
Occam input and output
procedures for the TDS

INMOS Technical Note 28

Michael Poole

May 1988
72-TCH-028

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4
1.1 Input and output . 4
1.2 Packaging of the procedures 5
1.3 Structure of this note . 5

2 Conventions for the use of channels 6
2.1 Key stream conventions . 7
2.2 Screen stream conventions . 7
2.3 User filer channel conventions 8
2.4 The other channels between the TDS and an EXE 8

3 User procedures - to be called in sequence 9
3.1 An introductory example . 9
3.2 Number conversion procedures 10
3.3 Simple input procedures . 10
3.4 Simple output procedures . 11
3.5 User filer procedures . 11
3.6 Other procedures . 12

4 Interface procedures - to be called in parallel 12
4.1 Protocol converters . 13
4.2 Multiplexors, etc. 13
4.3 An example calling interface procedures in parallel 13

5 Table of procedures in the D700D libraries 14
5.1 User procedures . 15

Library ioconv - number/string conversions 15
Library extrio - more number/string conversions 16
Library strings - string handling procedures and functions . 17
Library userio - user input and output procedures 18
Library slice - block transfer procedures 21
Library ufiler - user filer procedures 22
Library msdos - DOS file via TDS server procedures 23
Library derivio - derived number inputs 24
Library afiler - alien filer procedures 25

5.2 Interface procedures . 26
Library interf - interface procedures 26
Library afinterf - alien filer interface procedures 27
Library t4board, t2board - transputer board procedures . . 28

References 29

3

1 Introduction

Programming languages designed with a concise defining document as one
of the principal design goals usually leave the design and implementation of
a collection of procedures for input and output of text and numbers to the
user. Occam is such a language. However it is sensible for an implementer
to help the users by providing a basis on which they can build.

Accordingly, procedures for input and output have now been included in
the software shipped as part of the transputer development system (TDS).
The purpose of this note is to introduce these procedures and to explain
some of the guiding principles which have gone into their design and imple-
mentation. The fact that users will have requirements not exactly met by
these procedures is acknowledged and the occam source of the procedures is
provided as a basis for enhancement where this is seen to be necessary.

Occam is defined in a reference manual [1]. The TDS is introduced in
another technical note in this series [2]. Reference is also made below to
INMOS product documentation for readers who have access to the product.
Some details in this note apply particularly to the version of the TDS sold
as IMS D700D, but as far as possible similar facilities are available in other
versions of the TDS.

Many of the procedures would be suitable for use with any implementa-
tion of occam. However this note is particularly concerned with procedures
designed to be used in programs developed and tested within the TDS it-
self. Such programs, when written using these procedures, may easily be
converted to run on arbitrary transputer hardware configurations.

1.1 Input and output

In occam the terms input and output strictly apply to the low level commu-
nications between processes executing in parallel. These communications
use occam channels, which may or may not correspond to physical hard-
ware links, and are made up of bit streams organised as sequences of bytes
corresponding to values represented in the occam type system.

In general usage the terms input and output apply more loosely to the
transmission of values (text and/or binary numbers) between a program
and its physical peripherals such as keyboards, screens, printers, or disks
and other mass storage systems, usually abstracted by an operating system
as a filing system.

Occam permits the abstraction of peripheral devices, possibly with their
low level driving software, as processes connected to their environment by

4

channels. This view enables the two levels of input/output to be merged.

Input procedures receive their input data along a channel, whose identity is
passed to the procedure as a parameter. The values received are passed to
the caller by means of element parameters (parameters whose specification
permits their values to be changed).

Output procedures send their output data along a channel, whose identity
is passed to the procedure as a parameter. The data are passed to the
procedure for output as value parameters.

1.2 Packaging of the procedures

Pre-written procedures can be provided in various ways:

1. Predefined by the compiler and converted directly to in-line code

2. Predefined by the compiler and compiled into calls to the system li-
brary

3. Provided in a user library

4. Provided as separately compilable unit(s)

5. Provided as source code possibly including free variable references.

The input and output procedures supplied with the TDS are packaged in a
group of user libraries, some of which use other libraries and also the pre-
defined procedures provided by the compiler. The allocation of procedures
to libraries is indicated in section 5.

Because of limitations with the library mechanism the names of all proce-
dures used in a program from user and system libraries must be unique.

Alt the procedures in the input/output library are provided both precom-
piled and as source. If the user’s requirements can be met by calling the
recompiled procedures, then that is the preferred way to use them. However
it is accepted that some users will have particular requirements which may
best be met by adapting the procedures to meet these requirements.

1.3 Structure of this note

This note is structured as five main sections.

Section 1 is this introduction.

5

Section 2 discusses conventions for the use of channels in occam programs,
with particular reference to the channels defined by the TDS itself.

Section 3 discusses the procedures provided with the TDS for calling in se-
quence in arbitrary occam programs. These procedures include some which
are applicable in any occam program, some which assume sequential text-
oriented devices, and some which are only meaningful in the presence of a
folded file store as provided by the TDS. These procedures are collectively
called the user procedures. An example using these procedures is included.

Section 4 discusses the procedures provided with the TDS for calling in
parallel with applications using the user procedures. These enable programs
to be easily adapted to support different implementations of sequential text
files, including those found in conventional host text files and in the TDS
folded file store. These procedures are called the interface procedures. An
example of the use of these procedures is given.

Section 5, subdivided for the user procedures and the interface procedures,
lists all the procedures and gives a brief statement of the function of each.
The structure of these lists is related to the packaging of the procedures in
library files.

2 Conventions for the use of channels

It is desirable to be able to use the same input procedures for receiving
sequences of characters from channels whose other end may be any kind
of character source (keyboard, file, process) and to use the same output
procedures for sending characters out along channels whose other end may
be any kind of character sink (screen, printer, file, process). To achieve this
it is necessary to adopt a set of rules and conventions which determine the
representation of information sent along the channels.

The simplest communication paths are those where only the sender has
control and the receiver must be prepared to receive everything sent, up to
and including an agreed terminator. Input from a keyboard and output to
a screen or printer can usually be handled satisfactorily in this way, and
require a single occam channel from the sender to the receiver.

There are, however, situations where the receiving process needs to be able
to control what the sender is sending. The simplest example is when the
receiver wishes to tell the sender to stop sending; more complex cases arise
when the receiver can influence which alternative the sender selects out of an
available set of alternatives. These situations require a pair of occam chan-
nels, one in each direction. The sender sends data and control information
and receives commands and possibly error indications. The receiver receives

6

data and control information and sends commands and error indications. If
a pair of processes is connected by a pair of channels then the identity of the
sender and receiver could change from one to the other during the execution
of the program.

The channel usage conventions adopted in the input and output procedures
provided with the TDS are determined by the TDS itself. They are the
conventions used by the keyboard, screen and user.filer channels which
are passed by the TDS to an executable program (EXE) running in the TDS.
EXEs are discussed further in [2].

They are, however, not restricted to use on these particular channels, and
interface procedures are provided to perform such tasks as receiving input
from a file as if from a keyboard, sending output to a file as if to a screen,
merging screen streams, duplicating screen streams, etc.

2.1 Key stream conventions

A stream of characters deriving from a keyboard must be capable of being
received by a receiver who never has any knowledge of what is coming. As
arbitrary byte values may be possible the protocol is defined to be INT with
non-negative values being valid data values, and negative values indicating
control and error conditions. A particular negative value ft.terminated is
used as a general terminator on a key stream. The range of possible positive
values is determined by the hardware or software generating them, but will
normally include at least the full ASCII character set.

A key stream channel may be used for any simple one way communication
of a sequence of positive integers.

Some procedures take note of the control characters ’*c’ and ’*n’ (ASCII
CR and LF), the normal rule being that the former is the line terminator,
and the latter is ignored. The input procedures themselves have no knowl-
edge of the more advanced features of the TDS keyboard interface, such as
the encoding of function keys (or key sequences) as integers >= 200.

2.2 Screen stream conventions

The TDS screen interface is based on the requirements of programs such
as editors and the problems deriving from the incompatible control features
provided by different terminal types. The screen channel protocol is a tagged
protocol, but for historical reasons cannot be described as such in the occam
language (its invention was before the language was fully defined). Each
communication consists of a one byte tag followed, according to the tag, by

7

zero, one or more specific communications of bytes, integers or byte arrays.

For the purpose of the output procedures the significant feature of this proto-
col is its ability to package strings or lines of text into single communications.
In some situations this will give a performance advantage over sending each
character individually.

A special tag tt.endstream is defined to act as a stream terminator.

A screen stream channel may be used for any one-way communication of
text, with the option to include screen control commands, if the ultimate
destination has the ability to process them.

As the TDS screen requires lines of text to be separated by "*c*n" it is the
convention that both of these control characters must be sent at the end of
each line.

2.3 User filer channel conventions

The uses filer is a process in the TDS which provides an EXE with a means
of communicating with a part of the folded file structure identified by the
current cursor position at the time the EXE is called. Access to the user filer
requires a pair of channels with a versatile tagged protocol permitting fully
flexible access to hierarchically structured data in the TDS folded file store.

This protocol is discussed in full in the ’System interfaces’ chapter in [3].

2.4 The other channels between the TDS and an EXE

An EXE has access to a set of implicit parameters provided to it by the TDS
when it is called. These include a variety of channels between the TDS and
the code of the EXE. These parameters are recognised by the compiler by
their names. For further details see [2] and [3].

Channels to the terminal and user filer have been mentioned. The other
channels between an EXE and the TDS are provided for special purposes.
One pair of these channels needs to be mentioned here. This is the channel
pair to and from the TDS server which may be used to perform accesses
direct to the host filing system. Some procedures are provided which use
these channels and further details are given in [3].

8

3 User procedures - to be called in sequence

3.1 An introductory example

An example, simplified from [3], shows some of the simple input and output
procedures being used to read and write numbers and text. These procedures
are called in sequence with the rest of the computation in the same way as
the input and output procedures of other programming languages.

#USE uservals
#USE userio
SEQ
newline (screen)
write.text.line (screen,
"Type a sequence of real numbers terminated by 0.0")

newline (screen)

REAL32 x:
INT kchar:
[1000]REAL32 ax:
INT j:
SEQ
x := 1.0(REAL32)
j := 0
WHILE x <> 0.0(REAL32)
SEQ
write.char (screen, ’>’)
read.echo.char (keyboard, screen, kchar)
read.echo.real32 (keyboard, screen, x, kchar)
IF
kchar = ft.number.error
write.char (screen, ’!’)

TRUE
SKIP

ax[j] := x
j := j + 1

newline (screen)
write.text.line (screen, "These are the numbers you typed")
newline (screen)
SEQ i = 0 FOR j
SEQ
write.real32 (screen, ax[i], 10, 10)
newline (screen)

write.full.string (screen, "Type ANY to return to TDS")
INT any:
read.char (keyboard, any)

9

The general style of the simple input and output procedures may be ob-
served in the example. The first parameter of the procedure identifies the
channel for communication. Subsequent parameters define the value to be
communicated or the variable to receive the communication.

3.2 Number conversion procedures

A set of number conversion procedures as defined in [1] is provided. These
procedures perform conversions between arrays of bytes (containing ASCII
characters) and integer and real numbers in all the occam types. Integer
numbers may be represented either in decimal or in hexadecimal notation.
Real numbers may be either in fixed point representation or in floating point
with a signed decimal exponent.

For completeness, procedures for boolean type are also provided.

The input conversion procedures each have three parameters: a boolean
error flag (set if a legal conversion cannot be performed) the result and the
string to be converted.

The output conversion procedures each have three or more parameters: an
integer returned as the number of characters generated an array into which
the characters are stored, the value to be converted and, when necessary,
integers to define the format.

These procedures may be considered to be defined as part of the occam
language, as they are totally independent of any channels provided by a
particular run-time environment.

3.3 Simple input procedures

Two alternative groups of input procedures are provided. The first group
reads strings from an input channel with BYTE protocol, using either a
space or ’ *c’ as terminator. The second group uses a TDS key stream input
channel and is suitable for reading arbitrary text with embedded numbers.
This group includes variants of the procedures for use when input is from
an interactive keyboard to which the input characters must be echoed and
at which simple line editing (character delete) operations can be supported.

The style of coding for which the TDS input procedures has been designed is
sequential reading of single characters, switching to an appropriate number
input procedure when a digit or other significant character is encountered.
All number input procedures have an integer parameter which is the value
of this ’read ahead’ character on input, and is the value of the character
which terminated the number on exit.

10

3.4 Simple output procedures

The simple output procedures generate a TDS screen stream on their output
channel. This channel can be connected either directly to the screen channel
of an EXE or to the input of any process designed to accept such a stream.
These processes may provide a route to a screen, a printer, a file or any
other process which expects a sequence of textual input.

Two modes of working are supported: the first enables individual values to
be converted into a sequence of characters which is immediately sent to the
channel; the second allows lines of text to be accumulated in a buffer array
before being sent to the output in a single operation.

A program using these procedures may be trivially converted to a different
run-time environment, either by use of interface procedures as discussed
below, or by recoding the procedure bodies to use the conventions of the
new run-time environment.

Procedures for terminal-type dependent operations such as cursor control
are also provided but are meaningful only when the receiving software can
generate the character sequences appropriate for the type of terminal in use.

3.5 User filer procedures

This and the following sub-section assume knowledge of the TDS, and in
particular its concept of a folded file store.

In order to give EXEs running in the TDS flexible access to the folded file
structure the TDS includes a process called the user filer, which may be
connected to an EXE by one or more pairs of channels obeying a bidirectional
protocol. This protocol is defined in terms of command tags and their
parameters, and corresponding reply tags and their parameters. Meaningful
sequences of these communications are also specified in the TDS reference
manual [3].

Procedures are provided which embody most of the frequently used commu-
nications across the user filer interface.

In particular, sets of procedures are provided which support sequential access
to folded data streams, both for input and for output. These treat such
streams as sequences of items, each item corresponding to a line on the screen
in the editor’s representation of the stream. There are therefore procedures
corresponding to the input and output of top and bottom creases (filed and
ordinary), record items and number items.

There are two groups of folded input procedures. The first group is designed

11

for an exhaustive sequential pass through a folded input stream and returns
the data of the current item and the tag defining the type of the following
item. The second group splits these two components and so gives the user
the option to decide to skip folds, or to repeat or prematurely exit from a
fold.

3.6 Other procedures

The other procedures provided include:

1. string handling procedures and functions

2. procedures supporting the channels in an EXE which provide direct
access to host files,

3. procedures supporting the alien filer interface protocol for programs
running under the host file server,

4. procedures supporting access to peripherals of transputer evaluation
boards.

4 Interface procedures - to be called in parallel

It is often desirable, when writing programs to read or write sequential text
streams, to design the program to be independent of whether the input
sources and output destinations are peripheral devices, files or processes.
For this purpose a set of interface procedures is provided.

Calls, or instances, of one or more of these procedures are then suitable
as processes to be run in parallel with an application process to obtain
the effect required. The same application code (written as a separately
compilable procedure) may be called in parallel with different combinations
of interface procedures to take inputs from or direct outputs to a variety of
sources and sinks.

The interface procedures are designed for use in programs which process
streams of text to exhaustion. Input from a file or output to a file may
require a pair of channels, but otherwise connections require a single channel
each.

When building these procedures into a program it is important to ensure
that every interface procedure will terminate. Interface procedures with a
single input channel are terminated by sending a terminator on that channel.
Multiplexors have a special stopper channel.

12

4.1 Protocol converters

Interface procedures are provided for reading key streams from host files
and from TDS folded files in data mode (ignoring non-text folds and all the
creases), and for writing screen streams to files of both these types.

Procedures are also provided for simple copying (buffering) of screen streams,
for converting screen streams to simple byte streams for commonly used
screen types, for converting from key stream to screen stream protocol, and
for saving a screen stream in an array and subsequently regenerating it.

4.2 Multiplexors, etc.

Some of the interface procedures do not change the protocol but merely
serve to join together various components of a program. Such procedures
have different numbers of input and of output channels.

The screen multiplexor takes any number of input channels and merges
screen stream protocol messages on these to a single output channel. For
practical purposes it is probably desirable for the merged streams to be
organised as sequences of complete lines of text, but the multiplexor does
not enforce this mode of use.

The screen fan out procedure makes two copies of a screen stream input.
It can therefore be used, for example, to file a copy of what is sent to the
screen.

Key stream and screen stream sink procedures are provided for consuming
streams which are no longer wanted, such as diagnostic output.

Examples of the use of interface procedures are given in [3].

4.3 An example calling interface procedures in parallel

This example shows the output from an application (arbitrarily called big.numbers)
being duplicated by a call of scrstream.fan.out, and then one of these out-
puts being sent to a file.

#USE userio
#USE interf
SEQ
-- This example uses screen output with a copy sent to a file

PROC big.numbers (CHAN OF ANY screen)
... any application code with a screen stream output

13

:

CHAN OF ANY fromprog, tofile:
INT foldnum, any:
PAR
--
SEQ
big.numbers (fromprog)
write.endstream (fromprog)

--
SEQ
scrstream.fan.out (fromprog, tofile, screen)
write.endstream (tofile)

--
SEQ
scrstream.to.file (tofile, from.user.filer[0],

to.user.filer[0], "big.numbers", foldnum, error)
--

write.full.string (screen, "Type ANY to return to TDS")
read.char (keyboard, any)

The process structure of this program may be represented by the diagram
below. In this diagram channels with different protocols are represented by
lines drawn in different styles.

5 Table of procedures in the D700D libraries

Each of the library files provided in the IMS 07000 software package con-
tains one or more separately compiled groups of procedures. Within the
description of a library the groups of procedures are indicated. The oc-
cam compilation system permits only those groups of procedures which are
required in a program to be included in the object code generated.

14

There are some interdependencies between the various libraries themselves.
Programmers only need to mention those libraries they use explicitly. The
majority of programs will only use procedures from the library userio and
any necessary interface procedures.

The description here is purposely brief, as it is intended that serious users
should study the detailed documentation [3], or the occam source of the
procedures themselves. Note that libraries are named according to the host
file in which they are found.

5.1 User procedures

Library ioconv - number/string conversions

These procedures for simple number to string conversions (and vice versa)
are defined in [1]. They are used by the simple input output procedures in
userio.

INTTOSTRING Convert integer to decimal string
STRINGTOINT Convert decimal string to integer
HEXTOSTRING Convert integer to hexadecimal string
STRINGTOHEX Convert hexadecimal string to integer
BOOLTOSTRING Convert boolean to ’TRUE’ or ’FALSE’
STRINGTOBOOL Convert ’TRUE’ or ’FALSE’ to boolean

15

Library extrio - more number/string conversions

These extend the previous group for the extra integer and real types.

INT16TOSTRING Convert 16-bit integer to decimal string
INT32TOSTRING Convert 32-bit integer to decimal string
INT64TOSTRING Convert 64-bit integer to decimal string
STRINGTOINT16 Convert decimal string to 16-bit integer
STRINGTOINT32 Convert decimal string to 32-bit integer
STRINGTOINT64 Convert decimal string to 64-bit integer
HEX16TOSTRING Convert 16-bit integer to hexadecimal string
HEX32TOSTRING Convert 32-bit integer to hexadecimal string
HEX64TOSTRING Convert 64-bit integer to hexadecimal string
STRINGTOHEX16 Convert hexadecimal string to 16-bit integer
STRINGTOHEX32 Convert hexadecimal string to 32-bit integer
STRINGTOHEX64 Convert hexadecimal string to 64-bit integer
STRINGTOREAL32 Convert decimal real string to real32 value
STRINGTOREAL64 Convert decimal real string to real64 value
REAL32TOSTRING Convert real32 value to decimal real string
REAL64TOSTRING Convert real64 value to decimal real string

16

Library strings - string handling procedures and functions

Character manipulation

is.in.range Checks if a byte is within a range
is.upper Checks if a byte is an ASCII upper case letter
is.lower Checks if a byte is an ASCII lower case letter
is.digit Checks if a byte is an ASCII digit
is.hex.digit Checks if a byte is an ASCII hexadecimal digit
is.id.char Checks if a byte is valid in an occam identifier
to.upper.case Converts all letters in string to upper case
to.lower.case Converts all letters in string to lower case

String handling

compare.strings Compares strings lexicographically
egstr Check strings for equality
str.shift Moves a sub-array within an array of bytes
delete.string Deletes bytes from a string
insert.string Inserts a string within a string
string.pos Finds a match of a string in a string
char.pos Finds a match of a byte in a string
search.match Looks for a match of one in a set
search.no.match Looks for a match of one not in a set

Appending text and numbers to text lines. These procedures allow the
cumulation of text into a line buffer.

append.char Append byte to a line
append.text Append text to a line
append.int Append decimal integer to a line
append.int64 Append decimal integer to a line
append.hex.int Append hexadecimal integer to a line
append.hex.int64 Append hexadecimal integer to a line
append.real32 Append decimal real number to a line
append.real64 Append decimal real number to a line

17

Library userio - user input and output procedures

Simple input procedures
These procedures support input from a key stream, with and without echo.

read.echo.char Read and echo one byte
read.char Read one byte
read.echo.text.line Read and echo a line of text
read.text.line Read a line of text
read.echo.int Read and echo a decimal integer
read.int Read a decimal integer
read.echo.hex.int Read and echo a hexadecimal integer
read.hex.int Read a hexadecimal integer

Simple output procedures
These procedures support output to a screen stream.

write.char Output one byte
write.int Output decimal integer as characters
write.hex.int Output hexadecimal integer as characters
write.len.string Output string with computed length
write.full.string Output fixed length string
newline Output ”*c*n”
write.text.line Output a complete line of text
write.endstream Terminate a stream in screen protocol

Procedures for the extra types
These procedures support input and output of values in the extended types.
This group is incomplete and can be extended by the user if necessary.

write.int64 Output decimal integer as characters
write.hex.int64 Output hexadecimal integer as characters
write.real32 Output a 32-bit real value in decimal
write.real64 Output a 64-bit real value in decimal
read.int64 Read a 64-bit integer number
read.echo.int64 Read and echo a 64-bit integer number
read.hex.int64 Read a 64-bit hexadecimal integer
read.echo.hex.int64 Read and echo a 64-bit hexadecimal integer
read.echo.real32 Read and echo a 32-bit real number
read.reai32 Read a 32-bit real number
read.echo.real64 Read and echo a 64-bit real number
read.real64 Read a 64-bit real number

18

Control codes to a screen stream

goto.xy Move cursor to absolute screen position
clear.eol Clear to end of line
clear.eos Clear to end of screen
beep Send BELL character
up Move cursor up
down Move cursor down
left Move cursor left
right Move cursor right
insert.char Insert char at cursor
delete.chl Delete char to left of cursor
delete.chr Delete char at the cursor
ins.line Insert blank line
del.line Delete line

Folded stream output
These procedures support straightforward output to the folded file store of
the TDS.

create.new.fold Create empty fold for writing
write.record.item Write a record to fold stream
write.fold.top.crease Write top crease to fold stream
write.filed.top.crease Write filed top crease to fold stream
write.bottom.crease Write bottom crease to fold stream
write.number.item Write a number item to fold stream
finish.folded.stream Finish a newly written fold stream

19

Folded stream input
These procedures support input from the folded file store of the TDS. The
read. procedures read ahead the tag of the following item, the input. pro-
cedures do not.

read.fold.heading Read fold header and attributes
read.file.name Read file name on fold
open.folded.stream Open folded stream for reading
read.record.item Read record and type of next item
read.fold.top.crease Read top crease and type of item within
read.filed.top.crease Read filed top crease and type of item within
read.bottom.crease Read bottom crease and type of next item
read.number.item Read number item and type of next item
read.error.item Read error item
close.folded.stream Terminate reading of folded stream
input.record.item Input a record item
input.number.item Input a number item
input.top.crease input a top crease item
exit.fold Exit fold and return to enclosing fold
repeat.fold Return to start of current fold
skip.item Move to next item
enter.fold Move to first item within fold

20

Library slice - block transfer procedures

These procedures may be used for communicating blocks of bytes.

assign.bslice Copy an array of bytes
output.len.bslice Output a length and a block
input.len.bslice Input a length and a block

21

Library ufiler - user filer procedures

This group of procedures supports the user filer interface at a more intimate
level than the folded stream procedures in userio.

get.stream.result Read result of user filer command
clean.string Make string suitable for file name
truncate.file.Id Remove filename extension
write.fold.string Write fold comment text
create.fold Add new fold to end of fold bundle
send.command Send user filer command mode command
make.filed Make a fold into a filed fold
open.stream Open a folded stream
read.data.record Read a record from a data stream
read.fold.string Read the fold comment text
read.fold.attr Read the fold attributes
number.of.folds Count the folds in the bundle
open.data.stream Open a fold stream in data mode
close.stream Close a fold stream

22

Library msdos - DOS file via TDS server procedures

These procedures are used by the interface procedures which provide access
to host files outside the TDS folded file store.

test.exists Test for existence of host file
make.id Make file identity
file.lock Lock host file against multiple access
file.release Release file lock
open.tkf.file Open access to host file
close.tkf.file Close access to host file
write.block Write a block to a host file
read.block Read a block to a host file
read.line Read a line of text from a block

23

Library derivio - derived number inputs

These procedures are also described in [3] and support simple input and
output using channels with BYTE protocol.

GETSTRING Read a line or word from a CHAN OF INT
INTREAD Read an integer from a CHAN OF INT
INT16READ Read a 16-bit integer from a CHAN OF INT
INT32READ Read a 32-bit integer from a CHAN OF INT
INT64READ Read a 64-bit integer from a CHAN OF INT
HEXREAD Read a hexadecimal integer from a CHAN OF INT
REAL32READ Read a real32 value from a CHAN OF INT
REAL64READ Read a real64 value from a CHAN OF INT
INTWRITE Send an integer value to a CHAN OF BYTE
INT16WRITE Send a 16-bit integer to a CHAN OF BYTE
INT32WRITE Send a 32-bit integer to a CHAN OF BYTE
INT64WRITE Send a 64-bit integer to a CHAN OF BYTE
HEXWRITE Send an integer value in hexadecimal to a CHAN OF BYTE
REAL32WRITE Send a real32 value in decimal to a CHAN OF BYTE
REAL64WRITE Send a real64 value in decimal to a CHAN OF BYTE

24

Library afiler - alien filer procedures

These correspond exactly to the operations with the same names described
in the section on the ’Host file server’ in [3]. They are provided so that
occam programs may do all the host operations available to the scientific
languages.

read.key Read a character from the keyboard
read.key.wait Wait for a character from the keyboard
open.file Obtain access to file
read.block Read a block from a stream
write.block Write a block to a stream
seek Move to a position in a stream
close.stream Close a stream
open.temp Create temporary file
open.input.stream Open a standard input stream
open.output.stream Open a standard output stream
terminate.filer Close down simple filer interface
set.result Return result to server
rename.file Change name of host file
run.command Run host command line
read.time Read host’s clock time
receive.block Receive data block from host
send.block Send data block to host
read.core.dump Read block from core dump file
server.version Determine host type and server version

25

5.2 Interface procedures

These procedures are listed separately solely to match the structure of the
main part of this note. They are organised in groups in a similar manner to
the user procedures.

Instances of these procedures are suitable for calling in parallel with ap-
plication code using the user procedures listed above. Each procedure has
channel parameters which must be ’joined’ to others using a matching pro-
tocol.

Library interf - interface procedures

These procedures handle the standard TDS protocols used by the procedures
in userio.

Terminal to file protocol converters

These procedures allow files accessed sequentially to be treated in the same
way as terminals.

keystream.from.server Convert from host text file to keyboard pro-
tocol

keystream.from.file Convert from user filer to keyboard protocol
scrstream.to.server Convert from screen protocol to host text file
scrstream.to.file Convert from screen to user filer protocol
scrstream.to.ANSI Convert screen stream to ANSI byte stream
scrstream.to.TVI920 Convert screen stream to TVI920 byte

stream
keystream.to.screen Convert from integer characters to screen

protocol

Multiplexors, stream sinks, etc.

These procedures split and join screen streams and act as dummies to con-
sume streams which are no longer wanted.

scrstream.multipiexor Merge inputs to one output (screen protocol)
scrstream.fan.out Duplicate stream in screen protocol
scrstream.to.array Save a screen stream for later regeneration
scrstream.from.array Regenerate a saved screen stream
scrstream.copy Suffer a screen stream
scrstream.sink Consume stream in screen protocol
keystream.sink Consume stream in keyboard protocol

26

Library afinterf - alien filer interface procedures

keystream.from.afserver Generate key stream from AF file
scrstream.to.afserver Send screen steream to AF file
af.buffer Buffer an AF channel pair
af.multiplexor Multiplex AF channel pairs

27

Library t4board, t2board - transputer board procedures

These procedures support terminal access on INMOS evaluation boards.

B00x.term.p.driver Keyboard and screen handler for B001
and B002 via RS232 port

B006.term.p.driver Keyboard and screen handler for B006 via
RS232 port

scrstream.to.B004.link Screen handler for B004 via PC link
keystream.from.B004.link Keyboard handler for B004 via PC link
terminate.server Termination routine for the TDS server

28

References

[1] Occam 2 reference manual, Prentice Hall, London 1988

[2] Occam program development using the IMS D701 transputer develop-
ment system, Technical note 16, INMOS Ltd, Bristol 1988

[3] Transputer development system, Prentice Hall, London 1988

29

	1 Introduction
	1.1 Input and output
	1.2 Packaging of the procedures
	1.3 Structure of this note

	2 Conventions for the use of channels
	2.1 Key stream conventions
	2.2 Screen stream conventions
	2.3 User filer channel conventions
	2.4 The other channels between the TDS and an EXE

	3 User procedures - to be called in sequence
	3.1 An introductory example
	3.2 Number conversion procedures
	3.3 Simple input procedures
	3.4 Simple output procedures
	3.5 User filer procedures
	3.6 Other procedures

	4 Interface procedures - to be called in parallel
	4.1 Protocol converters
	4.2 Multiplexors, etc.
	4.3 An example calling interface procedures in parallel

	5 Table of procedures in the D700D libraries
	5.1 User procedures
	 Library ioconv - number/string conversions
	 Library extrio - more number/string conversions
	 Library strings - string handling procedures and functions
	 Library userio - user input and output procedures
	 Library slice - block transfer procedures
	 Library ufiler - user filer procedures
	 Library msdos - DOS file via TDS server procedures
	 Library derivio - derived number inputs
	 Library afiler - alien filer procedures
	5.2 Interface procedures
	 Library interf - interface procedures
	 Library afinterf - alien filer interface procedures
	 Library t4board, t2board - transputer board procedures

	References

