
Designs and applications
for the IMS C004

INMOS Technical Note 19

Glenn Hill

September 1988
72-TCH-019

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4

2 IMS C004 programmable link switch 4
2.1 The INMOS serial link interface 5
2.2 Switch implementation . 6
2.3 Functionality of the IMS C004 7

3 Versatility of the IMS C004 8
3.1 A small increase in crossbar capacity 9
3.2 A large increase in crossbar capacity 10
3.3 Design example for cascading IMS C004s 12

4 Using the IMS C004 to configure transputer networks 13
4.1 Complete connectivity of a network using four crossbars . . . 13
4.2 Complete connectivity of a network using two crossbars . . . 15

5 Using the IMS C004 as a general purpose communication
crossbar 15
5.1 occam implementation of a 32 stage bidirectional exchange . 16

5.1.1 Notes . 17
5.1.2 Controller . 17
5.1.3 Input.Output . 19

5.2 Message length . 22

6 Conclusions 22

3

1 Introduction

The IMS C004 is a 32-way crossbar switch that supports the INMOS link
protocol. This article describes its functionality, discusses how it may be
used as a design element to provide larger crossbar switches, and how it
may be applied to configure large transputer networks. It also suggests how
it can be used as a general purpose communication engine, and gives an
occam description of a message routing exchange.

It includes a concise description of the IMS C004’s functionality using Hoare’s
CSP notation as well as a CSP description of the message routing exchange.

Figure 1: IMS C004 block diagram

2 IMS C004 programmable link switch

The INMOS communication link is a new standard for system intercon-
nection. It uses the capabilities of VLSI to offer simple, easy-to-use and
cheap interconnections for computer systems. The serial link is a funda-
mental component of, and was developed as part of, the INMOS transputer
architecture. The transputer is a single VLSI device with memory, proces-
sor and communications links for direct connection to other transputers.
It is a programmable component which enables systems to be constructed
from a collection of transputers that operate concurrently and communicate
through links.

The IMS C004 programmable link switch provides a full crossbar switch
between 32 link inputs and 32 link outputs. It will switch links running at

4

standard transputer speeds (10 and 20 Mbits/sec). It introduces a 1.6 to
2 bit time delay on the signal.

The link switch can be cascaded to any depth without loss of signal integrity
and it can be used to construct reconfigurable networks of arbitrary size.

The IMS C004 is programmed via a separate serial link called the configu-
ration link.

2.1 The INMOS serial link interface

Figure 2: Standard clock input

INMOS serial links are standard across all products in the transputer prod-
uct range. All transputers will support a standard communications fre-
quency of 10 Mbits/sec, regardless of processor performance. Thus transput-
ers of different performance can be connected directly and future transputer
systems will be able to communicate directly with those of today. Each link
consists of a serial input and a serial output, both of which are used to carry
data and link control information.

A message is transmitted as a sequence of bytes. After transmitting a data
byte, the sender waits until an acknowledge has been received, signifying that
the receiver is ready to receive another byte. The receiver can transmit an
acknowledge as soon as it starts to receive a data byte, so that transmission
can be continuous. This protocol provides handshake communication of each
byte of data, ensuring that slow and fast transputers communicate reliably.
When there is no activity on the links they remain at logic 0, GND potential.

A 5 MHz input clock is used, from which internal timings are generated.
Link communication is not sensitive to clock phase. Thus communication
can be achieved between independently clocked systems, provided that the
communications frequency is within the specified tolerance.

Figure 3: Link protocol

5

2.2 Switch implementation

The IMS C004 is internally organised as a set of thirty two 32-to-1 multi-
plexers. Each multiplexer has associated with it a six bit latch, five bits
of which select one input as the source of data for the corresponding out-
put. The sixth bit is used to connect and disconnect the output. These
latches can be read and written by messages sent on the configuration link
via ConfigLinkIn and ConfigLinkOut.

The output of each multiplexer is synchronised with an internal high speed
clock and regenerated at the output pad. This synchronisation introduces,
on average, a 1.75 bit time delay on the signal. As the signal is not elec-
trically degraded in passing through the switch, it is possible to form links
through an arbitrary number of link switches.

Each input and output is identified by a number in the range 0 to 31. A
configuration message consisting of one, two or three bytes is transmitted
on the configuration link. The configuration messages sent to the switch on
this link are shown in the table.

Configuration Message Function
[0] [input] [output] Connects input to output.
[1] [link1] [link2] Connects link1 to link2 by connecting the

input of link1 to the output of link2 and
the input of link2 to the output of link1.

[2] [output] Enquires which input the output is con-
nected to. The IMS C004 responds with
the input. The most significant bit of this
byte indicates whether the output is con-
nected (bit set high) or disconnected (bit
set low).

[3] This command byte must be sent at the
end of every configuration sequence which
sets up a connection. The IMS C004 is
then ready to accept data on the con-
nected inputs.

[4] Resets the switch. All outputs are discon-
nected and held low. This also happens
when Reset is applied to the IMS C004.

[5] [output] Output output is disconnected and held
low.

[6] [link1] [link2] Disconnects the output of link1 and the
output of link2.

6

2.3 Functionality of the IMS C004

This section gives a textual description of the functionality of the IMS C004.
For a more formal description refer to section 7.

As detailed in section 2.2, there are seven commands that are used to set
up the IMS C004. (N.B. In first revision of silicon, the two disconnect
commands were not included.) These will be referred to in this document
as

ct.reset (BYTE 4)
ct.input.output (BYTE 0)
ct.link (BYTE 1)
ct.enquire (BYTE 2)
ct.disconnect.output (BYTE 5)
ct.disconnect.link (BYTE 6)
ct.setup (BYTE 3)

These commands are sent to the IMS C004 via the configuration link (Con-
figLinkIn, ConfigLinkOut). These single byte commands may be followed
by output identifiers, input identifiers or link identifiers as explained below,
all of which should be in the range BYTE 0 .. BYTE 31.

After power on reset, the single byte command ct.reset should be executed.
This ensures that all inputs are disabled (i.e. cannot receive data) and all
outputs are inactive (i.e. are not connected to any input).

The ct.enquire byte should be followed by an output identifier.. The IMS C004
will then return, via the configuration link, an input identifier which repre-
sents the input to which that output is connected. This will be independent
of whether or not that output is active. The most significant bit (bit 7) is
set to 1 if the output is active. (N.B. In first revision of silicon this was not
implemented.) Hence after a ct.reset command it is possible to find out to
which input an output has been connected prior to the command. After a
power on reset the input identifier returned after a ct.enquire command will
be arbitrary.

The ct.input.output byte should be followed by an input identifier and an
output identifier. This command enables the specified input, connects the
specified output to that input and activates that output.

The ct.link byte should precede two link identifiers. This command is equiv-
alent to two ct.input.output cornmands in which the identifiers are reversed;
i.e.

ct.link link1 link2 = ct.input.output link1 link2;
ct.input.output link2 link1

7

The ct.disconnect.output byte should be followed by an output identifier.
This command makes the specified output inactive.

The ct.disconnect.link byte should precede two link identifiers. This com-
mand is equivalent to two consecutive ct.disconnect.output commands; i.e.

ct.disconnect.link link1 link2 = ct.disconnect.output link1;
ct.disconnect.output link2

The ct.setup command is a single byte command that should be sent to the
IMS C004 prior to using data links that have been redirected by the setup
commands (ct.input.output or ct.link) to ensure that the IMS C004 has had
enough time to be programmed correctly.

Figure 4: IMS C004 implementation

3 Versatility of the IMS C004

Since IMS C004’s are digital devices that effectively regenerate received data
for transmission, they can be used as elements of larger switching networks
without any signal degradation occurring when a link path is routed through
several elements. The only drawback is that each IMS C004 can introduce
a delay of up to 2 bits, and since each byte transfer requires a data and
acknowledge packet to comply with the link protocol, the communication
bandwidth is reduced by each IMS C004.

The IMS C004 is a 32-way crossbar switch. This doesn’t however restrict
a designer to using a crossbar of this size. Large crossbars can be designed

8

from smaller crossbar elements. This section introduces two possible design
methods to achieve this, and describes how these methods can be used for
cascading IMS C004s.

3.1 A small increase in crossbar capacity

If a crossbar element of size M is available (M = 32 for an IMS C004)
and a design requires a slightly larger crossbar, this can be achieved using
three crossbars to produce a single crossbar of greater capacity. Figure 8
shows a special case where three identical crossbars (size M) are combined
to produce a 50% larger crossbar (size 3M/2). The following text explains
why this arrangement achieves the objective.

Assume that an N-way crossbar is required. That is, a circuit that can
connect N inputs to N outputs in any permutation.

A trivial way of doing this is shown in figure 5. It is immediately obvious
that this design has not achieved anything, since two N-way crossbars have
been merged to derive a single N-way crossbar. Nevertheless, it is easy to
see that the required circuit has been produced.

Figure 5:

Another design that achieves our objective is shown in figure 6. Provided
that we are happy with the design of figure 5, it is not very difficult to
convince ourselves that this new design will also satisfy the requirement
that any input can be connected to any output. If any input needs to be
connected to either output 0 or output 1, then it must be routed via the
2-way crossbar. This still is not a particularly useful design, since there is
a great deal of expense in producing a crossbar only one dimension larger
than the two needed to implement it.

However, the concept is important because there is no reason why we can-
not increase the size of the smaller crossbar, hence reducing the size of the
larger ones to achieve the same result. Figure 7 shows the generalised de-
sign structure for combining three crossbars in this way to produce a larger

9

Figure 6:

crossbar. Now, if all three crossbars are of size M they combine to derive a
crossbar of size 3M/2 (figure 8).

Figure 7:

Figure 8:

Three MS C004s can therefore be used to implement a 48-way crossbar.

3.2 A large increase in crossbar capacity

A large crossbar can be derived from smaller crossbar elements (M-way) as
shown in figure 9. A first attempt at defining the unknown block might be
a simple interconnection as shown in figure 10. But an obvious requirement

10

for figure 9 is that there should be at least M paths between any input
crossbar and output crossbar, which figure 10 does not satisfy.

Figure 9: Large crossbar design using smaller crossbar elements

Figure 10: A first attempt

An arrangement which does satisfy this requirement is shown in figure 11.
This uses 3n elements of size M to implement an nM-way crossbar where
n ≤ M. A crossbar switch with M inputs and M outputs can be used to
design a crossbar with up to M2 inputs and M2 outputs. Note that it also
has the property that each input to output connection will always be routed
through three of the smaller elements.

But note that since we cannot have a fraction of a link, this description uses
integer arithmetic. In general, therefore, it is possible to design a crossbar
of size n(M - M mod n).

Using this assertion here are some examples for a C004 (where M=32):

11

Figure 11: An nM-way crossbar design for a fixed delay

n C004s size of crossbar
2 6 64
3 9 90
4 12 128
5 15 150
. . .
. . .

32 96 1024

3.3 Design example for cascading IMS C004s

From section 3.1, it can be seen that three IMS C004’s can be cascaded to
derive a 48-way crossbar, and from section 3.2 that 3n IMS C004’s can be
used to achieve a crossbar of size n(32 - 32 mod n) for n ≤ 32.

Sometimes a choice must be made between the two design techniques. For
example If two 45-way crossbars are required, then the first design could
be implemented using six IMS C004’s (three IMS C004’s for each crossbar).
Alternatively, two 45-way crossbars are a subset of a single 90-way crossbar
(which has the bonus of extra flexibility), and this can be implemented using
nine IMS C004’s in the second design. If such a choice is to be made then
the following properties should be considered. The first design will route
each link path through 1, 2 or 3 IMS C004s, whereas the other will always
route through three IMS C004’s. The average link delay of the first will
therefore be smaller, which will usually be preferable, but a fixed link delay
might be more desirable. The software support for setting up the second
cascade is simpler because the design is more uniform and the crossbar is
more flexible. Finally the first design will use fewer IMS C004’s.

12

4 Using the IMS C004 to configure transputer net-
works

Figure 12: Complete connectivity of a network using four crossbars

4.1 Complete connectivity of a network using four crossbars

The design suggested in this section makes use of the property that all four
transputer links are identical. This means that as far as the configuration
software is concerned, it doesn’t care on which link a hard channel is placed,
provided that each is connected o the transputer specified by that software.
Because of this we can choose any link numbering scheme when trying to
configure a network with crossbars.

It is always possible to set a network of transputers to any configuration
using just four crossbars. The size of the crossbars should be at least as
great as the number of transputers in the network. For example, a 32 node
network can be configured using four IMS C004’s, and a 48 node network
can be configured using twelve (making use of an IMS C004 cascade ar-
ranged as shown in figure 8). Although a complete proof of this statement
is outside the scope of this text, we will show how this can be achieved for
configurations that contain a Hamitonian Cycle (i.e. a route through the
network that visits every node once only). This method will be applicable
to most interesting configurations. The hardware arrangement is as shown
in figure 4. Note that crossbar A connects link 0 outputs to link 1 inputs,
crossbar B connects link 1 outputs to link 0 inputs, and crossbars C and D

13

similarly connect links 2 and 3.

Firstly, find a Hamiltonian Cycle (if one exists) through the network and
choose a link 0 to link 1 connection between all transputers. Since any link
0 can be connected to any link 1 by crossbars A and B this cycle can be
configured.

Now each transputer has just two links left to connect. Again since these
links are identical, we do not care which links we choose when connecting
our configuration.

If, for example, transputer p is to be connected to transputer q (figure 13)
and so far no other connections have been made, a link 2 to link 3 connection
can be made in one of two ways. Having made this connection (figure 14),
transputer q link 3 can be connected to link 2 of any other transputer in
the network (including p). If another link between p and q is required,
these transputers will be completely connected (i.e. there cannot be other
connections to them) and so the next link to be connected will be between
two transputers with both link 2 and link 3 unconnected.

Figure 13:

Figure 14:

Assume now that q is connected to transputer r (figure 15). link 3 of trans-
puter r can be connected to link 2 of any other transputer in the network
with the exception of transputer q. But since link 2 and link 3 of q have
already been connected, it will not be required to connect another link to it
in a four link configuration. If a link between r and p is required, we again
have a completely connected group.

Hence, by induction, it is always possible to arrange that all links 2 are
connected to links 3 and vice-versa: This can be achieved using crossbars C
and D in figure 4.

14

Figure 15:

4.2 Complete connectivity of a network using two crossbars

In the previous section, advantage was taken of the fact that all transputer
links are identical. It will often also be true that all transputers in the
network are identical. If this is the case then the Hamiltonian Cycle (if it
exists) can be a fixed pipeline through the network. This means that the link
0 to link 1 connections can be hardwired and all possible configurations can
be obtained by connecting link 2 to link 3 using two crossbars as described
above. A network of N transputers could then be configured using just two
N-way crossbars. This arrangement is shown in figure 16.

For example 32 transputers can be completely configured using just two
IMS C004s.

Figure 16: Complete connectivity of a network using two crossbars

5 Using the IMS C004 as a general purpose com-
munication crossbar

The use of the IMS C004 is not restricted to computer configuration ap-
plications. The ability to change the switch selling dynamically enables it
to be used as a general purpose message router. This may of course also
find applications in computing with the emergence of the new generation of
supercomputers, but a more widespread use may be found commercially as
a communication exchange.

This section considers one way in which an exchange might be implemented.

15

A suitable protocol for this example is shown using Hoare’s CSP notation
[CAR Hoare: Communicating Sequential Processes] in section 8. A possi-
ble occam implementation is included below for users unfamiliar with CSP.
There is no reason why this exchange should not be expanded with a larger
crossbar, making use of the design techniques of section 3.

A message into the exchange must be preceded by a destination token. When
this message is routed through the exchange, the destination token is re-
placed with a source token so that the receiver knows where the message
has come from. The input.output processes of figure 17 and the controller
processes could be implemented easily with INMOS IMS T212 transputers,
and the link protocol for establishing communication with these devices can
be interfaced with INMOS link adaptors. In this configuration two channels
are placed on each IMS C004 link in opposite directions.

Figure 17:

5.1 occam implementation of a 32 stage bidirectional ex-
change

This section provides some occam code that could be used to implement the
exchange described in section 8. Its main purpose within the context of this
document is to give an alternative way of describing the example for the
reader who is unfamiliar with CSP. For this reason, declarations have been
omitted except where confusion might arise without (figure 17).

16

PLACED PAR
PROCESSOR no.of.nodes T2
controller (c.in, c.out,

up[0],
up[no.of.nodes])

PLACED PAR i = 0 FOR no.of.nodes
PROCESSOR i T2
input.output (BYTE i,

rx[i], tx[i],
up[i],
up[i+1],
cross.in[i], cross.out[i])

5.1.1 Notes

1. Link placement statements have been omitted, but a convention has
been adopted that two channels placed on the same bidirectional link
are paired together on the same line. All channel parameters are hard
channels.

2. Constant byte tokens are prefixed by ct. for IMS C004 tokens and et.
for exchange tokens.

3. Section 2 recommends that a ct.setup token is sent to the configuration
link of the IMS C004 after a ct.link command. The reason for this is
to give the IMS C004 enough time to make the connection. In this
application there will be a substantial delay before that connection is
used by an input.output process and so this precaution is not necessary.

5.1.2 Controller

The code for this process should be loaded onto the transputer that talks
to the IMS C004 via its configuration link. It receives a token from hard
channel up.in and, depending on the value of that token, takes one of three
paths before repeating.

PROC controller (CHAN c.in, c.out,
up.in,
up.out)

WHILE TRUE
SEQ
up.in ? token
IF
token = et.ack
-- consume rest of acknowledge packet since

17

-- it has done its job
up.in ? any.byte; any.byte

token = et.req
... deal with request -- (i)

token = et.rel
... setup link or send new request -- (ii)

:

i. deal with request

This firstly receives the rest of the request packet. It then finds out which
nodes are currently connected to the two that want to talk to each other
and sends a release packet to inform the relevant nodes that a new link is
about to be set up.

{{{ deal with request
SEQ
up.in ? source; dest
c.in ! ct.enquire; source
c.out ? current.source.conn -- address of node currently

-- connected to source
set.to.nil.if.inactive (current.source.conn) -- (iii)
c.in ! ct.enquire; dest
c.out ? current.dest.conn -- address of node currently

-- connected to dest
set.to.nil.if.inactive (current.dest.conn) -- (iii)
up.out! et.rel; current.source.conn;

current.dest.conn; source; dest
}}}

ii. setup link or send new request

This firstly receives the rest of the release packet. It then proceeds to find
out what is currently connected to the two that want to communicate. If the
same as before (i.e. when this was done before sending the release packet)
then the previous connections are disconnected, the new link is set up, and
an acknowledge packet is transmitted. Otherwise a new release packet is
sent.

{{{ setup link or send new request
SEQ
up.in ? last.source.conn; last.dest.conn; source; dest
c.in ! ct.enquire; source
c.out ? current.source.conn
set.to.nil.if.inactive (current.source.conn) -- (iii)
c.in ! ct.enquire; dest
c.out ? current.dest.conn

18

set.to.nil.if.inactive (current.dest.conn) -- (iii)
IF
(last.source.conn = current.source.conn) AND

(last.dest.conn = current.dest.conn)
-- IMS C004 setup has not affected these node connections
-- since the release packet was transmitted
SEQ
-- disconnect current.source.conn and source
IF
current.source.conn = byte.nil
SKIP

TRUE
-- disable current connection to source
c.in ! ct.disconnect.link; current.source.conn; source

-- disconnect current.dest.conn and dest
IF
current.dest.conn = byte.nil
SKIP

TRUE
-- disable current connection to dest
c.in ! ct.disconnect.link; current.dest.conn; dest

c.in ! ct.link; source; dest
up.out! et.ack; source; dest

TRUE
SEQ
-- transmit a new release packet
up.out ! et.rel; current.source.conn;

current.dest.conn; source; dest
}}}

iii. set.to.nil.if.inactive

If bit 7 of the parameter output.conn is 1, then the connection is inactive
and the byte is set to address nil. Otherwise it is unchanged. This could
not be expressed in detail in the CSP description.

PROC set.to.nil.if.inactive (BYTE output.conn)
IF
(output.conn BITAND (BYTE #80)) = (BYTE #80)
output.conn := byte.nil

TRUE
SKIP

:

5.1.3 Input.Output

The code for this process should be loaded onto all the other transputers.
The state is initially inactive. If a message is received from the IMS C004 on

19

switch.in then it is passed on via data.out. If a command packet is received
on up.in then it is dealt with as described in (iv). If a message is received
on data.in then it is dealt with as described in (v). This repeats indefinitely.
Note that a priority is given to the three input sequences. This could not
be expressed in GSP.

PROC input.output (VAL BYTE i,
CHAN data.in, data.out,

up.out,
up.in,
switch.out, switch.in)

SEQ
state := inactive
d := byte.nil
[max.mess]BYTE rx.mess:
[max.mess]BYTE tx.mess:
WHILE TRUE
PRI ALT
switch.in ? source; tx.length; [tx.mess FROM 0 FOR tx.length]
data.out ! source; tx.length; [tx.mess FROM 0 FOR tx.length]

up.in ? token
... deal with command packet -- (iv)

((state = active) OR (state = inactive)) &
data.in ? dest; rx.mess; [rx.mess FROM 0 FOR rx.length]
... deal with message transfer

: -- (v)

iv. deal with command packet

If a release token has been received, the rest of the release packet is received
and passed on to the next node. Now if the state is active and either dest,
addr1 or addr2 are the same as the local identifier (i), then the state is set to
inactive. Note that this is not necessary if the link that has been requested
already exists, which may occur if the other end of the link has made the
request prior to the existing setup.

If a request token has been received, the rest of the packet is received and
passed on since this will only be analysed by the controller.

If an acknowledge token has been received, the rest of the packet is received
and passed on. If the destination address is local (dest = i) then a new
link path has been set up for this node and it becomes active. If the source
address is local (source = i) then the request that was previously sent has
now been acknowledged and the stored message can be sent to its destination
via the IMS C004.

20

{{{ deal with command packet
IF
token = et.rel
SEQ
up.in ? addr1; addr2; source; dest
-- pass release packet on to next node in daisy chain
up.out ! et.rel; addr1; addr2; source; dest
IF
(state = active) AND
((((addr1 = i) OR (addr2 = i)) OR (dest = i)) AND
(NOT ((source=d) AND (dest=i))))
-- another node has requested a link to this node or its
-- connected node is to be connected to another node
state := inactive

TRUE
SKIP

(token = et.req) OR (token = et.ack)
SEQ
up.in ? source; dest
-- pass request or acknowledge packet on to
-- next node in daisy chain
up.out ! token; source; dest
IF
token = et.req
SKIP

token = et.ack
IF
(state = inactive) AND (dest = i)
-- link has been set up with
-- another node
SEQ
state := active
d := source

(state = pending) AND (source = i)
-- the link that was previously requested
-- has now been set up
SEQ
switch.out ! i; rx.length;

[rx.mess FROM 0 FOR rx.length]
state := active
d := dest

TRUE
SKIP

}}}

v. deal with message transfer

A message has been received with an associated destination. If the state of
the process is active and the destination is that already set up (dest = d) then

21

the message can be immediately routed through the IMS C004. Otherwise
a request is sent to the controller to set up a new link path and the state is
set to pending.

{{{ deal with message transfer
SEQ
IF
(state = active) AND (dest = d)
-- the destination requested by the message
-- received is the one that is currently
-- connected by the IMS C004
switch.out ! i; rx.length;

[rx.mess FROM 0 FOR rx.length]
(state = active) OR (state = inactive)
-- a new link needs to be requested
SEQ
up.out ! et.req; i; dest
state := pending

}}}

5.2 Message length

In general the transputer handles long messages more efficiently than short
messages. However, with the code given here, while a message transfer
is occurring, two input.output processes of the bidirectional exchange will
become busy and will not be able to pass information to the controller.
For this reason messages should be kept short and long messages should be
broken into short ones. In the case, for example, when all routes are active
in transferring data between fixed destinations and sources, there need not
be any communication to the controller until a particular source decides it
wants to talk to another destination. Therefore for the exchange to operate
efficiently each input.output process would be expected to be predominantly
in the active state.

6 Conclusions

A single IMS C004 can be used alone as a 32x32 crossbar supporting IN-
MOS link protocol. Alternatively, since it is a digital device, a number
of IMS C004’s can be used to construct a larger crossbar without any
other hardware. Since it introduces a small real time communication de-
lay, the data transmission rate will be reduced when cascading more than
one IMS C004.

22

With careful design and suitable software support, a small number of IMS C004’s
can be used to completely connect any configuration of a large network of
transputers without any loss of generality.

Since it can be dynamically programmed, its applications can be extended
to systems that might not use transputers. The INMOS link adaptor enables
any parallel bus users to take advantage of the flexibility of the device. The
design of a message routing exchange is fairly straightforward.

The sections ”CSP description of IMS C004” and ”CSP description of a 32
stage bidirectional exchange” has been omitted.

23

	1 Introduction
	2 IMS C004 programmable link switch
	2.1 The INMOS serial link interface
	2.2 Switch implementation
	2.3 Functionality of the IMS C004

	3 Versatility of the IMS C004
	3.1 A small increase in crossbar capacity
	3.2 A large increase in crossbar capacity
	3.3 Design example for cascading IMS C004s

	4 Using the IMS C004 to configure transputer networks
	4.1 Complete connectivity of a network using four crossbars
	4.2 Complete connectivity of a network using two crossbars

	5 Using the IMS C004 as a general purpose communication crossbar
	5.1 occam implementation of a 32 stage bidirectional exchange
	5.1.1 Notes
	5.1.2 Controller
	5.1.3 Input.Output

	5.2 Message length

	6 Conclusions

