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1 Introduction

The INMOS transputer [1] is a family of VLSI microcomputers with proces-
sor, memory and communication links for direct connection to other trans-
puters on a single chip, Figure 1. Concurrent systems can be constructed
from a collection of transputers which operate concurrently and communi-
cate through links. To provide maximum speed with minimum hardware
the transputer uses point to point serial communication links.

Figure 1: Transputer architecture

The first transputer available was the IMS T414, a 32 bit microprocessor
with a throughput of 10 MIPs (million instructions per second). It has 2
kilobytes of fast (50ns cycle) on-chip static RAM and four INMOS serial
links. The 32 bit multiplexed address/data bus allows up to 4 gigabytes of
external memory to be accessed. The IMS T800 transputer is compatible
with the T414 but includes floating point hardware and 4K of internal RAM.

This note describes the implementation of a computer graphics program on
an array of transputers. The technique used to distribute the work among
the transputers is known as a processor farm and is independent of the
application. The same approach is suitable for any algorithm which can be
subdivided into independent subproblems. For example, another graphics
program, the Mandelbrot set, has been distributed in the same way as well
as a financial forecasting program and a simulation of metal deposition.
The entire program is written in occam [2], a language designed to simplify
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the programming of concurrent systems. Again, however, the main part
of the program could have been written in any suitable language such as
C or Fortran. Only those parts of the program which deal explicitly with
concurrency and the distribution of work are easier to describe in occam.

The graphics program described here was written to provide a demonstra-
tion of the performance obtainable by using large numbers of transputers.
We used a technique known as ray tracing which can generate very realistic
images but requires massive amounts of computer power. This is an ideal ap-
plication for transputers as the calculations for each pixel (picture element)
on the screen are independent of one another and so can be done in paral-
lel on separate processors. In addition, the complexity of the task means
that the time spent calculating is much greater than that spent passing data
between processors.

The completed program has two important properties. Firstly, processing
speed is directly proportional to the number of transputers used. Virtu-
ally any desired performance can be simply obtained by the addition of
more transputers. The second feature, which came about as a side effect of
the program structure, is that the system is remarkably robust. Individual
transputers can be removed from the system, while the program is running,
and the system will continue to function although with reduced performance
and possibly some loss of data.

2 Logical architecture

2.1 Ray tracing

The basic ray tracing algorithm used is that described by Turner Whitted
in his classic paper [3]. A brief description of the technique is given here.

The colour and intensity of each pixel on the screen is determined by cal-
culating the path of a ray projected from the screen through a pinhole, see
Figure 2. This ray is tested for intersection with each object in the world
model by solving the equation of the line and the surface of the object. This
is the reason spheres are so common in ray tracing programs; they are simple
to intersect. When the closest point of intersection is found the ray will be
reflected and several new rays may be produced. If the object is transparent
then a ray is generated which passes through the object, its path modified by
the laws of refraction. The effects of shadow casting are handled by sending
rays from the point of intersection towards each light source in turn. If this
ray intersects an object which is nearer than the light source then this will
cast a shadow on the first object. A recurring problem in computer graphics
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Figure 2: Ray tracing

is aliasing, which appears as coarse steps in the image. This is caused by
undersampling of the image and can be reduced by increasing the sampling
frequency, i.e. tracing several rays for each point on the screen. The number
of extra rays traced can be reduced by only oversampling when aliasing is
likely to be most objectionable, for instance where there is a sharp change
in intensity at the boundary of objects.

In this way a tree of rays, and the surfaces with which they have intersected,
is generated for each pixel. The final colour of the image at this point is
calculated by traversing the tree and applying a shading model at each node.
This model uses the intensity and positions of the various light sources and
the coefficients of reflection and transmission for the objects intersected to
determine the intensity of the pixel.

Our implementation of this algorithm, in its simplest form, is not partic-
ularly efficient. The time taken to render a scene increases exponentially
with the number of objects and light sources as each ray has to be tested
for intersection with every object and then a ray fired at every light source
to test for shadowing. This shadow ray then has to be tested against every
object. Also all calculations are done in floating point for simplicity which
traditionally imposes a considerable performance penalty. It has been esti-
mated that a straightforward ray tracing program like this will spend over
75% of the time performing tests for intersection, so performance is very de-
pendent on the speed of floating point operations. The T414 has some extra
instructions to provide microcode support for floating point operations and
the T800’s on-chip FPU enables floating point operations to be performed
at about the same speed as integer operations.

There are many ways in which the basic ray tracing algorithm can be im-
proved (e.g. by the use of space subdivision or bounding volumes around
objects) so many implementations could well be faster on a single processor.
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However, a more sophisticated implementation would also benefit from the
use of multiple transputers.

2.2 Introducing concurrency

The calculations performed for each pixel on the screen are completely in-
dependent so they can be performed in any order and on any number of
processors. One way of distributing the work to a number of processors is
shown in Figure 3.

Figure 3: Logical architecture

This requires three different processes running concurrently on one, or more,
processors: a controller which interfaces with the user or host computer
to provide a description of the scene being viewed and allocate work to
processors; an intersect and shading calculator, which can be replicated any
number of times, to render the pixels; and a display process which collects
the results from each rendering process and drives the graphic display. It can
be seen that this structure is not related to the ray tracing algorithm and
is, in fact, suitable for any problem which can be broken into independent
subproblems. A system like this in which a controller farms out work to a
number of application specific processes has become known as a processor
farm.

Every calculating process is first given the description of the scene and then
processing work can be allocated by the controller which gives each calcu-
lator pixels to evaluate. When the the calculations have been completed
the results are passed out to the display process. The display process then
informs the controller that there is now a free processor and another pixel
is sent out for evaluation. The amount of computation required varies from
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pixel to pixel and this method automatically balances the load amongst the
processors and ensures they are all kept busy.

An interesting idea here is that the pixels do not need to be generated in
sequence and, if they are generated in some pseudo-random order, a good
impression of the final picture can be obtained well before every pixel has
been evaluated. This could be particularly useful in a computer aided design
system where the user wishes to generate different views of an object in rapid
succession.

3 Physical architecture

3.1 General description

It appears, at first sight, that the above architecture cannot be mapped
directly onto a network of transputers because of the fixed number of links
available. However, it is very simple to arrange for the controller to com-
municate with any transputer in a network by passing messages through
the intervening transputers. For simplicity, the ray tracing program was
mapped on to a linear array of transputers as shown in Figure 4. Each
transputer link implements two occam channels, one in each direction, so
this mapping only uses two of the four links available on a T414 or T800.

Figure 4: Physical architecture

Here the control and display processes are executed in parallel on one trans-
puter and the rest of the transputers do the intersection and shading cal-
culations. In fact the first transputer also does these calculations and the
same, parameterised, program is loaded onto every transputer. However, it
is simpler to view the system as shown above. This method of mapping pro-
cesses onto transputers requires that each transputer also execute routing
processes. These pass commands and data along the array from the con-
trolling process and pass results back for display. This implies some sort of
command protocol for identifying the nature and destination of data. This
is simplified by using a linear connection of transputers; the routing process
on each transputer only needs to decide whether a message is to be accepted
locally or passed on to be dealt with elsewhere. A different array structure
(e.g. a 2D array or a hypercube) could reduce the distance that messages
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have to pass and increase the bandwidth of data through the controller but
at the cost of a slightly more complex protocol and routing process.

A few important points need to be made. Firstly, the work involved in de-
signing and implementing this protocol is trivial compared to that required
for the actual ray tracing algorithm and this will be true for any realis-
tic program. Secondly, although two extra processes are being executed
in parallel with the main ray tracing process, they actually consume very
little processor time. Transputer processes are descheduled whilst waiting
for communications to take place and so do not use the processor. They
are automatically rescheduled, by the scheduling hardware, when the com-
munication is complete. Also, external communication is done by the au-
tonomous link DMA engines which can transfer data independently of, and
concurrently with, the processor. This implies that the processing resource
used by the communication depends more on the number of communications
than the amount of data transmitted in each message.

The occam description of this transputer configuration has a constant defin-
ing the number of transputers in the network, which is all that needs to be
changed if the size of the network is changed.

3.2 The control/display transputer

There are two processes executed by the control/display transputer, see
Figure 5. The first of these, sendPatches, interfaces to the host computer to
receive the description of the scene being modelled and other commands. It
passes the world model out to all the other transputers and then sends out
requests for pixels to be evaluated. Square areas of the screen, ”patches”,
rather than individual pixels, are given to each transputer to enable ”slices”
or blocks of data to be transmitted. A slice communication transmits an
array of data as a single operation. As there is the same processor overhead
for setting up the links to transmit a single byte as for a million bytes, this
make s the most efficient use of the transputer link engines. It also allows
the processor to continue calculating at very nearly full speed while the
communication takes place, with only occasional interruptions to manage
the routing processes.

The other process, called loadBalance, coordinates the sending of data to
the other transputers and the display of the generated pixels. If there are
n transputers then loadBalance initially passes on 2n pixel patch requests
from the process sendPatches. It then waits until a result is returned before
handing out another request. So this process acts like a valve, only allowing
work to be passed out when there are transputers able to accept it. Each
of the n calculating transputers can accept two patch requests as described
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Figure 5: Processes running on control transputer

below.

3.3 The calculating transputers

The work on each of these transputers is organised as three processes shown
in Figure 6. The most important of these is render which is sent patches
to evaluate via the throughput process. The render process is a completely
sequential piece of code and could be written in any standard programming
language which supports communication over occam channels. It does all
the calculations to find intersections, build the tree of rays and then traverse
this tree to get the final pixel value. When all the pixels in the patch are
evaluated then the pixels are passed out to the feedback process and another
patch is requested from throughput. The feedback process multiplexes the
local results and those received from other transputers and passes them back
towards the display transputer. This process is very simple, using an occam
ALT construct to wait for an input from either of the two channels.

The task of the throughput processes is to route patch requests through the
pipeline to a free processor, i.e. one that is able to accept a pixel patch for
evaluation. Patches can be routed to the next processor; routed to the local
render process or buffered for local processing later. Initially each processor
starts in the state busy = FALSE (not currently processing a patch) and
buffered = FALSE. Patches are routed by throughput according to these
state variables: if not busy then the patch is sent to the render process; if
not busy and not buffered the patch is saved for later processing; otherwise
the patch is passed on for processing elsewhere. Each processor therefore
accepts two patches at startup, the first is passed immediately to render for
evaluation and the second is held until needed. Any further patches received
are passed on to be evaluated elsewhere until the processor becomes free
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Figure 6: Processes running on the calculating transputers

again. After the first patch has been completed by the render process it
sends a request to throughput for another. This is shown in the simplified
piece of occam below:

BOOL busy, buffered, running :
BYTE byte :
[3]INT patch, buffered.patch :
SEQ
-- initialise state variables
busy := FALSE
buffered := FALSE
running := TRUE
WHILE running
ALT
-- a request for another patch from render
requestMore ? byte
IF
-- we have some work buffered, pass it on
buffered
SEQ
toLocal ! buffered.patch
buffered := FALSE

-- else indicate that the renderer is free
TRUE
busy := FALSE

-- a message from the pipeline
fromPrevious ? CASE
-- if it is a patch...
rt.render; patch
IF
-- this processor not busy, pass to render
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NOT busy
SEQ
toLocal ! patch
busy := TRUE

-- if can’t handle it here, pass to next transputer
busy AND buffered
toNext ! patch

-- save patch for later processing
busy AND (NOT buffered)
SEQ
buffered.patch := patch
buffered := TRUE

-- the terminate message
rt.stop
running := FALSE

Provided that the time taken to render a pair of patches is greater than the
time before throughput receives a new patch, the render process is always
kept busy. This provides distributed control of work allocation; each proces-
sor simply passes on any work that it cannot handle to be done elsewhere.
It doesn’t need to know where the work will be done or any other details of
the system configuration. Because no more work requests are sent out than
can be handled, the last processor in the network will never find itself with
work to pass on to a nonexistent processor.

4 Maximising performance

The processing speed of the system is directly related to the number of
transputers used; ten transputers perform ten times faster than one. A
number of factors contribute to this aspect of the system.

The work is given to the transputers in large chunks which require only three
words of data (the X and Y coordinates and size of the patch) to specify
the position of all the pixels in the patch. If the work were distributed on
a pixel by pixel basis then two words of data would be required for every
pixel. This would mean a much larger ratio of communication to processing.

Use of slice communication for data means there is less processor over-
head per byte sent and allows a greater amount of concurrency between
the link engines and the processor. Allocating the work in chunks made
this even more important as entire patches of pixels were returned to the
control/display transputer as a single communication.

The message routing processes are run at high priority to ensure that an in-
coming message can be examined and forwarded immediately it is received.
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The input guards of the ALT constructs in these processes are also care-
fully ordered in priority to ensure that patches are returned to the control
processor as quickly as possible.

As well as holding an item of work in throughput, software buffers were
added to any channels which communicate via a transputer link. These
decouple the communication taking place via the link from the processes
using the channel, thus allowing more overlap between processing and link
communication. Channel buffers are frequently used, and easy to implement
in occam.

These issues and others, such as efficient use of on chip RAM, are discussed
in more detail in another INMOS technical note [4].

The performance of the system has been measured with up to 80 T414-15
transputers and the results are summarised below. These times were mea-
sured by the ray tracing system itself using the low priority transputer timer
which has a resolution of 64 microseconds. The image generated consisted
a simple scene containing 4 spheres and a single light source at a screen
resolution of 256 x 256. The time taken with each number of transputers
was averaged over four runs. The processing speed in the table below is the
number of pixels generated per second, linearity was calculated as relative
speed / transputers * 100.

transputers speed relative speed linearity %
1 164.0 1.00 100.0
2 327.6 2.00 99.9
4 654.0 3.99 99.7
8 1296.4 7.91 98.8

16 2601.6 15.87 99.2
32 5189.5 31.65 98.9
64 10300.0 63.15 98.7
80 12500.0 76.37 95.5

The ray tracer has also been run on T800 processors showing a factor of
about 6 or 7 speed improvement due to the on-chip floating point unit.

5 Fault tolerance of the system

It should be possible to exploit the number of processors in a multi-transputer
system to introduce a degree of redundancy. The system described above is
already remarkably robust. If a transputer fails then the system will pro-
gressively deadlock only if the neighbour, on the controller side, attempts to
communicate with it. This is unlikely to occur, however, because results are

13



passed back to the display by the shortest route, and new pixel patches are
not sent out until results are returned. If a transputer is stopped while it is
actually communicating, or between sending out results and being given its
next patch of pixels then the system will deadlock. Otherwise, apart from
the loss of of the processing power of the transputers on the far side of the
fault, and the associated data, the system continues to operate.

In order to make the system more robust it must be possible to detect
when a failure has occurred. This can be done by using a timeout on all
communications. Secondly it must be possible to ensure that, even if a
communication does fail, all the input and output processes will terminate.
As this cannot be achieved directly in occam, INMOS provide a number of
predefined procedures which perform the desired functions. These allow an
input or output to be attempted within a time limit, and recovery from a
failed communication. They are described more fully in INMOS Technical
Note 1, ”Extraordinary use of transputer links” [5]. The use of these proce-
dures means that failure of a transputer can be detected by its neighbour.
The controlling transputer could then be informed and so take action to
recover or regenerate the lost data.

Detection of the failure of a transputer implies that facilities could be added
to allow the defective transputer to be bypassed. This can be done with no
extra hardware as shown in Figure 7. If a transputer decides that its neigh-
bour has failed then it switches to the other link to communicate with the
next transputer along. Alternatively, if boards with more than one trans-
puter are used (for example the IMS B003) it may be better to arrange the
link connections so that an entire board is bypassed if a failure is detected.
Obviously, this will not be sufficient if two adjacent transputers or boards
were to fail, but this unlikely event could be catered for with extra hard-
ware to allow link connections to be switched externally thus allowing any
number of devices to be bypassed.

Figure 7: Bypassing a failed transputer
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6 Ray tracing in occam

The occam language enables a system to be described as a collection of
concurrent processes which communicate with one another, and with the
outside world, via channels. Occam programs are built from three primitive
processes: assignment (variable := expression); input (channel ? variable);
and output (channel ! expression).

Each occam channel provides a one way communication path between two
concurrent processes. Communication is synchronised and unbuffered. The
primitive processes can be combined to form constructs which are them-
selves processes and can be used as components of another construct. Con-
ventional sequential programs can be expressed by combining processes with
the sequential constructs SEQ, IF and WHILE. Concurrent programs are
expressed using channel communication, the parallel construct PAR and the
alternative construct ALT. An alternative process may be ready for input
from a number of channels, input is taken from the first of the channels to
become ready.

This is an outline of the occam program for each transputer, and the de-
scription of the entire transputer system. The procedures all have several
more parameters (such as screen size, maximum number of reflections etc.)
but, for simplicity, only the essential outline is given here.

In order to pass the various types of messages (e.g. object definitions, patch
requests and pixel values) around the system a variant protocol was used:

PROTOCOL trace.p
CASE
rt.stop
rt.done
rt.render; [3]INT -- rt.render; x; y; patchSize
rt.data; INT; INT::[]INT -- rt.data; type; data
rt.pixels; INT; INT; INT::[]INT -- rt.pixels; x; y; n::data
rt.message; INT::[]INT -- rt.message; n::chars

:

Each message then consists of: the message tag followed by the arguments.
For example a 16x16 patch is sent as: out ! c.render; [x; y; 16].

The code running on the control/display transputer is:

PROC control (CHAN OF trace.p fromHost, toDisplay,
toCalculators, pixelsIn)

... definition of sendPatches procedure
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... definition of loadBalance procedure

CHAN OF trace.p data :
PAR
sendPatches (fromHost, data)
loadBalance (data, toCalculators, pixelsIn, toDisplay)

:

Each of the calculating transputers runs the following code:

PROC calculate (CHAN OF trace.p fromPrev, toNext, fromNext, toPrev)

... throughput procedure

... render

... feedback

CHAN OF trace.p toLocal, fromLocal, requestMore :
PRI PAR
-- run these at high priority for
-- fastest response to messages
PAR
throughput (fromPrev, toNext, toPrev, toLocal, requestMore)
feedback (fromLocal, fromNext, toPrev)

-- and this one at low priority
render (toLocal, fromLocal, requestMore)

:

The system description is as follows:

... define constants for the link addresses

VAL number.transputers IS 42 :
VAL last IS number.transputers - 1 :

CHAN OF trace.p host, display, loopback :
[number.transputers]CHAN OF trace.p forward, return :

PLACED PAR

-- processor 0 is the control/display processor
PROCESSOR 0 T4
PLACE host AT link0in : -- data from host
PLACE display AT link2out : -- to display
PLACE forward[0] AT link1out : -- patches out
PLACE return[0] AT link1in : -- pixel values back
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control (host, display, forward[0], return[0])

-- the main body of the pipeline of calculators
PLACED PAR i = 1 FOR number.transputers - 2
PROCESSOR i T8
PLACE forward[i] AT link0in : -- patches in
PLACE return[i] AT link1out : -- pixels out
PLACE forward[i+1] AT link1out : -- patches out
PLACE return[i+1] AT link0in : -- pixels in

calculate (forward[i], forward[i+1], return[i+1], return[i])

-- the last transputer is a special case as it
-- has no one else to talk to. The fact that the
-- channel ‘loopback’ is not placed means that
-- an internal ("soft") channel will be created.
-- In fact this channel is never used but is
-- required as a parameter.

PROCESSOR last T8
PLACE forward[last] AT link0in :
PLACE return[last] AT link0out :

calculate (forward[last], loopback, loopback, return[last])

Further information on the program is available from the Central Applica-
tions Group at INMOS Ltd in Bristol.

References

[1] Transputer reference manual
INMOS Ltd Bristol

[2] Occam reference manual
INMOS Ltd Bristol

[3] ”An Improved Illumination Model for Shaded Display” Turner Whitted.
Communications of the ACM, pp. 343-349, June 1980, 23(6)

[4] Technical note 17: ”Performance Maximisation” Phil Atkin
INMOS Ltd Bristol

[5] Technical note 1: ”Extraordinary use of transputer links” Roger Shep-
herd
INMOS Ltd Bristol

17


	1 Introduction
	2 Logical architecture
	2.1 Ray tracing
	2.2 Introducing concurrency

	3 Physical architecture
	3.1 General description
	3.2 The control/display transputer
	3.3 The calculating transputers

	4 Maximising performance
	5 Fault tolerance of the system
	6 Ray tracing in occam
	References

