWait is low. Note that the internal logic of the
memory interface ensures that, if wait states are inserted, T5 always begins
on a rising edge of ProcClockOut: so the number of wait states inserted will
be either always odd or always even, depending on the memory configuration
being used.

8.7 MemReq, MemGranted and direct memory access

Direct memory access (DMA) with the IMS T800 has been implemented in
the following way.

MemReq can be asserted asynchronously (at any time) with respect to Proc-
ClockOut, but to guarantee DMA, MemReq must be set up two periods Tm
before end of T6. MemReq will be sampled at at the final Tm period of
T6 of a refresh or external memory cycle when ProcClockOut is low. If the
IMS T800 is accessing internal RAM or is idle, MemReq is sampled during
the low period of every ProcClockOut and internal memory accesses will not
be affected by this DMA activity.

44

When MemReq has been sampled high, two Tm periods after ProcClock-
Outs next rising edge, the address bus is tristated and all strobes go inactive.
One Tm period later MemGranted is set high to indicate a DMA cycle is in
progress. After this MemReq is sampled at each low period of ProcClock-
Out and if found to be low MemGranted will be removed synchronously at
the next falling edge of ProcClockOut.

A few points to note about DMA:

• If the DMA period lasts for more than one refresh interval the DMA
hardware is responsible for refresh.

• Refresh has higher priority than DMA. So the worst case asynchronous
DMA response time is two external memory interface cycle periods
(one external cycle plus one refresh cycle) plus 3 Tm periods.

8.8 Termination

This is always worth a mention, as it is frequently overlooked. All buffered
memory strobes and multiplexed addresses should be series terminated with
25 to 50 Ohm. This prevents negative voltage spikes on address and con-
trol pins. It cannot be overstressed that negative spikes can cause random
memory failures, especially on the higher density RAMs.

The unbuffered data bus need not be terminated as the transputers output
drive pads have been designed to prevent the fast edges associated with
negative excursions.

8.9 Configuration of the memory interface

A memory interface configuration is specified by a 36 bit word and is fixed
at reset time. The IMS T800 has a selection of 13 pre-programmed configu-
rations. If none of these is suitable, a different configuration can be selected
by supplying the complement of the configuration word to the IMS T800s
MemConfig input immediately following reset.

A pre-programmed configuration is selected by connecting MemConfig to
MemnotWrD0, MemnotRfD1, MemAD2-MemAD11 or MemAD31. Imme-
diately after reset, the IMS T800 takes all of the data lines high and then,
beginning with MemnotWrD0, they are taken low, at intervals of two Clockin
periods, in sequence. This is the internal configuration scan.

If MemConfig is high at the start of this scan, an internal configuration is to
be selected. The selection is accomplished by MemConfig going low when

45

the IMS T800 pulls a particular data line low, the configuration associated
with that data line is then used.

If, at the beginning of the scan, MemConfig is sensed low before Mem-
notWrD0 goes low, an external configuration is selected. To aid this when
an external configuration is used the configuration data is expected to be
inverted so that a single inverter between a MemAd pin and the MemConfig
signals an external configuration from ROM.

After the scan, the IMS T800 performs 36 configuration read cycles from lo-
cations 7FFFFF6C16 to 7FFFFFF816. If an internal configuration was selected
these reads are ignored. If an external configuration has been selected, each
of the configuration read cycles will latch one bit of the configuration data
into the MemConfig input from an external source.

Using an internal configuration has the advantage of requiring no external
components, only a connection from MemConfig to the appropriate data
line.

However, selecting an external configuration can also be very economical in
component use if the configuration data is stored in a PAL and this PAL is
used for other purposes concerning the low order address bits.

If the transputer is booting from ROM, the ROM must occupy the top of the
address space. One bit of the memory configuration data can be stored in
each of the 36 addresses mentioned above and the only additional hardware
required is an inverter connecting the appropriate data line (usually Mem-
notWrD0) to MemConfig. MemConfig is thus held low until MemnotWrD0
goes low and is fed with the inverse of the configuration data during the 36
read cycles. Alternatively, the inverted configuration data can be generated
from A2-A7 by a PAL.

8.10 The memory interface program

The INMOS Transputer Development System includes an interactive pro-
gram which assists in the task of memory interface design. The program
produces timing diagrams and timing information so that the designer can
see the effects of varying the length of each Tstate and the positions of the
programmable strobe edges. Of course, the program cannot allow for ex-
ternal logic delays and loading effects as these are system dependent but it
does assist greatly in preliminary design. (It has sometimes been considered
an essential tool in designing the interface configuration data).

A foolproof method to produce the PAL equations for the configuration data
is to modify the configuration data page generated by the memory interface
configuration program.

46

9 Video RAMs

9.1 What is a video RAM

Recent developments in RAM design architecture have made available a cost
effective dual ported Video RAM. The video RAM has a secondary set of
output selector register sets (see figure 35) controlled by an external serial
clock.

Figure 35: Video RAM architecture

This extra selector is able to operate totally asynchronously to the normal
selector register set. These two register sets are referred to as the access
ports to the RAM bulk, the random access port and the serial access port.
The serial access port accesses data in a sequential manner, which needs
to be updated when data runs out using the special update cycle from the
random port.

The random access port is similar to conventional dynamic RAMs except for
the extra function of sequencing the OE (Output Enable) pin. This extra
function is called a Data Transfer, hence the pin is renamed DT/OE.

Sequencing the DT/OE pin on a random access causes data transfer from
the RAM to the serial port. Once the serial port is updated it can proceed
to output data without recourse to the random port, until it needs new data
(see figure 36).

The update cycle is the only time that the serial port and the random port
interfere with each others operation, but because so much data is read into
the internal register sets, this interference happens only occasionally, i.e.
every 256 serial port access cycles. This means that a frame store directly

47

Figure 36: Video updating

mapped into a processors address map will use very little of the processors
access to memory to refresh the display.

9.2 Video RAM logic operations

Some video RAMs have an internal logic operation unit (see figure 37). This
unit can be set into particular modes by using a special CAS before RAS
write cycle. The modes are selected by writing data to various locations
using this special cycle. The data written is used as a write mask when
writing subsequently to the RAM.

Figure 37: Logic operation unit

48

This mechanism allows a whole series of logic operations, such as Xor, Or,
etc, to be carried out transparently during a write cycle. The RAM takes ad-
vantage of the fact that write accesses to dynamic RAMs are essentially read-
modify-write cycles internal to the RAM. These modes are programmable
and include a write-per-bit data mask.

References

[1] IMS T800 Architecture, Technical Note 6
INMOS Limited

[2] Notes on Graphics Support and Performance Improvements on the
IMS T800, Technical Note 26
INMOS Limited

[3] Lies, Damned Lies and Benchmarks, Technical Note 27
INMOS Limited

[4] Occam 2 Reference Manual
INMOS Limited, Prentice Hall, ISBN 0-13-629312-3

[5] Dual Inline Transputer Modules (TRAMs), Technical Note 29
INMOS Limited

[6] High Performance Graphics with the IMS T800], Technical Note 37
INMOS Limited

[7] A Transputer Based Multi-User Flight Simulator, Technical Note 36
INMOS Limited

49

	1 Introduction
	2 A brief history
	2.1 Introduction
	2.2 Displays
	2.3 The frame store
	2.4 Colour
	2.5 System performance
	2.6 Graphics display system

	3 Overview of a parallel graphics system
	3.1 Introduction
	3.2 Transputers and occam
	3.2.1 The IMS T800 transputer
	3.2.2 Serial links
	3.2.3 On-chip floating point unit
	3.2.4 2-D Block move instructions
	3.2.5 The occam programming language

	3.3 Transputer modules (TRAMs)
	3.4 Introduction to graphics TRAMs
	3.5 Introduction to the serial port TRAM
	3.6 Introduction to the display backend TRAM

	4 Serial port TRAM
	4.1 Introduction
	4.1.1 Memory map
	4.1.2 Frame store addressing and the video RAM
	4.1.3 Pixel mappings
	4.1.4 Double buffered frame store addressing
	4.1.5 Frame store distribution

	4.2 Random access port
	4.2.1 Memory upgrades
	4.2.2 Memory cycles
	4.2.3 Address latches and multiplexing
	4.2.4 Decoding

	4.3 Serial access port
	4.3.1 Introduction
	4.3.2 Address generator
	4.3.3 Address sequencer
	4.3.4 Pixel counter
	4.3.5 Distributed control

	5 Display TRAMs
	5.1 Introduction
	5.2 An example display TRAM
	5.2.1 Pixel channels
	5.2.2 Display modes

	6 System configurations
	6.1 Driving the frame store
	6.2 Frame store configurations

	7 Conclusion
	8 Transputer memory interface
	8.1 Memory interface timing
	8.2 Configurable strobes
	8.3 Multiplexed address-data bus
	8.4 Byte selection
	8.5 Refresh
	8.6 Wait states
	8.7 MemReq, MemGranted and direct memory access
	8.8 Termination
	8.9 Configuration of the memory interface
	8.10 The memory interface program

	9 Video RAMs
	9.1 What is a video RAM
	9.2 Video RAM logic operations

	References

