
Extraordinary use of
transputer links

INMOS Technical Note 1

INMOS

72-TCH-001

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

1 Introduction 4

2 Clarification of requirements 4
2.1 Connection of distinct sub-systems 4
2.2 Communication via an unreliable interconnect 5

3 Programming concerns 6

4 Predefined input and output procedures 6

5 Recovery from failure 7

6 Examples: two systems with extraordinary link usage 8
6.1 Example 1: a development system 8
6.2 Example 2: two systems connected by a link 10

7 Program listing 1 13

8 Program listing 2 15

3

1 Introduction

The transputer link architecture provides ease of use and compatibility
across the range of transputer products. The transputer link is asynchronous
at the bit level, which removes the need to distribute a clock within tight
phase constraints; indeed, separate clocks can be used to supply the trans-
puters within a system. The use of a handshake protocol at the byte level
allows fast systems to communicate with slow systems without overrun prob-
lems. Finally, the provision of synchronised communication at the message
level matches the occam model of communication.

Transputer links are intended to be used for communication within a system
of devices connected on the same PCB or via a backplane. The links are TTL
compatible. This allows the use of simple buffers and determines their DC
noise margins. If transputer links are used within their specifications (Vcc,
clock fitter, clock frequency, data skew, and decoupling) they are extremely
reliable; there will no run out errors on clocking and the synchronisation
failure rate has been designed to be less than 1 failure per 1025 samples.

In certain circumstances, such as communication between a development
system and a target system, or for communication via an unreliable inter-
connect, it is desirable to use a transputer link even though the synchronised
message passing of occam is not exactly what is required. Such extraordi-
nary use of transputer links is possible but requires careful programming and
the use of some special pre-defined occam procedures. This note explains
how to use these procedures and gives two examples of their use.

2 Clarification of requirements

It is essential to have a clear idea of the requirements of a system in order
to program extraordinary use of the transputer links. We have two cases
to consider here. The first is of a system consisting of two distinct parts
connected via a link. Here the requirement is to insulate each system from
the other, perhaps allowing one system to monitor to behaviour of the other.
The second case is of a system which uses an unreliable interconnect, where
there is a danger of disconnection, or if the link is used outside its specified
noise margins, a danger of data corruption.

2.1 Connection of distinct sub-systems

As an example, consider a development system connected via a link to a
target system. The development system compiles and loads programs onto

4

the target and also provides the program executing in the target with access
to facilities such as a file store. Suppose the target halts (due to a bug)
whilst it is engaged in communication with the development system. The
development system then has to analyse the target system.

A problem will arise if the development system is written in ’pure’ occam. It
is possible that when the target system halts, the development system is in
the middle of communicating. As a result, the input or output process will
not terminate and the development system will be unable to continue. This
problem can occur even where an input occurs in an alternative construct
together with a timeout (as illustrated below). When the first byte of a mes-
sage is received the process performing the alternative commits to inputting;
the timer guard cannot subsequently be selected. Hence, if insufficient data
is transmitted the input will not terminate.

ALT
TIME ? AFTER timeout
...

from.other.system ? message
...

It is important to note that the problem arises from the need to recover
from the communication failure. It is perfectly straightforward to detect
the failure within ’pure’ occam, and this is quite sufficient for implementing
resilient systems with multiple redundancy.

2.2 Communication via an unreliable interconnect

In the case of communication via an unreliable interconnect there are a
number of possible failure modes; If the interconnect becomes disconnected
whilst a data transfer is in progress the communication will not complete.
It is possible that this might manifest itself to only one of the systems; if the
disconnection occurs after all the data packets have been transmitted but
before the final acknowledge packet has been transmitted then the inputting
system will see a completed transfer but the outputting system will hang. It
is also possible for a disconnection to cause data corruption or the conversion
of a data packet into an acknowledge packs (see next paragraph).

If a link is being used outside its noise margins there are a number of errors
which may occur. The first is the corruption of the content of a data packet
which will lead to the reception of erroneous data. This may be detected
by the use of standard checking techniques such as checksums or CRCs.
Otherwise, an error will involve the generation of, the deletion of, or the
corruption of a packet. This will lead to the breakdown of the end-to-end

5

synchronisation of the protocol, and ultimately, will cause one, or both, of
the communicating processes to hang on a communication.

For example, if a data packet is lost, it will not be acknowledged by the
receiving transputer. Hence, the transmitting transputer will neither be
able to transmit any further data packets, nor to schedule the outputting
process. Consequently, the receiving transputer will never receive sufficient
data packets to schedule the inputting process. Hence neither the inputting
process, nor the outputting process will terminate.

3 Programming concerns

The first concern of a designer is to understand how to recognise the oc-
currence of a failure. This will depend on the system; for example, in some
cases a timeout may be appropriate.

The second concern is to use ensure that even if a communication fails,
all input processes and output processes will terminate. As this cannot
be achieved directly in occam, INMOS provides a number of predefined
procedures which perform the required function. These are described below.

The final concern is to be able to recover from the failure and to re-establish
communication on the link. This involves reinitialising the link hardware;
again INMOS provides a suitable pre-defined procedure to allow this to be
performed.

4 Predefined input and output procedures

There are four predefined procedures which implement input and output pro-
cesses which can be made to terminate even when there is a communication
failure. They will terminate either as the result of the communication com-
pleting, or as the result of the failure of the communication being recognised.
Two procedures provide input and output where communication failure can
be detected by a simple timeout, the other two procedures provide input and
output where the failure of the communication is signalled to the procedure
via a channel. The procedures have a boolean variable as a parameter which
is set true if the procedure terminated as a result of communication failure
being detected, and is set false otherwise. If the procedure does terminate as
a result of communication failure having been detected then the link channel
will be reset (see later).

All four predefined procedures take as parameters a link channel c (on which
the communication is to take place), a byte vector mess (which is the object

6

of the communication) and the boolean variable aborted. The choice of a
byte vector as the parameter to these procedures allows an object of any
type to be passed along the channel provided it is retyped first.

The two procedures for communication where failure is detected by a timeout
take a timer parameter TIME, and an absolute time t. The procedures treat
the communication as having failed when the time as measured by the timer
TIME is AFTER the specified time t. The names and the parameters of
the procedures are:

InputOrFail.t(CHAN c, []BYTE mess, TIMER TIME, INT t, BOOL aborted)

and

OutputOrFail.t(CHAN c, VAL []BYTE mess, TIMER TIME, INT t, BOOL aborted)

The other two procedures provide communication where failure cannot be
detected by a simple timeout. In this case failure must be signalled to the
inputting or outputting procedure via a message on the channel kill. The
message is of type INT. The names and parameters to the procedures are:

InputOrFail.c(CHAN c, []BYTE mess, CHAN kill, BOOL aborted)

and

OutputOrFail.c(CHAN c, VAL []BYTE mess, CHAN kill, BOOL aborted)

5 Recovery from failure

To reuse a link after a communication failure has occurred it is necessary to
reinitialise the link hardware. This involves reinitialising both ends of both
channels implemented by the link. Furthermore, the reinitialisation must
be done after all processes have stopped trying to communicate on the link.
So, although the InputOrFail and OutputOrFail procedures do, themselves,
reset the link channel when they abort a transfer, it is necessary to use the
fifth pre-defined procedure Reinitialise(CHAN c), after it is known that all
activity on the link has ceased.

The Reinitialise pre-defined must only be used to reinitialise a link channel
after communication has finished. If the procedure is applied to a link
channel which is being used for communication the transputer’s error flag
will be set and subsequent behaviour is undefined.

7

6 Examples: two systems with extraordinary link
usage

The following examples illustrate two systems which make extraordinary use
of transputer links. The first example is a development system, the second
example is of two systems interconnected by a link which may be physically
disconnected and re-connected at any time.

6.1 Example 1: a development system

The problem

For our example we return to the development system described above.

The solution

The first step in the solution is to recognise that the development system
knows when a failure might occur and hence the development system knows
when it might be necessary to abort a communication.

We will assume that the process which interfaces to the target system is sent
a message when the development system decides to reset the target causing
the interface process to abort any transfers in progress. The development
system can then reset the target system (which resets the target end of the
link) and re-initialise the link.

We can now outline the construction of such a system. The program below
would be that part of the development system which runs once the target
system starts executing, until such time as the target is reset and the link
is reinitialised.

SEQ
CHAN terminate.input, terminate.output :
PAR
... interface process
... monitor process

... reset target system
Reinitialise(link.in)
Reinitialise(link.out)

8

The monitor process will output on both terminate.input and terminate.output
when it detects an error in the target system.

The interface process consists of two processes running in parallel, one which
outputs to the link, the other which inputs from the link. As the structure
of the processes is similar we only discuss the process which outputs to the
link. If there were no need to consider the possibility of communication
failure the process might be

WHILE active
SEQ
...
ALT
terminate.out ? any
active := FALSE

from.dev.system ? message
link.out ! message

...

This process will loop, forwarding input from from.dev.system to link.out,
until it receives a message on terminate.out. However, if after this pro-
cess has attempted to forward a message, the target system halts without
inputting, the interface process will fail to terminate.

The following program overcomes this problem:

WHILE active
BOOL aborted :
SEQ
...
ALT
terminate.out ? any
active := FALSE

from.dev.system ? word
SEQ
OutputOrFail.c(link.out, message, terminate.out, aborted)
active := NOT aborted

This program is always prepared to input from terminate.out, and is always
terminated by an input from terminate.out. There are two cases which can
occur. The first is that the message is received by the input which then sets
active to false. The second is that the output gets aborted. In this case
the whole process is terminated because the variable aborted would then be
true.

9

6.2 Example 2: two systems connected by a link

The problem

In this example we consider two transputer-based systems, connected by a
link. The particular problem with which we are concerned is that the link
between the two systems might become disconnected. (We assume that the
electrical design of the system is adequate).

This example illustrates two things. Firstly how to detect that the link has
become disconnected, and secondly how to restart communication after it is
re-connected.

The solution

The key to this solution is detecting the disconnection of the link. Unlike the
development system example we do not straightforwardly know when this
has occurred. For example, if one system has not received communication
from the other system for thirty minutes it cannot necessarily deduce that
the link has been disconnected; it may just be that the other system has not
tried to communicate for thirty minutes!

To overcome this problem we adopt the use of ’watchdog’ processes on each
system to ensure that it communicates frequently with the other system.
The frequency of communication is chosen so that the disconnection of the
link is detected as quickly as is required by a system.

In this solution each system contains a process which interfaces to the com-
munication link. This process connects to an input channel, an output
channel and both the channels implemented by the link. The outline of this
process is as follows:

TIMER TIME :

PROC copier(CHAN output, input, unreliable.in, unreliable.out)
INT start.time :
SEQ
... synchronise with other end
TIME ? start.time
WHILE active
SEQ
... copy until failure occurs
... resynchronise

For simplicity we will assume that the system starts with the link connected.
First, the two systems synchronise by passing a message. This establishes a
common timeframe for the two systems (used when we need to re-establish

10

communication after disconnection of the link). Then the systems copy in-
formation between themselves until the link is disconnected. If one system
detects a failure it ensures that the other system detects a failure by deliber-
ately not engaging in communication for a suitable period. The two systems
then attempt to re-establish communication.

The copier performs the copying using two processes running in parallel, as
follows:

CHAN in.to.out, out.to.in :
PAR
copy.in (unreliable.in, output, out.to.in, in.to.out, one.sec)
copy.out (unreliable.out, input, in.to.out, out.to.in, one.sec/4)

The channels in.to.out and out.to.in enable each process to signal the other
when one detects failure. The processes implement a protocol on the link
channels with two types of packet, ’data’ and ’tick’ packets. A data packet
is a ’data’ tag, followed by a message, a tick packet consists of just a ’tick’
tag. In this example both the tag and the message are one word long.

The processes forward and receive messages as needed and insert tick pack-
ets if there are no message being forwarded. The disconnection of the link
is detected either by the input process or the output process failing to com-
municate within their allotted time.

In this example the outputting process outputs at least once every quarter
second (on unreliable.out) and assumes that the link has been disconnected
if the output does not complete within a quarter second. The inputting
process will assume the link has become disconnected if it does not receive
a message (on unreliable.in) for one second.

The coding of the two procedures copy.in and copy.out can now be explained.
The program text is given in section 7. Both procedures (A) declare an in-
teger mess and then retype it to a byte array mess.a. This allows the integer
mess to be passed to the predefined procedures which require a byte array

11

as a parameter. The main loop of both procedures (B) continue until either
the procedure receives a message which tells it that the other procedure,
running in parallel, has detected link disconnection (C), or it has detected
an error itself (G).

The other possibilities for the main loop of copy.out are to receive a message
on channel output (E) or to determine that it is time to send a ’tick’ (D). In
both cases an OutputOrFail.t is used in case die link is disconnected whilst
copy.out is outputting.

If copy.in does not receive a message on error.det it will perform an input
(F). This is done using InputOrFail.t which will detect link disconnection if
the timeout is exceeded.

Each process contains program to inform the other, parallel, process when it
detects an error (G). This runs an input in parallel with an output to ensure
that if the other parallel process has performed an output, the communica-
tion will occur correctly. Correspondingly, if the procedure is informed that
an error has occurred by the other process (C) it acknowledges the receipt
of that information.

It now remains to describe how to restart communication. The first problem
here is to identify that the link has been reconnected. In this example we
will assume that there is no way of doing this other than by trying to use
the link. (This is not ideal but is adequate).

The scheme we use is for both systems to try, repeatedly, to communicate
with the other. We use the tansputer’s timer to ensure that the systems
attempt to communicate at the same time. The systems execute processes
of the form

WHILE trying
SEQ
... wait until start of next cycle
... reset both link channels
... wait until next phase of cycle
PAR
... input from link channel with timeout
... output to link channel with timeout

trying := input.failed OR output.failed

The breaking of the cycle into distinct, non-overlapping, phases ensures that
the systems will not fail to communicate because one system is resetting its
links at the same time as the other system is trying to communicate.

The full code is given in section 8. In this code interval contains the number
of timer ticks in a cycle, and phase contains the number of ticks in a phase

12

(which equals interval/3). The program fragment starting at (A) calculates
the time to the start of the next cycle. delta.time contains the the elapsed
time since the processes originally synchronised (modulo the wordlength).
The LONGDIV computes the time since the start of the fast cycle. Note
that in order for this code to work correctly the number of ticks in a cycle
must divide 2wordlength exactly.

7 Program listing 1

VAL INT data.tag IS 0 :
VAL INT tick.tag IS 1 :
PROC get.next.tick(INT next.tick, VAL INT delta)
SEQ
TIME ? next.tick
next.tick := next.tick PLUS delta

:

PROC copy.out(CHAN out.dubious, input, error.det, error,gen,
VAL INT delta)

INT mess (A)
[]BYTE mess.a RETYPES mess :
INT next.tick :
BOOL active :
SEQ
active := TRUE
WHILE active (B)
INT sink, data :
BOOL error :
SEQ
get.next.tick(next.tick, delta)
PRI ALT
error.det ? sink (C)
SEQ
error.gen ! 0
active := FALSE

TIME ? AFTER next.tick (D)
SEQ
get.next.tick (next.tick, delta)
mess := tick.tag
OutputOrFail.t(out.dubious, mess.a,

TIME, next.tick, error)
in ? data (E)
SEQ
next.tick := next.tick PLUS delta
mess := data.tag
OutputOrFail.t(out.dubious, mess.a,

TIME, next.tick, error)

13

IF
error
SKIP

NOT error
SEQ
get.next.tick(next.tick delta)
mess := data
OutputOrFail.t(out.dubious, mess.a,

TIME, next.tick, error)
IF
error
SEQ
PAR
error.gen ! 0
error.det ? data

active := FALSE (G)
TRUE
SKIP

:

PROC copy.in(CHAN in.dubious, output, error.det, error.gen,
VAL INT delta)

INT mess :
[]BYTE mess.a RETYPES mess : (A)
INT next.tick :
BOOL active :
SEQ
active := TRUE
WHILE active (B)
INT sink :
BOOL error :
SEQ
get.next.tick(next.tick, delta)
PRI ALT
error.det ? sink (C)
SEQ
error.gen ! 0
active := FALSE

TRUE & SKIP
SEQ
InputOrFail.t(in.dubious, mess.a, (F)

TIME, next.tick, error)
IF
error
SKIP

mess = tick.tag
SKIP

mess = data.tag
SEQ

14

get.next.tick(next.tick, delta)
InputOrFail.t(in.dubious, mess.a,

TIME, next.tick, error)
IF -- forward data unless error detected
error
SKIP

TRUE
output ! mess

IF
error (G)
SEQ
PAR
error.gen ! 0
error.det ? sink

active := FALSE
TRUE
SKIP

:

8 Program listing 2

INT start.time :
SEQ
... pass initial message and set up start.time
WHILE active
SEQ
... copy until failure occurs

[1]BYTE i.byte, o.byte :
INT time, delta.time, next.cycle, next.phase, cycles :
BOOL trying :
SEQ
-- determine start of next cycle
TIME ? time (A)
delta.time := time MINUS start.time
LONGDIV(cycles, delta.time, 0, delta.time, interval)
next.cycle := (time MINUS delta.time) PLUS interval

trying := TRUE
WHILE trying
BOOL input.failed, output.failed :
SEQ
TIME ? AFTER next.cycle
ResetChannel(unreliable.in)
ResetChannel(unreliable.out)

next.phase := next.cycle PLUS phase

15

TIME ? AFTER next.phase

next.phase := next.phase PLUS phase
PAR

InputOrFail.t(unreliable.in, i.byte, TIME,
next.phase, input.failed)

OutputOrFail.t(unreliable.out, o.byte, TIME,
next.phase output.failed)

trying := input.failed OR output.failed

next.cycle := nextcycle PLUS interval

16

	1 Introduction
	2 Clarification of requirements
	2.1 Connection of distinct sub-systems
	2.2 Communication via an unreliable interconnect

	3 Programming concerns
	4 Predefined input and output procedures
	5 Recovery from failure
	6 Examples: two systems with extraordinary link usage
	6.1 Example 1: a development system
	6.2 Example 2: two systems connected by a link

	7 Program listing 1
	8 Program listing 2

