
The transputer based
navigation system

- an example of testing
embedded systems

INMOS Technical Note 2

INMOS

72-TCH-002



You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2



Contents

1 Introduction 4

2 Testing the burst detector 6

3 Testing the group detector 7

4 Testing the frame detector 8

5 Improvements during testing 9

6 Conclusions 10

3



1 Introduction

This note covers the implementation of the Navigation System outlined in
Technical Note 0, ’A transputer based radio-navigation system’.

The software described in Technical Note 0 consisted of 4 concurrent pro-
cesses in a pipeline, as shown in figure 1.

Figure 1:

These processes performed the following tasks:

P1 Burst detection

P2 Group detection

P3 Frame detection

P4 Position calculation

Just as the ’Divide and Conquer’ method eased the design of the software,
similarly it allows the software to be tested and debugged without difficulty.

Each process is provided with input data, and is output is checked. Tak-
ing the independence of each process into full account allows independent
test-data generators to be produced for each, and this is the recommended
method if P1 thru P4 are being developed simultaneously by separate teams.
However, when one team is developing each in turn, only a single test gener-
ator is required; when P1 is correct, its output can be used to test P2 and so
on. Note that this latter method does not test the resilience of subsequent
processes to incorrect data, while the former method does.

The system does require resilience to incorrect input data, even if P2 to P4
do not and the method of ensuring this is covered later.

Once the code for P1 is written, a test-data generator is required. This
software test-data generator replaces the hardware environment that would
normally feed the data.

4



The most convenient way of testing is to ensure that the process accepts
correct data first, and then to extend it to correctly reject erroneous data.
To generate the correct data, another process is written.

In the case of the navigation system, the input data is the off-air signal
from a chain of transmitters. The incorrect data is interference from other
chains of transmitters and from random noise. Thus the first test harness
consists of a control environment that manages keyboard and screen of the
development system, and a process that mimics a chain of transmitters on
figure 2.

Figure 2:

This would be ideal, but when it is wrong, how can an error in the controller,
TC1 or P1 be traced? In this case the harness is debugged by first using
just TC1 with the control - figure 3.

Figure 3:

This allows TC1 and the controller to be interactively tested on-screen;
feeding in new parameters and checking the data generated.

The generated data consists of a stream of numbers, being the timestamp
associated with each zero-crossing of the carrier waveform. The carrier is in
groups of bursts, as shown below in figure 4.

The parameters fed to TC1 are Delay 1, Delay 2, Delay 3 and the Group
Repetition Interval (GRI). In order to facilitate testing, the development
system screen was divided into 3 windows, and a menu created. The menu
controlled the test environment, displayed in the first window, and the user
inputs to the navigation system; i.e. its front panel controls were displayed
in the second window. The third window displayed the results from the
system, and so represented the front panel display of the navigation system.

5



Figure 4:

2 Testing the burst detector

Once the harness was debugged, the configuration of figure 2 was used to
debug and tune P1. ’Tune’ should be stressed because there were many
constant parameters to each process that determined hour, selective/tolerant
it should be, there being a trade-off, of course, between tolerance, accuracy,
and resilience, defined here as the ability to continue functioning in the face
of adverse conditions - for example in the case of intermittent lack of input
data.

The job of P1 is to monitor each supposed carrier transition, validate it
as being the correct frequency, and of adequate duration, then pass on its
initial timestamp and mean phase to P2.

As the incoming carrier has a frequency of 100KHz, consecutive events
should occur at 10 microsecond intervals. Thus P1 checks that the interval
is within limits (currently set to 9 to 11, as the system implemented differs
from Technical Note 0 in feeding the signal direct to the transputer’s event
pin, giving 1 microsecond resolution on the internal timer, rather than via
an external timer).

It then counts a preset number of validated transitions, and if it reaches
the threshold, currently set to 10, it accepts the signal as being genuine and
passes on to P2 a timestamp-pair, consisting of the timer value of the first
transition and the sum of the 10 phase values. This latter figure allows the
effective resolution to be increased by a venire effect between the RF carrier
and the transputer crystal over the whole burst, or group of bursts.

P1 was tested and tuned until the bursts of signal at its input were correctly
presented to P2; or at this stage, displayed on the screen.

One of the functions of P1 is to discriminate against noise, so to test this

6



the ability to inject noise was required. This was achieved by expanding
the test harness to generate noise. This meant two new processes, one to
generate timestamps representing noise, and the other to multiplex the data
sources, sorting timestamps into the correct order - see figure 5.

Figure 5:

Although not fully rigorous, the noise type chosen was bursts of carrier de-
scribed by their carrier period, the number of cycles in a burst, and the burst
repetition rate, so each of these became parameters in the menu window.

The multiplexer simply performed an input as necessary on each stream to
ensure it had access to the next data item on each stream. It then selected
the earliest timestamp, and passed it to P1, replenishing itself from the
stream chosen. Notice that no analogue level was considered - the high gain
limiting amplifier was considered to have made all inputs full strength. How-
ever, time distortion was added; if two timestamps were too close (currently
4 microseconds), they would both be deleted, and replaced with a single
transition at the mean of the two: - again, not rigorous, but implementing
some approximation to real interference.

3 Testing the group detector

Once P1 had been proven to the harness, P2 was added. The function of P2
is to monitor the carrier bursts it receives, and validate them into correct
groups for master or slave transmitters. A slave transmitter generates eight
bursts at one millisecond intervals, and a master 9 bursts, spaced as if the
group were ten bursts with the ninth omitted.

It can be seen that there is massive data reduction down the pipeline. P1
expects an input every 10 µs, P2 every 1 ms, P3 approximately every tenth
of a second; these are peak rates - the duty cycle is very low. As a result of
the data reduction, more thorough testing is feasible as the later processes
are added, as the volume of data on the screen reduces.

This implementation uses visual checking; it would be perfectly possible
to correlate output and input in another process and report only statistics.

7



This method was rejected because the final navigation system generates only
two outputs - LATitude and LONGitude; the visual approach is entirely
satisfactory.

To validate bursts, P2 checks that they are at one millisecond intervals,
plus/minus a tolerance, currently set to 5 microseconds. Again, the benefit
of the harness is seen in allowing the system to be tuned. It then counts
validated bursts. The subtle part is how to optimally detect master trans-
mitters, as the process only runs when triggered by an input, so if the final
pulse never comes, it is a slave, but the process does not run to report this.

The solution is simple, once found. It is important not to waste CPU time,
so to deschedule the process and wait on a timer for 2+ milliseconds would
be a problem, but is the easiest to implement. However, there is no problem
of latency in the pipeline - it does not matter if the screen display runs mil-
liseconds after the input all the data inputs were timestamped on reception,
so accuracy is maintained. Thus no output is generated until the next input
burst, when the decision is made whether it is the ninth burst of the group
(i.e. it was a master) or the first of an independent group (it was a slave).

Part of the validation task performed by P2 is to reject groups that have
been corrupted by overlapping between two transmitter chains.

If the bursts collide directly, P7 will reject them. However, because of the
low duty cycle it is possible that they may interleave. In this case the
current implementation of P2 will lock onto the group starting first, and
ignore the interleaved bursts as each is ’too early’ in its opinion. This is
not the optimum solution, as the second group may be the desired one.
However, P2 is ignorant of this, it being decided in P3, and to track two
groups simultaneously adds unnecessary complication. It could be done,
however, if the LORAN time domain became too cluttered in some areas.

All these functions can be tested by adding a second transmitter chain (TC2)
to the environment. Experiments can then be performed with the two chains
with very close repetition intervals. Again, due to the data reduction, this
testing can be extended greatly after P3 is written.

The final test harness is shown in figure 6, used first with P1 and P2, then
P1 to P3, then P1 to P4.

4 Testing the frame detector

P3 is the most complex and thus requires most testing and tuning. Its task
is twofold - i.e. it has two modes of operation. First it must identify and
lock onto the correct transmitter chain, then it must monitor it, even though

8



Figure 6:

a large percentage of its transmissions may have been lost due to noise or
other transmitters interfering.

The first task is performed by capturing a buffer full of detected groups,
and then searching the buffer for groups that have the correct repetition
interval. The buffer must be large enough to cover at least two frames, in
order that spurious internal matches be excluded, and again, the tolerance
on the matching requires tuning.

If there is not suitable match, the initialisation phase starts again, and
repeats until successful.

Once the timestamps of the required transmitter chain are found, the process
predicts when the next will be, and validates against that. If a timestamp is
missed, a new prediction is made, and the omission noted. After a set num-
ber of omissions in a row (currently 5), the system admits a synchronisation
failure and reverts to initialisation mode..

Thus the ’locking’ criteria can be tuned against the ’unlocked’ criteria. As
set at present, there will be the occasional false lock, which will then find no
valid frames and re-initialise. Final tuning of this will be done in the real
world, when the level of noise etc. is real, not simulated.

At each successful frame, P3 passes on the delay values to P4, which performs
the mathematics and displays the ship’s position.

5 Improvements during testing

Two improvements were made to P3, P4 to maximise the performance of
the system.

In P3, allowance was made for errors in frequency between the transmitter
crystal and the transputer crystal. Although partly covered by the timing

9



tolerances in P1 to P3 already, because P3 assumes missed signals, and
predicts future ones, any error is multiplied by the number of frames covered.
Thus while it is instructed to use a particular Group Repetition Interval,
it will actually use one extracted off-air, within a tolerance (currently 48
microseconds).

This greatly improved the system noise tolerance.

In P4, rather than update the display every tenth of a second, which is too
fast for the human eye, causes excessive least-significant digit fitter, and uses
excessive CPU time, the delay signals were validated by collecting them for
a period (currently 2 seconds), rejecting fitter-rogues, and then calculating
and displaying.

6 Conclusions

It can be seen that the software harness allowed demonstration of the system,
basic debugging, error-handling, performance enhancements, all before an
oscilloscope was bought to test the hardware! It will also allow continued
testing with real input data, but display via the development system, giving
the opportunity for final program tuning in RAM before the ROMs are
programmed and the system goes live across the ocean.

10


	1 Introduction
	2 Testing the burst detector
	3 Testing the group detector
	4 Testing the frame detector
	5 Improvements during testing
	6 Conclusions

