
The transputer
implementation

of occam

INMOS Technical Note 21

David May and Roger Shepherd

January 1988
72-TCH-021-01



You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2



Contents

1 Introduction 4

2 Architecture 4

3 occam 5

4 The transputer 5
4.1 Sequential processing . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2.1 Direct functions . . . . . . . . . . . . . . . . . . . . . 7
4.2.2 Prefix functions . . . . . . . . . . . . . . . . . . . . . . 8
4.2.3 Indirect functions . . . . . . . . . . . . . . . . . . . . . 8

4.3 Expression evaluation . . . . . . . . . . . . . . . . . . . . . . 9
4.3.1 Efficiency of encoding . . . . . . . . . . . . . . . . . . 10

4.4 Support for concurrency . . . . . . . . . . . . . . . . . . . . . 10
4.4.1 Communications . . . . . . . . . . . . . . . . . . . . . 12
4.4.2 Internal channel communication . . . . . . . . . . . . 12
4.4.3 External channel communication . . . . . . . . . . . . 14
4.4.4 Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4.5 Alternative . . . . . . . . . . . . . . . . . . . . . . . . 15

4.5 Inter-transputer links . . . . . . . . . . . . . . . . . . . . . . . 16

5 Summary 17

References 17

3



1 Introduction

VLSI technology allows a large number of identical devices to be manufac-
tured cheaply. For this reason, it is attractive to implement an occam [1]
program using a number of identical components, each programmed with
the appropriate occam process. A transputer [2] is such a component.

A transputer is a single VLSI device with memory, processor and communi-
cations links for direct connection to other transputers. Concurrent systems
can be constructed from a collection of transputers which operate concur-
rently and communicate through links.

The transputer can therefore be used as a building block for concurrent
processing systems, with occam as the associated design formalism.

2 Architecture

An important property of VLSI technology is that communication between
devices is very much slower than communication on the same device. In a
computer, almost every operation that the processor performs involves the
use of memory. A transputer therefore includes both processor and memory
in the same integrated circuit device.

In any system constructed from integrated circuit devices, much of the phys-
ical bulk arises from connections between devices. The size of the package
for an integrated circuit is determined more by the number of connection
pins than by the size of the device itself. In addition, connections between
devices provided by paths on a circuit board consume a considerable amount
of space.

The speed of communication between electronic devices is optimised by the
use of one-directional signal wires, each connecting two devices. If many
devices are connected by a shared bus, electrical problems of driving the
bus require that the speed is reduced. Also, additional control logic and
wiring is required to control sharing of the bus.

To provide maximum speed with minimal wiring, the transputer uses point-
to-point serial communication links for direct connection to other transput-
ers.

4



3 occam

occam enables a system to be described as a collection of concurrent pro-
cesses, which communicate with each other and with peripheral devices
through channels. occam programs are built from three primitive processes:

v := e assign expression e to variable v
c ! e output expression e to channel c
c ? v input from channel c to variable v

The primitive processes are combined to form constructs:

SEQuential components executed one after another
PARallel components executed together
ALTernative component first ready is executed

A construct is itself a process, and may be used as a component of another
construct.

Conventional sequential programs can be expressed with variables and as-
signments, combined in sequential constructs. IF and WHILE constructs
are also provided.

Concurrent programs can be expressed with channels, inputs and outputs,
which are combined in parallel and alternative constructs.

Each occam channel provides a communication path between two concurrent
processes. Communication is synchronised and takes place when both the
inputting process and the outputting process are ready. The data to be
output is then copied from the outputting process to the inputting process,
and both processes continue.

An alternative process may be ready for input from any one of a number
of channels. In this case, the input is taken from the channel which is first
used for output by another process.

4 The transputer

A transputer system consists of a number of interconnected transputers,
each executing an occam process and communicating with other transputers.
As a process executed by a transputer may itself consist of a number of
concurrent processes the transputer has to support the occam programming
model internally. Within a transputer concurrent processing is implemented
by sharing the processor time between the concurrent processes.

The most effective implementation of simple programs by a programmable

5



computer is provided by a sequential processor. Consequently, the trans-
puter processor is fairly conventional, except that additional hardware and
microcode support the occam model of concurrent processing.

4.1 Sequential processing

The design of the transputer processor exploits the availability of fast on-
chip memory by having only a small number of registers; six registers are
used in the execution of a sequential process. The small number of registers,
together with the simplicity of the instruction set enables the processor to
have relatively simple (and fast) data-paths and control logic.

The six registers are:

• The workspace pointer which points to an area of store where local
variables are kept.

• The instruction pointer which points to the next instruction to be
executed.

• The operand register which is used in the formation of instruction
operands.

• The A, B and C registers which form an evaluation stack, and are the
sources and destinations for most arithmetic and logical operations.
Loading a value into the stack pushes B into C, and A into B, before
loading A. Storing a value from A, pops B into A and C into B.

Expressions are evaluated on the evaluation stack, and instructions refer to
the stack implicitly. For example, the ’add’ instruction adds the top two
values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their
operands. Statistics gathered from a large number of programs show that
three registers provide an effective balance between code compactness and
implementation complexity.

6



No hardware mechanism is provided to detect that more than three values
have been loaded onto the stack. It is easy for the compiler to ensure that
this never happens.

4.2 Instructions

It was a design decision that the transputer should be programmed in a high-
level language. The instruction set has, therefore, been designed for simple
and efficient compilation. It contains a relatively small number of instruc-
tions, all with the same format, chosen to give a compact representation of
the operations most frequently occuring in programs. The instruction set is
independant of the processor wordlength, allowing the same microcode to be
used for transputers with different wordlengths. Each instruction consists
of a single byte divided into two 4 bit parts. The four most significant bits
of the byte are a function code, and the four least significant bits are a data
value.

4.2.1 Direct functions

The representation provides for sixteen functions, each with a data value
ranging from 0 to 15. Thirteen of these are used to encode the most impor-
tant functions performed by any computer. These include:

load constant add constant
load local store local
load local pointer
load non-local store non-local
jump conditional jump
call

The most common operations in a program are the loading of small literal
values, and the loading and storing of one of a small number of variables.
The ’load constant’ instruction enables values between 0 and 15 to be loaded
with a single byte instruction. The ’load local’ and ’store local’ instructions
access locations in memory relative to the workspace pointer. The first 16
locations can be accessed using a single byte instruction.

The ’load non-local’ and ’store non-local’ instructions behave similarly, ex-
cept that they access locations in memory relative to the A register. Com-
pact sequences of these instructions allow efficient access to data structures,

7



and provide for simple implementations of the static links or displays used
in the implementation of block structured programming languages such as
occam.

4.2.2 Prefix functions

Two more of the function codes are used to allow the operand of any in-
struction to be extended in length. These are:

prefix
negative prefix

All instructions are executed by loading the four data bits into the least
significant four bits of the operand register, which is then used as the the
instruction’s operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The ’prefix’ instruction loads its four data bits into the operand register,
and then shifts the operand register up four places. The ’negative prefix’
instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to
the length of the operand register by a sequence of prefix instructions. In
particular, operands in the range -256 to 255 can be represented using one
prefix instruction.

The use of prefix instructions has certain beneficial consequences. Firstly,
they are decoded and executed in the same way as every other instruction,
which simplifies and speeds instruction decoding. Secondly, they simplify
language compilation, by providing a completely uniform way of allowing
any instruction to take an operand of any size. Thirdly, they allow operands
to be represented in a form independent of the processor wordlength.

4.2.3 Indirect functions

The remaining function code, ’operate’, causes its operand to be interpreted
as an operation on the values held in the evaluation stack. This allows up
to 16 such operations to be encoded in a single byte instruction. However,
the prefix instructions can be used to extend the operand of an ’operate’

8



instruction just like any other. The instruction representation therefore
provides for an indefinite number of operations.

The encoding of the indirect functions is chosen so that the most frequently
occuring operations are represented without the use of a prefix instruction.
These include arithmetic, logical and comparison operations such as

add
exclusive or
greater than

Less frequently occuring operations have encodings which require a single
prefix operation (the transputer instruction set is not large enough to require
more than 512 operations to be encoded!).

4.3 Expression evaluation

Evaluation of expressions may require the use of temporary variables in the
process workspace, but the number of these can be minimised by careful
choice of the evaluation order.

Let depth(e) be the number of stack locations needed for the evaluation of
expression e, defined by:

depth(constant) = 1
depth(variable) = 1
depth(e1 op e2) = IF depth(e1) > depth(e2) THEN

depth(e1)
ELSE IF depth(e1) < depth(e2) THEN

depth(e2)
ELSE depth(e1) + 1

Let commutes(operator) be true if the operator commutes, false otherwise.

Let e1 and e2 be expressions. The expression of (e1 op e2) is compiled for
the 3 register stack by:

compile(e1 op e2) =
IF depth(e2) > depth(e1)
THEN

IF depth(el) > 2
THEN (compile(e2); store temp; compile(e1); load temp; op)
ELSE IF commutes(op)

THEN (compile(e2); compile(e1); op)
ELSE (compile(e2); compile(e1); reverse; op)

9



ELSE
IF depth(e2) < 3
THEN (compile(e1); compile(e2); op)
ELSE (compile(e2); store temp; compile(e1); load temp; op)

where (I1;I2; ... In) represents a sequence of instructions.

4.3.1 Efficiency of encoding

Measurements show that about 80% of executed instructions are encoded
in a single byte (i.e. without the use of prefix instructions). Many of these
instructions, such as ’load constant’ and ’add’ require just one processor
cycle.

The instruction representation gives a more compact representation of high
level language programs than more conventional instruction sets. Since a
program requires less store to represent it, less of the memory bandwidth
is taken up with fetching instructions. Furthermore, as memory is word
accessed the processor will receive several instructions for every fetch.

Short instructions also improve the effectiveness of instruction prefetch,
which in turn improves processor performance. There is an extra word
of prefetch buffer so that the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty
when a jump instruction causes the buffer contents to be discarded.

4.4 Support for concurrency

The processor provides efficient support for the occam model of concurrency
and communication. It has a microcoded scheduler which enables any num-
ber of concurrent processes to be executed together, sharing the processor
time. This removes the need for a software kernel. The processor does not
need to support the dynamic allocation of storage as the occam compiler is
able to perform the allocation of space to concurrent processes.

At any time, a concurrent process may be

active - being executed
- on a list waiting to be executed

inactive - ready to input
- ready to output
- waiting until a specified time

The scheduler operates in such a way that inactive processes do not consume
any processor time.

10



The active processes waiting to be executed are held on a list. This is a
linked list of process workspaces, implemented using two registers, one of
which points to the first process on the list, the other to the last.

In this illustration, S is executing, and P, Q and R are active, awaiting
execution:

A process is executed until it is unable to proceed because it is waiting to
input or output, or waiting for the timer. Whenever a process is unable
to proceed, its instruction pointer is saved in its workspace and the next
process is taken from the list. Actual process switch times are very small
as little state needs to be saved; it is not necessary to save the evaluation
stack on rescheduling.

The processor provides a number of special operations to support the process
model. These include

start process
end process

When a parallel construct is executed, ’start process’ instructions are used to
create the necessary concurrent processes. A ’start process’ instruction cre-
ates a new process by adding a new workspace to the end of the scheduling
list, enabling the new concurrent process to be executed together with the
ones already being executed. The correct termination of a parallel construct
is assured by use of the ’end process’ instruction. This uses a workspace lo-
cation as a counter of the components of the parallel construct which have
still to terminate. The counter is initialised to the number of components
before the processes are ’started’. Each component ends with an ’end pro-
cess’ instruction which decrements and tests the counter. For all but the
last component, the counter is non zero and the component is descheduled.
For the last component, the counter is zero and the component continues.

11



4.4.1 Communications

Communication between processes is achieved by means of channels. occam
communication is point-to-point, synchronised and unbuffered. As a result,
a channel needs no process queue, no message queue and no message buffer.

A channel between two processes executing on the same transputer is imple-
mented by a single word in memory; a channel between processes executing
on different transputers is implemented by point-to-point links. The proces-
sor provides a number of operations to support message passing, the most
important being

input message
output message

The ’input message’ and ’output message’ instructions use the address of
the channel to determine whether the channel is internal or external. This
means that the same instruction sequence can be used for both hard and soft
channels, allowing a process to be written and compiled without knowledge
of where its channels are connected.

As in the occam model, communication takes place when both the inputting
and outputting processes are ready. Consequently, the process which first
becomes ready must wait until the second one is also ready.

A process performs an input or output by loading the evaluation stack with
a pointer to a message, the address of a channel, and a count of the number
of bytes to be transferred, and then executing an ’input message’ or an
’output message’ instruction.

4.4.2 Internal channel communication

At any time, an internal channel (a single word in memory) either holds
the identity of a process, or holds the special value ’empty’. The channel is
initialised to ’empty’ before it is used.

When a message is passed using the channel, the identity of the first process
to become ready is stored in the channel, and the processor starts to execute
the next process from the scheduling list. When the second process to use
the channel becomes ready, the message is copied, the waiting process is
added to the scheduling list, and the channel reset to its initial state. It
does not matter whether the inputting or the outputting process becomes
ready first. In the following illustration, a process P is about to execute an
output instruction on an ’empty’ channel C. The evaluation stack holds a

12



pointer to a message, the address of channel C, and a count of the number
of bytes in the message.

After executing the output instruction, the channel C holds the address of
the workspace of P, and the address of the message to be transferred is
stored in the workspace of P. P is descheduled, and the process starts to
execute the next process from the scheduling list.

The channel C and the process P remain in this state until a second process,
Q executes an input instruction on the channel.

The message is copied, the waiting process P is added to the scheduling list,
and the channel C is reset to its initial ’empty’ state.

13



4.4.3 External channel communication

When a message is passed via an external channel the processor delegates
to an autonomous link interface the job of transferring the message and
deschedules the process. When the message has been transferred the link
interface causes the processor to reschedule the waiting process. This allows
the processor to continue the execution of other processes whilst the external
message transfer is taking place.

Each link interface uses three registers:

• A pointer to a process workspace.

• A pointer to a message.

• A count of bytes in the message.

In the following illustration, processes P and Q executed by different trans-
puters communicate using a channel C implemented by a link connecting
two transputers. P outputs, and Q inputs.

When P executes its output instruction, the registers in the link interface of
the transputer executing P are initialised, and P is descheduled. Similarly,
when Q executes its input instruction, the registers in the link interface of
the process executing Q are initialised, and Q is descheduled.

The message is now copied through the link, after which the workspaces of
P and Q are returned to the corresponding scheduling lists. The protocol

14



used on P and Q ensures that it does not matter which of P and Q first
becomes ready.

4.4.4 Timer

The transputer has a clock which ’ticks’ every microsecond. The current
value of the processor clock can be read by executing a ’Read timer’ instruc-
tion.

A process can arrange to perform a ‘timer input’, in which case it will become
ready to execute after a specified time has been reached.

The timer input instruction requires a time to be specified. If this time is in
the ’past’ (i.e. ClockReg AFTER SpecifiedTime) then the instruction has
no effect. If the time is in the ‘future’ (i.e. SpecifiedTime AFTER Clockreg
or SpecifiedTime = ClockReg) then the process is descheduled. When the
specified time is reached the process is scheduled again.

4.4.5 Alternative

The occam alternative construct enables a process to wait for input from any
one of a number of channels, or until a specific time occurs. This requires
special instructions, as the normal ’input’ instruction deschedules a process
until a specific channel becomes ready, or until a specific time is reached.
The instructions used are:

enable channel enable timer
disable channel disable timer
alternative wait

The alternative is implemented by ’enabling’ the channel input or timer
input specified in each of its components. The ’alternative wait’ is then used
to deschedule the process if none of the channel or timer inputs is ready;
the process will be re-scheduled when any one of them becomes ready. The

15



channel and timer inputs are then ’disabled’. The ’disable’ instructions are
also designed to select the component of the alternative to be executed; the
first component found to be ready is executed.

4.5 Inter-transputer links

To provide synchronised communication, each message must be acknowl-
edged. Consequently, a link requires at least one signal wire in each direc-
tion.

A link between two transputers is implemented by connecting a link interface
on one transputer to a link interface on the other transputer by two one-
directional signal lines, along which data is transmitted serially.

The two signal wires of the link can be used to provide two occam channels,
one in each direction. This requires a simple protocol. Each signal line
carries data and control information.

The link protocol provides the synchronised communication of occam. The
use of a protocol providing for the transmission of an arbitrary sequence of
bytes allows transputers of different wordlength to be connected. Each mes-
sage is transmitted as a sequence of single byte communications, requiring
only the presence of a single byte buffer in the receiving transputer to ensure
that no information is lost. Each byte is transmitted as a start bit followed
by a one bit followed by the eight data bits followed by a stop bit. After
transmitting a data byte, the sender waits until an acknowledge is received;
this consists of a start bit followed by a zero bit. The acknowledge signifies
both that a process was able to receive the acknowledged byte, and that
the receiving link is able to receive another byte. The sending link resched-
ules the sending process only after the acknowledge for the final byte of the
message has been received.

Data bytes and acknowledges are multiplexed down each signal line. An
acknowledge is transmitted as soon as reception of a data byte starts (if
there is room to buffer another one). Consequently transmission may be
continuous, with no delays between data bytes.

16



5 Summary

Experience with occam has shown that many applications naturally decom-
pose into a large number of fairly simple processes. Once an application
has been described in occam, a variety of implementations are possible. In
particular, the use of occam together with the transputer enables the de-
signer to exploit the performance and economics of VLSI technology. The
concurrent processing features of occam can be efficiently implemented by
a small, simple and fast processor.

The transputer therefore has two important uses. Firstly it provides a new
system ’building block’ which enables occam to be used as a design formal-
ism. In this role, occam serves both as a system description language and
a programming language. Secondly, occam and the transputer can be used
for prototyping highly concurrent systems in which the individual processes
are ultimately intended to be implemented by dedicated hardware.

References

[1] occam Programming Manual, Prentice-Hall International, 1984

[2] IMS T414 reference manual, Inmos Limited 1985.

17


	1 Introduction
	2 Architecture
	3 occam
	4 The transputer
	4.1 Sequential processing
	4.2 Instructions
	4.2.1 Direct functions
	4.2.2 Prefix functions
	4.2.3 Indirect functions

	4.3 Expression evaluation
	4.3.1 Efficiency of encoding

	4.4 Support for concurrency
	4.4.1 Communications
	4.4.2 Internal channel communication
	4.4.3 External channel communication
	4.4.4 Timer
	4.4.5 Alternative

	4.5 Inter-transputer links

	5 Summary
	References

