
TDS EPROM
Programming

INMOS Technical Note 4

David Cormie

October 1986
72-TCH-004

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4

2 The EPROM Hex program 4
2.1 Initialisation code . 5

3 ROM contents for transputer networks 6
3.1 Booting a network . 6
3.2 Fold bundle contents . 7

4 ROM contents for single-transputer systems 8
4.1 Fold bundle contents . 8

5 The Hex to Programmer program 8
5.1 Output format . 9

3

1 Introduction

A transputer-based system will be developed, typically, along the following
lines. Before the hardware has been completed, the application software
can be developed on the transputer development system (TDS). This can
be done by building a harness of occam procedures which emulate the i/o
hardware of the target system. The application software can run within
this harness as if it was running on the target system. When development
is sufficiently advanced, the application software can be downloaded from
the TDS and tested on the target hardware. The TDS can be used to
analyse and debug the system. When software and hardware development
are complete, the software can be fixed in ROM.

This application note explains how to create PROMs suitable for booting
a transputer or a network of transputers, using the tools supplied with the
IBM PC version of the transputer development system.

The task of creating a PROM falls into two parts. First, a fold is built
containing the PROM contents in ASCII hex. The PROM contents consist
of: the user program, memory interface configuration data (if required), and
appropriate bootstrap and initialisation code. This fold is created by the
EPROM Hex program. Next, this ASCII hex must be converted to a format
suitable for a PROM programmer and downloaded over a serial line from
the PC. This is done by the Hex to Programmer program.

The EPROM Hex program and the Hex to Programmer program are sup-
plied with the TDS as executable programs.

This document refers to the tds2.0 (30th June 1986) version of the EPROM
Hex program and version beta.1b1 (19th September 1986) of the Hex to
Programmer program.

2 The EPROM Hex program

The EPROM Hex program is applied to a fold bundle containing up to three
folds. These are: a CODE SC fold, a CODE PROGRAM fold, and a memory
configuration fold. The CODE SC fold should contain the application program
when the target system is a single transputer: a network loader when the
target system is a transputer network. The CODE PROGRAM fold should only
be present when the target system is a transputer network and should then
contain the application program. The memory configuration fold is only
required when ROM contents are being generated for a processor with a
configurable memory interface and none of the preset memory configurations
is being used. It should have the same format as page 5 of the output

4

generated by the T4 External Memory Interface program which can be used
unaltered for this purpose. The CODE SC fold must be present; the other
two folds are optional. All the folds in the fold bundle must be filed.

The EPROM Hex program builds a new fold (labelled EPROM hex) within this
fold bundle containing the ASCII hex of the intended ROM contents. The
order of the EPROM hex fold contents is:

1. Contents of the CODE PROGRAM fold (if present).

2. Contents of the CODE SC fold.

3. Transputer initialisation code.

4. Memory configuration (if present).

5. Entry jump to the initialisation code.

These items are placed in contiguous areas of memory at the top of the
transputer’s address space. The entry jump to the initialisation code is
always placed in the top two bytes of the address space and is generated
automatically by the program. The first line of the EPROM hex fold holds
the start address of the code in the processor’s address space and identifies
the intended processor type. For example:

.7FFFF22C -- T4

2.1 Initialisation code

The transputer initialisation code is generated automatically by the EPROM
Hex program. It is executed immediately after reset by the transputer which
boots from ROM. The code produced depends on whether the ability to anal-
yse the system is required and on whether a CODE PROGRAM fold is present
in the fold bundle.

If the ability to analyse the system is required, the user should enter y (yes)
when the EPROM Hex program asks

Insert copy for analyse (y/n)?

Answering yes causes the EPROM Hex program to produce initialisation code
which copies the bottom 600 bytes of RAM into the top 600 bytes of RAM
immediately after Reset. This allows an analyse program to overwrite the
bottom 600 bytes but still be able to examine any data which was held

5

there (unfortunately the contents of the top 600 bytes are lost but, since
processes fill the RAM from the bottom up, it is less likely that this space
would be in use). To determine the address of the top 600 bytes, the EPROM
Hex program asks

Ram size of board (in k-bytes)?

If it is not necessary to analyse the system the user should reply n (no) to
the first question. In which case, the program will not ask for the RAM size
and the initialisation code will not perform the 600 byte copy.

The initialisation code calls the code supplied in the CODE SC fold. If a CODE
PROGRAM fold was present, its’ contents are passed to the CODE SC code as
a parameter. The CODE SC code may return to the initialisation code or it
may be an infinite loop. If it does return, the initialisation code will call the
code at the address returned in the parameter entry.point.

3 ROM contents for transputer networks

3.1 Booting a network

In a network of transputers one - the master transputer - should be set to
BootFromROM: all others should be set to boot from link. The master
transputer requires a set of ROMs containing the application software and
a program (the network loader) which will export code to the network.

The bootstrap and load process is complex but a brief description follows.
Full details can be found in section 5 of the Transputer System Design Tools
manual: ”Loading Transputer Networks”.

Following reset, the master transputer exports (via the links) a small boot-
strap program to all other transputers in the network. This piece of code
loads and enters the distributing loader (also exported by the master trans-
puter). Packets of the user’s application code are then exported together
with routing information. The distributing loader in each transputer inter-
prets the routing information and either passes on or accepts code packets
according to whether or not they are to run in that transputer. At the end
of the load process every transputer has only the application code which it
is to execute. The application program then begins to run.

6

3.2 Fold bundle contents

The application software must be a PROGRAM (complete with configura-
tion statements) and should be placed in the fold bundle for the EPROM Hex
program as a CODE PROGRAM fold. When a CODE PROGRAM fold is created,
the configurer automatically includes the bootstrap code and the distribut-
ing loader along with the application code. The contents of a CODE PROGRAM
fold will, therefore, boot a transputer network if they are sent, byte by byte,
through a link into that network.

The network loader should be included in the fold bundle for the EPROM Hex
program as a CODE SC fold.

The network loader runs on the master transputer and interprets the con-
tents of the CODE PROGRAM fold. Any code to be executed by the master
transputer must be retained and the rest of the CODE PROGRAM fold must be
exported, byte by byte, to the rest of the network. Therefore, the network
loader must be able to understand the routing information embedded in the
CODE PROGRAM fold.

As an example, the loader used on the B001 is supplied with the TDS. It
can be found in the fold:

[EPROM.TOP \ EPROM interface program \ Sample EPROM monitors
\ SC multiboard eprom loader]

Note that this loader is only suitable for running on a 32 bit transputer (e.g.
a T414) though the network it loads may contain 16 bit transputers. This
is because some of the integer constants it contains are too large for a 16 bit
processor.

It will, therefore, be necessary to modify this loader for running on a 16 bit
transputer. Refer to the sections: ”Creating a Transputer Loader” and
”Loading Transputer Networks” in the Transputer System Design Tools
manual.

A memory configuration fold can be included if required.

The bootstrap process for a transputer with this type of ROM is:

1. The initialisation code performs the 600 byte memory copy, if required.

2. The network loader (contents of the CODE SC fold) is called with the
contents of the CODE PROGRAM fold passed to it as a parameter.

3. The network loader exports the contents of the CODE PROGRAM fold to
the network (thus booting the network). Any code to be executed by
the master transputer is retained.

7

4. The network loader returns the parameter entry.point containing
the start address of the code to be executed by the master transputer.

5. The initialisation code calls the code at entry.point.

Thus, when generating ROM contents for transputer networks, the fold bun-
dle for the EPROM Hex program should contain: a CODE SC fold (the network
loader), a CODE PROGRAM fold (the application program), possibly a memory
configuration fold, and no other folds.

4 ROM contents for single-transputer systems

4.1 Fold bundle contents

When a transputer boots from ROM, and is not required to boot any other
transputers, the initialisation code produced by the EPROM Hex program
performs all the necessary bootstrapping and it is only necessary to call the
application program. The contents of the fold bundle for the EPROM Hex
program should, therefore, be as follows.

The application program, which must be a single PROC, should be included
as a CODE SC fold.

A CODE PROGRAM fold should not be included in the fold bundle.

A memory configuration fold can be included if required.

The bootstrap process for a transputer with this type of ROM is:

1. The initialisation code performs the 600 byte memory copy, if required.

2. The application program (contents of the CODE SC fold) is called.

The application program must not return to the initialisation code (it should
be an infinite loop). If it does return the system will crash.

Thus, when generating ROM contents for single-transputer systems, the fold
bundle should contain: at least a CODE SC fold (the application program),
possibly a memory configuration fold and no other folds.

5 The Hex to Programmer program

The Hex to Programmer program is applied to the EPROM hex fold pro-
duced by the EPROM Hex program and produces output in a form suitable

8

for dumping to a PROM programmer. The output is sent to the file COM1
on the IBM PC. The file COM1 is treated by DOS as a communications
port. Therefore, to connect a PROM blower to your PC requires a serial
card installed as COM1. It may be necessary to use the DOS MODE com-
mand to configure the serial card to the correct baud rate, parity etc. for
your PROM programmer.

The programming procedure depends on the width of the memory inter-
face on the processor for which the PROMs are intended. The Hex to
Programmer program reads the first line of the EPROM hex fold to deter-
mine the processor type and hence the number of ROMs required. The
T414 has a 4 byte wide memory interface and therefore requires 4 byte-wide
ROMs. The T212 has a memory interface which can be configured dynami-
cally to be 1 or 2 bytes wide. If the code is intended for a T212, the program
will ask whether the ROM is being accessed in byte mode (1 ROM required)
or word mode (2 ROMs required). If more than one ROM is required they
must be programmed separately and the user must identify which is being
programmed. The Hex to Programmer program will select the appropriate
bytes from the EPROM hex fold.

The start address of the code within the processor’s address space is also
read from the first line of the EPROM hex fold. This, and the size of the
PROM being programmed, is used to calculate the start address of the code
within the PROM. The PROM size is entered by the user.

5.1 Output format

As supplied, the Hex to Programmer program produces output in the Intel
Hex format. This can be understood by a wide variety of PROM program-
mers but, if necessary, can be changed quite easily. The format-specific parts
of the program are in PROC send.buffer which can be found in the fold

[F HEXTOP00.TSR to programmer \ XP640 for IBM/B004 using
IBM.serial.convertor \ procedures \ PROC send.buffer]

The following pages list the parts of the Hex to Programmer program which
format and output the hex data. In particular, the format of a data frame is
specified in the fold else data record and the end-of-file frame is specified
in the fold sent all of data, so send end of file record. These are
the only parts of the program which should be changed if a different output
format is required.

PROC send.buffer defines some useful constants and procedures before
entering output data. PROC send.hex.byte sends a byte and adds it

9

to the checksum; PROC send.hex.word sends a two byte word by calling
send.hex.byte twice.

PROC send.buffer (CHAN from.line, to.line,
VAL []BYTE buffer,
VAL INT address, count, byte.no)

INT named.result :
VAL colon IS INT ’:’ :
VAL data.record IS #00, end.of.file.record IS #01 :
INT sum, bytes.sent :
BOOL going:
... send.hex.byte
... send.hex.word
INT record, reply :
SEQ
... init
... output data
... terminate

:

output data formats the data into records of no more than record.size
bytes and outputs them to the programmer, terminating with an end-of-file
record.

{{{ output data
WHILE going
VAL bytes.left IS count - bytes.sent :
VAL record.size IS 16 :
INT bytes.this.record :
SEQ
IF
bytes.left >= record.size
bytes.this.record := record.size

TRUE
bytes.this.record := bytes.left

IF
... sent all data, so send end of file record
... else data record

... delay to allow programmer to deal with record
}}}

The format of the Intel Hex end-of-file record is specified by

{{{ sent all data, so send end of file record
bytes.this.record = 0
SEQ

10

string.to.screen ("*cEnd of file record")
to.line ! colon -- delimiter
sum := 0
send.hex.byte (0)
send.hex.word (0) -- dummy address
send.hex.byte (end.of.file.record)
VAL checksum IS - (sum \ 256) :
send.hex.byte (checksum)
-- n.b. serial convertor ignores *c but sends *c*n on receiving *n
write.string (to.line, "*c*n")
going := FALSE

}}}

and the format of the data record by

{{{ else data record
TRUE
VAL address.this.record IS address + bytes.sent :
SEQ
string.to.screen ("*cRecord number ")
int.to.screen (record)
record := record + 1
to.line ! colon -- delimeter
sum := 0
send.hex.byte (bytes.this.record)
send.hex.word (address.this.record)
send.hex.byte (data.record)
... send data bytes
bytes.sent := bytes.sent + bytes.this.record
VAL checksum IS - (sum \ 256) :
send.hex.byte (checksum)
-- n.b. serial convertor ignores *c but sends *c*n on receiving *n
write.string (to.line, "*c*n")

}}}

The conditions at the top of these folds must not be changed as they are
the tests in the IF construct which selects the record type to be sent. The
channel to.line is the output to COM1.

else data record uses the following code to send the next bytes.this.record
data bytes to the programmer.

{{{ send data bytes
SEQ i = bytes.sent FOR bytes.this.record
INT databyte :
SEQ
IF

11

byte.no >= 0
databyte := INT buffer[(i * bpwd) + byte.no]

TRUE
databyte := INT buffer[i]

send.hex.byte (databyte)
}}}

The program waits for 3000 timer ticks between sending frames to allow the
programmer to deal with each record. This may need to be changed for
different PROM programmers and should be changed to 125 000 if the Hex
to Programmer program is being run on a pre-production (rev A) T414.

{{{ delay to allow programmer to deal with record
TIMER time :
INT now :
VAL pause IS 3000 : -- about 0.2 sec on rev. B low priority timer
SEQ
time ? now
time ? AFTER (now PLUS pause)

}}}

12

	1 Introduction
	2 The EPROM Hex program
	2.1 Initialisation code

	3 ROM contents for transputer networks
	3.1 Booting a network
	3.2 Fold bundle contents

	4 ROM contents for single-transputer systems
	4.1 Fold bundle contents

	5 The Hex to Programmer program
	5.1 Output format

