
Compiling occam
into silicon

INMOS Technical Note 23

INMOS

72-TCH-023

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4

2 VLSI design 4

3 Occam 5
3.1 Implementation of occam . 6
3.2 The abstract micro-machine 7

4 The compiler output 8
4.1 Variables, expressions, assignment and SEQ 8
4.2 IF and WHILE . 11
4.3 Arrays . 12
4.4 Procedures . 12
4.5 PAR . 13
4.6 Channels and communication 13
4.7 ALT . 15

5 Examples 15
5.1 Example 1: The prime farm 15
5.2 Example 2: Signal processing 16
5.3 Example 3: Simple processor 17

6 Conclusions 21

References 21

3

1 Introduction

The occam language [1] allows a system to be hierarchically decomposed into
a collection of concurrent processes communicating via channels. An occam
program can be implemented by a single programmable microcomputer, or
by a collection of programmable computers each executing an occam process.
An occam process can also be implemented directly in hardware. This paper
describes a compiler which translates occam programs into silicon layout.

2 VLSI design

In designing a VLSI device, it is useful to have a behavioural description of
what the device does, and a hardware description of the components of the
device and the way in which they are interconnected.

Hardware description languages are used in many computer-aided design
systems. The hardware description of a device can be checked against the
silicon layout supplied by the designer and can be used as input to simula-
tors. The hardware description language used by INMOS allows libraries of
standard checked modules to be assembled. All of these techniques combine
to remove much of the risk from silicon design once the hardware description
of a device has been constructed.

Behavioural description languages have been used to design sequential pro-
cessors for many years. As the process of interpreting instructions in a
sequential computer is (nearly) sequential, a conventional sequential pro-
gramming language can be used to write the behavioural description of a
processor. An advantage of using a programming language for this pur-
pose is that the description of the device can be compiled into an efficient
simulator of the device.

The behaviour of VLSI devices with many interacting components can only
be expressed in a language which can express parallelism and communica-
tion. Communicating process languages are therefore beginning to be used
to describe the behaviour of such devices. For example, occam has been
used extensively for this purpose in the design of the INMOS transputer.

Occam has several advantages as a behavioural description language. Firstly,
the concepts of concurrency and communication in occam correspond closely
to the behaviour of hardware devices. Secondly, as a programming language,
occam has a very efficient implementation, and this enables fast execution
of a system description as a simulation. Thirdly, occam has rich formal se-
mantics [2] which facilitate program transformation and proof, and a simple
interactive transformation system has been constructed. These techniques

4

have been used to formally establish the correctness of an occam implemen-
tation of IEEE standard 754 floating-point arithmetic [3], a task which takes
too long to be performed by experimental testing. The transformation sys-
tem can also be used to optimise programs and can, for example, transform
certain kinds of sequential program into an equivalent parallel program, and
conversely.

The problem of ensuring that the hardware description of a device indeed
implements the behavioural description in occam is a significant one. One
possible approach is to write a compiler to compile an occam program into
a hardware description.

3 Occam

Occam programs are built from three primitive processes:

v := e assign expression e to variable v
c ! e output expression e to channel c
c ? v input variable v from channel c

The primitive processes are combined to form constructs:

SEQ sequence
IF conditional

PAR parallel
ALT alternative

A construct is itself a process, and may be used as a component of another
construct.

Conventional sequential programs can be expressed with variables and as-
signments, combined in sequential and conditional constructs. Conventional
iterative programs can be written using a WHILE loop.

Concurrent programs make use of channels, inputs and outputs, combined
using parallel and alternative constructs.

In hardware terms, it is useful to think of a variable as a storage register
and a channel as a communication path with no storage.

Each occam channel provides a communication path between two concurrent
processes. Communication is synchronised and takes place when both the
inputting and the outputting process are ready. The data to be output is
then copied from the outputting process to the inputting process, and both
processes continue.

5

An alternative process may be ready to input from any one of a number
of channels. In this case, the input is taken from the channel which is first
used for output by another process.

3.1 Implementation of occam

The concepts of sequence and concurrency in occam are abstract, and allow
a wide variety of implementations. An occam process can be implemented:

1. by compilation into a program for execution by a general-purpose com-
puter such as a transputer

2. (1) with a fixed program held in ROM

3. by compilation into a special-purpose computer, with just sufficient
registers, ALU operations, memory and microcode to implement the
process

4. by compilation into ’random’ logic

Similarly, the concept of communication is abstract, and allows a channel
to be implemented in various ways:

1. store location(s) and program

2. (1) with microprogram instead of program

3. a parallel path with handshaking signals

4. a (more) serial version of (3), the communicating processes breaking
the data into several pieces

5. a completely serial path

Any of the above can be implemented using any clocking scheme, ranging
from a globally synchronous system to a fully self-timed system. It should
be possible to mix the implementation techniques within a system, though
this requires a range of different channel implementations which operate
as ’adaptors’ to provide communication between processes implemented in
different ways.

Implementation of occam processes using programmable computers and
transputers has been described elsewhere [4]. Implementation of processes
using self-timed circuit elements is the subject of current research e.g. [5].

6

This paper concentrates on the compilation of a process into a tailored dat-
apath controlled by compiled microcode. A set of concurrent processes may
be compiled into a corresponding set of such machines, with each commu-
nication channel implemented by a simple synchronous connection between
two machines.

3.2 The abstract micro-machine

Each process is compiled into a datapath controlled by horizontal microcode.
The datapath contains a set of registers connected to an arithmetic logic unit
by three buses. These are called the Xbus, Ybus and Zbus. Each cycle of
the machine involves transferring the contents of two selected registers via
the Xbus and Ybus to the arithmetic logic unit for use as operands, and
transferring the result from the logic unit back to a selected register via the
Zbus.

Figure 1:

The selection of the registers and the operation to be performed by the logic
unit is determined by four components of a microinstruction held in the
read-only memory (ROM). The registers in the datapath are designed so
that a single microinstruction can use the same register as both an operand
and as the result, but this is not essential (a compiler can easily allocate
registers to avoid the need for it). The microinstruction ROM is addressed
by a microinstruction pointer register.

A further ’next address’ component of each microinstruction gives the next
value of the microinstruction register. The microinstruction pointer register
is loaded from this field as each microinstruction is executed. The ’next
address’ field can be omitted and the microinstruction pointer register re-
placed by an incrementer if the process to be implemented consists only of

7

a simple loop with no conditional behaviour.

A number of other components of the microinstruction may be needed, de-
pending on the program being compiled. These will be described below.

4 The compiler output

The compiler makes extensive use of the module library used in the IN-
MOS transputer itself. This library contains all of the hardware modules
needed to construct ALUs and registers, together with special control logic
for fast multiplication, division, shifts etc. It also provides for microin-
struction pointer registers, control line drivers and clock generators. The
microcode ROM itself can be generated and optimised automatically from
the textual form of the microinstructions. The output of the compiler is
therefore:

1. a microprogram ready for input to the ROM generator

2. an HDL (INMOS hardware description language) description of the
datapath including the minimum number of registers and the simplest
ALU which are sufficient to implement the process

3. an ’array’ file containing information about the physical placement of
the modules comprising the datapath

The output can be ’input’ to the INMOS CAD system, enabling logic and
circuit simulations to be performed, allowing the layout to be inspected, and
ultimately enabling masks to be produced. It is, however, envisaged that the
design process would be interactive, and that having inspected the result of
a compilation the designer would modify the occam specification (probably
using correctness preserving transformations) and try again.

4.1 Variables, expressions, assignment and SEQ

Values of variables are held in registers, and expressions are evaluated as a
sequence of microinstructions of the form described above.

Expressions also involve ’literal’ operands. These are derived directly from
a ’literal’ component of the microinstruction. This need only be able to
supply a single operand of each microinstruction, as any operation involving
two literal operands can be performed by the compiler.

The compilation of:

8

WHILE TRUE
P

where P is a sequence of assignments therefore proceeds as follows:

1) Identify the number of registers needed. At any point in the program, a
number V of variables is in scope, and each of these must have a register
allocated to it. Also, a number Tof temporary registers may be needed to
hold temporary values arising during the evaluation of complex expressions.
The number of registers needed for P is the largest value taken by V+T in
P. This is a conventional compiling technique.

2) Identify the operations needed in the arithmetic logic unit. This depends
on the expression operators used in the program being compiled. If only bit
operators are used, the carry path can be omitted, and it is worthwhile only
including:

• the carry path (adder)

• the shifter

• the multiply divide step control logic

• the conditional logic

if they are needed. The multiply and divide control logic require conditional
selection of the next microinstruction to be executed, and this is described
below.

3) Break all expressions and assignments into a sequence of operations of
the form:

Z := X op Y

For example:

VAR a, b, result:
SEQ
a := 10
b := 20
result := (a + b) - 5

generates microcode field definitions to control the registers, ’constants box’,
and ALU, in addition to the ’next’ field. The following example is the
definition of the register control field:

9

FIELD "Regfield" Microword[22, 23, 24, 25, 26, 27]
XbusFromR0 = #B100000
XbusFromR2 = #B010000
YbusFromR1 = #B001000
R0FromZbus = #B000100
R1FromZbus = #B000010
R2FromZbus = #B000001;

The register R0 is used for a, R1 for b and R2 for result. R0 and R2 can
supply data to the Xbus, R1 to the Ybus. All three registers can be loaded
from the Zbus.

A microinstruction is constructed by combining values from each of a number
of fields; for example:

LAB1: XbusFromR0 YbusFromR1
ZbusFromXbusPlusYbus R2FromZbus LAB2;

selects R0 and R1 as the sources for the Xbus and Ybus respectively, selects
the ALU operation as Plus (ZbusFromXbusPlusYbus) and selects the R2 as
the destination for the result. LAB2 indicates the next microinstruction to
be executed.

The microcode for the above program is:

START: XbusFrom10 ZbusFromXbus
R0FromZbus LAB0;

LAB0: XbusFrom20 ZbusFromXbus
R1FromZbus LAB1;

LAB1: XbusFromR0 YbusFromR1
ZbusFromXbusPlusYbus R2FromZbus LAB2;

LAB2: XbusFromR2 YbusFrom5
ZbusFromXbusMinusYbus R2FromZbus END;

An example of the HDL generated is the registers a, b, result:

MODULE Registers (IN Clocks[4:1], ROMoutputs[27:22],
Zbus[31:0],

OUT Xbus[31:0], Ybus[31:0])
Xreg32 R0(IN Clocks[4:1], ROMoutputs[22],

ROMoutputs[25], Zbus[31:0],
OUT Xbus[31:0])

Yreg32 R1(IN Clocks[4:1], ROMoutputs[24],
ROMoutputs[26], Zbus[31:0],

OUT Ybus[31:0])
Xreg32 R2(IN Clocks[4:1], ROMoutputs[23],

10

ROMoutputs[27], Zbus[31:0],
OUT Xbus[31:0])

END REGISTERS

which defines the collection of the three registers and their control signals
and bus connections. XReg32 is itself the name of a module which defines a
32-bit register with outputs to the Xbus; YReg32 similarly defines a register
with outputs to the Ybus.

4.2 IF and WHILE

The occam IF and WHILE constructs can both be implemented by allowing
the address of the next microinstruction to be determined by a selected
condition.

Conditional behaviour is provided by arranging for the least significant bit
of the microinstruction pointer to be loaded from a selected conditional
input; the selection being made by a further microinstruction field connected
to a multiplexor. To allow unconditional branching, one input from the
multiplexor is derived from the least significant bit in the ’next address’
field.

Figure 2:

An example is the following process which computes the greatest common
divisor of two numbers:

VAR m, n, result:
SEQ
m := 100
n := 35
WHILE (m <> n)
IF
(m > n)
m := m - n

11

(m < n)
n := n - m

TRUE
SKIP

result := m

which generates the following microcode, and requires three registers for m,
n and result:

START: XbusFrom100 ZbusFromXbus
R0FromZbus LAB0;

LAB0: XbusFrom35 ZbusFromXbus
R1FromZbus LBL0;

LBL0: XbusFromR0 YbusFromR1 ZbusFromXbusMinusYbus
(CondFromNotZbusEq0 -> LAB1, LBL1);

LAB1: XbusFromR1 YbusFromR0 ZbusFromXbusMinusYbus
(CondFromZbusGr0 -> LBL2, LAB2);

LAB2: XbusFromR0 YbusFromR1 ZbusFromXbusMinusYbus
R0FromZbus LBL0;

LBL2: XbusFromR0 YbusFromR1 ZbusFromXbusMinusYbus
(CondFromZbusGr0 -> LBL0, LAB3)

LAB3: XbusFromR1 YbusFromR0 ZbusFromXbusMinusYbus
R1FromZbus LBL0;

LBL1: XbusFromR0 ZbusFromXbus
R2FromZbus END;

4.3 Arrays

Arrays are implemented by including a random access memory. Indexing
operations are provided by constructing the bitwise OR of the base address
and the subscript (the base being a literal and the subscript being held
in a register), eliminating the need for address arithmetic and enabling a
selected component of an array to be transferred to or from a register in a
single cycle. The base address of each array in the process is chosen to make
this possible, and unused rows are omitted from the memory array.

4.4 Procedures

Occam procedures can be implemented either by substitution of the proce-
dure body prior to compilation or by a conventional closed procedure call.

As no recursion is permitted, the maximum depth of calling is known to the
compiler, and it is possible to compile a stack of microinstruction pointer
registers of the appropriate depth. Dedicated registers can be allocated for

12

the variables in each procedure; temporaries can be shared by all procedures
as occam does not contain functions..

4.5 PAR

The easiest way to implement concurrent processes is to use one processing
element for each process, and the present compiler does this.

4.6 Channels and communication

Synchronisation of input and output requires that the processor idles as
the first process waits for the second. This is achieved by a microprogram
polling loop.

It is clearly desirable to minimise the amount of hardware associated with
each channel, and to minimise the number of connections needed to imple-
ment a channel.

For any process which includes channel communication, the compiler gener-
ates a shift register, two control signals, sync and shift, and an input to the
condition multiplexor, ready.

Figure 3:

For each pair of devices which communicate, two connections are used to
form a link. Each link is connected to a device as shown; only one additional
control signal is needed for each link on a device; this is used to select which
link is in use.

An input or output is performed by asserting the sync signal together with
the appropriate link select signal, and polling the ready signal. When a
ready signal is detected, this indicates that both devices are ready to com-
municate. At this point the process at the other end of the link will also
have detected a ready signal. Both devices now release their sync signals,
and clock their shift registers using the shift signals. With only the link
select signals asserted, the two shift registers at either end of the channel
effectively form one long cyclic shift register, so the data in the two shift

13

Figure 4:

registers is exchanged. After the data has been exchanged, the link select
signals are released.

Clearly, this operation is completely symmetrical. Each link between two
devices can be used for both input and output; it is not necessary for these
to be performed concurrently as each device implements only one process.

An example of a simple process which inputs a value, adds 1, and outputs
the result is:

CHAN c, d:
VAR x:
SEQ
c ? x
d ! (x + 1)

The microcode is as follows:

SETUP0: YbusFrom32 ZbusFromYbus T0FromZbus
SelectCh0 SYNC
(CondFromReady -> TRANSFER0, SETUP0) ;

TRANSFER0: XbusFromT0 YbusFroml ZbusFromXbusMinusYbus
T0FromZbus
SelectCh0 ShiftChan
(CondFromNotZbusEq0 -> TRANSFER0, DONE0) ;

DONE0: XbusFromChan ZbusFromXbus
R0FromZbus LAB0 ;

LAB0: XbusFromR0 YbusFrom1 ZbusFromXbusPlusYbus
ChanFromZbus SETUP1 ;

SETUP1: YbusFrom32 ZbusFromYbus T0FromZbus
SelectCh1 SYNC
(CondFromReady -> TRANSFER1, SETUP1)

TRANSFER1: XbusFromT0 YbusFroml ZbusFromXbusMinusYbus
T0FromZbus
SelectCh1 ShiftChan
(CondFromNotZbusEq0 -> TRANSFER1, END) ;

14

A temporary register (T0) is introduced to count the number of bits to be
transferred to or from the channel register (CHAN). The value of x is held
in a further register (R0). The ALU is used to decrement the count register
and test for zero at the same time that each bit is shifted through the link.

4.7 ALT

Alternative input requires that the inputting processor can poll a number
of channels in turn until one is found to be ready for input. The link im-
plementation described above can be used for this purpose; an example is
shown below:

ALT
in1 ? X
count := count + 1

in2 ? x
count := count - 1

The microcode for polling the channels is:

LBL1: SelectCh0 SYNC
(CondFromReady -> TRANSFER1, LBL2)

TRANSFER1: ...

LBL2: SelectCh0 SYNC
(CondFromReady -> TRANSFER2, LBL1)

TRANSFER2: ...

The microcode loop attempts to synchronise with each of the two links until
it succeeds, in which case it continues with the input.

5 Examples

5.1 Example 1: The prime farm

Prime numbers can be generated concurrently using a ’processor farm’. A
program is given in [6]. It uses a controller which farms out successive
numbers to an arbitrary number of primality testers. Each tester stores all
of the primes up to the square root of the number to be tested; it uses these
to test whether or not the number is prime, and responds to the controller
accordingly.

15

Here we use an even simpler program. Each tester divides its new number
by all numbers up to the square root of the new number. This removes the
need for an array to store the prime numbers up to the square root.

This is entirely justified because we are trying to optimise the use of silicon
area; the area taken for one tester with memory can be better used for many
testers without. This is certainly true for generating primes up to 232.

PROC primetest(CHAN from.controller, to.controller)
DEF isprime = 0, notprime = 1:
VAR maxtest, candidate, active:
SEQ
active := true
WHILE TRUE
SEQ
from.controller ? maxtest; candidate
IF
maxtest = 0
active := FALSE

maxtest <> 0
VAR nexttest:
SEQ
nexttest := 3
WHILE ((candidate REM nexttest) <> 0) AND

(nexttest < maxtest)
nexttest := nexttest + 2

IF
nexttest < maxtest
to.controller ! not.prime

TRUE
to.controller ! is.prime

The controller is about 1.5 mm x 2.5 mm in area; each tester is about
1.2 mm x 2.3 mm. The space occupied by a controller with sixteen testers
is about 50 mm2, and can easily be implemented on a single chip using a
current manufacturing process. Such a chip would require very few external
connections; a single link, clock and reset inputs, and power. There is a great
deal of freedom in configuring the devices on the chip, as they communicate
only by two-wire links. It seems likely that ’process farms’ are an effective
way of organising specialised VLSI systems.

5.2 Example 2: Signal processing

The following example is a second-order filter which filters a stream of values.
It would normally be used as a component in a pipeline in which each
component filter has different parameters.

16

PROC Filter (Chan In, Out)
VAR x, y, t1, t2, t3, z1, z2:
SEQ
z1 := 3
z2 := 4
WHILE TRUE
SEQ
in ? x
t1 := x - (b2 * z2)
t2 := a2 * z2
z2 := t1 - (b1 * z1)
t3 := t2 + (a1 * z1)
out ! t3 + (a0 * z2)
in ? x
t1 := x - (b2 * z1)
t2 := a2 * z1
z2 := t1 - (b1 * z2)
t3 := t2 + (a1 * z2)
out ! t3 + (a0 * z1)

This requires 9 registers and 93 microinstructions; the relatively large num-
ber of microinstructions arises because each multiplication requires a short
sequence of microinstructions including a loop. This could be improved
by providing microcode subroutines (using an additional microinstruction
pointer register). Multiplication speed could also be improved (at the ex-
pense of area) by use of a parallel multiplier.

The filter occupies 3 mm2; so a pipeline of 20 filters could be fitted on a
single VLSI device.

5.3 Example 3: Simple processor

Our final example is a simple programmable processor with a (very) re-
duced instruction set. Despite its tiny instruction set, it provides all of the
functions needed to implement a sequential occam process; in fact it is very
easy to compile an occam process into the instruction set of this proces-
sor. The processor has four input and four output links, and 256 bytes of
random-access memory.

PROC Processor(CHAN In0, In1, In2, In3,
CHAN Out0, Out1, Out2, Out3)

VAR Iptr, Wptr:
VAR Areg, Breg:
VAR Instruction, Function, Operand:
VAR Memory[256]:
SEQ

17

Memory[0] := Boot
Iptr := 0
Operand := 0

WHILE TRUE
SEQ
Instruction := Memory[Iptr]
Iptr := Iptr + 1
Function := Instruction /\ #F0
Operand := (Instruction /\ #0F) \/ Operand

IF
Function=Prefix
Operand := Operand << 4

TRUE
SEQ
IF
Function=Loadavar
Areg := Memory[Wptr + Operand]

Function=Loadbvar
Breg := Memory[Wptr + Operand]

Function=Loadalit
Areg := Operand

Function=Loadblit
Breg := Operand

Function=Storeavar
Memory[Wptr + Operand] := Areg

Function=Loadaind
Areg := Memory[Areg + Operand]

Function=Storebind
Memory[Areg + Operand] := Breg

Function=Jump
Iptr := Iptr + Operand

Function=Jumpfalse
IF
Areg = 0
Iptr := Iptr + Operand

TRUE
SKIP

Function=Equalalit

18

Areg := Areg = Operand

Function=Addalit
Areg := Areg + Operand

Function=Adjust
Wptr := Wptr + Operand

Function=Call
SEQ
Areg := Iptr
Iptr := Iptr + Operand

Function=Operate
IF
Operand=input
IF
Areg=0

In0 ? Areg
Areg=1
In1 ? Areg

Areg=2
In2 ? Areg

Areg=3
In3 ? Areg

Operand=output
IF
Areg=1
Out0 ! Breg

Areg=2
Out1 ! Breg

Areg=4
Out2 ! Breg

Areg=8
Out3 ! Breg

Operand=Alternative
ALT
((Areg /\ 1) <> 0) & In0 ? Areg
Iptr := Iptr + 0

((Areg /\ 2) <> 0) & In1 ? Areg
Iptr := Iptr + 1

((Areg /\ 4) <> 0) & In2 ? Areg
Iptr := Iptr + 2

((Areg /\ 8) <> 0) & In3 ? Areg
Iptr := Iptr + 3

Operand=Greater
Areg := Areg > Breg

19

Operand=Shiftleft
Areg := Areg << Breg

Operand=Shiftright
Areg := Areg >> Breg

Operand=Xorbits
Areg := Areg >< Breg

Operand=Andbits
Areg := Areg /\ Breg

Operand=Add
Areg := Areg + Breg

Operand=Subtract
Areg := Areg - Breg

Operand=Boot
SEQ
In0 ? Wptr
Iptr := 0
WHILE Iptr < Wptr

SEQ
In0 ? Memory[Iptr]
Iptr := Iptr + 1

Iptr := 0
Operand := 0

On reset, the processor waits for a program to be supplied via link 0. It
then loads a program, and executes it until a ’boot’ instruction is executed.

There is obviously considerable scope for better optimisation in this case; in
particular it would be desirable to implement the instruction decoding ’IF’
construct with a mechanism which replaces the microinstruction pointer
register with a value held in a register.

The processor requires 11 registers and has 140 microinstructions. The
whole device including the memory occupies about 6.25 mm2; 10 such de-
vices with their interconnections would take less area than a typical 32-bit
microprocessor.

20

6 Conclusions

A communicating process language such as occam can be used to design
VLSI devices, and can be compiled into silicon layout. Some parts of the
design process are still performed by hand (such as the final placement of the
functional blocks), but this cannot introduce errors. It is therefore possible
to design concurrent VLSI systems using occam, establish that the design
behaves as intended using the formal semantics of occam (or in simple cases
by experimental testing of the occam program), and finally compile the
occam source into correct silicon layout.

In order to simplify the construction of the compiler, many issues have been
ignored. For example, the synchronous communication system is only ap-
propriate for local communication between devices sharing a common clock.
This problem can be overcome by using a different link implementation for
’long distance’ communication (for example, the link used in the transputer
itself).

Expressing an application in a form which efficiently exploits silicon area
involves careful consideration of the relative costs of memory, processing
and communication. Concurrent algorithms which perform ’redundant’ cal-
culations can be faster and consume less area than sequential algorithms
which store values. An important use of a silicon compiler is to aid in the
evaluation of ’silicon algorithms’.

References

[1] Occam Programming Manual, Prentice-Hall International 1984.

[2] The Laws of Occam Programming, A W Roscoe and C A R Hoare,
Programming Research Group, Oxford University 1986.

[3] Formal Methods applied to a Floating Point Number System, G Bar-
rett, Programming Research Group, Oxford University 1986.

[4] The Transputer Implementation of Occam, INMOS Ltd, Technical Note
21.

[5] Compiling Communicating Processes into delay insensitive VLSI Cir-
cuits, Alain J Martin, Journal of Distributed Computing 1986.

[6] Communicating Process Computers, INMOS Ltd, Technical Note 22.

21

	1 Introduction
	2 VLSI design
	3 Occam
	3.1 Implementation of occam
	3.2 The abstract micro-machine

	4 The compiler output
	4.1 Variables, expressions, assignment and SEQ
	4.2 IF and WHILE
	4.3 Arrays
	4.4 Procedures
	4.5 PAR
	4.6 Channels and communication
	4.7 ALT

	5 Examples
	5.1 Example 1: The prime farm
	5.2 Example 2: Signal processing
	5.3 Example 3: Simple processor

	6 Conclusions
	References

