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The configurable memory interface of the T414 transputer greatly simplifies
memory system design, making it easier to implement systems with little or
no previous experience.

This document describes the use of the external memory interface of the
T414 transputer to interface a variety of memory types.

The T800 has the same memory interface as the T414, so for ”T414” read
”T414 and T800”.

1 Overview of the Memory Interface

The T414 has a configurable memory interface designed to allow easy inter-
facing of a variety of external memory types with minimal extra components.
The T414 interface can directly support DRAMs, SRAMs, ROMs and mem-
ory mapped peripherals.

The T414 has a 32 bit multiplexed data and address bus with a linear
address space of 4 Gbytes. There are 4 byte write strobes, a read strobe, a
refresh strobe, 5 configurable strobes, a wait input, a memory configuration
input, a bus request input and bus grant output. Figure 1 shows the inputs
and outputs for the T414 transputer that are associated with the memory
interface.

Figure 1:

With this flexible arrangement, a variety of memory timing controls can be
obtained with little external hardware. An example of bus timing is shown
in figure 2.

The T414 has a signed address space and addresses memory as bytes. Ad-
dresses, therefore, run from $80000000 through $FFFFFFFF to $7FFFFFFF.
This differs from the occam map which starts at $0 and is organised as words.
Thus MemStart is at $80000048 in the machine map and $12 in the occam
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Figure 2:

map. The comparison is given in figure 3.

Figure 3:

Throughout this application note, all addresses referred to will be those for
the machine map.

The T414 has 2Kbytes of on-chip RAM at addresses $80000000 to $800007FF.
It is, therefore, advisable for $80000000 to $FFFFFFFF to be used for RAM
and $00000000 to $7FFFFFFF to be used for ROM and I/O. If internal
memory and external memory exist at the same address, the transputer will
access internal memory. Note that if the memory map is not completely
decoded, it is usually possible to access the ”hidden” external memory at
another address; e.g. on the B004-2, the hidden memory can actually be
accessed at $80200000 to $802007FF.
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1.1 Memory Interface timing

The T414 memory interface cycle has six timing states, referred to as Tstates.
The Tstates have the nominal functions:

Tstate

T1 address setup time before address valid strobe
T2 address hold time after address valid strobe
T3 read cycle tristate/write cycle data setup
T4 extended for wait states
T5 read or write data
T6 end tristate/data hold

The duration of each Tstate is configurable to suit the memory devices used
and can be from one to four Tm periods. One Tm period is half the processor
cycle time; i.e. half the period of ProcClockOut. Thus, Tm is 25nsec for
a T414-20 (20MHz transputer). T4 may be extended by wait states in the
form of additional Tms. A0 and A1 are not output with the rest of the
address. During a write cycle, byte and half-word (16 bit data) addressing
is achieved by the four write byte strobes (notMemWrB): only the write
strobes corresponding to the bytes to be written are active. During a read
cycle, this is achieved by internally selecting the bytes to be read.

Thus, the two lowest order address lines are not needed. However, care must
be taken when mapping byte wide peripherals onto the interface, as they
will have to be addressed on word boundaries.

The two lowest order data lines are not multiplexed with address lines but,
during the address period, are used to give early indication of the type of
cycle which will follow:

MemnotWrD0 is low during T1 and T2 of a write cycle.

MemnotRfD1 is low during T1 and T2 of a refresh cycle.

The use of the strobes notMemS0 to notMemS4 will depend upon the mem-
ory system. The rising edge of notMemS1 and the falling edges of notMemS2
to notMemS4 can be configured to occur from 1 to 31 Tm periods after the
start of T2. This is summarised in figure 2 and in the table below.

Signal Starts Ends

notMemS0 T2 T6
notMemS1 T2 T2 + (Tm*s1) (or end of T6 if this occurs first)
notMemS2 T2 + (Tm*s2) T6
notMemS3 T2 + (Tm*s3) T6
notMemS4 T2 + (Tm*s4) T6
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It should be noted that the use of wait states can advance the rising edge of
notMemS1 in relation to that of the other strobes; care must be taken if this
signal is being used for RAS driving DRAMs for which RAS must not be
removed before CAS; this is not a problem with the new generation Inmos
IMS2800/1/2/3/4 256k DRAMs.

1.2 Early and Late Write

The notMemWrB strobes can be configured to fall either at the beginning
of T3 (early write) or at the beginning of T4 (late write); the rising edge is
always at the beginning of T6. Early write gives a longer set up time for
the write strobe but data is only valid on the rising edge of the pulse. For
late write, data is also valid on the falling edge of the strobe but the pulse
is shorter.

1.3 Refresh

The T414 has an on-chip refresh controller and 10 bit refresh address counter
and can, therefore, refresh DRAMs of up to 1 Mbit by 1 capacity without
requiring the counter to be extended externally.

Refresh can be configured to be either enabled or disabled. If enabled, the
refresh interval can be configured to be 18, 36, 54 or 72 Clockln periods;
though if a refresh cycle is due, the current memory cycle is always com-
pleted first. The time between refresh cycles is thus almost independant of
transputer speed and the length of memory cycles.

Refresh cycles are flagged by notMemRf going low before T1 and remaining
low until the end of T6. Refresh is also indicated by MemnotRfD1 going
low during T1 and T2 with the same timing as address signals. The address
output during refresh is:

AD0 = MemnotWrD0 high
AD1 = MemnotRfD1 low, to indicate refresh
AD2 - AD11 refresh address
AD12 - AD30 high
AD31 low

During refresh cycles, the strobes notMemS0 - notMemS4 are generated as
normal.
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1.4 Wait states and Extra cycles

Memory cycles can be extended by wait states. MemWait is sampled close
to the falling edge of ProcClockOut prior to, but not at, the end of T4. If
it is high, T4 is extended by additional Tms (shown as ”W” by the memory
interface program). Wait states are inserted for as long as MemWait is held
high, T5 proceeds when MemWait is low. Note that the internal logic of the
memory interface ensures that, if wait states are inserted, T5 always begins
on a rising edge of ProcClockOut: so the number of wait states inserted will
be either always odd or always even, depending on the memory configuration
being used.

Every memory interface cycle must consist of a number of complete cycles
of ProcClockOut: i.e. it must consist of an even number of Tms. If there
are an odd number of Tm periods up to and including T6, an extra Tm
(shown as ”E” by the memory interface program) will be inserted after T6.

1.5 Setting the Memory Interface Configuration

A memory interface configuration is specified by a 36 bit word and is fixed at
reset time. The T414 has a selection of 13 pre-programmed configurations.
If none of these is suitable, a different configuration can be selected by sup-
plying the complement of the configuration word to the T414s MemConfig
input immediately following reset.

A pre-programmed configuration is selected by connecting MemConfig to
MemnotWrD0, MemnotRfD1, MemAD2-MemAD11 or MemAD31. Imme-
diately after reset, the T414 takes all of the data lines high and then, be-
ginning with MemnotWrD0, they are taken low in sequence. If MemConfig
goes low when the T414 pulls a particular data line low, the memory in-
terface configuration associated with that data line is used. If, during the
scan, MemConfig is held low until MemnotWrD0 goes low, or is connected
to MemAD31, the slowest memory configuration is used.

After scanning the data lines as described above, the T414 performs 36 read
cycles from locations $7FFFFF6C, $7FFFFF70 - $7FFFFFF8. No data is
latched off the data bus but, if MemConfig was held low until MemnotWrD0
was taken low, each read cycle latches one bit of the (inverted) configuration
word on MemConfig. Thus, a memory configuration can be supplied by
external logic.

Using a pre-programmed configuration has the advantage of requiring no
external components: only a connection from MemConfig to the appropriate
data line. However, selecting an external configuration can also be very
economical in component use. If the transputer is booting from ROM, the
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ROM must occupy the top of the address space. One bit of the memory
configuration word can be stored in each of the 36 addresses mentioned above
and the only additional hardware required is an inverter connecting the
appropriate data line (usually MemnotWrD0) to MemConfig. MemConfig
is thus held low until MemnotWrD0 goes low and is fed with the inverse of
the configuration word during the 36 read cycles. Alternatively, the inverted
configuration word can be generated from A2-A7 by one product term of a
PAL.

1.6 The Memory Interface Program

The INMOS Transputer Development System includes an interactive pro-
gram which assists in the task of memory interface design. The program
produces timing diagrams and timing information so that the designer can
see the effects of varying the length of each Tstate and the positions of the
programmable strobe edges. Of course, the program cannot allow for ex-
ternal logic delays and loading effects as these are system dependant but it
does assist greatly in preliminary design.

2 Basic Considerations in Memory Design

2.1 Minimum memory interface cycle time

The minimum number of processor clock cycles for an external memory
access is 3, which occurs when all Tstates are 1 Tm. With a 50 nsec cycle
time, this will be 150 nsec.

The most important DRAM parameters to be considered at the start of a
memory design are the access and cycle times and the RAS precharge time.
These will be a guide to the fastest timing possible, which is generally a
good starting point, and are defined in figure 4.

Figure 4:
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Parameters for typical Dynamic RAMS:

NEC uPD41256-15

Access time 150ns
Cycle time 270ns
RAS precharge 100ns

Inmos IMS2800-150 IMS2800-80 IMS2800-60

Access time 150ns 80ns 60ns
Cycle time 246ns 151ns 121ns
RAS precharge 90ns 65ns 55ns

Higher density devices require longer RAS precharge times but, if the mem-
ory does not require RAS to remain low until the end of the memory cycle,
it can be taken high before the cycle ends, thus easing the designer’s job of
finding adequate precharge time whilst minimising the amount of time to
be added to the DRAM cycle time.

2.2 Delay and Skew

When calculating memory interface timings, consideration must be given
to propagation delay and skew through buffers and decoding. Skew occurs
where there are different logic thresholds and hence different propagation
delays for high going and low going signals. This is shown in figure 5.

Figure 5:

It is also important to bear in mind the asymmetric drive capabilities of
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most logic that would be used externally.

2.3 Ringing

Ringing (figure 6) becomes a problem when signals are called upon to drive
a large capacitive load, such as a DRAM array. The high currents required
to charge the capacitance have to flow through wiring or PCB tracks, all
of which have some inductance, thus creating a tuned circuit. Ideally, the
waveform presented will be as steep as possible for minimum propagation
delays; however, this implies a large spread of frequencies, including the
resonant frequency of the tuned circuit. An alternative way to view the
problem is that of driving a transmission line. The solution is to include a
series resistor to dissipate the energy in the tuned circuit whilst matching
the driver more closely to the transmission line characteristic impedance.
The aim is critical damping of the response to the step input. Some DRAM
buffers/drivers have the series resistor, or something equivalent, incorpo-
rated. e.g. AMD Am2965/6.

Figure 6:

3 Worked Example

This example describes the design of a system based on a T414-20 with:

1 2 Mbytes of RAM.

2 A 1 Mbyte ROM space.

3 A 1 Mbyte I/O space.

Warning: A number of common pitfalls exist in this application, and are
revealed step by step. Thus the partial circuits should not be used until this
complete section has been read and digested.
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3.1 Choose memory device size

The most compact way to implement the 2 Mbyte memory is as two banks
of 256kx1 bit DRAMs. This requires 64 devices.

3.2 Choose RAS duty cycle

A T414-20 has been specified as the design goal. This gives a Tm period
of 25 nsec. To run as fast as possible, let T1-T6 each be 1 Tm in length;
giving an external memory cycle time of 150 nsec. Such a short memory
cycle time requires the use of a fast, high performance DRAM such as one
of the IMS280x series: IMS2800, 2801, 2802, 2803 & 2804.

With only 3 processor cycles, there is only one realistic possibility, as shown
in figure 7, namely RAS low for three Tm periods. RAS low for two Tm
periods would require a 50 nsec access DRAM and RAS low for four Tm
periods leaves only 50 nsec for RAS precharge. Neither of these is possible
with current DRAMs.

Figure 7:

3.3 Allocate Strobes

Most current EPROMs and peripherals cannot run at a cycle time of 150 nsec.
The fastest widely available EPROMs are 150nsec access. Thus it will be
necessary to insert wait states when EPROMs and peripherals are accessed.
To maximise the system performance it will be necessary to have two differ-
ent lengths of wait states, one for ROM and one for peripherals, requiring
the use of two of the transputer’s programmable strobes. This means that
only a change to the memory configuration will be required at a later date
to upgrade to faster parts. Therefore, we will reserve notMemS3 and not-
MemS4 as two separate wait state generators, since the point at which they
go low is the feature that is user programmable.

This leaves 3 strobes, notMemS0-2 for total DRAM control.

notMemS0 goes low at the start of T2 and high at the start of T6, being
low for 4 Tm periods in this example, and thus cannot be used for RAS.
The data and address lines from the transputer are multiplexed, addresses
being valid for T1 and T2, so notMemS0 can be used to latch the address.
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notMemS1 goes low at the start of T2 and the duration of its low period
is programmable. It can, therefore, be used as RAS because RAS must go
low at the beginning of T2 and high at the beginning of T5 to meet the
precharge time.

notMemS2 has a programmable falling edge and goes high at the beginning
of T6. It can, therefore, be used as CAS. To allow sufficient data set up time
during read cycles, and sufficient CAS/RAS lead time, notMemS2 must fall
at the beginning of T3.

We require one further signal, usually called Amux, which is used to switch
between the row and column addresses supplied to the DRAM. Normally,
as in the simple example, notMemS2 would be used for this and notMemS3
for CAS, leaving notMemS4 for wait state generation but, in this case, we
can make use of one of the features of the IMS280x series DRAMs: that of
short row address hold time (tRL1AX), which is only 2 nsec. This allows
the RAS strobe delayed by 2nsec or more to be used as Amux.

The preliminary circuit and timing are shown in figures 8 and 9.

Figure 8:

3.4 Address decoding

The RAM must occupy the bottom of the address space so that it appears to
be a continuation of the transputer’s internal RAM. The ROM must occupy
the top of the address space, so that the transputer can boot from ROM. We
can, therefore, use A31 to select between RAM and ROM. A2-A19 will be
used to address the DRAMs so we should use A20 to select between banks.
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Figure 9:

We can also use A20 to select between ROM and I/O. This gives a very
simple decoding scheme:

A31 A20
1 0 RAM bank 0
1 1 RAM bank 1
0 0 I/O space
0 1 ROM

For the IMS280x series of DRAMs: any RAS sequence will refresh an entire
row of 1024 bits, reading or writing of data is initiated by CAS. Therefore,
address decoding need only be applied to CAS; RAS can be enabled to both
banks of RAM at all times. Thus, reading or writing one RAM bank will
cause the other to be refreshed and accesses to ROM or I/O will refresh
both banks.

Note that during a refresh cycle, AD31 is low so that the CAS signals to
both banks are disabled. Figure 10 shows the address decoding.

3.5 Loading considerations

The notRAS and notCAS signals will need to be buffered because each is
required to drive 32 DRAMs, giving a total load capacitance on each line
of:

32 x 6 = 192 pF

The four notMemWrB strobes will also require buffering as, for a 2 Mbyte
memory, they must each drive 16 DRAMs giving a total capacitive load on
each line of:

16 x 6 = 96 pF
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Figure 10:

The maximum load specified by INMOS is 50 pF.

Neither of these figures allows for layout capacitance so the actual load will
be somewhat more.

We will choose to gate the notMemWrB strobes with some address decoding,
prior to buffering them, so that they are not enabled to the DRAM when
writing to peripherals.

3.6 Address Latching and Multiplexing

The address decoding requires that latched addresses should be valid as
early as possible, and the most effective way to do this is with transparent
latches. This way, the addresses will be stable before they are latched by
notMemS0, so that the first stages of the decoding will already have set-
tled. The complement of some of the address lines are also required by the
decoding. These are provided by inverting the latched addresses.

The address multiplexing can be done by using an address latch with tri-
state outputs and a tri-state buffer. The delayed RAS signal is used to switch
between the buffer (row address) and latch (column address). Figure 11
shows the address latching and multiplexing circuit.

3.7 Evaluate DRAM Timing

Since this is the most critical timing, and the one most subject to amend-
ment, it should now be checked. This requires the drawing of a more detailed
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Figure 11:

timing diagram than figure 9. The logic that has still to be added will not
affect the timing.

The following steps then need to be followed to investigate the timing prop-
erly:

1 Add the skew of any signal change. From the T414 data sheet section on
memory interface AC characteristics, this is, typically, -2/+5 nsec.

2 Add the propagation delays through any external logic, including any
latches or buffers.

3 Check that all of the times on the data sheet for the DRAM devices in
use are within specification.

4 If any parameter is outside the specification, try to meet it by altering
the external logic or, if this is unsuccessful, insert extra Tstates.

The following table will be useful in determining propagation delays:
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Device Type low-high in nsec high-low in nsec

74F00 Quad 2i/p NAND 6.0 5.3
74F02 Quad 2i/p NOR 6.5 5.3
74F08 Quad 2i/p AND 6.6 6.3
74F27 Triple 3i/p NOR 6.0 5.3
74F32 Quad 2i/p OR 6.6 6.3
AM29828 10x inv. buffer 7.5(14*) 7.5(14*)

All 0-70 degrees C, worst case, load 50pF, *load 300pF

The emerging family of FACT HCMOS logic has superior characteristics
to the FAST devices listed above, and is preferable where available. One
of its main attributes is the symmetrical propagation delays which make it
particularly suitable for buffering transputer links.

For most other logic, note that inverting logic generally has marginally lower
propagation delays; thus if a gate has to be buffered, an extra 1-2 nsec can be
gained by using say a NOR + inverting buffer over an OR + non-inverting
buffer.

An examination of the resulting diagram, figure 12, shows one possible prob-
lem immediately: the write strobe may not go high until after the data bus
has gone tri-state, causing data corruption on write with some RAMs. This
is not a problem with the IMS2801 which latches write data on the falling
edge of CAS or Write, whichever is the later.

Figure 12:

However, this potential problem can be completely removed by substituting
a 74F32 for the 74F02 and removing the high-current buffer to reduce the
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propagation delay for the write strobes. The 74F32 can drive up to 180pF
and the loading calculated in section 3.5, with an allowance for layout ca-
pacitance, is less than this. It is possible to use two 74F32s for each of the
write strobes, one for each DRAM bank, to give lower propogation delays.
This now provides the timing shown in figure 13.

Figure 13:

The final selection of DRAM device can now be made. In this circuit RAS
is used to switch the multiplexer and, since RAS goes high before CAS,
the addresses supplied to the RAM will change before the end of the CAS
access cycle. Therefore, we must use the IMS2801 which latches the column
address on the falling edge of CAS, and is unaffected by subsequent changes.

3.8 Choose Write Mode

The IMS280x series and most other DRAMs can perform two types of write
cycle: early and late write. An early write cycle occurs when notWE is taken
low before notCAS. Thus, the output buffers are turned off before CAS and
the output pins remain tristate throughout a write cycle. A late write cycle
occurs when notCAS is taken low before notWE. Thus, the beginning of a
late write cycle appears to the DRAM to be a read cycle and read data is
gated onto the output pins; this would be used in complex memory systems
for read - modify - write cycles.

Early write cycles allow the DRAM’s data input and data output pins to
be directly connected to the AD bus. Late write cycles require the data
output pins to be gated onto the AD bus through tristate buffers enabled
by notMemRd.
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In this application, there is no requirement for late write cycles and the
circuit will be simpler if we can achieve early write. This may be difficult
because, to achieve sufficient read data set up time and RAS/CAS lead
time, the falling edge of CAS (notMemS2) has been pulled forward to the
beginning of T3. Hence, if the memory interface is configured for early write,
the notMemWrB strobes fall coincident with notMemS2; i.e. coincident with
CAS.

However, the heavier buffering on notMemS2 means that notWE should be-
come valid before notCAS and, because the early write set-up time (tWL1CL1)
for the IMS280x series is only 0 nsec, the DRAMs will experience early write.

Thus, the DRAM’s data input and output pins can both be connected di-
rectly to the AD bus.

The DRAM circuit has now been worked through and it remains only to
choose the refresh interval and add EPROM and peripherals.

3.9 Choose Refresh interval

For the IMS280x series all 256 rows must be refreshed within 4.4msec if data
is not to be lost.

The memory interface program gives the time taken for 256 refresh cycles
based on the input clock frequency and the refresh interval. In this example,
with a 5MHz input clock, the longest refresh interval of 72 clockin periods
gives 3.69 msec for 256 cycles, within the maximum of 4.4 msec allowed for
the DRAMs used.

3.10 Timing for other memory and peripherals

notMemRd is used to generate the EPROM chip select because, in the
default memory configuration used to read the memory configuration word
from ROM after reset, it is the only available strobe. notMemS2 is used
to generate the peripheral chip select because, since it goes high at the
beginning of T6, its low period is stretched by wait states; whereas the low
period of notMemS1 is fixed. The address decoding shown provides one
wordwide ROM/EPROM space and one I/O space.

The timing for a common medium speed EPROM is typically:

t access 200 nsec access time
t ce 200 nsec chip enable time
t oe 75 nsec output enable time
t df 60 nsec output turn off (to bus float)
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Access, chip enable and output enable times can all be met by the use
of wait states with the timing already derived. However, Tdf is another
problem. Referring to figure 10 and 13, it can be seen that peripheral and
ROM/EPROM enable timing will be the same as CAS except for the wait
states inserted between T4 and T5. Thus Tdf is restricted to a limit of
0 nsec if the bus is to be tri-state by the start of T1, when the addresses
are placed on it. Using notMemS2 directly, rather than buffered, which is
possible if the loading is not exceeded, will give 12-15 nsec available, but
this is considerably less than that required.

The Tdf of typical peripheral devices, such as the SCN2681 A DUART (DUal
Asynchronous Receiver / Transmitter) is up to 100 nsec, compounding the
problem.

There are two basic routes to a solution; the first is to rearrange the timing,
but this will slow down the DRAM cycles as well, thus defeating the object of
this design. The second is to use external buffers on the data lines connected
to ROM and peripherals. The delay through these buffers must be taken
into consideration when determining the number of wait states required.

If F245 buffers are used, these should be enabled by notMemRd or not-
MemWrB during ROM or peripheral access cycles. These strobes must be
used because they are the only ones available in the default memory con-
figuration after reset. The direction can be selected by the latched Mem-
notWrD0 signal. This is low during T1 and T2 of a write cycle and can,
therefore, be latched in the same way as the address.

Thus, all that remains to be designed is the gating logic for the wait state
generator. This must gate notMemS4 to MemWait during ROM access
cycles, and notMemS3 to MemWait during peripheral access cycles; during
RAM access cycles and refresh MemWait must be held low. notMemS4
is used as the wait state generator for ROM accesses because it alone will
generate a suitable length of wait state in the default memory configuration
after reset. The NAND gate is included in the address decoding for ROM
and peripherals to ensure that wait states are not inserted in refresh cycles;
when A20=1 and A31=0.

3.11 Conclusion

Figure 14 gives the full detail of the circuit, and although this represents a
complex design by transputer standards, it is still very simple when com-
pared to the support logic required for other processors in a similar system.
Memory configuration data is taken from EPROM, on data line 0. Figure 13
shows the final timing, without the wait states for EPROM and I/O.
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Figure 14:

3.12 Summary of steps required

As each application will be different, generalising is hard, but figure 19 gives
a flow chart showing the major steps. In all systems, it is necessary to start
with the RAM timing, as that is the most critical area, and will have the
greatest impact on system performance. In many designs, RAM is probably
the only memory.
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Figure 15:

4 Further examples

4.1 Minimum component, 256kbyte memory

The example in figure 16 is taken from the Inmos B003 board. On this
board, the 256k byte memory is made up of eight 64k x 4 DRAMs.
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Figure 16:

NotMemS0 is used to latch address bits 10-17 into a 74F373 and two 74F241s
are used as an address multiplexer. NotMemS1 is used as notRAS, not-
MemS2 is used as the select on the multiplexer and notMemS3 as notCAS.
Each notMemWB strobe goes to a pair of 64k x 4 DRAMs and notMemRD
goes to all. Thus, the 256k bytes is organised as 64k words of 32 bits.
The internal memory configuration selected by connecting MemAD5 to the
MemConfig input is used; figure 17 shows the timing in terms of Tm peri-
ods, so the transputer clock speed has to be taken into account before actual
timings can be added to the diagram.

Figure 17:

It is possible to reduce the component count still further by using devices
such as the 74F604/6. This is a 16 bit latch to 8 bit multiplexed output,
one version being faster and the other glitch free. The only drawback of
this device is that the latches are rising edge triggered and, therefore, an
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inverter is needed in notMemS0. Again, care must be taken to ensure that
the loadings on RAS and CAS are not exceeded. Figure 18 outlines this
circuit.

Figure 18:

In simple systems, the use of transistors or power MOSFETs can keep the
required board area down. Power MOSFETs such as the Motorola MPF910
make useful drivers, as they come in a TO92 package, can handle peak
currents in the range 1-2A, and have turn on/turn off times of 4 nsec; thus
they can charge or discharge a large capacitance very quickly. The careful
use of discretes such as these can allow better board layout and allows more
control of the heavy currents that flow during switching.

4.2 DRAM only: 1 Mbyte

This has been outlined during the main worked example, but is detailed here
in its minimum form. The row and column address multiplexer is made from
a tri-state latch and buffer. As this is a RAM only system, and there is only
one bank of RAM, no address decoding is required and it is not necessary
to detect refresh cycles. Instead, refresh cycles can be allowed to appear to
the RAM as normal read cycles and they will still have the desired effect.

In the circuit shown in figure 19, RAS delayed by a gate is used as Amux.
This allows CAS to go low one Tm period after RAS goes low, giving a
longer access time and, hence, the shortest possible memory interface cycle
time; 3 cycles of ProcClockOut. With longer cycle times, it is possible to
use notMemS2 for Amux and notMemS3 for CAS. Note that to ensure early
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write, CAS has been delayed with respect to the write strobes by an extra
buffer.

Figure 19:

If very fast memory devices are available, it may be possible for CAS to fall
at the beginning of T4 and still achieve a memory cycle time of 3 cycles of
ProcClockOut. In that case, Amux can be generated by another strobe, as
there will then be two Tm periods between RAS and CAS. This is shown
by the circuit diagram, figure 20, and the timing diagram, figure 21.

Figure 20:

The important parameters to consider here are the CAS to RAS lead time,
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Figure 21:

the time from CAS going low to RAS going high, and the CAS access time.
The CAS to RAS lead time is a minimum of 15 nsec for the 2800-60, adding
the transputer tolerances to the strobe edges allows about 18 nsec; if a
greater margin is required, inserting an extra buffer in RAS will provide it.
For the 2800-60, CAS access time is 11 nsec maximum, so the buffer delay
on CAS must be minimised to give sufficient access time. Thus, it may just
be possible to do this with 2800-60 RAMs.

The circuit in figure 20 could be extended to 4 Mbytes by substituting 1 Mbit
DRAMs for the 256k DRAMs but, with current memory speeds, 4 cycles
would be needed for the memory interface.

5 Debugging memory Systems

5.1 Peeking and Poking

Transputers can be booted from ROM (BootFromROM to Vcc) or from
link (BootFromROM to ground). When booting from link, a header byte is
expected, if it is in the range 2-255 it should be followed by that number of
bytes. These will be placed in memory starting at MemStart ($80000048)
and execution will then be transferred to this address. The code executes at
low priority and its work space is located immediately above itself. Usually,
this code will be a loader, to load the user’s program into this transputer
and any others, if it is part of a network.

If the header byte is 0, a ”poke” operation will take place. The 0 byte should
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be followed by a 4 byte address (AAAA) and 4 bytes of data (DDDD) to be
placed at that address:

input: header=0, then A A A A D D D D

If the header byte is 1, a ”peek” operation will take place. The 1 byte should
be followed by a 4 byte address (AAAA). The transputer will then output,
on the same link, 4 bytes of data (DDDD) read from that address:

input: header=1, then A A A A
output: D D D D

After both the peek and poke operations, the transputer reverts to awaiting
a new header (which could initiate another peek or poke).

Thus, if the user has another transputer, such as the one in the development
system, it is possible to test the hardware by poking to the transputer under
test to place data in the internal or external memory, and then peeking to
read the data back and compare it. The same method can be used to test,
say, a UART. These peek and poke operations allow simple test programs
to be written in Occam and run on the development system, considerably
simplifying the design engineer’s job. For temperature range testing, the
system under test can be put in an environmental chamber with development
system outside; all that is needed to connect them is a 4 wire link cable.
In a mixed memory system, the engineer can now determine whether it is
the memory or the DUART that is marginal, something that previously was
difficult to do.

5.2 Investigation of memory timing

There may be occasions where a designer wishes to compare different mem-
ory interface configurations, and rather than programming an EPROM or a
PAL in order to alter a parameter each time, software configuration for the
memory interface would be useful. In figure 22, a basic scheme is outlined
for this. It assumes that a known working transputer board is available,
such as one that is part of the development system. This is used to ”poke”
the required parameters into the RAM, which need only be one bit wide,
as previously described for memory debugging; the memory configuration
used is the internal configuration associated with ADx. Poking anything
to a location of $8xxxxxxx will then generate a reset and cause the new
memory configuration to be read from RAM on the line ADx. The memory
debugging technique can then be used to test the system. Pressing the reset
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switch will generate a new reset and select the internal configuration again.
Thus, once a software configuration has been selected, it cannot be altered
by any program that may be run.

Figure 22:

6 Summary

Whilst this first edition of this document has not covered every facet of
the memory interface of the T414 transputer exhaustively, it has shown the
basic features and how complex systems can be built with the minimum of
effort. The reduced amount of logic required means fewer problems with
propogation delays and race and, hence, faster memory cycle times. A
number of helpful hints for the designers of transputer systems have also
been included.
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