
Communicating
processes and occam

INMOS Technical Note 20

David May

February 1987
72-TCH-020-00

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4

2 Architecture 4
2.1 Locality . 5
2.2 Simulated and Real concurrency 5

3 The occam primitives 5

4 The Parallel Construct 7
4.1 Synchronised communication 8

5 The Alternative Construct 9
5.1 Output Guards . 10

6 Channels and hierarchical decomposition 11

7 Arrays and Replicators 12

8 Time 14

9 Types and Data structures 15

10 Implementation of occam 16
10.1 Compile time allocation . 16

11 Program Development 17
11.1 Configuration . 18

12 Occam Programs 19
12.1 Example - Systolic arrays . 21
12.2 Example - Occam compiler 22

13 Conclusions 23

References 23

3

1 Introduction

The occam programming language [1] enables an application to be described
as a collection of processes which operate concurrently and communicate
through channels. In such a description, each occam process describes the
behaviour of one component of the implementation, and each channel de-
scribes a connection between components.

The design of occam allows the components and their connections to be im-
plemented in many different ways. This allows the choice of implementation
technique to be chosen to suit available technology, to optimise performance,
or to minimise cost.

Occam has proved useful in many application areas. It can be efficiently
implemented on almost any computer and is being used for many purposes -
real time systems, compilers and editors, hardware specification and simu-
lation.

2 Architecture

Many programming languages and algorithms depend on the existence of the
uniformly accessible memory provided by a conventional computer. Within
the computer, memory addressing is implemented by a global communica-
tions system, such as a bus. The major disadvantage of such an approach is
that speed of operation is reduced as the system size increases. The reduc-
tion in speed arises both from the increased capacitance of the bus which
slows down every bus cycle, and from bus contention.

The aim of occam is to remove this difficulty; to allow arbitrarily large
systems to be expressed in terms of localised processing and communication.
The effective use of concurrency requires new algorithms designed to exploit
this locality.

The main design objective of occam was therefore to provide a language
which could be directly implemented by a network of processing elements,
and could directly express concurrent algorithms. In many respects, occam
is intended as an assembly language for such systems; there is a one-one
relationship between occam processes and processing elements, and between
occam channels and links between processing elements.

4

2.1 Locality

Almost every operation performed by a process involves access to a variable,
and so it is desirable to provide each processing element with local memory
in the same VLSI device.

The speed of communication between electronic devices is optimised by the
use of one directional signal wires, each connecting only two devices. This
provides local communication between pairs of devices.

Occam can express the locality of processing, in that each process has lo-
cal variables; it can express locality of communication in the each channel
connects only two processes.

2.2 Simulated and Real concurrency

Many concurrent languages have been designed to provide simulated concur-
rency. This is not surprising, since until recently it has not been economically
feasible to build systems with a lot of real concurrency.

Unfortunately, almost anything can be simulated by a sequential computer,
and there is no guarantee that a language designed in this way will be rel-
evant to the needs of systems with real concurrency. The choice of features
in such languages has been motivated largely by the need to share one com-
puter between many independent tasks. In contrast, the choice of features
in occam has been motivated by the need to use many communicating com-
puters to perform one single task.

An important objective in the design of occam was to use the same concur-
rent programming techniques both for a single computer and for a network
of computers. In practice, this meant that the choice of features in occam
was partly determined by the need for an efficient distributed implementa-
tion. Once this had been achieved, only simple modifications were needed
to ensure an efficient implementation of concurrency on a single sequential
computer. This approach to the design of occam perhaps explains some of
the differences between occam and other ‘concurrent’ languages.

3 The occam primitives

Occam programs are built from three primitive processes:

v := e assign expression e to variable v
c ! e output expression e to channel c
c ? v input from channel c to variable v

5

The primitive processes are combined to form constructs:

SEQ sequence
IF conditional

PAR parallel
ALT alternative

A construct is itself a process, and may be used as a component of another
construct.

Conventional sequential programs can be expressed with variables and as-
signments, combined in sequential and conditional constructs. The order
of expression evaluation is unimportant, as there are no side effects and
operators always yield a value.

Conventional iterative programs can be written using a while loop. The
absence of explicit transfers of control perhaps needs no justification in a
modern programming language; in occam it also removes the need to pro-
hibit, or define the effect of, transferring control out of a parallel component
or procedure.

Concurrent programs make use of channels, inputs and outputs, combined
using parallel and alternative constructs.

The definition and use of occam procedures follows ALGOL-like scope rules,
with channel, variable and value parameters. The body of an occam proce-
dure may be any process, sequential or parallel. To ensure that expression
evaluation has no side effects and always terminates, occam does not include
functions.

A very simple example of an occam program is the buffer process below.

WHILE TRUE
VAR ch:
SEQ
in ? ch
out ! ch

Indentation is used to indicate program structure. The buffer consists of
an endless loop, first setting the variable ch to a value from the channel in,
and then outputting the value of ch to the channel out. The variable ch is
declared by VAR ch. The direct correspondence between the program text
and the pictorial representation is important, as a picture of the processes
(processors) and their connections is often a useful starting point in the
design of an efficiently implementable concurrent algorithm.

6

4 The Parallel Construct

The components of a parallel construct may not share access to variables,
and communicate only through channels. Each channel provides one way
communication between two components; one component may only output
to the channel and the other may only input from it. These rules are checked
by the compiler.

The parallel construct specifies that the component processes are ”executed
together”. This means that the primitive components may be interleaved in
any order. More formally,

PAR SEQ
SEQ = x := e
x := a PAR
P P

Q Q

so that the initial assignments of two concurrent processes may be executed
in sequence until both processes start with an input or output. If one process
starts with an input on channel c, and the other an output on the same
channel c, communication takes place:

PAR SEQ
SEQ = x := e
c ! e PAR
P P

SEQ Q
c ? x
Q

The above rule states that communication can be thought of as a distributed
assignment.

7

Two examples of the parallel construct are shown below.

CHAN c:
PAR
WHILE TRUE
VAR ch:
SEQ
in ? ch
c ! ch

WHILE TRUE
VAR ch:
SEQ
c ? ch
out ! ch

VAR ch1:
VAR ch2:
SEQ
in ? ch1
WHILE TRUE
SEQ
PAR
in ? ch2
out ! ch1

PAR
in ? ch1
out ! ch2

The first consists of two concurrent versions of the previous example, joined
by a channel to form a ”double buffer”. The second is perhaps a more
conventional version. As ’black boxes’, each with an input and an output
channel, the behaviour of these two programs is identical; only their internals
differ.

4.1 Synchronised communication

Synchronised, zero-buffered, communication greatly simplifies programming,
and can be efficiently implemented. In fact, it corresponds directly to the
conventions of self timed signalling [2]. Zero buffered communication elimi-
nates the need for message buffers and queues. Synchronised communication
prevents accidental loss of data arising from programming errors. In an un-
synchronised scheme, failure to acknowledge data often results in a program
which is sensitive to scheduling and timing effects.

Synchronised communication requires that one process must wait for the
other. However, a process which requires to continue processing whilst com-
municating can easily be written:

8

PAR
c ! x
P

5 The Alternative Construct

In occam programs, it is sometimes necessary for a process to input from any
one of several other concurrent processes. This could have been provided
by a channel ‘test’, which is true if the channel is ready, false otherwise.
However, this is unsatisfactory because it requires a process to poll its inputs
”busily”; in some (but by no means all) cases this is inefficient.

Consequently, occam includes an alternative construct similar to that of
CSP [3]. As in CSP, each component of the alternative starts with a guard
- an input, possibly accompanied by a boolean expression. From an imple-
mentation point of view, the alternative has the advantage that it can be
implemented either ”busily” by a channel test or by a ”non-busy” scheme.
The alternative enjoys a number of useful semantic properties more fully
discussed in [4][5]; in particular, the formal relationship between parallel
and alternative is shown below:

ALT
c ? x
PAR

PAR P
SEQ SEQ
c ? x d ? y
P = Q

SEQ d ? y
d ? y PAR
Q Q

SEQ
c ? x
P

This equivalence states that if two concurrent processes are both ready to
input (communicate) on different channels, then either input (communica-
tion) may be performed first.

One feature of CSP omitted from occam is the automatic failure of a guard
when the process connected to the other end of the channel terminates. Al-
though this is a convenient programming feature, it complicates the channel
communication protocol, introducing the need for further kinds of message.
In addition, it can be argued that many programs are clearer if termination
is expressed explicitly.

9

A simple example of the alternative is shown below; this is a ’stopable’ buffer
program

WHILE going
ALT
in ? ch
out ! ch

stop ? ANY
going := FALSE

in which stop ? ANY inputs any value from the channel stop, and as a
result causes the loop to terminate.

5.1 Output Guards

Output guards are a very convenient programming tool. In particular, they
allow programs such as the following buffer process to be written in a natural
way.

WHILE TRUE
ALT
count>0 & output ! buff [outpointer]
SEQ
outpointer := (outpointer + 1) REM max
count := count - 1

count<max & input ? buff [inpointer]
SEQ
inpointer := (inpointer + 1) REM max
count := count + 1

It is very tempting to include output guards in a communicating process
language, and attempts have been made to include output guards in occam.
The major difficulty is in the distributed implementation; in a program such
as

PAR
ALT
c ! x1
d ? x2

ALT
c ? y1
d ! y2

what is expected to happen in the event that two identical processors both
enter their alternative at exactly the same time? Clearly some asymmetry

10

must be introduced; the easiest way to do this is to give each processor in
a system a unique number. Even so, the provision of output guards greatly
complicates the communications protocol. For this reason, output guards
are omitted from occam, and the above buffer must be written as shown
below.

PAR
WHILE TRUE
ALT
count>0 & req ? ANY
SEQ
reply ! buff [outpointer]
outpointer := (outpointer + 1) REM max
count := count - 1

count<max & input ? buff [inpointer]
SEQ
inpointer := (inpointer + 1) REM max
count := count + 1

WHILE TRUE
SEQ
req ! ANY
reply ? ch
output ! ch

On the other hand, an occam implementation with only input guards can
be used to write the communications kernel for a ”higher level” version
of occam with output guards. An example of an algorithm to implement
output guards in CSP is given in [6]; and one for occam is given in [7].

6 Channels and hierarchical decomposition

An important feature of occam is the ability to successively decompose a
process into concurrent component processes. This is the main reason for the
use of named communication channels in occam. Once a named channel is
established between two processes, neither process need have any knowledge
of the internal details of the other. Indeed, the internal structure of each
process can change during execution of the program. The parallel construct,
together with named channels provides for decomposition of an application
into a hierarchy of communicating processes, enabling occam to be applied to
large scale applications. This technique cannot be used in languages which
use process (or ’entry’) names, rather than channels, for communication.

In specifying the behaviour of a process, it is important that a specification
of the protocol used on the channel exists, and the best way to do this varies

11

from program to program (or even from channel to channel!). For exam-
ple, Backus-Naur Form is often suitable for describing the messages which
pass between the individual processes of a linear pipeline of processes. On
the other hand, for more complex interactions between processes, it is often
useful to describe the interactions by an occam ”program” in which all un-
necessary features are omitted. This often enables the interactions between
processes to be studied independently of the data values manipulated. For
example:

SEQ
request ?
WHILE TRUE
PAR
reply !
request ?

describes a process which inputs a request, and then endlessly inputs a
new request and outputs a reply, in either order. Such a process would be
compatible, in some sense, with any of the following processes:

WHILE TRUE SEQ SEQ
SEQ request ! request !
request ! WHILE TRUE WHILE TRUE
reply ? SEQ PAR

request ! request !
reply ? reply ?

More design aids are needed to assist in the specification and checking of
channel protocols.

7 Arrays and Replicators

The representation of arrays and ’for’ loops in occam is unconventional.
Although this has nothing to do with the concurrency features of occam, it
seems to have significant advantages over alternative schemes.

To eliminate trivial programming errors, it is desirable that there is a simple
relationship between an array declaration and a loop which performs some
operation for every element of an array. This might lead a language designer
to a choice of

ARRAY a [base TO limit] ...

FOR i IN [base TO limit] ...

12

It is also useful if the number of elements in an array, or the number of
iterations of a loop, is easily visible. For this reason, a better choice might
be

ARRAY a [base FOR count] ...

FOR i IN [base FOR count] ...

For the loop, this gives a further advantage: the ’empty’ loop corresponds to
count=0 instead of limit¡base. This removes the need for the unsatisfactory
’loop’:

FOR i IN [0 TO -1]

Implementation can be simplified by insisting that all arrays start from 0.
Finally, in occam the FOR loop is generalised, and its semantics simplified.
An occam ’replicator’ can be used with any of SEQ, PAR, ALT and IF; its
meaning is defined by:

X n = b FOR c = X
P(n) P (b)

P (b+1)
...
P (b+c-1)

where X is one of SEQ, PAR, ALT and IF, n is a name and b, c expressions.
This definition implicitly defines the ’control variable’ n, and prevents it
being changed by assignments within P.

The introduction of arrays of variables and channels does complicate the
rules governing the correct use of channels and variables. Simple compile-
time checks which are not too restrictive are:

• No array changed by assignment (to one of its components) in any of
the components of a parallel may be used in any other component.

• No two components of a parallel may select channels from the same
array using variable subscripts.

• A component of a parallel which uses an array for both input and out-
put may not select channels from the array using variable subscripts.

where a variable subscript is a subscript which cannot be evaluated by the
compiler.

13

8 Time

The treatment of time in occam directly matches the behaviour of a con-
ventional alarm clock.

Time itself is represented in occam by values which cycle through all possible
integer values. Of course, it would have been possible to represent time by
a value large enough (say 64 bits) to remove the cyclic behaviour, but this
requires the use of multiple length arithmetic to maintain the clock and is
probably not justified.

Using an alarm clock, it is possible at any time to observe the current time,
or to wait until the alarm goes off. Similarly, a process must be able to read
the clock at any time, or wait until a particular time. If it were possible
only to read the clock, a program could only wait until a particular time
”busily”. Like the alternative construct, the ”wait until a time” operation
has the advantage that it can be implemented ”busily” or ”non-busily”.

A timer is declared in the same way as a channel or variable. This gives rise
to a relativistic concept of time, with different timers being used in different
parts of a program. A localised timer is much easier to implement than a
global timer.

A timer is read by a special ’input’

time ? v

which is always ready, and sets the variable v to the time. Similarly, the
’input’

time ? AFTER t

waits until time t.

The use of an absolute time in occam instead of a delay is to simplify the
construction of programs such as

WHILE TRUE
SEQ
time ? AFTER t
t := t + interval
output ! bell

in which n rings of the bell will always take between (n*interval) and n*
(interval+1) ticks. This would not be true of a program such as

14

WHILE TRUE
SEQ
DELAY interval
output ! bell

because of the time taken to ring the bell.

It is not possible, in occam, for a process to implement a timer. This would
require a ’timer output’ such as

timer ! PLUS n

which advances the timer by n ticks. There is no obvious reason why this
could not be included in occam. It would be particularly useful in construct-
ing timers of different rates, or in writing a process to provide ’simulated
time’.

9 Types and Data structures

The occam described so far makes few assumptions about data types. Any
data type could be used - provided that values of that type can be assigned,
input and output according to the rule

PAR
c ! x = y := x
c ? y

To preserve this rule, and keep the implementation of communication simple,
it is best for assignment not to make type conversions.

The initial version of occam provides untyped variables and one dimensional
arrays. No addressing operations are provided, as this would make it im-
possible for the compiler to check that variables are not shared between
concurrent processes.

Occam has been extended to include data types. The simple variable is
replaced with boolean, byte and integer types, and multi-dimensional arrays
are provided. Communication and assignment operate on variables of any
data type, allowing arrays to be communicated and assigned.

A detailed description can be found in [8].

15

10 Implementation of occam

The implementation of concurrent processes and process interaction in oc-
cam is straightforward. ’this results from the need to implement occam on
the transputer using simple hardware and a small number of microcoded
instructions. Conveniently, the transputer instructions used to implement
occam can be used as definitions of the ’kernel primitives’ in other imple-
mentations of occam. A discussion of the implementation of occam can be
found in [9]. However, some measure of the efficiency of the occam primitives
is provided by the performance of the Inmos transputer: about 1 microsec-
ond/component of PAR, and 1.5 microseconds for a process communication.

Another interesting feature of occam is that the process interactions directly
represent hardware mechanisms, which is one reason why occam is being
used as a hardware description language.

10.1 Compile time allocation

For runtime efficiency, the advantages of allocating processors and memory
at compile time are clear. To allow the compiler to allocate memory, some
implementation restrictions are imposed. Firstly, the number of components
of an array, and the number of concurrent processes created by a parallel
replicator, must be known at compile time. Secondly, no recursive proce-
dures are allowed. The effect of these restrictions is that the compiler can
establish the amount of space needed for the execution of each component
of a parallel construct, and this makes the run-time overhead of the parallel
construct very small.

On the other hand, there is nothing in occam itself to prevent an implemen-
tation without these restrictions, and this would be fairly straightforward
for a single computer with dynamic memory allocation.

A distributed implementation of ’recursive occam’ might allow a tree of
processors to be described by:

PROC tree (VALUE n, CHAN down, CHAN up)
IF
n=0
leaf (down, up)

n>0
CHAN left.down, left.up
CHAN right.down, right.up
PAR
tree (n-1, left.down, left.up)
tree (n-1, right.down, right.up)

16

node (down, up,
left.down, left.up,
right.down, right.up)

If the depth of the tree is known at compile time (as it normally would be
if the program is to be executed on a fixed size processor array), the same
effect can be achieved by a non-recursive program such as:

DEF p = TABLE [1, 2, 4, 8, 16, 32, 64, 128]:

-- depth of tree = n
CHAN down [n*(n-1)] :
CHAN up [n*(n-1)] :

PAR
PAR i = [0 FOR n-1]
PAR j = [0 FOR p[i]]
branch (down [p[i] + j], up [p[i] + j],

down [p[i+1]+(j*2)], up [p[i+1]+(j*2)],
down [p[i+1]+(j*2)+1], up [p[i+1]+(j*2)+1])

PAR i = [0 FOR p[n]]
leaf (down [p[n]+i], up [p[n]+i])

Obviously, a pre-processor could be used to provide a correctness preserving
transformation between these two programs.

If the depth of the tree above were not known, it is not clear how such a
program could be mapped onto a processor array, either explicitly by the
programmer or implicitly by the implementation. Fortunately, this problem
can be left for the future; many applications require only simple compile
time allocation of processors and memory space.

11 Program Development

The development of programs for multiple processor systems is not trivial.
One problem is that the most effective configuration is not always clear
until a substantial amount of work has been done. For this reason, it is very
desirable that most of the design and programming can be completed before
hardware construction is started.

This problem is greatly reduced by the property of occam mentioned above:
the use of the same concurrent programming techniques for both a network
and a single computer. A direct consequence of this is that a program ulti-
mately intended for a network of computers can be compiled and executed
efficiently by a single computer used for program development.

17

Another important property of occam in this context is that occam pro-
vides a clear notion of ”logical behaviour”; this relates to those aspects of a
program not affected by real time effects. It is guaranteed that the logical
behaviour of a program is not altered by the way in which processes are
mapped onto processors, or by the speed of processing and communication.

This notion of ”logical behaviour” results from the relatively abstract speci-
fication of parallel and alternative; it allows almost any scheduling system to
be used to simulate concurrency. For the parallel construct, an implementa-
tion may choose the order in which the individual actions of the components
are executed. If several components are ready (not waiting to communicate),
the implementation may execute an arbitrary subset of them and temporar-
ily ignore the rest. For the alternative, an implementation may select any
ready component; there is no requirement to select the ”earliest”, or to select
randomly.

11.1 Configuration

The configuration of a program to meet real time constraints is provided
by annotations to the parallel and alternative constructs. For the parallel
construct, the components may be placed on different processors, or may
be prioritised. For the alternative construct, the components may be priori-
tised. A better version of the ’stoppable’ buffer shown earlier would therefore
be:

WHILE going
PRI ALT
stop ? ANY
going := FALSE

in ? ch
out ! ch

A prioritised alternative can easily be used to provide either a prioritised or
a ’fair’ multiplexor:

WHILE TRUE -- prioritised
PRI ALT i = 0 FOR 10
in [i] ? ch
out ! ch

WHILE TRUE -- ‘fair’
PRI ALT i = 0 FOR 10
in [(i+last) REM 10] ? ch
SEQ

18

out ! ch
last := (i+1) REM 10

In practice, only limited use is made of prioritisation. For most applica-
tions, the scheduling of concurrent processes and the method of selecting
alternatives is unimportant. This is because, assuming that the system is
executing one program, the processes which are consuming all of the pro-
cessing resources must eventually stop, and wait for the other processes to
do something. If this is not the case, the other processes are redundant,
and can be removed from the program. An implementation should not, of
course, allow a processor to idle if there is something for it to do. But this
property is true of any programming language!

Scheduling is important where a system executes two disjoint processes, or
has to meet some externally imposed constraint. Both of these occur, for
example, in an operating system which deals with disjoint users, and needs
to take data from a disk at an externally imposed rate.

12 Occam Programs

Despite being a fairly small language, occam supports a very wide variety
of programming techniques. Most important, the programmer may choose
between a concurrent algorithm or an equivalent sequential one. A final
program often consists of a mixture of the two, in which the concurrent
algorithm describes a network of transputers, each of which executes the
sequential algorithm.

In practice, it is often best to write the concurrent algorithm first. The
reason for this is that only the concurrent program provides freedom in the
implementation. A pipeline of ten processes could be executed by a pipeline
constructed from up to ten transputers; the number being chosen according
to the performance required. It is very unlikely that a sequential program
can easily be adapted to produce a concurrent program, never mind one
suitable for execution by a network of transputers with no shared memory.

The following example is a concurrent searching algorithm. It uses the tree
program shown earlier. The data to be searched is held in the leaf processors;
the node processors are used to disperse the data to the leaves and collect
the replies.

PROC leaf (CHAN down, up) =
VAR data, enq:
SEQ
... -- load data

19

WHILE TRUE
SEQ
down ? enq
up ! (enq = data)

PROC node (CHAN down, up,
CHAN left.down, left.up,
CHAN right.down, right.up) =

WHILE TRUE
VAR enq, left.found, right.found:
SEQ
down ? enq
PAR
left.down ! enq
right.down ! enq

PAR
left.up ? left.found
right.up ? right.found

up ! left.found OR right.found

However, it is unlikely to be economic to store only one data item in each
leaf. Although each leaf could itself execute the above algorithm using a
tree of processes, this would not be very efficient. What is needed in each
leaf is a conventional sequential searching algorithm operating on an array
of data:

PROC leaf (CHAN down, up) =
VAR enq, data [length], found:
SEQ
... -- initialise data
WHILE TRUE
SEQ
found := FALSE
down ? enq
SEQ i = [0 FOR length]
found := (data [i] = enq) OR found

up ! found

It now remains to choose the number of items held in each leaf so that the
time taken to disperse the enquiry and collect the response is small relative
to the time taken for the search at each leaf. For example, if the time taken
for a single communication is 5 microseconds, and the tree is of depth 7 (128
leaves) only 70 microseconds is spent on communication, about one tenth of
the time taken to search 1000 items.

20

12.1 Example - Systolic arrays

A very large number of concurrent algorithms require only the simplest con-
currency mechanisms: the parallel construct and the communication chan-
nel. These include the ’systolic array’ algorithms described by Kung [10].
In fact, occam enables a systolic algorithm to be written in one of two ways,
illustrated by the following two versions of a simple pipeline, each element
of which performs a ’compute’ step. First, the traditional version:

VAR master [n]:
VAR slave [n] :
WHILE TRUE
SEQ
PAR i = 0 FOR n
compute (master [i], slave [i])

PAR
input ? master [0]
PAR i = 0 FOR n-1
master [i + 1] := slave [i]

output ! slave [n]

This pipeline describes a conventional synchronous array processor. The
compute operations are performed in parallel, each taking data from a mas-
ter register and leaving its result in a slave register. The array processor
is globally synchronised; in each iteration all compute operations start and
terminate together, then the data is moved along the pipeline. The initiali-
sation of the pipeline is omitted, so the first n outputs will be rubbish.

The main problem with the above program is the use of global synchro-
nisation, which gives rise to the same implementation difficulties as global
communication; it requires that the speed of operation must be reduced as
the array size increases. A more natural program in occam would be

CHAN c [n + 1] :
PAR i = 0 FOR n
WHILE TRUE
VAR d:
VAR r:
SEQ
c [n] ? d
compute (d, r)
c [n + 1] ! r

In this program, c[0] is the input channel, c[n+1] the output channel. Once
again, all of the compute operations are performed together. This time there

21

is no need for initialisation, as no output can be produced until the first input
has passed right through the pipeline. More important, the pipeline is self
synchronising; adjacent elements synchronise only as needed to communicate
data. It seems likely that many systolic array algorithms could usefully be
re-expressed and implemented in this form.

12.2 Example - Occam compiler

The structure of the occam compiler is shown below. It demonstrates an
important feature of the occam support system; the ability to ’fold’ sections
of program away, leaving only a comment visible. This enables a program,
or part of a program, to be viewed at the appropriate level of detail.

-- occam compiler
CHAN lexed.program:
CHAN parsed.program:
CHAN scoped.program:
PAR
-- lexer
CHAN name.text:
CHAN name.code:
PAR
-- scanner
-- nametable

-- parser
CHAN parsed.lines :
PAR
-- line parser
-- construct parser

-- scoper

-- generator
CHAN generated.constructs :
CHAN generated.program :
PAR
-- construct generator
-- line generator
-- space allocator

The compiler also illustrates an important programming technique. The
nametable process contains data structures which are hidden from the rest
of the program. These structures are modified only as a result of messages
from the lexical analyser. They are initialised prior to receipt of the first
message.

22

-- nametable
SEQ
-- initialise
WHILE going
-- input text of name
-- look up name
-- output corresponding code

-- terminate

From the outside, the compiler appears to be a single pass compiler. In-
ternally, it is more like a multiple pass compiler; each process performs a
simple transformation on the data which flows through it. The effect of
decomposing the compiler in this way was that each component process was
relatively easy to write, specify and test; this meant that the component
processes could be written concurrently!

13 Conclusions

In many application areas, concurrency can be used to provide consider-
able gains in performance provided that programs are structured to exploit
available technology. For many -application areas (especially signal process-
ing and scientific computation) suitable algorithms already exist, but many
areas remain to be explored.

Writing programs in terms of communicating processes tends to produce
programs with a large number of concurrent processes, ranging in size from 1
to 1000 lines. Consequently, it is particularly important that the concurrent
processing features in the language are efficiently implementable. Occam
demonstrates that this efficiency can be achieved for a widely applicable
language.

In occam programs, the process/channel structure tends to be used as a
major program structuring tool, procedures being used in the normal way
within the larger concurrent processes. The process/channel structure seems
to be effective for managing the construction of large programs, although
more experience is needed in this area.

References

[1] Occam Programming Manual. Prentice-Hall International 1984.

[2] C A Mead and L A Conway: Introduction to VLSI Systems. Addison
Wesley 1980 Section 5.

23

[3] Communicating Sequential Processes, C A R Hoare, Communications
of the ACM Vol. 21, 8 (August 1978) p. 666.

[4] Denotational Semantics for Occam, A W Roscoe. Presented at
NSF/SERC Seminar on Concurrency, Carnegie-Mellon University, July
1984. To be published.

[5] The Laws of Occam Programming, A W Roscoe and C A R Hoare,
Programming Research Group, Oxford University, 1986.

[6] An Effective Implementation for the Generalised Input-Output Con-
struct of CSP. G N Buckley and A Silberschatz, ACM Transactions on
Programming Languages and Systems Vol. 5, 2 (April 1983) p. 224.

[7] A Protocol for Generalised Occam, R Bornat, Department of Computer
Science, Queen Mary College, London 1984.

[8] Occam 2 Reference Manual, INMOS Ltd, 1987

[9] The Transputer Implementation of occam, Technical note 21. INMOS
Ltd

[10] Lets Design Algorithms for VLSI Systems, H T Kung, in: C A Mead
and L A Conway: Introduction to VLSI Systems. Addison Wesley 1980
Section 8.3.

24

	1 Introduction
	2 Architecture
	2.1 Locality
	2.2 Simulated and Real concurrency

	3 The occam primitives
	4 The Parallel Construct
	4.1 Synchronised communication

	5 The Alternative Construct
	5.1 Output Guards

	6 Channels and hierarchical decomposition
	7 Arrays and Replicators
	8 Time
	9 Types and Data structures
	10 Implementation of occam
	10.1 Compile time allocation

	11 Program Development
	11.1 Configuration

	12 Occam Programs
	12.1 Example - Systolic arrays
	12.2 Example - Occam compiler

	13 Conclusions
	References

