
TCX Transputer "C" Compiler User Guide

TCX Version 91.1
6/15/91

Copyright 1987-1991 by Logical Systems

Contents
1 Introduction

Overview
System Requirements

2 Usage
Getting Started
Examples
Option Descriptions

3 Language Description
ANSI/V7 Conformance
Library Notes
Data Representation and Alignment
C Intrinsic Functions and Language Extensions
Calling Conventions

Call state
Parameters
Return Values
Return State

Inline Assembly Language
4 Appendix A: Error Messages

Types of Error Messages
5 Appendix B: TCX Internals

Source Code Organization and Compiling

Transputer Toolset TCX Transputer "C" Compiler

Introduction

Overview

TCX is a "C" cross compiler for the INMOS 16 and 32 bit Transputers. TCX
doesn't include "preprocessing" facilities and is intended to run as a post pass to PP (the
"C" preprocessor).

System Requirements

TCX uses lots of memory and shouldn't be used for significant jobs with less than
512K bytes of program memory available. TCX doesn't use temporary files (by default
anyway), and instead manipulates program constructs up to the function level in memory.

Usage

The general form of the TCX command line is:

tcx <input_filename> [-options]*

The "input_filename" field MUST contain the name of the program being
compiled (typically the output of a "C" program run through PP). Note that a default
input filename extension of ".pp" is assumed unless one is explicitly provided (to match
PP output files).

The "option" field allows control over the way TCX compiles programs. It
contains zero or more "control flags", which collectively allow you to configure TCX to
meet your requirements.

One of the allowed flags is "-v". This flag is used to toggle the compiler between
the verbose and quiet output modes. Unlike other options whose actions are independent
of the TCX runtime environment, the "-v" flag action is dependent on which host
operating system TCX is running under. TCX on the Macintosh becomes "verbose" with
"-v", while on other systems TCX becomes "quiet". For the remainder of this manual the
assumption is made that the host system is NOT a Macintosh, and thus that the "-v"
option causes the compiler to be "quiet". If you are using TCX on the Mac you will have
to mentally reverse the commentary relating to the "-v" flag as it appears in this manual!

Examples

Assume you have a "C" program named "chello.pp" which you wish to compile
(we presume it has already been processed by PP). The syntax is:

tcx chello

2

TCX Transputer "C" Compiler Transputer Toolset

Since TCX is verbose by default it gives you a function by function commentary
as the "chello.pp" program is compiled. To turn off the verbose output you use:

tcx chello -v

By default TCX generates code for the T414 processor type. If instead you wish
to generate T800 code you use:

tcx chello -v -p8

As an alternative, you can merge the option flags together:

tcx chello -vp8

See the following Option Description section for information on the option flags
used when compiling code for other members of the Transputer family.

In the above examples TCX wrote the output assembly language file to
"chello.tal". If you wish to put it somewhere else you can use the "-o" option:

tcx chello -ovp8 zip.zap

This example causes the output to be written to a file by the name of "zip.zap".
Now, assuming you are more interested in speeding things up than in debugging
information, you may use the "-c" option to compress the output file:

tcx chello -vc

This example disables verbose commentary and removes the source debugging
information from the "chello.tal" output file. The code is compiled for the default T414
processor.

Option Descriptions

The above examples cover some of the operational details of TCX. In addition to
the following detailed option summary note that simply executing TCX without any
command line arguments causes it to summarize the allowed syntax and option flags.

Note that TCX provides a return value of non-zero to the operating system if
errors are detected. This may be used by some shell programs to respond to the error in a
programmable fashion. If an error was detected an error message is written to standard
output regardless of whether the "-v" option was specified.

The following option listing summarizes and expands upon the information
presented in the examples:

3

Transputer Toolset TCX Transputer "C" Compiler

-c

Compresses the output file by removing source debugging information. Unless
the debugging information is required this option will substantially reduce the size of the
output file and will also improve code optimization since source statement boundaries are
no longer important to preserve in the generated code.

-d

Enable internal TCX debugging display. Causes a more detailed commentary to
be written to standard output during the compilation process and causes the output file to
contain a large amount of internal debugging information (parse trees, commented
variable names, etc.). The output file generated in this fashion may still be assembled by
TASM without difficulty but will be several times as large as the vanilla output file.
This option is only really useful if you are debugging the compiler (or a new port of it),
in which cases it is absolutely essential!

-e

Causes the output file to be written in the presence of detected errors in the input.
This option is provided for debugging purposes only and may cause TCX to "coredump",
or crash in a random fashion for some classes of input errors. Normally the output file is
deleted if errors are present.

-f0

Causes TCX to make the length of "float" be 32 bits and "double" be 64 bits.
Intermediate results in floating point expressions are promoted to 64 bits in conformance
with "classic" (pre-ANSI), "C" practice.

-f1

Causes TCX to make the length of "float" be 32 bits and "double" be 64 bits.
Intermediate results in floating point expressions are promoted to whatever the greatest
size of the operands involved is. This option conforms to the proposed ANSI standard
and adds additional flexibility in optimization when the programmer knows in advance
which parts of a program require 64 bit math and which don't (and thus may execute
faster). A useful facility in ANSI "C" when using this option is the "f" floating point
constant suffix which informs "C" that the constant is of type "float" instead of the
default "double". This option is enabled by default if none of the "-f?" options are given.

4

TCX Transputer "C" Compiler Transputer Toolset

-f2

Causes TCX to make the length of both "float" and "double" be 32 bits.
Intermediate results in floating point expressions are always 32 bits long. This option is
included for those who need floating point but for whom speed is more important than
accuracy. Some robotics and graphics applications seem to naturally fit this mold. When
using this option you must arrange to have the preprocessor (PP), macro symbol
"DOUBLE32" defined prior to any use of the various "C" include files in your program.
This ensures the 32 bit versions of the various floating point constant definitions in the
include files are used instead of the default 64 bit flavors. One easy way to do this is to
use a "-dDOUBLE32" command line argument to PP.

-fr

Causes TCX to generate code which forces floating point to integral conversions
to be done with "round-to-nearest" behavior. This contrasts with the standard ANSI
"round-to-zero" approach. Slightly faster code is generated when this option is selected
for the Transputer, and it can also be useful when doing certain types of numerical
programming.

-i

Causes TCX to use a temp file to cache compiler intermediate information in
order to reduce TCX memory requirements and allow compilation of larger "C"
functions. This option has the down side of significantly increasing compiler execution
time. The temp file used by the cache is located in either the current directory or in a
special temporary directory associated with the "TMP" environment variable (if it exists).

-mc<number>

Sets the default module "number" to write the code into. The module number
may be between 0 and 255 inclusive with 0 being the default. See the TASM
documentation for a more detailed description of what a "module" is (really nothing
more than a controllable load region).

-mi<number>

Sets the default module "number" to write initialized data into. The module
number may be between 0 and 255 inclusive with 0 being the default. See the TASM
documentation for a more detailed description of what a "module" is (really nothing
more than a controllable load region).

5

Transputer Toolset TCX Transputer "C" Compiler

-mu<number>

Sets the default module "number" to write uninitialized data into. The module
number may be between 0 and 255 inclusive with 0 being the default. See the TASM
documentation for a more detailed description of what a "module" is (really nothing
more than a controllable load region).

-o <output_filename>

This option flag allows you to explicitly specify the output filename (including
extension), for TCX to use for the assembly language output file. By default the output
file is written on a filename constructed from the prefix of the input file with an
extension of ".tal".

-p0
This option flag tells TCX to generate code which ONLY contains instructions

common to all the various 32 bit Transputers. The intended use is the compilation of
machine independent code. In actual fact what this does is shove the job off to TASM
which generates subroutine calls for instructions which aren't supported in all the 32 bit
processor types. To use this option a special library may be required (depending on what
instructions your program requires). This library is not currently provided with the
Transputer Toolset.

-p2

This option flag tells TCX to generate code for the T212/T222 processors. Note
that this version of the Transputer Toolset does not support floating point for the 16 bit
Transputers such as the T212/T222/T225. If any of the standard include files are to be
used you should ensure that the preprocessor symbol "T212" is defined so that the
correctly sized versions of the various include file constants are used. One easy way to
do this is to use a "-dT212" command line argument to PP.

-p25

This option flag tells TCX to generate code for the T225 processor. Note that this
version of the Transputer Toolset does not support floating point for the 16 bit
Transputers such as the T212/T222/T225. If any of the standard include files are to be
used you should ensure that the preprocessor symbol "T212" is defined so that the
correctly sized versions of the various include file constants are used. One easy way to
do this is to use a "-dT212" command line argument to PP.

6

TCX Transputer "C" Compiler Transputer Toolset

-p4

This option flag tells TCX to generate code for the T414 processor. This is also
the default if none of "-p?" flags is given. If any of the standard include files are to be
used you should ensure that the preprocessor symbol "T414" is defined so that the
correctly sized versions of the various include file constants are used. One easy way to
do this is to use a "-dT414" command line argument to PP.

-p45

This option flag tells TCX to generate code for the T400/T425 processors. If any
of the standard include files are to be used you should ensure that the preprocessor
symbol "T414" is defined so that the correctly sized versions of the various include file
constants are used. One easy way to do this is to use a "-dT414" command line argument
to PP.

-p8

This option flag tells TCX to generate code for the T800 processor. If any of the
standard include files are to be used you should ensure that the preprocessor symbol
"T800" is defined so that the correctly sized versions of the various include file constants
are used. One easy way to do this is to use a "-dT800" command line argument to PP.

-p85

This option flag tells TCX to generate code for the T801/T805 processors. If any
of the standard include files are to be used you should ensure that the preprocessor
symbol "T800" is defined so that the correctly sized versions of the various include file
constants are used. One easy way to do this is to use a "-dT800" command line argument
to PP.

-pc

Make a plain "char" be signed (defaults to unsigned). Either way is legal under
ANSI but unsigned generates somewhat faster code.

-ps

Make signed right shifts propagate the sign. TCX zero fills by default (which is
faster). Either way is legal under ANSI.

7

Transputer Toolset TCX Transputer "C" Compiler

-q0

Tells TCX to disable the internal post-pass code optimizer. By default TCX
performs this additional optimization.

-q1

Tells TCX to disable the inline code expansion for "intrinsic" functions. See the
"C" Intrinsic Functions and Language Extensions section for more information.

-q2

Tells TCX to disable the the CPU/FPU instruction concurrency optimization
normally performed when compiling code for Transputers with floating point support.

-r

Tells TCX to generate runtime relocatable code. This forces all references to
statically allocated structures to be PC relative. As usual, you must ensure that you don't
have pointers with static initializers, explicit casts to literal addresses, etc. Additionally,
you must ensure that all other files which make up the final program ALSO use this
option to ensure correct operation after relocation. This includes all required library
routines (the distribution versions of "t2lib.tll", "t4lib.tll"/"t432lib.tll" and
"t8lib.tll"/"t832lib.tll" are NOT relocatable, you must rebuild a version for this purpose).
A slight drawback to this option is that the generated code is usually somewhat larger.

-s

This option is similar to the "-r" option except it allows separate relocation of
code and data at runtime. This option implements what INMOS terms the "static link"
data model. This means that the parameter list to each function which is called contains
a hidden "link" to the current global memory base address. All accesses to global data
within a function are then relative to this base address. This option is designed to work
in conjunction with the "S" TLNK option flag. TLNK provides the global definition of
the static base symbol and delays the binding of the T_ADDR_DATA so that runtime
fixups can be implemented when the resulting ".tld" file is loaded/located.

8

TCX Transputer "C" Compiler Transputer Toolset

This option also modifies the settings of the following other TCX options:

1. Enables the "-r" flag so that code is relocatable.
2. Forces code into load module 0 (equivalent to "mc0").
3. Forces initialized data into load module 250 (equivalent to "mi250"). Note that
TLNK will later predefine the static link base symbol ("?slb"), at the beginning of this
load module.
4. Forces uninitialized data into load module 252 (equivalent to "mu252").

The libraries shipped with the Transputer Toolset will NOT work with the static
link data model without recompilation. Although the library source code has been
modified to correctly work with this model (note that a preprocessor symbol called
"STATIC_LINK" must be defined when compiling the library code for this mode), the
library routines which initialize new processes must be modified to initialize the static
link thread. This includes routines such as "_main", "ProcPar", etc. As the primary use
of the static link option is with the various Transputer operating systems which require it
(and have diverse ideas of how process creation should be handled), this is generally
handled by OS specific library routines.

-ti<function_name>

This option flag tells TCX to generate a "call", at the beginning of each function,
to the user specified "function_name" function. Use of this option permits the creation of
various forms of execution "tracing", including stack tracing. The specified function to
be called is passed a single integer parameter which contains the workspace size (in
words), for the function it was called from. By adding the workspace size to the
workspace pointer of the calling function, the address of the return address of the calling
function may be determined. See the Calling Conventions section for more information
about stack frame organization. Also see the "-to" option flag for a related facility. Note
that you must NOT use the "-ti"/"-to" flags when you are compiling the trace functions
proper (otherwise they will recurse to death tracing themselves!) See the "trace.c" file in
example program directory for an example of a function suitable for use with this option.

-to<function_name>

This option flag tells TCX to generate a "call", at the end of each function, to the
user specified "function_name" function. The "call" is also generated just prior to any
"return" statements the function may contain. Use of this option permits the creation of
various forms of execution "tracing". See the Calling Conventions section for more
information about stack frame organization. Also see the "-ti" option flag for a related
facility. Note that you must NOT use the "-ti"/"-to" flags when you are compiling the
trace functions proper (otherwise they will recurse to death tracing themselves!) See the
"trace.c" file in example program directory for an example of a function suitable for use
with this option.

9

Transputer Toolset TCX Transputer "C" Compiler

-v

This option flag disables the "verbose" output mode which is the default for TCX.
If you use this option you won't get any garbage written to standard output unless you
actually have an error.

-w0

The "w" option flags allows you to set the warning level for TCX. The "w0"
option suppresses ALL warning messages. Only error messages which result from
explicit syntax or semantic errors are flagged. This level is not recommended for normal
operation!

-w1

This version of the "w" option flag selects an intermediate level of TCX nit-
picking. This level is approximately equivalent to a fairly strict UN*X-style "C"
compiler. The "w1" warning level is a reasonable choice for porting existing "C" code
which doesn't maintain exact type equivalance for function arguments, etc.

-w2

This "w" option version enables the "picky" level of TCX warning messages.
Since TCX is evolving towards the emerging ANSI "C" standard many of these messages
are oriented around the requirements of that flavor of "C". The "w2" warning level is the
default for TCX and should be used for all new code to ensure maximum future
portability to other "C" compilers (both ANSI and traditional).

10

TCX Transputer "C" Compiler Transputer Toolset

Language Description

ANSI/V7 Conformance

There are several possible models of what a "C" compiler should be. PP (now)
and TCX (eventually) are intended to conform to the Proposed ANSI "C" Standard.
Since PP is documented elsewhere, this section describes where TCX differs from the
ANSI standard. Note that discounting the vagueness of the original specification, TCX is
completely upward compatible with UN*X V7.

ANSI things TCX doesn't CURRENTLY support:

1. The internationalized character extensions.
2. "const" and "volatile".

Major ANSI things TCX does CURRENTLY support:

3. Signed and unsigned bitfields.
4. Complex auto initializers.
5. Structure passing and return.
6. Both 32 and 64 bit IEEE floating point.
7. Function prototypes.
8. Separate name spaces for structure components.
9. Structure assignment.
10. String concatenation.
11. Enumeration specifiers.
12. "void" and "void *".
13. Union initializers.

For a good description of the "C" language (and the Proposed ANSI "C"
Standard), the following references are recommended:

"C" A Reference Manual
Samuel P. Harbison/Guy L. Steele Jr.

Prentice-Hall, Inc.
Englewood Cliffs, NJ 07632

The "C" Programming Language (Second Edition)
Brian W. Kernighan/Dennis M. Ritchie

Prentice-Hall, Inc.
Englewood Cliffs, NJ 07632

11

Transputer Toolset TCX Transputer "C" Compiler

Library Notes

In practice the "C" compiler is only half the battle, a good library is nearly as
important! At its current stage of development TCX doesn't have everything which will
eventually be present, but it does offer a rich set of primitives. All the routines in the
library which are part of the ANSI specification conform to ANSI dictates. Those
routines which aren't part of ANSI but are common in "C" libraries conform to the SYS5
specification or the BDS4.3 specification (whichever applies). See the TRANSPUTER
'C' LIBRARY DESCRIPTION manual for detailed information.

Five precompiled versions of the "C" library are provided with this Transputer
Toolset release:

"t2lib.tll" For the T212/T222/T225 processors.

"t4lib.tll" For the T400/T414/T425 with 64 bit "double".
"t432lib.tll" For the T400/T414/T425 with 32 bit "double".

"t8lib.tll" For the T800/T801/T805 with 64 bit "double".
"t832lib.tll" For the T800/T801/T805 with 32 bit "double".

Note that libraries where both "float" and "double" are 32 bits have been
compiled with the "-f2" option flag. These libraries should only be used with user
programs compiled in the same manner. Only one set of include files is provided, but
the size of the "double" type may be controlled using the "DOUBLE32" macro. If the
size of a "double" is to be 32 bits you should ensure that a macro named "DOUBLE32" is
defined BEFORE the first include file is used in your program. This allows the include
files to determine which of the 32 or 64 bit versions of the various floating point
constants they contain should be used. Set the "-f2" commentary in the Option
Descriptions section for more information.

12

TCX Transputer "C" Compiler Transputer Toolset

Data Representation and Alignment

For the 16 bit Transputers, the following are the sizes of the basic data types:

pointer 16 bits (signed)
bitfield 16 bits (field sizes from 1 to 16 bits)
enum 16 bits

char 8 bits
short 16 bits
int 16 bits
long 16 bits (may be 32 bits in a future version)

For the 32 bit Transputers, the following are the sizes of the basic data types:

pointer 32 bits (signed)
bitfield 32 bits (field sizes from 1 to 32 bits)
enum 32 bits

char 8 bits
short 32 bits
int 32 bits
long 32 bits

float 32 bits
double 32 or 64 bits depending on "-f?" option flag
long double 32 or 64 bits depending on "-f?" option flag

By default, "char" is unsigned (the "-pc" option flag may be used to make "char"
signed). By default, right shifts of signed integers zero fill (the "-ps" option may be used
to force sign propagation).

All "static/global" data objects other than "char" (or "array of char"), are word
aligned. All "auto" data objects are word aligned. The size of all structure and union
data objects is padded to the nearest word boundary.

"C" Intrinsic Functions and Language Extensions

The Transputer has a relatively rich instruction set with facilities for math and
process scheduling built into the microcode. One of the standard problems with taking
advantage of this sort of thing, in an existing language like "C", is finding a good way to
use these facilities WITHOUT compromising future application program portability.
Two basic approaches have been taken for the Transputer:

1. Extend the syntax of "C" to support the facilities available on the Transputer.

2. Build a set of library routines to access the features and thereby keep the language
definition standard.

13

Transputer Toolset TCX Transputer "C" Compiler

Approach #1 provides a fairly clean interface to the Transputer extensions such as
channel I/O, scheduling, etc., but severely hampers future portability. Approach #2
provides a somewhat "clunky looking" interface to the Transputer features and has the
added burden of a function call overhead tacked onto the intrinsically low overhead
Transputer instructions.

This is the quandary we faced during the design phases for the TCX compiler:
Which way should WE go?

In the end, the portability argument won out. One particularly strong point was
made when someone pointed out that we had all, at one time or another, done
maintenance on programs which were almost as old as we were (written long before the
Transputer was a gleam in anyone's eye).

Given this decision, we decided to "cheat" a bit by implementing the desired
functions as both real functions and as "intrinsics", which are specially recognized by
TCX, and for which inline code is generated. This balanced the efficiency scales and left
us with a tradeoff between portability and code appearance (which really isn't that bad
anyway). In light of this, the following functions were implemented as "intrinsics" (see
the TRANSPUTER 'C' LIBRARY DESCRIPTION manual for details):

T225/T400/T425/T800/T801/T805 only:

BitCnt BitRevNBits BitRevWord

T400/T425/T800/T801/T805 only:

Move2D Move2DNonZero Move2DZero

T800/T801/T805 only:

fabs fabsf sqrt sqrtf

All processors:

bcopy ChanIn ChanInChar ChanInInt
ChanOut ChanOutChar ChanOutInt ChanReset
GetLoPriQ GetHiProQ memcpy PHalt
ProcAfter ProcGetPriority ProcReschedule ProcStop
ProcWait PRun PStop SetLoPriQ
SetHiPriQ SetTime Time

To allow a function to be recognized as an "intrinsic", the include file which
contains the function prototype definition for the desired function must be used (so TCX
knows about the function). If you wish to ensure that you get a real function call, and
not the inline equivalent, you may simply "#undef" the name of the function and the
"intrinsic" recognition will be replaced with a real function call (ala ANSI).

14

TCX Transputer "C" Compiler Transputer Toolset

Calling Conventions

This section describes the entry and exit conditions for a "C" function compiled
by TCX. Consult the appropriate INMOS documentation for further information on the
instruction-level architecture of the Transputer.

Call State

1. All floating point and integer registers are undefined.

2. Iptr points to the first instruction in the function being called.

3. Wptr points to the base of the invocation stack frame prepared by the calling
function. Wptr must always be word aligned. The invocation stack frame has the
following format (addresses decrease from top to bottom):

Word Offset

: :
N+1 | Caller | Calling function workspace

|--------------|
N | Nth Param. | Nth (last) parameter slot

: :
: :
|--------------|

4 | 4th Param. | First "extra" parameter slot
|--------------|

3 | 3rd Param. | Saved value of caller Creg
|--------------|

2 | 2nd Param. | Saved value of caller Breg
|--------------|

1 | 1st Param. | Saved value of caller Areg
|--------------|

0 | Iret | Return address to caller
|--------------|

-1 | Free | First free workspace location
: :

Note that at least 3 parameter slots (words), are used, in addition to the return
address, regardless of the size or number of actual parameters. These correspond to the
locations into which Areg, Breg and Creg are automatically stored when the "call"
instruction is issued.

The use of the parameter slots depends on whether the function will be returning
a structure or union as well as the global data model being used by TCX. If the function
is returning a structure or union the "1st Parameter" slot will ALWAYS hold the address
to copy the return value into. If the "static link" global data model is in use the static link
will be contained in either the "1st Parameter" or "2nd Parameter" (if the function returns
a structure or union), slot.

15

Transputer Toolset TCX Transputer "C" Compiler

If either the "1st Parameter", or both the "1st Parameter" and "2nd Parameter",
slots are already in use, any parameters which would otherwise use these slots will be
bumped up by the corresponding number of slots.

If one or more of the default three parameter slots are not used by a particular
function call then the slot is available for use by the called function to store local
variables, etc.

Parameters

All parameters passed by the calling function start at the first available parameter
slot and continue upwards (towards higher addresses). Parameters are placed in the slots
in the order in which they are present in the original "C" source description. The first
location in the local workspace used by the calling function is located in the next slot
above the last parameter passed to the called function.

All passed parameters occupy at least one slot. All parameters are passed by
value. Parameters which are larger than one word occupy the minimum number of slots
(words), required to hold the respective data objects. The "endian-ness" of the memory
layout (for data items which require more than one slot), is the same as that normally
used for local or global variables. See the Data Representation and Alignment
discussion for information about the sizes of objects.

Return Values

For functions which return structures or unions, the passed return address is used
as the address to copy the return value into. It is the responsibility of the called function
to perform the copy.

For functions which return integral types, the return value is passed in Areg. On
Transputers with floating point support, floating point return values are passed in FAreg.

Floating point return values, on Transputers without floating support, (no
hardware FAreg), are copied into a simulated FAreg register. This simulated register is
the "FAreg" member, of the "FPstate" structure, which is used by the floating point
emulation library to simulate a set of floating point registers. It is the responsibility of
the called function to copy the return value into this structure member. An external
definition for the structure is contained in the "conc.h" include file.

Return State

The called function is responsible for restoring the workspace pointer to the value
it was on entry to the function, and executing a "ret" instruction to return control to the
calling function. The calling function has the responsibility of adjusting the workspace
to remove any parameters beyond those automatically removed by the "ret" instruction.

16

TCX Transputer "C" Compiler Transputer Toolset

Inline Assembly Language

TCX supports inline assembly language. For a description of the Transputer
assembly language see the TASM assembler documentation. For a description of the
Transputer instruction set and architecture, consult the various INMOS publications.

WARNING: Programming the Transputer at the assembly language level is
not for the faint at heart! You must have an excellent understanding of the low-
level hardware and software features of the Transputer to have a reasonable chance
of success!

From the point of view of TCX, inline assembly code is passed straight through
to the assembler without modification or examination. Keep this in mind and ensure that
what you do will not disrupt what TCX is doing (or vice-versa). To ensure maximum
compatibility between the two, follow these rules:

1. If necessary, precede your inline assembly code with a "C" null statement (";"), in
order to ensure that the last thing that was parsed prior to your inline code is a simple "C"
statement.

2. Make sure that the workspace pointer is unchanged between the start and end of
the inline assembly code. If you must temporarily change the workspace pointer within
the assembly code, use the "_asm_ajw" pseudo-function described later.

3. Never change the contents of anything in the local workspace without reason. If
you do access local variables, or parameters, use the "[]" notation used in the examples
below to compute the workspace offset. This is particularly important for portability,
since different versions of TCX may assign different workspace offsets to the same
variables (as optimization improves). Note that the workspace offsets for the
structure/union return value pointer and static link pointer may also be accessed using
this technique by using the reserved symbols "?rslink", and "?slb", respectively.

4. Whenever possible, use the "_asm_eval?" pseudo-functions described below to
evaluate "C" expressions or addresses. Again this will greatly improve portability
between different versions of TCX.

5. Whenever possible, make the inline assembly language be the only code in a
function. This causes the fewest possible conflicts between TCX and what you are
doing.

6. When things don't work as you expect, examine the assembly language output
from TCX to see what is REALLY being generated. As mentioned earlier, inline
assembly coding isn't for the casual programmer!

17

Transputer Toolset TCX Transputer "C" Compiler

You invoke the inline assembly language option by issuing a "#pragma asm"
statement. The option is turned off by a complementary "#pragma endasm" statement.
For example:

int add(int a, int b)
{
;

#pragma asm
ldl [a]
ldl [b]
add

#pragma endasm
}

This function takes two integer arguments, adds them, and returns the result on
the top of the integer stack (in Areg). See the previous Calling Conventions section for
more information about function entry/exist conventions.

Of course, for this simple case the code is no better than the "C" compiler can
generate. In general, the best use of inline assembly is to take advantage of instructions
and facilities the Transputer supports which are not the normal provenance of the "C"
language. Keep in mind that many of the more useful facilities already have been
supported with "intrinsic" functions or library routines.

The preceding example also showed how the "[]" notation is used to allow
assembly instructions symbolic access to the workspace offset for "auto" variables and
parameters. For non-static global variables the actual name may be used instead. For
example:

int a,b;

int gadd(void)
{
;

#pragma asm
.ldc a
ldnl 0
.ldc b
ldnl 0
add

#pragma endasm
}

Like the previous example, this function adds two variables (named "a" and "b"),
and returns the result. If "a" and "b" were defined in another file you would have to
indicate that using a ".ext a,b" pseudo-opcode.

18

TCX Transputer "C" Compiler Transputer Toolset

If the variable to be accessed is more complex than a simple integer variable, you
might wish to use one of the "_asm_eval?" pseudo-functions. These functions are issued
with "C" syntax, but may be embedded inside inline assembly language. For example:

#include <inline.h>

int a,b;

int gadd(void)
{
;

#pragma asm
_asm_eval2(a,b);
add ;"a" in Areg, "b" in Breg

#pragma endasm
}

Note the required include file "inline.h". What the "_asm_eval2" pseudo-function
does is to evaluate arbitrary "C" expressions into the Transputer Areg and Breg (integer
stack), registers. The Creg register is left unmolested. There are also versions for
evaluating only into Areg ("_asm_eval1"), or into all three registers ("_asm_eval3").

19

Transputer Toolset TCX Transputer "C" Compiler

Although the pseudo functions may only be directly used with the integer
registers, they are helpful for use with floating point instructions also. This is because
most floating point instructions use the integer register to hold the address of floating
point numbers being loaded and stored. For example:

#include <inline.h>

float a,b;

float fgadd(void)
{
;

#pragma asm
_asm_eval2(&a,&b);
fpldnlsn ;Load "a"
fpldnladdsn ;Load "b" and add with "a"

#pragma endasm
}

This function simply adds the values of "a" and "b" and returns the result.

While none of these examples has required it, it is sometimes necessary to change
the workspace pointer while programming in inline assembly language. The normal
"ajw" instruction may be used, however, the symbolic "C" access facilities will then not
work correctly. If you wish to use the "[]" notation, or the "_asm_eval?" pseudo-
functions, you should replace use of "ajw" instructions with the "_asm_ajw" pseudo-
function. The use of this pseudo-function keeps TCX abreast of the current workspace
pointer position and allows it compute symbolic workspace offsets correctly. For
example:

#include <inline.h>

int zip(int a, int b, int c)
{
;

#pragma asm
ldl [a]
ldl [b]
add
_asm_ajw(-1); ;Decrement workspace pointer
stl 0 ;New workspace temp storage
ldl [c]
.ldc 1
.ldc 2
call @zap
ldl 0 ;Re-load sum of "a" & "b"
add ;Add to value returned by "zap"
_asm_ajw(1); ;Restore workspace pointer

#pragma endasm
}

20

TCX Transputer "C" Compiler Transputer Toolset

Note that the "inline.h" include file is again required. In this example, "a" and "b"
are added together, and the sum is temporarily saved. Then, the value of the "c"
parameter and two constants are loaded onto the integer stack and the "zap" function
called. Finally, the return value from "zap", and the previously saved sum, are added and
returned as the value of the "zip" function.

In addition to the information presented here, there are several other sources of
inline assembly language examples and ideas:

1. The "C" library. Many of the library routines use inline assembly language (for
example "tcio.c" and the math functions), these functions give you many examples of
how to use these features.

2. The TCX assembly language output file. Try first coding your algorithm in "C",
and then using the assembly language output file as a starting point in constructing the
desired inline assembly language code.

21

Transputer Toolset TCX Transputer "C" Compiler

Appendix A: Error Messages

Types of Error Messages

There are three classes of error messages which TCX can generate:

• Simple Errors. These are used to report problems which are fatal and are not
generally related to the contents of the file being compiled. This includes things like
TCX not being able to open the specified input file, etc. The format is simply:

message_text

• Compile Errors. These are used to report problems which are usually related to
the file being compiled. In addition to the error message text, TCX also displays the
filename and line number where the error was discovered. The format is:

<filename> @ #: message_text

• Compile Warnings. These are used to report problems which are related to the
file being compiled, but may or may not be fatal (depending on the setting of the "-w#"
flag). As with Compile Errors, the filename and line number where the warning was
discovered is displayed in addition to the warning message text. The format is:

<filename> @ #: WARNING: message_text

Either the Compile Errors or Compile Warnings messages may be optionally
followed by a copy of the source line which produced the error with a "^" underneath
showing the specific spot where the error was encountered.

22

TCX Transputer "C" Compiler Transputer Toolset

Appendix B: TCX Internals

Source Code Organization and Compiling

The TCX system consists of fifteen "C" source files and four include files:

1. "tcx1.c". Block level and external parsing.

2. "tcx2.c". Function parsing.

3. "tcx3.c". Control structure parsing.

4. "tcx4.c". Expression parsing.

5. "tcx5.c". Keyword and type parsing primitives.

6. "tcx6a.c". Code generator primitives.

7. "tcx6b.c". Code generator.

8. "tcx6c.c". Code generator.

9. "tcx6d.c". Code generator.

10. "tcx6e.c". "intrinsic" code generator.

11. "tcx7.c". Post-pass optimizer.

12. "tcx8.c". I/O and misc primitives.

13. "tcx9.c". Text block manipulation primitives.

14. "tcx10.c". Command line cracking and initialization.

15. "tcx11.c". Symbol table manipulation.

16. "tcx.h". Main configuration and data structure definitions.

17. "tcxdecl.h". Global data declarations (also global definitions when included in
"tcx1.c").

18. "tcxenv.h". Host operating system and target architecture configuration.

19. "tcxext.h". External function declarations.

For MS-DOS source distributions the supplied "makefile" may be used with the
MAKE utility to build "tcx.exe" using Microsoft "C" V6.00a or Borland C++ V2.0 (the
Microsoft/Borland "C" compilers are not supplied and must be purchased separately).

23

Transputer Toolset TCX Transputer "C" Compiler

For Macintosh source file distributions consult the supplemental information your vendor
has included with the Transputer Toolset.

24

	Contents
	1 Introduction
	Overview
	System Requirements

	2 Usage
	Examples
	Option Descriptions

	3 Language Description
	ANSI/V7 Conformance
	Library Notes
	Data Representation and Alignment
	"C" Intrinsic Functions and Language Extensions
	Calling Conventions
	Call State
	Parameters
	Return Values
	Return State

	Inline Assembly Language

	4 Appendix A: Error Messages
	Types of Error Messages

	5 Appendix B: TCX Internals
	Source Code Organization and Compiling

